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 a b s t r a c t

Thermal-Hydro-Mechanical-Compositional analysis is crucial for addressing challenges like well-
bore stability, land subsidence, and induced seismicity in the geo-energy applications. Numerical 
simulations of coupled thermo-poromechanical processes provide a general-purpose tool for eval-
uating these phenomena across laboratory and field scales. However, efficient integration of the 
coupled equations for fluid mass, energy and momentum poses multiple numerical and imple-
mentation difficulties, such as combining different numerical methods on staggered grids and 
associated limitations on admissible grids. This paper introduces a novel fully-implicit Finite Vol-
ume Method (FVM) for modeling thermal compositional flow in thermo-poroelastic rocks. The 
scheme employs gradient-based, coupled multi-point approximations of fluid mass, momentum 
and heat fluxes.
The novelty of the scheme lies in its integration of temperature as a parameter in the flux approx-
imation process. The scheme supports a wide range of cell topologies, arbitrary heterogeneity 
and anisotropy as well as various boundary conditions, while respecting local flux balance under 
temperature gradients. Overall, the scheme represents a unified FVM-based approach for the inte-
gration of all conservation laws relevant to geo-energy applications on a cell-centered collocated 
grid. Additionally, the implemented two-stage block-partitioned preconditioning strategy enables 
the efficient solution of obtained linear systems.
The framework, implemented in the open-source Delft Advanced Research Terra Simulator (open-
DARTS), leverages the Operator-Based Linearization (OBL) technique for flexibility in composi-
tional fluid properties. Rigorous validation demonstrates the framework’s capabilities in capturing 
advanced phenomena, including thermal expansion, thermo-poroelastic effect and compositional 
flow with phase transitions. The performance of preconditioning strategy is assessed using the 
mechanical extension of the SPE10 benchmark model.

1.  Introduction

Geomechanics is crucial for the safe and optimal operation of modern geo-energy applications [1]. Changes in subsurface condition, 
such as pressure depletion during gas production, can cause subsidence, initiate induced seismicity, and result in serious damage to 
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\begin {align}&\displacementVector _b = \left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}\left (l \bcRhs _n\normal +(\identityTensor -l\normal \normal ^T\mathbf {L})\pmb {\bcRhs }_t\right ) + \nonumber \\ &\quad + \left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}\left (\bcB _t\identityTensor +l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})\right )\cdot \nonumber \\ &\quad \cdot \left (\frac {1}{\distance _1}\conormalStiffness _1\displacementVector _1-\left (\frac {1}{\distance _1}\conormalStiffness _1\left [\identityTensor \otimes (\tpointVector _1-\pointVector _b)^T\right ]+\transversalStiffness _1\right )\gradientVector _\tau ^u + \pressure _b\biotTensor _1\normal + \temperature _b\thermalStressTensor _1\normal \right ),\label {displacement:boundary}\\ &\tractionVector _b = -\frac {1}{\distance _1}\conormalStiffness _1\left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}\left (l\bcRhs _n\normal +(\identityTensor -l\normal \normal ^T\mathbf {L})\pmb {\bcRhs }_t\right )\nonumber \\ &\quad - \frac {1}{\distance _1}\conormalStiffness _1\left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}\left (l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})-\bcA _t\distance _1\conormalStiffness _1^{-1}\right )\cdot \nonumber \\ &\quad \cdot \left (\frac {1}{\distance _1}\conormalStiffness _1\displacementVector _1-\left (\frac {1}{\distance _1}\conormalStiffness _1\left [\identityTensor \otimes (\tpointVector _1-\pointVector _b)\right ]+\transversalStiffness _1\right )\gradientVector _\tau ^u+\pressure _b\biotTensor _1\normal + \temperature _b\thermalStressTensor _1\normal \right )\label {traction:boundary},\end {align}


$\mathbf {L} = \left (\bcA _n\identityTensor +\frac {\bcB _n}{\distance _1}\conormalStiffness _1\right )\left (\bcA _t\identityTensor +\frac {\bcB _t}{\distance _1}\conormalStiffness _1\right )^{-1}$


$3\times 3$


$l=\left (\normal ^T\mathbf {L}\normal \right )^{-1}$


$\pressure _b$


$\temperature _b$


$\bcA _n, \bcB _n, \bcRhs _n$


$\bcA _t, \bcB _t, \pmb {\bcRhs }_t$


$\tilde {\flux }_\beta $


\begin {align}&\left (\bcA _p(\pointVector _b - \pointVector _1) + \bcB _p\permeabilityTensor _1\normal \right )\cdot \nabla \pressure _1 = \bcRhs _p + \bcB _p\density _\fluid \gravity \nabla \depth \cdot \permeabilityTensor _1\normal -\bcA _p \pressure _1,\label {pressure:reconstruction:boundary}\\ &\left (\bcA _\thermal (\pointVector _b - \pointVector _1) + \bcB _\thermal \heatConductivityTensor _1\normal \right )\cdot \nabla \temperature _1 = \bcRhs _\thermal - \bcA _\thermal \temperature _1, \label {temperature:reconstruction:boundary}\\ &\left (\bcA _t\left [\identityTensor \otimes (\pointVector _b-\pointVector _1)^T\right ]+\bcB _t\left [\identityTensor \otimes \normal ^T\right ]\stfMatrix _1+\right .\nonumber \\ &\quad +\left .l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})\left (\transversalStiffness _1+\frac {1}{\distance _1}\conormalStiffness _1\left [\identityTensor \otimes (\tpointVector _1-\pointVector _b)^T\right ]\right )\right )\left [\nabla \otimes \displacementVector _1\right ] =\nonumber \\ &\quad =l\bcRhs _n\normal + \left (\identityTensor -l\normal \normal ^T\mathbf {L}\right )\pmb {\bcRhs }_t + \left (l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})\frac {1}{\distance _1}\conormalStiffness _1 -\bcA _t\identityTensor \right )\displacementVector _1 + \nonumber \\ &\quad +\left (\bcB _t\identityTensor +l\normal \normal ^T(\bcB _n\identityTensor -\bcB _t\mathbf {L})\right )\left (\pressure _b\biotTensor _1+ \temperature _b\thermalStressTensor _1\right )\normal \label {displacements:reconstruction:boundary},\end {align}


$\pressure _b$


$\temperature _b$


$N$


$j$


\begin {equation}\label {eq11} \mathbf {M}_j^p\nabla \pressure _j = \mathbf {D}_j^p\pmb {\psi }_j^p, \quad \mathbf {M}_j^\thermal \nabla \temperature _j = \mathbf {D}_j^\thermal \pmb {\psi }_j^\thermal ,\end {equation}


$\mathbf {M}_j^p$


$\mathbf {M}_j^\thermal $


$N\times 3$


$\mathbf {D}_j^p$


$\mathbf {D}_j^\thermal $


$N\times (N+1)$


$\pmb {\psi }_j^p$


$\pmb {\psi }_j^\thermal $


$(N+1)\times 1$


$N+1$


$\pressure _i$


$\bcRhs _p$


$\temperature _i$


$\bcRhs _\thermal $


\begin {equation}\label {eq12} \nabla \pressure _j = (\mathbf {M}_j^{pT} \mathbf {M}_j^p)^{-1}\mathbf {M}_j^{pT} \mathbf {D}_j^p\pmb {\psi }_j^p, \quad \nabla \temperature _j = (\mathbf {M}_j^{\thermal T} \mathbf {M}_j^\thermal )^{-1}\mathbf {M}_j^{\thermal T} \mathbf {D}_j^\thermal \pmb {\psi }_j^\thermal .\end {equation}


$N$


\begin {equation}\label {displacement:gradients:system} \mathbf {M}_j^u\left (\nabla \otimes \displacementVector _j\right ) = \mathbf {D}_j^u\pmb {\psi }_j^u,\end {equation}


$j$


$\mathbf {M}_j^u$


$3N\times 9$


$\mathbf {D}_j^u$


$3N\times 5(N+1)$


$\pmb {\psi }_j^u$


$5(N+1)\times 1$


$5(N+1)$


$\unknownVector _i$


$\bcRhs _p, \bcRhs _\thermal , \bcRhs _n, \pmb {\bcRhs }_t$


\begin {equation}\nabla \otimes \displacementVector _j = (\mathbf {M}_j^{uT} \mathbf {M}_j^u)^{-1}\mathbf {M}_j^{uT} \mathbf {D}_j^u\pmb {\psi }_j^u.\end {equation}


$\gradientVector _\tau = \{\gradientVector ^p_\tau , \gradientVector ^\thermal _\tau , \gradientVector ^u_\tau \}$


$\gradientVector _\tau = \gradientVector _{1\tau }$


\begin {equation}\label {eq13} \gradientVector _{\tau } = \frac {\gradientVector _{\tau 1} + \gradientVector _{\tau 2}}{2}.\end {equation}


$j$


$i$


$j$


$i$


$k$


$j$


$\state =\{\pressure , \bm {\composition }_\component , \temperature \}$


\begin {equation}\label {operators} \{\acc _{i}, \acc _e, \fraction _{\component \phase }\density _\phase \permeability _{r\phase }\viscosity _\phase ^{-1}, \density _\phase , \enthalpy _\phase , \saturation _\phase , \density _\skeleton , \free _{i}, \free _{e}\} = \mathbf {f}(\widetilde {\state }),\end {equation}


$\widetilde {\state }$


\begin {gather}\widetilde {\state } = \widetilde {\pressure } \times \widetilde {\composition }_1 \times \dots \times \widetilde {\composition }_{\ncomponent } \times \widetilde {\temperature }, \\ \label {obl:points:along:axes} \widetilde {\pressure } = \{\pressure _1,\dots ,\pressure _{N_p}\}, \quad \widetilde {\composition }_1 = \{\composition _{1,1}, \dots , \composition _{1,N_{\composition 1}}\}, \dots , \widetilde {\composition }_{\ncomponent } = \{\composition _{\ncomponent ,1}, \dots , \composition _{\ncomponent ,N_{\composition \ncomponent }}\}, \\ \nonumber \quad \widetilde {\temperature }=\{\temperature _1, \dots , \temperature _{N_T}\},\end {gather}


$\widetilde {\pressure }, \widetilde {\composition }_\component $


$\widetilde {\temperature }$


$\mathbf {f}$


$\ncomponent + 4$


$10^4$


\begin {equation}\label {precond} \mathbf {U}^{-1}\jacobianMatrix \begin {bmatrix} \pmb {\delta }\state \\ \pmb {\delta }\displacementVector \end {bmatrix}= \begin {bmatrix} \identityTensor & -\jacobianMatrix _{\scalarState u}\jacobianMatrix _{uu}^{-1} \\ \mathbf {0} & \identityTensor \end {bmatrix} \left [ \begin {array}{@{} c c @{}} \jacobianMatrix _{\scalarState \scalarState } & {\jacobianMatrix _{\scalarState u}} \\ \jacobianMatrix _{u\scalarState } & {\jacobianMatrix _{uu}} \end {array} \right ] \begin {bmatrix} \pmb {\delta }\state \\ \pmb {\delta }\displacementVector \end {bmatrix} = \left [ \begin {array}{@{} c c @{}} \mathbf {S}_{\scalarState } & {\mathbf {0}} \\ \jacobianMatrix _{u\scalarState } & {\jacobianMatrix _{uu}} \end {array} \right ] \begin {bmatrix} \pmb {\delta }\state \\ \pmb {\delta }\displacementVector \end {bmatrix} =- \begin {bmatrix} \residualVector _\scalarState - \jacobianMatrix _{\scalarState u}\jacobianMatrix _{uu}^{-1}\residualVector _u \\ \residualVector _u \end {bmatrix},\end {equation}


$\jacobianMatrix $


$\left [\pmb {\delta }\state ,\pmb {\delta }\displacementVector \right ]^T=\left [\pmb {\delta }\pressureVector ,\pmb {\delta }\compositionVector ,\pmb {\delta }\temperatureVector ,\pmb {\delta }\displacementVector \right ]^T$


$\jacobianMatrix _{ab}$


$a$


$b$


$\residualVector _\scalarState $


$\residualVector _u$


$\pmb {\delta }\state = \left [\pmb {\delta }\pressureVector , \pmb {\delta }\compositionVector , \pmb {\delta }\temperatureVector \right ]^T$


$\mathbf {S}_{\scalarState }$


$\jacobianMatrix _{uu}$


\begin {equation}\mathbf {S}_{\scalarState } = \begin {bmatrix} \jacobianMatrix _{pp} - \jacobianMatrix _{pu}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up} & \jacobianMatrix _{p\composition } - \jacobianMatrix _{pu}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\composition } & \jacobianMatrix _{p\thermal } - \jacobianMatrix _{pu}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\thermal } \\ \jacobianMatrix _{\composition p} - \jacobianMatrix _{\composition u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up} & \jacobianMatrix _{\composition \composition } - \jacobianMatrix _{\composition u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\composition } & \jacobianMatrix _{\composition \thermal } - \jacobianMatrix _{\composition u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\thermal } \\ \jacobianMatrix _{\thermal p} - \jacobianMatrix _{\thermal u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up} & \jacobianMatrix _{\thermal \composition } - \jacobianMatrix _{\thermal u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\composition } & \jacobianMatrix _{\thermal \thermal } - \jacobianMatrix _{\thermal u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{u\thermal } \end {bmatrix},\end {equation}


$\tilde {\mathbf {S}}_{\scalarState }$


\begin {equation}\label {schur:complement:approximation} \tilde {\mathbf {S}}_{\scalarState } = \begin {bmatrix} \jacobianMatrix _{pp} - \text {diag}\left (\jacobianMatrix _{pu}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up}\mathbf {e}\right ) & \jacobianMatrix _{p\composition } & \jacobianMatrix _{p\thermal } \\ \jacobianMatrix _{\composition p} - \text {diag}\left (\jacobianMatrix _{\composition u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up}\mathbf {e}\right ) & \jacobianMatrix _{\composition \composition } & \jacobianMatrix _{\composition \thermal } \\ \jacobianMatrix _{\thermal p} - \text {diag}\left (\jacobianMatrix _{\thermal u}\jacobianMatrix _{uu}^{-1}\jacobianMatrix _{up}\mathbf {e}\right ) & \jacobianMatrix _{\thermal \composition } & \jacobianMatrix _{\thermal \thermal } \end {bmatrix},\end {equation}


$\mathbf {e} = \left [1,\cdots ,1\right ]^T$


$\text {diag}()$


$\jacobianMatrix _{uu}^{-1}$


$\jacobianMatrix _{u\composition }\approx 0$


$\jacobianMatrix _{u\thermal }\approx 0$


$\jacobianMatrix _{u\composition }$


$\jacobianMatrix _{u\thermal }$


$\jacobianMatrix _{u\thermal }$


$\jacobianMatrix _{u\thermal }$


$\jacobianMatrix _{uu}$


$\mathcal {P}_{u}^{-1}$


$\mathcal {P}_{\scalarState }^{-1}$


\begin {align}& \displaystyle \frac {\partial }{\partial t}\left (\porosity \sum \limits _{\phase }^{\nphase }\fraction _{\component \alpha }\saturation _\phase \density _\phase \right ) + \nabla \cdot \left (\sum \limits _{\phase }^{\nphase }\fraction _{\component \phase }\density _\phase \darcyVelocity _{\phase }^{\fluid }\right ) - \sum \limits _{\phase }^{\nphase }\fraction _{\component \phase }\density _\phase \sourceMass _\phase = 0, \quad \component = 1,\dots ,\ncomponent ,\label {mass::balance} \\ & \displaystyle \frac {\partial }{\partial t}\left ((1-\porosity )\density _\skeleton \intEnergy _\skeleton + \porosity \sum \limits _{\phase }^{\nphase }\saturation _\phase \density _\phase \intEnergy _\phase \right )+\nabla \cdot \left (\sum \limits _{\phase }^{\nphase }\left (\density _\phase \enthalpy _\phase \darcyVelocity _{\phase }^{\fluid } + \porosity \saturation _\phase \heatConductionVector _{\phase }^{\thermal }\right ) + (1-\porosity )\heatConductionVector _{\skeleton }^{\thermal }\right ) \nonumber \\ &- \sum \limits _{\phase }^{\nphase }\density _\phase \enthalpy _\phase \sourceMass _\phase = 0, \label {energy:balance}\\ & -\nabla \cdot \stressTensor - \left ((1-\porosity )\density _\skeleton + \porosity \sum \limits _{\phase }^{\nphase }\saturation _\phase \density _\phase \right )\gravity \nabla \depth = 0,\label {momentum:balance}\end {align}


\begin {align}&(1-\porosity )\density _\skeleton + \porosity \sum \limits _{\phase }^{\nphase }\saturation _\phase \density _\phase \to \density _{\text {tot}}, \label {simplify:density} \\ &(1-\porosity )\density _\skeleton \intEnergy _\skeleton + \porosity \sum \limits _{\phase }^{\nphase }\saturation _\phase \density _\phase \intEnergy _\skeleton \to \enthalpy _{\text {tot}} = \heatCapacity \temperature , \label {simplify:int:energy} \\ &(1-\porosity )\heatConductionVector _\skeleton ^{\thermal } + \sum \limits _{\phase }^{\nphase }\porosity \saturation _\alpha \heatConductionVector _\alpha ^{\thermal } \to \heatConductionVector _{\text {tot}}^{\thermal }=-\heatConductivityTensor \nabla \temperature ,\label {simplify:heat:conductivity}\end {align}


$\density _{\text {tot}}$


$\enthalpy _{\text {tot}}$


$\heatConductionVector _{\text {tot}}^{\thermal }$


$\heatCapacity $


$\heatConductivityTensor $


$\Omega =[0, a]^3$


$a=\SI {1}{\meter }$


$\stiffnessMatrix $


$\biotTensor $


$\permeabilityTensor $


$\thermalStressTensor $


$\heatConductivityTensor $


\begin {align}&\stiffnessMatrix = \left [\begin {array}{cccccc} 1.323 & 0.0726 & 0.263 & 0.108 & -0.08 & -0.239\\ 0.0726 & 1.276 & -0.318 & 0.383 & 0.108 & 0.501\\ 0.263 & -0.318 & 0.943 & -0.183 & 0.146 & 0.182\\ 0.108 & 0.383 & -0.183 & 1.517 & -0.0127 & -0.304\\ -0.08 & 0.108 & 0.146 & -0.0127 & 1.209 & -0.326\\ -0.239 & 0.501 & 0.182 & -0.304 & -0.326 & 1.373 \end {array}\right ] \,[{\rm {bar}}],\nonumber \\ &\biotTensor = \left [\begin {array}{ccc} 1.5 & 0.1 & 0.5\\ 0.1 & 1.5 & 0.15\\ 0.5 & 0.15 & 1.5 \end {array}\right ], \qquad \permeabilityTensor = \left [\begin {array}{ccc} 1.5 & 0.5 & 0.35\\ 0.5 & 1.5 & 0.45\\ 0.35 & 0.45 & 1.5 \end {array}\right ] \,[{\rm {mD}}], \nonumber \\ &\thermalStressTensor = \left [\begin {array}{ccc} 1.5 & 0.5 & 0.35\\ 0.5 & 1.5 & 0.45\\ 0.35 & 0.45 & 1.5 \end {array}\right ] \,[{\rm {bar}}\,{{\rm {K}}^{-1}}], \qquad \heatConductivityTensor = \alpha \left [\begin {array}{ccc} 1.5 & 0.1 & 0.5\\ 0.1 & 1.5 & 0.15\\ 0.5 & 0.15 & 1.5 \end {array}\right ] \,[{{\rm {Wm}}^{-1}} {{\rm {K}}^{-1}}],\nonumber \end {align}


$\alpha $


$\porosity _0$


$-$


$\density _{\fluid }$


$\mathrm {kg}\,\mathrm {m}^{-3}$


$\viscosity _\fluid $


$\mathrm {cP}$


$\compressibility _\fluid $


${\rm {bar}}^{-1}$


$\density _{\text {tot}}$


$\mathrm {kg}\,\mathrm {m}^{-3}$


$\compressibility _\skeleton $


${1.4503768 \times 10^{-6}}$


${\rm {bar}}^{-1}$


$\gravity $


$\mathrm {m}\,\mathrm {d}^{-2}$


$\heatCapacity $


$\mathrm {kJ}\,\mathrm {m}^{-3}\,\mathrm {K}^{-1}$


\begin {equation}\label {convergence:nonlinear:function} f(x,y,z,t) = \frac {1}{2\sin (1)}\sin ((1-x)(1-y)(1-z)) + 0.5(1-x)^3(1-y)^2(1-z)(1+t^2).\end {equation}


$\pressure =f$


$\pressure , \displacementVector $


$\pressure _h, \displacementVector _h$


$A$


$A_h$


\begin {equation}\label {convergence:norm} \|A-A_h\| = \sqrt {\left (\sum \limits _i\volume _i\right )^{-1}\sum \limits _i\volume _i|A(\pointVector _i)-A_{h,i}|^2},\end {equation}


$\volume _i$


$i$


$\pointVector _i$


$8^2$


$8^3$


$8^4$


$8^5$


$\darcyVelocity ^{\fluid }_h$


$\stressTensor _h$


\begin {equation}\label {linear:pressure} p(x, y, z, t) = 3 - x - y - z,\end {equation}


$\temperature =f$


$\text {Pe} = \displaystyle \frac {a\heatCapacity \lVert \darcyVelocity ^{f}\rVert _{L2}}{\lVert \heatConductivityTensor \rVert _{L2}}$


$\sim 10^3$


$h=\SI {100}{\meter }$


$h_1=\SI {25}{\meter }$


$h_2=\SI {75}{\meter }$


$F=\SI {10}{\mega \pascal }$


$p_0=\SI {0}{\pascal }$


$\permeabilityTensor = k\identityTensor $


$\biotTensor =b\identityTensor $


$k$


$b$


$\youngModulus $


$\poissonRatio $


$\porosity _0$


$\viscosity _\fluid $


$\compressibility _\fluid $


$10^{-10}$


$h,\si {\meter }$


$\youngModulus $


$\mathrm {GPa}$


$\poissonRatio $


$b$


$k$


$\mathrm {mD}$


$\porosity _0$


$\viscosity _\fluid $


$\mathrm {cP}$


$\compressibility _\fluid $


${\rm {bar}}^{-1}$


$x=\SI {1.25}{\meter }$


$\displacement _x$


$x=\SI {98.75}{\meter }$


$T=\SI {10}{\day }$


$t = \SI {10}{\day }$


$0.009$


$\mathrm {%}$


$0.01$


$\mathrm {%}$


$p_0=\SI {0}{\pascal }$


$\youngModulus =\SI {1}{\giga \pascal }$


$\poissonRatio = 0.25$


$\permeabilityTensor =k\identityTensor , k = \SI {1}{\milli \darcy }$


$\compressibility _\fluid =10^{-10}\,{\rm {bar}^{-1}}$


$\viscosity _\fluid = {1}\,{\rm {cP}}$


$\biotModulus = 10^{-5}\,{\rm {bar}^{-1}}$


$\biotTensor =b\identityTensor , b = 0.9$


$30\times 30$


$x=\SI {1.66}{\meter }$


$\displacement _x$


$x=\SI {98.33}{\meter }$


$T=\SI {10}{\day }$


$t = \SI {10}{\day }$


$0.007$


$\mathrm {%}$


$0.002$


$\mathrm {%}$


$7$


$\mathrm {m}$


$F=\SI {1}{\pascal }$


$\pressure = \SI {0}{\pascal }$


$\temperature = {50}\,{}^{\circ }{\mathrm {C}}$


$p_0 = \SI {0}{\pascal }$


$\temperature _0 = {0}\,{}^{\circ }{\mathrm {C}}$


$\youngModulus = \SI {6}{\kilo \pascal }$


$\poissonRatio = 0.4$


$\permeabilityTensor =k\identityTensor $


$\biotTensor =b\identityTensor $


$\thermalStressTensor =a\identityTensor $


$\heatConductivityTensor =\lambda \identityTensor $


$k = 4\times 10^{-9}\,\si {\square \meter }$


$b = 1.0$


$a = 9\times 10^{-7}\,{}^{\circ }{\mathrm {C}}^{-1}$


$\lambda = {836}\,{\mathrm {Jm}}^{-1}\,{\mathrm {s}}^{-1}{}^{\circ }\,{\mathrm {C}}^{-1}$


$\heatCapacity ={167.2}\,{\mathrm {kJm}}^{-3}{}^{\circ }\,{\mathrm {C}}^{-1}$


$\viscosity =\SI {1}{\centi \poise }$


$\temperature ={50}\,{}^{\circ }{\mathrm {C}}$


$60\times 220\times 85$


$\poissonRatio =0.2$


$b=1$


$\alpha = 9\cdot 10^{-7}{}^{\circ }{\mathrm {C}}^{-1}$


$\density _\skeleton = \SI {2650}{\kilogram \per \cubic \meter }$


$\heatCapacity _\skeleton = {2.2}\,{\rm {kJkg}}^{-1}{}^{\circ }{\rm {C}}^{-1}$


$\heatConductivity _0={72.23}{\rm {kJm}}^{-1}{\rm {d}}^{-1}{}^{\circ }{\rm {C}}^{-1}$


$\youngModulus $


$\permeability _x$


$\temperature _{\text {top}} = {26.85}^{\circ }{\rm {C}}$


$\temperature _{\text {bot}} = {76.85}^{\circ }{\rm {C}}$


$\traction _{N}^{\text {top}}=\SI {90}{\mega \pascal }$


$\mathrm {kg}\,\mathrm {m}^{-3}$


${\rm {bar}}^{-1}$


$1.45\times 10^{-5}$


$10^{-5},\,5\times 10^{-3}$


$\mathrm {cP}$


$\left (\frac {\saturation _\phase - 0.1}{1 - 0.2}\right )^{2}$


${{}^{-1}}^{\circ }{\mathrm {C}}^{-1}$


${\mathrm {p}}_{inj} = {\mathrm {p}}_{\mathrm {max}} + {50}\,{\mathrm {bar}}$


${\mathrm {p}}_{\mathrm {prod}} = {\mathrm {p}}_{\mathrm {min}} - {50}\,{\mathrm {bar}}$


$\pressure _{\text {max}}$


$\pressure _{\mathrm {min}}$


$\temperature _{\mathrm {inj}} = {27.85}^{\circ }{\rm {C}}$


$t_{\mathrm {max}}=\SI {20}{\day }$


$t=0,1,20\,\si {\day }$


$t=\SI {0}{\day }$


$t=\SI {20}{\day }$


$\tilde {\mathbf {S}}_{\omega }$


$\jacobianMatrix _{pp}$


$\jacobianMatrix _{uu}$


$\jacobianMatrix _{uu}$


$<$


$24\times 104\times 40$


$10^{-4}\lambda _0$


$10^{2}\lambda _0$


${\rm {CO}}_{2}$


${\rm {CO}}_{2}$


${\rm {CO}}_{2}$


$\domain \subset \mathbb {R}^3$


$\partial \domain $


$\timeInterval =\left [0, t_{\max }\right ]$


$\pressure : \domain \times \timeInterval \to \mathbb {R}$


$\ncomponent -1$


$\composition _\component : \domain \times \timeInterval \to \mathbb {R}$


$\temperature :\domain \times \timeInterval \to \mathbb {R}$


$\displacementVector :\domain \times \timeInterval \to \mathbb {R}^3$


$H^1(\domain )$


$\partial \domain $


$\domain \times \timeInterval $


$\component =1,\dots ,\ncomponent $


$\skeleton , \phase $


$1,\dots ,\nphase $


$\porosity $


$\fraction _{\component \phase }$


$\component $


$\phase $


$\saturation _\phase $


$\density _\phase $


$\darcyVelocity _{\phase }^{\fluid }$


$\sourceMass _\phase $


$\intEnergy _\skeleton , \intEnergy _\phase $


$\enthalpy _\phase $


$\heatConductionVector _{\skeleton }^{\thermal }$


$\heatConductionVector _{\phase }^{\thermal }$


$\skeleton $


$\phase $


$\stressTensor $


$\density _\skeleton $


$\gravity $


$\depth $


\begin {align}&\darcyVelocity _{\phase }^{\fluid } = -\frac {\permeability _{r\phase }\permeabilityTensor }{\viscosity _\phase }\left (\nabla \pressure - \density _\phase \molarWeight _\phase \gravity \nabla \depth \right ),\label {closing1} \\ &\heatConductionVector _{\phase }^{\thermal } = -\heatConductivityTensor _\phase \nabla \temperature ,\label {closing3} \\ &\porosity - \porosity _0 = \displaystyle \frac {(\biotTensorTrace -\porosity _0)(1 - \biotTensorTrace )}{\bulkModulus _\skeleton }(\pressure -\pressure _0) + \biotTensor :\nabla ^s(\displacementVector - \displacementVector _0) + \volumetricThermalCoef (\temperature -\temperature _0),\label {closing4} \\ &\stressTensor - \stressTensor _0 = \stiffnessTensor :\nabla ^s\left (\displacementVector - \displacementVector _0\right ) - \left (\pressure -\pressure _0\right )\biotTensor - (\temperature -\temperature _0)\thermalStressTensor ,\label {closing5} \\ &\density _\phase = \density _\phase (\pressure , \temperature , \fraction _{\component \phase }), \quad \viscosity _\phase = \viscosity _\phase (\pressure , \temperature , \fraction _{\component \phase }), \quad \enthalpy _\phase = \heatCapacity _{\phase }(\temperature -\temperature _0), \quad \intEnergy _\phase = \enthalpy _\phase - \frac {\pressure }{\density _\phase },\label {closing6} \\ &\intEnergy _{\skeleton } = \heatCapacity _{\skeleton }(\temperature -\temperature _0),\label {closing7} \\ &\fraction _{\phase }, \fraction _{\component \phase } = \arg \min _{\fraction _{\phase }, \fraction _{\component \phase }} \bar {\gibbsEnergy }, \quad \bar {\gibbsEnergy } = \frac {\gibbsEnergy }{\gasConstant \temperature } = \sum \limits _{\phase }^{\nphase }\fraction _\phase \sum \limits _{\component }^{\ncomponent }\fraction _{\component \phase }\ln \fugacity _{\component \phase },\notag \\ &\composition _{\component 0} = \sum \limits _{\phase }^{\nphase }\fraction _\phase \fraction _{\component \phase },\nonumber \\ &\sum \limits _{\phase }^{\nphase }\fraction _{\phase }=\sum \limits _{\component }^{\ncomponent }\fraction _{\component \phase }=1, \quad 0 \leq \fraction _{\phase }\leq 1, \quad 0 \leq \fraction _{\component \phase }\leq 1, \quad \phase =1\dots \nphase , \quad \component =1\dots \ncomponent ,\label {closing8}\end {align}


$\permeability _{r\phase }$


$\permeabilityTensor $


$\pressure $


$\viscosity _\phase $


$\molarWeight _\phase $


$\heatConductivityTensor _\skeleton $


$\heatConductivityTensor _\phase $


$\nabla ^s\displacementVector = (\nabla \displacementVector + (\nabla \displacementVector )^T) / 2$


$\biotTensor $


$\biotTensorTrace = I_1(\biotTensor ) \,/\,3$


$\biotTensor $


$\bulkModulus _\skeleton $


$\volumetricThermalCoef $


$\stiffnessTensor $


$\thermalStressTensor $


$\displacementVector $


$\heatCapacity _\skeleton $


$\heatCapacity _\phase $


$\fraction _\phase $


$\phase $


$\gibbsEnergy $


$\gasConstant $


$\fugacity _{\component \phase }$


$\component $


$\phase $


$\composition _{\component 0}$


$\component $


$0$


\begin {equation}\stressTensor _0 = \stressTensor (\displacementVector _0, \pressure _0, \temperature _0),\quad \porosity _0 = \porosity (\displacementVector _0, \pressure _0, \temperature _0). \label {Xeqn1-11}\end {equation}
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$\tractionVector $


\begin {equation}\tractionVector = -\stressTensor \normal ,\end {equation}
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\begin {equation}\density _\fluid = \sum \limits _{\phase }^{\nphase }\saturation _\phase \density _\phase . \label {Xeqn5-18}\end {equation}
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\begin {align*}\acc _{i}^{n+1} &= \left (\porosity \sum _{\phase }^{\nphase }\fraction _{\component \phase }\saturation _\phase \density _\phase \right )_j^{n+1}, \quad \qquad \qquad \qquad \free _{i}^{n+1} = \left (\sum _{\phase }^{\nphase }\fraction _{\component \phase }\density _\phase \sourceMass _{\phase }\right )_j^{n+1}, \\ \acc _{e}^{n+1} &= \left ((1-\porosity )\density _\skeleton \intEnergy _\skeleton + \porosity \sum _{\phase }^{\nphase }\density _\phase \intEnergy _\phase \right )_j^{n+1}, \qquad \free _{e}^{n+1} = \left (\sum _{\phase }^{\nphase } \density _\phase \enthalpy _\phase \sourceMass _\phase \right )_j^{n+1},\\ \pmb {\free }_{mom}^{n+1} &= -\left ((1-\porosity )\density _\skeleton + \porosity \sum _{\phase }^{\nphase }\saturation _\phase \density _\phase \right )_j^{n+1}\gravity \nabla \depth ,\\ \flu _{i,\beta }^{n+1} &= \sum _{\phase }^{\nphase }\left (\left (\fraction _{\component \phase }\density _\phase \permeability _{r\phase }\viscosity _\phase ^{-1}\right )_u^{n+1}\flux _{\phase ,\beta }^{\fluid , n+1}\right ), \\ \flu _{e,\beta }^{n+1} &= \sum _{\phase }^{\nphase }\left ((\enthalpy _\phase \density _\phase )_u^{n+1}\flux _{\phase ,\beta }^{\fluid , n+1} - \porosity _j^{n+1}\saturation _{\phase ,u}^{n+1}\flux _{\phase ,\beta }^{\thermal , n+1}\right ) - (1 - \porosity _j^{n+1})\flux _{\skeleton ,\beta }^{\thermal , n+1}.\end {align*}
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$\beta =\{j,k\}$
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\begin {equation}\left (\fraction _{\component \phase }\density _\phase \permeability _{r\phase }\viscosity _\phase ^{-1}\right )_u = \begin {cases} \left (\fraction _{\component \phase }\density _\phase \permeability _{r\phase }\viscosity _\phase ^{-1}\right )_j, \quad \flux _{\phase ,\beta }^{\fluid } > 0,\\ \left (\fraction _{\component \phase }\density _\phase \permeability _{r\phase }\viscosity _\phase ^{-1}\right )_k, \quad \flux _{\phase ,\beta }^{\fluid } \leq 0, \end {cases} \label {Xeqn7-20}\end {equation}
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\begin {equation}\flux _{\phase ,\beta }^{\fluid } = -\left (\permeabilityTensor \normal \cdot (\nabla \pressure - \density _\phase \gravity \nabla \depth )\right )_\beta , \quad \flux ^{\thermal }_\beta = -\left (\heatConductivityTensor \normal \cdot \nabla \temperature \right )_\beta ,\end {equation}
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Nomenclature

Physical variables
𝐀 rank-two rock thermal dilation tensor,
𝛼𝜙 volumetric thermal dilation coefficient related to porosity
𝐁 rank-two Biot tensor,
ℂ rank-four stiffness tensor of skeleton,
𝐂 6 × 6 matrix of stiffness coefficients,
c𝛼 heat capacity of fluid phase 𝛼,
c𝑠 rock heat capacity,
𝐷 depth,
𝜀𝜀𝜀 rank-two infinitesimal strain tensor,
E Young’s modulus,
𝐟 traction vector,
f𝑁 , 𝐟𝑇 normal and tangential projections of traction vector,
G specific (molar) Gibbs energy of fluid mixture,
g gravity constant,
h𝛼 enthalpy of phase 𝛼,
𝐈 identity matrix,
𝐊 rank-two tensor of permeability,
𝑘𝑥, 𝑘𝑦, 𝑘𝑧 diagonal components of permeability tensor,
𝑘𝑟𝛼 relative permeability of fluid phase f ,
K𝑟 bulk modulus of the solid phase,
ΛΛΛ rank-two effective heat conductivity tensor,
𝜇𝛼 fluid viscosity of fluid phase 𝛼,
𝐧 unit normal vector,
𝜈 Poisson’s ratio,
p pore pressure,
𝐪f𝛼 Darcy’s velocity of fluid phase f ,
𝐪θ𝛼 heat conduction vector fluid constituent 𝛼 (fluid phase of rock),
r𝛼 sources (or sinks) of fluid mass of phase 𝛼,
𝜌𝛼 density of constituent 𝛼,
R gas constant,
S𝛼 saturation of fluid phase 𝛼,
𝝈 rank-two total stress tensor,
Θ temperature,
𝑡 time,
U𝑓 fluid internal energy,
U𝑟 rock internal energy,
𝐮 =

[

𝑢𝑥 𝑢𝑦 𝑢𝑧
]𝑇 vector of displacements,

(∇𝐮)𝑇 Jacobian matrix of 𝐮,
𝜑𝑖𝛼  fugacity of component 𝑖 in phase 𝛼,
𝜙 porosity,
𝜙̃ = 𝜙0+ (𝑝 − 𝑝0)(𝜓 − 𝜙0)∕K𝑟,
𝜓 = (𝐁 ∶ 𝐈) ∕ 3 one-third of the trace of tensor 𝐁,
x𝛼 molar fraction of fluid phase 𝛼,
x𝑖𝛼 molar fraction of component 𝑖 in fluid phase 𝛼,
z𝑖 overall molar fraction of component 𝑖.

Numerical variables
Δ𝑡 time step,
𝛿𝑗 area of 𝑗th interface,
𝐇 vector of residuals,
𝐉 Jacobian matrix,
𝛿𝛿𝛿𝐩 unknown increments of pressures,
𝛿𝛿𝛿𝐳 unknown increments of compositions (and temperatures for non-isothermal systems),
𝛿𝛿𝛿𝐮 unknown increments of displacements,
𝜔𝜔𝜔 = {p, 𝐳𝑖,Θ} vector of state unknowns.
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surface infrastructures [2,3]. In geothermal operations, the re-injection of cooler fluid causes stress and strain changes that can 
potentially (re-)activate faults and lead to induced seismic activity [4,5]. The development of CO2 geological storage involves a 
complex interaction of thermal, hydraulic, mechanical, and chemical processes which collectively change the in-situ stress state, affect 
fault stability, and can lead to fault activation, CO2 leakage and seismicity [6,7]. Therefore, the successful and risk-free exploitation 
of subsurface resources depends on the development of robust and efficient computational techniques for modeling the coupled 
geomechanics and hydrothermal processes.

The Finite Volume Method (FVM) has recently been seen as a promising technique for modeling of geomechanics, especially when 
mechanical interactions are modeled in a fully coupled manner with the flow and transport of mass and energy. The FVM is attractive 
because it represents an integral form of conservation laws. Recent literature highlights its development for geomechanical simulations 
with both staggered [8–10] and collocated grids [11–13]. The advantages of FVM include support of various cell topologies, respect 
of local flux balance, discontinuous representation of displacements, and seamless integration with fluid mass and energy balance 
solvers.

The first FVM for solid mechanics was limited to homogeneous isotropic elasticity [14]. However, geological formations often 
exhibit heterogeneity amplified by material discontinuities which require appropriate treatment by numerical scheme. To address this 
limitation, the multi-point stress approximation (MPSA) has been introduced by [11]. Nevertheless, on simplex meshes, MPSA requires 
enforcement of continuity at multiple points and, eventually, struggle to maintain convergence. Later, these problems have been 
resolved by the weakly imposed symmetry of stress tensor [15]. Alternatively, a gradient-based approach allows these complications 
to be circumvented by offering robust convergence across a wide range of star-shaped topologies [12]. This method relies on the 
suitable approximations of gradients of unknowns avoiding the excessive construction of dual grid. Later, this approach has been 
extended to poroelasticity [16], with frictional contact [13] and the Navier-Stokes equations [17]. In this paper, we further extend 
this gradient-based approach to thermo-poroelastic media.

Coupling fluid flow and mechanics equations poses significant challenges and two well-known approaches can be mentioned. 
The first approach, sequential implicit (SI), decouples the mechanics and flow equations, achieving a converged solution for the 
coupled problem by sequentially iterating between subproblems [18,19]. A prominent example of SI approach is the fixed-stress 
splitting algorithm [20,21]. In contrast, the fully implicit (FI) approach involves a monolithic solution of the coupled system of 
equations [9,22], offering the advantage of unconditional stability under appropriate assumptions [19]. Nevertheless, FI requires 
scalable preconditioners specifically designed for solving associated linear systems [23]. Beyond the computational challenges, both 
approaches are susceptible to inf-sup instabilities, which arise from the saddle-point nature of the displacement-pressure system 
[24,25]. These instabilities can introduce unphysical oscillations to numerical solution in the limit of undrained conditions [26–29]. 
The collocated scheme of FVM presented in this paper is not an exception [13,16]. The schemes of FVM are reportedly stabilized by 
the use of essentially inf-sup-stable discretization spaces [30] and flux vector splitting [31], although the latter one can introduce 
significant diffusion [32]. We leave the inf-sup stabilization and related analysis beyond the scope of the current paper.

Although the FI approach does not impose any restriction on time step size, it requires efficient nonlinear and linear solu-
tion strategies for high-resolution models. One such strategy is to construct a preconditioner based on the idea of the SI ap-
proach. In [33], the authors employ a fixed-stress splitting concept in a sparse approximation of the Schur complement to
obtain a block-preconditioned solution strategy. Later this approach was combined with a constrained pressure residual (CPR) pre-
conditioner to construct a robust and effective solution strategy for coupled multiphase flow and mechanics [23,34].

In this study, we present a novel cell-centered collocated FI multi-point FVM scheme for thermo-hydro-mechanical-compositional 
simulation of subsurface reservoirs. It treats mass, energy, and momentum fluxes in a unified vector form within the framework of 
FVM, resulting in a simplified formulation. The framework can be used to resolve the coupled processes in arbitrarily anisotropic 
thermoporoelastic rocks on unstructured polyhedral grids with a minimum number of degrees of freedom per cell. It is also capable 
of handling material heterogeneities while preserving mass, energy and momentum balances. The framework supports multiphase 
compositional fluid physics, including phase equilibrium and chemical reactions resolved through operator-based linearization [35]. 
To improve the performance of simulation, a block-partitioned preconditioning strategy is implemented. The developed computational 
capabilities are verified in benchmarks and demonstrated for compositional modeling using a geomechanical extension of SPE10 
model [19].

The developed methods are implemented in the open-source Delft Advanced Research Terra Simulator (open-DARTS) [36].
Open-DARTS is a scalable parallel simulator, which has been successfully applied for modeling of hydrocarbon [37,38],
geothermal [39,40], CO2 sequestration [41,42] applications, as well as evaluating potential to fault reactivation and seismicity 
[13,32]. This study further extends the coupling between geomechanical modeling and the advanced hydro-thermal modeling
capabilities of open-DARTS, making it a fully coupled thermo-hydro-mechanical-compositional simulator for complex geo-energy 
applications.

2.  Governing equations

2.1.  Continuous formulation

We employ a displacement-based formulation of a quasi-static linear momentum balance and molar-based formulation for multi-
phase multicomponent fluid flow in thermo-poroelastic saturated media. Thus, considering a finite domain Ω ⊂ ℝ3 surrounded by a 
piecewise-smooth boundary 𝜕Ω and a time interval  =

[

0, 𝑡max
]

, the primary unknowns include pore pressure p ∶ Ω ×  → ℝ, n𝑐 − 1
component molar fractions z𝑖 ∶ Ω ×  → ℝ, temperature Θ ∶ Ω ×  → ℝ and vector of displacement 𝐮 ∶ Ω ×  → ℝ3. All unknowns
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belongs to Sobolev space 𝐻1(Ω) with appropriate amendment at 𝜕Ω. In the region Ω × , we study the mass balances of fluid compo-
nents 𝑖 = 1,… , n𝑐 , the energy balance and the momentum balance [43] that can be written as

𝜕
𝜕𝑡

(

𝜙
n𝑝
∑

𝛼
x𝑖𝛼S𝛼𝜌𝛼

)

+ ∇ ⋅

( n𝑝
∑

𝛼
x𝑖𝛼𝜌𝛼𝐪f𝛼

)

−
n𝑝
∑

𝛼
x𝑖𝛼𝜌𝛼r𝛼 = 0, 𝑖 = 1,… , n𝑐 , (1)

𝜕
𝜕𝑡

(

(1 − 𝜙)𝜌𝑠U𝑠 + 𝜙
n𝑝
∑

𝛼
S𝛼𝜌𝛼U𝛼

)

+ ∇ ⋅

( n𝑝
∑

𝛼

(

𝜌𝛼h𝛼𝐪f𝛼 + 𝜙S𝛼𝐪
θ
𝛼
)

+ (1 − 𝜙)𝐪θ𝑠

)

−
n𝑝
∑

𝛼
𝜌𝛼h𝛼r𝛼 = 0, (2)

− ∇ ⋅ 𝝈 −

(

(1 − 𝜙)𝜌𝑠 + 𝜙
n𝑝
∑

𝛼
S𝛼𝜌𝛼

)

g∇𝐷 = 0, (3)

where subscripts 𝑠, 𝛼 denote rock matrix and fluid phases 1,… , n𝑝 respectively, 𝜙 is porosity, x𝑖𝛼 are molar fractions of compo-
nent 𝑖 in phase 𝛼, S𝛼 are phase saturations, 𝜌𝛼 are phase densities, 𝐪f𝛼 are Darcy’s phase velocities, r𝛼 are phase source terms, 
U𝑠,U𝛼 are the internal energies of rock matrix and fluid phases respectively, h𝛼 are phase enthalpies, 𝐪θ𝑠 and 𝐪θ𝛼 are the vectors 
of heat conduction fluxes in rock matrix 𝑠 and in fluid phase 𝛼 correspondingly, 𝝈 is the rank-two total Cauchy’s stress tensor, 𝜌𝑠
is the density of rock matrix, g is the gravitational acceleration, 𝐷 is depth.

The balance laws in Eqs.  (1)–(3) are subjected to the following constitutive relationships [43–45]

𝐪f𝛼 = −
𝑘𝑟𝛼𝐊
𝜇𝛼

(

∇p − 𝜌𝛼𝑀𝛼g∇𝐷
)

, (4)

𝐪θ𝛼 = −ΛΛΛ𝛼∇Θ, (5)

𝜙 − 𝜙0 =
(𝜓 − 𝜙0)(1 − 𝜓)

K𝑠
(p − p0) + 𝐁 ∶ ∇𝑠(𝐮 − 𝐮0) + 𝛼𝜙(Θ − Θ0), (6)

𝝈 − 𝝈0 = ℂ ∶ ∇𝑠
(

𝐮 − 𝐮0
)

−
(

p − p0
)

𝐁 − (Θ − Θ0)𝐀, (7)

𝜌𝛼 = 𝜌𝛼(p,Θ, x𝑖𝛼), 𝜇𝛼 = 𝜇𝛼(p,Θ, x𝑖𝛼), h𝛼 = c𝛼(Θ − Θ0), U𝛼 = h𝛼 −
p
𝜌𝛼
, (8)

U𝑠 = c𝑠(Θ − Θ0), (9)

x𝛼 , x𝑖𝛼 = arg min
x𝛼 ,x𝑖𝛼

Ḡ, Ḡ = G
RΘ

=
n𝑝
∑

𝛼
x𝛼

n𝑐
∑

𝑖
x𝑖𝛼 ln𝜑𝑖𝛼 ,

z𝑖0 =
n𝑝
∑

𝛼
x𝛼x𝑖𝛼 ,

n𝑝
∑

𝛼
x𝛼 =

n𝑐
∑

𝑖
x𝑖𝛼 = 1, 0 ≤ x𝛼 ≤ 1, 0 ≤ x𝑖𝛼 ≤ 1, 𝛼 = 1…n𝑝, 𝑖 = 1…n𝑐 , (10)

where 𝑘𝑟𝛼 are relative phase permeabilities, 𝐊 is the rank-two permeability tensor, p is pore pressure, 𝜇𝛼 are phase viscosities, 
𝑀𝛼 are phase molar weights, ΛΛΛ𝑠 and ΛΛΛ𝛼 are the rank-two heat conduction tensors of rock matrix and fluid phases respectively, 
∇𝑠𝐮 = (∇𝐮 + (∇𝐮)𝑇 )∕2 is the matrix of symmetric gradients of displacements, 𝐁 is the rank-two tensor of Biot’s coefficients [43,44,46], 
𝜓 = 𝐼1(𝐁) ∕ 3 is one-third of the first invariant of 𝐁, K𝑠 is rock matrix drained bulk modulus, 𝛼𝜙 is the volumetric coefficient of rock 
matrix thermal dilation, ℂ is the rank-four drained stiffness tensor, 𝐀 is the rank-two rock matrix thermal dilation tensor, 𝐮 is a vector 
of displacements, c𝑠 and c𝛼 are constant-pressure heat capacities of rock matrix and fluid phases correspondingly, x𝛼 is molar fraction 
of phase 𝛼, G is the specific (molar) Gibbs energy of fluid mixture, R is gas constant, 𝜑𝑖𝛼 is the fugacity of component 𝑖 in phase 𝛼, z𝑖0
is initial value of overall molar fraction of component 𝑖, which must be preserved, and the subscript 0 denotes the reference state of 
a variable, i.e., 

𝝈0 = 𝝈(𝐮0, p0,Θ0), 𝜙0 = 𝜙(𝐮0, p0,Θ0). (11)

Eqs.  (4) and (5) represent Darcy’s and Fourier’s laws that define fluid and heat conduction fluxes caused by spatial variation of pore 
pressure and temperature respectively, Eqs.  (6) and (7) represent porosity and stress changes in anisotropic thermo-poroelastic media 
under the assumption of infinitesimal strains, the fluid properties, i.e density, viscosity, enthalpy and internal energy are defined in 
Eq.  (8) while rock matrix internal energy is specified in Eq.  (9). We employ the multiphase flash [47] to evaluate instantaneous 
thermodynamic equilibrium between fluid phases written in Eqs.  (10). The effect of capillary forces between fluid phases is neglected 
in both the Darcy’s law in Eq.  (4) and in the phase equilibrium in Eqs.  (10). All variables have been listed in the Nomenclature 
section at the end of the paper.

The projection of stress tensor 𝝈 to an interface with unit normal vector 𝐧 is called total traction vector 𝐟 and defined as 

𝐟 = −𝝈𝐧, (12)
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where the negative sign is motivated by the sign of the corresponding term in the momentum balance in Eq.  (3). Traction vector can 
be decomposed into normal f𝑁  and tangential components 𝐟𝑇  as 

𝐟 = f𝑁𝐧 + 𝐟𝑇 , f𝑁 = −𝐧𝑇 𝝈𝐧, 𝐟𝑇 = (𝐈 − 𝐧𝐧𝑇 )𝐟 , (13)

where −f𝑁  and |
|

𝐟𝑇 || are called normal and shear stresses, respectively and 𝐈 is an identity matrix.
For the system of balance laws in Eqs.  (1)–(3) and constitutive relationships in Eqs.  (4)–(10) we consider boundary conditions 

acting on 𝜕Ω, which can be written in the following form
𝛼𝑝p𝑏 + 𝛽𝑝

(

𝐊𝐧 ⋅ (∇p − 𝜌fg∇𝐷)
)

𝑏 = 𝛾𝑝, (14)

𝛼θΘ𝑏 + 𝛽θ(ΛΛΛ𝐧 ⋅ ∇Θ)𝑏 = 𝛾θ, (15)

𝐧𝑇
(

𝛼𝑛𝐮𝑏 + 𝛽𝑛𝐟𝑏
)

= 𝛾𝑛, (16)

(𝐈 − 𝐧𝐧𝑇 )
(

𝛼𝑡𝐮𝑏 + 𝛽𝑡𝐟𝑏
)

= 𝛾𝛾𝛾 𝑡, (17)

where subscript 𝑏 denotes the property evaluated at the boundary, 𝛼𝑝, 𝛽𝑝, 𝛼θ, 𝛽θ, 𝛼𝑛, 𝛽𝑛 and 𝛼𝑡, 𝛽𝑡 are coefficients that determine the 
particular kind of boundary conditions, while 𝛾𝑝, 𝛾θ, 𝛾𝑛 and 𝛾𝛾𝛾 𝑡 represent the values the corresponding conditions are assigned to, 𝜌f
stands for the effective density of fluid flux estimated as 

𝜌f =
n𝑝
∑

𝛼
S𝛼𝜌𝛼 . (18)

Additionally, Eq.  (14) defines the boundary condition for fluid mass balance, Eq.  (15) specifies the boundary condition for energy 
balance, Eqs.  (16), (17) represent normal and tangential boundary conditions for the momentum balance, respectively.

Eqs. (14)–(17) describe a broad range of possible boundary conditions, including fixed boundary for mechanics (𝛼𝑛 = 𝛼𝑡 = 1, 𝛽𝑛 =
𝛽𝑡 = 0), distributed force loading (𝛼𝑛 = 𝛼𝑡 = 0, 𝛽𝑛 = 𝛽𝑡 = 1), free boundary (𝛼𝑛 = 𝛼𝑡 = 𝛾𝑛 = 0, 𝛽𝑛 = 𝛽𝑡 = 1, 𝛾𝛾𝛾 𝑡 = 𝟎) and roller conditions 
(𝛼𝑛 = 𝛽𝑡 = 1, 𝛽𝑛 = 𝛾𝑛 = 𝛼𝑡 = 0, 𝛾𝛾𝛾 𝑡 = 𝟎) for mechanics; Dirichlet (𝛼𝑝 = 𝛼θ = 1, 𝛽𝑝 = 𝛽θ = 0) and Neumann (𝛼𝑝 = 𝛼θ = 0, 𝛽𝑝 = 𝛽θ = 1) con-
ditions for flow and energy.

Eqs.  (1)–(3) with substituted Eqs.  (4)–(10) represent a system of n𝑐 + 4 equations with respect to primary unknowns: pressure p, 
n𝑐 − 1 compositions z1,… , zn𝑐−1, temperature Θ and three components of displacement vector 𝐮. The secondary unknowns defining 
fluid mixture, e.g. molar fractions x𝑖𝛼 and saturations S𝛼 , are evaluated from primary unknowns inside the multiphase flash procedure. 
The problem definition is further refined by incorporating boundary conditions as specified in Eqs.  (14)–(17), along with the initial 
values assigned to the unknown variables.

2.2.  Discrete formulation

The scheme of FVM for the system of partial differential Eqs. (1)–(3) can be written in the following residual form 

𝐇𝑛+1
𝑗 =

⎡

⎢

⎢

⎣

𝐇𝑚,𝑖
H𝑒

𝐇𝑚𝑜𝑚

⎤

⎥

⎥

⎦

𝑛+1

𝑗

= 𝑗
⎡

⎢

⎢

⎣

𝔞𝑛+1𝑖 − 𝔞𝑛𝑖 − Δ𝑡𝑛𝔯𝑛+1𝑖
𝔞𝑛+1𝑒 − 𝔞𝑛𝑒 − Δ𝑡𝑛𝔯𝑛+1𝑒

𝔯𝔯𝔯𝑛+1𝑚𝑜𝑚

⎤

⎥

⎥

⎦

+
∑

𝛽∈𝜕𝑗
𝛿𝛽

⎡

⎢

⎢

⎢

⎣

Δ𝑡𝑛𝔣𝑛+1𝑖,𝛽
Δ𝑡𝑛𝔣𝑛+1𝑒,𝛽
𝐟𝑛+1𝛽

⎤

⎥

⎥

⎥

⎦

= 𝟎, (19)

where 𝜕𝑉  denotes the set of all interfaces 𝛽 belonging to cell 𝑗, and

𝔞𝑛+1𝑖 =

(

𝜙
n𝑝
∑

𝛼
x𝑖𝛼S𝛼𝜌𝛼

)𝑛+1

𝑗

, 𝔯𝑛+1𝑖 =

( n𝑝
∑

𝛼
x𝑖𝛼𝜌𝛼r𝛼

)𝑛+1

𝑗

,

𝔞𝑛+1𝑒 =

(

(1 − 𝜙)𝜌𝑠U𝑠 + 𝜙
n𝑝
∑

𝛼
𝜌𝛼U𝛼

)𝑛+1

𝑗

, 𝔯𝑛+1𝑒 =

( n𝑝
∑

𝛼
𝜌𝛼h𝛼r𝛼

)𝑛+1

𝑗

,

𝔯𝔯𝔯𝑛+1𝑚𝑜𝑚 = −

(

(1 − 𝜙)𝜌𝑠 + 𝜙
n𝑝
∑

𝛼
S𝛼𝜌𝛼

)𝑛+1

𝑗

g∇𝐷,

𝔣𝑛+1𝑖,𝛽 =
n𝑝
∑

𝛼

(

(

x𝑖𝛼𝜌𝛼𝑘𝑟𝛼𝜇−1𝛼
)𝑛+1
𝑢 qf ,𝑛+1𝛼,𝛽

)

,

𝔣𝑛+1𝑒,𝛽 =
n𝑝
∑

𝛼

(

(h𝛼𝜌𝛼)𝑛+1𝑢 qf ,𝑛+1𝛼,𝛽 − 𝜙𝑛+1𝑗 S𝑛+1𝛼,𝑢 q
θ,𝑛+1
𝛼,𝛽

)

− (1 − 𝜙𝑛+1𝑗 )qθ,𝑛+1𝑠,𝛽 .

Additionally, 𝐇𝑚,𝑖,H𝑒 and 𝐇𝑚𝑜𝑚 denote the residuals of the mass balances of component 𝑖, energy balance and momentum balance 
respectively, written for cell 𝑗; terms 𝔞, 𝔯 and 𝔣 stand for accumulation, source and flux terms, respectively. Furthermore, 𝑗 is the 
volume of a cell 𝑗, Δ𝑡𝑛 is 𝑛-th time step, subscript 𝑗 denotes the properties evaluated at the center of corresponding cell, subscript 
𝛽 denotes the properties approximated at the center of corresponding interface, subscript 𝑢 denotes the single-point upstream (SPU) 
weighting for the interface 𝛽 = {𝑗, 𝑘} betwee cells 𝑗 and 𝑘

(

x𝑖𝛼𝜌𝛼𝑘𝑟𝛼𝜇−1𝛼
)

𝑢 =

{
(

x𝑖𝛼𝜌𝛼𝑘𝑟𝛼𝜇−1𝛼
)

𝑗 , qf𝛼,𝛽 > 0,
(

x𝑖𝛼𝜌𝛼𝑘𝑟𝛼𝜇−1𝛼
)

𝑘, qf𝛼,𝛽 ≤ 0,
(20)

Journal of Computational Physics 538 (2025) 114152 

5 



Author

supercripts 𝑛 and 𝑛 + 1 denote the current and the next time layers respectively, 𝛿𝛽 is the surface area of interface 𝛽. Besides, we use 
the following notations 

qf𝛼,𝛽 = −
(

𝐊𝐧 ⋅ (∇p − 𝜌𝛼g∇𝐷)
)

𝛽 , qθ𝛽 = −(ΛΛΛ𝐧 ⋅ ∇Θ)𝛽 , (21)

where qf𝛼 is the Darcy’s flux from Eq.  (4), qθ𝛼 is the Fourier’s heat conduction flux from Eq.  (5).
Moreover, we approximate porosity defined in Eq.  (6) as 

𝜙𝑛+1𝑗 =
[

𝜙0 +
(𝜓 − 𝜙0)(1 − 𝜓)

K𝑠
(p − p0) + 𝛼𝜙(Θ − Θ0)

]𝑛+1

𝑗
+ 1
𝑗
∑

𝛽∈𝜕𝑗
𝛿𝛽
(

q̃𝑛+1𝛽 − q̃𝑛𝛽
)

. (22)

where the flux q̃𝛽 is defined as 

q̃𝛽 =
(

𝐮𝛽 − 𝐮𝑗
)

⋅ (𝐁𝐧)𝑗 . (23)

Note that 𝐮𝑗 will vanish upon summation over the interfaces in Eq.  (22), but we retain it here for clarity.

2.3.  Approximation of fluxes

Many numerical schemes of FVM rely on flux approximation. Widely exploited in reservoir engineering, the Two-Point Flux 
Approximation (TPFA) is applicable for diffusive fluxes under certain constraints. Recently, the Two-Point Stress Approximation 
(TPSA) was introduced as a method to approximate fluxes in the micropolar elasticity formulation using only two points, though it 
also remains subject to restrictions on admissible meshes [48]. The Multi-Point Flux Approximation (MPFA) [49,50] is not limited 
by those constraints but can introduce instability [51]. Its extension to momentum fluxes in elasticity systems is called Multi-Point 
Stress Approximation [11], which has been combined into the MPFA-MPSA approach for the coupled modeling of poroelasticity [30] 
and thermoporoelasticity [52,53] systems. To improve the stability properties of multi-point schemes, a family of weighted schemes 
has been developed [54] resulting in the evolution of nonlinear FVM schemes [55–57].

In this work, we extend the gradient-based weighted scheme initially proposed for poroelasticity systems [16], to thermo-
poroelasticity systems. Specifically, we utilize MPFA for heat conduction fluxes and the associated interpolation of temperature at the 
interface for the approximation of thermally-induced traction components. This interpolation incorporates temperature into the local 
balance of total traction vectors, resulting in the temperature-dependent displacement gradient approximation. This methodology 
follows the coupled scheme construction for poroelasticity systems [16]. Additionally, we apply single-point upstream weighting for 
the mobility multipliers in mass and heat convection fluxes.

Our gradient-based weighted multi-point approximations rely on reconstruction of the gradients of the unknowns. Specifically, 
reconstructed gradients are substituted into the flux expressions, with gradient approximations computed before simulation. Following 
the original scheme’s development [16], we manually resolve the gradient components normal to the interface, retaining only the 
tangential components for reconstruction. This splitting is motivated by the improved behavior of the resulted flux approximation in 
regard to the locking issue [58]. Once gradients are reconstructed within each cell, facial approximations use arithmetic weighting 
between neighboring cells.

The following subsections detail the approximations of fluid mass, heat and momentum fluxes (tractions), facial interpolations 
of pressure, temperature, and displacements for both interior and boundary interfaces, required for the assembly of system in Eq. 
(19). These approximations are based on the reconstruction of gradients of the unknowns, with a single gradient per cell evaluated 
from the continuity constraints on fluxes and unknowns across all cell interfaces. The continuity constraints for interior and boundary 
interfaces, along with flux approximations, are presented in the respective subsections. The final assembly of cell gradients, used in 
the flux approximations, is described in Section 2.3.3. The complete road map of flux approximations is depicted in Table 1.

Table 1 
Road map of flux approximations for a single cell.
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2.3.1.  Approximation of fluxes at interior interfaces
The approximation of fluxes can be derived from the continuity of unknowns 𝐝 =

[

p, Θ, 𝐮𝑇
] and associated fluxes. Assuming 

piecewise-linear 𝐝 and piecewise-constant 𝐊,ΛΛΛ,ℂ,𝐁,𝐀 defined on a given partitioning of Ω, we enforce the continuity of Darcy’s, 
heat conduction and momentum fluxes (traction vectors), along with the continuity of unknowns. These constitute the local problem 
– a set of fundamental premises enforced at each interface. For an interior interface with unit normal vector 𝐧 between cells 1 and 2, 
the local problem is expressed as:

𝐝𝛽1 = 𝐝1 +
[

𝐈⊗ (𝐱𝛽 − 𝐱1)𝑇
](

∇⊗ 𝐝1
)

= 𝐝2 +
[

𝐈⊗ (𝐱𝛽 − 𝐱2)𝑇
](

∇⊗ 𝐝2
)

= 𝐝𝛽2, (24)

−
(

∇p1 − 𝜌fg∇𝐷
)

⋅𝐊1𝐧 = −
(

∇p2 − 𝜌fg∇𝐷
)

⋅𝐊2𝐧, (25)

−∇Θ1 ⋅ΛΛΛ1𝐧 = −∇Θ2 ⋅ΛΛΛ2𝐧, (26)

−
[

𝐈⊗ 𝐧𝑇
]

𝐒1
(

∇⊗ 𝐮1
)

+ p𝛽1𝐁1𝐧 + Θ𝛽1𝐀1𝐧 = −
[

𝐈⊗ 𝐧𝑇
]

𝐒2
(

∇⊗ 𝐮2
)

+ p𝛽2𝐁2𝐧 + Θ𝛽2𝐀2𝐧, (27)

where 𝐝1 and 𝐝2 are unknowns at the cell centers, 𝐱1 and 𝐱2 are the positions of the cell centers, ⊗ denotes the Kronecker product, 𝐱𝛽
denotes the center of the interface, subscripts 𝛽1 and 𝛽2 denote the single-side interpolations of respective properties to the interface 
𝛽, 𝐈⊗ (𝐱𝛽 − 𝐱1)𝑇  and 𝐈⊗ (𝐱𝛽 − 𝐱2)𝑇  represent 5 × 15 matrices constructed as 

𝐈⊗ (𝐱𝛽 − 𝐱𝑖)𝑇 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(𝐱𝛽 − 𝐱𝑖)𝑇
(𝐱𝛽 − 𝐱𝑖)𝑇

(𝐱𝛽 − 𝐱𝑖)𝑇
(𝐱𝛽 − 𝐱𝑖)𝑇

(𝐱𝛽 − 𝐱𝑖)𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑖 = 1, 2,

𝐈⊗ 𝐧𝑇  stands for 3 × 9 matrix constructed in a similar way, ∇⊗ 𝐝1, ∇⊗ 𝐝2 and ∇⊗ 𝐮1, ∇⊗ 𝐮2 are 15 × 1 and 9 × 1 vectors respectively, 
constructed as 

∇⊗ 𝐝𝑖 =
⎛

⎜

⎜

⎝

∇p
∇Θ

∇⊗ 𝐮

⎞

⎟

⎟

⎠𝑖

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∇p
∇Θ
∇u𝑥
∇u𝑦
∇u𝑧

⎞

⎟

⎟

⎟

⎟

⎟

⎠𝑖

, 𝑖 = 1, 2, (28)

where [u𝑥u𝑦u𝑧
]𝑇  are the components of displacement vector 𝐮. Note that the arguments are swapped in the definitions of vectors 

∇⊗ 𝐝 and ∇⊗ 𝐮 in Eq.  (28). Additionally, 𝐒1 = ΓΓΓ𝐂1ΓΓΓ𝑇 , 𝐒2 = ΓΓΓ𝐂2ΓΓΓ𝑇  are 9 × 9 matrices where 𝐂 denotes a 6 × 6 symmetric stiffness 
matrix in Voigt notation and where 

ΓΓΓ𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Flux balances in Eqs.  (25), (26), and (27) stem from Darcy’s, Fourier’s and momentum fluxes, i.e. traction vectors, in Eqs.  (19). 
While the momentum flux balance accounts for all contributions to total momentum flux, the local balance of fluid mass flux in Eq. 
(25) neglects the fluxes caused by matrix movement and molecular diffusion. Additionally, the local balance of energy in Eq.  (26) 
neglects heat convection fluxes. Nonetheless, the conservation of Darcy’s fluxes in Eq.  (25) and the use of SPU approximation for 
mobility multipliers can guarantee the sufficiency of Eq.  (26) for the conservation of cumulative heat convection and conduction 
fluxes.

Eqs.  (24)–(27) reveal that the local problem decomposes into three subproblems: fluid mass, heat and momentum. The fluid mass 
and heat subproblems are completely independent while the momentum subproblem depends on both of them. Therefore, we first 
remind the approximations for the fluid mass and heat subproblems.

Fluid mass and heat conduction fluxes. For the derivation of MPFA for Darcy’s and Fourier’s fluxes, pressure and temperature interpo-
lations we follow approach described in Terekhov et al. [56]. We employ the co-normal decompositions of gradients and properties

∇p𝑖 = 𝜉𝑝𝑖 𝐧 + 𝜉𝜉𝜉𝑝𝜏𝑖, 𝜉𝑝𝑖 = 𝐧𝑇∇p𝑖, 𝜉𝜉𝜉𝑝𝜏𝑖 = (𝐈 − 𝐧𝐧𝑇 )∇p𝑖, (29)

∇Θ𝑖 = 𝜉θ𝑖 𝐧 + 𝜉𝜉𝜉θ𝜏𝑖, 𝜉θ𝑖 = 𝐧𝑇∇Θ𝑖, 𝜉𝜉𝜉θ𝜏𝑖 = (𝐈 − 𝐧𝐧𝑇 )∇Θ𝑖, (30)

𝐊𝑖𝐧 = 𝜅𝑖𝐧 + 𝜅𝜅𝜅𝑖, 𝜅𝑖 = 𝐧𝑇𝐊𝑖𝐧, 𝜅𝜅𝜅𝑖 = (𝐈 − 𝐧𝐧𝑇 )𝐊𝑖𝐧, (31)

ΛΛΛ𝑖𝐧 = 𝜆𝑖𝐧 + 𝜆𝜆𝜆𝑖, 𝜆𝑖 = 𝐧𝑇ΛΛΛ𝑖𝐧, 𝜆𝜆𝜆𝑖 = (𝐈 − 𝐧𝐧𝑇 )ΛΛΛ𝑖𝐧, (32)

where 𝜉𝑝𝑖 , 𝜉θ𝑖  and 𝜉𝜉𝜉
𝑝
𝜏𝑖, 𝜉𝜉𝜉

θ
𝜏𝑖 are normal and tangential projections, respectively, of pressure and temperature gradients evaluated in cells 

𝑖 = 1, 2. Note that 𝜉𝜉𝜉𝑝𝜏1 = 𝜉𝜉𝜉
𝑝
𝜏2 = 𝜉𝜉𝜉

𝑝
𝜏 and 𝜉𝜉𝜉θ𝜏1 = 𝜉𝜉𝜉θ𝜏2 = 𝜉𝜉𝜉θ𝜏 due to Eq.  (24). Moreover, scalars 𝜅𝑖, 𝜆𝑖 and vectors 𝜅𝜅𝜅𝑖, 𝜆𝜆𝜆𝑖 represent normal and 

tangential projections, respectively, of 𝐊𝑖𝐧 and ΛΛΛ𝑖𝐧 for cells 𝑖 = 1, 2.
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Fig. 1. Normal decomposition of distances between the centers 𝐱𝑖 of cells 𝑖 = 1, 2 and the center 𝐱𝛽 of interface 𝛽.

By substituting Eqs.  (25) and (26) into Eq.  (24), the gradients 𝜉𝑝2 and 𝜉θ2 can be eliminated, yielding the following equations for 
pressure gradient ∇p1 and temperature gradient ∇Θ1

(

𝜅2(𝐱2 − 𝐱1) + d2(𝐊1 −𝐊2)𝐧
)𝑇∇p1 = 𝜅2(p2 − p1) + d2𝜌fg∇𝐷𝑇 (𝐊2 −𝐊1

)

𝐧, (33)
(

𝜆2(𝐱2 − 𝐱1) + d2(ΛΛΛ1 −ΛΛΛ2)𝐧
)𝑇∇Θ1 = 𝜆2(Θ2 − Θ1), (34)

which we use below for the reconstruction of cell-centered gradients in cell 1.
In a similar fashion the gradients 𝜉𝑝2 and 𝜉θ2 can be eliminated in the Eqs.  (25) and (26), yielding MPFA of Darcy’s and Fourier’s 

fluxes

qf𝛽 = 𝜅(p1 − p2) −

(

𝜅(𝐲1 − 𝐲2)𝑇 +
d1𝜅2𝜅𝜅𝜅𝑇1 + d2𝜅1𝜅𝜅𝜅𝑇2

d2𝜅1 + d1𝜅2

)

𝜉𝜉𝜉𝑝𝜏𝑦 + 𝜌fg∇𝐷 ⋅
d1𝜅2𝐊1 + d2𝜅1𝐊2

d2𝜅1 + d1𝜅2
𝐧 (35)

qθ𝛽 = 𝜆(Θ1 − Θ2) −

(

𝜆(𝐲1 − 𝐲2)𝑇 +
d1𝜆2𝜆𝜆𝜆𝑇1 + d2𝜆1𝜆𝜆𝜆𝑇2

d2𝜆1 + d1𝜆2

)

𝜉𝜉𝜉θ𝜏 , (36)

where 𝜅 = 𝜅1𝜅2(d1𝜅2 + d2𝜅1)−1, 𝜆 = 𝜆1𝜆2(d1𝜆2 + d2𝜆1)−1 are weighted harmonic mean permeability and heat conductivity, respectively. 
Additionally, the following decompositions of geometrical terms are utilized

𝐱𝛽 − 𝐱1 = d1𝐧 + (𝐱𝛽 − 𝐲1), d1 = 𝐧 ⋅ (𝐱𝛽 − 𝐱1) > 0, 𝐲1 = 𝐱1 + d1𝐧,
𝐱2 − 𝐱𝛽 = d2𝐧 + (𝐲2 − 𝐱𝛽), d2 = 𝐧 ⋅ (𝐱2 − 𝐱𝛽) > 0, 𝐲2 = 𝐱2 − d2𝐧, (37)

where d𝑖 denotes a distance from the cell center 𝐱𝑖, 𝑖 = 1, 2 to an interface 𝛽 while 𝐲𝑖 stands for a normal projection of cell center 𝐱𝑖, 
𝑖 = 1, 2 onto interface 𝛽. These geometrical terms are shown in Fig. 1.

Finally, by substituting the gradients 𝜉𝑝1 and 𝜉θ1 into the left-hand side of Eq.  (24) one can obtain the pressure and temperature 
interpolations at the center of the interface 𝛽

p𝛽 = (d1𝜅2 + d2𝜅1)−1(d2𝜅1p1 + d1𝜅2p2) + (d1𝜅2 + d2𝜅1)−1
((

d1d2(𝜅𝜅𝜅2 − 𝜅𝜅𝜅1)𝑇 + d2𝜅1(𝐱𝛽 − 𝐲1)𝑇 + d1𝜅2(𝐱𝛽 − 𝐲2)𝑇
)

𝜉𝜉𝜉𝑝𝜏+

+ d1d2𝜌fg∇𝐷𝑇 (𝐊1 −𝐊2)𝐧
)

, (38)

Θ𝛽 = (d1𝜆2 + d2𝜆1)−1(d2𝜆1Θ1 + d1𝜆2Θ2) + (d1𝜆2 + d2𝜆1)−1
(

d1d2(𝜆𝜆𝜆2 − 𝜆𝜆𝜆1)𝑇 + d2𝜆1(𝐱𝛽 − 𝐲1)𝑇 + d1𝜆2(𝐱𝛽 − 𝐲2)𝑇
)

𝜉𝜉𝜉θ𝜏 . (39)

Momentum fluxes. The same approach is utilized for the multi-point approximation of momentum fluxes, i.e. traction vectors, and for 
the interpolation of displacements. Following the similar procedure [16], we consider the co-normal decompositions of displacement 
gradients and stiffnesses as

∇⊗ 𝐮𝑖 = [𝐈⊗ 𝐧]𝜉𝜉𝜉𝑢𝑖 + 𝜉𝜉𝜉
𝑢
𝜏𝑖, 𝜉𝜉𝜉

𝑢
𝑖 = [𝐈⊗ 𝐧𝑇 ]

[

∇⊗ 𝐮𝑖
]

, 𝜉𝜉𝜉𝑢𝜏𝑖 = [𝐈⊗ (𝐈 − 𝐧𝐧𝑇 )]
[

∇⊗ 𝐮𝑖
]

, (40)
[

𝐈⊗ 𝐧𝑇
]

𝐒𝑖 = 𝐓𝑖[𝐈⊗ 𝐧𝑇 ] + ΓΓΓ𝑖, 𝐓𝑖 = [𝐈⊗ 𝐧𝑇 ]𝐒𝑖[𝐈⊗ 𝐧], ΓΓΓ𝑖 = [𝐈⊗ 𝐧𝑇 ]𝐒𝑖[𝐈⊗ (𝐈 − 𝐧𝐧𝑇 )], (41)

where 𝜉𝜉𝜉𝑢𝑖  and 𝜉𝜉𝜉𝑢𝜏𝑖 are the normal and tangential projections of displacement gradients, respectively, evaluated in cells 𝑖 = 1, 2, 𝐓𝑖 and 
ΓΓΓ𝑖 are normal and tangential projections of 

[

𝐈⊗ 𝐧𝑇
]

𝐒𝑖, respectively, evaluated in cells 𝑖 = 1, 2. Note that 𝜉𝜉𝜉𝑢𝜏1 = 𝜉𝜉𝜉𝑢𝜏2 = 𝜉𝜉𝜉𝑢𝜏 due to Eq. 
(24).

By substituting Eq.  (27) into Eq.  (24), the gradient 𝜉𝜉𝜉𝑢2 can be eliminated, yielding the following equations for displacement 
gradient ∇⊗ 𝐮1

(

𝐓2 ⊗ (𝐱2 − 𝐱1)𝑇 + d2(𝐓1 − 𝐓2)⊗ 𝐧𝑇 + d2(ΓΓΓ1 −ΓΓΓ2)
)

[∇⊗ 𝐮1] = 𝐓2
(

𝐮2 − 𝐮1
)

+ d2
(

p𝛽1𝐁1 + Θ𝛽1𝐀1 − p𝛽2𝐁2 − Θ𝛽2𝐀2
)

𝐧, (42)
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where the approximations for p𝛽1, Θ𝛽1 are defined in Eq.  (24) while the following approximations of p𝛽2 and Θ𝛽2, which depend on 
the pressure and temperature gradients, respectively, evaluated in cell 1, are used

p𝛽2 = p2 + (𝐱𝛽 − 𝐲2 − d2𝜅−12
(

𝐊1𝐧 − 𝜅𝜅𝜅2
)

)𝑇∇p1 + d2𝜅−12 𝜌fg∇𝐷𝑇 (𝐊1 −𝐊2)𝐧, (43)

Θ𝛽2 = Θ2 + (𝐱𝛽 − 𝐲2 − d2𝜆−12
(

ΛΛΛ1𝐧 − 𝜆𝜆𝜆2
)

)𝑇∇Θ1. (44)

By deriving 𝜉𝜉𝜉𝑢1 from Eqs.  (24) and (27) and substituting it to the left-hand side of Eq.  (27), we can assemble the approximation 
of the total traction at the interface 𝛽 as 

𝐟𝛽 = 𝐟𝑑𝛽 + 𝐟𝑎𝛽 , (45)

where

𝐟𝑑𝛽 = −𝐓1𝜉𝜉𝜉
𝑢
1 −ΓΓΓ1𝜉𝜉𝜉𝑢𝜏 = 𝐓

(

𝐮1 − 𝐮2
)

−
([

𝐓⊗ (𝐲1 − 𝐲2)𝑇
]

+ d1𝐓2(d1𝐓2 + d2𝐓1)−1ΓΓΓ1 + d2𝐓1(d1𝐓2 + d2𝐓1)−1ΓΓΓ2
)

𝜉𝜉𝜉𝑢𝜏
+d2𝐓1(d1𝐓2 + d2𝐓1)−1

(

p𝛽
(

𝐁2 − 𝐁1
)

+ Θ𝛽
(

𝐀2 − 𝐀1
))

𝐧, (46)

𝐟𝑎𝛽 =
(

p𝛽𝐁1 + Θ𝛽𝐀1
)

𝐧, (47)

and 𝐓 = 𝐓1(d1𝐓2 + d2𝐓1)−1𝐓2 stands for 3 × 3 matrix and the approximations for p𝛽 ,Θ𝛽 are taken from Eqs.  (38) and (39). The 
equation for the assembled total traction will look like

𝐟𝛽 = 𝐓
(

𝐮1 − 𝐮2
)

−
([

𝐓⊗ (𝐲1 − 𝐲2)𝑇
]

+ d1𝐓2(d1𝐓2 + d2𝐓1)−1ΓΓΓ1 + d2𝐓1(d1𝐓2 + d2𝐓1)−1ΓΓΓ2
)

𝜉𝜉𝜉𝑢𝜏 (48)

+ d1𝐓2(d1𝐓2 + d2𝐓1)−1
(

p𝛽𝐁1 + Θ𝛽𝐀1
)

𝐧 + d2𝐓1(d1𝐓2 + d2𝐓1)−1
(

p𝛽𝐁2 + Θ𝛽𝐀2
)

𝐧,

which is symmetric against simultaneous swap of indices 1 ↔ 2 and normal direction 𝐧 ↔ −𝐧.
The advective term q̃𝛽 =

(

𝐮𝛽 − 𝐮1
)

⋅ 𝐁1𝐧 depends on the approximation of displacements at the center of an interface 𝐮𝛽 . This 
approximation can be obtained in a similar fashion, by deriving 𝜉𝜉𝜉𝑢1 from Eqs.  (24) and (27), but substituting it to the left-hand side 
of Eq.  (24). The resulting expression reads as

𝐮𝛽 = (d1𝐓2 + d2𝐓1)−1(d2𝐓1𝐮1 + d1𝐓2𝐮2) + (d1𝐓2 + d2𝐓1)−1
((

d1d2
(

ΓΓΓ2 −ΓΓΓ1
)

+ d2𝐓1 ⊗ (𝐱𝛽 − 𝐲1)𝑇 + d1𝐓2 ⊗ (𝐱𝛽 − 𝐲2)𝑇
)

𝜉𝜉𝜉𝑢𝜏+

+d1d2
(

𝑝𝛽1𝐁1 + Θ𝛽1𝐀1 − p𝛽2𝐁2 − Θ𝛽2𝐀2
)

𝐧
)

, (49)

where single-side pressure p𝛽1, p𝛽2 and temperature Θ𝛽1,Θ𝛽2 interpolations are taken from Eq.  (24).
The approximation of traction vector at the interior interfaces is provided in Eqs.  (45)–(47). Additionally, the interpolation of 

displacements required for the evaluation of porosity in Eqs.  (22) and (23) is provided in Eq.  (49). The novelty of these approximations 
is that they account for thermal stresses and, therefore, incorporate temperature. Note that all these approximations are yet incomplete 
and require the substitution of suitable approximation of gradients explained below.

2.3.2.  Approximation of fluxes at boundary interfaces
The approximations of fluxes at boundary interfaces must satisfy corresponding boundary conditions defined in Eqs.  (14)–(17). 

They replace the local problem, which we use for interior interfaces, and allow meaningful flux approximations to be derived at the 
domain’s boundaries. We employ the single-side approximations from the left-hand side of Eqs.  (24)–(27). In particular, using the 
single-side approximation of normal pressure gradient 𝜉𝑝1 one can derive pressure p𝑏 and Darcy’s flux qf𝛼,𝑏 at the boundary interface 
as [16]

p𝑏 =
(

𝛼𝑝 +
𝛽𝑝𝜅1
d1

)−1(

𝛾𝑝 +
𝛽𝑝𝜅1
d1

p1 − 𝛽𝑝

(

𝜅1
d1

(𝐲1 − 𝐱𝑏) + 𝜅𝜅𝜅1
)

⋅ 𝜉𝜉𝜉𝑝𝜏 + 𝛽𝑝𝜌fg∇𝐷 ⋅𝐊1𝐧
)

, (50)

qf𝛼,𝑏 = −
(

𝛼𝑝 +
𝛽𝑝𝜅1
d1

)−1

(51)
(

𝜅1
d1
𝛾𝑝 − 𝛼𝑝

𝜅1
d1

p1 + 𝛼𝑝

(

𝜅1
d1

(𝐲1 − 𝐱𝑏) + 𝜅𝜅𝜅1
)

⋅ 𝜉𝜉𝜉𝑝𝜏 − 𝛼𝑝𝜌𝛼g∇𝐷 ⋅𝐊1𝐧
)

,

where 𝐱𝑏 denotes the center of boundary interface, 𝛼𝑝, 𝛽𝑝, 𝛾𝑝 are the coefficients defining boundary conditions in Eq.  (14). The same 
technique can be applied to derive the temperature Θ𝑏 and Fourier’s flux qθ𝑏 at the boundary interface as

Θ𝑏 =
(

𝛼θ +
𝛽θ𝜆1
d1

)−1(

𝛾θ +
𝛽θ𝜆1
d1

Θ1 − 𝛽θ

(

𝜆1
d1

(𝐲1 − 𝐱𝑏) + 𝜆𝜆𝜆1
)

⋅ 𝜉𝜉𝜉θ𝜏

)

, (52)

qθ𝑏 = −
(

𝛼θ +
𝛽θ𝜆1
d1

)−1(𝜆1
d1
𝛾θ − 𝛼θ

𝜆1
d1

Θ1 + 𝛼θ

(

𝜆1
d1

(𝐲1 − 𝐱𝑏) + 𝜆𝜆𝜆1
)

⋅ 𝜉𝜉𝜉θ𝜏

)

, (53)

where 𝛼θ, 𝛽θ, 𝛾θ are the coefficients defining boundary conditions in Eq.  (15). Similarly, one can substitute the single-side approxi-
mation of displacement gradients 𝜉𝜉𝜉𝑢1 to boundary conditions in Eqs.  (16) and (17) to derive 𝐮𝑏 and the total traction vector at the 
boundary interface as
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𝐮𝑏 =
(

𝛼𝑡𝐈 +
𝛽𝑡
d1

𝐓1

)−1
(

𝑙𝛾𝑛𝐧 + (𝐈 − 𝑙𝐧𝐧𝑇𝐋)𝛾𝛾𝛾 𝑡
)

+

+
(

𝛼𝑡𝐈 +
𝛽𝑡
d1

𝐓1

)−1
(

𝛽𝑡𝐈 + 𝑙𝐧𝐧𝑇 (𝛽𝑛𝐈 − 𝛽𝑡𝐋)
)

⋅

⋅
(

1
d1

𝐓1𝐮1 −
(

1
d1

𝐓1
[

𝐈⊗ (𝐲1 − 𝐱𝑏)𝑇
]

+ΓΓΓ1

)

𝜉𝜉𝜉𝑢𝜏 + p𝑏𝐁1𝐧 + Θ𝑏𝐀1𝐧
)

, (54)

𝐟𝑏 = − 1
d1

𝐓1

(

𝛼𝑡𝐈 +
𝛽𝑡
d1

𝐓1

)−1
(

𝑙𝛾𝑛𝐧 + (𝐈 − 𝑙𝐧𝐧𝑇𝐋)𝛾𝛾𝛾 𝑡
)

− 1
d1

𝐓1

(

𝛼𝑡𝐈 +
𝛽𝑡
d1

𝐓1

)−1
(

𝑙𝐧𝐧𝑇 (𝛽𝑛𝐈 − 𝛽𝑡𝐋) − 𝛼𝑡d1𝐓−1
1
)

⋅

⋅
(

1
d1

𝐓1𝐮1 −
(

1
d1

𝐓1
[

𝐈⊗ (𝐲1 − 𝐱𝑏)
]

+ΓΓΓ1

)

𝜉𝜉𝜉𝑢𝜏 + p𝑏𝐁1𝐧 + Θ𝑏𝐀1𝐧
)

, (55)

where 𝐋 =
(

𝛼𝑛𝐈 +
𝛽𝑛
d1
𝐓1

)(

𝛼𝑡𝐈 +
𝛽𝑡
d1
𝐓1

)−1
 is a 3 × 3 matrix, 𝑙 = (

𝐧𝑇𝐋𝐧
)−1 is a scalar and the approximations of p𝑏 and Θ𝑏 are defined in 

Eqs.  (50) and (52), respectively, 𝛼𝑛, 𝛽𝑛, 𝛾𝑛 and 𝛼𝑡, 𝛽𝑡, 𝛾𝛾𝛾 𝑡 are the coefficients defining normal Eq.  (16) and tangential Eq.  (17) boundary 
conditions. The approximation of q̃𝛽 in Eq.  (23) can be achieved from Eq.  (54).

Eqs. (50), (52), and (54) can be rewritten for the reconstruction of gradients in the cells with boundary interfaces as
(

𝛼𝑝(𝐱𝑏 − 𝐱1) + 𝛽𝑝𝐊1𝐧
)

⋅ ∇p1 = 𝛾𝑝 + 𝛽𝑝𝜌fg∇𝐷 ⋅𝐊1𝐧 − 𝛼𝑝p1, (56)
(

𝛼θ(𝐱𝑏 − 𝐱1) + 𝛽θΛΛΛ1𝐧
)

⋅ ∇Θ1 = 𝛾θ − 𝛼θΘ1, (57)
(

𝛼𝑡
[

𝐈⊗ (𝐱𝑏 − 𝐱1)𝑇
]

+ 𝛽𝑡
[

𝐈⊗ 𝐧𝑇
]

𝐒1+

+ 𝑙𝐧𝐧𝑇 (𝛽𝑛𝐈 − 𝛽𝑡𝐋)
(

ΓΓΓ1 +
1
d1

𝐓1
[

𝐈⊗ (𝐲1 − 𝐱𝑏)𝑇
]

))

[

∇⊗ 𝐮1
]

=

= 𝑙𝛾𝑛𝐧 +
(

𝐈 − 𝑙𝐧𝐧𝑇𝐋
)

𝛾𝛾𝛾 𝑡 +
(

𝑙𝐧𝐧𝑇 (𝛽𝑛𝐈 − 𝛽𝑡𝐋)
1
d1

𝐓1 − 𝛼𝑡𝐈
)

𝐮1+

+
(

𝛽𝑡𝐈 + 𝑙𝐧𝐧𝑇 (𝛽𝑛𝐈 − 𝛽𝑡𝐋)
)(

p𝑏𝐁1 + Θ𝑏𝐀1
)

𝐧, (58)

where the approximations of p𝑏 and Θ𝑏, required for the latter equation, are provided in Eqs.  (50) and (52), respectively.

2.3.3.  Reconstruction of gradients
The reconstruction of pressure and temperature gradients can be performed independently. Bringing together Eqs.  (33) and (34) 

for interior interfaces and, whenever suitable, Eqs.  (56) and (57) for boundary interfaces of a cell, we build up the independent 
systems with respect to pressure and temperature gradients. Considering 𝑁 interfaces of the 𝑗-th cell, we achieve the following 
systems 

𝐌𝑝
𝑗∇p𝑗 = 𝐃𝑝𝑗𝜓𝜓𝜓

𝑝
𝑗 , 𝐌θ

𝑗∇Θ𝑗 = 𝐃θ
𝑗𝜓𝜓𝜓

θ
𝑗 , (59)

where 𝐌𝑝
𝑗  and 𝐌θ

𝑗  are 𝑁 × 3 matrices of coefficients in front of the pressure and temperature gradients, respectively, at the left-hand 
side of the equations and 𝐃𝑝𝑗  and 𝐃θ

𝑗  are 𝑁 × (𝑁 + 1) matrices of coefficients in front of the unknowns and free terms in boundary 
conditions at the right-hand side of the temperature and pressure equations, respectively, while 𝜓𝜓𝜓𝑝𝑗  and 𝜓𝜓𝜓θ

𝑗  are (𝑁 + 1) × 1 vectors of 
𝑁 + 1 unknown pressures p𝑖 or free terms 𝛾𝑝 in mass boundary conditions and temperatures Θ𝑖 or free terms 𝛾θ in thermal boundary 
conditions, respectively. The solution of Eqs.  (59) can be obtained in a least-squares sense as 

∇p𝑗 = (𝐌𝑝𝑇
𝑗 𝐌𝑝

𝑗 )
−1𝐌𝑝𝑇

𝑗 𝐃𝑝𝑗𝜓𝜓𝜓
𝑝
𝑗 , ∇Θ𝑗 = (𝐌θ𝑇

𝑗 𝐌θ
𝑗 )

−1𝐌θ𝑇
𝑗 𝐃θ

𝑗𝜓𝜓𝜓
θ
𝑗 . (60)

The reconstruction of displacement gradients depends on pressure and temperature gradients. Thus, we evaluate pressure and 
temperature gradients in all cells first and, subsequently, substitute them into the reconstruction of displacement gradients. We 
utilize the same approach for the reconstruction of displacement gradients. We assemble Eq.  (42) for interior and Eq.  (58) for 
boundary interfaces, forming the system of 𝑁 equations 

𝐌𝑢
𝑗
(

∇⊗ 𝐮𝑗
)

= 𝐃𝑢𝑗𝜓𝜓𝜓
𝑢
𝑗 , (61)

independently for every 𝑗-th cell, where 𝐌𝑢
𝑗  is a 3𝑁 × 9 matrix of coefficients in front of the displacement gradients at the left-hand side 

of the equations, and 𝐃𝑢𝑗  is 3𝑁 × 5(𝑁 + 1) matrix of coefficients in front of the corresponding unknowns and free terms in boundary 
conditions at the right-hand side the equations, while 𝜓𝜓𝜓𝑢𝑗  is 5(𝑁 + 1) × 1 vectors of 5(𝑁 + 1) unknown 𝐝𝑖 or free terms 𝛾𝑝, 𝛾θ, 𝛾𝑛, 𝛾𝛾𝛾 𝑡 in 
boundary conditions. The least-squares solution of the system in Eq.  (61) is 

∇⊗ 𝐮𝑗 = (𝐌𝑢𝑇
𝑗 𝐌𝑢

𝑗 )
−1𝐌𝑢𝑇

𝑗 𝐃𝑢𝑗𝜓𝜓𝜓
𝑢
𝑗 . (62)

The flux approximations and interpolations depend on the tangential projections 𝜉𝜉𝜉𝜏 = {𝜉𝜉𝜉𝑝𝜏 , 𝜉𝜉𝜉θ𝜏 , 𝜉𝜉𝜉
𝑢
𝜏} of pressure, temperature and 

displacement gradients, respectively, evaluated at the interface. For boundary interfaces, we employ a single-side approximation of 
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Fig. 2. Cells that contribute to the approximation of fluxes over the interfaces of cell 𝑖. Index 𝑗 denotes the nearest neighbors of cell 𝑖. Index 𝑘
denotes farther neighbors that contribute to the gradients reconstructed in cells 𝑗.

those gradients, i.e. 𝜉𝜉𝜉𝜏 = 𝜉𝜉𝜉1𝜏 . For interior interfaces, we utilize the arithmetic mean 

𝜉𝜉𝜉𝜏 =
𝜉𝜉𝜉𝜏1 + 𝜉𝜉𝜉𝜏2

2
. (63)

A set of cells that contribute to the approximation Eq.  (63) for each interface of some cell 𝑗 is illustrated in Fig. 2.
It is worth mentioning that the least squares solution in Eq.  (60) allows computing the gradients of unknowns locally and 

independently for every cell. Note, however, that it does not strictly guarantee the local conservation property for the scheme as 
least-squares solution of the system, assembled for all cell’s interfaces, can violate individual equations. In order to maintain the local 
conservation, individual gradients for every interface that respects the corresponding flux balance should be employed [56,57].

2.4.  Discretization in state space

The simulation of multiphase compositional thermal fluid flow requires efficient machinery for the evaluation of fluid properties 
and their derivatives. Although corresponding constitutive and equilibrium relations usually remain fixed across domain, this evalua-
tion often consumes significant development and computational resources. In this paper, we employ the Operator-based Linearization 
(OBL) which is designed to overcome this challenge by simplifying the treatment of state-dependent operators, providing efficient 
and flexible means for Jacobian and residual assembly [59].

OBL implies the calculation of the operators dependent on a single-cell state 𝜔𝜔𝜔 = {p, 𝐳𝑖,Θ}, i.e. 
{𝔞𝑖, 𝔞𝑒, x𝑖𝛼𝜌𝛼𝑘𝑟𝛼𝜇−1𝛼 , 𝜌𝛼 , h𝛼 ,S𝛼 , 𝜌𝑠, 𝔯𝑖, 𝔯𝑒} = 𝐟 (𝜔̃𝜔𝜔), (64)

at predefined grid nodes ̃𝜔𝜔𝜔 covering the state space. For regular grid we have
𝜔̃𝜔𝜔 = p̃ × z̃1 ×⋯ × z̃n𝑐 × Θ̃, (65)

p̃ = {p1,… , p𝑁𝑝}, z̃1 = {z1,1,… , z1,𝑁z1
},… , z̃n𝑐 = {zn𝑐 ,1,… , zn𝑐 ,𝑁zn𝑐

}, (66)

Θ̃ = {Θ1,… ,Θ𝑁𝑇 },

where ̃p, z̃𝑖 and ̃Θ denote state-space axes coordinates, 𝐟 is multilinear interpolant function used to reconstruct operator values between 
supporting points. Regular grid guarantees fast evaluation of derivatives. The distribution of points along axes in Eq.  (66) can be 
dictated by specific model properties, e.g. for better resolution of phase envelope. By default, they are distributed uniformly for 
simplicity.

We utilize the adaptive operator sampling strategy for the evaluation of operators defined in Eq.  (64). For any requested state, 
the method identifies the set of supporting points required for interpolation. If any of these points have not yet been evaluated, 
the exact operator values are computed at those points and stored. The exact evaluation of the operators also requires the solution 
of thermodynamic equilibrium problem. We employ the multiphase flash [47] for the evaluation of instantaneous thermodynamic 
equilibrium between fluid phases, implemented in DARTS-flash package [60]. Once operators have been evaluated at a certain 
point, they are stored in a multidimensional table and can be used for the evaluation of operators and their derivatives in adjacent 
hypercubes.

2.5.  Solution strategy

Solving the system of n𝑐 + 4 nonlinear discrete Eq.  (19) involves significant computational challenges. We utilize Newton-Raphson 
iterations to resolve nonlinearities. Linear systems appearing in these iterations can not be handled efficiently with direct solvers al-
ready for grids comprised of more than 104 cells. Therefore, the scalable iterative linear solution strategy is required for the integration 
of realistic models.

In this work, we implement the two-stage block-partitioned preconditioning strategy for multiphase poromechanics [23]. The 
strategy exploits the fixed-stress approximation, which has been initially developed for the sequential solution of poromechanical 
systems [21], and later has been successfully utilized in the preconditioning of fully implicit systems [33].
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In the first stage, this preconditioning strategy considers the block-partitioned system 

𝐔−1𝐉
[

𝛿𝛿𝛿𝜔𝜔𝜔
𝛿𝛿𝛿𝐮

]

=
[

𝐈 −𝐉𝜔𝑢𝐉−1𝑢𝑢
𝟎 𝐈

][

𝐉𝜔𝜔 𝐉𝜔𝑢
𝐉𝑢𝜔 𝐉𝑢𝑢

][

𝛿𝛿𝛿𝜔𝜔𝜔
𝛿𝛿𝛿𝐮

]

=
[

𝐒𝜔 𝟎
𝐉𝑢𝜔 𝐉𝑢𝑢

][

𝛿𝛿𝛿𝜔𝜔𝜔
𝛿𝛿𝛿𝐮

]

= −
[

𝐇𝜔 − 𝐉𝜔𝑢𝐉−1𝑢𝑢 𝐇𝑢
𝐇𝑢

]

, (67)

where 𝐉 is the Jacobian matrix, [𝛿𝛿𝛿𝜔𝜔𝜔,𝛿𝛿𝛿𝐮]𝑇 =
[

𝛿𝛿𝛿𝐩, 𝛿𝛿𝛿𝐳, 𝛿𝛿𝛿𝚯, 𝛿𝛿𝛿𝐮
]𝑇  is the vector of unknown increments of pressures, compositions, temper-

atures for non-isothermal systems, and displacements, respectively, the jacobian subblock 𝐉𝑎𝑏 denote the derivatives of residual of 
equation 𝑎 with respect to primary unknown 𝑏 assembled across all cells, while 𝐇𝜔 and 𝐇𝑢 are the vectors of residuals in corresponding 
mass-energy and momentum discrete balance equations, respectively. Note that here we group state unknowns 𝛿𝛿𝛿𝜔𝜔𝜔 =

[

𝛿𝛿𝛿𝐩, 𝛿𝛿𝛿𝐳, 𝛿𝛿𝛿𝚯
]𝑇 , 

corresponding mass and energy equations and treat them equally in the first stage. The Schur complement 𝐒𝜔 of block 𝐉𝑢𝑢 in the 
Jacobian is equal to 

𝐒𝜔 =
⎡

⎢

⎢

⎣

𝐉𝑝𝑝 − 𝐉𝑝𝑢𝐉−1𝑢𝑢 𝐉𝑢𝑝 𝐉𝑝z − 𝐉𝑝𝑢𝐉−1𝑢𝑢 𝐉𝑢z 𝐉𝑝θ − 𝐉𝑝𝑢𝐉−1𝑢𝑢 𝐉𝑢θ
𝐉z𝑝 − 𝐉z𝑢𝐉−1𝑢𝑢 𝐉𝑢𝑝 𝐉zz − 𝐉z𝑢𝐉−1𝑢𝑢 𝐉𝑢z 𝐉zθ − 𝐉z𝑢𝐉−1𝑢𝑢 𝐉𝑢θ
𝐉θ𝑝 − 𝐉θ𝑢𝐉−1𝑢𝑢 𝐉𝑢𝑝 𝐉θz − 𝐉θ𝑢𝐉−1𝑢𝑢 𝐉𝑢z 𝐉θθ − 𝐉θ𝑢𝐉−1𝑢𝑢 𝐉𝑢θ

⎤

⎥

⎥

⎦

, (68)

and can be approximated by 𝐒̃𝜔 defined as 

𝐒̃𝜔 =
⎡

⎢

⎢

⎣

𝐉𝑝𝑝 − diag
(

𝐉𝑝𝑢𝐉−1𝑢𝑢 𝐉𝑢𝑝𝐞
)

𝐉𝑝z 𝐉𝑝θ
𝐉z𝑝 − diag

(

𝐉z𝑢𝐉−1𝑢𝑢 𝐉𝑢𝑝𝐞
)

𝐉zz 𝐉zθ
𝐉θ𝑝 − diag

(

𝐉θ𝑢𝐉−1𝑢𝑢 𝐉𝑢𝑝𝐞
)

𝐉θz 𝐉θθ

⎤

⎥

⎥

⎦

, (69)

where row-sum lumping strategy is utilized , 𝐞 = [1,⋯ , 1]𝑇  is a probing vector and diag() denotes a diagonal matrix constructed 
from an input vector. This lumping strategy is an algebraic generalization of fixed-stress approximation [34] recalling the probing 
technique for computing Schur complements [61]. For the evaluation of 𝐉−1𝑢𝑢  we use a single V-cycle of algebraic multigrid (AMG) 
solver that provides a good approximation to this matrix.

The rationale behind the simplifications introduced by Eq.  (69), specifically the assumptions 𝐉𝑢z ≈ 0 and 𝐉𝑢θ ≈ 0, is as follows. 
The subblock 𝐉𝑢z captures the influence of fluid composition on the momentum balance through their effect on density multiplier 
in gravitational forces. Practically, variations in fluid composition have a little effect on the overall density of saturated rocks, 
which justifies neglecting this coupling. Consequently, for consistency, 𝐉𝑢θ is also eliminated. This is explained by the treatment of 
temperature as a hyperbolic variable, along with fluid compositions, in the second stage of the preconditioner. The neglect of 𝐉𝑢θ
maintains the consistency among hyperbolic variables offloading the second-stage preconditioner. Note, however, that the conduction-
dominated regimes may require retaining 𝐉𝑢θ in the approximation of Schur complement.

In contrast to Finite Element Method, the multi-point stress approximation (MPSA) used in this paper does not produce a symmetric 
positive-definite (SPD) matrix 𝐉𝑢𝑢 that can compromise the efficiency of multigrid solvers. Related convergence analysis and theoretical 
guarantees for non-symmetric systems are limited by the systems with dominated SPD part [62,63]. Nonetheless, multigrid solvers 
reportedly demonstrate their efficiency for a wider classes of matrices beyond SPD [64,65]. More importantly, they exhibit notable 
efficiency in solving non-symmetric systems arising from the discretization of elliptic-dominated operators of fluid flow and transport 
problems [66] as well as coupled poroelasticity models [67] in reservoir engineering. Although a few symmetric positive-definite 
MPFA schemes have been proposed [68,69], constructing a symmetric MPSA scheme presents greater challenges. Potential approaches 
include weakly imposing the symmetry of the stress tensor [70] or adopting mixed displacement-stress formulation, which can be 
constructed in analogy to diffusion operator [71].

In the second stage, the Constrained Pressure Residual (CPR) preconditioner [72,73] can be used to find an approximate solution 
for the multiphase flow system. CPR preconditioner also performs in two stages. In the first stage, the system is divided into pressure 
(elliptic) and composition-temperature (hyperbolic) subsystems with True-IMPES (implicit-pressure explicit-saturation) reduction 
algorithm [74]. The pressure subsystem is solved with an AMG solver and often a single V-cycle provides an accurate enough solution. 
In the second stage of the CPR preconditioner, the multiphase flow system with substituted pressure solution is subjected to the 
Incomplete LU (ILU) preconditioner. The described CPR preconditioner has proven to be robust and efficient in accelerating the 
modeling of a wide range of geo-energy applications [73,75]. Although, the standard CPR considers only fluid composition (or 
saturation) as hyperbolic unknowns, in some cases, it can efficiently handle systems obtained in geothermal modeling by treating 
temperature unknown and energy balance as a part of the hyperbolic subsystem [75]. However, dominant heat conduction regimes 
can compromise its efficiency and, generally, the extended CPTR preconditioner must be employed [76,77].

The described preconditioner is summarized in Algorithm  1, where −1
𝑢  is a single V-cycle of BoomerAMG [78], tuned for three-

dimensional elasticity problem, −1
𝜔  is an in-house implementation of CPR preconditioner [75].

3.  Results

3.1.  Convergence study

Convergence study of the system of Eqs.  (1)–(3) is complicated by a few nonlinearities. Nonlinearities do not allow to perform 
a general measurement of convergence rate as it becomes case-dependent. Therefore, we have to introduce a couple of simpli-
fications linearizing thermo-poroeasticity system to perform a rigorous measurements of convergence rate. First, it is possible to 
investigate convergence only for single-phase slightly compressible flow as multiphase compositional flow introduces unavoidable 
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Algorithm 1 Nonlinear iteration.
1: procedure Nonlinear_Iteration(𝐉,𝐇, tol, max_iter) ⊳ Newton-Raphson
2:  −1

𝑢 ,−1
𝜔 ← Preconditioner_Setup(𝐉,𝐇)

3:  for 𝑗 = 0…max_iter − 1 do ⊳ GMRES iterations
4:  𝛿𝛿𝛿𝜔,𝛿𝛿𝛿𝐮 ← Preconditioner_Solve(𝐉,𝐇,−1

𝑢 ,−1
𝜔 ) ⊳ Initial guess

5:  MGS_Orthogonalization ⊳ Modified Gram-Schmidt
6:  Arnoldi_Step
7:  𝛿𝛿𝛿𝜔𝜔𝜔,𝛿𝛿𝛿𝐮, res ← Update(𝛿𝛿𝛿𝜔𝜔𝜔,𝛿𝛿𝛿𝐮)
8:  if res < tol then
9:  Break
10:  return 𝛿𝛿𝛿𝜔𝜔𝜔,𝛿𝛿𝛿𝐮, res
11:
12: procedure Preconditioner_Setup(𝐉,𝐇)
13:  Setup −1

𝑢 (𝐉𝑢𝑢) ⊳ −1
𝑢  – V-cycle of BoomerAMG

14:  𝐞 ← [1,⋯ , 1]𝑇

15:  𝐒̃𝜔 ←
⎡

⎢

⎢

⎣

𝐉𝑝𝑝 − diag
(

𝐉𝑝𝑢−1
𝑢 𝐉𝑢𝑝𝐞

)

𝐉𝑝z 𝐉𝑝θ
𝐉z𝑝 − diag

(

𝐉z𝑢−1
𝑢 𝐉𝑢𝑝𝐞

)

𝐉zz 𝐉zθ
𝐉θ𝑝 − diag

(

𝐉θ𝑢−1
𝑢 𝐉𝑢𝑝𝐞

)

𝐉𝑇 z 𝐉θθ

⎤

⎥

⎥

⎦

16:  Setup −1
𝜔 (𝐒̃𝜔) ⊳ −1

𝜔  – CPR
17:  return −1

𝑢 ,−1
𝜔

18:
19: procedure Preconditioner_Solve(𝐉,𝐇,−1

𝑢 ,−1
𝜔 )

20:  𝛿𝛿𝛿𝜔𝜔𝜔 ← −1
𝜔

(

−𝐇𝜔 + 𝐉𝜔𝑢−1
𝑢 𝐇𝑢

)

21:  𝛿𝛿𝛿𝐮 ← −1
𝑢

(

−𝐇𝑢 − 𝐉𝑢𝜔𝛿𝛿𝛿𝜔𝜔𝜔
)

22:  return 𝛿𝛿𝛿𝜔𝜔𝜔,𝛿𝛿𝛿𝐮

nonlinearities compromising the measurement of convergence rate. Specifically, the effective density, internal energy and heat con-
duction averaged over fluid and rock matrix introduce additional nonlinearities in the system. For this study, we simplify these
terms as

(1 − 𝜙)𝜌𝑠 + 𝜙
n𝑝
∑

𝛼
S𝛼𝜌𝛼 → 𝜌tot, (70)

(1 − 𝜙)𝜌𝑠U𝑠 + 𝜙
n𝑝
∑

𝛼
S𝛼𝜌𝛼U𝑠 → htot = cΘ, (71)

(1 − 𝜙)𝐪θ𝑠 +
n𝑝
∑

𝛼
𝜙S𝛼𝐪θ𝛼 → 𝐪θtot = −ΛΛΛ∇Θ, (72)

where 𝜌tot is a constant, htot and the approximated 𝐪θtot are linear functions of unknowns, with constant heat capacity c and heat con-
ductivity tensor ΛΛΛ. Note that Eq.  (71) neglects the thermoporoelastic effect on temperature through porosity changes with alternating 
pressure and temperature.

Despite these simplifications, the heat convection in Eq.  (2) maintains the system nonlinear. To overcome this nonlinearity, we 
perform two convergence studies: the first one investigates the convergence of a poroelastic system without energy balance while the 
second, thermoporoelastic, one considers a linear pressure distribution which allows the convergence of the system to be estimated 
in the presence of heat convection. The linearity-preserving property of these numerical schemes [13,16] enables the machine-
precision approximation of linearly distributed unknowns across a domain. As a result, Darcy’s fluxes enjoy a much more accurate 
approximation compared to the enthalpy multiplier defined by nonlinearly distributed temperature across the domain. This explains 
the possibility of measuring the convergence rate in the second study.

Consider a cubic domain Ω = [0, 𝑎]3 of a side length 𝑎 = 1m with the following constant stiffness matrix 𝐂, Biot tensor 𝐁, perme-
ability tensor 𝐊, thermal dilation tensor 𝐀 and heat conductivity tensor ΛΛΛ:

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.323 0.0726 0.263 0.108 −0.08 −0.239
0.0726 1.276 −0.318 0.383 0.108 0.501
0.263 −0.318 0.943 −0.183 0.146 0.182
0.108 0.383 −0.183 1.517 −0.0127 −0.304
−0.08 0.108 0.146 −0.0127 1.209 −0.326
−0.239 0.501 0.182 −0.304 −0.326 1.373

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[bar],

𝐁 =
⎡

⎢

⎢

⎣

1.5 0.1 0.5
0.1 1.5 0.15
0.5 0.15 1.5

⎤

⎥

⎥

⎦

, 𝐊 =
⎡

⎢

⎢

⎣

1.5 0.5 0.35
0.5 1.5 0.45
0.35 0.45 1.5

⎤

⎥

⎥

⎦

[mD],
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Table 2 
The remaining properties used in the convergence studies.
 Property  Value  Unit
 Porosity, 𝜙0  0.1 −
 Fluid density, 𝜌f  978 kgm−3

 Fluid viscosity, 𝜇f  0.01 cP
 Fluid compressibility, 𝛽f  0 bar−1

 Total density, 𝜌tot  2482.8 kgm−3

 Rock compressibility, 𝛽𝑠 1.4503768 × 10−6 bar−1

 Gravitational acceleration, g  0.0981 md−2

 Heat capacity, c  1 kJm−3 K−1

𝐀 =
⎡

⎢

⎢

⎣

1.5 0.5 0.35
0.5 1.5 0.45
0.35 0.45 1.5

⎤

⎥

⎥

⎦

[bar K−1], ΛΛΛ = 𝛼
⎡

⎢

⎢

⎣

1.5 0.1 0.5
0.1 1.5 0.15
0.5 0.15 1.5

⎤

⎥

⎥

⎦

[Wm−1K−1],

where 𝛼 denotes an input parameter used to measure the convergence rate for various Peclet numbers. The remaining properties are 
listed in Table 2.

Let us consider the reference solution for displacements defined as
𝑢(𝑥, 𝑦, 𝑧, 𝑡) =

[

(𝑥 − 0.5)2 − 𝑦 − 𝑧
]

(1 + 𝑡2),

𝑣(𝑥, 𝑦, 𝑧, 𝑡) =
[

(𝑦 − 0.5)2 − 𝑥 − 𝑧
]

(1 + 𝑡2),

𝑤(𝑥, 𝑦, 𝑧, 𝑡) =
[

(𝑧 − 0.5)2 − 𝑥 − 𝑦
]

(1 + 𝑡2). (73)

Additionally, let us define the following nonlinear function 

𝑓 (𝑥, 𝑦, 𝑧, 𝑡) = 1
2 sin(1)

sin((1 − 𝑥)(1 − 𝑦)(1 − 𝑧)) + 0.5(1 − 𝑥)3(1 − 𝑦)2(1 − 𝑧)(1 + 𝑡2). (74)

In the first convergence study, we estimate the convergence rate for the poroelastic system. For this purpose we utilize the function 
from Eq.  (74) as a pressure reference solution, i.e. p = 𝑓 . Neither energy balance nor thermal dilation are considered in this study. 
Subsequently, the reference displacement and pressure solutions are substituted to fluid mass and momentum balance Eqs.  (1) and 
(3); and the respective right-hand sides of these equations are calculated for every cell at every time step. These values are substituted 
to the numerical scheme as free terms. Besides, the reference solution defines Dirichlet boundary conditions, applied to fluid and 
momentum balance equations. As a result, the numerical scheme must approximate the given reference solution.

Fig. 3 demonstrates the L2 error norms between reference p,𝐮 and numerical pℎ,𝐮ℎ solutions against spatiotemporal resolution. 
The norms for arbitrary quantity 𝐴 and its discrete approximation 𝐴ℎ are calculated as follows: 

‖𝐴 − 𝐴ℎ‖ =

√

√

√

√

√

(

∑

𝑖
𝑖

)−1
∑

𝑖
𝑖|𝐴(𝐱𝑖) − 𝐴ℎ,𝑖|2, (75)

Fig. 3. The L2 error norm against space-time resolution obtained with cubic (a) and tetrahedral (a) grids.
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Fig. 4. The sensitivity of numerical convergence rate to the Peclet number of heat transfer investigated with cubic (a) and tetrahedral (a) grids.

Table 3 
The properties of two layers in the two-layer Terzaghi setup.
 Layer ℎ,m E, GPa 𝜈 𝑏 𝑘, mD 𝜙0 𝜇f , cP 𝛽f , bar−1
 1  25  1  0.35  0.9  1  0.15

1 10−10 2  75  5  0.0053  0.01  0.001  0.00656

where 𝑖 denotes the volume of 𝑖-th cell, 𝐱𝑖 – its center. In the norm evaluation, the stress tensor is treated as a vector of six components, 
written in Voigt notations. The results are obtained with a series of cubic and tetrahedral grids composed of 82, 83, 84, 85 cubes and 
100, 384, 2604, 18,921 tetrahedrons, respectively. As it was shown before [13,16], displacements demonstrate a nearly quadratic 
convergence rate while pressure, which suffers from the first-order approximation of time derivatives, exhibits only a super-linear 
convergence rate. Additionally, Fig. 3 illustrates a linear convergence rate of Darcy’s velocities 𝐪fℎ and stress tensors 𝝈ℎ reconstructed 
at cell centers.

In the second convergence study, we estimate the convergence rate for the thermoporoelastic system. To avoid the nonlinearity 
of convective fluxes in energy balance, we employ the following time-independent reference solution for pressure 

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 3 − 𝑥 − 𝑦 − 𝑧, (76)

which represents a linear function in space. Linearity-preserving property of the scheme [13] delivers machine precision to the 
pressure solution, which allows the convergence with respect to other unknowns to be consistently measured. Temperature is defined 
by the reference solution from Eq.  (74), i.e. Θ = 𝑓 , while the reference solutions for displacements remain defined according to Eq. 
(73). Following the same procedure as in the first study, we incorporate these reference solutions into the numerical calculations.

Fig. 4 presents the measured convergence rate of displacements and temperature against Peclet number Pe = 𝑎c‖𝐪𝑓‖𝐿2
‖ΛΛΛ‖𝐿2

. It shows 
that in conduction-dominated region we obtain a second order of convergence for both displacements and temperature. For higher 
Peclet numbers, the convergence weakens up to super-linear for displacements and linear for temperature at convective-dominated 
limit. This behavior is expected as the scheme respect the balance of heat conduction fluxes in Eq.  (26).

Note that in reservoir conditions, the Peclet number can reach values of ∼ 103 magnitude near wells. According to Fig. 4, this 
can significantly hampers the ability to achieve a quadratic convergence rate and, in turn, accurate enough, converged solutions on 
moderate meshes. This underscores the necessity of highly resolved meshes and efficient preconditioning techniques for handling 
associated large linear systems to ensure obtaining converged results.

3.2.  Uniaxial poroelastic consolidation (Terzaghi’s problem)

We further validate the numerical scheme against the analytical solution for the unidimensional consolidation problem, also 
known as Terzaghi’s problem. As the analytical solution in the presence of the two heterogeneous layers in Terzaghi’s problem 
remains feasible [31,79], we consider this more general setup. The poroelastic domain shown in Fig. 5 of vertical extent ℎ = 100m is 
comprised by two layers of distinct properties with ℎ1 = 25m, ℎ2 = 75m respectively. The first layer is adjacent to the right boundary 
which is subjected to constant normal load 𝐹 = 10MPa and constant initial pressure 𝑝0 = 0Pa. All other sides of the domain are 
impermeable to fluid and subjected to the roller boundary condition (normal displacement and tangential traction are equal to zero). 
The domain’s permeabilities 𝐊 = 𝑘𝐈 and Biot’s tensors 𝐁 = 𝑏𝐈 are defined by their scalar counterparts 𝑘 and 𝑏, respectively, while the 
stiffness tensors are determined by Young’s moduli E and Poisson’s ratios 𝜈. The properties of porous matrix and fluid including initial 
porosities 𝜙0, fluid viscosity 𝜇f  and fluid compressibility 𝛽f  are listed in Table 3.

The comparison of results is presented in Fig. 6. We use a uniform mesh comprised of 40 cells, so that the top left subfigure 
(Fig. 6(a)) demonstrates pressure over time evaluated at 𝑥 = 1.25m and the bottom left subfigure (Fig. 6(c)) shows the dynamics 
of horizontal displacement u𝑥 taken at 𝑥 = 98.75m. The top and bottom right subfigures (Fig. 6(b), Fig. 6(d)) present pressure and 
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Fig. 5. Two-layer Terzaghi setup.

Fig. 6. Comparison of the analytical and numerical solutions for the two-layer Terzaghi’s problem. In the left column, pressure (a) and displacement 
(c) at the center of the most left cell are shown over time. In the right column, pressure (b) and displacement (d) profiles over the whole domain 
are depicted at three moments of time.

horizontal displacement profiles over the domain respectively. Numerical results remain in good accordance with the analytical 
solution. For the simplicity of analytical solution, we assume the Skempton’s coefficient is equal in both layers. As a result, the 
compression of the poroelastic domain causes an instant pressure build-up, uniform throughout the whole domain. The thin boundary 
layer originates at the right side of the domain subjected to the constant initial pressure. Numerically it produces spurious oscillations 
that disappear over time. They can be observed in Fig. 6(b). These oscillations indicate the inf-sup instability of the scheme [24,25], 
which can be overcome by introducing regularization [80], by choosing the essentially inf-sup stable discretization spaces [30] or by 
using flux vector splitting [31]. The analysis of the latter approach applied to the current scheme is conducted in [32].

We conducted the convergence study for homogeneous domain covered by uniform rectangular mesh. Fig. 7 demonstrates a decay 
of discrepancy between analytical and numerical solutions in terms of L2 norm defined in Eq.  (75) and evaluated at 𝑇 = 10 d. At the 
finest resolution of 1500 cells and 1500 time steps, the solutions evaluated at 𝑡 = 10 d demonstrate the maximum relative differences 
0.009% and 0.01% for pressure and displacement fields, respectively. The linear convergence rate observed in Fig. 7 is lower than 
reported in Section 3.1. This can be explained by perturbations introduced by inf-sup instability at the beginning of simulation and 
unavoidable round-off errors.
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Fig. 7. The L2 error norm of difference between analytical and numerical solutions against space-time resolution.

Fig. 8. Mandel setup.

3.3.  Biaxial poroelastic consolidation (Mandel’s problem)

Consider the same domain as in the previous section with homogeneous properties and different boundary conditions illustrated 
in Fig. 8. Now roller boundary conditions are applied only to the left and bottom boundaries of the domain. The right boundary is 
free of both normal and tangential forces while a normal load is applied from the top. Note that this load is applied through the stiff 
bulk in a way that produces uniform vertical displacement. Therefore, it could be more convenient to specify time-dependent normal 
displacement at the top estimated from analytical expressions. No-flow conditions are specified for all boundaries except for the right 
one subjected to the Dirichlet condition 𝑝0 = 0Pa. This setup is the so-called Mandel’s problem which is often used as an example of 
non-monotonic pressure behavior following undrained loading.

A porous homogeneous domain is characterized by Young’s modulus E = 1GPa, Poisson’s ratio 𝜈 = 0.25, a diagonal permeability 
tensor 𝐊 = 𝑘𝐈, 𝑘 = 1mD, saturated with a single-phase compressible fluid with compressibility 𝛽f = 10−10 bar−1, viscosity 𝜇f = 1 cP, 
and with a Biot modulus M = 10−5 bar−1 and a diagonal Biot tensor 𝐁 = 𝑏𝐈, 𝑏 = 0.9.

For the numerical solution, we use 30 × 30 square mesh. Fig. 9 depicts a comparison between the numerical solution and analytics 
[31,79]. As in the previous section, the top left subfigure (Fig. 9(a)) shows the pressure dynamics evaluated at 𝑥 = 1.66m, the bottom 
left subfigure (Fig. 9(c)) shows the dynamics of horizontal displacement u𝑥 at 𝑥 = 98.33m, the right top (Fig. 9(b)) and right bottom 
(Fig. 9(d)) subfigures illustrate the profiles of pressure and vertical displacement correspondingly over horizontal centerline at three 
moments of time. The numerical solution matches analytics quite well. As in the previous example, spurious oscillations arise around 
the right side of the domain at the very beginning of simulation. They can be seen in the top right subfigure (Fig. 9(b)).

We conducted the convergence study for homogeneous domain covered by uniform rectangular mesh. Fig. 10 demonstrates a 
decay of discrepancy between analytical and numerical solutions in terms of L2 norm defined in Eq.  (75) and evaluated at 𝑇 = 10 d. 
At the finest resolution of 1500 cells per x-axis and 1500 time steps, the solutions evaluated at 𝑡 = 10 d demonstrate the maximum 
relative differences 0.007% and 0.002% for pressure and displacement fields, respectively. The linear convergence rate observed in 
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Fig. 9. Comparison of the analytical and numerical solutions for Mandel’s problem. In the left column, pressure (a) and displacement (c) at the 
center of the most left cell are shown over time. In the right column, pressure (b) and displacement (d) profiles over the whole domain are depicted 
at three moments of time.

Fig. 10. The L2 error norm of difference between analytical and numerical solutions against space-time resolution.

Fig. 10 is lower than reported in Section 3.1. This can be explained by perturbations introduced by inf-sup instability at the beginning 
of simulation and unavoidable round-off errors.

3.4.  Uniaxial thermoporoelastic consolidation

The semi-analytical solution for a coupled problem of fluid mass, energy, and momentum balance in the uniaxial consolidation test 
[82] can be employed to benchmark the developed scheme. Thus, we consider the vertical column of 7m height subjected to instant 
vertical loading with 𝐹 = 1Pa at the top boundary [81]. The constant pressure p = 0 Pa and temperature Θ = 50 ◦C is maintained at 
the top boundary while the initial pressure and temperature are equal to 𝑝0 = 0Pa and Θ0 = 0 ◦C, respectively. All other sides of the 
domain are impermeable to fluid and heat and subjected to the roller boundary condition. The domain is shown in Fig. 11.
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Fig. 11. The setup for uniaxial thermoporoelastic consolidation test [81].

Fig. 12. The dynamics of pressure (a), temperature (b) and vertical displacement (c) over time estimated in three points in space with semi-analytical 
method and DARTS.

Furthermore, the stiffness tensor is defined by Young’s modulus E = 6 kPa and Poisson’s ratio 𝜈 = 0.4. Isotropic permeability 
𝐊 = 𝑘𝐈, Biot’s 𝐁 = 𝑏𝐈, thermal dilation 𝐀 = 𝑎𝐈 and total heat conduction ΛΛΛ = 𝜆𝐈 tensors are defined by the corresponding scalar values 
𝑘 = 4 × 10−9 m2, 𝑏 = 1.0, 𝑎 = 9 × 10−7 ◦C−1 and 𝜆 = 836 Jm−1 s−1◦ C−1, respectively. The total volumetric heat capacity is equal to c =
167.2 kJm−3◦ C−1. Fluid is maintained incompressible with fluid viscosity 𝜇 = 1 cP.

Fig. 12 illustrates the comparison of pressure, temperature, and vertical displacement to the analytical solution. Pressure, temper-
ature, and vertical displacement evaluated at three points in space are plotted against time. The numerical solution obtained with 
the proposed scheme (DARTS) demonstrates a good match to the semi-analytical solution (Analytics).
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Fig. 13. Young modulus (in tens of GPa) and lateral permeability (in mD) fields shown from the top (top row) and from the bottom (bottom row) 
of reservoir. Young’s modulus is calculated as a linear function of porosity.

Table 4 
The description of fluid physics used in the study.
 Property  Single-phase  Two-phase
 Phase densities, kgm−3  666.85  1014, 50
 Phase compressibilities, bar−1 1.45 × 10−5 10−5 , 5 × 10−3

 Phase viscosities, cP  1.0  0.3, 0.03
 Phase relative permeabilities,  –

(

S𝛼−0.1
1−0.2

)2

 Phase heat capacities, kJkg−1◦C−1  –  4.18, 0.035
 Initial phase saturation  1  0.67, 0.33

An instant loading causes an instant compression followed by further consolidation due to fluid discharge as in the uniaxial 
poroelastic consolidation test. However, heat conduction propagates energy from the top boundary, which is maintained under high 
temperature Θ = 50 ◦C, throughout the whole domain. Temperature increase causes thermal expansion, competing with consolidation.

3.5.  Thermoporoelastic extension of SPE10 model

This field-scale test case utilizes a reservoir model from the 10th SPE Comparative Solution Project (SPE10). Following [19], we 
extend this model with mechanical properties to perform a coupled compositional modeling in heterogeneous thermo-poroelastic 
medium.

The original project’s model is covered with a regular Cartesian 60 × 220 × 85 grid that spans two formations: the top 50 layers 
have a channelized permeability distribution while the bottom 35 layers represent a permeability field that has a Gaussian spatial 
covariance. Mechanical properties are defined by heterogeneous Young’s modulus linearly dependent on porosity, uniform Pois-
son’s ratio 𝜈 = 0.2, Biot’s coefficient 𝑏 = 1, thermal expansion coefficient 𝛼 = 9 ⋅ 10−7◦C−1. The reservoir has a uniform rock density 
𝜌𝑠 = 2650 kgm−3, rock heat capacity c𝑠 = 2.2 kJkg−1◦C−1 and effective heat conductivity 𝜆0 = 72.23kJm−1d−1◦C−1. Fig. 13 shows the 
corresponding Young’s modulus E and x-axis permeability 𝑘𝑥 maps. For the scalability study, we coarsened the original model using a 
volume-averaging approach [19]. The domain is subjected to impermeable boundary conditions and constant temperature defined by 
the temperature at top Θtop = 26.85◦C and bottom Θbot = 76.85◦C of domain distributed between according to a constant geothermal 
gradient. Furthermore, we apply roller boundary conditions at all domain’s sides except the top boundary where we apply a uniform 
normal load f top𝑁 = 90MPa.

In this study, we examine three fluid physics: single-phase, two-phase two-component and thermal two-phase two-component. 
Table 4 list parameters which describe single-phase and thermal two-phase fluid physics. For the isothermal two-phase fluid physics, 
thermal properties should be omitted.

We model the thermo-hydro-mechanical-compositional reservoir response perturbed by the doublet of injection and production 
wells placed over the longest centerline (along the y-axis) as shown in the top-left of Fig. 13. The vertical wells perforate the whole 
thickness of the reservoir. Pressure controls p𝑖𝑛𝑗 = pmax + 50 bar and pprod = pmin − 50 bar are applied to the wells, respectively, where 
pmax and pmin are maximal and minimal unperturbed pressures over perforated cells. In all variants of fluid physics, single-phase fluid 
is pumped into the reservoir through the injection well. In the case of two-phase thermal fluid, specifically, pure water of temperature 
Θinj = 27.85◦C is injected. The simulation is performed up to 𝑡max = 20 d.

Figs. 14 and 15 demonstrate solution profiles along the longest centerline of the reservoir, indicated by a white line in the top-
left of Fig. 13. This centerline passes through the top of the reservoir and is aligned with the y-axis. Fig. 14 presents the vertical 
displacement and pressure obtained for single-phase fluid while Fig. 15 additionally shows water saturation and water saturation 
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Fig. 14. Solution profiles for single-phase fluid plotted over the longest centerline at the top of the reservoir (white line in the top-left of Fig. 13). 
The results are displayed for three different grid resolutions and at three time steps.

Fig. 15. Solution profiles for two-phase (a) and thermal two-phase (b) fluids plotted over the longest centerline at the top of the reservoir (white 
line in the top-left of Fig. 13). The results are displayed for three different grid resolutions and at three time steps.
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Fig. 16. Scalability study of the block-partitioned preconditioner. The cummulative number of nonlinear iterations (top row), linear iterations 
(central row) and average number of linear iterations per nonlinear one with deviations (bottom row) in 20 time steps is plotted against number of 
degrees of freedom (DOFs) in multiple grid resolutions. The results are given for modelling single phase (left column), two-phase (central column) 
and two-phase thermal (right column) fluid flow.

Fig. 17. Cummulative runtime of the block-partitioned preconditioner to achieve convergent solutions in 20 time steps. Timings of setup and solve 
calls are provided.

with temperature obtained for two-phase and thermal two-phase fluids, respectively. The results for three different grid resolutions 
and at three time steps 𝑡 = 0, 1, 20 d are shown in both figures.

The vertical displacement profiles for all three fluid types show significant differences between grid resolutions. The results 
calculated with the coarsest resolution (32k) overestimate vertical displacement compared to those calculated with finer grids. This 
applies to both the vertical displacement at the initial unperturbed condition (𝑡 = 0 d) and the vertical displacement due to well 
operation (𝑡 = 20 d). The major contribution to this difference in vertical displacement can be attributed to the varying stiffness 
heterogeneities specified for different grid resolutions. Additionally, this difference can be partly explained by the difference in 
pressures obtained for different grid resolutions. Indeed, the pressure spike around the injection well is localized in a narrower region 
on the finer grids compared to the coarser grid. Besides, the narrower pressure spike around the injection well for finer grids explains 
the shorter propagation of water saturation and temperature fronts.
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Fig. 18. Average runtime of setup and solve calls per nonlinear (NI) and linear (LI) iteration, respectively, against number of degrees of freedom 
(DOFs) in various simulation runs.

Fig. 19. Sensitivity of linear (left axis) and nonlinear (right axis) iterations to the effective thermal conductivity. Calculations are performed using 
24 × 104 × 40 grid with thermal two-phase fluid physics.

Efficient modeling of fully implicitly coupled thermo-hydro-mechanical-compositional processes in realistic settings requires a 
scalable computational framework. Fig. 16 presents the results of the scalability study of the implemented block-partitioned precon-
ditioner. It shows the number of linear and nonlinear iterations needed to obtain convergent solutions in 20 time steps for various grid 
resolutions. Moreover, the average numbers of linear iterations per nonlinear iteration are also reported. The model heterogeneities 
are upscaled from the original SPE10 dataset provided at the finest grid resolution. The results indicate a linear increase in the number 
of linear iterations with increasing grid size.

For the same model runs, Fig. 17 presents the cummulative runtime of the block-partitioned preconditioner. Additionally, the 
runtime of the setup and solve calls are specified. The setup call performs the approximation of Schur complement 𝐒̃𝜔, including 
the setup of AMG preconditioners for pressure 𝐉𝑝𝑝 and displacement 𝐉𝑢𝑢 subsystems every Newton iteration. Note, that under linear 
thermo-poroelastic assumption and the boundary conditions of the same type, the latter is not needed as 𝐉𝑢𝑢 remains constant over 
iterations and time steps. The solve call performs the solution of flow and, subsequently, displacement subsystems. Although, the setup 
includes redundant setup of AMG preconditioner for displacement subsystem, it constitutes a small part (<12%) of preconditioner’s 
runtime. Most of the runtime is taken by solve call, specifically solve of displacement subsystem. The increase in the preconditioner’s 
runtime against grid size is almost linear. Additionally, Fig. 18 present the average runtimes of setup and solve calls per nonlinear 
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and linear iteration, respectively. Despite different block sizes, the results obtained for different fluids follow almost the same straight 
line.

Heat conduction terms introduce additional elliptic terms that are not treated efficiently at the CPR stage of the block-partitioned 
preconditioner. Fig. 19 demonstrates the sensitivity of solving performance to the magnitude of heat conduction term. It shows the 
number of linear and nonlinear iterations needed to obtain convergent solutions in 20 time steps for multiple values of effective heat 
conduction coefficient. The figure shows an insignificant increase in linear iterations with higher heat conduction coefficient, for 
the values of heat conduction between 10−4𝜆0 and 102𝜆0. This almost flat behavior might be explained by an already high number 
of iterations spent by the block-partitioned preconditioner. In the case of extremely high heat conduction, we observe a significant 
increase in the number of linear iterations, as anticipated.

4.  Conclusion

In this paper, we have introduced a novel cell-centered collocated fully implicit scheme of the Finite Volume Method (FVM) for 
the coupled modeling of thermo-hydro-mechanical-compositional processes in thermoporoelastic rocks. The scheme benefits from a 
vectorized form of mass, energy and momentum fluxes using multi-point approximations, that simplifies multiphysical simulation 
within the FVM framework. Furthermore, the use of collocated FVM for momentum balance enables the natural integration of thermal 
composition flow with geomechanics within a single computational grid and engine. Additionally, we implemented a block-partitioned 
preconditioning strategy that alleviates the costs of fully implicit coupling and enables efficient modeling of large realistic setups.

The proposed framework has been validated using a simplified version of the physics which allows us to use an numerical conver-
gence benchmark. We show that in the poroelastic case, the displacements exhibit a nearly quadratic convergence rate while pressure 
demonstrates a super-linear convergence. In the thermo-poroelastic case, the convergence rate changes from quadratic to lower 
orders depending on the thermal Peclet number. We also demonstrate how the performance of the full thermo-hydro-mechanical-
compositional model depends on the grid resolution using the mechanical extension of the SPE10 model.

Future work would include the development of the robust inf-sup stable extension of the scheme, better tuning of the precondi-
tioner, offloading assembly and solvers to GPU to further minimize computational costs of modeling, and the support of faults with 
frictional contacts to enable modeling of fault reactivation.
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