
TLS MITM attack on the Ripple XRP Ledger

Wolfgang Bubberman1 , Stefanie Roos1 , Satwik Prabhu Kumble1 

1Delft University of Technology

Abstract
The Ripple XRP Ledger network hosts a cryptocur-
rency called XRP which uses the TLS protocol to
send messages between nodes. It is crucial that the
network is tested against attacks to ensure its secu-
rity. The Ripple XRP Ledger could be vulnerable to
a Man-in-the-Middle (MITM) attack. This MITM
attack is an attack which can intercept and modify
data by posing as intended receiver of the message.
Potentially, this could have major implications as
message content could be intercepted and used ma-
liciously. Therefore this paper aims to answer the
question: “Is it possible to conduct a TLS MITM
attack on the XRP ledger to gain access to message
content and how does such an attack affect the per-
formance of the system?”. The research done in
this paper concluded that it is possible to conduct a
TLS MITM attack on the XRP Ledger. The impact
on performance is a delay in the travel time of a
message. However, how big this delay is, is depen-
dent on the network the attack is executed on. In the
tested environment it was roughly adding a 69.2%
delay to a message. Future research is necessary to
be able to modify the message content and to con-
firm if the larger the delay added by the MITM, the
higher the probability that the MITM is detected.

1 Introduction
Since the initial proposal for Bitcoin in 2008 [11] cryptocur-
rencies and blockchains have become more widely used over
the past decade and a half. The XRP ledger is one of these
decentralized networks used for transferring digital assets. It
is the home of the cryptocurrency XRP. XRP forms a bridge
between the different currencies in use worldwide. The goal
of XRP is to contribute to the Internet of Value: a world in
which money moves the way information does today [20].
The usage of encrypted channels in decentralized networks is
critical to send data from one node to another securely. In the
ripple XRP ledger network, the nodes make use of Transport
Layer Security (TLS). To get a better insight in how the plat-
form works and to find bugs that went previously undiscov-
ered, a Man-in-the-Middle (MITM) attack can be executed to
discover what kind of data and messages are transferred via

these encrypted channels. Logically from this we can con-
clude that if someone is able to perform a MITM attack, a
lot of useful information can be gathered regarding the weak-
nesses of the XRP Ledger, which could be used to exploit
or improve the XRP Ledger. Therefore the purpose of this
research project is to analyse the impact and possibility of a
TLS MITM attack on the Ripple XRP Ledger, which makes
the research question the following: “Is it possible to con-
duct a TLS MITM attack on the XRP ledger to gain access
to message content and how does such an attack affect the
performance of the system?”

Whilst there is a lot of information and research done and
ongoing about MITM attacks by authors such as Nayak and
Samaddar [12], and the employment thereof on TLS net-
works as explained by Prentow and Krarup [17], there has
not been any published research regarding a TLS MITM at-
tack on the Ripple XRP Ledger. Therefore this paper, which
is about the research of a TLS MITM attack on the Ripple
XRP Ledger and the impact thereof, should provide infor-
mation that fills in this aforementioned gap in the knowledge
about TLS MITM attacks and help other research regarding
the Ripple XRP Ledger and its security.

In this paper it will be shown that, by a proof of concept, it
is possible to conduct such a TLS MITM attack on the Ripple
XRP Ledger, and it has a 69,2% delay performance impact
on the messages it proxies.

The next section, section two, is about the background in-
formation on MITM attacks, TLS and Ripple, which will be
followed by an explanation of the methodology employed in
the research in section three directly afterwards. After that,
the contribution made by this paper will be displayed in sec-
tion four, and the experimental setup and results of the re-
search will be explained and discussed in section five. This
will be followed by responsible research to reflect on ethical
aspects of the research in section six and a discussion of the
contents of the paper in section seven. The conclusion and
future work is portrayed in the final section, section eight.

2 Background information
To understand the environment in which the TLS MITM at-
tack takes place, it is important to look at the XRP Ledger
(2.1) and TLS (2.2). For a clear explanation of MITM attacks
and the effects of such an attack, the subsection about MITM
attacks should be read (2.3).

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



2.1 The XRP Ledger
The XRP Ledger is a decentralized blockchain that hosts the
XRP cryptocurrency. To ensure this XRP ledger works, the
network makes use of peer-to-peer servers. These servers
could belong to anyone [1]. Unlike many other decentral-
ized blockchains, the XRP Ledger allows users to designate
their transactions with any currency they prefer in addition to
its native currency, XRP.

Every account that is in the XRP Ledger can send XRP
to another account and needs to hold a minimum amount of
XRP as a reserve to protect the shared global ledger from
growing excessively large as the result of spam or malicious
usage. This is done to ensure the XRP Ledger does not grow
so fast that it outpaces the tempo of technology improve-
ments, so that a commodity-level machine can always run the
current ledger on RAM and the full ledger history on disk.
This transfer of XRP is direct, without the need of a gateway
or provision of liquidity. This makes XRP a useful bridge
currency [22].

The XRP Ledger is very different from other systems that
host a cryptocurrency as it does not require a “proof of work”
or a “proof of stake” like Bitcoin, Ethereum and many other
cryptocurrencies do [7]. The XRP ledger employs a consen-
sus algorithm where every participant has an overlapping set
of trusted validators and those trusted validators efficiently
agree on which transactions happen in what order. Reaching
consensus is done in rounds where each participant of this
consensus round proposes a set of transactions they claim to
have seen. Shortly after this, participants then come to a con-
sensus by deferring each transaction that does not have a ma-
jority support and accepting each transaction that does have a
majority support. Slight majorities tend to become major ma-
jorities and slightly minorities tend to be quickly universally
rejected and deferred by all participants [24].

To prevent consensus from failing and to reduce the over-
lap needed between validators, the threshold needed to ac-
cept transactions increases over time. However, the consen-
sus still fails sometimes, the probability of this happening can
be made extremely low but cannot be fully negated. This is
solved by the XRP Ledger consensus protocol by having par-
ticipants post the fingerprint of the ledger that should be the
next fully validated ledger. These fingerprints are then ex-
changed by all participants. There are three possibilities after
this happens:

1. They either see that the super-majority found the same
ledger and then fully validate and continue with this
ledger.

2. They see that they concluded on a different ledger than
the super-majority, they realise this and accept the ledger
of the super-majority.

3. They cannot conclude on a super-majority for any ledger
and have to discard and do another round to reach con-
sensus on any ledger.

The first two cases are completely harmless and to be ex-
pected, the network reaches consensus and continuation of
operations can be done. The third case leads to a loss of ef-
ficiency but is extremely rare and consensus after that failed
round should be less likely to fail again [21].

An interesting and key fact about these participants is that
they operate using TLS, something which is critical for the
contents of this paper and is discussed in the next subsection.

2.2 TLS
The Transport Layer Security (TLS) is a protocol designed
for setting up a secure channel between two communicating
parties, the client and the server. The protocol that is used
for communication with TLS is Hypertext Transfer Protocol
(HTTP) [19] most of the time, but other communication pro-
tocols can be used as well. TLS is based around the concept
of public and private keys with the added security of certifi-
cates. Secure Socket Layer (SSL) is the predecessor of TLS
and the original encryption protocol developed for the under-
lying transport layer but is now replaced with TLS. It is im-
portant to note that SSL has been replaced by TLS since 1999
[14] but the name is still widely used in the literature regard-
ing TLS.

To initiate a communication session that uses TLS for its
encryption, a TLS handshake needs to take place. This hand-
shake takes places when the client queries the server and has
already established a Transmission Control Protocol (TCP)
connection with the server [18]. During this handshake, the
client and server will decide the following [3]:

1. Which version of TLS to use

2. Which cipher suite to use [26]

3. Authenticate the identity of the server via the server’s
public key and the SSL certificate authority’s digital sig-
nature

4. Generate session keys to use encryption for communica-
tion after the handshake is complete

Due to the nature of different key exchange algorithms and
cipher suites used, not every TLS handshake is the same.
However, the most widely used key exchange algorithm goes
as follows:

1. The client initiates the handshake by sending a client
hello message, this message includes which version of
TLS and the cipher suites the client supports and the
client random.

2. The server replies to the client by sending a server hello
message, which contains the server’s SSL certificate, the
servers cipher suite and the server random.

3. The client responds by verifying the server’s SSL cer-
tificate with the certificate authority that issued it to au-
thenticate the server.

4. After authenticating the server, the client sends a pre-
master secret to the server which is encrypted with the
public key of the server and can only be decrypted with
the private key of the server.

5. The server decrypts the premaster secret using the pri-
vate key.

6. With both client and server having the client random,
server random and the premaster secret, they both can
generate the session keys.



7. The client sends a finished message to the server that is
encrypted with the session key.

8. The server sends a finished message to the client that is
encrypted with the session key.

After this the handshake is completed and communication
can continue using the generated session keys [3].

2.3 Man-in-the-middle attacks
A Man-in-the-Middle attack, or MITM attack for short, is
seen as an attack where the attacker secretly acts as a middle
man between two parties who believe they are communicat-
ing directly with each other. The MITM attacker can modify
and/or monitor the communications [25]. Two of the main
characteristics of a MITM attack are that they target the as-
sociations between the communicating parties and that they
represent active attacks as opposed to passive attacks [15]
where no modification of data occurs and the target cannot
know about its occurrence thereof. This means that a MITM
attack always affects the victims in some way or another, be
it just a minor slowdown caused by relaying the messages, or
by the complete disruption and takeover of the network.

There are several ways a MITM attack can be imple-
mented, some of the most known and widely used ways are
Address Resolution Protocol (ARP) cache poisoning and Do-
main Name System(DNS) spoofing [6]. However, the MITM
attacks relevant to this paper are regarding the transport layer.
No matter the implementation of a MITM attack, a MITM
attack is by definition a very powerful tool, as it either gives
the attack the power to do everything the user is allowed to
do on the server, or everything the server is allowed to do on
the client’s side.

The best way to visualise a MITM attack is by seeing the
attacker as an entity between the client and the server, where
the attacker talks to both client and server separately, and
client and server both think they are talking to each other di-
rectly. The attacker functionally operates as a proxy. Cryp-
tography becomes of little importance once a MITM attack
has successfully been deployed as the MITM attacker knows
of all needed data and keys to correctly encrypt and decrypt
all messages sent between the client and server. By forward-
ing all messages and spoofing server and client, a MITM
attack can fool almost every authentication system, be it a
challenge-response system or a zero-knowledge protocol [2].

Whilst this all might make it look like that MITM attacks
are too powerful to be stopped, the TLS protocol is capable
of stopping MITM attacks. If the client inspects the servers
certificate and finds that the certificate is invalid, the Certi-
fying Authority (CA) of the server is not recognized, or the
Common Name (CN) of the certificate does not match with
the DNS the client gets a warning and the connection should
be dropped [4]. However, the client might ignore the warning
and store the certificate, at this point the attacker has won and
the client will communicate with the MITM attacker instead
of the intended server. Note that this is not the only way to
conduct a MITM attack against TLS, the attacker could for
example have a valid certificate which does not cause such a
warning, or perform SSL stripping [9]. There exist solutions
on top of the TLS protocol, but as they are extensions of the

protocol, they are not deployed in most instances. Some of
these solutions are:
• The Password-based approach [23], which binds the

client’s authentication over TLS in the server authenti-
cation mode.
• The GUI-based approach [16], which uses a specific se-

quence of images as a password.
• The Token-based approach [8], where both the client

generates its access code from a token and the authenti-
cation server computes the same code to see if the client
is a ”real” client.
• The One-Time-Password-based approach, which has

many forms but can be explained as the server sending
the client a one-time-password to be used for authenti-
cation.

3 Methodology
To solve the main research question of this paper, it was key to
set up an environment in which a TLS MITM attack could be
tested and analyzed. More information on this test-bed envi-
ronment can be found in the Experimental setup and Results
section of this paper. This section will talk about the required
features of the test-bed environment (3.1), the methodology
of testing the feasibility of the TLS MITM attack (3.2) and
the methodology of analyzing the impact on performance of
the TLS MITM attack (3.3).

3.1 Required features of the test-bed environment
With setting up a test-bed environment for the research to be
done, the following features were crucial to achieve for a suc-
cessful test-bed environment:

The test-bed needed to be able to be used for the devel-
opment and testing of a TLS MITM attack on a Ripple XRP
network. Furthermore, the Ripple XRP network running on
the test-bed needed to be manipulable by the administrators
and users of the test-bed. The aforementioned test-bed also
needed to allow for some form of monitoring that allowed for
confirmation of the workings of the attack. The monitoring
of the test-bed needed to be sufficient enough to allow for
measuring of the performance of the environment, with and
without the implemented TLS MITM attack. On top of this,
all of these features needed to be stable enough so the TLS
MITM attack, when successfully implemented, could be re-
produced.

These features were successfully implemented and after
implementation allowed for careful and detailed research of
the research question as the following two subsections will
showcase.

3.2 Feasibility of the TLS MITM attack
After the test-bed was setup in such a way that the above men-
tioned features were satisfied, the testing and development of
a TLS MITM attack could be started. The first part of re-
search questions ponders if it is possible for a TLS MITM
attack to be executed on the Ripple XRP Ledger to gain ac-
cess to the message content. This could be answered by the
implementation being either a successful or unsuccessful one.



Figure 1: High-level showcase of the TLS MITM attack in the situation where A wants to send B a message

3.3 Impact on performance of the TLS MITM
attack

However, the second part of the research question: ”How
does a TLS MITM attack affect the performance of the sys-
tem?” was not answered with implementing the TLS MITM
attack itself. For this examination of the performance of the
network was needed, and as the list above describes, the fea-
ture that allows this was satisfied with the setup of the test-
bed.

By taking samples of the performance with and without
the TLS MITM attack on the network, and then comparing
the performances after a large enough confidence score was
reached with the samples, allowed for an accurate estimation
of the impact on the performance of the network by the im-
plemented TLS MITM attack.

This estimation could then be used to give an answer to
aforementioned second part of the research question regard-
ing the impact on performance. It should be noted though that
this only answers the question regarding the impact of the at-
tack on this implementation and network. The impact on per-
formance estimation should be taken as a rough baseline and
suggestion for the impact on performance of a TLS MITM
attack, to really answer this question properly, all possible
setups of the network needed to be tested on performance im-
pact and to test all possible setups is not a realistic thing to
do.

However, the performance of detection of a TLS MITM
attack on the XRP Ledger could be researched by analyzing
detection methods and testing if a larger variance in perfor-
mance impact changes in the rate of detection. The main fac-
tor that determines the performance is of course the distance
between nodes in the network, as in certain network setups
nodes might be very close and have a relatively high mea-
surement of performance compared to a network setup with
nodes very far from each other.

4 The TLS MITM attack
As this paper is about the feasibility of a TLS MITM attack
on the Ripple XRP Ledger and the performance impact of
this attack, the execution of a TLS MITM attack to gain ac-
cess to the TLS message content is crucial. This showcase of
a TLS MITM attack on the Ripple XRP Ledger would be an
excellent proof by example and a good way to illustrate and
research the research question. The decision was made to im-
plement a standalone TLS MITM attack without using a pre-
fabricated alternative. However, there are packages out there,
ones like mitmproxy[10] and PolarProxy[13] which can be
used in a similar fashion as the suggested own implementa-
tion. In this section of the paper, the own implementation will
be discussed first (4.1) and the mentioned alternatives will be
discussed afterwards (4.2).

4.1 Own implementation
For the showcase it was decided that the private keys and cer-
tificates of the nodes that are being attacked had already been
retrieved in some way or another. This was to simplify and
clarify the attack as much as possible. These keys and certifi-
cates could be retrieved via social engineering or some other
hack, but this felt out of scope of the research.

There were made some other choices regarding routing of
the IP addresses and configuring the network that are more
clearly explained in the Experimental Setup section of this
paper. This includes setting up the cipher suites to be used by
the nodes.

For the attack to function, a python3[28] script was run that
rerouted the traffic of the two nodes as a proxy, by receiving
the messages from one node, decrypting it to read it and then
encrypting and forwarding it again to the other node. During
this process the MITM acted as node A to node B, and node
B to node A. This is more clearly illustrated in the high-level
illustration of Figure 1.



The decision was made to use python3 for the implemen-
tation of the TLS MITM attack as python3 has a very strong
and large library for handling TLS connection called ssl. This
package has very handy functions and structures to setup
the connection via the TLS handshake, decide on the cipher
suites, select the key and certificates, decryption of messages,
and the transport of those messages. It furthermore has strong
integration with asyncio, another python3 package, which al-
lows for asynchronous sessions to be maintained and handled
which is key to the execution of the TLS MITM attack.

With these packages the implementation of the TLS MITM
attack became fairly straightforward; when an incoming con-
nection from one of the two targeted nodes got picked up by
the MITM, the correct cipher suites, key and certificate were
selected to then handle and setup the connection. Afterwards,
swift decryption of the message content using the right key
could be done, to then later encrypt and forward the mes-
sage to the other node. This forwarding is done via posing
as the node that initially connected to the MITM and setting
up a connection with the other node, acting as a client. Then
when this connection has been established and the message
forwarded, the other node will respond with a response to the
initial message. This response can be decrypted, read, re-
encrypted and then, via a very similar process, be send back
to the initial node using the first connection made from that
same node.

Employing this implementation let to the capture of de-
crypted message content, to be used by the MITM in what-
ever way possible. An example of a captured, decrypted mes-
sage is the following:
GET / HTTP/1.1
User-Agent: rippled-1.5.0
Upgrade: RTXP/1.2, XRPL/2.0, XRPL/2.1
Connection: Upgrade
Connect-As: Peer
Crawl: private
Network-Time: 643371344
Public-Key: n9M76m17niJoLhxYb2d7g2WzXARP
Su7YBNKT1Pqvx2U3dG4BJeRB
Session-Signature: MEUCIQC22fC9MtSOzOvz0
4uZGdxUrv9bhTkDXEVUDeaZcT0TWAIgJ/fXesYD8
6F9DYuYg4n8to9AnMbxJl942cBnGhWeU3A=
Closed-Ledger: ryaMPaKGk5+l98uVrokdeZpld
5rlPmOrbOPp4z7dLMY=
Previous-Ledger: q4aKbP7sd5wv+EXArwCmQiW
Zhq9AwBl2p/hCtpGJNsc=

Note that the hashes are still signed, and thus not manip-
ulable yet. For this to be done, a way needs to be found to
modify the signature such that the message can be changed
without any party except the MITM knowing, but this is out
of the scope of this research.

4.2 Alternatives
There are some alternatives to making a self-made implemen-
tation of the TLS MITM attack by using a program like the
aforementioned mitmproxy or PolarProxy. Both of these are
a good option and have been looked into for this paper. Both
programs are very flexible, sophisticated and can be used for
the TLS MITM attack on the Ripple XRP Ledger.

Mitmproxy [10]
Mitmproxy is a very extensive program and can be applied in
a very similar manner as the suggested implementation dis-
cussed above. The website of mitmproxy explains that mitm-
proxy can be used to intercept, inspect, modify and replay
web traffic such as HTTP/1, HTTP/2, WebSockets, or any
other SSL/TLS-protected protocols, making it a ”swiss-army
knife” for debugging, testing and penetration testing. Further-
more, it has a wide range of message types that it supports
ranging from HTML to Protobuf and can both encode and
decode these messages. It also has a Python API which can
be used to extend the workings of the program even further,
which was not necessary for this specific research but could
be used for later on development such as modification of the
message content using a forged signature.

PolarProxy [13]
The official site from NetreSec, the developers of PolarProxy
states that: ”PolarProxy is a transparent SSL/TLS proxy cre-
ated for incident responders and malware researchers. Po-
larProxy is primarily designed to intercept and decrypt TLS
encrypted traffic from malware. PolarProxy decrypts and re-
encrypts TLS traffic, while also saving the decrypted traffic
in a PCAP file that can be loaded into Wireshark or an in-
trusion detection system (IDS).”. As PolarProxy already im-
mediately saves the decrypted traffic to .pcap files it makes it
very easy to inspect the traffic and measure the impact on the
performance of the network, which is key to this research. It
also has four different operation procedures, all of them fairly
powerful and useful for malware researchers. However, only
the Reverse Proxy and Transparent Forward Proxy can really
be applied to this research and of those the Reverse Proxy is
the easiest to setup.

The Reverse Proxy mode allows for ”... decryption and re-
encryption of the proxied traffic while also forwarding impor-
tant TLS parameters, such as ALPN and SNI.” as the website
explains. This makes it very much like the suggested imple-
mentation of this paper and makes the setup and usage of it
fairly straightforward.

5 Experimental Setup and Results
In this section of the paper the experimental setup used to
perform the TLS MITM attack and the performance impact it
had is discussed (5.1). The results from the research will be
presented as well (5.2).

5.1 Experimental Setup
For the experimental setup an Ubuntu server was setup on the
TU Delft network where ripple nodes could be hosted and the
attack could be performed. For a detailed explanation of how
this experimental setup was setup, see appendix A.

The rippled nodes
The nodes were installed in docker containers using the
docker rippled image created by the GitHub user WietseWind
[29]. The nodes were setup to be one validator node and one
normal node, this was done at the time for another ongoing
project and this did not interfere with the planned TLS MITM



Figure 2: Network diagram of alternative node network setup

attack. Configuring this was done via the addition of valida-
tor keys and a validator token in the configurations file, called
RIPPLED.CFG, of the node that would become the validator
node. It was also important for the nodes to be in the ripple
test network, aptly called altnet.rippletest, so this was config-
ured in the configurations file as well. It also needed to be
ensured that the nodes had communications with each other,
to allow for a MITM attack between the two nodes, this was
achieved by configuring the nodes to be peer private. Setting
the nodes to be peer private was done by modifying the RIP-
PLED.CFG again. The cipher suites, keys and certifications
of the nodes, which were needed for the TLS communica-
tions, were configured by some additions to the RIPPLED.CFG
as well. These keys and certifcations were generated using
OpenSSL to make sure they adhered to the OpenSSL standard.

This all led to two nodes that were configured to talk to
each other and in a clean test network where no-one would
be bothered by the testing and researching to be done.

Another configuration was tested as well, where one of the
two nodes had the peer private field not set to private to al-
low for communications with other nodes in the rippled test-
network. This was done at the time to ensure that the nodes
were correctly operating and had not crashed to resolve some
bugs. A depiction of this scenario can be seen in Figure 2.

The MITM docker container
Once the network was up and running, a space needed to be
allocated for the TLS MITM attack itself. This was done by
hosting yet another docker container, this time with just a sim-
ple Ubuntu image.

To ensure this Ubuntu container could host the attack, a

few things needed to be installed. The things that needed to
be installed were the following:

• Python3, to be able to run the Python3 script hosting the
attack described in the The TLS MITM attack section of
this paper.

• Vim, the preferred text editor of the developer of this
paper, it was needed for editing of the attack script on
the fly and other handy file manipulations.

• OpenSSL, the TLS MITM attack hosted in the attack
script needed, by definition, to be capable of handling
TLS/SSL communications.

• Pip3, the package installer of Python3.

When all of this was installed, the needed Python3 pack-
age asyncio could be installed using Pip3. Note that the ssl
package is used as well but is already integrated in the base
package of Python3.

Package capturing
Package capturing turned out to be challenging, as the docker
network interface behaved unpredictably in the used setup.
Thus, running a Wireshark in a docker container to capture
all traffic and monitor it on the host itself turned out to be an
impractical solution without changing the network structure
of the host too much. However, a solution was found by just
running tcpdump[5] on the host. This allowed for tcpdumps
on the docker0 interface on which the nodes and the MITM
were running. These tcpdumps were stored in .pcap files, to
be then viewed and inspected via Wireshark, either on or off
the host.



Figure 3: Impact on performance of the default configuration

5.2 Results
After the experimental setup and the development of the at-
tack was completed, configuring the IP address of the MITM
in the ips fixed section of the RIPPLED.CFG and running the
TLS MITM attack on the MITM docker container showed
the expected results: message content of the TLS messages
between the two nodes. An example of what such a message
looks like can be seen in the The TLS MITM attack section of
this paper.

Thus answering the first part of the research question; yes,
it is possible to conduct a TLS MITM attack on the XRP
Ledger to gain access to the message content. The research
regarding the second part of the research question was a lit-
tle bit more complicated. What quickly showed was that the
location of the Rippled nodes and the MITM mattered in the
impact on performance. The closer the MITM was to the
Rippled nodes, the smaller the impact on performance. This
intuitively makes sense, as the further away the MITM, the
longer the detour and thus the longer it takes for a message
to be forwarded. Because not every possible configuration
of distances and locations can be tested, at the time of writing
the only configuration tested is the one described in the exper-
imental setup. However, with the addition of some latency to
the docker containers, different configurations can be tested.

The results regarding the impact on the performance of the
default configuration as proposed in the experimental setup
can be seen in Figure 3. The sample size for these numbers
of impact was decided upon on a basis of a 0.95 confidence
level as is standard in the field of computer science.

These results gave the idea for an interesting hypothesis:
“The detection of a TLS MITM attack on the Ripple XRP
ledger becomes easier when the impact of performance is
larger.” Research from Vallivaara et al [27] into MITM de-
tection methods showed that with current detection methods
employed in the industry, it indeed matters how large the
added delay of the MITM is. However, at this time, with-

out knowing the detection methods employed by Ripple, it
remains unsure whether this hypothesis holds. This remains
to be researched further.

6 Responsible Research
This section of the paper is crucial, as it will outline the ethi-
cal aspects of the research and tries to clarify what the impacts
might be when not adhered to.

As might seem obvious by the nature of MITM attacks,
MITM attacks can be used to disrupt systems and networks.
To study and understand attackers who employ MITM at-
tacks, research into the prevention and understanding of such
attacks exist. The contents of this paper are strictly research
related and need to be used only in such a context. The meth-
ods in the paper are well documented and are very much re-
producible because of this. One can easily setup a test envi-
ronment using appendix A and create the TLS MITM attack
itself with the description of the attack in the The TLS MITM
attack section. Therefore the reader is urged to only use the
methods described for research or penetration testing related
projects and not for anything nefarious.

Whilst the TLS message content is not manipulable with
the current research done in this paper due to the signature
that is added by the Rippled nodes, it makes a strong basis for
research into this. Therefore the paper might not directly be
of any major consequence but further research could be.

7 Discussion
There is an interesting point that has not yet been discussed
throughout the paper. When executing the TLS MITM attack
on the network as described earlier in the paper, the second
node does not respond with normal message content to the
initial intercepted message but a 400 BAD REQUEST message
more often than not. This message looks like the following:
Received as response from 172.17.0.4:



HTTP/1.1 400 Bad Request
(Failed to verify session)
Server: rippled-1.5.0
Remote-Address: 172.17.0.2
Connection: close
Content-Length: 0

This raises two interesting questions; is this the intended
response message when a TLS MITM attack is detected on
the Ripple XRP Ledger and why does the message sometimes
contain valid content like described in the Results subsection
(5.2) of this paper?

As one might know, or has read in the Background section
of this paper, there are extensions of the TLS protocol which
could detect attacks of all sorts of forms, including MITM at-
tacks. It is unclear at this time what anti-MITM attack method
Ripple employs.

An e-mail was sent to Ripple with the findings and the
question if this was intended behaviour or perhaps a bug. It
was also asked if they have any anti-MITM attack methods
they employ. At the time of writing, no answer has been re-
ceived.

8 Conclusions and Future Work
To summarize and give some conclusions to the research
question; “Is it possible to conduct a TLS MITM attack on the
XRP ledger to gain access to message content and how does
such an attack affect the performance of the system?”: Yes, it
is possible to conduct a TLS MITM attack on the Ripple XRP
Ledger to gain access to message content and there are a few
ways of doing so. This can be done with programs like mitm-
proxy or PolarProxy, but an own solution can be made. The
effects such an attack has on the performance of the system is
hard to quantify, but it does, intuitively, add some delay to the
network and thus brings performance down. The measured
performance impact on the tested system was on average 7.95
ms. This added delay is roughly 69.2% of the regular time it
takes to send a message.

This does, however, raise some questions regarding the de-
tection of a TLS MITM attack on the Ripple XRP Ledger.
Does a larger delay from a TLS MITM attack cause for faster
detection? The proposed hypothesis says it does, and ongoing
research supports this with the cutting edge MITM detection
methods taking delay into consideration. To confirm this hy-
pothesis, future research needs to be done.

Other future research that could build on this paper, might
be the research into modifying the session-signature of the
decrypted message content intercepted by the TLS MITM at-
tack, this would allow for the complete alteration of message
content between nodes which is not yet possible.

References
[1] Edmund L Andrews. Chris larsen: Money without bor-

ders. September 2013.
[2] Nadarajah Asokan, Valtteri Niemi, and Kaisa Nyberg.

Man-in-the-middle in tunnelled authentication proto-
cols. In International Workshop on Security Protocols,
pages 28–41. Springer, 2003.

[3] Cloudflare. Tls handshake. https://www.cloudflare.
com/learning/ssl/what-happens-in-a-tls-handshake/,
2020. Accessed: 2020-05-11.

[4] Manik Lal Das and Navkar Samdaria. On the security
of ssl/tls-enabled applications. Applied Computing and
informatics, 10(1-2):68–81, 2014.

[5] The Tcpdump Group. Tcpdump/libpcap. https://www.
tcpdump.org/index.html#documentation, 2020. Ac-
cessed: 2020-06-01.

[6] Mohammed Abdulridha Hussain, Hai Jin, Zaid Alaa
Hussien, Zaid Ameen Abduljabbar, Salah H Abbdal,
and Ayad Ibrahim. Dns protection against spoofing and
poisoning attacks. In 2016 3rd International Confer-
ence on Information Science and Control Engineering
(ICISCE), pages 1308–1312. IEEE, 2016.

[7] Joshua A Kroll, Ian C Davey, and Edward W Felten.
The economics of bitcoin mining, or bitcoin in the pres-
ence of adversaries. In Proceedings of WEIS, volume
2013, page 11, 2013.

[8] Jing-Chiou Liou and Sujith Bhashyam. A feasible
and cost effective two-factor authentication for online
transactions. In The 2nd International Conference on
Software Engineering and Data Mining, pages 47–51.
IEEE, 2010.

[9] Moxie Marlinspike. More tricks for defeating ssl in
practice. Black Hat USA, 2009.

[10] mitmproxy. mitmproxy. https://mitmproxy.org/, 2020.
Accessed: 2020-05-31.

[11] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer elec-
tronic cash system.(2008), 2008.

[12] Gopi Nath Nayak and Shefalika Ghosh Samaddar. Dif-
ferent flavours of man-in-the-middle attack, conse-
quences and feasible solutions. In 2010 3rd Interna-
tional Conference on Computer Science and Informa-
tion Technology, volume 5, pages 491–495. IEEE, 2010.

[13] NetreSec. Polarproxy. https://www.netresec.com/
?page=PolarProxy, 2020. Accessed: 2020-05-31.

[14] Rolf Oppliger. SSL and TLS: Theory and Practice.
Artech House, 2016.

[15] Rolf Oppliger, Ralf Hauser, and David Basin. Ssl/tls
session-aware user authentication–or how to effectively
thwart the man-in-the-middle. Computer Communica-
tions, 29(12):2238–2246, 2006.

[16] PassFaces. Authentication. http://www.passfaces.com/
enterprise/products/web access.html, 2009. Accessed:
2020-05-12.

[17] T Siiger Prentow and Mads Vering Krarup. MITM at-
tacks on SSL/TLS related to renegotiation. Citeseer,
2011.

[18] Eric Rescorla. SSL and TLS: designing and building
secure systems, volume 1. Addison-Wesley Reading,
2001.

[19] Eric Rescorla et al. Http over tls, 2000.

https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://www.tcpdump.org/index.html#documentation
https://www.tcpdump.org/index.html#documentation
https://mitmproxy.org/
https://www.netresec.com/?page=PolarProxy
https://www.netresec.com/?page=PolarProxy
http://www.passfaces.com/enterprise/products/web_access.html
http://www.passfaces.com/enterprise/products/web_access.html


[20] Ripple. Our company. https://ripple.com/company,
2019. Accessed: 2020-04-22.

[21] Ripple. Consensus principles and rules. https://xrpl.org/
consensus-principles-and-rules.html, 2020. Accessed:
2020-05-10.

[22] Ripple. Xrp. https://xrpl.org/xrp.html, 2020. Accessed:
2020-05-10.

[23] Takamichi Saito, Kiyomi Sekiguchi, and Ryosuke Hat-
sugai. Authentication binding between tls and http. In
International Conference on Network-Based Informa-
tion Systems, pages 252–262. Springer, 2008.

[24] David Schwartz, Noah Youngs, Arthur Britto, et al. The
ripple protocol consensus algorithm. Ripple Labs Inc
White Paper, 5(8), 2014.

[25] Robert Shirey. Internet security glossary, 2000.
[26] Michael Steiner, Peter Buhler, Thomas Eirich, and

Michael Waidner. Secure password-based cipher suite
for tls. ACM Transactions on Information and System
Security, 4(2):134–157, 2001.

[27] Visa Vallivaara, Mirko Sailio, and Kimmo Halunen. De-
tecting man-in-the-middle attacks on non-mobile sys-
tems. page 133, 03 2014.

[28] Guido Van Rossum and Fred L. Drake. Python 3 Refer-
ence Manual. CreateSpace, Scotts Valley, CA, 2009.

[29] WietseWind. Docker rippled image. https://github.com/
WietseWind/docker-rippled, 2020. Accessed: 2020-05-
15.

A Detailed description of experimental setup
This appendix contains a more detailed description of the ex-
perimental setup for if one wants to reproduce the research
and setup the environment as used in the research.

A.1 The rippled nodes
The nodes were installed in docker containers using the
docker rippled image created by the GitHub user WietseWind
[29]. For another project that was also ongoing at the time
one of the nodes was setup to be a validator node by creating
validator keys by running
validator-keys create_keys

in one of the already running rippled nodes. After this valida-
tor tokens were created from these validator keys by running
validator-keys create_token --keyfile \
/PATH/TO/YOUR/validator-keys.json

and the created token that was of some form like
[validator_token]
eyJ2YWZXkiOiI5ZWQ0NWY4NjYyNDFjYzE4YTI3NDd
QzODdjAyMzFmYWE5Mzc0NTdmYT|kYWY2IiwibWFua
c3QiOibXZHdEgyaUNjTUpxQzlnVkZLaWxHZncxL3Z
hYWExwJ3RHdEYklENk9NU1l1TTBGREFscEFnTms4U
bjdNTzQUtxWFlvdUorbDJWMFcrc0FPa1ZCK1pSUzZ
hsSkFm9KYy9hQVpva1MxdnltR21WcmxIUEtXWDNZe
NmluOEhBU1FLUHVnQkQ2N2tNYVJGdQWXk1QXFEZWR
VUSmEydzBpMjFlcTNNWXl3TFZKWm5G3QROD0ifQ==

was inserted in the configurations file called RIPPLED.CFG.
To ensure that the nodes did not mess with the main ripple

network, the nodes were configured to have

[ips]
s.altnet.rippletest.net 51235

in their RIPPLED.CFG file and the following in their VALIDA-
TORS.TXT file:

[validator_list_sites]
https://vl.altnet.rippletest.net

[validator_list_keys]
ED264807102805220DA0F312E71FC2C69E \
1552C9C5790F6C25E3729DEB573D5860

This replaced some fields that were already configured to con-
nect the nodes to the main network but this was intended to
ensure private operations and good testing environment.

It also needed to be ensured that the nodes had communi-
cations with each other, to allow for a MITM attack between
the two nodes, this was achieved by configuring the nodes
to be peer private. Setting the nodes to be peer private was
done by modifying the RIPPLED.CFG again, now adding the
following fields:

[peer_private]
1

[ips_fixed]
ip.of.other.node 51235

[server]
port_rpc_admin_local
port_ws_public
port_peer

The cipher suites, keys and certifications of the nodes were
configured by some additions to the RIPPLED.CFG server
field as well. They were the following:

[server]
...
ssl_key = /PATH/TO/key.pem
ssl_cert = /PATH/TO/cert.pem
ssl_ciphers = RSA

As one might already have thought, for this keys and cer-
tifications needed to be generated which was done according
to the OpenSSL standard:

openssl req -x509 -newkey rsa:4096 -keyout \
key.pem -out cert.pem -days 365

This all led to two nodes that were configured to talk to
each other and in a clean test network where no-one would
be bothered by the testing and researching to be done.

Another configuration was tested as well, where one of the
two nodes had the peer private field not set to private to al-
low for communications with other nodes in the rippled test-
network. This was done at the time to ensure that the nodes
were correctly operating and had not crashed to resolve some
bugs. A depiction of this scenario can be seen in Figure 2.

https://ripple.com/company
https://xrpl.org/consensus-principles-and-rules.html
https://xrpl.org/consensus-principles-and-rules.html
https://xrpl.org/xrp.html
https://github.com/WietseWind/docker-rippled
https://github.com/WietseWind/docker-rippled


A.2 The MITM docker container
Once the network was up and running, a space needed to be
allocated for the TLS MITM attack itself. This was done by
hosting yet another docker container, this time with just a sim-
ple Ubuntu image.

To ensure this Ubuntu container could host the attack a few
things needed to be installed. This was done with the handy
apt-get. Installing something would then go as following with
apt-get:
sudo apt-get update
sudo apt-get install NAME-OF-PACKAGE-HERE

The things that needed to be installed were the following:
• Python3, to be able to run the Python3 script hosting the

attack described in the The TLS MITM attack section of
this paper.
• Vim, the preferred text editor of the developer of this

paper, it was needed for editing of the attack script on
the fly and other handy file manipulations.
• OpenSSL, the TLS MITM attack hosted in the attack

script needed, by definition, to be capable of handling
TLS/SSL communications.
• Pip3, the package installer of Python3.
When all of this was installed, the needed Python3 pack-

age asyncio could be installed using Pip3. This was done by
executing the following on the command-line:
pip3 install asyncio

Note that the ssl package is used as well, but is already inte-
grated in the base package of Python3.

A.3 Package capturing
Package capturing turned out to be a little tricky, as the docker
network interface refused to play nice. Thus running a Wire-
shark in a docker container to capture all traffic and monitor
it on the host itself turned out to be an impractical solution
without changing the network structure of the host too much.
However, a solution was found by just running tcpdump[5]
on the host.

The tcpdumps were run using:
tcpdump -i docker0 -w PATH/TO/FILE.pcap

This allowed for tcpdumps on the docker0 interface on which
the nodes and the MITM were running. These tcpdumps were
stored in .pcap files, as specified by the example above to be
then viewed and inspected via Wireshark, either on or off the
host.


	Introduction
	Background information
	The XRP Ledger
	TLS
	Man-in-the-middle attacks

	Methodology
	Required features of the test-bed environment
	Feasibility of the TLS MITM attack
	Impact on performance of the TLS MITM attack

	The TLS MITM attack
	Own implementation
	Alternatives
	Mitmproxy mitmproxy2020mitm
	PolarProxy polarproxy2020mitm


	Experimental Setup and Results
	Experimental Setup
	The rippled nodes
	The MITM docker container
	Package capturing

	Results

	Responsible Research
	Discussion
	Conclusions and Future Work
	Detailed description of experimental setup
	The rippled nodes
	The MITM docker container
	Package capturing


