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ARTICLE INFO ABSTRACT

Keywords: Thermal-Hydro-Mechanical-Compositional analysis is crucial for addressing challenges like well-
Finite volume method bore stability, land subsidence, and induced seismicity in the geo-energy applications. Numerical
THM.C . simulations of coupled thermo-poromechanical processes provide a general-purpose tool for eval-
z[:;::::}iz;cs uating these phenomena across laboratory and field scales. However, efficient integration of the
Geo-energy. coupled equations for fluid mass, energy and momentum poses multiple numerical and imple-

mentation difficulties, such as combining different numerical methods on staggered grids and
associated limitations on admissible grids. This paper introduces a novel fully-implicit Finite Vol-
ume Method (FVM) for modeling thermal compositional flow in thermo-poroelastic rocks. The
scheme employs gradient-based, coupled multi-point approximations of fluid mass, momentum
and heat fluxes.

The novelty of the scheme lies in its integration of temperature as a parameter in the flux approx-
imation process. The scheme supports a wide range of cell topologies, arbitrary heterogeneity
and anisotropy as well as various boundary conditions, while respecting local flux balance under
temperature gradients. Overall, the scheme represents a unified FVM-based approach for the inte-
gration of all conservation laws relevant to geo-energy applications on a cell-centered collocated
grid. Additionally, the implemented two-stage block-partitioned preconditioning strategy enables
the efficient solution of obtained linear systems.

The framework, implemented in the open-source Delft Advanced Research Terra Simulator (open-
DARTS), leverages the Operator-Based Linearization (OBL) technique for flexibility in composi-
tional fluid properties. Rigorous validation demonstrates the framework’s capabilities in capturing
advanced phenomena, including thermal expansion, thermo-poroelastic effect and compositional
flow with phase transitions. The performance of preconditioning strategy is assessed using the
mechanical extension of the SPE10 benchmark model.

1. Introduction

Geomechanics is crucial for the safe and optimal operation of modern geo-energy applications [1]. Changes in subsurface condition,
such as pressure depletion during gas production, can cause subsidence, initiate induced seismicity, and result in serious damage to
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\begin {align}&\displacementVector _b = \left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}\left (l \bcRhs _n\normal +(\identityTensor -l\normal \normal ^T\mathbf {L})\pmb {\bcRhs }_t\right ) + \nonumber \\ &\quad + \left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}\left (\bcB _t\identityTensor +l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})\right )\cdot \nonumber \\ &\quad \cdot \left (\frac {1}{\distance _1}\conormalStiffness _1\displacementVector _1-\left (\frac {1}{\distance _1}\conormalStiffness _1\left [\identityTensor \otimes (\tpointVector _1-\pointVector _b)^T\right ]+\transversalStiffness _1\right )\gradientVector _\tau ^u + \pressure _b\biotTensor _1\normal + \temperature _b\thermalStressTensor _1\normal \right ),\label {displacement:boundary}\\ &\tractionVector _b = -\frac {1}{\distance _1}\conormalStiffness _1\left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}\left (l\bcRhs _n\normal +(\identityTensor -l\normal \normal ^T\mathbf {L})\pmb {\bcRhs }_t\right )\nonumber \\ &\quad - \frac {1}{\distance _1}\conormalStiffness _1\left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}\left (l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})-\bcA _t\distance _1\conormalStiffness _1^{-1}\right )\cdot \nonumber \\ &\quad \cdot \left (\frac {1}{\distance _1}\conormalStiffness _1\displacementVector _1-\left (\frac {1}{\distance _1}\conormalStiffness _1\left [\identityTensor \otimes (\tpointVector _1-\pointVector _b)\right ]+\transversalStiffness _1\right )\gradientVector _\tau ^u+\pressure _b\biotTensor _1\normal + \temperature _b\thermalStressTensor _1\normal \right )\label {traction:boundary},\end {align}


$\mathbf {L} = \left (\bcA _n\identityTensor +\frac {\bcB _n}{\distance _1}\conormalStiffness _1\right )\left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}$


$3\times 3$


$l=\left (\normal ^T\mathbf {L}\normal \right )^{-1}$


$\pressure _b$


$\temperature _b$


$\bcA _n, \bcB _n, \bcRhs _n$


$\bcA _t, \bcB _t, \pmb {\bcRhs }_t$


$\tilde {\flux }_\beta $


\begin {align}&\left (\bcA _p(\pointVector _b - \pointVector _1) + \bcB _p\permeabilityTensor _1\normal \right )\cdot \nabla \pressure _1 = \bcRhs _p + \bcB _p\density _\fluid \gravity \nabla \depth \cdot \permeabilityTensor _1\normal -\bcA _p \pressure _1,\label {pressure:reconstruction:boundary}\\ &\left (\bcA _\thermal (\pointVector _b - \pointVector _1) + \bcB _\thermal \heatConductivityTensor _1\normal \right )\cdot \nabla \temperature _1 = \bcRhs _\thermal - \bcA _\thermal \temperature _1, \label {temperature:reconstruction:boundary}\\ &\left (\bcA _t\left [\identityTensor \otimes (\pointVector _b-\pointVector _1)^T\right ]+\bcB _t\left [\identityTensor \otimes \normal ^T\right ]\stfMatrix _1+\right .\nonumber \\ &\quad +\left .l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})\left (\transversalStiffness _1+\frac {1}{\distance _1}\conormalStiffness _1\left [\identityTensor \otimes (\tpointVector _1-\pointVector _b)^T\right ]\right )\right )\left [\nabla \otimes \displacementVector _1\right ] =\nonumber \\ &\quad =l\bcRhs _n\normal + \left (\identityTensor -l\normal \normal ^T\mathbf {L}\right )\pmb {\bcRhs }_t + \left (l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})\frac {1}{\distance _1}\conormalStiffness _1 -\bcA _t\identityTensor \right )\displacementVector _1 + \nonumber \\ &\quad +\left (\bcB _t\identityTensor +l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})\right )\left (\pressure _b\biotTensor _1+ \temperature _b\thermalStressTensor _1\right )\normal \label {displacements:reconstruction:boundary},\end {align}


$\pressure _b$


$\temperature _b$


$N$


$j$


\begin {equation}\label {eq11} \mathbf {M}_j^p\nabla \pressure _j = \mathbf {D}_j^p\pmb {\psi }_j^p, \quad \mathbf {M}_j^\thermal \nabla \temperature _j = \mathbf {D}_j^\thermal \pmb {\psi }_j^\thermal ,\end {equation}


$\mathbf {M}_j^p$


$\mathbf {M}_j^\thermal $


$N\times 3$


$\mathbf {D}_j^p$


$\mathbf {D}_j^\thermal $


$N\times (N+1)$


$\pmb {\psi }_j^p$


$\pmb {\psi }_j^\thermal $


$(N+1)\times 1$


$N+1$


$\pressure _i$


$\bcRhs _p$


$\temperature _i$


$\bcRhs _\thermal $


\begin {equation}\label {eq12} \nabla \pressure _j = (\mathbf {M}_j^{pT} \mathbf {M}_j^p)^{-1}\mathbf {M}_j^{pT} \mathbf {D}_j^p\pmb {\psi }_j^p, \quad \nabla \temperature _j = (\mathbf {M}_j^{\thermal T} \mathbf {M}_j^\thermal )^{-1}\mathbf {M}_j^{\thermal T} \mathbf {D}_j^\thermal \pmb {\psi }_j^\thermal .\end {equation}


$N$


\begin {equation}\label {displacement:gradients:system} \mathbf {M}_j^u\left (\nabla \otimes \displacementVector _j\right ) = \mathbf {D}_j^u\pmb {\psi }_j^u,\end {equation}


$j$


$\mathbf {M}_j^u$


$3N\times 9$


$\mathbf {D}_j^u$


$3N\times 5(N+1)$


$\pmb {\psi }_j^u$


$5(N+1)\times 1$


$5(N+1)$


$\unknownVector _i$


$\bcRhs _p, \bcRhs _\thermal , \bcRhs _n, \pmb {\bcRhs }_t$


\begin {equation}\nabla \otimes \displacementVector _j = (\mathbf {M}_j^{uT} \mathbf {M}_j^u)^{-1}\mathbf {M}_j^{uT} \mathbf {D}_j^u\pmb {\psi }_j^u.\end {equation}


$\gradientVector _\tau = \{\gradientVector ^p_\tau , \gradientVector ^\thermal _\tau , \gradientVector ^u_\tau \}$


$\gradientVector _\tau = \gradientVector _{1\tau }$


\begin {equation}\label {eq13} \gradientVector _{\tau } = \frac {\gradientVector _{\tau 1} + \gradientVector _{\tau 2}}{2}.\end {equation}


$j$


$i$


$j$


$i$


$k$


$j$


$\state =\{\pressure , \bm {\composition }_\component , \temperature \}$


\begin {equation}\label {operators} \{\acc _{i}, \acc _e, \fraction _{\component \phase }\density _\phase \permeability _{r\phase }\viscosity _\phase ^{-1}, \density _\phase , \enthalpy _\phase , \saturation _\phase , \density _\skeleton , \free _{i}, \free _{e}\} = \mathbf {f}(\widetilde {\state }),\end {equation}


$\widetilde {\state }$


\begin {gather}\widetilde {\state } = \widetilde {\pressure } \times \widetilde {\composition }_1 \times \dots \times \widetilde {\composition }_{\ncomponent } \times \widetilde {\temperature }, \\ \label {obl:points:along:axes} \widetilde {\pressure } = \{\pressure _1,\dots ,\pressure _{N_p}\}, \quad \widetilde {\composition }_1 = \{\composition _{1,1}, \dots , \composition _{1,N_{\composition 1}}\}, \dots , \widetilde {\composition }_{\ncomponent } = \{\composition _{\ncomponent ,1}, \dots , \composition _{\ncomponent ,N_{\composition \ncomponent }}\}, \\ \nonumber \quad \widetilde {\temperature }=\{\temperature _1, \dots , \temperature _{N_T}\},\end {gather}


$\widetilde {\pressure }, \widetilde {\composition }_\component $


$\widetilde {\temperature }$


$\mathbf {f}$


$\ncomponent + 4$


$10^4$


\begin {equation}\label {precond} \mathbf {U}^{-1}\jacobianMatrix \begin {bmatrix} \pmb {\delta }\state \\ \pmb {\delta }\displacementVector \end {bmatrix}= \begin {bmatrix} \identityTensor & -\jacobianMatrix _{\scalarState u}\jacobianMatrix _{uu}^{-1} \\ \mathbf {0} & \identityTensor \end {bmatrix} \left [ \begin {array}{@{} c c @{}} \jacobianMatrix _{\scalarState \scalarState } & {\jacobianMatrix _{\scalarState u}} \\ \jacobianMatrix _{u\scalarState } & {\jacobianMatrix _{uu}} \end {array} \right ] \begin {bmatrix} \pmb {\delta }\state \\ \pmb {\delta }\displacementVector \end {bmatrix} = \left [ \begin {array}{@{} c c @{}} \mathbf {S}_{\scalarState } & {\mathbf {0}} \\ \jacobianMatrix _{u\scalarState } & {\jacobianMatrix _{uu}} \end {array} \right ] \begin {bmatrix} \pmb {\delta }\state \\ \pmb {\delta }\displacementVector \end {bmatrix} =- \begin {bmatrix} \residualVector _\scalarState - \jacobianMatrix _{\scalarState u}\jacobianMatrix _{uu}^{-1}\residualVector _u \\ \residualVector _u \end {bmatrix},\end {equation}


$\jacobianMatrix $


$\left [\pmb {\delta }\state ,\pmb {\delta }\displacementVector \right ]^T=\left [\pmb {\delta }\pressureVector ,\pmb {\delta }\compositionVector ,\pmb {\delta }\temperatureVector ,\pmb {\delta }\displacementVector \right ]^T$


$\jacobianMatrix _{ab}$


$a$


$b$


$\residualVector _\scalarState $


$\residualVector _u$


$\pmb {\delta }\state = \left [\pmb {\delta }\pressureVector , \pmb {\delta }\compositionVector , \pmb {\delta }\temperatureVector \right ]^T$


$\mathbf {S}_{\scalarState }$


$\jacobianMatrix _{uu}$


\begin {equation}\mathbf {S}_{\scalarState } = \begin {bmatrix} \jacobianMatrix _{pp} - \jacobianMatrix _{pu}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up} & \jacobianMatrix _{p\composition } - \jacobianMatrix _{pu}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\composition } & \jacobianMatrix _{p\thermal } - \jacobianMatrix _{pu}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\thermal } \\ \jacobianMatrix _{\composition p} - \jacobianMatrix _{\composition u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up} & \jacobianMatrix _{\composition \composition } - \jacobianMatrix _{\composition u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\composition } & \jacobianMatrix _{\composition \thermal } - \jacobianMatrix _{\composition u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\thermal } \\ \jacobianMatrix _{\thermal p} - \jacobianMatrix _{\thermal u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up} & \jacobianMatrix _{\thermal \composition } - \jacobianMatrix _{\thermal u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\composition } & \jacobianMatrix _{\thermal \thermal } - \jacobianMatrix _{\thermal u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\thermal } \end {bmatrix},\end {equation}


$\tilde {\mathbf {S}}_{\scalarState }$


\begin {equation}\label {schur:complement:approximation} \tilde {\mathbf {S}}_{\scalarState } = \begin {bmatrix} \jacobianMatrix _{pp} - \text {diag}\left (\jacobianMatrix _{pu}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up}\mathbf {e}\right ) & \jacobianMatrix _{p\composition } & \jacobianMatrix _{p\thermal } \\ \jacobianMatrix _{\composition p} - \text {diag}\left (\jacobianMatrix _{\composition u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up}\mathbf {e}\right ) & \jacobianMatrix _{\composition \composition } & \jacobianMatrix _{\composition \thermal } \\ \jacobianMatrix _{\thermal p} - \text {diag}\left (\jacobianMatrix _{\thermal u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up}\mathbf {e}\right ) & \jacobianMatrix _{\thermal \composition } & \jacobianMatrix _{\thermal \thermal } \end {bmatrix},\end {equation}


$\mathbf {e} = \left [1,\cdots ,1\right ]^T$


$\text {diag}()$


$\jacobianMatrix _{uu}^{-1}$


$\jacobianMatrix _{u\composition }\approx 0$


$\jacobianMatrix _{u\thermal }\approx 0$


$\jacobianMatrix _{u\composition }$


$\jacobianMatrix _{u\thermal }$


$\jacobianMatrix _{u\thermal }$


$\jacobianMatrix _{u\thermal }$


$\jacobianMatrix _{uu}$


$\mathcal {P}_{u}^{-1}$


$\mathcal {P}_{\scalarState }^{-1}$


\begin {align}& \displaystyle \frac {\partial }{\partial t}\left (\porosity \sum \limits _{\phase }^{\nphase }\fraction _{\component \alpha }\saturation _\phase \density _\phase \right ) + \nabla \cdot \left (\sum \limits _{\phase }^{\nphase }\fraction _{\component \phase }\density _\phase \darcyVelocity _{\phase }^{\fluid }\right ) - \sum \limits _{\phase }^{\nphase }\fraction _{\component \phase }\density _\phase \sourceMass _\phase = 0, \quad \component = 1,\dots ,\ncomponent ,\label {mass::balance} \\ & \displaystyle \frac {\partial }{\partial t}\left ((1-\porosity )\density _\skeleton \intEnergy _\skeleton + \porosity \sum \limits _{\phase }^{\nphase }\saturation _\phase \density _\phase \intEnergy _\phase \right )+\nabla \cdot \left (\sum \limits _{\phase }^{\nphase }\left (\density _\phase \enthalpy _\phase \darcyVelocity _{\phase }^{\fluid } + \porosity \saturation _\phase \heatConductionVector _{\phase }^{\thermal }\right ) + (1-\porosity )\heatConductionVector _{\skeleton }^{\thermal }\right ) \nonumber \\ &- \sum \limits _{\phase }^{\nphase }\density _\phase \enthalpy _\phase \sourceMass _\phase = 0, \label {energy:balance}\\ & -\nabla \cdot \stressTensor - \left ((1-\porosity )\density _\skeleton + \porosity \sum \limits _{\phase }^{\nphase }\saturation _\phase \density _\phase \right )\gravity \nabla \depth = 0,\label {momentum:balance}\end {align}


\begin {align}&(1-\porosity )\density _\skeleton + \porosity \sum \limits _{\phase }^{\nphase }\saturation _\phase \density _\phase \to \density _{\text {tot}}, \label {simplify:density} \\ &(1-\porosity )\density _\skeleton \intEnergy _\skeleton + \porosity \sum \limits _{\phase }^{\nphase }\saturation _\phase \density _\phase \intEnergy _\skeleton \to \enthalpy _{\text {tot}} = \heatCapacity \temperature , \label {simplify:int:energy} \\ &(1-\porosity )\heatConductionVector _\skeleton ^{\thermal } + \sum \limits _{\phase }^{\nphase }\porosity \saturation _\alpha \heatConductionVector _\alpha ^{\thermal } \to \heatConductionVector _{\text {tot}}^{\thermal }=-\heatConductivityTensor \nabla \temperature ,\label {simplify:heat:conductivity}\end {align}


$\density _{\text {tot}}$


$\enthalpy _{\text {tot}}$


$\heatConductionVector _{\text {tot}}^{\thermal }$


$\heatCapacity $


$\heatConductivityTensor $


$\Omega =[0, a]^3$


$a=\SI {1}{\meter }$


$\stiffnessMatrix $


$\biotTensor $


$\permeabilityTensor $


$\thermalStressTensor $


$\heatConductivityTensor $


\begin {align}&\stiffnessMatrix = \left [\begin {array}{cccccc} 1.323 & 0.0726 & 0.263 & 0.108 & -0.08 & -0.239\\ 0.0726 & 1.276 & -0.318 & 0.383 & 0.108 & 0.501\\ 0.263 & -0.318 & 0.943 & -0.183 & 0.146 & 0.182\\ 0.108 & 0.383 & -0.183 & 1.517 & -0.0127 & -0.304\\ -0.08 & 0.108 & 0.146 & -0.0127 & 1.209 & -0.326\\ -0.239 & 0.501 & 0.182 & -0.304 & -0.326 & 1.373 \end {array}\right ] \,[{\rm {bar}}],\nonumber \\ &\biotTensor = \left [\begin {array}{ccc} 1.5 & 0.1 & 0.5\\ 0.1 & 1.5 & 0.15\\ 0.5 & 0.15 & 1.5 \end {array}\right ], \qquad \permeabilityTensor = \left [\begin {array}{ccc} 1.5 & 0.5 & 0.35\\ 0.5 & 1.5 & 0.45\\ 0.35 & 0.45 & 1.5 \end {array}\right ] \,[{\rm {mD}}], \nonumber \\ &\thermalStressTensor = \left [\begin {array}{ccc} 1.5 & 0.5 & 0.35\\ 0.5 & 1.5 & 0.45\\ 0.35 & 0.45 & 1.5 \end {array}\right ] \,[{\rm {bar}}\,{{\rm {K}}^{-1}}], \qquad \heatConductivityTensor = \alpha \left [\begin {array}{ccc} 1.5 & 0.1 & 0.5\\ 0.1 & 1.5 & 0.15\\ 0.5 & 0.15 & 1.5 \end {array}\right ] \,[{{\rm {Wm}}^{-1}} {{\rm {K}}^{-1}}],\nonumber \end {align}


$\alpha $


$\porosity _0$


$-$


$\density _{\fluid }$


$\mathrm {kg}\,\mathrm {m}^{-3}$


$\viscosity _\fluid $


$\mathrm {cP}$


$\compressibility _\fluid $


${\rm {bar}}^{-1}$


$\density _{\text {tot}}$


$\mathrm {kg}\,\mathrm {m}^{-3}$


$\compressibility _\skeleton $


${1.4503768 \times 10^{-6}}$


${\rm {bar}}^{-1}$


$\gravity $


$\mathrm {m}\,\mathrm {d}^{-2}$


$\heatCapacity $


$\mathrm {kJ}\,\mathrm {m}^{-3}\,\mathrm {K}^{-1}$


\begin {equation}\label {convergence:nonlinear:function} f(x,y,z,t) = \frac {1}{2\sin (1)}\sin ((1-x)(1-y)(1-z)) + 0.5(1-x)^3(1-y)^2(1-z)(1+t^2).\end {equation}


$\pressure =f$


$\pressure , \displacementVector $


$\pressure _h, \displacementVector _h$


$A$


$A_h$


\begin {equation}\label {convergence:norm} \|A-A_h\| = \sqrt {\left (\sum \limits _i\volume _i\right )^{-1}\sum \limits _i\volume _i|A(\pointVector _i)-A_{h,i}|^2},\end {equation}


$\volume _i$


$i$


$\pointVector _i$


$8^2$


$8^3$


$8^4$


$8^5$


$\darcyVelocity ^{\fluid }_h$


$\stressTensor _h$


\begin {equation}\label {linear:pressure} p(x, y, z, t) = 3 - x - y - z,\end {equation}


$\temperature =f$


$\text {Pe} = \displaystyle \frac {a\heatCapacity \lVert \darcyVelocity ^{f}\rVert _{L2}}{\lVert \heatConductivityTensor \rVert _{L2}}$


$\sim 10^3$


$h=\SI {100}{\meter }$


$h_1=\SI {25}{\meter }$


$h_2=\SI {75}{\meter }$


$F=\SI {10}{\mega \pascal }$


$p_0=\SI {0}{\pascal }$


$\permeabilityTensor = k\identityTensor $


$\biotTensor =b\identityTensor $


$k$


$b$


$\youngModulus $


$\poissonRatio $


$\porosity _0$


$\viscosity _\fluid $


$\compressibility _\fluid $


$10^{-10}$


$h,\si {\meter }$


$\youngModulus $


$\mathrm {GPa}$


$\poissonRatio $


$b$


$k$


$\mathrm {mD}$


$\porosity _0$


$\viscosity _\fluid $


$\mathrm {cP}$


$\compressibility _\fluid $


${\rm {bar}}^{-1}$


$x=\SI {1.25}{\meter }$


$\displacement _x$


$x=\SI {98.75}{\meter }$


$T=\SI {10}{\day }$


$t = \SI {10}{\day }$


$0.009$


$\mathrm {%}$


$0.01$


$\mathrm {%}$


$p_0=\SI {0}{\pascal }$


$\youngModulus =\SI {1}{\giga \pascal }$


$\poissonRatio = 0.25$


$\permeabilityTensor =k\identityTensor , k = \SI {1}{\milli \darcy }$


$\compressibility _\fluid =10^{-10}\,{\rm {bar}^{-1}}$


$\viscosity _\fluid = {1}\,{\rm {cP}}$


$\biotModulus = 10^{-5}\,{\rm {bar}^{-1}}$


$\biotTensor =b\identityTensor , b = 0.9$


$30\times 30$


$x=\SI {1.66}{\meter }$


$\displacement _x$


$x=\SI {98.33}{\meter }$


$T=\SI {10}{\day }$


$t = \SI {10}{\day }$


$0.007$


$\mathrm {%}$


$0.002$


$\mathrm {%}$


$7$


$\mathrm {m}$


$F=\SI {1}{\pascal }$


$\pressure = \SI {0}{\pascal }$


$\temperature = {50}\,{}^{\circ }{\mathrm {C}}$


$p_0 = \SI {0}{\pascal }$


$\temperature _0 = {0}\,{}^{\circ }{\mathrm {C}}$


$\youngModulus = \SI {6}{\kilo \pascal }$


$\poissonRatio = 0.4$


$\permeabilityTensor =k\identityTensor $


$\biotTensor =b\identityTensor $


$\thermalStressTensor =a\identityTensor $


$\heatConductivityTensor =\lambda \identityTensor $


$k = 4\times 10^{-9}\,\si {\square \meter }$


$b = 1.0$


$a = 9\times 10^{-7}\,{}^{\circ }{\mathrm {C}}^{-1}$


$\lambda = {836}\,{\mathrm {Jm}}^{-1}\,{\mathrm {s}}^{-1}{}^{\circ }\,{\mathrm {C}}^{-1}$


$\heatCapacity ={167.2}\,{\mathrm {kJm}}^{-3}{}^{\circ }\,{\mathrm {C}}^{-1}$


$\viscosity =\SI {1}{\centi \poise }$


$\temperature ={50}\,{}^{\circ }{\mathrm {C}}$


$60\times 220\times 85$


$\poissonRatio =0.2$


$b=1$


$\alpha = 9\cdot 10^{-7}{}^{\circ }{\mathrm {C}}^{-1}$


$\density _\skeleton = \SI {2650}{\kilogram \per \cubic \meter }$


$\heatCapacity _\skeleton = {2.2}\,{\rm {kJkg}}^{-1}{}^{\circ }{\rm {C}}^{-1}$


$\heatConductivity _0={72.23}{\rm {kJm}}^{-1}{\rm {d}}^{-1}{}^{\circ }{\rm {C}}^{-1}$


$\youngModulus $


$\permeability _x$


$\temperature _{\text {top}} = {26.85}^{\circ }{\rm {C}}$


$\temperature _{\text {bot}} = {76.85}^{\circ }{\rm {C}}$


$\traction _{N}^{\text {top}}=\SI {90}{\mega \pascal }$


$\mathrm {kg}\,\mathrm {m}^{-3}$


${\rm {bar}}^{-1}$


$1.45\times 10^{-5}$


$10^{-5},\,5\times 10^{-3}$


$\mathrm {cP}$


$\left (\frac {\saturation _\phase - 0.1}{1 - 0.2}\right )^{2}$


${{}^{-1}}^{\circ }{\mathrm {C}}^{-1}$


${\mathrm {p}}_{inj} = {\mathrm {p}}_{\mathrm {max}} + {50}\,{\mathrm {bar}}$


${\mathrm {p}}_{\mathrm {prod}} = {\mathrm {p}}_{\mathrm {min}} - {50}\,{\mathrm {bar}}$


$\pressure _{\text {max}}$


$\pressure _{\mathrm {min}}$


$\temperature _{\mathrm {inj}} = {27.85}^{\circ }{\rm {C}}$


$t_{\mathrm {max}}=\SI {20}{\day }$


$t=0,1,20\,\si {\day }$


$t=\SI {0}{\day }$


$t=\SI {20}{\day }$


$\tilde {\mathbf {S}}_{\omega }$


$\jacobianMatrix _{pp}$


$\jacobianMatrix _{uu}$


$\jacobianMatrix _{uu}$


$<$


$24\times 104\times 40$


$10^{-4}\lambda _0$


$10^{2}\lambda _0$


${\rm {CO}}_{2}$


${\rm {CO}}_{2}$


${\rm {CO}}_{2}$


$\domain \subset \mathbb {R}^3$


$\partial \domain $


$\timeInterval =\left [0, t_{\max }\right ]$


$\pressure : \domain \times \timeInterval \to \mathbb {R}$


$\ncomponent -1$


$\composition _\component : \domain \times \timeInterval \to \mathbb {R}$


$\temperature :\domain \times \timeInterval \to \mathbb {R}$


$\displacementVector :\domain \times \timeInterval \to \mathbb {R}^3$


$H^1(\domain )$


$\partial \domain $


$\domain \times \timeInterval $


$\component =1,\dots ,\ncomponent $


$\skeleton , \phase $


$1,\dots ,\nphase $


$\porosity $


$\fraction _{\component \phase }$


$\component $


$\phase $


$\saturation _\phase $


$\density _\phase $


$\darcyVelocity _{\phase }^{\fluid }$


$\sourceMass _\phase $


$\intEnergy _\skeleton , \intEnergy _\phase $


$\enthalpy _\phase $


$\heatConductionVector _{\skeleton }^{\thermal }$


$\heatConductionVector _{\phase }^{\thermal }$


$\skeleton $


$\phase $


$\stressTensor $


$\density _\skeleton $


$\gravity $


$\depth $


\begin {align}&\darcyVelocity _{\phase }^{\fluid } = -\frac {\permeability _{r\phase }\permeabilityTensor }{\viscosity _\phase }\left (\nabla \pressure - \density _\phase \molarWeight _\phase \gravity \nabla \depth \right ),\label {closing1} \\ &\heatConductionVector _{\phase }^{\thermal } = -\heatConductivityTensor _\phase \nabla \temperature ,\label {closing3} \\ &\porosity - \porosity _0 = \displaystyle \frac {(\biotTensorTrace -\porosity _0)(1 - \biotTensorTrace )}{\bulkModulus _\skeleton }(\pressure -\pressure _0) + \biotTensor :\nabla ^s(\displacementVector - \displacementVector _0) + \volumetricThermalCoef (\temperature -\temperature _0),\label {closing4} \\ &\stressTensor - \stressTensor _0 = \stiffnessTensor :\nabla ^s\left (\displacementVector - \displacementVector _0\right ) - \left (\pressure -\pressure _0\right )\biotTensor - (\temperature -\temperature _0)\thermalStressTensor ,\label {closing5} \\ &\density _\phase = \density _\phase (\pressure , \temperature , \fraction _{\component \phase }), \quad \viscosity _\phase = \viscosity _\phase (\pressure , \temperature , \fraction _{\component \phase }), \quad \enthalpy _\phase = \heatCapacity _{\phase }(\temperature -\temperature _0), \quad \intEnergy _\phase = \enthalpy _\phase - \frac {\pressure }{\density _\phase },\label {closing6} \\ &\intEnergy _{\skeleton } = \heatCapacity _{\skeleton }(\temperature -\temperature _0),\label {closing7} \\ &\fraction _{\phase }, \fraction _{\component \phase } = \arg \min _{\fraction _{\phase }, \fraction _{\component \phase }} \bar {\gibbsEnergy }, \quad \bar {\gibbsEnergy } = \frac {\gibbsEnergy }{\gasConstant \temperature } = \sum \limits _{\phase }^{\nphase }\fraction _\phase \sum \limits _{\component }^{\ncomponent }\fraction _{\component \phase }\ln \fugacity _{\component \phase },\notag \\ &\composition _{\component 0} = \sum \limits _{\phase }^{\nphase }\fraction _\phase \fraction _{\component \phase },\nonumber \\ &\sum \limits _{\phase }^{\nphase }\fraction _{\phase }=\sum \limits _{\component }^{\ncomponent }\fraction _{\component \phase }=1, \quad 0 \leq \fraction _{\phase }\leq 1, \quad 0 \leq \fraction _{\component \phase }\leq 1, \quad \phase =1\dots \nphase , \quad \component =1\dots \ncomponent ,\label {closing8}\end {align}


$\permeability _{r\phase }$


$\permeabilityTensor $


$\pressure $


$\viscosity _\phase $


$\molarWeight _\phase $


$\heatConductivityTensor _\skeleton $


$\heatConductivityTensor _\phase $


$\nabla ^s\displacementVector = (\nabla \displacementVector + (\nabla \displacementVector )^T) / 2$


$\biotTensor $


$\biotTensorTrace = I_1(\biotTensor ) \,/\,3$


$\biotTensor $


$\bulkModulus _\skeleton $


$\volumetricThermalCoef $


$\stiffnessTensor $


$\thermalStressTensor $


$\displacementVector $


$\heatCapacity _\skeleton $


$\heatCapacity _\phase $


$\fraction _\phase $


$\phase $


$\gibbsEnergy $


$\gasConstant $


$\fugacity _{\component \phase }$
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\begin {equation}\stressTensor _0 = \stressTensor (\displacementVector _0, \pressure _0, \temperature _0),\quad \porosity _0 = \porosity (\displacementVector _0, \pressure _0, \temperature _0). \label {Xeqn1-11}\end {equation}
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Nomenclature
Physical variables

rank-two rock thermal dilation tensor,
volumetric thermal dilation coefficient related to porosity
rank-two Biot tensor,
rank-four stiffness tensor of skeleton,
6 x 6 matrix of stiffness coefficients,
heat capacity of fluid phase «,
rock heat capacity,
depth,
rank-two infinitesimal strain tensor,
Young’s modulus,
traction vector,
fr normal and tangential projections of traction vector,
specific (molar) Gibbs energy of fluid mixture,
gravity constant,
enthalpy of phase a,
identity matrix,
rank-two tensor of permeability,
diagonal components of permeability tensor,
relative permeability of fluid phase f,
bulk modulus of the solid phase,
rank-two effective heat conductivity tensor,
fluid viscosity of fluid phase a,
unit normal vector,
Poisson’s ratio,
pore pressure,
qQ;, Darcy’s velocity of fluid phase f,
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q, heat conduction vector fluid constituent a (fluid phase of rock),
r, sources (or sinks) of fluid mass of phase «,
P density of constituent «,

R gas constant,
S saturation of fluid phase a,

]

c rank-two total stress tensor,

(€] temperature,

t time,

U, fluid internal energy,

U, rock internal energy,

u=[uu, uZ]T vector of displacements,

(Vu)" Jacobian matrix of u,

i fugacity of component i in phase «,
) porosity,

b= ¢+ (P = Po)w — $)/K,,

v = (B :I)/3 one-third of the trace of tensor B,

Xq molar fraction of fluid phase «,

Xiq molar fraction of component i in fluid phase «,
Z; overall molar fraction of component i.

Numerical variables

At time step,

S; area of jth interface,

H vector of residuals,

J Jacobian matrix,

ép unknown increments of pressures,

oz unknown increments of compositions (and temperatures for non-isothermal systems),
su unknown increments of displacements,

o = {p,z;,0} vector of state unknowns.
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surface infrastructures [2,3]. In geothermal operations, the re-injection of cooler fluid causes stress and strain changes that can
potentially (re-)activate faults and lead to induced seismic activity [4,5]. The development of CO, geological storage involves a
complex interaction of thermal, hydraulic, mechanical, and chemical processes which collectively change the in-situ stress state, affect
fault stability, and can lead to fault activation, CO, leakage and seismicity [6,7]. Therefore, the successful and risk-free exploitation
of subsurface resources depends on the development of robust and efficient computational techniques for modeling the coupled
geomechanics and hydrothermal processes.

The Finite Volume Method (FVM) has recently been seen as a promising technique for modeling of geomechanics, especially when
mechanical interactions are modeled in a fully coupled manner with the flow and transport of mass and energy. The FVM is attractive
because it represents an integral form of conservation laws. Recent literature highlights its development for geomechanical simulations
with both staggered [8-10] and collocated grids [11-13]. The advantages of FVM include support of various cell topologies, respect
of local flux balance, discontinuous representation of displacements, and seamless integration with fluid mass and energy balance
solvers.

The first FVM for solid mechanics was limited to homogeneous isotropic elasticity [14]. However, geological formations often
exhibit heterogeneity amplified by material discontinuities which require appropriate treatment by numerical scheme. To address this
limitation, the multi-point stress approximation (MPSA) has been introduced by [11]. Nevertheless, on simplex meshes, MPSA requires
enforcement of continuity at multiple points and, eventually, struggle to maintain convergence. Later, these problems have been
resolved by the weakly imposed symmetry of stress tensor [15]. Alternatively, a gradient-based approach allows these complications
to be circumvented by offering robust convergence across a wide range of star-shaped topologies [12]. This method relies on the
suitable approximations of gradients of unknowns avoiding the excessive construction of dual grid. Later, this approach has been
extended to poroelasticity [16], with frictional contact [13] and the Navier-Stokes equations [17]. In this paper, we further extend
this gradient-based approach to thermo-poroelastic media.

Coupling fluid flow and mechanics equations poses significant challenges and two well-known approaches can be mentioned.
The first approach, sequential implicit (SI), decouples the mechanics and flow equations, achieving a converged solution for the
coupled problem by sequentially iterating between subproblems [18,19]. A prominent example of SI approach is the fixed-stress
splitting algorithm [20,21]. In contrast, the fully implicit (FI) approach involves a monolithic solution of the coupled system of
equations [9,22], offering the advantage of unconditional stability under appropriate assumptions [19]. Nevertheless, FI requires
scalable preconditioners specifically designed for solving associated linear systems [23]. Beyond the computational challenges, both
approaches are susceptible to inf-sup instabilities, which arise from the saddle-point nature of the displacement-pressure system
[24,25]. These instabilities can introduce unphysical oscillations to numerical solution in the limit of undrained conditions [26-29].
The collocated scheme of FVM presented in this paper is not an exception [13,16]. The schemes of FVM are reportedly stabilized by
the use of essentially inf-sup-stable discretization spaces [30] and flux vector splitting [31], although the latter one can introduce
significant diffusion [32]. We leave the inf-sup stabilization and related analysis beyond the scope of the current paper.

Although the FI approach does not impose any restriction on time step size, it requires efficient nonlinear and linear solu-
tion strategies for high-resolution models. One such strategy is to construct a preconditioner based on the idea of the SI ap-
proach. In [33], the authors employ a fixed-stress splitting concept in a sparse approximation of the Schur complement to
obtain a block-preconditioned solution strategy. Later this approach was combined with a constrained pressure residual (CPR) pre-
conditioner to construct a robust and effective solution strategy for coupled multiphase flow and mechanics [23,34].

In this study, we present a novel cell-centered collocated FI multi-point FVM scheme for thermo-hydro-mechanical-compositional
simulation of subsurface reservoirs. It treats mass, energy, and momentum fluxes in a unified vector form within the framework of
FVM, resulting in a simplified formulation. The framework can be used to resolve the coupled processes in arbitrarily anisotropic
thermoporoelastic rocks on unstructured polyhedral grids with a minimum number of degrees of freedom per cell. It is also capable
of handling material heterogeneities while preserving mass, energy and momentum balances. The framework supports multiphase
compositional fluid physics, including phase equilibrium and chemical reactions resolved through operator-based linearization [35].
To improve the performance of simulation, a block-partitioned preconditioning strategy is implemented. The developed computational
capabilities are verified in benchmarks and demonstrated for compositional modeling using a geomechanical extension of SPE10
model [19].

The developed methods are implemented in the open-source Delft Advanced Research Terra Simulator (open-DARTS) [36].
Open-DARTS is a scalable parallel simulator, which has been successfully applied for modeling of hydrocarbon [37,38],
geothermal [39,40], CO, sequestration [41,42] applications, as well as evaluating potential to fault reactivation and seismicity
[13,32]. This study further extends the coupling between geomechanical modeling and the advanced hydro-thermal modeling
capabilities of open-DARTS, making it a fully coupled thermo-hydro-mechanical-compositional simulator for complex geo-energy
applications.

2. Governing equations
2.1. Continuous formulation

We employ a displacement-based formulation of a quasi-static linear momentum balance and molar-based formulation for multi-
phase multicomponent fluid flow in thermo-poroelastic saturated media. Thus, considering a finite domain Q ¢ R? surrounded by a
piecewise-smooth boundary dQ and a time interval I = [0,,,,], the primary unknowns include pore pressurep : QX7 — R, n, — 1
component molar fractions z; : Q x I — R, temperature ® : Qx I — R and vector of displacement u : Q x T — R3. All unknowns

3
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belongs to Sobolev space H'!(Q) with appropriate amendment at Q. In the region Q x I, we study the mass balances of fluid compo-
nents i = 1, ...,n,, the energy balance and the momentum balance [43] that can be written as

n n n
9 p p p .
E<¢;xiasapa)+v' (inapaqgg) _inapara =0, i= 1""7nc’ (1)

a o

ny np
%((1 — U, + 6 Z S(,ana> +V- <Z (Pubyd; +#S,q;) +(1 = ¢)q?)

=Y pehgr, =0, 2
—V-G—((l—¢)ps+¢zsapa>gVD=0, 3)

where subscripts s, denote rock matrix and fluid phases 1,...,n, respectively, ¢ is porosity, x,, are molar fractions of compo-
nent i in phase «, S, are phase saturations, p, are phase densities, qg are Darcy’s phase velocities, r, are phase source terms,
U,,U, are the internal energies of rock matrix and fluid phases respectively, h, are phase enthalpies, q? and ‘12 are the vectors
of heat conduction fluxes in rock matrix s and in fluid phase « correspondingly, o is the rank-two total Cauchy’s stress tensor, p,
is the density of rock matrix, g is the gravitational acceleration, D is depth.

The balance laws in Egs. (1)—(3) are subjected to the following constitutive relationships [43-45]
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where k,, are relative phase permeabilities, K is the rank-two permeability tensor, p is pore pressure, y, are phase viscosities,
M, are phase molar weights, A; and A, are the rank-two heat conduction tensors of rock matrix and fluid phases respectively,
Viu = (Vu + (Vu)")/2 is the matrix of symmetric gradients of displacements, B is the rank-two tensor of Biot’s coefficients [43,44,46],
v = I,(B) /3 is one-third of the first invariant of B, K is rock matrix drained bulk modulus, ay is the volumetric coefficient of rock
matrix thermal dilation, C is the rank-four drained stiffness tensor, A is the rank-two rock matrix thermal dilation tensor, u is a vector
of displacements, c; and c, are constant-pressure heat capacities of rock matrix and fluid phases correspondingly, x,, is molar fraction
of phase «, G is the specific (molar) Gibbs energy of fluid mixture, R is gas constant, ¢;, is the fugacity of component i in phase a, z;,
is initial value of overall molar fraction of component i, which must be preserved, and the subscript 0 denotes the reference state of
a variable, i.e.,

6o = 6(ug, P, Bg),  $g = P(ug, py, Op). 1)

Egs. (4) and (5) represent Darcy’s and Fourier’s laws that define fluid and heat conduction fluxes caused by spatial variation of pore
pressure and temperature respectively, Eqs. (6) and (7) represent porosity and stress changes in anisotropic thermo-poroelastic media
under the assumption of infinitesimal strains, the fluid properties, i.e density, viscosity, enthalpy and internal energy are defined in
Eq. (8) while rock matrix internal energy is specified in Eq. (9). We employ the multiphase flash [47] to evaluate instantaneous
thermodynamic equilibrium between fluid phases written in Eqs. (10). The effect of capillary forces between fluid phases is neglected
in both the Darcy’s law in Eq. (4) and in the phase equilibrium in Eqgs. (10). All variables have been listed in the Nomenclature
section at the end of the paper.
The projection of stress tensor o to an interface with unit normal vector n is called total traction vector f and defined as

f=—on, (12)
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where the negative sign is motivated by the sign of the corresponding term in the momentum balance in Eq. (3). Traction vector can
be decomposed into normal f, and tangential components f; as

f=fyn+f;, fy=-n"on, f;=T-nn")f, 13)
where —fy and |f;| are called normal and shear stresses, respectively and I is an identity matrix.

For the system of balance laws in Eqgs. (1)—(3) and constitutive relationships in Eqs. (4)-(10) we consider boundary conditions
acting on 0Q, which can be written in the following form

a,pp + B,(Kn - (Vp = psgV D)), = 7, (14)
g0y + fo(An - VO), = vy, (15)
' (a,u, + B,8,) =7, (16)
A -nn")(au, + 4f,) =7, a17)

where subscript b denotes the property evaluated at the boundary, a,, §,, ag. fy, @,,f, and «,, f, are coefficients that determine the
particular kind of boundary conditions, while y,, 7,7, and y, represent the values the corresponding conditions are assigned to, p;
stands for the effective density of fluid flux estimated as

p
Pt =Y Suba- 18)
a

Additionally, Eq. (14) defines the boundary condition for fluid mass balance, Eq. (15) specifies the boundary condition for energy
balance, Egs. (16), (17) represent normal and tangential boundary conditions for the momentum balance, respectively.

Egs. (14)-(17) describe a broad range of possible boundary conditions, including fixed boundary for mechanics (a, =, = 1, g, =
ﬂ, = 0), distributed force loading (a, = a, =0, §, = §, = 1), free boundary (¢, =a, =y, =0, g, =, = 1, ¥, = 0) and roller conditions
(a,=p, =1, , =y, =a, =0, y, =0) for mechanics; Dirichlet (¢, = @y = 1, f, = fiy = 0) and Neumann (a, = a5 = 0, f, = fiy = 1) con-
ditions for flow and energy.

Egs. (1)—(3) with substituted Eqgs. (4)-(10) represent a system of n, + 4 equations with respect to primary unknowns: pressure p,
n, — 1 compositions z;, ...z, _;, temperature ® and three components of displacement vector u. The secondary unknowns defining
fluid mixture, e.g. molar fractions x,, and saturations S, are evaluated from primary unknowns inside the multiphase flash procedure.
The problem definition is further refined by incorporating boundary conditions as specified in Eqs. (14)—(17), along with the initial
values assigned to the unknown variables.

2.2. Discrete formulation

The scheme of FVM for the system of partial differential Eqgs. (1)-(3) can be written in the following residual form

" T n+1 — A, .crH—l At f"+1
m,i
o = H, = a”+1 - A1, rﬂ+l + Y 8 At,,f"“ =0, (19)
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where dV denotes the set of all interfaces  belonging to cell j, and
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Additionally, H,, ;,H, and H,,,,, denote the residuals of the mass balances of component i, energy balance and momentum balance
respectively, written for cell j; terms a,r and f stand for accumulation, source and flux terms, respectively. Furthermore, j is the
volume of a cell j, Az, is n-th time step, subscript j denotes the properties evaluated at the center of corresponding cell, subscript
p denotes the properties approximated at the center of corresponding interface, subscript u denotes the single-point upstream (SPU)
weighting for the interface p = {/, k} betwee cells j and

— (xiap(tkra/‘_l ) i’ qf > 0,
Xiahakpakty'), = ST (20)
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supercripts n and n + | denote the current and the next time layers respectively, &, is the surface area of interface f. Besides, we use
the following notations

q;ﬂ =—(Kn-(Vp- pagVD))ﬁ, qg =—(An-VO),, (21)

where qf is the Darcy’s flux from Eq. (4), ¢2 is the Fourier’s heat conduction flux from Eq. (5).
Moreover, we approximate porosity defined in Eq. (6) as

. W — o)1 — ) "o el
¢ = |+ IO(—(p —Py) + ay(® — @0)] s > 5ﬁ<qﬂ+1 _ qﬁ), (22)
s J peadj
where the flux g, is defined as
Gy = (u —u;) - (Bn);. (23)

Note that u; will vanish upon summation over the interfaces in Eq. (22), but we retain it here for clarity.

2.3. Approximation of fluxes

Many numerical schemes of FVM rely on flux approximation. Widely exploited in reservoir engineering, the Two-Point Flux
Approximation (TPFA) is applicable for diffusive fluxes under certain constraints. Recently, the Two-Point Stress Approximation
(TPSA) was introduced as a method to approximate fluxes in the micropolar elasticity formulation using only two points, though it
also remains subject to restrictions on admissible meshes [48]. The Multi-Point Flux Approximation (MPFA) [49,50] is not limited
by those constraints but can introduce instability [51]. Its extension to momentum fluxes in elasticity systems is called Multi-Point
Stress Approximation [11], which has been combined into the MPFA-MPSA approach for the coupled modeling of poroelasticity [30]
and thermoporoelasticity [52,53] systems. To improve the stability properties of multi-point schemes, a family of weighted schemes
has been developed [54] resulting in the evolution of nonlinear FVM schemes [55-57].

In this work, we extend the gradient-based weighted scheme initially proposed for poroelasticity systems [16], to thermo-
poroelasticity systems. Specifically, we utilize MPFA for heat conduction fluxes and the associated interpolation of temperature at the
interface for the approximation of thermally-induced traction components. This interpolation incorporates temperature into the local
balance of total traction vectors, resulting in the temperature-dependent displacement gradient approximation. This methodology
follows the coupled scheme construction for poroelasticity systems [16]. Additionally, we apply single-point upstream weighting for
the mobility multipliers in mass and heat convection fluxes.

Our gradient-based weighted multi-point approximations rely on reconstruction of the gradients of the unknowns. Specifically,
reconstructed gradients are substituted into the flux expressions, with gradient approximations computed before simulation. Following
the original scheme’s development [16], we manually resolve the gradient components normal to the interface, retaining only the
tangential components for reconstruction. This splitting is motivated by the improved behavior of the resulted flux approximation in
regard to the locking issue [58]. Once gradients are reconstructed within each cell, facial approximations use arithmetic weighting
between neighboring cells.

The following subsections detail the approximations of fluid mass, heat and momentum fluxes (tractions), facial interpolations
of pressure, temperature, and displacements for both interior and boundary interfaces, required for the assembly of system in Eq.
(19). These approximations are based on the reconstruction of gradients of the unknowns, with a single gradient per cell evaluated
from the continuity constraints on fluxes and unknowns across all cell interfaces. The continuity constraints for interior and boundary
interfaces, along with flux approximations, are presented in the respective subsections. The final assembly of cell gradients, used in
the flux approximations, is described in Section 2.3.3. The complete road map of flux approximations is depicted in Table 1.

Table 1
Road map of flux approximations for a single cell.

Interior quﬁ,qfi, aﬁ,fﬂ and

£ 9~ > Discrete balance Eq. (19)
boundary qq p, qp, Gp, fp fluxes

Tangential gradients &, = {¢, &2, &% T

1‘ Interiorp/;, Gﬂ,uﬁ and
boundary py, 0, u;, interpolations

Gradient reconstruction

i

Assembly of equations with respect
to gradients across cell interfaces
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2.3.1. Approximation of fluxes at interior interfaces

The approximation of fluxes can be derived from the continuity of unknowns d = [p, 0, uT] and associated fluxes. Assuming
piecewise-linear d and piecewise-constant K, A, C,B, A defined on a given partitioning of Q, we enforce the continuity of Darcy’s,
heat conduction and momentum fluxes (traction vectors), along with the continuity of unknowns. These constitute the local problem
- a set of fundamental premises enforced at each interface. For an interior interface with unit normal vector n between cells 1 and 2,
the local problem is expressed as:

dp =d; + IR x; —x)|(V®d)) =dy + I® (x; = %) | (V@ dy) =d,, 24
—(Vpy = prgVD) - Kin = —(Vp, — prgVD) - Kpn, (25)
-VO,-Ajn=-V0O, A,n, (26)
—-[I®n"]|S,(V®u,) +p;Bn+0,An=-[I®n"]S,(V®u,) +py,B,n+0,A,n, @27

where d; and d, are unknowns at the cell centers, x; and x, are the positions of the cell centers, ® denotes the Kronecker product, x,
denotes the center of the interface, subscripts f1 and 2 denote the single-side interpolations of respective properties to the interface
A,1I® (xﬂ - xl)T and I ® (x5 — xz)T represent 5 X 15 matrices constructed as

x5 —x)7
(% —Xi)T
I®(x;—x) = x5 —x)" . =12,
(x5 —x)7
(Xﬂ —X;)T

1® n” stands for 3 x 9 matrix constructed in a similar way, V®d,, V®d, and V ® u;, V ® u, are 15 x 1 and 9 x 1 vectors respectively,
constructed as

Vp
Vp Ve
V®d,=| VO | =|Vu |, i=12, (28)
V®u ; Vu,
Vu

z)i

where [uxuyuz]T are the components of displacement vector u. Note that the arguments are swapped in the definitions of vectors
V®dand VQ®uin Eq. (28). Additionally, §; =T'C,T'7, S, =T'C,I'" are 9 x 9 matrices where C denotes a 6 X 6 symmetric stiffness
matrix in Voigt notation and where

1 0 0 0 0 O O 0 O
o 0 o0 o0 1 o0 0 o0 O
= o 0 0 0 O 0 0 0 1
o 0 o0 o0 o0 1 0 1 O
o o0 1 0 0 0 1 0 O
o 1 o0 1 0 0 O 0 O

Flux balances in Egs. (25), (26), and (27) stem from Darcy’s, Fourier’s and momentum fluxes, i.e. traction vectors, in Egs. (19).
While the momentum flux balance accounts for all contributions to total momentum flux, the local balance of fluid mass flux in Eq.
(25) neglects the fluxes caused by matrix movement and molecular diffusion. Additionally, the local balance of energy in Eq. (26)
neglects heat convection fluxes. Nonetheless, the conservation of Darcy’s fluxes in Eq. (25) and the use of SPU approximation for
mobility multipliers can guarantee the sufficiency of Eq. (26) for the conservation of cumulative heat convection and conduction
fluxes.

Egs. (24)—(27) reveal that the local problem decomposes into three subproblems: fluid mass, heat and momentum. The fluid mass
and heat subproblems are completely independent while the momentum subproblem depends on both of them. Therefore, we first
remind the approximations for the fluid mass and heat subproblems.

Fluid mass and heat conduction fluxes. For the derivation of MPFA for Darcy’s and Fourier’s fluxes, pressure and temperature interpo-
lations we follow approach described in Terekhov et al. [56]. We employ the co-normal decompositions of gradients and properties

Vp =&n+¢, & =n"vp, & = @-m")vp, (29)
VO, =&n+&, & =n"ve, & =a-m"ve, (30)
Kin=xn+x;, k; =n'K;n, x; = (I —nn")K;n, (31
An=An+4, A =nTAn, A;=d-nn")A;n, (32)

where &7, f? and &7, égi are normal and tangential projections, respectively, of pressure and temperature gradients evaluated in cells
i =1, 2. Note that §’T’ L= 552 =£P and 521 = 5‘32 = éf due to Eq. (24). Moreover, scalars «;, A; and vectors k;, 4; represent normal and
tangential projections, respectively, of K;n and A;n for cells i = 1, 2.

7
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Fig. 1. Normal decomposition of distances between the centers x; of cells i = 1, 2 and the center x, of interface 4.

By substituting Eqs. (25) and (26) into Eq. (24), the gradients 55 and 52 can be eliminated, yielding the following equations for
pressure gradient Vp, and temperature gradient VO,

(%, — %)) + dy (K, — Kz)“)TVPl =15(p, — py) + dyp;gVD" (K, — K )n, (33)
(A%, — X))+ dy(A; — Ay)n) VO, = 4,(®, - ©)), (34)

which we use below for the reconstruction of cell-centered gradients in cell 1.
In a similar fashion the gradients 5g and ég can be eliminated in the Eqgs. (25) and (26), yielding MPFA of Darcy’s and Fourier’s
fluxes

dyrok | +dyr K] d, K, +dyi, K
f_ _ _ T 1 2 \gp Gk By )
q; = k(1 —p2) (K(y1 Y2+ Tor ik, &%y + pegVD Thr ik " (35)
dy A AT +dy 4, AT
0 T 1 2 0
=20, -0,)—| Ay, - )& 36
q; = M0, - 0,) ( ¥1 —¥2) A a7, 34 (36)

where k = kk,(dx, + dyk) !, A = 4, 4,(d 4, + dy 4,)~! are weighted harmonic mean permeability and heat conductivity, respectively.
Additionally, the following decompositions of geometrical terms are utilized

X; — X =din+(X; —y), d=n-(x; —x;) >0, Yy, =X, +d;n,

X, — Xy = dn+ (¥, — Xp), d,=n-(x, —x;) >0, Y, =X, —d,n, 37)
where d; denotes a distance from the cell center x;, i = 1, 2 to an interface g while y, stands for a normal projection of cell center x;,
i =1, 2 onto interface f. These geometrical terms are shown in Fig. 1.

Finally, by substituting the gradients §f and 5? into the left-hand side of Eq. (24) one can obtain the pressure and temperature
interpolations at the center of the interface g

Py = iy + o)™ (dyxy Py +dyKapy) + (dy K + dyr) ™ ((dydaey — k)T + dorey (x5 = y1)T +dika(xy —¥2) )E0+
+ d;dypgVDT (K| —Ky)n), (38)
Op = (d1 Ay +dyd)) 71 (dy 41O +d; 4,05) + (dy Ay +dad)) 7 (dyda(Ay — 4T +dady (x5 — ¥ )T +dy Ay(x5 — yp)T )0 (39)
Momentum fluxes. The same approach is utilized for the multi-point approximation of momentum fluxes, i.e. traction vectors, and for

the interpolation of displacements. Following the similar procedure [16], we consider the co-normal decompositions of displacement
gradients and stiffnesses as

Veu =[I®n +&,. & =18n"][Veu], & =1®d-m"][Veu], (40)

I®n"]S,=T,I®n ]+, T,=[1®n"IS,I®n]. T, =1 n"]S,[I® - nn")], (41)

where &/ and £, are the normal and tangential projections of displacement gradients, respectively, evaluated in cells i = 1, 2, T; and

I, are normal and tangential projections of [I® n’|S;, respectively, evaluated in cells i = 1, 2. Note that & =8¢, =&y due to Eq.
(24).

By substituting Eq. (27) into Eq. (24), the gradient £ can be eliminated, yielding the following equations for displacement
gradient V® u,

(T, ® (% =) +dy(T; = T)) @n" +dy, @, —=T))[VQu1=T,(uy — ;) +dy(pys B; +OpA; — ppBy — ©ppAr)m, (42)

8
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where the approximations for pg;, ®,, are defined in Eq. (24) while the following approximations of p;, and ©,, which depend on
the pressure and temperature gradients, respectively, evaluated in cell 1, are used
P2 =Py + (X5 — ¥y — dory ' (Kyn — x,)) Vp; + dyi; ! ppg VDT (K — Ky, (43)
Op =0, +(x; -y, — A3 (Ain—4,))'VO,. (44)

By deriving & from Eqgs. (24) and (27) and substituting it to the left-hand side of Eq. (27), we can assemble the approximation
of the total traction at the interface g as

_gd a
£, =441, (45)
where
fg =-T&-T&=T(w -w) - ([T, —y)"| +d,To(d, T, +d,T))"'T} + d,T,(d, T, + d,T)"'T;,)&"
+dyT1(d; T, +d,T) 7 (s (B, = B)) +©4(A; — A} ))n, (46)
£ = (pyB; +©A )n, (47)

and T =T,(d; T, +d,T|)"'T, stands for 3 x 3 matrix and the approximations for p;,®, are taken from Eqs. (38) and (39). The
equation for the assembled total traction will look like

f,= T(u; —uy) — ([T Ry, - )’2)T]+ d;T,(d, T, +d,T))7'T} +d, T (d, T, + d2T1)71r2)§: (48)
+d,Tyd T, +d,T) 7! (pgB) + ©pA )0+ d, T (d, T, + dyT)) 7" (pyB, + ©4A, )n,

which is symmetric against simultaneous swap of indices 1 « 2 and normal direction n & —n.

The advective term g, = (uﬁ —uy) - B;n depends on the approximation of displacements at the center of an interface u,. This
approximation can be obtained in a similar fashion, by deriving &{ from Egs. (24) and (27), but substituting it to the left-hand side
of Eq. (24). The resulting expression reads as

uy = (AT +d,T) T ATy +d Towy) + (4T, + T ((dydy (T =T)) + Ty @ (x5 —y)T +d, T, ® (x5 — y2)" )&+
+d;dy(pg By +©4A; —ppBy — OpA))n), (49)

where single-side pressure pg;, ps, and temperature @, ®, interpolations are taken from Eq. (24).

The approximation of traction vector at the interior interfaces is provided in Eqs. (45)-(47). Additionally, the interpolation of
displacements required for the evaluation of porosity in Eqs. (22) and (23) is provided in Eq. (49). The novelty of these approximations
is that they account for thermal stresses and, therefore, incorporate temperature. Note that all these approximations are yet incomplete
and require the substitution of suitable approximation of gradients explained below.

2.3.2. Approximation of fluxes at boundary interfaces

The approximations of fluxes at boundary interfaces must satisfy corresponding boundary conditions defined in Eqs. (14)—(17).
They replace the local problem, which we use for interior interfaces, and allow meaningful flux approximations to be derived at the
domain’s boundaries. We employ the single-side approximations from the left-hand side of Eqs. (24)—(27). In particular, using the
single-side approximation of normal pressure gradient §f one can derive pressure p, and Darcy’s flux q;b at the boundary interface
as [16]

B\ Byxi K
Py = <0’p+ g—) <yp + g—pl —ﬂp<d—l(y] —xb)+x1> & +ﬂppngDvK1n>, (50)
1 1 1
Byki -t
ey =—<ap+ q ) (51)
1

K

K K
<d_lyp_apd_lpl +0‘p(dl()’1 _Xb)""xl) 'ff—appagVD'Km)v
1 1 1

where x, denotes the center of boundary interface, ap, By 7, are the coefficients defining boundary conditions in Eq. (14). The same
technique can be applied to derive the temperature ®, and Fourier’s flux q? at the boundary interface as

-1
1 1

1
o\~ [ A A
d = —<a9 + ?1_11> d_iye - aed_ll®1 +ag d_i(yl =x)+4 ) &) ®3

where ay, fy, 7y are the coefficients defining boundary conditions in Eq. (15). Similarly, one can substitute the single-side approxi-
mation of displacement gradients .5'1‘ to boundary conditions in Egs. (16) and (17) to derive u, and the total traction vector at the
boundary interface as
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-1
u, = <a,1+ g—’n) (Iy,n+ T - mn"Lyy,)+
1

-1
+ <a,1 + ?Tl> (BX+ mn”(,1- L))
1

. (d_llTlu1 - <di1T] [I®(y, —x,)"| +T >.§g +pyBn+ @bA,n>, (54)
1 B\ T
£, = —aT1 <a,1 + d—1T1> (Iy,n+d—-mn"L)y,)
1 Ji B T —1
- aTl (a,I + an) (Inn"(,1- L) — a,d, T;)-
. <iT1u1 - <d—1]Tl[I®(y1 - xp)] +r1>¢g +pbBln+®bA1n>, (55)

—1 _
where L = (anI + g—”Tl <a,I + (%Tl ) is a3 x 3 matrix, / = (n”Ln) "is a scalar and the approximations of p, and ©, are defined in
1

Egs. (50) and (52), respectively, «,, 8,.7, and a,, §,,y, are the coefficients defining normal Eq. (16) and tangential Eq. (17) boundary
conditions. The approximation of g, in Eq. (23) can be achieved from Eq. (54).
Egs. (50), (52), and (54) can be rewritten for the reconstruction of gradients in the cells with boundary interfaces as

(ap(xb —-x)+ ﬂpKln) “Vp1 =7, + BpprgVD - Kin—a,p, (56)
(@o(xXy —X1) + foAm) - VO = yg — 4Oy, (57)
(o T® (x, —x)7] + 4, [T@nT]S,+

+ mn” (8,1 - g,L) (1"1 + lel &y, - x,,)T]>> [Vou =
1

=lyn+ (I-mn"L)y, + <lnnT(ﬁ,,I - ﬁ,L)diTl - a,I>u1+
1
+ (pI+mn"(8,1- f,L))(p,B| + @A )n, (58)

where the approximations of p, and ©,, required for the latter equation, are provided in Egs. (50) and (52), respectively.

2.3.3. Reconstruction of gradients

The reconstruction of pressure and temperature gradients can be performed independently. Bringing together Eqs. (33) and (34)
for interior interfaces and, whenever suitable, Eqs. (56) and (57) for boundary interfaces of a cell, we build up the independent
systems with respect to pressure and temperature gradients. Considering N interfaces of the j-th cell, we achieve the following
systems

4 — DyP 0 — 9,0
M)Vp; =Dly!, M)Ve; =D}y, (59)

where Mf and M? are N x 3 matrices of coefficients in front of the pressure and temperature gradients, respectively, at the left-hand
side of the equations and Dj.’ and Dje. are N X (N + 1) matrices of coefficients in front of the unknowns and free terms in boundary
conditions at the right-hand side of the temperature and pressure equations, respectively, while Wf and v/;’ are (N + 1) x 1 vectors of
N + 1 unknown pressures p; or free terms y, in mass boundary conditions and temperatures ©; or free terms y, in thermal boundary
conditions, respectively. The solution of Eqs. (59) can be obtained in a least-squares sense as

— MPT WP 1MPT 1P P — (MOT MO =197 0,0
ij—(Mj Mj) Mj Dj gy VG)j—(Mj Mj) Mj Dju/j. (60)

The reconstruction of displacement gradients depends on pressure and temperature gradients. Thus, we evaluate pressure and
temperature gradients in all cells first and, subsequently, substitute them into the reconstruction of displacement gradients. We
utilize the same approach for the reconstruction of displacement gradients. We assemble Eq. (42) for interior and Eq. (58) for
boundary interfaces, forming the system of N equations

M(V@u;) = Diy), (61)

independently for every j-th cell, where M/’f isa 3N x 9 matrix of coefficients in front of the displacement gradients at the left-hand side
of the equations, and D% is 3N X 5(N + 1) matrix of coefficients in front of the corresponding unknowns and free terms in boundary
conditions at the right-hand side the equations, while w‘l‘. is 5(N + 1) x 1 vectors of 5(N + 1) unknown d, or free terms y,, vy, ¥,,, ¥, in
boundary conditions. The least-squares solution of the system in Eq. (61) is

Vu, = (MJ’TTM?)’IM‘;TD?W;&

(62)

The flux approximations and interpolations depend on the tangential projections &, = {6’;,5(2,5‘; } of pressure, temperature and
displacement gradients, respectively, evaluated at the interface. For boundary interfaces, we employ a single-side approximation of
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Fig. 2. Cells that contribute to the approximation of fluxes over the interfaces of cell i. Index j denotes the nearest neighbors of cell i. Index k
denotes farther neighbors that contribute to the gradients reconstructed in cells ;.

those gradients, i.e. &, = £, .. For interior interfaces, we utilize the arithmetic mean

$atén 512
=T
A set of cells that contribute to the approximation Eq. (63) for each interface of some cell j is illustrated in Fig. 2.
It is worth mentioning that the least squares solution in Eq. (60) allows computing the gradients of unknowns locally and
independently for every cell. Note, however, that it does not strictly guarantee the local conservation property for the scheme as
least-squares solution of the system, assembled for all cell’s interfaces, can violate individual equations. In order to maintain the local
conservation, individual gradients for every interface that respects the corresponding flux balance should be employed [56,57].

(63)

2.4. Discretization in state space

The simulation of multiphase compositional thermal fluid flow requires efficient machinery for the evaluation of fluid properties
and their derivatives. Although corresponding constitutive and equilibrium relations usually remain fixed across domain, this evalua-
tion often consumes significant development and computational resources. In this paper, we employ the Operator-based Linearization
(OBL) which is designed to overcome this challenge by simplifying the treatment of state-dependent operators, providing efficient
and flexible means for Jacobian and residual assembly [59].

OBL implies the calculation of the operators dependent on a single-cell state @ = {p,z;, 0}, i.e

{0700 XigPokrahy '+ Pas N So 0y 1} = F@), (64)
at predefined grid nodes @ covering the state space. For regular grid we have
B=Px% x - x7, X6, =

ﬁ={P17---yPNp}s Zl={Zl,ls""zl,Nd}!“"Zn[={ch,ls"'vZnCN IR (66)

.

0=1{0,.....04, }.

where p,z; and © denote state-space axes coordinates, f is multilinear interpolant function used to reconstruct operator values between
supporting points. Regular grid guarantees fast evaluation of derivatives. The distribution of points along axes in Eq. (66) can be
dictated by specific model properties, e.g. for better resolution of phase envelope. By default, they are distributed uniformly for
simplicity.

We utilize the adaptive operator sampling strategy for the evaluation of operators defined in Eq. (64). For any requested state,
the method identifies the set of supporting points required for interpolation. If any of these points have not yet been evaluated,
the exact operator values are computed at those points and stored. The exact evaluation of the operators also requires the solution
of thermodynamic equilibrium problem. We employ the multiphase flash [47] for the evaluation of instantaneous thermodynamic
equilibrium between fluid phases, implemented in DARTS-flash package [60]. Once operators have been evaluated at a certain
point, they are stored in a multidimensional table and can be used for the evaluation of operators and their derivatives in adjacent
hypercubes.

2.5. Solution strategy

Solving the system of n, + 4 nonlinear discrete Eq. (19) involves significant computational challenges. We utilize Newton-Raphson
iterations to resolve nonlinearities. Linear systems appearing in these iterations can not be handled efficiently with direct solvers al-
ready for grids comprised of more than 10* cells. Therefore, the scalable iterative linear solution strategy is required for the integration
of realistic models.

In this work, we implement the two-stage block-partitioned preconditioning strategy for multiphase poromechanics [23]. The
strategy exploits the fixed-stress approximation, which has been initially developed for the sequential solution of poromechanical
systems [21], and later has been successfully utilized in the preconditioning of fully implicit systems [33].

11
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In the first stage, this preconditioning strategy considers the block-partitioned system

ool e e e
6“ 0 I Jua) Juu 6“ JM(U JMM 5“ HM

where J is the Jacobian matrix, [6w,8u]” = [6p,6z,6®,6u]T is the vector of unknown increments of pressures, compositions, temper-
atures for non-isothermal systems, and displacements, respectively, the jacobian subblock J,, denote the derivatives of residual of
equation a with respect to primary unknown b assembled across all cells, while H,, and H,, are the vectors of residuals in corresponding
mass-energy and momentum discrete balance equations, respectively. Note that here we group state unknowns éw = [6p,6z,6@]T,
corresponding mass and energy equations and treat them equally in the first stage. The Schur complement S, of block J,, in the
Jacobian is equal to

_Jpp - qu'l;ul']up Jpz - qu'];ul']uz Jp9 - quJ;ulJue
Sw = sz - Jqu;ulJup JZZ - Jqu;ul Juz J29 - Jqu;ul JuQ d (68)
_Jep - JGuJ,;ulJup JGZ - JeMJ,:ulJMZ JGB - JeuJ;ulJue

and can be approximated by S, defined as

w

[J,, = diag (1,05 Jpe) T Jpo
Sw = sz - diag(Jqu;ulJupe) Jzz Jze > (69)

_Jell - diag(JSuJ;ul'Iupe) JBZ J69

where row-sum lumping strategy is utilized , e=[1,---,1]7 is a probing vector and diag() denotes a diagonal matrix constructed
from an input vector. This lumping strategy is an algebraic generalization of fixed-stress approximation [34] recalling the probing
technique for computing Schur complements [61]. For the evaluation of J! we use a single V-cycle of algebraic multigrid (AMG)
solver that provides a good approximation to this matrix.

The rationale behind the simplifications introduced by Eq. (69), specifically the assumptions J,, ~ 0 and J4 ~ 0, is as follows.
The subblock J,, captures the influence of fluid composition on the momentum balance through their effect on density multiplier
in gravitational forces. Practically, variations in fluid composition have a little effect on the overall density of saturated rocks,
which justifies neglecting this coupling. Consequently, for consistency, J,o is also eliminated. This is explained by the treatment of
temperature as a hyperbolic variable, along with fluid compositions, in the second stage of the preconditioner. The neglect of J
maintains the consistency among hyperbolic variables offloading the second-stage preconditioner. Note, however, that the conduction-
dominated regimes may require retaining J,4 in the approximation of Schur complement.

In contrast to Finite Element Method, the multi-point stress approximation (MPSA) used in this paper does not produce a symmetric
positive-definite (SPD) matrix J,, that can compromise the efficiency of multigrid solvers. Related convergence analysis and theoretical
guarantees for non-symmetric systems are limited by the systems with dominated SPD part [62,63]. Nonetheless, multigrid solvers
reportedly demonstrate their efficiency for a wider classes of matrices beyond SPD [64,65]. More importantly, they exhibit notable
efficiency in solving non-symmetric systems arising from the discretization of elliptic-dominated operators of fluid flow and transport
problems [66] as well as coupled poroelasticity models [67] in reservoir engineering. Although a few symmetric positive-definite
MPFA schemes have been proposed [68,69], constructing a symmetric MPSA scheme presents greater challenges. Potential approaches
include weakly imposing the symmetry of the stress tensor [70] or adopting mixed displacement-stress formulation, which can be
constructed in analogy to diffusion operator [71].

In the second stage, the Constrained Pressure Residual (CPR) preconditioner [72,73] can be used to find an approximate solution
for the multiphase flow system. CPR preconditioner also performs in two stages. In the first stage, the system is divided into pressure
(elliptic) and composition-temperature (hyperbolic) subsystems with True-IMPES (implicit-pressure explicit-saturation) reduction
algorithm [74]. The pressure subsystem is solved with an AMG solver and often a single V-cycle provides an accurate enough solution.
In the second stage of the CPR preconditioner, the multiphase flow system with substituted pressure solution is subjected to the
Incomplete LU (ILU) preconditioner. The described CPR preconditioner has proven to be robust and efficient in accelerating the
modeling of a wide range of geo-energy applications [73,75]. Although, the standard CPR considers only fluid composition (or
saturation) as hyperbolic unknowns, in some cases, it can efficiently handle systems obtained in geothermal modeling by treating
temperature unknown and energy balance as a part of the hyperbolic subsystem [75]. However, dominant heat conduction regimes
can compromise its efficiency and, generally, the extended CPTR preconditioner must be employed [76,77].

The described preconditioner is summarized in Algorithm 1, where PM‘1 is a single V-cycle of BoomerAMG [78], tuned for three-
dimensional elasticity problem, ! is an in-house implementation of CPR preconditioner [75].

3. Results
3.1. Convergence study

Convergence study of the system of Eqs. (1)-(3) is complicated by a few nonlinearities. Nonlinearities do not allow to perform
a general measurement of convergence rate as it becomes case-dependent. Therefore, we have to introduce a couple of simpli-
fications linearizing thermo-poroeasticity system to perform a rigorous measurements of convergence rate. First, it is possible to
investigate convergence only for single-phase slightly compressible flow as multiphase compositional flow introduces unavoidable
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Algorithm 1 Nonlinear iteration.

1: procedure NONLINEAR_ITERATION(J, H, tol, max_iter) > Newton-Raphson
2: P!, P! « PRECONDITIONER_SETUP(J, H)

3 for j = 0... max_iter — 1 do > GMRES iterations
4 8, u « PRECONDITIONER SOLVE(J,H, 7,1, ;1) > Initial guess
5 MGS_ORTHOGONALIZATION > Modified Gram-Schmidt
6: ARNOLDI_STEP

7 éw, bu, res « UPDATE(EZ), gﬁ)

8 if res < tol then

9 Break
10: return ém, éu, res
11:
12: procedure PRECONDITIONER_SETUP(J, H)
13:  Setup P;'dJ,,) > P! - V-cycle of BoomerAMG

140 e« [L-, 17
Jpp —diag(J, P Jpe) T Jpo
15: Sw - sz - diag(JzuP;lJupe) JLL JZG
JOp - diag(JOUPu_lJupe) Jrs JOO

16:  Setup P;'(S,) > P! - CPR
17: return P!, P!
18:

19: procedure PRECONDITIONER_SOLVE(J, H, P!, 1)
20:  éw < P,'(-H,+],,P;'H,)

21: éu < P7(-H, - ],,60)
22: return dw, 6u

nonlinearities compromising the measurement of convergence rate. Specifically, the effective density, internal energy and heat con-
duction averaged over fluid and rock matrix introduce additional nonlinearities in the system. For this study, we simplify these
terms as

p
=P+ ¢ Z Suby = Prot: (70)
a
np
a- d))psUs +¢ Z Saans - htot =cO, 71)
a
p
(1 -]+ Y 48,4 - qf,, = -AVO, 72)
a

where p,,, is a constant, hy,, and the approximated ¢, are linear functions of unknowns, with constant heat capacity ¢ and heat con-
ductivity tensor A. Note that Eq. (71) neglects the thermoporoelastic effect on temperature through porosity changes with alternating
pressure and temperature.

Despite these simplifications, the heat convection in Eq. (2) maintains the system nonlinear. To overcome this nonlinearity, we
perform two convergence studies: the first one investigates the convergence of a poroelastic system without energy balance while the
second, thermoporoelastic, one considers a linear pressure distribution which allows the convergence of the system to be estimated
in the presence of heat convection. The linearity-preserving property of these numerical schemes [13,16] enables the machine-
precision approximation of linearly distributed unknowns across a domain. As a result, Darcy’s fluxes enjoy a much more accurate
approximation compared to the enthalpy multiplier defined by nonlinearly distributed temperature across the domain. This explains
the possibility of measuring the convergence rate in the second study.

Consider a cubic domain Q = [0, a]* of a side length a = 1 m with the following constant stiffness matrix C, Biot tensor B, perme-
ability tensor K, thermal dilation tensor A and heat conductivity tensor A:

[ 1.323 0.0726 0.263 0.108 —-0.08 —-0.239
0.0726 1.276 -0.318 0.383 0.108 0.501
C= 0.263 -0.318 0.943 —-0.183 0.146 0.182 [bar]
0.108 0.383 -0.183 1.517 -0.0127 -0.304 ’
—-0.08 0.108 0.146 -0.0127 1.209 —-0.326
L —0.239 0.501 0.182 —0.304 —-0.326 1.373
15 0.1 0.5 1.5 05 035
B=| 0.1 1.5 015 |, K=| 05 1.5 045 |[mD],
| 05 0.15 1.5 035 045 1.5
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Table 2
The remaining properties used in the convergence studies.
Property Value Unit
Porosity, ¢, 0.1 —
Fluid density, p; 978 kgm™
Fluid viscosity, u; 0.01 cP
Fluid compressibility, g; 0 bar™!
Total density, p,, 2482.8 kgm™
Rock compressibility, g, 1.4503768 x 107° bar™!
Gravitational acceleration, g 0.0981 md~?
Heat capacity, ¢ 1 KIm3K!
1.5 0.5 0.35 1.5 0.1 0.5
A=| 05 15 045 |[barK7', A=af 01 15 015 [[Wm'K7'],
0.35 045 1.5 0.5 0.15 1.5

where a denotes an input parameter used to measure the convergence rate for various Peclet numbers. The remaining properties are
listed in Table 2.
Let us consider the reference solution for displacements defined as

u(x,y,z,t) = [(x -05°—y- z](l +12),

o(x,y,2.0) = [(r = 0.5 = x = 2] (1 + 1),

w(x,y,2.1) = [(z=05)* —x = y|(L + 7). (73)
Additionally, let us define the following nonlinear function

1
2sin(1)
In the first convergence study, we estimate the convergence rate for the poroelastic system. For this purpose we utilize the function
from Eq. (74) as a pressure reference solution, i.e. p = f. Neither energy balance nor thermal dilation are considered in this study.
Subsequently, the reference displacement and pressure solutions are substituted to fluid mass and momentum balance Egs. (1) and
(3); and the respective right-hand sides of these equations are calculated for every cell at every time step. These values are substituted
to the numerical scheme as free terms. Besides, the reference solution defines Dirichlet boundary conditions, applied to fluid and
momentum balance equations. As a result, the numerical scheme must approximate the given reference solution.
Fig. 3 demonstrates the L2 error norms between reference p,u and numerical p,,u,, solutions against spatiotemporal resolution.
The norms for arbitrary quantity A and its discrete approximation A, are calculated as follows:

flyz,0) = sin((1 = x)(1 = y)(1 = 2)) + 0.5(1 — x)>(1 = »)*(1 — 2)(1 + ). 74)

-1
A=Ayl = <Zi> DA = Ayl (75)
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Table 3

The properties of two layers in the two-layer Terzaghi setup.
Layer hm E,GPa v b k,mD ¢, Hes P Py, bar™!
1 25 1 0.35 09 1 0.15 y 1010
2 75 5 0.0053 0.01 0.001 0.00656

where i denotes the volume of i-th cell, x; — its center. In the norm evaluation, the stress tensor is treated as a vector of six components,
written in Voigt notations. The results are obtained with a series of cubic and tetrahedral grids composed of 82, 83, 84, 8 cubes and
100, 384, 2604, 18,921 tetrahedrons, respectively. As it was shown before [13,16], displacements demonstrate a nearly quadratic
convergence rate while pressure, which suffers from the first-order approximation of time derivatives, exhibits only a super-linear
convergence rate. Additionally, Fig. 3 illustrates a linear convergence rate of Darcy’s velocities ‘12 and stress tensors o), reconstructed
at cell centers.

In the second convergence study, we estimate the convergence rate for the thermoporoelastic system. To avoid the nonlinearity
of convective fluxes in energy balance, we employ the following time-independent reference solution for pressure

p(x,y,z,0)=3-x-y—z (76)

which represents a linear function in space. Linearity-preserving property of the scheme [13] delivers machine precision to the
pressure solution, which allows the convergence with respect to other unknowns to be consistently measured. Temperature is defined
by the reference solution from Eq. (74), i.e. ® = f, while the reference solutions for displacements remain defined according to Eq.
(73). Following the same procedure as in the first study, we incorporate these reference solutions into the numerical calculations.
acllq’ ||,

AT
that in conduction-dominated region we obtain a second order of convergence for both displacements and temperature. For higher
Peclet numbers, the convergence weakens up to super-linear for displacements and linear for temperature at convective-dominated
limit. This behavior is expected as the scheme respect the balance of heat conduction fluxes in Eq. (26).

Note that in reservoir conditions, the Peclet number can reach values of ~ 10° magnitude near wells. According to Fig. 4, this
can significantly hampers the ability to achieve a quadratic convergence rate and, in turn, accurate enough, converged solutions on
moderate meshes. This underscores the necessity of highly resolved meshes and efficient preconditioning techniques for handling
associated large linear systems to ensure obtaining converged results.

Fig. 4 presents the measured convergence rate of displacements and temperature against Peclet number Pe = . It shows

3.2. Uniaxial poroelastic consolidation (Terzaghi’s problem)

We further validate the numerical scheme against the analytical solution for the unidimensional consolidation problem, also
known as Terzaghi’s problem. As the analytical solution in the presence of the two heterogeneous layers in Terzaghi’s problem
remains feasible [31,79], we consider this more general setup. The poroelastic domain shown in Fig. 5 of vertical extent 4 = 100 m is
comprised by two layers of distinct properties with #; = 25m, h, = 75 m respectively. The first layer is adjacent to the right boundary
which is subjected to constant normal load F = 10 MPa and constant initial pressure p, = OPa. All other sides of the domain are
impermeable to fluid and subjected to the roller boundary condition (normal displacement and tangential traction are equal to zero).
The domain’s permeabilities K = kI and Biot’s tensors B = bI are defined by their scalar counterparts k and b, respectively, while the
stiffness tensors are determined by Young’s moduli E and Poisson’s ratios v. The properties of porous matrix and fluid including initial
porosities ¢y, fluid viscosity y; and fluid compressibility g; are listed in Table 3.

The comparison of results is presented in Fig. 6. We use a uniform mesh comprised of 40 cells, so that the top left subfigure
(Fig. 6(a)) demonstrates pressure over time evaluated at x = 1.25m and the bottom left subfigure (Fig. 6(c)) shows the dynamics
of horizontal displacement u, taken at x = 98.75m. The top and bottom right subfigures (Fig. 6(b), Fig. 6(d)) present pressure and

15



Author Journal of Computational Physics 538 (2025) 114152

(@) (@) O (@) ,
F
™ h, hy ‘_
o —
@ o k=
@
-
:)Al N O; Po

Q Q (@) Q
. ., >

Fig. 5. Two-layer Terzaghi setup.

10

pressure, MPa

T T T T T T

(a)

0.00

—— analytics
o numerical solution

|
o
o
o

—0.10

-0.15

t=1.00e-03 days

-0.20" i
—— t=1.17e+00 days |

—-0.25
—— t=2.30e+01 days

—0.30

T ™ T T T

103 102 10! 10° 10' 102 O 20 40 60 80 100
t, days X, m
(c) (d)

Fig. 6. Comparison of the analytical and numerical solutions for the two-layer Terzaghi’s problem. In the left column, pressure (a) and displacement
(c) at the center of the most left cell are shown over time. In the right column, pressure (b) and displacement (d) profiles over the whole domain
are depicted at three moments of time.

horizontal displacement, m

horizontal displacement profiles over the domain respectively. Numerical results remain in good accordance with the analytical
solution. For the simplicity of analytical solution, we assume the Skempton’s coefficient is equal in both layers. As a result, the
compression of the poroelastic domain causes an instant pressure build-up, uniform throughout the whole domain. The thin boundary
layer originates at the right side of the domain subjected to the constant initial pressure. Numerically it produces spurious oscillations
that disappear over time. They can be observed in Fig. 6(b). These oscillations indicate the inf-sup instability of the scheme [24,25],
which can be overcome by introducing regularization [80], by choosing the essentially inf-sup stable discretization spaces [30] or by
using flux vector splitting [31]. The analysis of the latter approach applied to the current scheme is conducted in [32].

We conducted the convergence study for homogeneous domain covered by uniform rectangular mesh. Fig. 7 demonstrates a decay
of discrepancy between analytical and numerical solutions in terms of L2 norm defined in Eq. (75) and evaluated at T = 10d. At the
finest resolution of 1500 cells and 1500 time steps, the solutions evaluated at r = 10 d demonstrate the maximum relative differences
0.009 % and 0.01 % for pressure and displacement fields, respectively. The linear convergence rate observed in Fig. 7 is lower than
reported in Section 3.1. This can be explained by perturbations introduced by inf-sup instability at the beginning of simulation and
unavoidable round-off errors.
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3.3. Biaxial poroelastic consolidation (Mandel’s problem)

Consider the same domain as in the previous section with homogeneous properties and different boundary conditions illustrated
in Fig. 8. Now roller boundary conditions are applied only to the left and bottom boundaries of the domain. The right boundary is
free of both normal and tangential forces while a normal load is applied from the top. Note that this load is applied through the stiff
bulk in a way that produces uniform vertical displacement. Therefore, it could be more convenient to specify time-dependent normal
displacement at the top estimated from analytical expressions. No-flow conditions are specified for all boundaries except for the right
one subjected to the Dirichlet condition p, = 0Pa. This setup is the so-called Mandel’s problem which is often used as an example of
non-monotonic pressure behavior following undrained loading.

A porous homogeneous domain is characterized by Young’s modulus E = 1 GPa, Poisson’s ratio v = 0.25, a diagonal permeability
tensor K = kI, k = 1 mD, saturated with a single-phase compressible fluid with compressibility f = 107 bar™!, viscosity p; = 1cP,
and with a Biot modulus M = 103 bar~! and a diagonal Biot tensor B = bI, b = 0.9.

For the numerical solution, we use 30 x 30 square mesh. Fig. 9 depicts a comparison between the numerical solution and analytics
[31,79]. As in the previous section, the top left subfigure (Fig. 9(a)) shows the pressure dynamics evaluated at x = 1.66 m, the bottom
left subfigure (Fig. 9(c)) shows the dynamics of horizontal displacement u, at x = 98.33 m, the right top (Fig. 9(b)) and right bottom
(Fig. 9(d)) subfigures illustrate the profiles of pressure and vertical displacement correspondingly over horizontal centerline at three
moments of time. The numerical solution matches analytics quite well. As in the previous example, spurious oscillations arise around
the right side of the domain at the very beginning of simulation. They can be seen in the top right subfigure (Fig. 9(b)).

We conducted the convergence study for homogeneous domain covered by uniform rectangular mesh. Fig. 10 demonstrates a
decay of discrepancy between analytical and numerical solutions in terms of L2 norm defined in Eq. (75) and evaluated at 7' = 10d.
At the finest resolution of 1500 cells per x-axis and 1500 time steps, the solutions evaluated at 7 = 10d demonstrate the maximum
relative differences 0.007 % and 0.002 % for pressure and displacement fields, respectively. The linear convergence rate observed in
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Fig. 10 is lower than reported in Section 3.1. This can be explained by perturbations introduced by inf-sup instability at the beginning
of simulation and unavoidable round-off errors.

3.4. Uniaxial thermoporoelastic consolidation

The semi-analytical solution for a coupled problem of fluid mass, energy, and momentum balance in the uniaxial consolidation test
[82] can be employed to benchmark the developed scheme. Thus, we consider the vertical column of 7 m height subjected to instant
vertical loading with F = 1Pa at the top boundary [81]. The constant pressure p = 0 Pa and temperature ® = 50 °C is maintained at
the top boundary while the initial pressure and temperature are equal to p, = 0Pa and ©, = 0 °C, respectively. All other sides of the
domain are impermeable to fluid and heat and subjected to the roller boundary condition. The domain is shown in Fig. 11.
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method and DARTS.

Furthermore, the stiffness tensor is defined by Young’s modulus E = 6kPa and Poisson’s ratio v = 0.4. Isotropic permeability
K = kI, Biot’s B = b, thermal dilation A = al and total heat conduction A = AI tensors are defined by the corresponding scalar values
k=4x10"7m2, b=1.0,a=9x10"7°C~! and 4 = 836Jm~! s~!° C~!, respectively. The total volumetric heat capacity is equal to ¢ =
167.2kJm™3° C~!. Fluid is maintained incompressible with fluid viscosity u = 1cP.

Fig. 12 illustrates the comparison of pressure, temperature, and vertical displacement to the analytical solution. Pressure, temper-
ature, and vertical displacement evaluated at three points in space are plotted against time. The numerical solution obtained with
the proposed scheme (DARTS) demonstrates a good match to the semi-analytical solution (Analytics).
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of reservoir. Young’s modulus is calculated as a linear function of porosity.

Table 4

The description of fluid physics used in the study.
Property Single-phase ~~ Two-phase
Phase densities, kgm™ 666.85 1014,50
Phase compressibilities, bar™! 1.45% 1073 1075, 5% 1073
Phase viscosities, cP 1.0 0.3,0.03

2

Phase relative permeabilities, - ( S]":OO'; )
Phase heat capacities, kJkg='°C~! - 4.18,0.035
Initial phase saturation 1 0.67,0.33

An instant loading causes an instant compression followed by further consolidation due to fluid discharge as in the uniaxial
poroelastic consolidation test. However, heat conduction propagates energy from the top boundary, which is maintained under high
temperature © = 50 °C, throughout the whole domain. Temperature increase causes thermal expansion, competing with consolidation.

3.5. Thermoporoelastic extension of SPE10 model

This field-scale test case utilizes a reservoir model from the 10th SPE Comparative Solution Project (SPE10). Following [19], we
extend this model with mechanical properties to perform a coupled compositional modeling in heterogeneous thermo-poroelastic
medium.

The original project’s model is covered with a regular Cartesian 60 x 220 x 85 grid that spans two formations: the top 50 layers
have a channelized permeability distribution while the bottom 35 layers represent a permeability field that has a Gaussian spatial
covariance. Mechanical properties are defined by heterogeneous Young’s modulus linearly dependent on porosity, uniform Pois-
son’s ratio v = 0.2, Biot’s coefficient b = 1, thermal expansion coefficient « = 9 - 10~7°C~!. The reservoir has a uniform rock density
p, = 2650kgm™3, rock heat capacity ¢, = 2.2kJkg™'°C~! and effective heat conductivity i, = 72.23kJm~'d=!°C~!. Fig. 13 shows the
corresponding Young’s modulus E and x-axis permeability k, maps. For the scalability study, we coarsened the original model using a
volume-averaging approach [19]. The domain is subjected to impermeable boundary conditions and constant temperature defined by
the temperature at top O, = 26.85°C and bottom ©y,,; = 76.85°C of domain distributed between according to a constant geothermal
gradient. Furthermore, we apply roller boundary conditions at all domain’s sides except the top boundary where we apply a uniform
normal load f? = 90 MPa.

In this study, we examine three fluid physics: single-phase, two-phase two-component and thermal two-phase two-component.
Table 4 list parameters which describe single-phase and thermal two-phase fluid physics. For the isothermal two-phase fluid physics,
thermal properties should be omitted.

We model the thermo-hydro-mechanical-compositional reservoir response perturbed by the doublet of injection and production
wells placed over the longest centerline (along the y-axis) as shown in the top-left of Fig. 13. The vertical wells perforate the whole
thickness of the reservoir. Pressure controls p;,; = pyax + 50bar and pjoq = Pmin — 50 bar are applied to the wells, respectively, where
Pmax and p.,;, are maximal and minimal unperturbed pressures over perforated cells. In all variants of fluid physics, single-phase fluid
is pumped into the reservoir through the injection well. In the case of two-phase thermal fluid, specifically, pure water of temperature
0, = 27.85°C is injected. The simulation is performed up to ¢#,,,, =20d.

Figs. 14 and 15 demonstrate solution profiles along the longest centerline of the reservoir, indicated by a white line in the top-
left of Fig. 13. This centerline passes through the top of the reservoir and is aligned with the y-axis. Fig. 14 presents the vertical
displacement and pressure obtained for single-phase fluid while Fig. 15 additionally shows water saturation and water saturation

inj
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Fig. 17. Cummulative runtime of the block-partitioned preconditioner to achieve convergent solutions in 20 time steps. Timings of setup and solve
calls are provided.

with temperature obtained for two-phase and thermal two-phase fluids, respectively. The results for three different grid resolutions
and at three time steps t = 0, 1,20d are shown in both figures.

The vertical displacement profiles for all three fluid types show significant differences between grid resolutions. The results
calculated with the coarsest resolution (32k) overestimate vertical displacement compared to those calculated with finer grids. This
applies to both the vertical displacement at the initial unperturbed condition (+ = 0d) and the vertical displacement due to well
operation (¢ = 20d). The major contribution to this difference in vertical displacement can be attributed to the varying stiffness
heterogeneities specified for different grid resolutions. Additionally, this difference can be partly explained by the difference in
pressures obtained for different grid resolutions. Indeed, the pressure spike around the injection well is localized in a narrower region
on the finer grids compared to the coarser grid. Besides, the narrower pressure spike around the injection well for finer grids explains
the shorter propagation of water saturation and temperature fronts.
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Efficient modeling of fully implicitly coupled thermo-hydro-mechanical-compositional processes in realistic settings requires a
scalable computational framework. Fig. 16 presents the results of the scalability study of the implemented block-partitioned precon-
ditioner. It shows the number of linear and nonlinear iterations needed to obtain convergent solutions in 20 time steps for various grid
resolutions. Moreover, the average numbers of linear iterations per nonlinear iteration are also reported. The model heterogeneities
are upscaled from the original SPE10 dataset provided at the finest grid resolution. The results indicate a linear increase in the number
of linear iterations with increasing grid size.

For the same model runs, Fig. 17 presents the cummulative runtime of the block-partitioned preconditioner. Additionally, the
runtime of the setup and solve calls are specified. The setup call performs the approximation of Schur complement S, including
the setup of AMG preconditioners for pressure J,, and displacement J,,, subsystems every Newton iteration. Note, that under linear
thermo-poroelastic assumption and the boundary conditions of the same type, the latter is not needed as J,, remains constant over
iterations and time steps. The solve call performs the solution of flow and, subsequently, displacement subsystems. Although, the setup
includes redundant setup of AMG preconditioner for displacement subsystem, it constitutes a small part (<12 %) of preconditioner’s
runtime. Most of the runtime is taken by solve call, specifically solve of displacement subsystem. The increase in the preconditioner’s
runtime against grid size is almost linear. Additionally, Fig. 18 present the average runtimes of setup and solve calls per nonlinear
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and linear iteration, respectively. Despite different block sizes, the results obtained for different fluids follow almost the same straight
line.

Heat conduction terms introduce additional elliptic terms that are not treated efficiently at the CPR stage of the block-partitioned
preconditioner. Fig. 19 demonstrates the sensitivity of solving performance to the magnitude of heat conduction term. It shows the
number of linear and nonlinear iterations needed to obtain convergent solutions in 20 time steps for multiple values of effective heat
conduction coefficient. The figure shows an insignificant increase in linear iterations with higher heat conduction coefficient, for
the values of heat conduction between 10~*4, and 102 4. This almost flat behavior might be explained by an already high number
of iterations spent by the block-partitioned preconditioner. In the case of extremely high heat conduction, we observe a significant
increase in the number of linear iterations, as anticipated.

4. Conclusion

In this paper, we have introduced a novel cell-centered collocated fully implicit scheme of the Finite Volume Method (FVM) for
the coupled modeling of thermo-hydro-mechanical-compositional processes in thermoporoelastic rocks. The scheme benefits from a
vectorized form of mass, energy and momentum fluxes using multi-point approximations, that simplifies multiphysical simulation
within the FVM framework. Furthermore, the use of collocated FVM for momentum balance enables the natural integration of thermal
composition flow with geomechanics within a single computational grid and engine. Additionally, we implemented a block-partitioned
preconditioning strategy that alleviates the costs of fully implicit coupling and enables efficient modeling of large realistic setups.

The proposed framework has been validated using a simplified version of the physics which allows us to use an numerical conver-
gence benchmark. We show that in the poroelastic case, the displacements exhibit a nearly quadratic convergence rate while pressure
demonstrates a super-linear convergence. In the thermo-poroelastic case, the convergence rate changes from quadratic to lower
orders depending on the thermal Peclet number. We also demonstrate how the performance of the full thermo-hydro-mechanical-
compositional model depends on the grid resolution using the mechanical extension of the SPE10 model.

Future work would include the development of the robust inf-sup stable extension of the scheme, better tuning of the precondi-
tioner, offloading assembly and solvers to GPU to further minimize computational costs of modeling, and the support of faults with
frictional contacts to enable modeling of fault reactivation.

CRediT authorship contribution statement

Aleksei Novikov: Writing — original draft, Software, Methodology, Conceptualization; Ilshat Saifullin: Software; Hadi Hajibeygi:
Writing - review & editing, Methodology; Denis Voskov: Writing — review & editing, Supervision, Methodology, Funding acquisition.

Data availability
Data will be made available on request.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

Authors would like to thank to Jan Dirk Jansen and Anne Pluymakers for their support working under this paper. Part of the
work presented in this paper has been performed in the Science4Steer project (DEEP.NL.2018.046) financed by the Dutch Research
Council (NWO). Additional funding comes from NWO (grant number 18816) and TotalEnergies (FC-MAELSTROM Project).

References

[1] M.D. Zoback, Reservoir Geomechanics, Cambridge University Press, 2007. https://doi.org/10.1017/CB09780511586477

[2] L. Buijze, Y. Guo, A.R. Niemeijer, S. Ma, C.J. Spiers, Nucleation of stick-slip instability within a large-scale experimental fault: effects of stress heterogeneities
due to loading and gouge layer compaction, J. Geophys. Res. 125 (8) (2020), €2019JB018429. https://doi.org/10.1029/2019JB018429

[3] A. Pluymakers, A.G. Muntendam-Bos, A. Niemeijer, Induced seismicity: a global phenomenon with special relevance to the Dutch subsurface, Neth. J. Geosci.
102 (2023). https://doi.org/10.1017/njg.2023.2

[4] W.L. Ellsworth, D. Giardini, J. Townend, S. Ge, T. Shimamoto, Triggering of the Pohang, Korea, earthquake (Mw 5.5) by enhanced geothermal system stimulation,
Seismol. Res. Lett. 90 (5) (2019) 1844-1858. https://doi.org/10.1785/0220190102

[5] R. Schultz, A. Muntendam-Bos, W. Zhou, G.C. Beroza, W.L. Ellsworth, Induced seismicity red-light thresholds for enhanced geothermal prospects in the Nether-
lands, Geothermics 106s (2022) 102580. https://doi.org/10.1016/j.geothermics.2022.102580

[6] J. Rohmer, A. Pluymakers, F. Renard, Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: weak acid, weak effects?, Earth-Science
Rev. 157 (2016) 86-110. https://doi.org/10.1016/j.earscirev.2016.03.009

[7] Y. Cheng, W. Liu, T. Xu, Y. Zhang, X. Zhang, Y. Xing, B. Feng, Y. Xia, Seismicity induced by geological CO2 storage: a review, Earth-Science Rev. 239 (2023).
https://doi.org/10.1016/j.earscirev.2023.104369

[8] R. Deb, P. Jenny, Finite volume-based modeling of flow-induced shear failure along fracture manifolds, Int. J. Numer. Anal. Methods Geomech. 41 (18) (2017)
1922-1942. https://doi.org/10.1002/nag.2707

24


https://doi.org/10.1017/CBO9780511586477
https://doi.org/10.1017/CBO9780511586477
https://doi.org/10.1029/2019JB018429
https://doi.org/10.1029/2019JB018429
https://doi.org/10.1017/njg.2023.2
https://doi.org/10.1017/njg.2023.2
https://doi.org/10.1785/0220190102
https://doi.org/10.1785/0220190102
https://doi.org/10.1016/j.geothermics.2022.102580
https://doi.org/10.1016/j.geothermics.2022.102580
https://doi.org/10.1016/j.earscirev.2016.03.009
https://doi.org/10.1016/j.earscirev.2016.03.009
https://doi.org/10.1016/j.earscirev.2023.104369
https://doi.org/10.1016/j.earscirev.2023.104369
https://doi.org/10.1002/nag.2707
https://doi.org/10.1002/nag.2707

Author Journal of Computational Physics 538 (2025) 114152

[91
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]
[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
371
[38]
[39]
[40]
[41]
[42]

[43]
[44]

[45]
[46]
[471
[48]

[49]

1. Sokolova, M.G. Bastisya, H. Hajibeygi, Multiscale finite volume method for finite-volume-based simulation of poroelasticity, J. Comput. Phys. 379 (2019)
309-324. https://doi.org/10.1016/j.jcp.2018.11.039

S. Shokrollahzadeh Behbahani, H. Hajibeygi, D.V. Voskov, J.D. Jansen, Smoothed embedded finite-volume method (sEFVM) for modeling contact mechanics in
deformable faulted and fractured porous media, J. Comput. Phys. (2022). https://doi.org/{10.1016/j.jcp.2022.111143}.

J.M. Nordbotten, Cell-centered finite volume discretizations for deformable porous media, Int. J. Numer. Methods Eng. 100 (6) (2014) 399-418. https://doi.
org/10.1002/nme.4734

K.M. Terekhov, H.A. Tchelepi, Cell-centered finite-volume method for elastic deformation of heterogeneous media with full-tensor properties, J. Comput. Appl.
Math. 364 (2020), 112331. https://doi.org/10.1016/j.cam.2019.06.047

A. Novikov, D. Voskov, M. Khait, H. Hajibeygi, J.D. Jansen, A scalable collocated finite volume scheme for simulation of induced fault slip, J. Comput. Phys.
469 (2022). https://doi.org/10.1016/j.jcp.2022.111598

I. Demiredzic, D. Martinovic, A. Ivankovic, Numerical simulation of thermal deformation in welded workpiece; [Numericka simulacija termodeformacionih
procesa u zavarenom komadu], Zavarivanje 31 (5-6) (1988) 209-219. https://www.scopus.com/inward/record.uri?eid = 2-s2.0-0024180048&partnerID = 40&
md5 =49392edde55d2780bd8e4b8a350fbafb.

E. Keilegavlen, J.M. Nordbotten, Finite volume methods for elasticity with weak symmetry, Int. J. Numer. Methods Eng. 112 (8) (2017) 939-962. https:
//doi.org/10.1002/nme.5538

K.M. Terekhov, Cell-centered finite-volume method for heterogeneous anisotropic poromechanics problem, J. Comput. Appl. Math. 365 (2020), 112357. https:
//doi.org/10.1016/j.cam.2019.112357

K.M. Terekhov, Collocated inite-volume method for the incompressible navier-stokes problem, J. Numer. Math. 29 (1) (2021) 63-79. https://doi.org/10.1515/
jnma-2020-0008

R. Deb, P. Jenny, Modeling of shear failure in fractured reservoirs with a porous matrix, Comput. Geosci. 21 (5-6) (2017) 1119-1134. https://doi.org/10.1007/
$10596-017-9680-x

T.T. Garipov, P. Tomin, R. Rin, D.V. Voskov, H.A. Tchelepi, Unified thermo-compositional-mechanical framework for reservoir simulation, Comput. Geosci. 22
(4) (2018) 1039-1057. https://doi.org/10.1007/s10596-018-9737-5

A. Settari, F.M. Mourits, A coupled reservoir and geomechanical simulation system, SPE J. 3 (3) (1998) 219-226. https://doi.org/10.2118/50939-PA

J. Kim, H.A. Tchelepi, R. Juanes, Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput.
Methods Appl. Mech. Eng. 200 (13-16) (2011) 1591-1606. https://doi.org/10.1016/j.cma.2010.12.022

T.T. Garipov, M. Karimi-Fard, H.A. Tchelepi, Discrete fracture model for coupled flow and geomechanics, Comput. Geosci. 20 (1) (2016) 149-160. https:
//doi.org/10.1007/s10596-015-9554-z

J.A. White, N. Castelletto, S. Klevtsov, Q.M. Bui, D. Osei-Kuffuor, H.A. Tchelepi, A two-stage preconditioner for multiphase poromechanics in reservoir simulation,
Comput. Methods Appl. Mech. Eng. 357 (2019). https://doi.org/10.1016/j.cma.2019.112575

O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach (1969).

M.F. Franco Brezzi, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, Springer, first ed., 1991.

M.A. Murad, A.F.D. Loula, On stability and convergence of finite element approximations of Biot’s consolidation problem, Int. J. Numer. Methods Eng. 37 (4)
(1994) 645-667. https://doi.org/10.1002/nme.1620370407

F.J. Gaspar, F.J. Lisbona, C.W. Oosterlee, A stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methods, Comput.
Vis. Sci. 11 (2) (2008) 67-76. https://doi.org/10.1007/s00791-007-0061-1

M. Ferronato, N. Castelletto, G. Gambolati, A fully coupled 3-D mixed finite element model of biot consolidation, J. Comput. Phys. 229 (12) (2010) 4813-4830.
https://doi.org/10.1016/j.jcp.2010.03.018

M. Preisig, J.H. Prévost, Stabilization procedures in coupled poromechanics problems: a critical assessment, Int. J. Numer. Anal. Methods Geomech. 35 (11)
(2011) 1207-1225. https://doi.org/10.1002/nag.951

J.M. Nordbotten, Stable cell-centered finite volume discretization for biot equations, SIAM J. Numer. Anal. 54 (2) (2016) 942-968. https://doi.org/10.1137/
15M1014280

K.M. Terekhov, Y.V. Vassilevski, Finite volume method for coupled subsurface flow problems, II: poroelasticity, J. Comput. Phys. 462 (2022). https://doi.org/
10.1016/j.jcp.2022.111225

A. Novikov, A Finite Volume Framework for Accurate Modeling of Fault Reactivation in Poroelastic Rocks, Dissertation (tu delft), Delft University of Technology,
2024. https://doi.org/10.4233/uuid:1f4731b3-cbdd-4317-98f7-8520b7446684

J.A. White, N. Castelletto, H.A. Tchelepi, Block-partitioned solvers for coupled poromechanics: a unified framework, Comput. Methods Appl. Mech. Eng. 303
(2016) 55-74. https://doi.org/10.1016/j.cma.2016.01.008

S. Klevtsov, N. Castelletto, J.A. White, H.A. Tchelepi, Block-preconditioned krylov methods for coupled multiphase reservoir flow and geomechanics, 15th
European Conference on the Mathematics of Oil Recovery, ECMOR 2016 (2016). https://doi.org/10.3997/2214-4609.201601900

M. Khait, D.V. Voskov, Operator-based linearization for general purpose reservoir simulation, J. Pet. Sci. Eng. 157 (2017) 990-998. https://doi.org/10.1016/j.
petrol.2017.08.009

D. Voskov, L. Saifullin, A. Novikov, M. Wapperom, L. Orozco, G.S. Seabra, Y. Chen, M. Khait, X. Lyu, X. Tian, S. de Hoop, A. Palha, Open delft advanced research
terra simulator (open-DARTS), J. Open Source Softw. 9 (99) (2024) 6737. https://doi.org/10.21105/j0ss.06737

M. Khait, D. Voskov, Adaptive parameterization for solving of thermal/compositional nonlinear flow and transport with buoyancy, SPE J. 23 (2) (2018) 522-534.
https://doi.org/10.2118/182685-pa

X. Lyu, M. Khait, D. Voskov, Operator-based linearization approach for modeling of multiphase flow with buoyancy and capillarity, SPE J. 26 (4) (2021)
1858-1878. https://doi.org/10.2118/205378-PA

M. Khait, D. Voskov, Operator-based linearization for efficient modeling of geothermal processes, Geothermics 74 (2018) 7-18. https://doi.org/10.1016/].
geothermics.2018.01.012

Y. Wang, D. Voskov, M. Khait, D. Bruhn, An efficient numerical simulator for geothermal simulation: a benchmark study, Appl. Energy 264 (2020). https:
//doi.org/10.1016/j.apenergy.2020.114693

K. Kala, D. Voskov, Element balance formulation in reactive compositional flow and transport with parameterization technique, Comput. Geosci. 24 (2) (2020)
609-624. https://doi.org/10.1007/510596-019-9828-y

X. Lyu, D. Voskov, W.R. Rossen, Numerical investigations of foam-assisted CO2 storage in saline aquifers, Int. J. Greenh. Gas Control 108 (2021), 103314.
https://doi.org/10.1016/j.ijggc.2021.103314

0. Coussy, Thermoporoelasticity, John Wiley & Sons, Ltd, 2003, pp. 71-112. https://doi.org/10.1002/0470092718.ch4

Y. Zhao, R.I. Borja, A continuum framework for coupled solid deformation-fluid flow through anisotropic elastoplastic porous media, Comput. Methods Appl.
Mech. Eng. 369 (2020), 113225. https://doi.org/10.1016/j.cma.2020.113225

M. Wapperom, X. Lyu, D.V. Nichita, D. Voskov, A unified thermal-reactive compositional simulation framework for modeling CO, sequestration at various scales,
Society of Petroleum Engineers - SPE Reservoir Simulation Conference, RSC 2023 (2023). https://doi.org/10.2118/212182-MS

A.H.D. Cheng, Material coefficients of anisotropic poroelasticity, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 34 (2) (1997) 199-205. https://doi.org/10.1016/
50148-9062(96)00055-1

M.L. Michelsen, The isothermal flash problem. Part II. Phase-split calculation, Fluid Phase Equilib. 9 (1) (1982) 21-40. https://doi.org/10.1016/0378-3812(82)
85002-4

J.M. Nordbotten, W.M. Boon, O. Duran, E. Keilegavlen, Mixed finite element and TPSA finite volume methods for linearized elasticity and cosserat materials,
19th European Conference on the Mathematics of Geological Reservoirs, ECMOR 2024 2024 (1) (2024) 1-12. https://doi.org/10.3997/2214-4609.202437014
1. Aavatsmark, T. Barkve, O. Boe, T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media, J. Comput. Phys.
127 (1) (1996) 2-14. https://doi.org/10.1006/jcph.1996.0154

25


https://doi.org/10.1016/j.jcp.2018.11.039
https://doi.org/10.1016/j.jcp.2018.11.039
https://doi.org/10.1016/j.jcp.2022.111143
https://doi.org/10.1016/j.jcp.2022.111143
https://doi.org/10.1002/nme.4734
https://doi.org/10.1002/nme.4734
https://doi.org/10.1002/nme.4734
https://doi.org/10.1002/nme.4734
https://doi.org/10.1016/j.cam.2019.06.047
https://doi.org/10.1016/j.cam.2019.06.047
https://doi.org/10.1016/j.jcp.2022.111598
https://doi.org/10.1016/j.jcp.2022.111598
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0014
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0014
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024180048&partnerID=40&md5=49392edde55d2780bd8e4b8a350fbafb
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0014
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024180048&partnerID=40&md5=49392edde55d2780bd8e4b8a350fbafb
https://doi.org/10.1002/nme.5538
https://doi.org/10.1002/nme.5538
https://doi.org/10.1002/nme.5538
https://doi.org/10.1002/nme.5538
https://doi.org/10.1016/j.cam.2019.112357
https://doi.org/10.1016/j.cam.2019.112357
https://doi.org/10.1016/j.cam.2019.112357
https://doi.org/10.1016/j.cam.2019.112357
https://doi.org/10.1515/jnma-2020-0008
https://doi.org/10.1515/jnma-2020-0008
https://doi.org/10.1515/jnma-2020-0008
https://doi.org/10.1515/jnma-2020-0008
https://doi.org/10.1007/s10596-017-9680-x
https://doi.org/10.1007/s10596-017-9680-x
https://doi.org/10.1007/s10596-017-9680-x
https://doi.org/10.1007/s10596-017-9680-x
https://doi.org/10.1007/s10596-018-9737-5
https://doi.org/10.1007/s10596-018-9737-5
https://doi.org/10.2118/50939-PA
https://doi.org/10.2118/50939-PA
https://doi.org/10.1016/j.cma.2010.12.022
https://doi.org/10.1016/j.cma.2010.12.022
https://doi.org/10.1007/s10596-015-9554-z
https://doi.org/10.1007/s10596-015-9554-z
https://doi.org/10.1007/s10596-015-9554-z
https://doi.org/10.1007/s10596-015-9554-z
https://doi.org/10.1016/j.cma.2019.112575
https://doi.org/10.1016/j.cma.2019.112575
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0024
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0025
https://doi.org/10.1002/nme.1620370407
https://doi.org/10.1002/nme.1620370407
https://doi.org/10.1007/s00791-007-0061-1
https://doi.org/10.1007/s00791-007-0061-1
https://doi.org/10.1016/j.jcp.2010.03.018
https://doi.org/10.1016/j.jcp.2010.03.018
https://doi.org/10.1002/nag.951
https://doi.org/10.1002/nag.951
https://doi.org/10.1137/15M1014280
https://doi.org/10.1137/15M1014280
https://doi.org/10.1137/15M1014280
https://doi.org/10.1137/15M1014280
https://doi.org/10.1016/j.jcp.2022.111225
https://doi.org/10.1016/j.jcp.2022.111225
https://doi.org/10.1016/j.jcp.2022.111225
https://doi.org/10.1016/j.jcp.2022.111225
https://doi.org/10.4233/uuid:1f4731b3-cbdd-4317-98f7-8520b7446684
https://doi.org/10.4233/uuid:1f4731b3-cbdd-4317-98f7-8520b7446684
https://doi.org/10.1016/j.cma.2016.01.008
https://doi.org/10.1016/j.cma.2016.01.008
https://doi.org/10.3997/2214-4609.201601900
https://doi.org/10.3997/2214-4609.201601900
https://doi.org/10.1016/j.petrol.2017.08.009
https://doi.org/10.1016/j.petrol.2017.08.009
https://doi.org/10.1016/j.petrol.2017.08.009
https://doi.org/10.1016/j.petrol.2017.08.009
https://doi.org/10.21105/joss.06737
https://doi.org/10.21105/joss.06737
https://doi.org/10.2118/182685-pa
https://doi.org/10.2118/182685-pa
https://doi.org/10.2118/205378-PA
https://doi.org/10.2118/205378-PA
https://doi.org/10.1016/j.geothermics.2018.01.012
https://doi.org/10.1016/j.geothermics.2018.01.012
https://doi.org/10.1016/j.geothermics.2018.01.012
https://doi.org/10.1016/j.geothermics.2018.01.012
https://doi.org/10.1016/j.apenergy.2020.114693
https://doi.org/10.1016/j.apenergy.2020.114693
https://doi.org/10.1016/j.apenergy.2020.114693
https://doi.org/10.1016/j.apenergy.2020.114693
https://doi.org/10.1007/s10596-019-9828-y
https://doi.org/10.1007/s10596-019-9828-y
https://doi.org/10.1016/j.ijggc.2021.103314
https://doi.org/10.1016/j.ijggc.2021.103314
https://doi.org/10.1002/0470092718.ch4
https://doi.org/10.1002/0470092718.ch4
https://doi.org/10.1016/j.cma.2020.113225
https://doi.org/10.1016/j.cma.2020.113225
https://doi.org/10.2118/212182-MS
https://doi.org/10.2118/212182-MS
https://doi.org/10.1016/S0148-9062(96)00055-1
https://doi.org/10.1016/S0148-9062(96)00055-1
https://doi.org/10.1016/S0148-9062(96)00055-1
https://doi.org/10.1016/S0148-9062(96)00055-1
https://doi.org/10.1016/0378-3812(82)85002-4
https://doi.org/10.1016/0378-3812(82)85002-4
https://doi.org/10.1016/0378-3812(82)85002-4
https://doi.org/10.1016/0378-3812(82)85002-4
https://doi.org/10.3997/2214-4609.202437014
https://doi.org/10.3997/2214-4609.202437014
https://doi.org/10.1006/jcph.1996.0154
https://doi.org/10.1006/jcph.1996.0154

Author Journal of Computational Physics 538 (2025) 114152

[50]
[51]
[52]
[531
[54]

[55]

[56]
[571
[58]
[59]

[60]
[61]

[62]
[63]

[64]
[65]

[66]
[67]
[68]
[69]
[70]
[71]
[72]
[731]

[74]
[75]

[76]
[77]
[78]

[79]
[80]

[81]

[82]

M.G. Edwards, C.F. Rogers, Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci. 2 (1998) 259-290.
https://doi.org/10.1023/A:1011510505406

E. Keilegavlen, I. Aavatsmark, Monotonicity for control volume methods on unstructured grids, ECMOR 2008 - 11th European Conference on the Mathematics
of Oil Recovery (2008). https://doi.org/10.3997/2214-4609.20146378

1. Stefansson, I. Berre, E. Keilegavlen, Finite volume discretisation of fracture deformation in thermo-poroelastic media, Springer Proc. Math. Stat. 323 (2020)
519-526. https://doi.org/10.1007/978-3-030-43651-348

1. Stefansson, I. Berre, E. Keilegavlen, A fully coupled numerical model of thermo-hydro-mechanical processes and fracture contact mechanics in porous media,
Comput. Methods Appl. Mech. Eng. 386 (2021) 114122. https://doi.org/10.1016/j.cma.2021.114122

M. Schneider, D. Glaser, B. Flemisch, R. Helmig, Comparison of finite-volume schemes for diffusion problems, Oil as Sci. Technol. 73 (1) (2018). https://doi.
org/10.2516/0gst/2018064

C. Le Potier, Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes; [Schéma volumes finis monotone
pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés], C.R. Math. 341 (12) (2005) 787-792. https://doi.org/10.
1016/j.crma.2005.10.010

K.M. Terekhov, B.T. Mallison, H.A. Tchelepi, Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem, J. Comput.
Phys. 330 (2017) 245-267. https://doi.org/10.1016/j.jcp.2016.11.010

S.R.T. Tripuraneni, A. Novikov, D. Voskov, Nonlinear finite volume discretization of geomechanical problem, Int. J. Numer. Anal. Methods Geomech. 47 (12)
(2023) 2283-2303. https://doi.org/10.1002/nag.3580

G. Manzini, M. Putti, Mesh locking effects in the finite volume solution of 2-D anisotropic diffusion equations, J. Comput. Phys. 220 (2) (2007) 751-771.
https://doi.org/10.1016/j.jcp.2006.05.026

D.V. Voskov, Operator-based linearization approach for modeling of multiphase multi-component flow in porous media, J. Comput. Phys. 337 (2017) 275-288.
https://doi.org/10.1016/j.jcp.2017.02.041

M. Wapperom, D. Voskov, J. Heringer, Open DARTS-flash, 2024. https://doi.org/10.5281/zenodo.12686021

Y. Saad, Iterative Methods for Pparse Linear Systems, Society for Industrial and Applied Mathematics, second ed., 2003. https://doi.org/10.1137/1.
9780898718003

J.H. Bramble, D.Y. Kwak, J.E. Pasciak, Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems, SIAM J. Numer. Anal.
31 (6) (1994) 1746-1763. https://doi.org/10.1137/0731089

Z. Chen, D.Y. Kwak, Y.J. Yon, Multigrid algorithms for nonconforming and mixed methods for nonsymmetric and indefinite problems, SIAM J. Sci. Comput. 19
(2) (1998) 502-515. https://doi.org/10.1137/51064827595289790

T. Clees, AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation, Ph.D. thesis, University of Cologne, 2005.

J. Gopalakrishnan, J.E. Pasciak, L.F. Demkowicz, Analysis of a multigrid algorithm for time harmonic maxwell equations, SIAM J. Numer. Anal. 42 (1) (2004)
90-108. https://doi.org/10.1137/5003614290139490X

S. Gries, On the convergence of system-AMG in reservoir simulation, SPE J. 23 (02) (2018) 589-597. https://onepetro.org/SJ/article-pdf/23/02/589/2114383/
spe-182630-pa.pdf, https://doi.org/10.2118/182630-PA

S. Gries, B. Metsch, K.M. Terekhov, P. Tomin, System-AMG for fully coupled reservoir simulation with geomechanics, Society of Petroleum Engineers - SPE
Reservoir Simulation Conference 2019, RSC 2019 (2019). https://doi.org/10.2118/193887-ms

1. Aavatsmark, G.T. Eigestad, R.A. Klausen, M.F. Wheeler, 1. Yotov, Convergence of a symmetric MPFA method on quadrilateral grids, Comput. Geosci. 11 (4)
(2007) 333-345. https://doi.org/10.1007/s10596-007-9056-8

H.A. Friis, M.G. Edwards, J. Mykkeltveit, Symmetric positive definite flux-continuous full-tensor finite-volume scheme s on unstructured cell-centered triangular
grids, SIAM J. Sci. Comput. 31 (2) (2008) 1192-1220. https://doi.org/10.1137/070692182

F. Bertrand, Z. Cai, E.Y. Park, Least-squares methods for elasticity and stokes equations with weakly imposed symmetry, Comput. Methods Appl. Math. 19 (3)
(2019) 415-430. https://doi.org/10.1515/cmam-2018-0255

K.M. Terekhov, Y.V. Vassilevski, Finite volume method for coupled subsurface flow problems, I: darcy problem, J. Comput. Phys. 395 (2019) 298-306. https:
//doi.org/10.1016/j.jcp.2019.06.009

J.R. Wallis, R.P. Kendall, T.E. Little, Constrained residual acceleration of conjugate residual methods, Society of Petroleum Engineers of AIME, (Paper) SPE
(1985) 415-428. https://doi.org/10.2523/13536-ms

H. Cao, H.A. Tchelepi, J. Wallis, H. Yardumian, Parallel scalable unstructured CPR-type linear solver for reservoir simulation, Proceedings - SPE Annual Technical
Conference and Exhibition (2005) 3319-3326. https://doi.org/10.2523/96809-ms

K.A. A. Settari, Petroleum Reservoir Simulation, Applied Science Publishers LTD, 1979.

M. Khait, D. Voskov, R. Zaydullin, High performance framework for modelling of complex subsurface flow and transport applications, ECMOR 2020 - 17th
European Conference on the Mathematics of Oil Recovery (2020). https://doi.org/10.3997/2214-4609.202035188

T. Roy, T.B. Jonsthovel, C. Lemon, A.J. Wathen, A constrained pressure-temperature residual (CPTR) method for non-isothermal multiphase flow in porous
media, SIAM J. Sci. Comput. 42 (4) (2020) B1014-B1040. https://doi.org/10.1137/19M1292023

M.A. Cremon, J. Franc, F.P. Hamon, Constrained pressure-temperature residual (CPTR) preconditioner performance for large-scale thermal CO2 injection simu-
lation, Comput. Geosci. (2024). https://doi.org/10.1007/s10596-024-10292-z

V.E. Henson, U.M. Yang, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math. 41 (1) (2002) 155-177. https://doi.org/10.
1016/50168-9274(01)00115-5

A. Verruijt, Theory and Problems of Poroelasticity, Delft University Press, 2016. https://geo.verruijt.net.

R.M. Aronson, N. Castelletto, F.P. Hamon, J.A. White, H.A. Tchelepi, Pressure-stabilized fixed-stress iterative solutions of compositional poromechanics, Comput.
Methods Appl. Mech. Eng. 427 (2024). https://doi.org/10.1016/j.cma.2024.117008

Q. Gao, A. Ghassemi, Three-dimensional thermo-poroelastic modeling and analysis of flow, heat transport and deformation in fractured rock with applications
to a lab-scale geothermal system, Rock Mech. Rock Eng. 53 (2020) 1-22. https://doi.org/10.1007/s00603-019-01989-0

B. Bai, One-dimensional thermal consolidation characteristics of geotechnical media under non-isothermal condition, Gongcheng Lixue/Eng. Mech. 22 (2005)
186-191.

26


https://doi.org/10.1023/A:1011510505406
https://doi.org/10.1023/A:1011510505406
https://doi.org/10.3997/2214-4609.20146378
https://doi.org/10.3997/2214-4609.20146378
https://doi.org/10.1007/978-3-030-43651-348
https://doi.org/10.1007/978-3-030-43651-348
https://doi.org/10.1016/j.cma.2021.114122
https://doi.org/10.1016/j.cma.2021.114122
https://doi.org/10.2516/ogst/2018064
https://doi.org/10.2516/ogst/2018064
https://doi.org/10.2516/ogst/2018064
https://doi.org/10.2516/ogst/2018064
https://doi.org/10.1016/j.crma.2005.10.010
https://doi.org/10.1016/j.crma.2005.10.010
https://doi.org/10.1016/j.crma.2005.10.010
https://doi.org/10.1016/j.crma.2005.10.010
https://doi.org/10.1016/j.jcp.2016.11.010
https://doi.org/10.1016/j.jcp.2016.11.010
https://doi.org/10.1002/nag.3580
https://doi.org/10.1002/nag.3580
https://doi.org/10.1016/j.jcp.2006.05.026
https://doi.org/10.1016/j.jcp.2006.05.026
https://doi.org/10.1016/j.jcp.2017.02.041
https://doi.org/10.1016/j.jcp.2017.02.041
https://doi.org/10.5281/zenodo.12686021
https://doi.org/10.5281/zenodo.12686021
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/0731089
https://doi.org/10.1137/0731089
https://doi.org/10.1137/S1064827595289790
https://doi.org/10.1137/S1064827595289790
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0063
https://doi.org/10.1137/S003614290139490X
https://doi.org/10.1137/S003614290139490X
https://onepetro.org/SJ/article-pdf/23/02/589/2114383/spe-182630-pa.pdf
https://onepetro.org/SJ/article-pdf/23/02/589/2114383/spe-182630-pa.pdf
https://doi.org/10.2118/182630-PA
https://doi.org/10.2118/182630-PA
https://doi.org/10.2118/193887-ms
https://doi.org/10.2118/193887-ms
https://doi.org/10.1007/s10596-007-9056-8
https://doi.org/10.1007/s10596-007-9056-8
https://doi.org/10.1137/070692182
https://doi.org/10.1137/070692182
https://doi.org/10.1515/cmam-2018-0255
https://doi.org/10.1515/cmam-2018-0255
https://doi.org/10.1016/j.jcp.2019.06.009
https://doi.org/10.1016/j.jcp.2019.06.009
https://doi.org/10.1016/j.jcp.2019.06.009
https://doi.org/10.1016/j.jcp.2019.06.009
https://doi.org/10.2523/13536-ms
https://doi.org/10.2523/13536-ms
https://doi.org/10.2523/96809-ms
https://doi.org/10.2523/96809-ms
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0073
https://doi.org/10.3997/2214-4609.202035188
https://doi.org/10.3997/2214-4609.202035188
https://doi.org/10.1137/19M1292023
https://doi.org/10.1137/19M1292023
https://doi.org/10.1007/s10596-024-10292-z
https://doi.org/10.1007/s10596-024-10292-z
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1016/S0168-9274(01)00115-5
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0078
https://geo.verruijt.net
https://doi.org/10.1016/j.cma.2024.117008
https://doi.org/10.1016/j.cma.2024.117008
https://doi.org/10.1007/s00603-019-01989-0
https://doi.org/10.1007/s00603-019-01989-0
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0081
http://refhub.elsevier.com/S0021-9991(25)00435-8/sbref0081

	A finite volume framework for the fully implicit thermal-hydro-mechanical-compositional modeling in subsurface applications 
	1 Introduction 
	2 Governing equations
	2.1 Continuous formulation
	2.2 Discrete formulation
	2.3 Approximation of fluxes
	2.3.1 Approximation of fluxes at interior interfaces
	2.3.2 Approximation of fluxes at boundary interfaces
	2.3.3 Reconstruction of gradients

	2.4 Discretization in state space
	2.5 Solution strategy

	3 Results
	3.1 Convergence study
	3.2 Uniaxial poroelastic consolidation (Terzaghi's problem)
	3.3 Biaxial poroelastic consolidation (Mandel's problem)
	3.4 Uniaxial thermoporoelastic consolidation
	3.5 Thermoporoelastic extension of SPE10 model

	4 Conclusion


