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Monitoring glaucoma patients and ensuring optimal treatment requires accurate and precise detection of

progression. Many glaucomatous progression detection strategies may be formulated for Scanning Laser

Polarimetry (SLP) data of the local nerve fiber thickness. In this paper, several strategies, all based on

repeated GDx VCC SLP measurements, are tested to identify the optimal one for clinical use. The

parameters of the methods were adapted to yield a set specificity of 97.5% on real image series. For a

fixed sensitivity of 90%, the minimally detectable loss was subsequently determined for both localized

and diffuse loss. Due to the large size of the required data set, a previously described simulation method

was used for assessing the minimally detectable loss. The optimal strategy was identified and was based

on two baseline visits and two follow-up visits, requiring two-out-of-four positive tests. Its associated

minimally detectable loss was 5212 mm, depending on the reproducibility of the measurements.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Automated detection of glaucoma, one of the world’s most
common causes of blindness [1], has shown promising perfor-
mance over the past years, based on various imaging technologies
[2,3]. Much less progress, however, has been made in the
clinically equally important problem of detecting progression in
glaucoma. An automated and objective detection method would
help the clinician in monitoring patients and assessing the
effectiveness of the current treatment. Additionally, individuals
with a high risk of contracting glaucoma might be monitored as
well, since such a progression analysis is likely to be more
sensitive to detect conversion to glaucoma than a diagnosis based
on a single exam. Large inter-patient variability, due to biological
differences, limit statistical analyses based on population-based
normative values. Therefore, assessing intra-patient changes can
be a much more sensitive way of detecting the onset of glaucoma.
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One of the available imaging modalities for the detection of
glaucoma is scanning laser polarimetry (SLP). Its working princi-
ple is as follows. The structure of the axons of the ganglion cells in
the retinal nerve fiber layer (NFL) gives rise to birefringence. Due
to their bundled ordering in the retina, polarized light that passes
the NFL shows retardation. After reflection by the retinal pigment
epithelium, the amount of retardation, assumed to be a measure
for the thickness of the NFL, is analyzed by a crossed analyzer. SLP
is commercialized as the GDx VCC (Carl Zeiss Meditec, Inc.,
Dublin, CA), which contains both the scanner itself and a software
program that assists in the acquisition procedure. It also analyzes
the scan, derives various parameters and translates these into an
overall score, the Nerve Fiber Indicator [3], which may be
interpreted as a soft classification of glaucoma likelihood. A
significantly higher amount of NFL loss over time, as measured
with the GDx VCC, has been found in eyes showing progression by
standard methods, compared to stable eyes [4].

Perimetry, a method to assess the local functional sensitivity of
the patient’s eye to a light stimulus (visual field), is often regarded
as the golden standard in glaucoma diagnosis, despite its rela-
tively poor sensitivity and specificity [5]. While the assessed
diagnostic accuracy depends on the reference standard, the low
diagnostic accuracy is illustrated by the perimetry’s poor repro-
ducibility [6]. The appearance of the papilla is another clinically
important feature, but this is hard to define in an objective,
quantitative way. Previous studies indicate that, at least in
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Fig. 1. Overview of the procedure to derive the minimally detectable loss from a

number of image series and set sensitivities and specificities. See the main text for

a full description of each step.
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Fig. 2. Histogram of the TSNIT averages of the included eyes. The crosses denote

the ages (in years) of the people in each bin.
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a subset of eyes, significant structural loss may be required before
abnormal visual fields occur [7–9]. This suggests that in those
eyes SLP, rather than perimetry, is a good modality for early
detection of glaucoma and possibly also for early progression
detection. Indeed, the GDx VCC’s software enables a serial
analysis by showing the differences between measurements at
different times. It does not, however, provide a progression
analysis, as the results of the serial analysis do not attribute the
detected change to either real change or random measurement
errors.

If we knew how progression took place over time, e.g., linearly,
curvilinearly, stepwise, etc., an appropriate regression analysis (or
trend-based analysis [10]) could be performed. The progression
would then be modeled as a certain amount of loss over time and
any change within an eye could be compared to the loss predicted
by the model [11]. Provided that such a model resembled real
progression faithfully, this approach might serve as a sensitive
progression detection method. However, this type of knowledge
about the process of glaucomatous nerve fiber loss is not readily
available.

In contrast to regression analysis, a different approach is to
look only at the mere amount of resulting loss and to weigh this
against measurement variability. Obviously, no knowledge about
the process itself is required, because only the net effect after a
certain amount of time is considered. This is called an event-
based analysis [10], as only the occurrence of the event is
analyzed, not its specific development over time [12]. Such an
event-based approach will always perform worse than the opti-
mal regression analysis, given its obliviousness to any knowledge
of the loss over time. On the other hand, it may be better than a
regression analysis based on a wrong model (e.g., an exponential
model whereas the true loss is a linear process) [13]. Unless a
good model is available, we argue that the event-based approach
is therefore the safer one and may eventually be used to assess
the validity of a given model.

Obviously, both stable measurement series and progressing
series are required to assess the performance of any progression
detection method. Due to the generally slow progression of
glaucoma, acquiring such a data set may be a lengthy operation
spanning many years and will probably result in just a few cases
of confirmed progression. Therefore, simulation has been sug-
gested and used to study progression detection methods in visual
fields [14–16] and in other imaging modalities such as confocal
scanning laser topographs [17,18]. Previously, we have described
a method to simulate progression in SLP images [19] and briefly
discussed progression detection methods. These simulations may
be used for initial progression detection algorithm development.
Ultimately, these algorithms will have to be integrated into
clinically relevant progression detection software and validated
in clinical trials.

For progression in SLP images, no validated progression
models are available. Therefore, we choose an event-based
analysis as the initial method to detect progression. In this paper,
we introduce and test several variations of possible event-based
methods for progression detection in SLP images. Real images of
stable eyes will be used to assess the specificity of each variant,
whereas the sensitivity will be determined by simulated images,
with predetermined amounts and different kinds (i.e., diffuse or
localized) of progression. Note that we only consider the net
effect of the progression; we do not model progression stages and
time is therefore not used in the analyses. See Fig. 1 for an
overview of the full approach, which is described in more detail in
the next section. In this paper, we describe various progression
detection strategies (extending our previous work [19]) and
present a method to evaluate their detection performance for
various types and amounts of glaucomatous progression. The
resulting optimal strategy is selected based on its minimally

detectable loss and used to build a clinically useful progression
detection method. This resulting method will eventually have to
be further evaluated in a clinical setting.
2. Materials and methods

2.1. Data

The data set contained an image series of 41 stable eyes (i.e., no
pathological changes were observed during the time of this study).
One eye was randomly selected from each of 41 subjects. On four
different days within a period of one month, three images were
acquired with a GDx VCC (resulting in four sets of three images each).
As the period between successive visits was short compared to the
rate of change normally encountered in glaucoma, the assumption
was made that no real structural change in the NFL had taken place
between visits. The Enhanced Corneal Compensation (ECC) method
was used for anterior segment birefringence compensation [20].

The mean age of the subjects was 53 years (SD 18 years, range
27–86), 63% of them were men, and 19 left eyes and 22 right eyes
were selected. The mean of the TSNIT average (which is the mean
of the NFL thickness on a circle around the optic nerve head,
running through the temporal, superior, nasal, inferior and again
temporal quadrants) was 50 mm (SD 7 mm, range 29–66); see
also Fig. 2. All eyes with a TSNIT average in the lower three bins
(30, 35 and 40 mm) corresponded to people over 70 years. The
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other bins covered the full range of ages, except for the two last
bins (60 and 65 mm), where the age was below 60 years for all
four cases. This is related to the thinning of the NFL that is
associated with normal aging.

The range of eyes that were included in this study is not
typical for the general glaucoma population. Based on a typical set
of glaucomatous eyes, no simulations are possible for healthy
eyes and therefore no specificity data can be derived. Therefore, a
wider range of eyes was included. The collection of the data
followed the tenets of the Declaration of Helsinki. All subjects
gave their informed consent after explanation of the nature of
the study.

2.2. Detection method

Any progression detection method should relate the reprodu-
cibility of the measured entity to the observed change, either
implicitly or explicitly. Briefly, the proposed method first esti-
mated the local change and variance by analyzing all available
images of an eye. Student’s t-test was then applied to each pixel
individually to estimate the probability of change, under the null
hypothesis of no change. If more than two visits were available, a
t-test was performed on each pair of two out of all available visits
and the resulting probabilities were combined according to the
number of required positive tests. Pixels exceeding a pre-set
combined probability (of yp) were flagged and subsequently
groups of connected flagged pixels (with a minimal size of yA)
were considered as areas of change. The selection of both thresh-
old values is explained below. In this approach, the estimation of
both the change and the reproducibility was determined from the
observed eye only. No population-derived data are used for the
statistical tests; only the thresholds that are placed on those tests
are derived from a population.

All steps of the procedure will be described in more detail
below. To fully specify the algorithm, two thresholds (yp and yA)
were defined, together with the number of baseline visits (B), the
number of follow-up visits (F) and the number of tests that
indicate progression (n) out of all possible tests (m). Note that
we allow more than one baseline visit to reduce the dependency
of the algorithm on a single baseline visit. Because each baseline
visit may be combined with each follow-up visit, m¼ B � F. These
four numbers thus specify a strategy, which will be denoted by
B, F, n/m.

2.2.1. Preprocessing

Because the scan area of both the optic nerve head and the blood
vessels do not provide information about the NFL thickness, these
were excluded from the analysis. The location and size of the optic
nerve head were manually determined by the operator for each
image after acquisition. The blood vessels were automatically
Fig. 3. Example of (a) a p-value map (black pixels correspond to a high chance of N

thresholding at yA (resulting objects shown in black) and (c) after morphological filter
detected [21] and were also used as landmarks for automatic
alignment of the images of each eye, based on a multi-scale
Levenberg–Marquardt minimization [22] of the number of mis-
matching pixels in both blood vessel masks. Mean images were
calculated by pixel-wise averaging all aligned images of a visit.
Subsequently, difference images were computed by subtracting the
corresponding mean image from an image.

2.2.2. Student’s t-test

An independent two-sample t-test, with pooled variance, was
done separately for each combination of baseline visits and
follow-up visits. For instance, with one baseline visit (VB) and
two follow-up visits (VF,1 and VF,2), two comparisons were
performed: VB against VF,1 and VB against VF,2. Alternatively, two
baseline visits (VB,1 and VB,2) and two follow-up visits result in
four possible tests: VB,1 against VF,1, VB,1 against VF,2, VB,2 against
VF,1 and VB,2 against VF,2.

First, the variance of each pixel was estimated based on all
available difference images, thereby assuming that the reprodu-
cibility depends on the specific eye and not on the time of the
exam. Then, Student’s t-test was applied to each set of corre-
sponding pixels from two mean images obtained from a specific
baseline and follow-up visit. The use of more than just these
two visits for variance estimation aims to give a better estimate
of the variance and results in a larger number of degrees of
freedom. Note that per added visit, the number of degrees of
freedom increases by two (for three images per visit). In this way,
the t-test, applied to each pixel, resulted in a p-value map
(see Fig. 3a). Note that these p-value maps are two-sided: A high
p-value (near 1) corresponds to likely increase of NFL thickness,
whereas a low p-value (near 0) corresponds to likely decrease of
NFL thickness. p-Values around 0.5 indicate that the difference
between the mean measurements are not significant with respect
to the observer variance.

In the case of multiple baseline or follow-up visits, the
resulting p-value maps were combined, depending on the number
of required positive tests (n). This is done by choosing the n-th
smallest p-value for each pixel. For example, if the p-values of the
three tests based on one baseline and three follow-up visits are
2%, 1% and 3.5%, the resulting p-value for the 1,3,2=3 test is 2%
(2 tests agree on the 2% level), or 3.5% for the 1, 3, 3/3 test (3 tests
agree on the 3.5% level).

2.2.3. Thresholding and spatiality

The combined p-value map was first thresholded at yp, result-
ing in a binary map (see Fig. 3b). For the remainder, the superior
and inferior hemispheres were treated separately on anatomical
grounds. As the result of the thresholding may not be coherent,
small holes were filled in and areas connected by small strings
were split up. (For details on the morphological operators used in
FL decrease, white pixels correspond to a high chance of NFL increase), (b) after

ing (gray objects) and thresholding at yA (large black object).



Fig. 4. Illustration of localized loss in a 401 wide sector.
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this procedure, we refer to [19].) Then, the size of each area was
calculated. Because areas of loss may be partly covered by blood
vessels, areas on opposing sides of a blood vessel were treated as
one area. Finally, all areas smaller than the area threshold yA,
defining the smallest clinically relevant size of an area showing
loss, were removed and the remaining areas were considered to
show change (see Fig. 3c).

2.3. Parameters

Because the progression detection algorithm was designed to
be used at every follow-up exam, the specificity of the algorithm
was set to a rather high value of 97.5% to prevent false positives.
The area size threshold (yA) was 100 pixels, corresponding to a
retinal area of approximately 0.21 mm2. For comparison, thresh-
olds of 50 pixels (� 0:10 mm2) and 200 pixels (� 0:42 mm2) were
tested as well. Based on the available data of stable eyes and these
two fixed parameters, the correct p-value threshold (yp) was
determined for each progression test as follows. Per decade,
50 log-evenly spaced p-values were tested and the resulting
specificities were calculated. yp was then set to the largest p-value
with a specificity closest to the required 97.5%. The visits, which
were assumed to be interchangeable as the eyes were stable, were
permuted to (artificially) increase the number of data points.

2.4. Simulations

With two parameters yA and yp, each progression detection
strategy was fully specified. However, to pick the optimal strat-
egy, the performance of each strategy had to be assessed. To this
end, images with progression were simulated. The simulation was
based on the radial spectrum derived from Fourier analysis of the
images of the 41 stable eyes in the data set. This spectrum defines
the various frequency components that together constitute the
correlated noise in the difference images. The resulting correlated
noise was assumed to be equal for all eyes and set the minimum
variability encountered in the data. Additional eye-specific varia-
bility was incorporated by including the effects of incomplete
cornea compensation, where increasing incomplete cornea com-
pensation also produced increasing variability in the simulated
measurements. A blood vessel mask of one of the real images was
randomly picked, and a specified amount and type of loss was
added to the simulated image series. More details on the simula-
tion procedure may be found in [19].

Two types of loss that are also observed clinically were tested:
localized and diffuse loss [23,24]. In the former case, nerve fiber
loss is observed in a cluster. Given the approximately radial
distribution of nerve fiber bundles, centered at the optic nerve
head, this results in clearly defined loss in a sector. In the latter
case, a general loss of nerve fiber is found in the whole peripa-
pillary area. For diffuse loss, the specified amount of loss was
therefore subtracted from every pixel of all mean images exclud-
ing those corresponding to the baseline visits. For localized loss,
only a part of the image was changed. We chose to induce loss in
a sector of varying widths (101, 201, 301, 401 and 601), with its
center at an angle of approximately 601 from the horizontal
meridian. See Fig. 4 for an illustration.

The eye-based sensitivity was fixed at 90%, meaning that a
certain amount of loss had to be detected in at least 90% of the
cases with (simulated) progression. Any loss detected outside of
the area of induced loss was ignored, meaning that the overlap of
the areas of detected and induced loss had to exceed yA. The
minimally detectable loss was defined as the minimum amount of
loss that could be detected in 90% of the eyes. This minimally
detectable loss was determined for all strategies, different areas of
loss, and various levels of reproducibility.
2.5. Cross-validation

Cross-validation is commonly used to estimate the optimal value
of certain model parameters and statistics to assess the performance,
such as specificity, sensitivity or overall accuracy. In this paper, it was
used to assess the specificity of the selected p-value, which is likely
to be slightly different from the specified value of 97.5%. We applied
n-fold cross-validation, meaning that the data are divided into n (the
folds) more or less evenly sized sets of patients. All but one of these
sets was used to select the p-value corresponding to a specificity of
97.5%. The resulting specificity was estimated by calculating the
specificity of the unused set with this p-value. This was then
repeated n times, such that each set was used n�1 times to
determine the p-value and once to estimate the specificity. Finally,
the specificities of each fold were averaged to get the cross-validation
estimation of the specificity. By repeating the cross-validation, the
standard deviation of this estimate was also computed.

In our application of cross-validation, the data set contains
multiple images of each eye. Considering all images indepen-
dently would result in an unrealistically small error. Instead, the
cross-validation was performed between patients, which meant
that each fold contained images of a disjoint set of eyes. In this
way, all images of an eye are either used for training or testing.
3. Results

For all visits in the data set, the mean standard deviation across
all pixels was calculated and used as a measure of reproducibility.
The distribution of these reproducibilities is shown in Fig. 5. The
distribution is clearly not normal (a Kolmogorov–Smirnov, KS, test,
used to compare an observed distribution to a given one, indicates
that Po0:01), but more closely follows a log-normal distribution
(P¼0.09 according to the KS test). Note that more than 96% of all
reproducibilities are between 1.5 and 5:5 mm and more than 98%
fall within the range of 1:526:5 mm.

The resulting p-values for an area threshold of 100 pixels are
shown in Table 1. Also shown is the resulting specificity, esti-
mated by repeated 10-fold cross-validation. Note that the yp

listed for each test strategy is determined on the full data set;
the actual yp for each of the folds of the cross-validation may be
different. The relations between the p-values are also illustrated
in Fig. 6, clustered per combination of available exams. Table 1
and Fig. 6 show that
�
 If more positive tests are required, yp for each test was higher
(i.e., less strict). Example: yp for 1,3,2/3 is larger than for 1,3,1/3.

�
 If the same number of positive tests are required and the

number of available exams (and therefore the number of
possible tests) increases, yp for each test was lower (i.e., more
strict). Example: yp for 1,3,2/3 is smaller than for 1,2,2/2.



Table 1

Resulting p-value thresholds for yA ¼ 100 pixels and a specificity of 97.5%. The first

column lists the test used, the second column the resulting yp and the last column

the estimated resultant specificity and standard deviation.

Test yp (%) Spec. % (SD)

1, 1, 1/1 1.15 97.26 (0.2)

1, 2, 1/2 0.79 97.59 (0.2)

1, 2, 2/2 3.8 98.02 (0.15)

1, 3, 1/3 0.66 96.86 (0.2)

1, 3, 2/3 2.4 97.49 (0.2)

1, 3, 3/3 5.0 97.33 (0.3)

2, 1, 1/2 0.79 97.35 (0.3)

2, 1, 2/2 4.0 97.49 (0.14)

2, 2, 1/4 0.55 97.87 (0.7)

2, 2, 2/4 2.4 97.15 (0.2)

2, 2, 3/4 6.3 96.50 (0.2)

2, 2, 4/4 11.0 97.18 (0.2)
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�
 If the number of baseline and follow-up exams are swapped,
yp is approximately the same. Example: yp is similar for 1,2,2/2
and 2,1,2/2.
Because the encountered reproducibilities in the data set were
in the range of 1:526:5 mm for almost all cases (see Fig. 5), the
simulation study was restricted to these reproducibilities as well.
In Fig. 7, the results for this range of reproducibilities is shown, for
localized loss of 201 and diffuse loss, for all strategies. The loss
was simulated by subtracting a certain amount of NFL signal from
all pixels in a specified region in the mean images. This simulated
loss was increased until it was detected in 90% of the simulated
cases, thus defining the minimally detectable loss.

Since the measurements indicate a linear relationship between
reproducibility and minimally detectable loss, a straight line is
fitted through them for further analysis. For better comparison
between the strategies, the mean minimally detectable loss for
the range of reproducibilities is calculated from these fitted lines
and shown in Fig. 8 for all strategies and all regions of loss.

To compare the chosen area threshold of 100 pixels to other
area thresholds, the analysis was also done for an area threshold
of 200 pixels. First, the p-values were recalculated to get a
specificity of 97.5% with the new area threshold (see Table 2).
Then, the minimally detectable loss was calculated based on the



Table 2

Resulting p-value thresholds for yA ¼ 200 pixels and yA ¼ 50 pixels and a

specificity of 97.5%. The estimated specificity is also shown.

Test yA ¼ 50 yA ¼ 200

yp (%) Spec. % (SD) yp (%) Spec. % (SD)

1, 1, 1/1 0.66 97.3 (0.2) 1.66 97.5 (0.2)

1, 2, 1/2 0.53 97.3 (0.2) 1.10 97.1 (0.2)

1, 2, 2/2 2.8 97.3 (0.15) 5.0 97.4 (0.14)

1, 3, 1/3 0.40 96.9 (0.2) 0.79 97.0 (0.6)

1, 3, 2/3 1.66 97.4 (0.2) 2.9 97.3(0.3)

1, 3, 3/3 3.8 97.3 (0.3) 6.9 97.4 (0.2)

2, 1, 1/2 0.48 97.2 (0.3) 1.00 97.0 (0.16)

2, 1, 2/2 3.0 97.4 (0.14) 5.5 97.3 (0.16)

2, 2, 1/4 0.35 96.9 (0.4) 0.69 96.9 (0.8)

2, 2, 2/4 1.66 97.2 (0.2) 2.8 97.1 (0.3)

2, 2, 3/4 5.2 97.3 (0.3) 7.9 96.9 (0.2)

2, 2, 4/4 7.9 97.1 (0.3) 13.8 97.0 (0.4)
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Fig. 9. Difference between yA ¼ 100 pixels and yA ¼ 200 pixels. Positive numbers

indicate a smaller minimally detectable loss for yA ¼ 200 pixels.
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simulations. Again, straight lines were fitted to the data and the
mean minimally detectable loss was calculated. Fig. 9 shows the
differences between the mean minimally detectable loss for both
area thresholds. Note that the absolute differences are rather
small, but that in general the minimally detectable loss is slightly
better for larger areas of loss, but decreases for smaller areas. For
most test strategies, it results in a generally smaller minimally
detectable loss.

Likewise, a smaller area threshold of 50 pixels was tested. The
p-values are listed in Table 2 and the resulting differences with
the mean minimally detectably loss for yA ¼ 100 pixels were
calculated. The smaller area threshold only resulted in slightly
lower minimally detectable losses for loss in a sector of 101; for all
other types of loss, the minimally detectable loss was larger.
4. Discussion

For all regions of loss, either localized or diffuse, the 2, 2, 2/4
strategy (meaning two baseline visits, two follow-up visits and
two positive tests out of the out possible comparisons) showed the
lowest minimally detectable loss and is therefore the preferred
method for progression detection out of the simulated progression
detection strategies. Depending on the region size of simulated
loss, the mean minimally detectable loss was about 5212 mm, for
a sensitivity of 90% and a specificity of 97.5%. A balanced strategy
(i.e., a strategy based on an equal number of baseline visits and
follow-up visits) such as the 2,2,3=4 strategy performs better than
an unbalanced strategy based on the same total number of visits,
such as the 1,3,2=3 strategy. The best strategy for a total number
of visits of three is the 2,1,2=2 strategy.

The resulting p-values could be explained qualitatively as follows.
The 1,2,1=2 may be interpreted as two 1,1,1=1 tests, for which only
one has to succeed. The test is therefore less strict, and consequently,
a stricter, therefore smaller p-value, is required to achieve the same
specificity. Likewise, the 1,2,2=2 strategy is a combination of two
1,1,1=1 tests, where both tests have to agree. The test is therefore
stricter, and a less strict p-value results. Writing pB,F,n=m for the
p-value threshold for strategy B,F,n=m, this may be generalized as
pB,F,n=mrpB,F�1,n=m�BrpB,F,nþ1=m. In a similar way, the relations
between strategies based on a different number of baseline visits
can be explained and written down as pB,F,n=mrpB�1,F,n=m�F

rpB,F,nþ1=m. Finally, there should be no significant difference
between the thresholds of the B,F,n=m and F,B,n=m strategies, which
can be denoted as pB,F,n=m � pF,B,n=m. The experimental p-values, as
shown in Fig. 6, closely follow the relations predicted by the theory.

Increasing the area threshold to 200 pixels did not reduce the
mean minimally detectable loss for the best performing strate-
gies, although some less optimal strategies showed a reduction of
the mean minimally detectable loss of about 0:5 mm. A smaller
area threshold of 50 pixels did not improve the mean minimally
detectable loss for any strategy or region of loss. Therefore, the
optimal area threshold for all strategies seems to be roughly 100
pixels, whereas only some of the strategies profit from a larger
area threshold. Further optimizing the area threshold was con-
sidered to be of little clinical value.

One might expect increased sensitivity when the area size
threshold is lowered. Although this is true if all other parameters
were fixed, this is not the case for our study. A lower area size
threshold would not only result in more detected cases for the
simulated data, but also for the stable eyes, causing a drop of the
specificity. As the specificity was set to 97.5%, this would have to
be compensated by decreasing the p-value thresholds, which
results in increasing the specificity. Thus, in the end, both thresh-
olds change and the net effect on the sensitivity is hard to predict.
Only by running new simulations with these thresholds, the
sensitivity can be determined.

The data used for the simulations was derived from a population
with a mean age that is lower than that of the typical glaucoma
population. Although the simulations were performed for various
individual eye related reproducibilities, thereby extending its
domain to poorly reproducible eyes, there may be more subtle
differences between the tested glaucoma populations. One possibi-
lity is the shape of the image power spectrum, which defines the
way the noise is modeled. However, we expect that only large
changes in this spectrum would significantly affect the reported
minimally detectable losses. One may also expect the severity of
glaucoma to influence the measurements. However, the variability
of the NFL measurements is stable across disease severity [25,26].

Birefringence due to the anterior segment was compensated by
application of ECC instead of the more conventional Variable Corneal
Compensation (VCC). With the latter method, estimating anterior
birefringence is time-consuming when repeated for each measure-
ments. ECC does not suffer from this problem, and has shown to
decrease the occurrence of ‘atypical’ scans [27,28] without adversely
affecting the reproducibility [29]. In addition, ECC largely reduces
the number of atypical retardation patterns, making it much more
suitable for the detection of progression [30].

Irrespective of whether VCC or ECC is used, one problem for
applying these methods in clinical settings is the increased
number of images that have to be acquired. Currently, the device
requires the operator to take one image of each eye. Moving the
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scanner head, aligning and focusing requires much more time
than the acquisition itself. Modifying the machine, allowing the
operator to take multiple images of one eye, would therefore
greatly reduce the extra time. Additionally, alternative strategies
that reduce the number of required images at follow-up visits
may be developed. For example, after the acquisition of three
images at two baseline visits, only one image is required at each
follow-up visit. Only if this single image suggests progression, a
full set of three images would have to be acquired.

In addition to these variations, which focus on optimizing the
trade-off between ease-of-use and performance in terms of sensi-
tivity, specificity and minimally detectable loss, other detection
algorithms may be applied as well, such as statistical image
mapping [18]. Therefore, a side-by-side comparison of these meth-
ods may be the subject of future research. In those studies, the
simulated images may again prove to be beneficial in the absence of
a large-enough set of real images. Such a comparison may be
extended to also include other imaging modalities commonly used
for RNFL assessment in glaucoma, such as optical coherence
tomography [31,32] after segmentation of the RNFL [33,34].

Recent software versions of the GDx include progression detec-
tion analysis based on the described detection method. The settings
of this commercial implementation were optimized according to
the procedure described in this paper. However, slightly different
parameters were used than presented here (i.e., specificity was set
to 98% and area threshold to 150 pixels). The progression detection
algorithm in the commercially available software includes both
suspected and confirmed progression, allows both repeated and
single measurements per exam (the latter by including population-
derived variability maps) and also applies progression detection to
RNFL summary parameters (optimized with a set specificity of 99%)
and RNFL circumferential profiles (optimized with a set specificity
of 98% and a size threshold of 4 points) derived from the thickness
images. The analysis always requires two baseline exams, but
allows one (with the 2,1,2=2 strategy) or more follow-up visits
(with the 2,2,3=4 strategy).

The most important limitation of this study is that the
sensitivity of the method is only determined by simulated data.
Also, the minimally detectable loss was assessed on simulated
image series, while ideally these numbers should be derived from
real data of eyes showing glaucomatous progression. If such data
sets became available, the presented analyses could be applied to
real images instead of simulated ones.

Our research enables an evaluation of progression detection
strategies without running large-scale clinical trials. All these
results were produced by simulated images instead of images of
real eyes showing progression. The optimal settings for applica-
tion on real data are likely to differ somewhat from the ones
derived from these simulation studies. This research does show,
however, that the 2,2,2=4 strategy outperforms all other tested
strategies and that the expected minimally detectable loss for this
strategy is in the range of 5212 mm. This warrants the application
of the best strategies in a clinical setting to further optimize the
parameters to detect glaucomatous progression.
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