

by Daan Reinders Architectural Engineering

PALACE OF JUSTICE ARNHEM AS ENERGETIC CATALYST

The built environment is a major consumer of energy in which many improvement steps have to be made. This project investigates how energy can be more efficient by reducing, reusing and producing energy on an urban and building scale. The research showed that the implementation of a sustainable collective heating system around the Palace of Justice can significantly reduce the energy consumption for heating. Comprehensive renovations improving the building energy performance reduce the energy consumption to a minimum.

The proposed sustainable integrated renovation of the Palace of Justice shows what such renovation can look like. The combination of modern sustainable techniques and more common interventions opens up the traditional approach to energetic sustainability resulting in a monumental nearly zero energy building. With its role as an energetic catalyst, the addition of public functions and the increase of accessibility, the Palace of Justice is firmly embedded in the city and society and can therefore last for many years to come.

FACADES

1:500 - North facade

1:500 - West facade

REDUCE

The first step towards the improvement of the energy performance of the built environment is reducing the building energy consumption. By re-insulating the uninsulated Palace of Justice to the current new building insulation standards, the thermal energy demand is reduced from 2.2 GWh to only 0.3 GWh. This thermal energy is provided by high-efficiency heat pumps. This high efficiency is realized by using low-temperature heating and the connection to the proposed collective sustainable thermal energy system. By the introduction of natural ventilation preheated in an air labyrinth, the energy consumption for air conditioning systems has been reduced.

RE-USE

The re-use of energy is realized by the implementation of multiple climate zones, allowing to create a surplus of heat in the summer and re-using it in winter, as shown in the left image. In summer heat is stored by the circulation of cold water through the office and atrium floors (2), the recovery of heat out of the exhaust ventilation air (1) and the storage of the residual heat of the process of cooling the ventilation air (3). In winter this heat is reused in the heat pumps of the low-temperature floor heating system (4) and the air condition system (5). The residual cold of the process of heating is returned to the collective thermal energy system, creating an interseasonal balance.

PRODUCE

The total annual electricity consumption for appliances, lighting, heating, cooling and ventilation is 515,000 kWh. The renovated Palace of Justice is designed for harvesting solar energy. This is done on the roof, the south- and west facade, as shown respectively in the graph on the left. On an annual basis, the building yields a total of 485.000 kWh. This makes the building an NZEB in the field of electrical energy. In terms of heat, the building provides 400.000 kWh of thermal energy to the heat grid on an annual basis. In winter, the building uses 230.000 kWh of thermal energy from the heat grid. In terms of heat, the building is therefore a net-positive building.

BUILDING SECTION

- Finishing
 50 mm heating screed
 60 mm thermal insulation
 15 mm original tiles
 100 mm reinforced concrete
 flooring
- Ornamental prefab concrete facade elements
 80 mm cavity insulation
 300 x 300 mm reinforced concrete collumns
 210 mm mineral wool
 20 mm plywood
- 3 ColorBlast Kromatic solar panel55 mm polycarbonate sliding insulating screensHR+++ triple glazing
- 4 150 x 900 mm cross
 laminated timber
 100 x 100 mm rainwater
 drainage
 60 mm thermal insulation
 Technical shaft
 20 mm battens
- Wooden framing curtain-wallMonocrystalline intergrateddouble glazingWooden lamella curtain-wall
- 6 Filling lath
 100 x 100 mm rainwater
 drainage
 60 mm thermal insulation
 Technical shaft
 20 mm battens

O 2 Structural column

1:5 - Horizontal detail

O3 Structural column
1:5 - Vertical detail

BUILDING SECTION

- 7 900 x 150 mm laminated timber structure
 PE-Film vapour barier
 ColorBlast Kromatix solar panel
 200 x 70 mm timber substructure
- 8 Monocrystalline intergrated double glazing
- 9 Cabling tray for solar panels
- structure
 PE-Film vapour barier
 30 mm thermal/acoustic insulation
 100 x 100 mm rainwater drainage
 30 mm thermal/acoustic insulation
 PE-Film vapour barier
 300 x 70 mm timber substructure
- 11 Cable tray
 LED lighting

Roof substructure
1:5 - Vertical detail

