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Preface

This research project, conducted in collaboration between TU Delft and MN, a pension fund asset
manager, focuses on the optimal venue selection in FX trading. The objective is to investigate how
the venue selection affects trading performance and to improve MN trading execution algorithm,
named ALGO. The research aims to propose a new approach for the venue selection problem by
allocating weights to different venues instead of solely selecting the best one. It utilizes advanced
statistical and machine learning techniques and develops a matching engine capable of reconstruct-
ing historical orderbooks for backtesting strategies. The outcomes of this thesis show clear ideas for
improving the current venue selection model. The proposed models are anticipated to consistently
outperform ALGO, leading to improved trade execution. The insights and methodologies developed
in this research will contribute to further investigations in improving venue selection processes and
optimizing execution strategies in the FX market. The thesis provides a comprehensive analysis
of the problem, explores the mathematical framework, presents real-world data-driven approaches,
and discusses the findings and conclusions, offering valuable insights and recommendations for
future MN research.

Disclaimer: this version of the thesis does not contain any information deemed unpublishable
by MN. The trading venues are renamed with AMS and RTM. Moreover, some details on ALGO
and other minor changes have been removed and replaced with |[...].
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Chapter 1

Introduction

This research project is a collaborative effort between TU Delft and MN, a pension fund asset
manager. It focuses on the investigation of the optimal venue selection in FX trading. Trading
algorithms play a crucial role in financial markets, enabling efficient execution and risk manage-
ment. MN, recognizing the significance of algorithmic trading, has developed their own proprietary
algorithm named ALGO. The aim of this research is to explore the impact of venue selection on
trading performance, leveraging MN’s ALGO and applying advanced mathematical techniques to
optimize execution outcomes in the dynamic FX market.

The objectives of this research are two. Firstly, it aims to propose a novel approach to tackle the
venue selection problem in FX trading. Previous studies have not yielded significant results in this
area, and therefore, this work seeks to explore new perspectives and methodologies to address the
challenge. Secondly, the research aims to enhance the existing venue selection algorithm employed
by ALGO. By leveraging advanced statistical and techniques and incorporating new insights gained
from the research, the objective is to improve the accuracy and performance of ALGO’s venue
selection process. Ultimately, the goal is to develop an enhanced algorithm that can optimize the
venue selection method and potentially outperform existing methods in the FX market.

The methodology changes the way to look into the venue selection method. It proposes a
best allocation approach to the problem, trying to assign the best weight to each venue instead to
just select the best one. Moreover, the used tools are new: this study has developed a matching
engine capable of reading the data from the two venues and reconstructing the orderbook at each
instance of time in the past. This makes it possible to backtest strategies using historical data
to measure performance at both venues and to compare them. Using this approach, the research
created datasets to analyze and to be used to train statistical and machine learning models.

The outcomes of this thesis are expected to yield several significant results. Firstly, the pro-
posed approach is anticipated to demonstrate superior performance and practical applicability to
ALGO. By shifting the focus towards quantifying venue superiority for optimal order allocation,
the research aims to provide a more effective and suitable framework for ALGO’s practical imple-
mentation. Secondly, the proposed models for the studied strategies are expected to consistently
outperform ALGO, leading to a substantial improvement in the tested simulations. The perfor-
mance enhancement of these models is expected to contribute to more efficient trade execution
and better overall outcomes. Finally the insights and methodologies developed in this thesis will
provide a basis for further investigations into improving venue selection processes and optimizing
execution strategies in the FX market.

The first chapters of the thesis focus on a comprehensive analysis of the problem, providing a
detailed exploration of the business setting and the current state of affairs that necessitate improve-
ment. The subsequent chapters delve into the mathematical framework from a present perspective,
elucidating the underlying mathematical principles and models employed in the research. The
rationale for selecting a data-driven approach with backtesting strategies using real-world data
and graphical analysis is thoroughly explained. The thesis then proceeds to introduce the results



obtained from the strategies and propose a new model with a proof of concept. Finally, the find-
ings and conclusions derived from the current study are extensively discussed, providing valuable
insights and recommendations for future research in the field.



Chapter 2

The Venue Selection Problem

The aim of this chapter is to introduce and explain in detail the problem addressed in this project.
The chapter begins by explaining the importance of algorithms in trading. It then proceeds to
provide an overview of the FX market, including its functioning, the concept of venues, and the
various participants involved. The problem at hand is subsequently described, outlining the current
venue selection process used by MN. Finally, the thesis presents different approaches to address
this problem, selecting the best and offering potential solutions and enhancements.

2.1 Algorithmic trading

In recent years, algorithmic trading has become increasingly prevalent in financial markets. Algo-
rithmic trading is the use of algorithms to make trading decisions, usually with a high degree of
automation [1]. The spread of algorithmic trading has been driven by several factors, including
advances in computing technology, improvements in data analysis and modeling techniques, and
increased competition among financial firms. In addition, regulatory changes have made it easier
for firms to adopt algorithmic trading strategies. Figure 2.1 represents a Goldman Sachs analysis
of the spread of algorithmic trading by asset class from 2004 to 2017 and confirms its spread in all
the markets.

Equities

2004 2006€ 2008 2010 2012 2014 2016

Figure 2.1: Market share of algorithmic trading by asset class [2].

There are two main advantages of algorithmic trading: first, the use of coded algorithms re-
moves emotional biases that could compromise results; and second, algorithms can execute trades
much faster than human reactions, providing a significant speed advantage in fast-paced markets.
In fact, algorithmic trading can help traders make more informed decisions by processing vast
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amounts of data in real-time, identifying patterns and correlations, and executing trades based on
predefined criteria. This can lead to improved accuracy and consistency in trading decisions, as
well as increased efficiency and cost-effectiveness. In addition, algorithmic trading can also help
traders avoid common cognitive biases that can affect human decision-making. By relying on data-
driven analysis and objective criteria, algorithmic trading can help traders make more rational and
objective decisions. Moreover, algorithmic trading can also provide traders with the ability to test
and refine their strategies using historical data and backtesting techniques. This can help traders
identify weaknesses in their approach and optimize their strategies for better performance in real-
world conditions. For these reasons combined with transparency of the transactions, trading data
collection and cost reduction, MN decided to develop its own ruled based execution algorithm:
ALGO. Before giving some background on ALGO and its current strategies, it is important to
explain how trading works in practize.

2.2 FX trading

The foreign exchange (FX) market, also known as the currency market, is the largest and most
liquid financial market in the world, with an estimated daily trading volume of over $6.6 trillion as
of 2019 [3]. The FX market is where currencies are bought and sold by market participants (banks,
corporations, governments and individual traders). The market operates 24 hours a day, 5 days a
week, and spans multiple time zones, from Asia to Europe to the Americas.

One of the primary functions of the FX market is to facilitate international trade and investment.
For example, a company in the United States that wants to import goods from Italy will need to
exchange US dollars for EUR to pay for those goods. This exchange is typically facilitated through
the FX market. Similarly, an investor who wants to buy a foreign stock will need to exchange their
domestic currency for the foreign currency in order to make the purchase. In addition to facilitating
international trade and investment, the FX market also plays an important role in managing
currency risk. Companies that operate in multiple countries may be exposed to fluctuations in
exchange rates, which can impact their revenues and profits.

FX market is an example over-the-counter (OTC) market: the trades are conducted directly
by all the market participants, without an official market exchange. This fact makes the market
decentralized, flexible and accessible, but on the other hand the absence of strict regulation makes
it less transparent. Technological advancements have played a significant role in the evolution of
the FX market. Electronic trading platforms have made it easier and faster for market participants
to execute trades, and algorithmic trading has become increasingly popular.

Before explaining the concept of limit order and order book, it is important to define ticks and
pips. In the foreign exchange (FX) market, "pip" and "tick" are both terms used to describe the
small price movements in a currency pair. In the EUR/USD market, a pip is equal to 0.0001 while
the tick is 0.00001 (0.1 pips). In summary, pips and ticks are both measurements of price movement
in the FX market.

2.2.1 Limit orders and market orders

In the basic setup, a market has two types of orders: market orders and limit orders [4]. Market
orders are executed immediately: by sending a market order, a trader wants to buy/sell a specific
asset immediately, at the best price available. On the other hand, limit orders are not executed
immediately. In fact, a limit order constitutes the fact of wanting to buy or sell an asset at a price
other than the market price, usually less convenient for the counterpart. Limit orders are executed
when matched with other orders and they are stored in a Limit Order Book (LOB, explained in
the next subsection).

Overall, the choice between a market order and limit order depends on the investor’s investment
strategy, time horizon, and risk tolerance. Market orders are suited for investors who prioritize fast
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execution, while limit orders provide greater control over execution prices at the cost of slower
execution. Passive orders prioritize maximizing price advantage over speed of execution, while
aggressive orders prioritize speed over price advantage. Market orders are considered highly ag-
gressive, as they prioritize immediate execution at the best available prices in the market.

2.2.2 What is a Limit Order Book

The Limit Order Book (LOB) is a fundamental component of financial markets that displays all
outstanding buy and sell orders for a specific financial instrument at various price levels. Traders
can observe the bid (buy) and ask (sell) prices along with their corresponding quantities in the
order book. When a trader wants to buy or sell, they can place a limit order specifying their
desired price and quantity. If the price of a buy limit order is higher than or equal to the best
available ask price, or the price of a sell limit order is lower than or equal to the best available bid
price, a trade is executed. The order book matches buy and sell orders based on their respective
prices, allowing traders to transact at the desired price levels. Figure 2.2 shows an example of limit
order book.

Figure 2.2: A Limit Order Book records outstanding limit orders for a fixed time t. The green
columns represent the volumes of the buy orders at each price, the red columns the volumes of the
sell orders at each price [5].

One of the most important characteristics of the order book is that it constantly changes as
market participants submit, modify, or cancel their limit orders. This dynamic nature reflects
the evolving supply and demand in the market, enabling price discovery and efficient trading
execution. By observing the order book, traders can assess market sentiment and liquidity, helping
them navigate the market and execute their trades effectively. Having defined the LOB, it is now
possible to define the trading venues.

2.2.3 What is a trading venue

According to the European Securities and Markets Authority (ESMA), a trading venue is defined as
a multilateral system operated by an investment firm or a market operator which brings together
multiple third-party buying and selling interests in financial instruments. In other words, the
trading venue is a location where buy and sell orders for a financial-instrument are matched [6].

Trading venues are important for providing a centralized location where buyers and sellers can
come together to execute trades in a fair and efficient manner. Some of the main properties of a
trading venue include its trading rules, fees, transparency, and accessibility. Trading rules are the
guidelines for how trades are executed on the platform, including order types, execution methods,
and pre-trade and post-trade transparency. Fees are charged by the trading venue for access to
the platform, and can include transaction fees, listing fees, and membership fees. Transparency
is important for ensuring that market participants have access to relevant information about the
market, such as the price and volume of trades. Finally, accessibility refers to the ability of different
types of market participants to access the trading venue, which can impact the liquidity and
efficiency of the market.

It is possible to distinguish two main groups of trading venues: Central Limit Order Book
(CLOB) and Electronic Communication Network (ECN). CLOBs are trading systems that cen-
tralize and aggregate all buy and sell orders in a particular security or financial instrument. They
maintain a central order book that displays all outstanding bids and offers, along with their corre-
sponding quantities and prices. CLOBSs typically provide a transparent and fair trading environment
by allowing market participants to see the full depth of the market and place orders accordingly.
When a buy order matches a sell order in terms of price and quantity, a trade is executed, and the
transaction is recorded [7]. An important example of CLOB venue is AMS.
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ECNs are electronic platforms that connect buyers and sellers directly, bypassing traditional
intermediaries like market makers or specialists. They display a consolidated order book that
includes the bids and offers from various participants, allowing for transparent and direct trading.
Orders placed on ECNs can be executed immediately if there is a matching bid/offer available, or
they may be added to the order book for future execution [8]. An important example of ECN venue
is RTM. The main differences between ECN and CLOB are four:

e Market Structure: ECNs facilitate direct trading among participants, while CLOBs cen-
tralize and match orders from multiple participants.

e Order Book Display: ECNs display a consolidated order book with bids and offers from
various participants, whereas CLOBs maintain a central order book. The key distinction is
that ECNs consolidate the bids and offers into a single order book, whereas CLOBs main-
tain the central order book with all individual bids and offers. Both approaches provide
transparency, but the display method differs.

e Access to Participants: ECNs offer access to a broader range of market participants, in-
cluding institutions and retail traders, while CLOBs are typically accessed by specific market
participants or members.

e Transparency: Both ECNs and CLOBs provide transparency, but ECNs often offer more
visibility into individual participant orders. Having a consolidated order book it could be
that some order are not visible to all the participants.

The explained differences could influence the market participant’s choice to trade in one or
another kind of venues. Overall, trading venues are essential for the functioning of financial mar-
kets, and the properties of a trading venue can have a significant impact on the efficiency and
transparency of the market. If on one hand the price of currencies/assets in all the venues should
be the same, the differences between venues (CLOB/ECN, market participants, different volumes
etc.) could affect a trading strategy performance. In order to understand who are the market par-
ticipants in the trading venues, the next section gives an overview about the two main categories
of traders: market makers and market takers.

2.2.4 Market makers and market takers

To understand more, it is necessary to introduce some important concepts. First of all, let’s define
the interpreters acting in trading venues:

o A (prime)-broker is an intermediate party between the individual trader and the trading
venue [6]. In general the individual traders are not able to place orders in the venues and
they need brokers to indirectly trade.

o A market maker is an individual or firm that quotes both bid and ask prices for a specific
security, providing liquidity to the market by ensuring that there are always buyers and sellers
for that security. Market makers profit by buying securities at the bid price and selling them
at the ask price, which creates a bid-ask spread. The bid-ask spread represents the market
maker’s profit margin and also serves as a measure of liquidity in the market.

Market makers can also engage in principal trading, where they trade securities for their own
accounts, rather than for clients. Principal trading can be a significant source of revenue for
market makers, but it can also create conflicts of interest. To address this concern, some
regulators require market makers to disclose their trading activities and to separate their
market making and proprietary trading operations.

Overall, market makers are important participants in financial markets, providing liquidity
and depth to the markets they operate in. By actively quoting both bid and ask prices,
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they ensure that buyers and sellers can always find a counterparty for their trades, which is
essential for the efficient functioning of financial markets [9].

e A liquidity pool is a group of market participants who place buy and sell orders in an order
book in order to provide liquidity. A trading venue may have several different liquidity pools
into which a trader can place orders [6].

o A market taker is an agent who needs liquidity to ensure a reasonable price exists whenever
they need to enter a trade or close an existing position. This allows them to execute trades at
a reasonable price. They recognize that, in order to utilize market makers for trade execution,
they may need to give up certain advantages, such as price advantages. Market takers tend to
hold their positions for longer periods than market makers, which means they are generally
less concerned about trading costs [10]. Figure 2.3 shows the main differences between market
makers and takers.

Market Makers O Market Takers

Offer prices to buy and sell Either buyers or sellers
m Arbitrageurs m Traders

® Short term oriented | |nvestors

= Earn a spread B Producers/Consumers

m Earn or hedge from price movement
Figure 2.3: Market makers and market takers comparison [10].

To put this thesis into context, it is necessary to specify that MN is a market taker. FX trading
is in fact performed to limit exposure to foreign currency risk and is not the main business of
the firm. Given the size of the assets being traded, it is crucial for MN to trade them using the
most optimised strategy possible. Even small improvements can equate to large potential portfolio
efficiencies and /or cost savings. However, note that MN, using its own algorithms and trading large
quantities, places substantial orders in the venues over time at a price calculated as fair. It could
in fact be described as a one-side market maker that uses information from both venues to find a
good buy/sell price for the currencies.

2.3 Problem description

The venue selection problem in trading refers to the challenge of choosing the optimal trading venue
for executing a trade. This decision involves considering factors such as cost, speed, and quality of
execution, as well as regulatory requirements. With the rise of electronic trading, the number of
trading venues has increased, making the venue selection problem more complex [6].

In recent years, the venue selection problem has become increasingly important due to the
growth of algorithmic trading and the increasing fragmentation of liquidity across multiple trading
venues. With the growth of high-frequency trading, the speed of execution has become a key factor
in the venue selection process, as traders seek to minimize latency and maximize the speed of
execution [4]. A venue is distinguished from another venue by the difference in traded volumes,
different spreads between bid and ask and other features. It is important to say that for the absence
of arbitrage the venues have to have the same macro characteristics, but selecting and using deep
features to study a venue it is possible to spot some differences between the venues. At exactly the
same timestamp, venues could have different volumes and different prices (Figure 2.4) and these
variables could determine the execution/not execution of an order in the next milliseconds.
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Figure 2.4: Comparison between the venues at 2021-06-30, 10:55:01.00

Figure 2.4 show the bid-ask prices for the euro currency in two different venues at the same
time stamp (2021-06-30, 10:55:01.00). In the RTM venue (2.4a), a market participant who wants to
buy 1 million euros immediately would have to pay 1.18896 per unit, while selling the euro position
would yield 1.18893 per unit. In contrast, in the AMS venue(2.4b), the market taker would have to
buy at a slightly higher price of 1.18897 per unit and sell at 1.18894 per unit. This example shows
that there are differences between venues and the venue selection choice plays a crucial role to
optimize the execution of the orders. It should also be noted that the distributions of the volumes
present in each venue are completely different and they could play an important role in the venue
choice with large volume orders.

In conclusion, fixing an order of buy /sell with a fixed quantity and a fixed price that has to be
executed within a time interval, it is possible to define the venue selection problem like the choice
of the best venue to achieve this aim (Figure 2.5).

Venue 1
Order i-th:
Sell/Buy Venue 2
Q: Quantity
P: Limit price
Venue N

Figure 2.5: Definition of the Venue Selection problem: given a fixed order (blue), which is the best
venue (green).

During this project the venue studied and analysed were only two: AMS and RTM. However,
the approach used could fit with N venues. Defined the problem, it is now possible to give an
overview of the business settings of this research and explain how the venue selection method
works.

2.4 Business settings

MN is a Dutch non profit firm that provides pension administration services and pension investment
management services with 140 billion euro of assets under management. This project is developed
for the MN’s Treasury department, specifically trying to improve the trading of foreign currency
in order to hedge the currency risk exposure. The MN ALGO platform is an entire FX trading
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execution algorithm developed internally by MN. It is the first example of a trading algorithm
owned by a pension asset management company. The next subsections explain the main strategies
and the venue selection method currently used.

2.4.1 ALGQO: the strategies

Different market situations and different trader demands can lead to very different behaviour in
the order execution. On one hand, there are some moments in which it pays to be passive while
trying to minimise the cost of execution and, on the other hand, there are specific moments in
which the trading strategy has to be aggressive putting more aggressive orders to buy/sell an asset
in the shortest time period. In this second example the execution costs are usually larger. For these
reasons, the ALGO execution algorithm provides two different strategies that can be executed in
the two different situations:

e Time Weighted Average Price (TWAP): Generically, TWAP is a family of execution
algorithms that aims to execute a fixed order in a specific time interval [...].

e Float: The Float algorithm selects a relative position in the order book and remains at that
position until a large order of friendly flow fills it when the market has sufficient liquidity.
Unlike the TWAP algorithm, executing quickly is not crucial for Float algorithms, and the
emphasis is on executing at a favorable spread [11].

This research backtests a strategy that is a copy of ALGO FLOAT strategy. The strategy has been
selected because it is the most used strategy and was agreed with the MN quants. The price logic
under the backtested strategy is be described in the next chapters.

2.4.2 ALGO: the venue selection method

ALGO is currently connected with two venues, in this research named AMS (headquartered and
based in London) and RTM (headquartered in US, based in London) [...]. During the writing of
this thesis a new venue selection logic has been implemented: this set of rules is referred to as
parallel trading. Given a large volume to be traded, ALGO splits this amount in two quantities
[...]. This latter quantities are divided in child orders and traded once per time using both venues
[...]. Before the introduction of this logic, orders were sent to one venue per time. The goal of using
both venues is to reduce the execution price and to buy/sell the currency quicker.

Figure 2.6 shows the ALGO logic explained: the total volume is splitted in two volumes (OR
Operation) and than the consequent child orders are traded simultaneously once per time in both
venues (AND Operation).
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Figure 2.6: ALGO parallel trading scheme [12].

Once the first child order is executed, the second will be processed and executed and so on.
Note that the first split is fixed a priori and is currently not dynamically calculated using venue
market conditions. There is no reallocation of orders in case of partial execution of an order in
one venue with the other. A calculation of fill probabilities at all venues could lead to an optimal
allocation and possible dynamic reallocation of orders between venues [12].

2.5 Approach

The purpose of this part is to illustrate the logical flow of thought utilized for this thesis, expanding
on past studies’ methodologies, describing the new methodology provided, and offering techniques
for putting it into reality. This topic is extremely rare in the literature and a new approach had to
be thought of for the study to try to solve the venue selection.

2.5.1 Previous approach

In 2022, Smith [6] tried to model the problem with a pure probability estimation approach. This
project was one of the master theses of the last year AXP. Using the data of all the trading
activities of the venues (orders, executions, cancellations), the author tried to train and test some
Machine Learning models (Random Forest based models) to forecast the probability of an order
to be executed. The dataset used to train the model was the list of the order executed in both
venues with some statistics of the order book computed when the order was received by the venues.
Comparing the probabilities of executions of the each venue (output of the model), the best venue
for the given order was selected within AMS and RTM (Figure 2.7).
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Figure 2.7: Approach used by Smith [6]: given an order, the trained models estimate the probability
of execution in both venues and select the best one.

The project was the first venue selection project and this study follows in that vein. If, on the
one hand, the data analysis part was read and used to understand the problem of venue selection,
on the other hand the obtained Machine Learning models output were not significant. A method
that always selects AMS outperformed the venue selection based on the random forest models. In
fact, with the proposed choice only the 66.8% of the possible executions were achieved over the
test set, while with the trivial AMS choice 74.8%. The results also revealed that the orders in the
test set that were executed had high execution probability in both venues. This might imply that
at the same timestamp the market conditions in both venues are extremely similar. It might also
imply that for execution, it makes no difference whether an order is placed at one venue or another.
If the market circumstances are favorable, the order will be fulfilled regardless of the venue.

The main problem of this approach is that the dataset used was a set of all the historical orders
sent in both venues. As shown in Chapter 5, this kind of data contained a bias in the venue
selection problem due to the larger liquidity in AMS with respect to RTM. In fact, being AMS
the venue with more orders inserted, more orders are executed in this venue compared with RTM:
this result, however, does not mean that one venue is better than the other, only that there are
more market participants (the venue is more liquid). Because of this, the dataset used by Smith
to train the random forest model, contained a bias: using a dataset with all the executed orders
in both venues, the dataset was heavily unbalanced. Using this approach, AMS seems to be better
in every situation and even using over/under-sampling techniques on the dataset. The obtained
results were indeed not significant. From this previous research, it is clear that to deeply analyse
the venue selection problem, the approach has to be completely changed.

2.5.2 Parallel trading approach

This research changes completely the approach used to try to solve the venue selection problem.
In fact, one has to consider the fact that the logic of ALGO in the last period has been modified
to allow parallel trading (see 2.4.2): both venues are used at the same time for the child orders
chains. In order to exploit both the execution capabilities of the venues, the idea is to split an
order in between the venues using different weights (Figure 2.8). The weights will depend on the
probability of execution of one order: the higher the probability of a venue w.r.t. the other one,
the higher the weight.
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Figure 2.8: Parallel trading approach: given an order, the trained models estimate the probability
of execution in both venues and assign weights to both.

At this moment, once the allocation is chosen, until the full execution of the orders ALGO
cannot modify the allocation. A possible improvement could be a further modification that will
optimize the trading procedure. This research tries to improve the ALGO trading procedure now:
the focus is on improving the best initial order quantity allocation.

It is now possible to write down a mathematical formulation of the optimization problem de-
scribed. Let’s start with the constraints. Defining w4 (t) the AMS weight at time ¢ and wg(t) the
RTM one, it is trivial to note that the weights follow the following relations for all ¢:

wL(t) + wc(t) =1
wr,(t),we(t) >0 (2.1)

The first constraint is trivial and allows only one weight to be studied: this research will focus on
the estimation of the optimal wy, (given it, the computation of w¢(t) is indeed trivial). The second
constraint means that all the weights need to be positive: in all the strategies adopted, MN does
not want to take any short position against the currency it wants to trade in one venue to trade in
the other one.

Defined the constraints, it is possible now to define a vector x; that represents all the features
of both venues at time ¢. Furthermore, it is important to select a fixed trading strategy described
by a set of rules Q. Now, given w4, x¢, 2, let’s define fo(xy, wa) the function that describes the
time of execution of the defined strategy. The optimization problem can be written as:

W (t) = argmin fo(z, wa) (22)

This formula describes the goal of this research. Note that the output value of function fq depends
on the selected trading strategy €2, the selected input statistics z; and the selected weights w4, wg.
The next chapters will describe the selected important statistics in x;, the chosen strategy ) and
the chosen technique to estimate wy. The completely new construction of the descriptive features
of the venues, the generation of new data, and the choice of models to train are not only completely
different and innovative but also crucial factors that undeniably enhance the overall impact and
validity of this study.

2.6 Starting point summary

This chapter has explained the starting point of this study. It is now important to summarize the
highlights before continuing the research:

e ALGO, the MN algorithmic execution engine, is connected with two different venues: AMS
and RTM.

e In general, given a limit order with a direction (buy/sell), a fixed price and a fixed quantity,
the venue selection problem consists in the selection of the best venue in order to achieve the
fastest execution for it (see Figure 2.5).
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e ALGO computes and uses the same price in both venues: the venue selection is not about
price, only speed of execution.

e ALGO is currently using a new parallel trading approach. Given a big order to be executed,
it is splitted in two volumes |...|.

e ALGO trades child orders in both venues |...].

e The previous research used the order executions data from both venues, trying to train
some Machine Learning models to forecast the probabilities of execution. Despite this, the
obtained results were not significant: a method that always selects AMS outperformed the
venue selection based models. The approach, consistent with the old ALGO trading method,
wanted to select only one venue: the one where the execution of the order had the higher
probability (see Figure 2.7).

e This research proposes a new method based on the optimal order allocation selection for
ALGO, compatible with the parallel trading approach developed during the time of this
research. Equation 2.2 defines the problem in a mathematical point of view, while Figure 2.8
shows the approach.

Defined the starting point, it is important to mention that in the literature there is nothing directly
applicable to this case. The venue selection problem is strongly linked to the industry, and its
significance lies in the fact that there is a scarcity of useful publications addressing this specific
issue. This implies that there is a lack of readily available knowledge and established guidelines for
making informed decisions regarding venue selection in trading. Moreover, the logical approach of
trying to estimate execution probabilities using execution data from both venues did not lead to
any good results [6]. It is therefore necessary, based on the available data, to analyse and find out
why the old approach did not work and to propose something new to try and estimate the values
of w A, WR.



Chapter 3

Mathematical Framework of Order Book
data

This section explains the general mathematical framework and the notation used in this research.
It is divided in a first section focused on the mathematical description and statistics of the limit
order book for a fixed time, a second section that considers the rolling time statistics and the last
section that gives a general overview of the most important Limit Order Book (LOB) mathematical
models. For all this section the traded pair is considered fixed (e.g. EUR/USD).

3.1 Properties of LOB for a fixed time

The goal of this first section is try to describe the LOB using all the information given in a
fixed snapshot, taken in a fixed time ¢. Information is contained in statistics, with a rigorous
mathematical definition that can be computed looking at the available data.

Definition 1 (Order) Given a specific direction d, (buy or sell), a price p;, a quantity ¢, and a
time of placement ¢, a buy or sell order x is defined as:

T = (da:7px7 Qamtx)

In general, limit and non-market orders will be analysed in this thesis. When the term order is
used, it will therefore be associated with limit order.

Definition 2 (Limit Order Book) A Limit Order Book (LOB) L(#) is the set of all active orders
in a market at time ¢.

In the LOB, the orders are divided in bid (sell) and ask (buy). Usually large orders are divided
into smaller orders executed little by little in order to limit the cost of execution. The total order is
called parent order with a volume V', the small orders are the child orders with volumes Q1,...,Qx,
such that Y ;" , Q; = Q [11].

There are also numerous values that can help describe the status of an order book: the best
bid, the best order and their values with respect to a value V.

Definition 3 (Best bid [11]) Given a Limit Order Book L(t), for a fixed time ¢, the best bid is
defined as:
B = s e
dy=buy
Definition 4 (Best ask [11]) Given a Limit Order Book L(t), for a fixed time ¢, the best ask is
defined as:
A(t) = min p

zEL(t)|
dg=sell



3.1. PROPERTIES OF LOB FOR A FIXED TIME 22

Definition 5 (Best bid w.r.t. V [11]) Given a Limit Order Book L(t), for a fixed quantity V/,
the best bid with respect to V is defined as:

By (t) = max{px cx € L(t) s.t Z qy > V}

yeL()]
dy:bu%Py >px

Definition 6 (Best ask w.r.t. V [11]) Given a Limit Order Book L(t), for a fixed quantity V,
the best order with respect to V is defined as:

Ay (t) = min{pz cx € L(t) st Z qy > V}

yEL(L)]
dyzsell,pysz

Note that if V' = 0, than By(t) = B(t) and Ag(t) = A(t) (the best bid/ask is always the one at the
top of the list). Other important variables are the spread, the mid-price and the pip.

Definition 7 (Spread [11]) Given a Limit Order Book L£(t), the spread is defined as the differ-
ence between the best ask and the best bid at time t:

Definition 8 (Mid Price [11]) Given a Limit Order Book £(t), the mid price (or simple mid),
is the middle point between best ask and the best bid at time t:
A(t) + B(t) 1

M(t) = ===~ = B(t) + 55(t)

The tick 7 of a LOB is defined as the minimum possible price movement. In the equities market
usually a tick is equal to 0.01$, for EURUSD in the FX market 0.00001$. The spread of bid and
ask is usually measured in pips: for the FX market a pip is defined as 10 pips (0.0001 for both
EURUSD and EURGBP and 0.01 for EURJPY [11].

Definition 9 (n tick bid side volume [6]) Given a Limit Order Book L(t), the n ticks bid side
volume is defined as the total volume on the bid side of the order book. That is:

VnB;ick (t) = Z qx

zE€L(t)|dg=buy,
pz€PB (1), PB=7(1),... pB=(n=1)m ()

Definition 10 (n tick ask side volume [6]) Given a Limit Order Book L(t), the n ticks ask
side volume is defined as the total volume on the ask side of the order book. That is:

Vrﬁick (t) = Z qx

z€L(t)|dy=sell,
po€PB(t), PB+7(1),... pPBH(n—1m 4

To better understand the definitions introduced, it’s sufficient to observe an example of a FX Limit
Order Book for a fixed time ¢t. The pip value is 0.0001.
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Figure 3.1: Example of the introduced metrics for a FX Limit Order Book. In the Figure the values
of the best bid B(t) and the best ask A(t) are highlighted [6].

In the Example in Figure 3.1 the values of B(t), O(t), M(t) and S(t) are indicated. It is also
possible to calculate the other values defined before:

Beoo(t) = 1.1747

Agoo(t) = 1.1750
VB(t) =630
VA(t) = 370

Viiens (t) = 2000
Vitiens(t) = 2000

All the statistics illustrated so far do not clearly show any imbalance between volumes. As will
be explained in detail below, the LOB is a constantly changing system and it may be crucial to
be able to measure any imbalance between bid and ask. It’s further possible to define the bid-ask
volume imbalance and the smart price [13].

Definition 11 (Bid-ask volume imbalance) Given a Limit Order Book L£(t), fixing a number
n of ticks, the bid-ask volume imbalance is the ratio between volumes included in n ticks from mid
price:
VB (¢t
I(t) nﬁzcks( )
Vntzcks (t)
Definition 12 (Smart bid) Given a Limit Order Book L(t), considering the bid side and fix-

ing a number N of levels, the smart bid is defined as the weighted sum of each level times the

corresponding volume:
!

SB(t Z i

where ViA(t) is the total volumes of ask in correspondence with the prices P2(t).
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Definition 13 (Smart ask) Given a Limit Order Book L(t), considering the bid side and fixing a
number [ of levels, the smart ask is defined as the weighted sum of each level times the corresponding

volume:
l

A
Sa) =Y. T

=1 7

where VA(t) is the total volumes of ask in correspondence with the prices P/ (t).

Definition 14 (Smart price) Given a Limit Order Book L(t), considering the values of smart
bid SB;(t) and smart ask SA;(t), it is possible to define the smart price as:

_ SBl(t) + SAl(t)

B 2

Definition 15 (Price distance - buy case) Given a Limit Order Book £(¢), a buy limit order
posted at time ¢ with a price P(t), considering the values of best ask A(t), it is possible to define
the price distance for the buy order as as:

APy, (t) = A(t) — P(t)
Definition 16 (Price distance - sell case) Given a Limit Order Book L(t), a sell limit order

posted at time ¢ with a price P(t), considering the values of best bid B(t), it is possible to define
the price distance for the sell order as as:

APsell(t> = P(t) - B(t)

SPi(t)

3.2 Rolling features of LOB

The previous section discussed the properties of the LOB in a specific snapshot taken at time t¢:
all the statistics introduced can give information only on the current state of the order book not
considering the past. It is important to consider that rolling statistics play a crucial role in the
financial markets description. Financial time series data represents a sequence of observations over
time, and rolling statistics are used to track the changes in market prices, volumes, and other
financial indicators. The aim of this section is define the most common rolling features used to
describe the LOB: the rolling window T is fixed (it could be every timedelta e.g. 1sec or lhour). I

Definition 17 (Log returns) Given a Limit Order Book £(t), considering the values of mid price
M(t) and M (t —T), it is possible to define the logarithmic return at time ¢ w.r.t. 7" as:

rr(t) = log(M(t)) — log(M(t —T))

Definition 18 (Mid prices moving average) Given a Limit Order Book L(t), considering all
the values of the mid prices from time ¢ to time t — T (e.g. M(t) ... M(t —T)), it is possible to
define the mid prices moving average as:

Definition 19 (Volatility) Given a Limit Order Book L(t), considering all the values of the
returns from time ¢ to time ¢t — T (e.g. rp(t) ... rp(t —T)), it is possible to define the volatility at
time ¢ w.r.t. T as the standard deviation of these values:

t
1 .
or(t) = T 1 (ro (i) — p)?
i=t—T
with p defined as the mean of the returns in the selected time interval.

Definition 20 (Order Flow) Given a Limit Order Book L(t), order flow is the quantity of buy
and sell orders that are received in the LOB in the time interval [t — T, t].



Chapter 4

Selected models

This chapter explains the theory of the used models in this research. The first part gives an
overview about the time series theory and the correlation statistics. The second part introduces
the Principal Components Analysis (PCA), used to preprocess data with high correlation. The
models are than explained: linear regression model, XGBoost and Neural Networks. To give an
introduction about the use of Machine Learning in Finance, some pillars are explained: robustness
to overfitting, explainability, consistency and quickness.

4.1 Time series theory

This section wants to explain the main theoretical concepts behind the time series analysis used in
this research. It starts defining a time series and than it explains the concept of stationarity used
to study the correlation between the features of the data.

Definition 21 (Time series [14]) A time series is a doubly infinite sequence
(Xt)tEZ - ( . 7X—27 X—17 X07 X17 X27 s )
of random variables.

Definition 22 (Time series data [14]) Time series data consists of a finite collection of real
numbers,
Loy LlyeeeyLp.

In summary, a time series is the concept of a sequence of data points ordered by time, while time
series data refers to concrete set of observations.

4.1.1 Stationarity

This subsection wants to define the concept of stationary time series. When a time series is
stationary, patterns and relationships observed in the past hold in the future. This empowers
analysts and researchers to create reliable predictive models that can anticipate future trends and
outcomes. In order to define the concept of stationarity, it is important to understand what is the
autocorrelation function (-, -).

Definition 23 (Autocorrelation Function [15]) If (X;)cz is a time series process such that
Var (X;) < oo for each ¢t € T, then the autocovariance function 7,(+,-) of {X;} is defined by

vx(r,s) = Cov (X,, Xs) = F[(X, — F[X,]) (Xs — F[X{])], rseT.
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Definition 24 (Stationarity [15]) The time series (X;)ez is said to be stationary if:
(i) E|Xy> < oo forallt € Z,

(ii) E[X¢] =m for all t € Z,

(iii) yx(r,s) =yx(r+t,s+t) for all r,s,t € Z

In other words, stationarity in a time series refers to the property where statistical properties, such
as mean and variance, remain constant over time, enabling reliable analysis and predictions. Figure
4.1 makes a comparison between a non stationary time series and a stationary one.
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(a) IBM stock close prices [14]. (b) White noise N(0,02) [14].

Figure 4.1: Comparison between a non stationary time series in Figure 4.1a and a stationary time
series in Figure 4.1b.

From the Figure 4.1a above, it is clear that the IBM close prices follow a trend which depends
on time t, while the white noise generated data in Figure 4.1b do not. The first time series exhibits
distinctive characteristics that are inherently tied to the ongoing trend in the stock market. This
diverges from the case of a stationary time series like white noise, where this particular attribute
does not hold true.stationary time series such as white noise.

ADF test

To check if a time series is stationary it is possible to use the Augmented Dickey-Fuller (ADF)
test. The Augmented Dickey-Fuller (ADF) test [16] is a foundational tool in the world of time
series analysis and econometrics. Its primary purpose is to figure out whether a given time series
is showing something called a "unit root," which is basically a sign that the data isn’t stationary.
The ADF test assumes that data have a unit root, (non-stationary, null hypothesis) and wants to
prove that it is stationary (alternative hypothesis). Performing the test and checking the p-value
is possible to conclude if the time series is or is not stationary. All time series whose correlation
was analysed in this study were checked with the ADF test.

ACF plot

The autocorrelation function (ACF) plot shows the correlation of a time series with its own lagged
values. The horizontal axis of the plot represents the lag or the time interval between the observa-
tion and its corresponding lagged value. The vertical axis represents the correlation between the
observation and its lagged value, with values ranging from -1 to 1. The correlation between the
time series and its value k period ago is contained in the value corresponding with lag k. Figure
4.2 show an example of an ACF plot.
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Figure 4.2: ACF rolling returns 5 min of the venues, 30/06/2021.

Let’s analyse now the ACF plot in the Figure above. The first important thing to note is
that the initial lag is around -0.25 for both venues. This negative correlation observed at the first
lag indicates that when the current value of the time series decreases, there’s a tendency for the
previous time step to exhibit a slightly higher value. This pattern indicates an inverse relationship
between these adjacent historical observations. Moreover, the lags following the first have a wave
pattern, which proves a reverse correlation of the 5-minutes returns. After explaining and analysing
an example of an ACF plot, e- it is possible to explain the preprocessing technique used in this
study.

4.2 Principal Components Analysis

After the introductory section about time series analysis, it is possible to explain the preprocess
technique used: the Principal Components Analysis (PCA) [17]. Let’s assume to have matrix
E € R™P? in which every column is a random vector X1, Xa,...,X,. The variance-covariance
matrix of the random variables is defined as Y. Let’s now define, the matrix of the real observations
x; j, is in the form:

r11 T1,2 ... Tin
T21 - e .

X=|" (4.1)
xp,l xp’g e a:p’n

This matrix X represents the dataset. The variance-covariance matrix S derived from obser-
vations of random variables is an estimator of general variance-covariance Y. It is now possible to
create a new matrix (transformed dataset) V', defined as:

V=ATX (4.2)

with A the matrix of the orthonormal eigenvector of the variance-covariance S.
Explained variance in Principal Component Analysis refers to the proportion of the total vari-
ance in the data that is accounted for by each principal component. PCA is a dimensional reduction
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technique that transforms a dataset into a new set of orthogonal variables called principal com-
ponents. The explained variance of each principal component indicates how much information or
variability in the original data is retained by that component.

When performing PCA, the principal components are ordered in terms of their explained vari-
ance, with the first component explaining the highest variance and subsequent components explain-
ing progressively less variance. By examining the explained variance of each component, one can
determine the relative importance or contribution of each component in representing the data.

The explained variance is typically expressed as a percentage and can be calculated by dividing
the eigenvalue of each principal component by the sum of all eigenvalues. It helps in understanding
the extent to which the principal components capture the variability of the original data. Higher
explained variance indicates that the corresponding principal component retains more information
from the original data, while lower explained variance suggests that the component may contain
less relevant information.

Given the matrix V' and the explained variances of the new features, it is indeed possible
to select the most important columns (the ones with large explained variance), obtaining a new
reduced dataset. The assumption is that the choice to use the new dataset does not reduce (too
much) the information contained in it, but simplifies data management.

4.3 Machine Learning in Finance

Before starting to explain the project, the main features that a Machine Learning model for pre-
diction in finance must have are explained [18].

e Robustness to overfitting: a model that performs well on the training set, but poorly with
other data is completely useless. The market is indeed volatile and can undergo rapid regime
changes that could cause problems for the model. It is therefore necessary to train the model
using a large quantity of data, trying to avoid overfitting. There are models like XGBoost
that guarantees less overfitting problems.

¢ Explainability: predictions must be explained by the input data. Having complex models
that give unexplainable results could be a big problem in finance. On the one hand, it
is difficult to entrust a portfolio/investment choices to a model that cannot be explained
and, on the other hand, some companies are subject to regulation and have to explain their
investment choices to the authorities and the models must be clear.

e Consistency: a model that is not accurate on a single prediction but is able to predict the
sign of the returns (positive or negative) is preferable to a model that is accurate on a single
prediction but not accurate in the long run.

e Quickness: Especially for Algorithmic Trading applications, the model has to be extremely
efficient and quick to train/use. The models must act with a low latency, because even small
lags could generate big losses.

Given these four pillars, it is now possible to explain the machine learning techniques used in this
research. Note that the pillars were used in all the models selection done during this research.

4.4 'Tree-based learners

To explain the eXtreme Gradient Boosting (XGBoost) model used in this research, it is important
to understand the Machine Learning tree-based learners. The aim of this section is to explain the
concepts between the tree-based learners used for regression [19]. The first object to understand is
the decision tree.
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4.4.1 Decision Trees

Let’s assume to have a dataset of N points (z;,y;), i = 1,..., N where z; € R"™ and y; € R. The
goal is now to forecast the value of y; given x;, constructing the optimal partition of the feature
space R™. In other words, given the maximum number of L subsets, to divide the space R™ in L
subsets, each of which defined as an intersection of a certain number of half-spaces:

X, ={zxeR" :alj];l‘gblk,k‘e {1,...,N;}} (4.3)
The subsets are built using two rules:

e mutually exclusiveness : for any [, k, the set X;N X}, is either empty or subset of a hyperplane.
The probability that a point x; ends up in the intersection should be zero.

e collectively exhaustiveness: it holds that

Jxi=R" (4.4)
l

During the training process, the subsets X; are trained and optimized using a loss function L.
Defining 9; as the prediction of y; given x;, the most common loss function for the regression
problems is the Mean Squared Error (MSE):

N
MSE = " (y; — ;) (4.5)
i=0

The selection of the values a;, , b, defines the tree. Given a value x;, at every step, the value is
compared with a;, or by, , defining a specific path into the tree (Figure 4.3).

alz <b?
T 1 T
a, T < b a, T > b

a;xgbg? a;xgbg?

a;wgb‘g/\zzx>b2 agx<N$>b3

Figure 4.3: Hierarchical partitioning of the space into four subsets [19].

If the process might seem complicated to understand by looking at the formula above, Figure
4.4 shows the desired output in practice, comparing it with a polynomial fit in a regression problem:
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Figure 4.4: Comparison of a polynomial regression of degree 3 with a piecewise-constant regression
through domain splitting [19].

One of the main hyperparameter of the decision tree model is the maximum depth d. Attaining
a remarkably accurate classification or regression tree frequently entails constructing a tree with
considerable depth d. On the other hand, this parameter could lead the model to overfitting
problems. It’s important to select d basing the choice on a test/validation set or using some
hyperparameters tuning techniques [19]. To conclude, despite being machine learning models,
decision trees are relatively simple to interpret and quick to fit [19]. To understand more about the
optimization techniques for the training of decision trees see [20].

4.4.2 Random Forests

As previously mentioned, achieving a highly precise classification or regression tree often involves
creating a tree with significant depth. However, this strategy comes with the drawback of potential
overfitting. Furthermore, such a tree might exhibit a degree of arbitrariness. For instance, if two
features yield similar outcomes upon splitting, the choice between them becomes less evident. This
uncertainty extends to understanding the subsequent impact on further splits down the tree [19].
The solution to this problem for complex tasks was found in the random forest algorithm [21]. The
Random Forest Algorithm combines the output of multiple (randomly created) Decision Trees to
generate the final output. To figure this process, it’s possible to observe Figure 4.5.

Dataset
mEEN
Decision Tree-1 Decision Tree-2 Decision Tree-N
Result-1 Result-2 Result-N
L»{ Majority Voting / Averaging F—J
Final Result

Figure 4.5: Random Forest [22].
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The output of each tree are combined with an average (regression problem) and the output ¥
is computed. To understand more about the optimization techniques for the training of random
forests see [21].

4.5 XGBoost

Rather than relying on the aggregation or averaging of numerous randomly generated trees, an
alternative approach can be considered: initialize the process by constructing a single tree. Subse-
quently, introduce an additional tree that specifically addresses instances for which the prior tree’s
classifications were erroneous. This method intentionally aims to rectify the shortcomings of the
preceding tree rather than following a random approach [19].

To write this process in a mathematical point of view [19]: let’s assume that from the training
data the first model was built:

y = fi(z) (4.6)

Let’s define the first model as model; = fi(-). Given it, the idea is to train a second model that
can improve the result of the first:

models(x) = modely + fao(x) (4.7)

The second model’s loss function (using MSE) is:

N
Ly(x) = argmin Y ((y; — modely (z)) — f(z))” (4.8)
feF 5

Repeating this step for N times, more and more models are created and trained to improve the
past models. In general, at the m'® step, the f,,(-) model will be:

model,, (z) = model,,,—1 + [ (2) (4.9)

with the following loss function:

N
Ly, (z) = argmin Z((yl — model,,_1(x)) — f(z;))? (4.10)
feF

This procedure is the base of one of the most common gradient boosting algorithm, the eXtreme
Gradient Boosting (XGBoost) [23]. XGBoost, short for eXtreme Gradient Boosting, is a highly
effective machine learning algorithm widely used for regression tasks across various domains, in-
cluding applied mathematics. It has gained immense popularity due to its superior performance,
flexibility, and ability to handle complex relationships in the data [1]. For these reason, combined
to the fact that it is fast to train and use, it has been chosen as a model to be used in this research.

4.5.1 Hyperparameters

The training process in XGBoost involves optimizing the model’s hyperparameters to achieve the
best possible performance. Hyperparameters control various aspects of the model, including its
complexity, regularization, and learning behavior. The most common hyperparameters in XGBoost
for regression include [23]:

e n estimators: The number of trees (boosting rounds) in the ensemble.
e max depth: The maximum depth of each decision tree. Controls the complexity of the model.

e learning rate: The step size for each model update. Smaller values require more boosting
rounds but can improve generalization.
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In conclusion, optimizing the hyperparameters during the training process of XGBoost is crucial
to achieve the best possible performance for regression tasks. These hyperparameters, including
the number of estimators, maximum depth, and learning rate, play a significant role in controlling
the model’s complexity, regularization, and learning behavior, ultimately influencing its predictive
accuracy and generalization capabilities.

4.6 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a class of complex Machine Learning models inspired by the
structure and function of biological neural networks in the human brain [24]. While ANNs have
found success in various domains such as image recognition, natural language processing, and even
some areas of finance, there are several reasons why they are not always the preferred choice for
financial applications. The main problem is the conflict with three of the four pillars:

e Being complex structures, the training part could be difficult and the training part could be
difficult and usually runs into overfitting problems.

e Being complex and deep structures, given the input, it is difficult to understand and explain
the output.

e Being complex, both the training and the usage of the ANNs could be very slow. For example
ALGO could not use a complex neural network for price prediction due to the need for low
latency.

Despite these premises, this study used a proposed simple neural network structure. The structure
will be explained in detail in the next chapters, but now it is important to understand the basics
of the Neural Network’s structure and the sigmoid layer.

4.6.1 General structure

The general structure of an artificial neural network (ANN) consists of three main components:
input layer, hidden layers, and output layer. Neurons, or nodes, in each layer are interconnected
through weighted connections, and the network’s architecture can vary in terms of the number of
layers and neurons within each layer. Data is fed into the input layer, and it propagates through
the hidden layers to produce an output from the output layer (Figure 4.6).
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Figure 4.6: General structure of an Artificial Neural Network (realized with Tikz [25]).
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Given the input values of each neuron, each one calculates its own activation function and
propagates the value obtained to the next layer. Each connection is associated with a weight that
is trained during the training process.

4.6.2 Sigmoid function

A sigmoid function can be described as a real function with well-defined boundaries, applicable to
all real input values, and characterized by a positive derivative across its entire domain. Being a
non linear function, the sigmoid demonstrates a significant level of smoothness [26]. The sigmoid

function is defined as: )

T 1o exp~ %
The output of o(x) is bounded between 0 and 1 (Figure 4.7):

o(x) (4.11)

1

0:5

Figure 4.7: Sigmoid function [27].

The sigmoid function is one of the most common activation functions used in the Neural Net-
works. There are other functions such as ReLu or hyperbolic tangent [28], but in this research only
the sigmoid is used. In fact, due to their complexity, the only Neural Network structure used is
extremely simple. Again, it will be explained in the next chapters.

4.6.3 Training process

The training process in a Neural Network involves the optimization of model parameters to make
the network learn from the provided data and improve its performance on a specific task [28]. This
process typically consists of several steps and concepts:

e Data Preparation: the data pre-processing changes depending on the task and the case. This
involves collecting, cleaning, and formatting your data into a suitable structure for training.
Data is usually divided into three sets: the training set (used for training the model), the
validation set (used to evaluate the model’s performance during the training) and the test
set (used to evaluate the model’s performance at the end of the training).

e Model Architecture: selection the number of layers, the type of layers, the number of neurons
in each layer, activation functions, and any other architectural choices.

e Inizialization: initialize the weights and biases of the network.
e Loss Function: selection of the loss function depending on the task.

e Forward Propagation: during each training iteration, input data is fed through the network’s
layers in a forward pass. Each layer performs a weighted sum of inputs, applies an activation
function, and passes the result to the next layer. At the end the loss function is computed.
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e Backpropagation: this is the process of calculating gradients of the loss with respect to the
model’s parameters. This is done by applying the chain rule of calculus in reverse order
through the network layers. Gradients are used to determine how each parameter should be
adjusted to reduce the loss.

The last two steps are repeated until a loss below a limit parameter is reached or an early stopping
technique is activated to avoid overfitting. After the results have been calculated, the hyper-
parameters can be updated and modified, using numerous techniques. The most common technique
used for many Machine Learning models is K-Fold Cross Validation [29].

4.7 K-Fold Cross Validation

Cross-validation is a data resampling method to perform hyperparameters tuning of a Machine
Learning model [29]. Tt belongs to the family of Monte Carlo methods. The dataset is split into
K subsets, or folds D; with i € [1, K|. In each iteration, one fold is set aside for validation, while
the remaining K — 1 folds are used for training. This process is repeated K times, with each fold
serving as the validation set once (Figure 4.8).
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Figure 4.8: K-fold Cross Validation: at every step the black set is used as validation set and the
white ones as training set [29].

During hyperparameter tuning, various combinations of hyperparameters are tested in these it-
erations. The goal is to find the set of hyperparameters that results in the best average performance
across all validation folds.

K-fold cross-validation helps prevent overfitting [29]. In fact, the hyperparameters are trained
used all the available sets multiple times, and each subset D; is used both as training and validation
set. This technique reduces the risk of the model memorizing specific patterns in the training data
and provides a more reliable estimate of its real-world performance.



Chapter 5

First Data Analysis

The aim of this chapter is to analyse individual orders posted at venues. The first two sections give
an overview of the available data and the importance of the venue selection in the FX market. The
last section explains the analysis of orders using a 1-day dataset, comparing the size, side, elapsed
time and volumes traded between venues. This first analysis is very important to try to grasp part
of the complex dynamics of trading venues and to have concepts on which to base the subsequent
study.

5.1 Dataset available

In order to effectively understand the problem and construct accurate models, it is crucial to
understand the available datasets and the primary characteristics of the AMS and RTM data.
Specifically, it is important to differentiate between two main types of data: the tks data and the
trd data.

e The tks data is generated by new orders, cancellations, and modifications. All new orders
received by the venue are stored in the tks data, identified by a unique id (uid), along with
their corresponding time, side, quantity, and price. Cancellations and modifications of an
order are also saved in this dataset, along with their respective timestamps.

e The trd data is generated by trades (market orders). In the LOB simulations, all orders
are considered limit orders, including market orders which are read as limit orders. For
example, if a firm buys 1m€ for the unit price of 1.18$, the order will be entered into the
LOB as a limit order, regardless of whether it was originally a limit or market order. This
is because market orders cannot differentiate between the types of orders executed, and they
are therefore considered very aggressive limit orders that are executed immediately.

The available data are referred to all the orders insert in both venues in the selected days by
all the market participants. In this research a set of heterogeneous days (different days of the week
belonging to different months) is selected and studied. The choice is due to the very large size of
the datasets available and the resulting data-processing time.

5.2 Overview: Complexity and importance of the venue selection
(high frequency features analysis)

The aim of this subsection is to explain why the venue selection problem is important in trading
showing the presence of information asymmetry between traders. High frequency data (5ms) will
show the fact that the venue selection problem is on one hand complicated because the complexity of
the orderbooks, and on the other hand important to improve the efficiency of the trading strategies.
Note that taking into consideration that using high frequency features to spot opportunities into
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the venues, the code must be efficient and fast. Strategies work best if competitor traders cannot
compare the two venues: in this way MN could use the information asymmetry created to its
advantage.

The selected time interval to study is 5 ms and the selected day is 30/06,/2021 from 9:00:02 to
9:00:10. This eight seconds time interval is sufficient to show a general pattern present in all the
datasets analysed that proves the information asymmetry. The features to study are the best bid
and best ask in both venues: comparing this values every high frequency timestamp, it is possible
to spot some trading opportunities. In Figure 5.1 it is possible to observe the changes in the best
prices are happening in a time interval of just 6 seconds in both venues.
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Figure 5.1: High frequency data of bid and ask in both venues from 9:00:02 to 9:00:08 of 30/06/2021.

Observing the best bid in one venue and the best ask in the other one is clear that some traders
do not have access to both of them. For instance, around 9:00:03 the blue line and the red line
have the same values. This fact means that in RTM (at least) one trader wanted to sell EUR for
1.18868 and in AMS (at least) one trader wanted to buy EUR for the same price. Not being in the
same venue, the trade did not happen, but this fact could be a useful advantage for an informed
trader. On the other way around, around 9:00:04 the opposite fact occurred: in RTM (at least)
one trader wanted to buy EUR for 1.18870 and (at least) one trader wanted to sell EUR for the
same price. Again, the trade did not happen for the same reason. These situations last a few
fractions of a second, but using high frequency features could be spotted and used to find the most
competitive price. Moreover, looking at the high frequency data of both venues it is possible to spot
some arbitrage opportunities. In order to spot arbitrage opportunities, it is possible to study the
inverted spread. Equations 5.1 and 5.2 contain the precise mathematical definition of the inverted

spread.
IS (t) = AAMS (1) — BRTM(¢) (5.1)

ISo(t) = AR (1) — pAMS(¢) (5.2)

When the inverted spread is negative there is an arbitrage opportunity: it is possible to buy and
sell the asset at the same time using both venues having a gain without any risk. Let’s assume,
for instance, that at time ¢ in AMS the best ask is 1.20 and in RTM the best bid is 1.21. The
inverted spread IS;(f) is indeed equal to 1.20 — 1.21 = 0.01 < 0. To use the arbitrage, a market
participant could buy the asset in AMS taking the best ask and sell it in RTM for the best bid.
This is an arbitrage because without any risk exposure, the market participant has made a profit
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of 0.01 per unit. Figure 5.2 shows the inverted spread values for 10 seconds. The choice of such a
small interval is due to the fact that arbitrages last extremely short as informed participants tend
to exploit them immediately.
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Figure 5.2: Inverted spreads from 9:00:00 to 9:00:10 of 30/06,/2021.

The arbitrages in Figure 5.2 are extremely difficult to exploit (the negative peaks return im-
mediately positive). It is important to specify that MN is not interested in exploiting market
arbitrages. This is in fact not the goal of a pension fund, but of a high frequency trading firm. This
research will simply find the most competitive prices to trade, not develop any arbitrage strategy.
Furthermore, to exploit arbitrage between venues, one must have an infrastructure that guarantees
low latency and speed of execution in the market. The presence of fast arbitrages is still important
to prove the fact that using a efficient venue selection method, the execution’s time and price can
be improved by far, but the complexity of an environment in which every fraction of ms a lot of
people are trading make the problem extremely complex and challenging.

5.3 Order analysis

To effectively compare venues, it is essential to select and analyze various statistics using different
time intervals. In this subsection one specific dataset for each venue is analysed (2021-09-13, h. 9:00
- h. 17:00). The weekday has been selected randomly in the data available, and the time interval
is selected depending on the fact that most trades take place at those times. It is important to
notice that the chosen day does not present any special event that could influence the FX market
(FED announcements, important political events etc.).

5.3.1 Venue liquidities

First of all it’s possible to note that the number of orders in each venue is completely different:
AMS has ~ 2.5 million orders, while RTM only =~ 500k. This fact is recurrent in all datasets
analysed and it is the main difference between the two venues: AMS is more used than RTM (more
investors are trading in AMS), consequently AMS could be more liquid. A liguid trading venue is
a marketplace or exchange where there is a high volume of buyers and sellers, allowing for easy and
quick execution of trades without significant price fluctuations. The difference between the number
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of orders in the two venues plays a key role in the venue selection method. In order to compare the
orders sent to the venues it is possible to analyse the size and side of each order.

5.3.2 Order sides

The first trivial question to ask is whether, for some reason, more buy orders might be sent in one
venue and more sell orders in the other. Comparing the side of the orders in both venues it is
possible to note that there is a perfect balance (Figure 5.3). In fact, RTM presents 50.9% of buy

orders and AMS 50.3%: no important differences are noticed.

RTM : order sides distribution AMs : order sides distribution

e Buy
Sell

49.1%

(a) RTM - EUR/USD (b) AMS - EUR/USD

49.7%

e Buy
Sell

Figure 5.3: Comparison between the sides of the orders in both venues (2021-09-13, h. 9:00 - h.

17:00)

If on one hand, the number of buy and sell orders is balanced in the venues, on the other hand
this fact is not true using a rolling window of one minute. In Figure 5.4, it is possible to observe,
the percentage of the new buy orders insert in the last minute: the results for both venues are

different.

Percentage of the buy orders in the last minute

65

percentage of buy orders (%)
IS m o
& g 4
————
e

»
3

Aol
v i

w
&

~— RTM
— AMS

|

09-13 09 09-13 10 09-1‘3 11 09-13 12 09- 13 13 09-13 14 09- 13 15 09-13 16
time

09-1317

Figure 5.4: Percentage of the buy orders in the last minute in both venues (computed every minute).
The area under the plot is green when the RTM percentage is greater than the AMS one and red

in the other case (2021-09-13, h. 9:00 - h. 17:00).
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Looking at the plot, it is possible to observe that for some time intervals of around 30 minutes,
the percentage of the buy orders in one venue are continuously greater than in the other one. The
mean of the difference (AMS - RTM) is u = —0.71%, but the mean of the absolute difference is
5.74%: every minute, on average, the percentage of the new buy orders insert in the venue is 5.74%
different w.r.t. the other venue’s one. The variance value of the differences is 0 = 49.59: the values
points are spread out over a wider range of values around the mean. This fact may suggest that
the distribution over time of buy and sell orders at the two different venues may have differences.

In order to check the time correlation is possible to plot the ACF of the time series of the
difference (Figure 5.5).
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Figure 5.5: ACF plot of the difference of the percentage of buy orders in AMS and the same
percentage in RTM (2021-09-13, h. 9:00 - h. 17:00). The shaded region in an ACF plot generated
by Python represents the confidence interval for the correlation values, indicating the range within
which correlations are likely to occur due to random fluctuations.

The ACF plot confirms that there is a strong temporal correlation: in fact, there are periods
in which there is a positive difference value (lasting about 30 lags = 30 minutes) before the values
become negative. This buy /sell study confirms that the quantity of buy/sell orders inserted in both
venues is similar in a macro prospective (during an entire day), but it is statistically difference every
minute. As Figure 5.4 and 5.5 show, there are periods in which more buy/sell orders are insert in
one venues w.r.t. the other. This information could be useful as statistic for the venue selection.

5.3.3 Order sizes

Another meaningful difference is the volume of each order. In fact AMS presents approximately five
times the orders in RTM, but they are generically smaller (Figure 5.6). While 91.0% of orders in
RTM are 1 mln orders, AMS presents a more heterogeneous picture with 54.9% half million orders
and only 34.2% of one million. In both venues more than 90% of the orders have these quantities.



5.3. ORDER ANALYSIS 40

RTM : order volume“s‘ydistribution AMS : order volumes distribution
4%
3.3(75% 1min 34.2% 1min
) 500k 500k
2min 2min
others others
5.1%
5.9%
54.8%
91.1%
(a) RTM - EUR/USD (b) AMS - EUR/USD

Figure 5.6: Comparison between the volumes of the orders in both venues (2021-09-13, h. 9:00 -
h. 17:00)

This information is very important in a case of splitting small orders between venues. It is indeed
very important to consider the size of the orders on the venues in order to optimise executions.
For example, using a 750k order in AMS may not be optimal: it would make more sense to choose
between 500k or 1 million to ensure a more likely fit with the orders already present in the venue.

5.3.4 Traded volumes

In order to predict the fastest execution of an order between the venues, it is important to analyse
the quantity of trades in the venues. As Figure 5.7 shows, from 9:00 to 17:00 AMS presents
approximately five times the RTM trades. The fact occurs both with the data of executed and
partially executed orders, and by looking only at the executed orders. Once again, the buy and
sell proportions are respected in both venues.
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Figure 5.7: Comparison between the total number of trades in both venues (2021-09-13, h. 9:00 -
h. 17:00).

Even looking at the traded volumes the quantities in both venues have the same ratio (5x)
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between AMS and RTM (Figure 5.8). The superiority of AMS over RTM can be attributed pri-
marily to its substantial liquidity, which significantly expedites order execution. This observation
underscores the crucial role of liquidity in optimizing trading performance. The abovementioned
outcome has been noted also by Smith [6], who observed that opting for AMS consistently leads to
better results |[...].
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Figure 5.8: Traded volumes of fully executed orders in both venues (2021-09-13, h. 9:00 - h. 17:00)

One of the challenges of this research is therefore to detect when the RTM venue could offer
faster executions than AMS, even if it has a way less liquidity.

5.3.5 Elapsed times

It is now possible to have an overview about the timing in the FX market. The amount of events
that happen every fraction of a millisecond in the FX market makes it mandatory to use low-latency
machines for trading. The first question to ask yourself is to read how long the orders stand at the
venues on average: this quantity is defined the elapsed time of the orders. In order to study this
statistic, it is possible to plot the lifetime of all orders in both venues (Figure 5.9).
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Figure 5.9: Life time of orders in both venues (EUR/USD, 2021-09-13, h. 9:00 - h. 17:00)
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From the graph, one can immediately see that most orders are executed or cancelled after 1
ms. This is probably due to the fact that market makers have nanosecond technologies and are
able to have extremely fast reaction times in cancelling an order that is no longer convenient or in
executing an order placed at the venue. Furthermore, it can be deduced from these graphs that
in the selected dataset 95.06% of the executed orders are executed within less than 10 ms, 97.39%
within 20 ms and the 98.64% within 50 ms.

From the plot in Figure 5.9, one might argue that the distribution of the data follows a Poisson
distribution. However, performing tests by fitting the distribution and conducting the chi-square
test to verify if the distribution fits the data, the results contradict this hypothesis. The mean of
the fitted Poisson distribution is significantly different from the data’s mean and the p-value of
the test is infinitesimal (much less than 0.05): there is no statistical evidence to support the claim
that the data follows a Poisson distribution. In conclusion, the execution or cancellation times are
similar in both venues, and there is no statistical evidence to suggest a difference in this regard
between the venues.

In order to conclude the elapsed time analysis, it is possible to compute the mean and the
standard deviation parameters of the distributions in each venue (Table 5.1).

Table 5.1: Mean p and standard deviation o of the elapsed time data for both venues (2021-09-13,
h. 9:00 - h. 17:00).

Execution or cancellation | Execution (ms) | Cancellation(ms
(ms)
AMS | u=2.059 1= 10.975 = 2.035
o = 32.300 o = 203.261 o = 30.605
RTM | = 2.223 4= 11.372 = 2.104
o = 35.781 o = 64.907 o = 35.649

If, on one hand, the means are not significantly different between the two venues, on the other
hand a huge difference could be noticed comparing the standard deviation of the execution times.
In fact, it is 64.907 for RTM and 203.261 for AMS. The reason why this happens is the presence
of some extreme values in the AMS dataset which can increase a lot the variance. To avoid the
extreme data, which could be due to errors in the data storage method, Table 5.2 shows the results
considering just 99.9% of the data in each series.

Table 5.2: Mean p and standard deviation o of the elapsed time data for both venues considering
data smaller than the 99.9% quantile (2021-09-13, h. 9:00 - h. 17:00).

Execution or cancellation | Execution (ms) | Cancellation(ms
(ms)
AMS | pu=1.426 /i = 5.936 = 1.419
o =9.772 o = 957.582 o =9.703
RTM | p= 1.477 4 =11.372 1= 1.455
o =9.960 o = 64.907 o =9.769

Also in this case the first and the last columns do not show remarkable differences between the
venues. On the other hand, the executed orders have a huge difference in the execution time. In
fact, in 0.1% of removed data there were some extreme data for AMS that could shift a lot the
statistics: the mean now is 5.963, 45.95% less than in Table 5.1. Moreover, the fact that RTM
dataset is smaller (Figure 5.7) means that the statistics do not change even removing some extreme
values.
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5.4

Summary of the orders analysis

From this analysis it is possible to conclude that, excluding extreme cases, the orders in AMS are
executed in less time with respect to RTM. To recap:

The number of orders inserted in each venues is completely different: AMS has about five
times the number of RTM orders. Considering also the volumes inserted in the venues in the
analysed interval, it is possible to conclude that AMS is a more liquid venue than RTM.

In general, there are no differences between buy and sell, but by analysing shorter intervals it
is possible to spot differences. This could be due to noise, but could be useful when selecting
venues.

Just as the number of orders posted at venues is different, the number of trades is also
different. The volumes traded show that in AMS on the selected day 4 times the volumes of
RTM were traded.

The sizes of the orders in the venue are different. In the selected day, 91.1% of the orders
posted in RTM were 1 mln orders, while in AMS the majority of orders are split between
500k (54.8%) and 1 mln (34.2%).

Orders are usually executed within less than 10 ms by 97.39% in both venues. This study will
use 50ms (it is a common choice for trading algorithm). Despite this, the sample analysed
shows that a shorter time might be optimal |...|.

After this overview about orders, volumes, sides and timing, it is possible to analyze the some of
the features defined in Chapter 3 with the aim to spot some useful information, trends or patterns
that could be useful for the venue selection problem.



Chapter 6

Features comparison

This chapter continues the data analysis with the statistics introduced in Chapter 3, concluding it
and explaining the problem with the current approach to venue selection. It is divided into three
main sections: the first section analyzes the selected fixed time statistics while the second one the
selected rolling statistics. The last section explains the limitations of the available data for the
venue selection problem and proposes a backtesting data generation strategy.

6.1 Fixed time statistics

The fixed time statistics are metrics that depend only on the state of the order book at a specific
time. The analysis of these statistics begins with the study of the mid price.

6.1.1 Mid price analysis

The first statistics studied is the mid price. The behaviour of this feature is expected to be extremely
similar in both venues for the absence of high latency arbitrages. In fact, the mid price follows
exactly the same trend in both the two venues. Figure 6.1 shows the mid prices computed every
second (2021-09-07, h. 8:00 - h. 18:00).
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Figure 6.1: Comparison between the mid related features in both venues (2021-09-07, h. 8:00 - h.
18:00).

The pattern followed is exactly the same and no difference can be found: as also Smith [6]
noted, the mid price is not a good statistic for the venue selection. In fact, the best bid and best
ask follow the same patterns, but the spread could be useful for comparing venues.
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6.1.2 Spread analysis

The next features to study is the spread (7) in both venues: spread analysis was conducted by
analysing the intraday distributions. Five days were analysed from 8:00:00 to 18:59:59 checking
the spread values every second. The mean of the spread values computed every second is reported
in Table 6.1.

Table 6.1: Mean of the spread values in both venues (in pips). The values are obtained using ten
different days and column AS shows the difference.

Hour SAMS | GRTM | A G

8:00-9:00 0.33 0.33 0.00

9:00-10:00 0.29 0.36 -0.07

10:00-11:00 | 0.28 0.34 -0.06

11:00-12:00 | 0.31 0.34 -0.03

12:00-13:00 | 0.34 0.34 0.00

13:00-14:00 | 0.33 0.32 0.01

14:00-15:00 | 0.36 0.31 0.05

15:00-16:00 | 0.41 0.31 0.10

16:00-17:00 | 0.41 0.32 0.09

17:00-18:00 | 0.40 0.30 0.10

18:00-19:00 | 0.38 0.29 0.09

Taking these values, it is evident that during the day the spread values between the venues
change and an intraday seasonality is present. Three daily periods can be identified within the day:
the morning (7" = 0, 8:00-12:00) in which on average the spread in AMS is slightly smaller than in
RTM, the early afternoon (7' = 1, 12:00-15:00) in which RTM has a slightly smaller spread than
AMS and the late afternoon (7' = 2, 15:00-19:00) in which delta values even reach —0.10. Note
how these differences could play a very important role in venue selection: ALGO does not currently
change its strategies depending on the time of day and this could be an important factor.

This intraday seasonality is due to the fact that in the morning the market is only open in
Europe and the majority of traders are European. Then, in the early afternoon, the American
market opens and consequently the number of American traders also increases. Towards the end
of the day, the majority of traders are American due to time constraints. Being AMS based in
London and RTM in Chicago (although they also have offices in Europe), it is possible to think
that the geolocation of venues may have influenced the country from which traders trade in it.
From the data one would think that in AMS there are more European traders placing volumes (in
the morning the spread is smaller) instead in RTM more Americans (in the evening there seems
to be a much smaller spread). This is just a hypothesis at the moment and will be confirmed by
subsequent data.

To better analyse the spread, one must also study its histograms to see its distribution and not
just the average. Figure 6.2 shows the spread distributions during the three different daily periods
T=0,1,2.
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Figure 6.2: Histogram of the spread distributions (in pips) during the different daily time periods.
The shown data are obtained analysing the spread computed every second of five random days.

AMS has a completely different distribution with respect to RT'M. The spread in AMS is in
fact concentrated around values of 0.3 ("= 0,1) and 0.4 (T" = 1,2) with an absence of tails. On
the other hand, RTM has a flat distribution with heavy tails. The financial reason for this could
again be related to the volume of the two venues: AMS has more volume and it might be more
difficult for traders to change the spread much with very aggressive orders. On the other hand,
RTM, having less volume, might be more prone to volatile spreads.

Moreover, the increments time series of the spread values for both venues are stationary (p-value
of the ADFuller test equal to zero): it is possible to check the correlation between the time series.
For t = 0,1, the increments between the spread values in both venues have a correlation of 0.05,
while in the afternoon 0.08. These small values may suggest that the spread (and thus the best
bid and best ask) of venues may be skewed. It might be possible for a model to spot differences
between venues based on these time series.

6.2 Rolling features analysis

After the selected fixed time order book statistics, it is now possible to analyze the rolling ones.
The main statistics selected are the rolling returns and the rolling volatility.
6.2.1 Returns analysis

The first rolling features analysed are the returns (not computed with the logarithm in this case,
but just with the difference). Although, based on mid-price values, they should not be very useful
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in venue selection, it is very useful to analyse them to get an idea of how the price moves in venues.
The rolling returns features change substantially depending on the selected rolling window. Figure
6.3 shows the histograms of the returns with four different time intervals: 1s, 5s, 1m, bm. The
selected dataset is related to the 30/06/2021 from h. 9:00 to h. 19:00.
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Figure 6.3: Returns comparison with different time intervals.

If, as expected, the differences between the histograms of the venues are not remarkable, the
returns have difference wider shapes for every selected rolling time window. Figure 6.3a and Figure
6.3b show how the strong majority of the returns for these intervals are equal to zero. In the
five days analysed (but in general in the EURUSD market), it happens often that the mid price
remains stable within an interval of 1s or 5s. Figure 6.3c and Figure 6.3d show histograms centered
in zero, but with infrequent null returns (around 3% for 1m and 5% for 5m). A Shapiro test was

performed on the data, but for all the time series analysed, it has reported a null p-value: data are
not Gaussian.

Time dependence

Being histograms, Figure 6.3 does not take into account the time correlation between the features.
It is indeed possible to plot the time series of the selected returns trying to detect some trends
and some differences between the venues. Again, one could expect no differences in the larger time
intervals due to arbitrage absence principle. Analysing stationary time series, it is very important
to look at the correlation between different lags with an ACF plot.

Let’s start analysing the returns time series with the larger time windows and their ACF plots
(5 min and 1 min, 30/06/2021 from 9:00 to 19:00) in Figure 6.4.
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Figure 6.4: Time series and autocorrelation plot comparison between returns with relative large
time intervals (5 minutes and 1 minute).

Once again, the venues show extremely similar trends and this is confirmed by the ACF plots.
It is very interesting to point out the strong correlation present in the returns with relatively large
time intervals: the trend is in fact not random, but seems to oscillate around zero with a trend.
This fact is confirmed by ACF plots showing first negative and then positive correlations with past
lags. While it is true that there does not seem to be any particular differences between the two
venues, this fact is significant enough to understand the general market behaviour. For example,
looking at Figure 6.9c one can deduce that it is likely that if I have had a positive return in the
last five minutes, I will have a negative return in the next 5/10 minutes. The same phenomenon,
although less pronounced and more random, is shown in Figure 6.9d.

When looking at plots with smaller intervals, the autocorrelation decreases more and more, to
the point where it almost looks like noise. Looking at Figure 6.5, this phenomena is clearly observ-
able. The continuous inverting behaviour of the returns is maintained, but it is much attenuated (in
both venues), and even looking at the plot of the time series it is much more complicated to read.
The peaks present are alternately red for AMS and green for RTM, without one venue showing a
particularly different behaviour from the other.
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Figure 6.5: Time series and autocorrelation plot comparison between returns with 5 seconds inter-
val.

The analysis of these plots is concluded with the graphs of the 1-second returns. Again, the au-
tocorrelation is minimal, although still present. There do not appear to be any particular differences
between the two venues 6.6.
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Figure 6.6: Time series and autocorrelation plot comparison between returns with 1 seconds inter-
val.

It is evident from the graphs that the smaller the window of time, the more there is no correlation
but just noise between the trend of returns. To confirm this idea and conclude the return analysis,
the covariance matrix is shown in Table 6.2. Note that the only time series that show stationarity
are the 1s and 5s returns. The other time series clearly show some patterns.
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Table 6.2: Correlation between the different returns time series considered.

AMS RTM AMS RTM AMS RTM AMS RTM
T1s T1s T'5s T'ss Tim Tim T5m T5m

rpMS 1 0.8 | 044 | 036 | 0.13 | 0.1 | 0.06 | 0.04

rRIM 0.8 1 043 | 046 | 0.14 | 0.13 | 0.06 | 0.06

raMS 1044 | 0.43 1 09 | 029 | 0.25 | 0.13 | 0.11

rEIM 1036 | 046 | 0.9 1 0.32 | 03 | 0.14 | 0.13

rpMS 1013 | 0.14 | 0.29 | 0.32 1 0.98 | 0.45 | 0.44

rRIMT 0.1 0.13 | 0.25 | 0.3 | 0.98 1 0.46 | 0.45

r&MS 1006 | 0.06 | 0.13 | 0.14 | 045 | 046 | 1 1

rEIM 004 | 0.06 | 0.11 | 0.13 | 0.44 | 0.45 1 1

The matrix shows an interesting fact: while once again there is a strong correlation between
the variables with a large time window, the correlation is gradually attenuated as these windows
become smaller. This fact could suggest that useful differences in venue selection could be contained
in features with a very small time interval (in the order of magnitude of the ms). If on one hand,
these features could be just random noise, on the other hand, due to the absence of arbitrage, they
could play a key role in the venue selection problem. If something is happening in one venue, it
will also happen in the other with a very small delay. Being able to detect these changes could lead
to the choice of one venue over the other depending on one’s buy or sell order.

6.2.2 Volatility

Financial volatility refers to the degree of variation and uncertainty in the prices or returns of
financial assets, reflecting the level of risk and market fluctuations in the financial markets. Being
one of the most important financial statistics it was considered important to analyse it. Like in
the spread case, the first analysis is related to the hourly mean of our five days dataset. Volatility
computed in this section is the standard deviation of the 50ms returns every 1 second. The first
selected rolling time window is 5 minutes: the first study is related to large rolling time window.
Table 6.3 shows the hourly means of the 5min volatility in both venues.
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Table 6.3: Mean of the 5min volatility values in both venues (multiplied by 10%).

8:00-9:00 | 0.023 | 0.020

9:00-10:00 | 0.022 | 0.020

10:00-11:00 | 0.021 | 0.018

11:00-12:00 | 0.020 | 0.018

12:00-13:00 | 0.030 | 0.026

13:00-14:00 | 0.029 | 0.025

14:00-15:00 | 0.030 | 0.026

15:00-16:00 | 0.031 | 0.027

16:00-17:00 | 0.020 | 0.018

17:00-18:00 | 0.016 | 0.013

18:00-19:00 | 0.014 | 0.012

As in the case of the spread, it is clear that it is possible to divide the hourly range into three
groups. The morning hours, when the European market is open, are characterised by volatility
around 0.02 in both venues. In the early afternoon, with the US market also open, the values
increase a lot to above 0.03 in AMS. In this case the data also show high volatility from 15:00 to
15:59 (in the case of the spread this time interval was assigned to 7' = 2). In the late afternoon,
approaching the close in Europe, the market on selected days appears more stable and less volatile.

It is now possible to view two days of the five in the analysed dataset to study whether 15:00
belongs to the second or third group. 22/10/2021 shows great volatility between 15:00 and 16:00,
with peaks as high as 0.07 (see Figure 6.7).

Figure 6.7: Time series of the 5 minutes volatility, 22/10/2021.
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As the EURUSD market is continuously influenced by external factors from all over the world,
it is absolutely logical that the price can have volatility spikes at any time (especially if both the
European and American markets are open). An example of a low volatility day is 18/10 on which
instead the division implemented for the spread could be perfectly functional. Volatility on this
day remains below 0.04 throughout the day (Figure 6.8).
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Figure 6.8: Time series and autocorrelation plot comparison between volatility with relative large

time intervals (5 minutes and 1 minute).
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Regardless of the precise division, it is again important to note that days show intraday patterns
with different volatility. Just as in the case of the spread, the fact that the stock markets are or

are not open greatly influences the volatility in both venues.

From the figures above, it can be seen that volatilities seem to follow similar, but not identical
paths as in the case of mid-price or returns with large time intervals. The choice to use 50ms
returns tries indeed to detect differences between the venues. As opposed to returns, volatility of
the 50ms returns seems to be different, even in the larger time intervals. Looking at the 5 minutes
and 1 minute time is possible to note different trends. Figure 6.9 shows data of 30/06/2021 from

9:00 to 11:00, but the result are generalisable.
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Figure 6.9: Time series and autocorrelation plot comparison between volatility with relative large
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Although following the same mid price (as shown in the previous sections), the volatilities of the
50-ms returns are different. The ACF plots show that the correlations between the two different
venues are also very different over time. There is clear statistical evidence that the two venues have
different ways of following the mid price.

The hypothesis could now arise that at micro upper trends and/or lower trends a given venue
has a different volatility from the other and that this phenomenon is also visible at relatively large
time windows. In other words, it would be ideal to understand whether higher volatility values
in AMS/RTM correspond to positive or negative price movements. Looking at Figure 6.10, it is
impossible to identify a pattern in the trends: it is not true that at each upper/lower trend one
venue is more volatile than another using this relatively large time interval (1 minute).

Volatility vs moving average

T T T
~— AMS: mid moving avg 1 m
r) ~— RTM: mid moving avg 1 m

1.1896 ﬁN

|\
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Figure 6.10: Comparison between the volatility values and the mid. The plotted lines are the
lminute timeseries in both venues and the background shows when the volatility is higher in RTM
(green) or AMS (red).

From this volatility and returns analysis, it is clear that features based on macro price trends
can detect macro trends present in both venues. Moving average and mid values are equal due
to the absence of arbitrage, and thus the returns, when studied with time intervals in the order
of magnitude of the second. The strong correlations between return data might be interesting for
a macro trend prediction problem, but it could be too similar for a venue selection problem. On
the other hand, features which use very small time interval could be not useful due to excessive
noise. The primary objective of this study is to strike a balance between incorporating features
that employ larger time intervals, capable of detecting macro trends that exhibit similarities across
different venues, and features that use smaller time intervals, while ensuring that the generated
signals are not too noisy.

6.3 Comparison problems

This subsection explains the reasons behind the new approach proposed in this thesis to the problem
of venue selection. It is possible to identify three main problems that data has for the venue
comparison: the strong imbalance between executions and cancellations, the strong imbalance
between the venues number of orders and the absence of equal orders in both venues. The aim of
this subsection is try to explain these three problems and propose a solution.

Looking at the data, the majority of the orders is cancelled and not executed: for both venues
the number of cancellations is extremely high (Figure 6.11): for RTM is 99.4%, for AMS 99.7%.
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RTM : order results AMS : order results

cancelled cancelled
partially/fully executed partially/fully executed

99.4% 0.6% 99.7% 0.3%

(a) RTM - EUR/USD (b) AMS - EUR/USD

Figure 6.11: Comparison between the orders in both venues (2021-09-13, h. 9:00 - h. 17:00)

The portion of the executed orders is extremely small compared to the cancellations: the
available dataset is strongly imbalanced. If one wants to calculate the probability of execution
given an order by trying to train a model using historical orders as Smith did [6], problems may
arise. In fact, this characteristic makes the model biased: in fact, it will tend to predict only non-
execution of an order. To avoid this problem Smith, in her research, considered just the executed
orders: all the cancellations are not considered during the training of the models. In doing so, Smith
encountered a second major problem: as shown Figure 5.7, AMS executions are much more present
with respect to RTM ones. In fact even in this case the dataset is imbalanced. In order to train the
Random Forest model proposed, Smith proposes to oversample RTM data and undersample AMS
one. The obtained result, as already mentioned, were not significant for the choice of venues.

However, the biggest problem for venue comparisons is the absence of comparable data. In
a dynamic system like the limit order book, which changes every nanosecond, time plays a very
important role. In all present data, there are no two identical orders placed in both venues at
the same time. To compare venues in the most unbiased way possible, different data should be
studied in which the orders sent to the venues are exactly the same. With this idea in mind, this
study proposes an innovative technique for generating synthetic data for the venue selection using
historical data.



Chapter 7

Synthetic data generation

In order to compare the venues without any kind of bias, a synthetic data generation approach
has been used in this research. The aim of this subsection is to explain the main idea between
the synthetic data generation, give an overview of the Python code that simulates the orderbook
dynamics and propose different approaches used to generate new data.

7.1 Data generation: the basic idea

Synthetic data generation involves creating artificial data that mimics real-world data. In this
case, the aim is to simulate orderbook dynamics to generate new data that can be used to compare
venues without any bias. To achieve this goal the same synthetic order is sent to both venues with
exactly the same characteristics and at the same time (Figure 7.1). The execution/not execution
of the order is determined by the historical data of each venues and the amount of time preceding
the execution is saved.

Time = 2021-06-30 09:10:59.07
Sell/Buy = Buy
Q: Quantity = 1min
P: Limit price = 1.18940

RTM

Time = 2021-06-30 09:10:59.07
Sell/Buy = Buy \

Q: Quantity = 1min | AMS

P: Limit price = 1.18940

Figure 7.1: Synthetic data generation: two identical orders are sent to both venues at the same
time.

In this way, the historical orders of each venues determine the execution of the mock order in-
serted, and the venues are judged without any kind of bias. In fact, the bias related to cancellations
is avoided because the experiment never ends with a cancellation, and the bias related to the num-
ber of daily data from each venue is avoided because the experiments are run in parallel on AMS
and RTM. Add to this the fact that the orders have exactly the same characteristics (direction,
quantity and price) and the judgement on venues is totally impartial. The key point now is define
the characteristic of the generic mock order insert in the LOB of both venues:

e Timestamp and machine latency: the timestamp has to be the same for both venues. At
a generic time tg the order is sent to AMS and RTM and it will be read by the venues with
a latency of 2 ms. The latency value is chosen by discussing with MN quants.
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e Quantity: as shown in Figure 5.6, a good quantity could be 1 mln: this value and it is
common in both venues (especially RTM) [...|. Another good point for this choice is that the
quantity is not too large: the aim of the simulation is to be as realistic as possible and orders
that are too large could alter the flow of the simulated LOB. In case of partial execution
the order remains in the venues with the remaining quantity until all the quantity will be
executed.

e Direction: The simulations are run with both buy and sell orders for the same time interval
with two different simulations. In this way, two datasets are generated (buy and sell) and the
data obtained are completely unbiased.

e Price: the choice of order price may vary depending on the type of experiment. It is obviously
important that the price entered is the same in all venues. To benefit the venue with the
most competitive best ask/best bid the proposal is to use min and max operation to give
more important at the most competitive venue. In the subsection 7.3 the proposed strategies
will be explained. Every strategy has a different price selection.

7.2 Data generation in practise: Python code explanation

In order to generate synthetic data, a public Python code with a complete LOB matching engine
was found on GitHub [30]. The code has an MIT license which makes it public and available to
everyone. It can reconstruct an orderbook and modify it step-by-step, every time a new order is
added /cancelled /modified. The code is a matching engine because when there is a match between
two orders the trade is automatically generated and the limit order book is dynamically updated.
However, the original code required extensive modification to align it with the goals of this research.
The main new parts coded were: the integration of the code with AWS to access venue data and
the development of a simulation module to create statistics, track progress, and save experiment
results.

To provide a general overview of the code base, we will introduce the two main classes:
orderbook and gateway. The orderbook class represents a snapshot of the orderbook at a particu-
lar timestamp, and provides methods to access various pieces of information such as the mid-price,
best ask, best bid, and volume distribution. On the other hand, the gateway class serves as the
interface between the historical data and orderbook. This class loads all the historical trading data
and processes data one-by-one modifying the orderbook class. Figure 7.2 illustrates this process
for AMS (for RTM is exaclty the same with a different dataset). It’s important to note that each
venue has its own dedicated gateway and orderbook classes, which are specific to that venue.
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AMS data of dd/mm/yyyy

gateway
to 8943553 new True 500000 1.1856 orderbook

t1 | 8943554 |new |False |1000000 |1.1863 | | Step n (time to) AMS
t2 8943553 | cancel
ts  |8943554 |modif |True |500000 |1.1863

cancel

AMS data of dd/mm/yyyy

to 8943553 | new True 500000 |1.1856
t1 8943554 | new False | 1000000 |1.1863
t2 8943553 | cancel
t3 8943554 | modif | True 500000 |1.1863

gateway

1 orderbook
| Step n+1 (time t1) ‘ AMS

cancel

Figure 7.2: Explanation of the interaction between gateway and orderbook classes. The historical

orders are processed one by one and at every timestamp it is possible to access the snapshot of the
orderbook.

Considering that the average life time of each order is less than 15ms (Table 5.1), the choice to
use one entire hour of data to load the historical orderbook before perform any strategy is accurate:
it is possible to consider the constructed orderbook uagual to the historical orderbook. The next
step is to understand how the code can add and process mock orders used to simulate a strategy.
Note that the process explained in this section is repeated for both venues in the exactly same way.
In order to clarify how a simulation can be run, it is possible to do an example. Let’s assume that
the orderbook is updated at time #; with a the historical orders. Furthermore, assume that at time
to + At a mock order is to be entered for simulation:

e The order is read by the gateway class in the historical order. Note that the unique id (uid)
of the order is defined negative in order to distinguish the mock orders from the historical
ones. The mock order will be read by the gateway class and inserted into the orderbook
class (Figure 7.3).
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AMS data of dd/mm/yyyy

to 8943553 [new |True |500000 |1.1856

t1 8943554 |new |False |1000000 |1.1863 gateway

t 8943553 | cancel Y orderbook

ts 8943554 | modif |True |500000 |1.1863 ‘ Step n+2 (time t2) | AMS
cancel

AMS data of dd/mm/yyyy

Step n+3 (time t2+At)
to | 8943553 |new |True |500000 |1.1856 | | The mockorderis added
ts 8943554 |new | False | 1000000 |1.1863 | Londtrackedbygateway
t2 8943553 cancel

t2+At | -1 Ti 100000 |1.1857 gateway Orderbook
2+ - new rue .
AMS
3 8943554 modif | True 500000 |1.1863
cancel

Figure 7.3: Explanation of how a single simulation begins. The mock order is inserted in the
sequence of the orders with a negative uid. The gateway class processes it and adds it to the
orderbook class.

e The historical order are processed one-by-one until the mock order is cancelled or it is exe-
cuted. The choice of cancellation/not cancellation of the mock order depends on the chosen
strategy. Let’s assume that at time ¢, the mock order is still in the venue (the strategy
did not cancel the mock order) and a historical order generates a match (Figure 7.4). The
simulation ends and all the information are saved in a csv file (order info, rolling statistics,
snapshot statistics, time of execution in the venues).

AMS data of dd/mm/yyyy

to 8943553 new True 500000 |1.1856
t1 8943554 new False 1000000 | 1.1863
t2 8943553 cancel

Step n+m (time tm)

There is a match: the mock order

t+At | -1 new | True 100000 |1.1857 is executed in orderbook
ts 8943554 |modif |True |500000 |1.1863
cancel
gateway
tm 8943593 [new |False |1000000 |1.1857 | mm——) | 2800l

AMS

Figure 7.4: Explanation of how a single simulation ends. There is a match in the orderbook and
the mock order is executed.

Note that the possible future cancellation of the historical matched order (order 8943593 in
Figure 7.4) is processed by the gateway class but does not lead to any results. Furthermore,
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it is important to highlight that the orderbook class provides an easy access to all the trades
that involve the mock orders.

To conclude, performing the simulations and saving all the results, it is possible to build a dataset
that can be used to train some statistical and Machine Learning models. In fact, the output of
the simulations of both venues will be different because the historical orders and the statistics are
different: the goal now is to train a model that can detect in which situation a venue could be better
than the other one. Note how simulations do not claim to emulate reality exactly: by using only
historical data it is not possible to claim total verisimilitude of the simulation. What a simulation
aims to achieve is a clearer view of how venues work, comparing them and trying to spot the main
differences. Although the simulations may not be entirely truthful, in fact, putting the focus on
the sequence of historical orders in both venues could have very significant results.

7.3 Proposed strategies

In this subsection the strategies used in order to generate synthetic data. The strategy proposed
depend on a ¢ parameter and they are all based on the ALGO floating strategy. The ¢ parameter
defines the aggressiveness of each strategy: by backtesting different strategies with different aggres-
siveness, it is possible to compare locations in different situations, analysing different behaviours.

The proposed floating strategy (FLOAT) is a very similar version of the most used ALGO
trading strategy. The proposed version is a simplified version of the real one discussed with the
senior Quant of MN. The main reason why the real one is not shown is the fact that the parameters
of the strategy are extremely confidential. Despite this, the proposed strategy is quite similar and
easier to interpret and explain. It is a passive strategy that floats around selected price. In order
to use the ALGO floating strategy one has to define a parameter ¢, a limit time interval At and
the mean of the mid prices in both venues at time ¢:

RTM AMS
- M (t)—;M (t)

In the real ALGO Floating strategy, M (t) is calculated as a weighted average that assigns a weight
to each venue based on the last update received by the venue. A recently arrived update is given a
large weight, while an update that arrived earlier in time is given a smaller weight. The reason for
this is that in reality it is not possible to access venue data at all times, but there is a latency in
updates. In the proposed simulation, it is assumed that the venue updates occur at the same time
and thus the weights are equivalent to each other. With this assumption, it is possible to calculate

M (t) and establish the floating price:
In case of buy order: Pqoa;(t, ¢) = M(t) — ¢ x 0.00001
In case of sell order: Pqoat(t, @) = M(t) + ¢ * 0.00001

The parameter ¢ or level of passiveness is fixed for every simulation. In the real ALGO version
there is an analogous parameter and it is set manually by the MN trader at the start of execution
of the parent order. With high values of ¢ the strategy favours the best price over execution speed,
while with lower values the opposite occurs. Note that the price is rounded to the fifth decimal
place to be an acceptable price in the FX market: this fact, that might seem insignificant, changes
things a lot when the phi value is null approaching one mid price or the other.

Defined the initial price equal to the floating price, the mock order is sent to both venues. This
logic is exactly the same that the ALGO one: the historical orders are processed by the code and
after At milliseconds in each venue the order could be executed, partially executed or not executed.
On the other hand, the floating price could change or it could be the same.
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e If one order is fully executed the strategy ends. It is very important to note that the strategy
ends even if in the other venues the order is not fully executed. In this case the new floating
price is not considered.

e If there is not a full execution, the new floating price is computed. If the new price is equal
to the previous one nothing happens and the strategy will wait other A¢ milliseconds. If the
new price is not equal, the old mock orders are cancelled and the remaining quantities in both
orders are insert in corresponding venues with the same new floating prices. For instance, if
in AMS the remaining quantity is 600k and in RTM it is still 1mln, the new orders have the
same quantities (600k for AMS and 1mln for RTM) but with the updated floating price.

Again, the same strategy is applied to both venues and the venues with the fastest execution is
preferred. Note that the strategy price is the same in both venues at every timestamp. When the
strategy ends, the orderbook is re-initialized and a new floating strategy is immediately performed.
Indeed, the ALGO float strategy has not a fixed duration, so there is not a fixed latency in which
the strategy is performed.

7.4 Latency

This subsection will explain how the latency is managed in the simulations. With the hypothesis
that all the updates from the venues occur at the same time (in reality this is not always true),
there is still the reaction latency of the trading machine. In the codebase this value is defined and
fixed at 2ms after the discussion with a MN quant. The strategies every At ms have to act with
the venues. When a cancellation of an existing order and/or new order has to be sent, the message
arrives whit 7 ms of latency. To understand this important concept, it is possible to observe Figure
7.5 that describes this process.

The new floating The old order is cancelled and
price is computed the new one is inserted

»
>

time

Figure 7.5: Description of the latency management in the codebase. After At ms the strategy
computes the new price and sends updates delayed by 7 ms.

Note that in the latency period a full/partial execution could occur: this case has to be consid-
ered. In reality, MN uses to modify the old orders putting a new price maintaining the remaining
quantity (if there is any). The simulation emulate this fact, cancelling the old order and putting a
new order with the price computed at time At with the remaining quantity at time At 4+ 7. If at
time At + 7 all the volume is already executed the simulation stops: it makes no sense to add an
order with null volume.

7.5 Synthetic data generation summary

Synthetic data generation is considered the best approach for approaching the venue selection
problem using an unbiased technique. By backtesting strategies in a consistent manner across both
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venues, with identical parameters and timing, it becomes feasible to compare executions and find
the best venue allocation.

The selected child orders size is 1 million because it is an extremely common size in both AMS
and RTM. The latency is 2 ms (discussed with the MN quants) and the simulations are performed
for both side buy and sell. For the price selection, a strategy similar to the ALGO FLOAT has
been selected: it is the most used trading strategy by the MN traders. The only input parameter
considered is ¢ € [0,4] and it describes the passiveness of the strategy. In this way, it is possible
to analyse the different behaviours of the venues with different level of passiveness. Additionally,
calculating a set of statistics before each simulation allows for assessing the correlation between
execution outcomes and the initial statistical values.



Chapter 8

Synthetic Data Analysis: aggressive
strategies

The aim of this section is to present the results of one day synthetic week data simulations for the
aggressive strategies (¢ = 0,¢ = 1). A synthetic week is a set of one of every weekday from different
weeks. Five weekdays from June to October 2021 were selected: Monday 18/10, Tuesday 7,09,
Wednesday 30/06, Thursday 16/09 and Friday 22/10. All the days were studied from h. 8:00 to h.
19:00 (London time, CET+1). The decision to utilize a synthetic week instead of a regular week
is motivated by an overfitting issue. The objective of the chapter is to identify general patterns in
venues behavior. However, these patterns may be constrained to a particular period, and therefore
the selection of a synthetic week is an attempt to limit this problem. Note that the simulations are
performed in two different datasets. The first one is from 8:00 to 14:00, the second one form 14:00
to 19:00. In this way the orderbook is re-initialised at least one time with just historical data and
the prices are compared.

8.1 Strategy analysis rules

The first question that might arise from reading this chapter is why mock simulations are mean-
ingful? The fact that all simulations are based only on historical data and not on real market
participants can change a lot our mock scenario and modify the overall results: it is in fact pos-
sible that by continuously trying to trade aggressively on the same buy /sell side the price will be
moved by some market maker to try to make a profit. If, however, the results were analysed not
by considering a general overview but only by looking at individual one-million performances, then
the significance of the simulations could increase. The single 1 mln buy /sell order, in fact, should
in no way change the general price trend.

In order to compare the price trajectories of each orderbook, it is possible to plot the mid price
in both venues for every day and for every simulation (Figure 8.1). In this way, it is possible to
check that all the strategies (especially the most aggressive ones with ¢ = 0) do not modify the
mid price trajectory.
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(a) AMS mid price trajectory
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(b) RTM mid price trajectory

Figure 8.1: Checks of the mid price trajectories in both venues: the mid prices follow the same
trajectory for all the strategies. The showed day is 22/10/2021, from 8:00 to 19:00 London time.

The plot does not show all the strategies to avoid confusion, but all the strategies have been
tested and show all the same trajectory. The daily mid prices values are confirmed checking the
values online. Given these results, it is possible to assume that all the simulations do not effect the
trajectory of the mid prices.

Simulations are not to be interpreted as real trades, but the reading to be given is as follows:
imagine the floating price as a line, and the simulation itself describes when this value is hit by
the market with at least a million. The analysis of this chapter will be indeed focused on statistics
computed on the single simulations, trying to find some common path or tendencies. Using the old
approach described in 2.5.1 one should focus just on which venue was the fastest to execute the
child order in each simulation in order to select the best venue. However, using the new parallel
trading approach (see 2.5.2), the most important statistic studied is the difference between the
volumes executed in each venue: in fact, the aim of this research is not select the best venue, but
try to measure the performances in order to find the best order allocation. Given the i** simulation,
let’s define the difference between the volume executed in both venues in that simulation:

AV =V} -V, (8.1)

where Vﬁ is the volume executed in the i** simulation in AMS and Vé in RTM. Given that the
volumes are expressed in millions and each child order in every simulation has a quantity of 1
million, it is possible to write V{, V& € [0,1]. Consequently, AV’ € [—1,1] and some important
cases be distinguished:

e If AV’ > 0, in the i simulation, AMS achieved a complete execution, while RTM did not.
The extreme case is AV? = 1, when RTM did not report any execution.

e If AV? < 0, in the " simulation, RTM achieved a complete execution, while AMS did not.
The extreme case is AV? = —1, when AMS did not report any execution.
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o If AV? = 0, the same 50ms time window a full execution (1 mln) occurred in AMS and in
RTM. The i*" simulation has been tied by the venues.

Even if each day contains different characteristics, the aim of the next section is to highlight
general patterns in the selected synthetic week. It has been analyzed the time distribution of the
executions during a day, trying to find some meaningful common patterns. Moreover, in order to
try to understand the behaviour of AV, correlations with selected statistics z; will be analysed.
After this, the goal is to try to find some models that, given x; could forecast the best prediction
as possible for AV. This models will be trained and tested using a split data in the synthetic week:
the first four days will used as a training set, Friday 22/10 will be the test set. Each proposed
model will be compared with two benchmarks: the prediction named ALGO which always predicts
AV = 0 and the simple mean model that will be explained [...].: The selected reference metric is
mean square error (MSE), being the most classic metric for regression problems.

Note that the results proposed in this section are extremely consistent: the models proposed
can forecast AV values of a random day basing the forecast on just four random days in the past.
The patterns analysed by the models are indeed generalisable and there is no risk of overfitting.
Moreover, given the AAV, it is possible to compute w4 using this formula:

1

& (8.2)

wpA =

The equation does not aim to return the best value of w4 for a single two-million split: in fact, MN
orders are usually much larger, which makes the choice more complex. The choice of quantity to
allocate to each venue is in fact made at the beginning of the trading process, even if the quantities
are large and the whole thing will take a long time. The proposed solution will be to split large
orders into smaller orders and allocate in each venue multiple orders of 500k to try to speed up the
process. The value of w4 represents the ratio that this research thinks is optimal.

8.2 Floating aggressive strategies with ¢ = 0

Let’s start the analysis with the aggressive strategies: in this section the floating strategy results
with ¢ = 0 are analysed. It is important to notice that this selection of ¢ makes the strategy the
most aggressive of the used floating strategies. The buy and sell prices are both set to the average
mid price of the venues. With this strategy, one can expect a large number of executions and a low
average execution time. Running the analysis, a large number of executions is indeed verified: in a
synthetic week, 608894 for the buy simulations and 621389 for the sell ones. It has been noted that
in periods with very small spreads, the orders are market orders executed on. The interpretation
of this result is that the line of the average of the mid prices (rounded the fifth decimal place) was
hit more than 600k time in a synthetic week. 43168 for the sell ones.

8.2.1 AV results

With the most aggressive strategies, AMS outperforms RTM. On average for the buy simulations
AV = 0.473 and for the sell ones AV = 0.464. Figure 8.2 shows the distribution of the AV: about
35% of the simulations are ended with AV = 1.
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Figure 8.2: Difference between volumes traded in AMS and RTM for ¢ = 0.

The ¢ = 0 strategies could not be used by a real market participant for the entire duration of

one day for the huge number of executions, but can help the analysis on the venue participants and
their trades. The reason why AMS is preferable with respect to RTM is most likely the fact that
more traders trade using the venue. Being the floating price with ¢ = 0 a very aggressive price
the most liquid venue is the best. Note that there is no remarkable difference between buy and sell
AV distributions: Figure 8.2 shows that buy and sell bins have very similar heights overall. To
further investigate the distribution, it is possible to plot the hourly distribution of the executions
every day.

To conclude the first analysis is possible to analyze the distribution of the executions. For ¢ = 0

AMS is always better than RTM for both buy and sell orders during all the hours (the differences
between the executed volumes in the venues are always large). One important thing to notice is
that during the time interval h. 12:00 - 15:00 the executed quantity increases by far (Figure 8.11).
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mmm BUY - AMS volume executed mmm SELL - pAms volume executed
BUY - RTM volume executed mm SELL - pTM volume executed
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(a) Buy orders (b) Sell Orders
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Figure 8.3: Execution hourly comparison for ¢ = 0.
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Once again, as in the case of volatility and spread, it is evident how the results of AV are
influenced by the European/US markets.

Before proposing the models for forecasting AV, it is useful to summarise the observations in
this first analysis. It is indeed possible to note that:

e AMS outperforms RTM. This fact is highlighted for both buy and sell orders (AVyy,y, AVsen
460k). The only small exception is visible in the afternoon after h 16:00. There, RTM and
AMS seem to have a comparable performance for ¢ = 1. If with aggressive strategies the
volume in front of your order in the queue should be the little in both venues, the AMS order
flow plays a crucial role in the executions.

¢ Different time intervals: from h. 12:00 to 15:00 the executed volumes increase due to the
fact that both EU and US traders are trading. Moreover in the late afternoon (after 15:00)
RTM increases a lot its performance with respect to AMS: being a Chicago based venue, more
people are trading in the US hours (AMS is indeed based in London). Defining the three
period with the notation T'= 0 for h. 8:00 - 12:00, 7' =1 for h. 12:00 - 15:00 and T' = 2 for
h. 15:00 - 19:00, it is possible to compute the AV mean values in every interval (Table 8.1).

Table 8.1: Mean Values of AV for ¢ =0 and ¢ = 1.

T | AVbuy (¢ =0) | AVieu(¢ = 0)
0 0.577 0.550
1 0.465 0.444
2 0.349 0.374

Let’s note that the hourly division has been limited to only three intervals because they are
the most significant. Choosing a division into more subgroups could have led to overfit (the
sample is only a synthetic week). The reduction of the efficiency of AMS during the day
should be taken into consideration in order to obtain faster executions.

e No remarkable buy/sell differences: there is no important difference between buy and
sell orders result for the aggressive strategies. Being the values of AV extremely similar and
checking the hourly plot, during the most used trading hours AMS has a constant better
performance in both buy and sell sides. Table 8.1 shows that the mean values of AV seem to
be similar. This fact is not taken into consideration in this first analysis, but it will be further
analysed in the next sections. The fact that buy/sell orders could show different results in
the execution, in fact, is clearly observed for the more passive strategies.

Having clarified these points, it is now possible to analyse the correlated features with the results
in order to obtain as simple a model as possible for predicting AV.

8.2.2 Important statistics for ¢ =0

By analysing the other statistics for ¢ = 0, it is clear that the real game changer in the venue
selection for aggressive strategies is the venue’s liquidity. With an aggressive strategy, that’s the
most important thing. If people are trading, your order will be executed faster because it is very
convenient. In AMS the order flow is a way greater that in RTM and this fact does not depend
on specific market conditions or statistics, but it depends only on the number of traders of the two
venues.

The first and most important feature in venue selection in the aggressive case is the time of day,
as clearly shown in Figure and in Table 8.1. Since the periods are so different, different models will
be fit for each T value. Calculating the correlation between AV and all the other statistics, none
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exceed the —0.1/0.1 correlation threshold except the difference between the best bid/ask in AMS
and the best bid/ask in RTM. Let’s define this quantities as:

AB(t) = BAMS(t) — BRIM(¢) (8.3)

AA(t) = AMMS (1) — ARTM (4 (8.4)

Both time series are stationary and the AV value are stationary according to the Augmented
Dickey—Fuller test: it is possible to study their correlation. AB has a remarkable Pearson correla-
tion with AVgep (p = +0.32), while AA has p = —0.14 for the buy case. These facts are logical: if,
for instance, AB is large, the AMS best bid will be larger than the RTM’s one: for a sell order in
this situation the RTM execution will have an advantage as the price of the opposite side is lower,
hence closer. For this reason, the value of the correlation with AV is negative. This reasoning
also applies in the buy case with AA. Note that being aggressive orders, there isn’t the correlation
between the results of the strategies and the best price of the same order book side (buy order with
the best bid or for the sell order with the best ask): being ¢ = 0 a very aggressive strategy, the
buy/sell orders are the first in line and the execution does not depend on where the best bid/ask
is.

For the research’s purposes, it is important to better analyse the relationship between the
variables. Observing Figure 8.2, one can see how the output, continuous by definition, is similar to
a categorical output. This fact makes the correlations non-linear and complicates the description.
It is indeed a case where using linear models the residuals will not have a normal form but will
have more peaks due to miss-classification errors. On the other hand, classification models will
have to handle a large class imbalance problem (the class containing AV = 0 is certainly much
more represented) and their output will have to be converted back to a continuous value. Note in
fact that for the Equation 8.2 and in general for the parallel trading approach, the one must not
only select the best venue given the corresponding category, but also measure how better it can
perform.

8.2.3 Proposed models for ¢ =0

The first proposed approach was a simple mean model. This model considers only the means of
the data in the train set for every value of 7. The model is extremely easy and has the only
assumption that in the three periods there are Substantial differences between the values of AV.
Performing the Kruskal-Wallis test on the three time series AV (T'), with absolute certainty in every
case (p-value = 0) i is possible to reject the null hypothesis and conclude that the data belong to
three groups with clear differences. Here are the trivial formulas:

AV (¢ = 0,T) = 0577 Ly—g + 0.465 I, + 0.349 I (8.5)
AV (§=0,T) = 0550 Ty + 0.444 Ty—; + 0374 Iy (86)

The goal now is try to use the other significant statistics for the models: AB for the sell case and
AA for the buy case. To do that, the correlation of the factors have to be studied. The analyses
obtained from this study are similar for both cases. Let’s start observing Figure 8.4 that shows the
relation between AB and AV*! (case T = 2).
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Sell simulations (¢ = 0, T= 2): relation AB — AV
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Figure 8.4: Relation for sell simulations (¢ = 0,7 = 2) between AB and AV'.

As anticipated, the output AV appears almost categorical. On the other hand, AB also appears
categorical as the difference is always a multiple of 0.1 pip. The positive correlation noted in the
coefficients is evidently non-linear and can be noticed by the tails at the top right and bottom left
of the graph. As there are a large number of points in this graph, it is complex to understand what
is happening around zero simply by looking at it.

The first attempt is to fit a simple linear regression model between the variables. The output
is truncated in the interval [—1, 1] (AV is in that interval). The main problem with this idea is the
fact that the relationship between the variables is not linear: while the results may logically improve
on those of ALGO or the mean, the model’s residuals are neither normal nor heteroschedastic. The
best way to understand these problems is visualize the model compared with the ones proposed
before in Figure 8.5.

Simple Models plot (¢ =0,T = 2)
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Figure 8.5: First models comparison: ALGO, simple mean and linear regression. Case sell, ¢ = 0,
T=2.

it is clear that the model, although improving on the results of previous models, is unable to
capture the relationship between the two variables. Moreover, note that the residuals obtained
from this model are not normal as they will distribute themselves according to precise patterns
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being categorical.

Another approach that could lead to strong overfitting is to exploit the fact that AB is also
categorical. One solution would be to calculate the average value of AV for every possible value of
AB. The model could certainly be influenced by the presence of outliers and the dataset studied,
but it could certainly give clear indications on how the behaviour of the venues. To distinguish this
proposed model to the simple mean model, it will be indicated as "mean per value" model. Figure
8.6 adds the model results in the previous plot.

Simple Models plot (¢ =0,T=2)
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Figure 8.6: Second models comparison: ALGO, simple mean, linear regression and mean per value.
Case sell,p =0, T = 2.

The graph shows that the model may work well for the most common values of AB around
zero, but is extremely oscillatory at the extremes (especially to the left). However, the fact that
the central part clearly resembles a sigmoid can be exploited to fit an even better model that
is robust to overfitting. Before going into the details of the proposed final model, it is worth
mentioning that among the models attempted was a logistic regression model. The model, based
on the sigmoid function, fictitious with python had numerous problems such as imbalance between
classes (AMS outperforms RTM) and results that were extremely skewed by outliers. For this
reason, the proposed function is not dictated by any coding language, but obtained with pen and
paper after a series of logical reasonings.

In order to fit a shifted sigmoid, it is important to define the boundaries [ly, up| in which our
in which the function is defined. All the AV predicted by the model will be in this interval. The
sigmoid function is now in the form:

up — Uy

O'($) = 1+ e_(IBO"F/Bll’) - lb (87)

Now, it is possible to estimate the values of By and ;. The way this parameters are fitted is
simple: selecting the most common values of x (in the studied case AB and AA) and studying
computing the values. For all the simulations, one of the two most common value of x is zero.
Defining as Z the non zero point in which the function is fitted, the equations of the parameters

o By = —log (M - 1> (8.8)
By = —; <log (az‘gfc’)__l’j% - 1) + 5()) (8.9)
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In order to fit all the models for every situation, we need to select the values of Iy, up, . Let’s start
with AB in the sell case: it is possible to plot the histograms in 8.7.

o Sell simulations, ¢ = 0: AB distribution, T=0 s Sell simulations, ¢ = 0: AB distribution, T=1 s Sell simulations, ¢ = 0: AB distribution, T=2
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(a) T =0 (b) T =1 ()T =2

Figure 8.7: Distribution of AB sell simulations in every selected interval 7.

Let’s start considering the AB values in the sell simulations. Selecting Z = 0.1, [, = A_ng_og
(mean value of AV for AB < —0.2) and up = AV ,;>02 (mean value of AV for AB > 0.2), it is
possible to fit a sigmoid function. Note that the boundaries are close to zero because the majority
of the data is there. Moreover, if this strategy is used in production, it will be used for large
split orders, and we don’t want to allocate 90/100% of large orders to one venue. The proposed
boundaries are ~ [—0.25,0.75]: this choice allows obtaining values of w4 # 1. With this simple
ideas, the results are extremely good, like Figure 8.8 shows.

Simple Models plot (¢ =0,T=2)
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Figure 8.8: Last models comparison: ALGO, simple mean, linear regression, mean per value and
sigmoid model. Case sell,¢p =0, T = 2.

As shown in the figure, the sigmoid approach seems to fit the mean per value model perfectly,
making it robust and logically consistent. To compare the results of every model except the mean
per value which is not consistent, they were tested using 22/10 as a test set. The MSE is compared
in Table 8.2.



8.2. FLOATING AGGRESSIVE STRATEGIES WITH ¢ =0 71

Table 8.2: Mean squared error metrics comparison between ALGO approach, mean models, linear
models and sigmoids. Sell case, ¢ = 0.

T | ALGO | Mean models | Lin. models | ¢ models | A ALGO/o
T=0 | 0.704 0.566 0.512 0.482 -31.5%
T=1| 0.687 0.531 0.476 0.441 -35.8%
T=2 | 0.760 0.462 0.414 0.374 -50.8%

This Table proves what was anticipated. Among the simple models, the sigmoid-based model
is the best model for understanding the behaviour of order execution in the sell case.

The same approach is applicable to the buy case. The only difference is that © = —AA: in this
case the correlation is positive and to fit the same sigmoid a negative correlation is needed. The
selection of Z, Iy, up again is data based (Figure 8.9).

ng simulations, ¢ = 0: AA distribution, T=C ng simulations, ¢ = 0: AA distribution, T=1 %% simulations, ¢ = 0: AA distribution, T=2
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Figure 8.9: Distribution of AA buy simulations in every selected interval T.

In the buy case, the tail are clearly heavier. This fact could be related to some fact of the
markets outside FX. The selection of Z is again 0.1 (the value AA = —0.1 is the most represented
non-zero value for all T'). In order to give more important to the heavy tails, [, = AV (z < —0.3)
and u, = AV (x > 0.3). The results show a strong improvement with respect to ALGO:

Table 8.3: Mean squared error metrics comparison between ALGO approach, mean models, linear
models and sigmoids. Buy case, ¢ = 0.

T | ALGO | Mean models | Lin. models | o models | A ALGO/o
T=0 | 0.770 0.444 0.441 0.440 -42.9%
T=1| 0.736 0.457 0.454 0.456 -38.0%
T=2 | 0.687 0.552 0.549 0.543 -21.0%

Again the sigmoid models have the best MSE values for every value of T" with respect to ALGO,
but this time there is an exception for T = 1. In this situation, the linear model outperforms the
sigmoid with —0.4% reduction in the MSE. In fact, it is important to point out that in this case
the sigmoid model seems to be a little less performing than in the other case (it is comparable with
the linear model). In fact, the model suffers from the very heavy tails of AA distribution and the
performance is comparable to both linear models and mean models. Despite this, from the data
it seems that the buy case is more difficult to predict even for the linear model with MSEs always
similar to the mean models. In general, since the sigmoid model is extremely simple, easy to fit
and explainable, it is the model selected as best.



8.3. FLOATING AGGRESSIVE STRATEGIES WITH ¢ =1 72

Looking at the tables, it is clear that ALGOQO’s current approach is not optimal for a very
aggressive strategy: even simply averaging the executions in the venues of each hourly window
improves it by a lot. A simple sigmoid models, trained not with logistic regression approach, but
just considering the mean values of AV for x = 0,Z and selecting to boundaries I, u; has good
result. The Logistic Regression, in fact, has to receive a categorical target value and suffers both
the class imbalance and the heavy tails of the AB/AA distributions.

In conclusion, for the more aggressive strategy analysed the ALGO approach would not be
optimal at all: a lot of trading opportunities in AMS would be lost. [...]. It is crucial to divide the
day into three periods using T and create three different propositions because the market clearly
changes depending on the time of day. The very simple models proposed take into account the
only feature that appears relevant. Given the models and Equation 8.2, w4 can be computed.

8.3 Floating aggressive strategies with ¢ =1

This section will analyse the output of the simulations with ¢ = 1 strategies. The price of the
orders is one tick below of the average of the mid prices in the buy case and one tick above in
the sell case. Again, a large number of executions in the venues is expected, being a price still
aggressive. In fact, with ¢ = 1 the executions are 43157 for the buy simulations and 43168 for the
sell ones.

8.3.1 AV results

It is possible to observe clear similarities with the ¢ = 0 case. First of all, even with ¢ = 1, AMS
outperforms RTM. On average, for the buy orders A_Vbuy = 0.271 and AV 4y = 0.285 for sell
orders. The percentage of AV = 1 simulations is around 28%, like Figure 8.10 shows, but note
that the value of AV is less than the corresponding value for ¢ = 0: the strategy while being very
aggressive is a little less so, but the AMS liquidity still makes the difference.
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Figure 8.10: Difference between volumes traded in AMS and RTM for ¢ = 1.

Figure 8.10 is clearly similar to Figure Figure 8.2 that represents the analogous ¢ = 0 case.
Moreover, considering the time, Figure 8.11 shows the hourly executed volumes.
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Figure 8.11: Execution hourly comparison for ¢ = 1.

Again, Figure 8.11 shows that it is possible to divide the daily time intervals in three different
groups as in the previous case. The time selection is the same, assigning 15:00 to the last group as
AMS decreases executions while RTM remains stable. To prove with numbers that the T" division
make sense also in this case, Table 8.4 reports the AV(T).

Table 8.4: Mean Values of AV for ¢ = 1.

T | AVyy(¢p=1) | AVeen(p=1)
0 0.442 0.467
1 0.243 0.231
2 0.055 0.100

If, as in the ¢ = 0 case, there is no big sell and buy difference for 7' = 0, 1, this is not true for
T = 2. In fact, looking at AV, AMS is still better in both cases, but if the sell case AV = 0.1,
in the buy case it is only AV = 0.055, with a —45% percent reduction. This fact, which will
be present in more passive strategies, may be due to factors outside the EURUSD market, but
affecting it. After this first analysis on the results of the ¢ = 1 simulations, it is possible to study
the main statistics that ply a role in the AV results.

8.3.2 Important statistics for ¢ =1

Comparing this case to the previous one, the results are a little bit different: in fact, more statistics
seem to be correlated to AV. Let’s define the difference between the AMS volume in front and the
RTM volume in front as Vg (the choice of using ¢ a and not A is to distinguish this value from
AV'). Moreover, the differences between the moving average of best bid and best ask in the last
500 ms are correlated. This fact makes sense: a price movement in the last half-second could mean
an opportunity for an aggrressive strategy. Note that for sure, it will not be an arbitrage (usually
they are a way faster than this). Again, all the time series are stationary for the ADF test: the
correlation is significant. Table 8.5 and Table 8.6 show the correlation matrix of most important
features.
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Table 8.5: Correlation matrix for the selected columns for ¢ = 1 buy experiments

AV | 0Vr | AB | AA | ABsooms | AAs00ms
AV 1 -0.29 | -0.29 | -0.39 -0.26 -0.4
oVp -0.29 1 0.66 | 0.48 0.53 0.39
AB -0.29 | 0.66 1 0.6 0.79 0.49
AA -0.39 | 048 | 0.6 1 0.46 0.78
ABsooms | -0.26 | 0.53 | 0.79 | 0.46 1 0.54
AAspoms | -0.4 | 039 | 0.49 | 0.78 0.54 1

Table 8.6: Correlation matrix for the selected columns for ¢ = 1 sell experiments

AV | 6V | AB | AA | ABsooms | AAsooms
AV 1 |-0.25]| 038 | 0.27 0.4 0.27
Ve | -025] 1 |-0.38]-059| -0.35 0.5
AB | 038 |-038| 1 | 05 0.65 0.37
AA | 027 |-059] 05 | 1 0.45 0.75
ABsooms | 0.4 | -0.35 | 0.65 | 0.45 1 0.54
AAsooms | 0.27 | <05 | 037 | 0.75 | 0.54 1

From the tables above, it is clear that all selected features are important for the prediction of
the AV value, but that there is also correlation between them. Some information contained in the
features is contained in the other features, like for AB and ABsggms or for AA and AAsggms. The
propose solution, in order to have orthogonal independent features, is a simple PCA transformation.
Before explain the proposed models, it is important to understand the correlation between the
features with some plots.

Let’s start with ABsgoms and AAsgoms: they are the first important rolling features included
the analysis. For both sell and buy simulations the correlation between these statistics is high
(p = 0.54): if the best bid has moved in the last 500ms, also the best ask may have moved in
the same direction. This fact makes sense: the price of both sides of he LOB move in the same
direction. The selected plot is a scatter-plot which uses the colors to highlight the correlations
(Figure 8.12).
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Figure 8.12: Correlation of AV with ABsgoms and AAsgoms. ¢ = 1.

Figure 8.14a shows a negative correlation between AV for buy simulations and the selected
features. With high values of them the balance goes to RTM (green), while the other way around
is red (AMS). On the other hand, Figure 8.14a shows a positive correlation between the statistics
and AV for the sell case. But what does this mean? Let’s imagine a situation where both values
of ABsgoms << 0, AAs00ms << 0. In this case, the scenarios are two: or a micro down trend is
happening and AMS is faster than RTM to go down, or a micro upper trend is happening and
AMS is slower than RTM to go up. It is logical that in a scenario of buy strategy, an order will
be more attractive in a venue with the lowest prices. Conversely, in the event of a sale, the price
will be more attractive in a market where prices are higher. Of course, the opposite reasoning is
valid for ABsgoms >> 0, AAsgoms >> 0. In hybrid cases, the choice of venue is more complicated
and must be based on other statistics. The correlation coefficients in Table 8.5 and Table 8.6 are
confirmed both by the plots and the logic.

The same plots are proposed for AB and AA in Figure 8.13.
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Figure 8.13: Correlation of AV with AB and AA. ¢ = 1.

Again, the correlation values in Table 8.5 and Table 8.6 are confirmed. However, a logical
interpretation must be added: let’s assume AB << 0,AA << 0. In this case, the best bid price
and the best ask price of AMS is less than in RTM. From these assumptions, it is clear that an
aggressive purchase price in AMS is more competitive than in RTM. RTM, in fact, will be the best
venue to sell since prices are higher than in AMS.

The last relevant feature selected is 6Vg, the difference between the volume in front of the order
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in the venues. The correlation is logical: if my order has more value in front in AMS (§Vp > 0), will
most likely have a faster execution in RTM (AV < 0). The opposite is obviously true and these
facts prove the negative correlation shown with AV in both buy and sell simulations. If this the
value of p and the logical explanation were not enough, Figure 8.14 shows the relationship between

AVp, AB with AV. The choice to use AB was random: there is no particular reason.
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Figure 8.14: Correlation of AV with AB and 6Vg. ¢ = 1.

It is clear from the graph that at negative values of 0Vp, AMS executions (red dots) are
favoured. On the contrary, for positive values, RTM seems faster. After analysing all the relevant
features from a logical, graphical and analytical point of view, it is possible to perform a Principal
Component Analysis (PCA) reduction and start studying the models.

Given the five selected statistics in the train set, it is possible to normalize them using mean
and standard deviation. Given that, performing PCA, it is possible to analyze the explained
variance of the transformation. The explained variance by each component in Principal Component
Analysis (PCA) represents the proportion of the total variance in the data that is captured by that
component. It provides information about how much information each principal component carries.

Figure 8.15 shows the explained variance of PCA components.
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Figure 8.15: Explained variance of PCA components for ¢ = 1.

In order to select a number of components in order to have an explained variance larger than
0.95, for both buy and sell case N = 4 is selected. Note that the test data are normalized using
the mean and the standard deviation of the train set. Moreover, the PCA is trained on the train
set and used on the test set without retraining.



8.3. FLOATING AGGRESSIVE STRATEGIES WITH ¢ =1 7

8.3.3 Proposed models for ¢ =1

As in the ¢ = 0 case, the first model proposed is the simple mean. As before, it consists on take
the average of the training set on one particular time interval defined by T.

AAVbuy(Qs =1,T) =0.442 1p—p + 0.243 Ip—1 + 0.055 Ip—o (8.10)
AV =1,T) = 0.467 Ty + 0.231 Ty—y + 0.100 Ty—y (8.11)

To keep it as simple as possible, the second proposed models are linear regression models,
truncated into the interval [—1,1]. This time, it will receive the 4 inputs = (outputs of the PCA
model) and it will give the output:

4
AAV((ﬁ =1,T,z) = min(max(fy + Z Bixi, —1),1) (8.12)
=1

The first thing to notice this time is that, using more useful input features, the model outperforms
the mean models in every case with a > 16% MSE reduction. On the other hand, the assumptions
are still missed: being (again) the output AV pseudo-categorical (Figure 8.10) the residuals are
neither Gaussian nor heteroschedastic as in the ¢ = 0 case. Figure 8.16 shows the residuals plot
and it is evident that there are distinct lines formed.

Residuals vs Predicted values
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Figure 8.16: Residuals plot of the linear model in the sell simulations case, T' =2, ¢ = 1.

Ideally, the residuals should be scattered randomly around the zero line without any discernible
patterns. In this case, being the output pseudo categorical, the residuals have a lines pattern: for
every value of the predictions, there are mainly three values of common residuals —1,0, 1. This fact
creates the lines: the model on one hand outperforms by far the ALGO model and the simple mean
model, on the other hand it seems not adequate to capture the underlying relationship between the
predictor variables and the response variable. The main problem here, it is that the relation is not
linear and there is a large random component. The fact that so many traders are trading on both
venues and that the market is indeed influenced by a huge amount of factors makes it very difficult
to predict the best venue. To give an example, given the statistics the model might have chosen
an biased allocation in AMS, but if a trader went to RT'M with an opposite side market order it
would make the choice in vain. The more people trade, the more unpredictable the venues. On the
other hand, the linear regression model, so simple and trivial to fit and use, could be a simple and
extremely understandable answer to the call for improving the current system.
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Like, in the case before, a sigmoid based models are proposed. If before it was easy to fit with
some simple underlying ideas to avoid outliers biases (o(¢ = 0) : R — R), now the problem is more
complex (o(¢ = 1) : R* — R). The first attempt was a Logistic Regression defining three different
classes, but again there were problems: the class weights should be trained and every combination
buy /sell - T. Moreover, the assigned probabilities did not produce good results. For this reason a
second model is proposed and analysed with a higher level of complexity. The model’s structure is
a simple neural network with just one input layer and one output layer. If usually the structure of
the neural network (number of neurons, number of layers) is trained and tested to select the best
performing one regardless of its complexity, in this case the structure is simple and fixed. This
trivial selection is of course due to make everything simple and understandable. Figure 8.17 shows
the simplicity of the selected structure.

g

T

a7 o ar +b

Figure 8.17: Simple structure of the proposed Neural Network: there are just one layer with two
neurons with a sigmoid activation function and a linear output layer output layer (realized with
Tikz [25]).

Let’s observe and analyze the structure in Figure 8.17: the normalized input data (z € R®) are
processed by two neurons with a sigmoid function. These neurons should represent the probability
of AV to be equal to be positive or negative. Lastly, the final layer is a simple linear transformation
of the result. In total, the neural network ha 15 trainable parameters: 12 for the first sigmoid layer
and 3 for the linear output layer.

To further understand the neural network, the input statistics z € R® were multiplied with two
different vectors (wi,wsg) before entering the sigmoid neuron. Also two bias values are trained in
this first layer. To summarize what the first layer does:

= L Vi=1,2 1
oi(z) = P ) i=1, (8.13)
Note that the total number of trainable parameters of the first layer is twelve: six for each sigmoid
neuron, namely w; € R% and b; € R. The output of Equation 8.13 should represent the probability
of the value AV value to be positive/negative given the input vector. Let’s define these values as
py and p_:
pt+ =o1(z) € (0,1)

p— = o2(z) € (0,1)

Given the probabilities values, it is now needed to compute the output combining those with a
linear transformation. The output layer computes the linear transformation:

AV =wypy +w_p_+b (8.14)

To be sure that the values of wy; and w_ are logical and explainable they are initialised to 1 and
-1 respectively. Furthermore, at the end of each train, it was checked that their values remained
discordant.

Being a very simple neural network, the hyperaparmeters tuning was not long. After a grid
search approach with a validation set, the selected hyperaparameters were: learning rate n = 0.001
(default value) and batch size n = 128. The training was performed with a max of 1000 epochs
using a Early stopping techniques with a patience of 5 and restoring the best weigths obtained on
the training set. The optimizer selected was Adam with the mean squared error as loss function.
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To be coherent and find a general model, the structure and the hyperparameters were kept fixed

for all the values of T' and for both buy and sell simulations.

After the explanation of the models, it is now possible to show the models’ results for buy and

sell simulations on the same test set (Friday 22/10):

Table 8.7: Mean squared error metrics comparison between ALGO approach, mean models, linear

models and simple neural networks. Buy case, ¢ = 1.

T | ALGO | Mean models | Lin. models | NN models | A ALGO/LM | A ALGO/NN
T=0 | 0.822 0.644 0.580 0.538 -29.4% -34.5%
T=1| 0.777 0.676 0.583 0.572 -25.1% -26.4%
T=2| 0.726 0.725 0.638 0.615 -12.1% -15.2%

Table 8.8: Mean squared error metrics comparison between ALGO approach, mean models, linear

models and simple neural networks. Sell case, ¢ = 1.

T | ALGO | Mean models | Lin. models | NN models | A ALGO/LM | A ALGO/NN
T=0 | 0.825 0.691 0.616 0.572 -25.3% -30.7%
T=1| 0.762 0.751 0.641 0.647 -15.9% -15.1%
T=2 | 0.750 0.774 0.669 0.648 -10.8% -13.6%

In both scenarios, linear models, and simple neural networks consistently exhibit superior per-
formance in terms of MSE compared to the ALGO model. The percentage differences underscore
the significantly larger improvement achieved by these alternative models when compared to the
ALGO model. These findings strongly suggest the need for an improved execution algorithm strat-
egy. Notably, the most pronounced disparity in performance is observed during the morning hours
(T = 0). In this period, AMS significantly outperforms RTM, while the ALGO model’s volume
allocation leads to imprecise outcomes. It is worth mentioning that when comparing the mean
models with the two proposed models, it becomes evident that in complex scenarios where select-
ing the optimal venue is challenging overall, the more intricate models outperform the simpler ones.
This is particularly notable for T" = 1,2, where both venues yield comparable results and AMS’s
dominance is not evident.

Despite the simplified structure and low parameter count of the neural network, it consistently
achieves results similar to linear regression, slightly better with the exception of T' = 1 buy case.
On the other hand, the simplicity of the linear regression model combined with the PCA makes the
model easy and understandable. This research to date suggests the linear model, but with more
data for training and new hyperparameters tuning the neural network might be the better choice.

8.4 Aggressive strategies summary

The first strategies analysed in this research were the aggressive ones, specifically ¢ = 0 and ¢ = 1.
The cases have similar results:

e AMS outperforms RTM in both cases: with aggressive orders the liquidity and the fact that
in AMS more people are trading play a crucial role.

e [t is possible to divide each day in three different periods: T = 0 from 8:00 to 12:00, 7' =1
from 12:00 to 15:00 and T = 2 from 15:00 to 19:00. Table 8.1 and Table 8.4 show clearly that
the AV values are different.
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e In general, there are not remarkable buy /sell differences in the results. The only exception is
noted for T' = 2, ¢ = 1 case. Here, the buy case shows a —45% reduction in the AV value
compared to the sell one.

e For ¢ = 0 case, the important statistics are AA for the buy case and AB for the sell case.
Since the order is very aggressive, the only statistic to check is the best price on the opposite
side of the orderbook. It is indeed not important to look at one’s own side as the order posted
is most likely the first. The correlation is stronger for the sell case than for the buy one.

e For ¢ = 1 case, the important statistics are the same for buy and sell case: AB, AA, ABsgoms,
AAs00ms and 6Vp. Since in this case the order is aggressive, but usually not the first, it is
important to check the statistics of the same side as volume in front or best ask/best bid.
The rolling features (ABsooms, AAsooms) €xplain some micro price movement that show an
advantage of a venue.

e For ¢ = 0 case, all the proposed models outperform ALGO. Mean models show very good
results, but simple models such as linear regressions do as well. The best proposed model in
this case is a shifted sigmoid that using just the value AB (for the sell case) and AA (for the
buy case). Table 8.2 and Table 8.3 show the MSE of the models comparison. Having the sell
case a stronger correlation between AB and AV the results are slightly better.

e For the ¢ = 1 case, all the proposed models outperform ALGO. Table 8.8 and Table 8.7 show
the MSE of the models comparison. While they continue to be better than ALGO, mean
models perform much worse than linear models and simple neural networoks this time. The
proposed neural network structure remains very simple and understandable and is the best
model in terms of MSE. On the other hand, a simple regression model that uses the PCA
data reaches very good results. Being very simple and explainable, the models chosen are
linear ones.

It is now possible to begin the analysis of the more passive strategies, but first one thing must be
noted. The more passive the strategy becomes, the longer the execution time. In fact, the number
of completed simulations per hour decreases. This fact has two main consequences. First, it is
necessary to generate datasets using more days in order to guarantee the reliability of the models
and get better results. Second, it is increasingly complex to find working models. The duration of
the simulations increases and the statistics analysed at the beginning may be totally unrelated to
the final result of the simulation due to the longer and longer running time. It therefore begins to
emerge that the fact that ALGO establishes the best execution a priori and does not dynamically
change the allocations may not be the optimal choice |...].



Chapter 9

Synthetic Data Analysis: intermediate
strategy

In this section an intermediate strategy (¢ = 2) is analysed. This strategy is classified as inter-
mediate because it does not exhibit the behaviour of the most aggressive strategies, nor does it
resemble the behavior of the most passive ones. The first section analyses the synthetic week and
explain why to improve the analysis another week is needed.

9.1 Synthetic week limitation

The aim of this section is to explain why this choice to use another week of data was made and
the selection criteria of the new days. In fact, in the selected synthetic week (the same used for
aggressive strategies), in total 9975 simulations were performed for the buy side and 9945 for the
sell ones. It is immediately noticeable that the number of simulations decreases due to the higher
passivity. By generating less data, the results may be weaker and for this reason other simulations
were performed.

The values of AV in the afternoon are much more balanced and one has that after 15:00 RTM
outperforms AMS on average. Table 9.1 shows the AV values of the simulations performed.

Table 9.1: Mean Values of A_Vbuy and AV for ¢ = 2, synthetic week.

T | AVyyy | AV
0| 0.324 | 0.338
1
2

0.113 | 0.165
-0.072 | -0.003

If on one hand it is clear that RTM with more aggressive strategies becomes more competitive,
on the other hand the buy/sell differences were spotted more and more after 12:00. The data
shown during the simulated week suggests that it may be more favorable to buy in RTM and sell in
AMS based on the observed values of AV. This phenomena could be related to the fact that one
venue has the HQ in London and the other in Chicago. It is likely that the majority of the RTM
market participants has to hedge the currencies with respect to the USD, and the majority of AMS
market participants has to do the same with respect to the EUR (even though the official currency
in London is the pound, many traders are EUR based). The way they hedge their portfolios with
respect to the EURUSD market could be different.

Analysing this behaviour on a day-by-day basis, it was noted that four days show similar results
to this one and are characterised by a lower mid-price trend throughout the day. The exception is
the day of 18/10,/2021, with a strong upper trend and a AV buy/sell distribution characterised by
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a strong upper trend. In fact, 18/10/2021 shows a different behaviour: RTM outperforms AMS for
the sell executions and AMS does the same for the buy one until h. 14:00. The reason could be
related to the fact that this day is the only day that shows a clear upper trend for the mid price of
EURUSD. If the price EURUSD is going up, EUR is taking value over the USD: in this scenario
USD based market participants are buying EUR and EUR based market participants want to buy
USD for a lower price. This hypothesis has to be check selecting other upper trend days. The
opposite reasoning for the down trend present on other days could be the reason for the buy/sell
difference. Note that the hedging procedures strongly depend on the values of the assets to which
the firms are exposed.

A similar behaviour to that observed in the synthetic week was observed with real MN trading
data in both venues and seems to be present only in certain periods. To really understand this
fact, a deep analysis should be performed: the idea is that some important information might be
contained in geographical indices such as the S&P500 and Euro Stoxx 50. Since this correlation
is difficult to study and understand with the data available, this research will focus on the results
and the modelling part.

9.2 Two weeks analysis

To increase the number of simulation in the training set, other five days were simulated and
analysed. This time, days were selected that showed a clearer upper trend and the same week.
The choice of adding a week to a synthetic week also has another reason: by using Thursday and
Friday as a test set, it is possible to have more up-to-date data. The choice of trying to simplify
the model’s work is also due to the fact that the more passive the strategy, the more difficult the
prediction. Browsing through the available second half-year data (some days had problems with
missing data), the selected week is 21 to 25 June 2021. Although the week predates the synthetic
week data, there is no logical link between them. Even if the days of the test set temporally precede
those of the train set, the results are still valid. Given these two selected weeks, it is possible now
to analyse the results of the simulations. In total, 20412 buy simulations and 20497 sell simulations
were performed. Again, the first analysis is on the results of AV.

9.2.1 AV results

Like in the previous cases, even if the values are defined as continuous, they have a categorical
shape. Figure 9.1 shows the AV distribution in the buy and sell simulations.
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Figure 9.1: Difference between volumes traded in AMS and RTM for ¢ = 2.

Again, the results show the typical the same intraday patterns with T = 0,1,2. Adding
the historical week with the upper trend days, Table 9.2 shows that the buy/sell differences are

mitigated during 7" = 2.

Table 9.2: Mean Values of A_Vbuy and AV for ¢ = 2, synthetic week and historical week.

T | AVyyy | AV
0 | 0.300 | 0.267
1
2

0.119 | 0.153
0.002 | -0.001

If with aggressive strategies AMS seems to be the venue that guarantees the fastest executions
in every case, with more passive strategies this fact is not true. With two weeks of data there is a
clear evidence that RTM, after 15:00, can achieve the same if not better results.

9.2.2 Important statistics for ¢ = 2 data

Again, even if more than 100 statistics were computed, the highly correlated features are the same
as in the ¢ = 1 case: 6Vr, AB, AA, ABsgoms, AAsooms. The financial explanation is not repeated
and all the plots were checked: they have extremely similar shapes to the ones shown in the previous
chapter. It is possible indeed to observe the correlation matrices in Table 9.3 (buy case) and Table

9.4.
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Table 9.3: Correlation matrix for the selected columns for ¢ = 2 buy experiments

AV | 0Vr | AB | AA | ABsooms | AAs00ms
AV 1 -0.23 | -0.22 | -0.23 -0.18 -0.21
oVp -0.23 1 0.57 | 0.47 0.39 0.32
AB -0.22 | 0.57 1 0.8 0.79 0.70
AA -0.23 | 047 | 0.8 1 0.69 0.79
ABsooms | -0.18 | 0.39 | 0.79 | 0.69 1 0.82
AAspoms | -0.21 | 0.32 | 0.69 | 0.79 0.82 1

Table 9.4: Correlation matrix for the selected columns for ¢ = 2 sell experiments

AV | 6V | AB | AA | ABsooms | AAs00ms
AV 1.00 | -0.24 | 0.25 | 0.21 0.24 0.18
% -0.24 | 1.00 | -0.44 | -0.51 -0.31 -0.35
AB 0.25 | -0.44 | 1.00 | 0.77 0.79 0.67
AA 0.21 | -0.51 | 0.77 | 1.00 0.72 0.80
ABspoms | 0.24 | -0.31 | 0.79 | 0.72 1.00 0.83
AAsooms | 0.18 | -0.35 | 0.67 | 0.80 0.83 1.00

Again, there are highly correlated features: the linear models trained will use a PCA with N = 4
to decrease the number of features. There is indeed something to note: the time of execution of
every strategy makes the allocation choice at the beginning more and more challenging, and the
absence of highly correlated features is another factor that makes the choice more difficult. It is
clear that being more passive the AV forecasting problem is getting more and more complicated.

9.2.3 Proposed models for ¢ = 2 data

Again, as simple benchamarks, the mean models and the linear regression models are proposed.
Being the problem more complicated, a lot of difference structures were trained and tested. Models
as the sigmoid neural network presented before, a convolutional neural network [31], a TabNet
[25] and a gradient boosting decision tree XGBoost [32]. All the models tested, with different
hyperparameters and different features could not clearly outperform the linear regression models.
Being XGBoost an easyly trainable decision tree algorithm, it was selected as the model to use for
the forecasting problem.

Using the train set, a K-fold cross validation were performed to select the best hyperparameters
for the AV forecasting problem. For both buy and sell cases and for all the time intervals T'= 0, 1, 2
the best hyperparameters were the same: learning rate 7 = 0.01, number of estimator n = 400 and
maximum depth d = 3. Given this values, is is possible to test the model on the test set:
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Table 9.5: Mean squared error metrics comparison between ALGO approach, mean models, linear
models and XGBoost models. Buy case, ¢ = 2.

T | ALGO | Mean models | Lin. models | XGBoost | A ALGO/LM | A ALGO/XGB
T=0 | 0.769 0.689 0.636 0.647 -17.2 % -15.9 %
T=1| 0.734 0.716 0.581 0.577 -20.8 % -21.4 %
T=2 | 0.675 0.677 0.648 0.643 -4.0 % -4.8 %

Table 9.6: Mean squared error metrics comparison between ALGO approach, mean models, linear
models and XGBoost models. Sell case, ¢ = 1.

T | ALGO | Mean models | Lin. models | XGBoost | A ALGO/LM | A ALGO/XGB
T=0| 0.774 0.678 0.598 0.592 -22.8 % -23.5 %
T=1| 0.771 0.735 0.622 0.607 -19.3 % -21.3 %
T=2| 0.707 0.707 0.694 0.690 -1.8 % 2.4 %

Table 9.5 and Table 9.6 show that a complex algorithm as XGBoost and a simple linear model
have the extremely similar results doing the same task. Moreover, considering that the simple
linear model is not even a good model (the residual are neither gaussian nor heteroschedastic), it
is clear that choosing the best allocation a priori and without being able to intervene dynamically
will not achieve optimal results. This is also proven by the fact that the XGBoost model with
only 5 features in Table 9.4 performs better than the model with more than 50 features. Moreover,
even the Machine Learning models mentioned above failed to improve a linear model: there is
every evidence that in order to get a working model we need to change the current approach to
venue selection. In fact, given features at time ty, ALGO for order allocation requires the model
to predict that a price shift in the future will occur sooner in one venue than in the other. If this
shift occurs in the immediate future, the model may be effective, but if the strategy is passive and
the execution time is longer, this task becomes impossible.

9.3 Intermediate strategy summary

It is now possible to make a summary of the results of the intermediate strategy with ¢ = 2:

e In the synthetic week a buy/sell difference was noted. This factor could be related to upper
and lower trends during the day and the difference to the geographical location of the traders
of the two venues. As this phenomenon is very complex to study and related to factors present
not only in the FX market, this study will not consider it.

e As the execution time increased, a real week was runned to increase the size of the dataset.

e AMS outperforms RTM in the morning as noted for the other strategies. On the other
hand RTM becomes more and more competitive in the early afternoon and for T' = 2 the
performances are perfectly balanced.

e The highly correlated features are again the same of ¢ = 1 case. Even when using more
features for complex Machine Learning models, the result does not improve.

e Numerous Machine Learning models with even high levels of complexity were trained. Neither
structures such as convolutional neural networks nor Tabnets have had any noteworthy results.
XGBoost is the only model that succeeds overall in improving the simple linear model, but
once again the results are not remarkable.
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e Given the poor results of such complicated models, it is evident that in order to find the
optimal allocation, the approach to the problem must be changed. Given the statistics at
time tg it is impossible to ask a model to find in which venue a price movement will occur
sooner than in the other, considering the fact that the strategy is no longer aggressive, but
starting to be more and more passive.

The problem that statistics at time to are no longer useful in predicting the value of AV at the
final time will certainly be encountered for subsequent strategies. In fact, the more passive the
strategy, the longer its duration will be. With this idea, it is now possible to analyse the results of
the most passive strategies.



Chapter 10

Synthetic Data Analysis: passive
strategies

This chapter analyses the two passive strategies, obtained with ¢ = 3 and ¢ = 4. Being the
strategies passive and indeed with not a lot of executions, the shown results take into consideration
both the synthetic week and the historical week (same used for the ¢ = 2 intermediate case).

10.1 Floating passive strategies with ¢ =3, ¢ =4

Being the results similar, this section analyses the strategies results obtained with ¢ = 3 and
¢ = 4. In total, during the two weeks backtested 4480 buy executions and 4331 sell executions
were performed for ¢ = 3. On the other hand, for ¢ = 4, only 1266 buy executions and 1242 sell
ones. It is evident that compared to the more than 20k executions obtained for ¢ = 2 in the two
weeks these strategies are extremely more passive. Let’s start analysing the overall results of AV.

10.1.1 AV results

As in all the simulations shown before, AV has the typical categorical shape. Note that in this
case, even the histogram shows some clear difference between buy and sell (Figure 10.1).
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(a) 6 = 3. (b) 6 =4
Figure 10.1: Difference between volumes traded in AMS and RTM for passive strategies.
From the figure above, it is possible to note that for more sell simulations obtained AV =1

with respect to the buy ones. To quantify this difference between the two sides of the orderbook
Table 10.1 and Table 10.2 can be studied.
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Tguble 10.1: Mean Values of A_Vbuy and Tixble 10.2: Mean Values of A_Vbuy and
Avse” for ¢ = 3. Avse” for ¢ =4..

T A_‘/buy A_‘/sell T A_‘/buy A_Vvsell

0 | 0.357 | 0.328 0 | 0.348 0.321

1] 0.126 0.236 1 | 0.067 | 0.305

2 | -0.030 | 0.048 2 | -0.024 | 0.052

Table 10.1 and Table 10.2 for show that in the afternoon the more aggressive the strategy, the
more the buy sell difference is accentuated in the analysed sample. For ¢ = 4 and T = 1, AV
passes from 0.067 in the buy case to 0.305 in the sell case. Moreover, the hourly AV distribution
confirms that the division T'= 0, 1, 2 works well.

10.1.2 The limitation of the current approach for passive strategies

Even in this case the most important statistics to be considered are é6Vp, AB and AA. Even if
A Bsooms and A Asgoms show high correlation with AV, these values make worst the performances
of the models. The logical reason is that the 500ms trend movement of the sides of the orderbook
is not useful at all for a prediction of something that is going to happen more than one second
later (e.g. the executions of a passive strategy’s order). No one of the other features was useful to
predict AV.

If for ¢ = 2 it was amply proven that even with complex Machine Learning models it was not
possible to predict the dynamics of the two venues, with even more passive strategies it is even more
complex. As already explained, the duration of strategies before executions makes it impossible
to predict a priori where the fastest execution will be. To remark again this concept, the same
XGBoost model used for ¢ = 2 was trained and selected. Starting with ¢ = 3, Table 10.3 and
Table 10.4 show the MSE obtained on the test set.

Table 10.3: Mean squared error metrics comparison between ALGO approach, mean models, linear
models and XGBoost models. Buy case, ¢ = 3.

T | ALGO | Mean models | Lin. models | XGBoost | A ALGO/LM | A ALGO/XGB
T=0 | 0.706 0.635 0.501 0.591 -29.1 % -16.4 %
T=1| 0.724 0.693 0.646 0.664 -10.7 % -8.4 %
T=2| 0.647 0.647 0.644 0.650 -0.5 % 04 %

Table 10.4: Mean squared error metrics comparison between ALGO approach, mean models, linear
models and XGBoost models. Sell case, ¢ = 3.

T | ALGO | Mean models | Lin. models | XGBoost | A ALGO/LM | A ALGO/XGB
T=0 | 0.777 0.627 0.548 0.639 -29.5 % -17.8 %
T=1] 0.759 0.653 0.597 0.597 -21.3 % -21.3 %
T=2| 0.705 0.705 0.697 0.663 -1.2 % -6.1 %

The first fact to note is that the linear models outperform constantly the complex Machine
Learning models. Moreover for T" = 2 in the buy case even ALGO perform better. The fact that
a tree based model cannot understand any relation between the features and the trivial ALGO
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selection can outperform it is a clear signal that the a priori selection approach does not work at
all for passive strategies.

It is essential to note that various intricate Machine Learning architectures have been explored
in attempts to address the issue. In pursuit of solving the problem, exhaustive experimentation has
been conducted, encompassing elaborate statistical methodologies, such as LSTM neural networks
[33] with diverse architectures, and even the application of TabNet [25] in its unsupervised pre-
trained version. Even these sophisticated models failed to outperform a rudimentary Linear Model
serves as compelling evidence that predicting the outcome of a simulation a priori might indeed
be an insurmountable challenge.

To conclude this analysis, Table 10.5 and Table 10.6 show the MSE obtained on the test set for
the models in the ¢ = 4. Note that only the Lienar models were trained in this case: there was a
lack of data to train any Machine Learning model.

Table 10.5: Mean squared error metrics comparison between ALGO approach, mean models, linear
models and XGBoost models. Buy case, ¢ = 4.

T | ALGO | Mean models | Lin. models | A ALGO/LM
T=0 | 0.765 0.886 0.746 -5.1 %
T=1| 0.670 0.657 0.663 -4.2 %
T=2 | 0.782 0.783 0.729 -10.3 %

Table 10.6: Mean squared error metrics comparison between ALGO approach, mean models, linear

models and XGBoost models. Sell case, ¢ = 4.

T | ALGO | Mean models | Lin. models | A ALGO/LM
T=0 | 0.852 0.646 0.527 -38.1 %
T=1| 0.777 0.655 0.621 -20.1 %
T=2| 0.711 0.702 0.691 -2.8 %

While the results of the linear models are extremely different for buy and sell, the fact that
the errors have a high magnitude. Linear regression models generally perform better than Machine
Learning models for passive strategies because they have predictions that on average work better,
but they cannot capture complex dynamics. Because they are so simple and follow the logic of
predicting what is generally the outcome (without using any kind of category), they are able to
achieve extremely competitive results.

10.2 Summary of the results of passive strategies

To conclude the chapter, it is now possible to make a summary of the results of the passive strategies:

e If on one hand AMS performs a way better than RTM during morning hours (7" = 0), on
the other RTM is competitive in the late afternoon (7' = 2). For T' = 1 there is a huge
difference between the values of AV, highlighted especially for ¢ = 4 int Table 10.2. Again,
the differences between the executions for buy and sell orders cannot be considered general,
but they have to be further investigated with a specific research.

e No one of the selected statistics seem to be useful for the AV estimation, with the exceptions
of AA, AB and 6Vp.
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e The duration of the strategies and the complexity of the FX market makes the AV prediction
a priori impossible. Machine Learning models do not work and the only alternative spotted
is a simple regression model.

Having in mind all the results and the limitation of the runned simulations, it is now possible to
propose a new approach for the venue selection problem. This approach will be explained in the
next chapter and it will defined as the dynamical allocation approach.



Chapter 11

Dynamic allocation approach

All the previous chapters highlighted some limitations of the a priori allocation approach. In fact,
deciding at the beginning the allocations of the volumes to both venues is not the best approach,
especially for passive strategies. The duration of the strategies makes the selection extremely
difficult because the future is largely unpredictable (even for complex machine learning models).
The aim of this chapter is twofold: firstly, it explains how and why the current ALGO approach
has been improved by this research and secondly, it proposes a possible concrete improvement for
order execution.

11.1 How this research has improved ALGO

Before proposing a new approach to venue selection, it is important to show how simulation results
and data analysis can be used for improving the current method. To recall it, the a priori selection
consists of dividing a parent order of N mln into two child orders of w4 N and wrN mln to be sent
to AMS and RTM respectively. Note that usually N can have very high values (even 50/100 mln)
and, even then, the split is only done once for all, at the beginning.

This study highlighted distinct areas of improvement in ALGO executions. The models chosen
were regression models and not classification models for two main reasons:

e Management of class imbalance is complicated: classification models such as XGBoost or
logistic regression were applied, but the error on test sets was always greater than the cor-
responding linear regression models. The models, in fact, suffered heavily from class imbal-
ance and even when assigning class weights they always ended up classifying extreme classes
(AV =1 or AV = —1) or the middle class (AV = 0). In practice, since what happens
in the venues is extremely stochastic and the result of the actions of an enormous number
of market participants, predicting the class is almost impossible. For this reason, regression
models perform better: in fact, they often predict what works on average, avoiding extreme
cases.

e ALGO application: for a practical application with N > 2, models predicting non-extreme
values and more around the mean are preferable. If, for example, ALGO has to allocate
N = 20 million to be executed a priori without having the possibility to modify the allocation,
less extreme models are preferable, as they would send balanced quantities to both venues.
Figure 11.1 show that the predictions obtained by the regression models (in the example for
¢ =2and T = 1) are not extreme.
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Figure 11.1: Histogram of the predictions of the test set for T = 1 and ¢ = 2. Both the linear
regression model and the XGBoost model predict values around the mean.

If the models predicted extreme values, parallel trading would lead to allocating a very large
amount to one venue and leaving little or no volume to the other venue. If this choice could
make sense for small quantities such as N = 2, it makes no sense if one deals with high NV
values: the allocation of large volumes to a single venue could lead to the loss of execution
opportunities on the other. The choice to use N = 2 for the simulations is due to the fact
that it is extremely simple and allows one to save the largest number of data possible. If,
for instance, N = 10 had been selected, the data obtained would have been ten times less,
making it necessary much more demanding data processing efforts.

Following these clarifications regarding the methodology, we can now outline the areas of possible
improvement for the current venue selection algorithm:

e ALGO should consider the intraday seasonality of order executions clearly visible in the
available data. Whatever the strategy adopted for venue allocation, the results associated
with different periods were remarkably different. In general, from 8:00 to 12:00 (London
hour, T" = 0) AMS achieves better results than RTM, from 12:00 to 15:00 the volatility
is higher because both the European and American markets are open and the number of
executions increases. Lastly, in late afternoon (from 15:00 to 19:00 London hour), the number
of executions decreases significantly and RTM appears more competitive. A first trivial step
could use just the mean models, using the mean of the simulations backtested with the real
ALGO strategies.

e ALGO should correlate the aggressiveness parameter ¢ to wy4. In fact, simulations clearly
show that being AMS a more liquid venue, it performs better than RTM for aggressive orders
in every intraday time interval: Very aggressive orders (similar to market orders) are executed
much faster in AMS than in RTM.

e For very aggressive orders, the sigmoid model proposed for ¢ = 0 could be a valuable option.
Despite being very simple, it outperforms the linear model on the selected test set.
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e ALGO should compute and consider values such as AB, AA and 6Vp. Especially when
dealing with small N, values such as those listed could be considered excellent predictors of
the best venue allocation.

e While remaining simple and explicable, a linear model could manage venue allocation. This
research has indeed shown that a simple linear models could outperform the current approach
just considering the value of T and of the selected statistics. Being an extremely simple
model, it could be trained often ensuring fast executions and explainability. In this case, it
is recommended to use for training at least the week before the day you are trading.

After listing how the current method could be improved, it is time to explain its limitations and
propose a new approach.

11.2 Limitation of the a prior: approach

In addition to highlighting how parallel trading is an excellent strategy to achieve numerous exe-
cutions using both venues, this research has highlighted some important limitations of the current
venue selection method. As already mentioned, the limitations are highlighted by the venue se-
lection for more passive orders. The need to allocate a priori the volumes and the impossibility
to change the allocation makes the optimal venue selection problem impossible to solve. At time
to there is not enough information available to find the optimal allocation. Figure 11.2 shows the
current venue allocation strategy.

Figure 11.2: ALGO a priori venue selection algorithm.

From Figure 11.2 it is clear that the amount of millions to be traded () is split at time g
into two sets, one for each venues. The sets are successively divided in 1-mln child orders and
executed one per time. The allocation decided a priori cannot be changed anymore, and this fact
is a limitation for the speed of execution. In fact, when the subset allocated in one venue is fully
executed, even just the remaining part is traded using just one venue. To prove how much this fact
could slow down the execution process, a small experiment has been run.

Let’s consider just one day of data, 25/06/2021 from h. 8:00 to h. 19:00. The goal now is to
count the completed buy simulations with allocation a prior: that day. In the next section this



11.3. THE PROPOSED APPROACH 94

result will be compared with the new proposed approach |...]. Assuming N = 100mln, let’s assume
that AMS and RTM is fifty-fifty. This values are used to make this example |[...|. Let’s define ¢y as
the initial time of the simulation, ¢; as the time in which the fastest venue ends the executions and
tr as the ending time. Being the a priori approach, the first part is traded in parallel, but the last
one in series. The volume R is indeed the amount of volume traded in series, while the value 75

represents the amount of time in which the simulation has been performed in series. Table 11.1

Table 11.1: Parallel trading weak point: the end of every simulation is performed in series. This
table shows the values of R and 75" with one day of simulations (buy case, ¢ = 2). Simulations
with T" = 0 are highlighted with a red background, those with T' = 1 with a green background and
those with T = 2 with a blue background.

to t ty Slow Venue | R (mln) series
08:00:00.00 | 08:51:35.10 | 09:11:10.80 AMS 10.02 00:19:35.70
09:11:10.80 | 09:49:24.25 | 10:14:55.60 RTM 17.62 00:25:31.35
10:14:55.60 | 11:08:21.45 | 11:54:26.75 RTM 26.19 00:46:05.30
12:00:00.00 | 12:31:58.41 | 12:34:27.56 RTM 17.99 00:02:29.15
12:34:27.56 | 12:44:01.51 | 12:53:50.96 AMS 6.92 00:09:49.45
12:53:50.96 | 13:01:05.31 | 13:30:41.06 AMS 37.99 00:29:35.75
13:30:41.06 | 14:00:02.51 | 14:06:52.46 RTM 10.73 00:06:49.95
14:06:52.46 | 14:34:10.91 | 14:49:31.66 RTM 25.17 00:15:20.75
15:00:00.00 | 15:06:45.50 | 15:14:22.05 RTM 15.83 00:07:36.55
15:14:22.05 | 15:53:00.41 | 16:00:54.85 RTM 8.47 00:07:54.44
16:00:54.85 | 16:57:57.75 | 18:01:56.70 AMS 14.28 01:03:58.95

Table above shows how each simulation has quantity R that does not use parallel trading. The
volume to be traded in series on the observed day goes from a minimum of 6.92 to a maximum of
almost 38 million. Considering that the goal of venue selection is the speed of executions, from this
simple example it is evident that the current ALGO method is not optimal. Considering a random
day of those of the sample, it can be seen that each simulation with N = 100 has a more or less
long ending in parallel. This problem could be alleviated by using small values of N to reduce the
delay or by changing the current approach to something more dynamic.

11.3 The proposed approach

The new proposed approach is defined as the dynamic allocation approach. Still using parallel
trading on both venues, this approach intends to dynamically allocate orders in both venues. From
the quantity N a sub-quantity M is subsequently taken (which could for example be equal to
2 million). This second quantity is dynamically allocated between the two venues with a split
recalculated every At (selected time interval, |...]) based on the statistics of the two venues. Figure
11.3 tries to represent the proposed strategy.
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\‘ 0 c 0 0 4@ Re-allocation every At

Figure 11.3: Proposed dynamical allocation approach.

Some observations are now in order:

e The value of M is the exposure risk parameter. As M increases, one is more exposed to
buying or selling certain quantities on the market. If M is a high value in fact you are trying
to buy/sell large quantities of currency. Large market moves could lead to large executions at
prices which may subsequently be judged disadvantageous. A potential improvement could
involve linking this parameter to the level of strategy aggressiveness minimizing the exposure
with passive strategies and increasing it with aggressive strategies. Moreover, this parameter
could be increased when the price is considered very fair by traders.

e In case of partial execution in one of the venues of an amount € in an interval At, the amount
to be split among the venues must be the same M. In other words, after each At the quantity
to be allocated must always be M (unless the volumes to be executed are finished).

e The statistics to select the best venue must be saved and updated every At to have a con-
stantly optimal and updated allocation. In this case, the values of w4 and wg are indeed
computed dynamically.

e The choice of w4 and wgr must take into account the common volumes of the orders present in
the venues. Figure 5.6 clearly shows that probably a good choice would be to choose multiple
splits of 500k.

e The value of At is the time interval parameter. |...]

e The price selection could be integrated in this logic. For example, imagine that from historical
data two models were trained one more aggressive (model A) and one more passive (model
B). Let’s assume that the strategy is running at time ¢ the models are estimating a two
probabilities of executions in AMS pﬁMS and p%MS. If ngS is large, the model is predicting
that there is likely to be an execution even at a less aggressive level. The quantity allocated
in AMS could then be re-divided into two sub-groups with two different prices in order to try

and exploit a more advantageous price.

This whole model could be very complex to develop and bring into production. If, however, points
like the last one (the price selection) are complex, the simple concept of not having any a priori
splitting of quantities between venues could be very simple and bring excellent improvements.
After explaining the main rules of the proposed new approach, a simple proof of concept will
be tested to conclude this thesis. The results of this experiment will be useful for future researches.
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11.4 Proof of concept

This section tries to show the potential of the proposed approach, explaining a simple proof of
concept. The goal of this section is to show the potential of the idea, working in as simple a
framework as possible. Being a simple case, just one day was considered: Friday 25/06/2021.
Before the results analysis, it is important to explain the rule of algorithm.

11.4.1 Selected rules

Let’s define the main parameters of the first trivial dynamical allocation model. As already men-
tioned, being a simple proof of concept, the selected rules are extremely trivial:

e M = 2: this choice is coherent with the current ALGO floating strategy.

o At = 50ms.

Buy simulations.

¢ = 2: being an intermediate case between an aggressive and a passive situation, it was
considered optimal to use the intermediate strategy as a proof of concept.

e wy = wpr = 0.5. There is not any model that computes the best venue allocation every At,
but the exposure is constantly 1mln in AMS and 1mln in RTM.

the main objective of this approach is just to avoid the series trading part and use just the par-
allel one. The algorithm allocates dynamically 1 mln for AMS and 1 mln for RTM, without any
forecasting model for AV. The results are indeed strong.

11.4.2 One day results

The benchmark for the results is Table 11.1. It’s possible to observe that during the morning hours
(T = 0) three N = 100mln simulations ended from h 8:00 to h. 11:54. In total, during the morning,
these three simulations executed 300 mln. Using the selected trivial strategy, using the same day,
the quantity increases to 400 mln. Table 11.2 shows the starting and the ending time of the four
simulations performed in the morning.

Table 11.2: Proof of concept N = 100 mln executions (7' = 0, buy case, ¢ = 2).

to ts
08:00:00.00 | 09:05:14.50
09:05:14.50 | 09:51:46.90
09:51:46.90 | 10:38:32.60
10:38:32.60 | 11:48:29.30

During the morning, the simple strategies that avoid serial trading improve executions by 33%
(from 300 mln to 400 mln). This excellent result is also replicated for 7' = 1, as Table 11.3 shows.
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Table 11.3: Proof of concept N = 100 mln executions (7" = 1, buy case, ¢ = 2)..

to ty
12:00:00.00 | 12:32:39.86
12:32:39.86 | 12:41:16.21
12:41:16.21 | 13:01:02.71
13:01:02.71 | 13:09:54.51
13:09:54.51 | 13:46:41.26
13:46:41.26 | 14:18:02.26
14:18:02.26 | 14:51:45.51

Between 12:00 and 15:00 hours, a total of seven distinct N = 100 mln strategies concluded
their execution. When we compare this outcome of 700 mln executed units with the data in Table
11.1, we observe an increase of 200 mln. This remarkable result, combined with that obtained by
T = 0, suggests that avoiding serial trading could significantly speed up the order executions. To
conclude, Table 11.4 shows that just three N = 100 mln simulations ended in the selected day.

Table 11.4: Proof of concept N = 100 mln executions (T" = 2, buy case, ¢ = 2).

to ts

15:00:00.00 | 15:10:09.30
15:10:09.30 | 15:47:08.15
15:47:08.15 | 16:47:17.20

The low volumes in both venues in the afternoon do not allow for a large number of performances
and do not show a any significant improvement. In fact, both conclude three N = 100 simulations,
the difference being that ALGO ends at 18:01 and the strategy at 16:47.

11.5 Summary of the new approach

The proposed dynamic allocation model could be a significant improvement to the venue selection
problem. It is designed to remedy the a prior: choice problem by proposing a dynamic allocation
that continuously feeds both venue trading always in parallel. Using standard values of max
exposure (M = 2 mln), aggressiveness (¢ = 2), total quantity (N = 100 mln) and fixing ws =
wpr = 0.5, one day was tested for buy simulations (25/06/2021).

The results of this simple experiment show a remarkable improvement: in total, from 11 simula-
tions of ALGO, 14 simulations are performed and ended with the new approach. The improvement
is larger for ' = 0 (from 3 simulations to 4) and 7' =1 (from 5 to 7), while for 7' = 2 the completed
executions are the same number (3). This clear result obtained for just one day may suggest that
a dynamic approach could significantly speed up the execution.



Chapter 12

Conclusions

In conclusion, the research question revolved around the FX trading Venue Selection problem and
aimed to determine the optimal order allocation strategy that would enable simultaneous utilization
of multiple venues to enhance execution speed. Since the published literature useful for this problem
was not directly useful and the in-house study proved to be non-functional, the study had to find
an alternative way. With the construction of a trading engine, the thesis backtested the strategies
in both venues and compared them without any bias. The selected strategies were a simplified copy
of the real ALGO Floating strategy, with a price selection based on the ¢ parameter that describes
the level of passiveness. The results were analysed by distinguishing each strategy according to
their aggressiveness. New models were proposed for each case, emphasising the importance of the
main statistics used by the models. Finally, the limitations of the current ALGO approach were
highlighted and a new dynamic approach was proposed that could be used in the future.

The first important conclusion is that the designed backtesting approach works. Simulation
results obtained using data from 2021 are matched by real ALGO trading data from the last
period. Although very computationally intensive, the possibility of reconstructing the orderbook
at each time instant in the past and seeing results of the same strategies at the two venues makes
it possible to compare and analyse their behaviour. The huge codebase built will also be made
available to MN for future studies.

Moreover, this research highlighted a clear intraday seasonality. It divides the day in three
main periods: 7' = 0 from 8:00 to 12:00 (London hour), 7' = 1 from 12:00 to 15:00 and 7" = 2
from 15:00 to 19:00. Checking the synthetic data created, AMS shows better results than RTM the
first period, while RTM becomes more and more competitive in the afternoon, especially during
T = 2. The reasons for this are attributed to the US market opening in the middle of the day,
which brings large volumes to both venues. The data show that the algorithms for selecting venues
should vary depending on the trading time: this information could be used in the next steps of
ALGO development.

In general, it is clear from the synthetic data generated that for aggressive strategies AMS
guarantees faster executions than RTM. This fact is shown by the results of the simulations obtained
with ¢ = 0 and ¢ = 1. The liquidity and the fact that more people are trading make AMS
better. This result was confirmed by the technical report based on real trading data of ALGO. For
¢ = 0 simulations, the most just one statistic was detected as useful to forecast the result of the
simulations: AB for the sell simulations, AA for the buy ones. The explanation is trivial: very
aggressive orders that sometimes are market orders care just of the other side of the orderbook.
On the other hand, for ¢ = 1 strategies the important statistics were five: AB, AA, ABs5ooms,
AAsooms and V. In this case, the order is not always the first in line and the venue selection
cares about both the best bid and the best ask (with their movement in the last half second) and
the volume in front of the order. For both ¢ = 0 and ¢ = 1 the models proposed had good result
trying to forecast the value of AV at the end of each simulation. For ¢ = 0 a simple sigmoid model
was proposed, for ¢ = 1 a simple neural network. In this second case, because of the explicability
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problems, a linear model could also be used.

Contrary to what has been observed for more aggressive strategies, the intermediate strategy
(¢ = 2) uses a larger dataset: the synthetic week and a historical week. The highly correlated
features remained the same as in the ¢ = 1 case. An observation was made in the synthetic week
indicating a buy /sell difference possibly linked to daily trends and geographical location of traders.
Due to its complexity and broader market factors, this study won’t delve into this phenomenon.
Incorporating more features in complex machine learning models did not yield improved results.
Again, AMS demonstrated morning superiority over RTM, consistent with other strategies. How-
ever, RT'M showed increased competitiveness in the early afternoon, with balanced performance
for T' = 2. XGBoost is the only model that succeeds overall in improving the simple linear model,
but the results are not noteworthy.

Similarly, in the intermediate cases involving passive strategies with ¢ = 3 and ¢ = 4, the
extended dataset was employed. The outcomes underscore that a priori allocation for passive
strategies is not conducive to optimal results. Evidently, as the price becomes more passive, the
corresponding strategies endure for longer durations. For all the models used it was impossible to
find a good prediction on the result of the strategy given the statistics at the beginning. Conse-
quently, in such scenarios, ALGQO’s venue selection current approach should just rely on intraday
seasonality, which was once again clear from the backtested data. It is also interesting to note that
in more passive cases with longer strategies, more random factors come into play. For this reason, a
choice such as fifty-fifty becomes more competitive when compared to models that are fully capable
of predicting the output of simulations.

To conclude, the current ALGO venue selection method has many points for improvement. |...|.
In fact, ALGO should increase the volumes associated with AMS in the case of more aggressive
orders, as shown by the results of the strategies. Furthermore, the clear intraday seasonality in
the trading data should be exploited by adjusting allocations according to the time of day: AMS
has been shown to guarantee more executions in the morning than RTM, which becomes more
competitive in the afternoon. If ALGO wanted to use other statistics, this study showed volume
values at the front of the order §Vr, difference of best bids AB and asks AA are related with the
results of the executions.

The main limitation highlighted found by this thesis in the a prior: choice of allocations,
however, is the fact that it is really complex to choose how to divide a large amount of mln at the
beginning based on the statistics at that time (especially with more passive strategies). For this
reason, this study proposes a new way to face the venue selection called the dynamic allocation
approach. It would allow to act dynamically on the venues, changing the allocations every At.
Furthermore, this method would eliminate the problem of trading in series that ALGO performs
when a venue has executed all orders. As the proof of concept shows, in fact, this slows down
executions.

Exploring avenues for further research reveals several promising directions that could enhance
the understanding and applicability of the current study’s findings. In general, parameters such as
sleeping time At and elapsed time before an order is executed could be investigated (possibly with
survival analysis strategies). Furthermore, if the idea of dynamic allocation were to be explored,
parameters such as the M exposure or allocation models for wa,wg could be investigated.
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