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Enhancing Motor Learning in Cycling Tasks: The Role of Model
Predictive Control and Training Sequence

L. Alizadehsaravi, S. Draukšas, J. K. Moore, R. Happee, L. Marchal-Crespo

Abstract— We evaluated the impact of Model Predictive Con-
trol (MPC) robotic-assisted versus unassisted training on motor
learning of a complex bicycle steering task. Ten participants
were divided into two groups, alternating between MPC-assisted
and unassisted training to ride a steer-by-wire bicycle on a
treadmill to collect virtual stars.

At Baseline, Mid-Training, and Post-Training, motor skills
were assessed by the average and standard deviation (SD) of
distance to stars, while performance was measured by the mean
absolute and SD of the steering rate. We found significant
improvements in task skill and steering performance, with
notable benefits observed in the performance of the group
initially trained unassisted.

Our findings suggest that starting the training unassisted
could stimulate an internal focus (concentrating on one’s own
body movements) and intrinsic skill perception. This foundation
may then form a basis for later integration of MPC assistance to
refine further the gained motor skills. Such a sequential train-
ing approach may benefit motor skill acquisition of complex
dynamics tasks. Further research is necessary to validate and
apply these findings to enhance training methods.

I. INTRODUCTION
Learning to ride a bicycle is a complex daily-life skill

that involves mastering balance and advanced techniques like
cornering and steering [1]. In countries like the Netherlands,
where bicycles are a primary mode of transportation, this
skill is especially crucial [2]. Importantly, the emergence
of electric bicycles (E-bikes) has added new dimensions to
this task, offering higher speeds but also increased risks,
especially for less skilled or elderly riders [3], [4].

Traditional bicycling training methods, such as the use of
training wheels, while popular, come with limitations. Train-
ing wheels can mask the real dynamics of bicycle riding,
potentially hindering the development of essential balancing
skills [5], [6]. More advanced training approaches, like those
proposed by Klein et al. [7] that replaced the bicycle wheels
with rollers of varying radii, offer improvements but require
continuous mechanical adjustments in the training setup.
In contrast, robotic assistance, particularly Model Predictive
Control (MPC), presents a promising alternative. MPC is an
optimal control strategy that dynamically adjusts assisting
forces based on the learner’s performance, offering a tailored
learning experience. This method is particularly advanta-
geous as it potentially reduces the risk of learners becoming
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S. Draukšas, R. Happee, and L. Marchal-Crespo are with the Department
of Cognitive Robotics, Delft University of Technology, Delft, The Nether-
lands.

L. Marchal-Crespo is also with the Department of Rehabilitation
Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.

passively reliant on assistance and potentially preserving the
perception of the task’s dynamics [8], [9], [10].

Recent advancements in robotic motor learning have
demonstrated the efficacy of MPC in learning dynamic tasks
such as swinging a virtual pendulum [11], suggesting its
potential applicability in more complex dynamic scenarios
like bicycle steering. MPC could be particularly suitable for
the task of steering & balancing a 2-wheeler since this task’s
generally unstable non-minimum phase dynamics requires
an advanced control strategy. This could not be achieved
by simply nudging the steer towards the on-road target, as
in [12], but requires an initial countersteering, followed by
steering towards the target while stabilizing. However, MPC,
while offering a potentially tailored learning experience of
the dynamic task, must be carefully managed, e.g., it is
unclear if it should be provided at the early phases of learning
or in more advanced phases to avoid over-reliance on the
assistance.

Our research investigates the effectiveness of MPC in
training for complex bicycling tasks. We hypothesized that
MPC-assisted training will significantly improve motor skill
acquisition and performance compared to unassisted training
in a steering and navigating bicycling task. Furthermore,
we explored the impact of training sequence on skill ac-
quisition and performance, evaluating the effectiveness of
starting training with MPC assistance versus without it. This
aspect of our study aims to provide insights into how the
order of training modalities influences learning outcomes and
performance in complex bicycling tasks, addressing a gap
in current research and offering potential advancements in
training methodologies for bicycling.

II. METHODS

A. Experimental setup

The task was performed on a treadmill (Fig. 1), providing a
controlled environment with complimentary visual informa-
tion (Fig. 2) while retaining realistic steering and balancing
dynamics. Participants wore a safety harness connected to
a fixed point on the ceiling, just above the center of the
treadmill, to reduce the risk of injury. Note that due to the
harness, participants did not need to pedal and thus could
mainly focus on the steering and balancing task. We used a
custom steer-by-wire bicycle, previously developed at Delft
University of Technology in the Netherlands, to provide
steering assistance during bicycle riding [13]. This bicycle
allows the provision of guiding torques to the handlebar
using a motor and encoder attached to the handlebar stem.
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Fig. 1. Experimental setup with a participant riding the steer-by-wire
bicycle on a treadmill. The participants wore a harness securely attached to
the ceiling for safety. The width of the treadmill’s usable space is 1.1 m.
The display showing the virtual star-shaped targets from a first-person
perspective is highlighted with a blue box. The locations of the SteamVR
Base Stations 2.0 are shown within red rectangles. The location of the HTC
Vive Tracker 3.0 is shown in green.

The lateral position, yaw angle, and roll angle of the steer-
by-wire bicycle were measured using an HTC Vive Tracker
3.0 (HTC, Taiwan) installed right above the rear wheel center
(Fig. 1). The steering angle, from which the steering rate was
derived, was measured using an encoder at the handlebars of
the bicycle. Two SteamVR Base Stations 2.0 (HTC, Taiwan)
were located on the back and side of the treadmill to enable
this tracking. Tracker data was sent to the supplied USB
dongle, which was connected to a Raspberry Pi 4 Model B
4 GB (Raspberry Pi Foundation, UK). This computer runs
a 32-bit Raspberry Pi OS Lite version in headless mode.
Libsurvive’s [14] Simple Application Programming In-
terface (API) was used to read the data from the tracker,
calculate the position and orientation of the tracker, and send
the data using User Datagram Protocol (UDP) at 220 Hz to
a Windows 10 desktop computer, which runs the MPC and
virtual reality game. The desktop computer was equipped
with Intel i7-7700K 4.2 GHz processor (Intel, US), running
Simulink Desktop Real-Time (MathWorks, US). The desktop
computer and the bicycle communicated wirelessly using
Bluetooth at 200 Hz for the bicycle-to-computer communica-
tion, and 75 Hz for the computer-to-bicycle communication.
Although we did not explicitly measure latency between the
Unity scene and the bicycle interface, participants reported
no perceptible lag or mismatch, suggesting minimal impact
on the user experience.

A 24-inch computer monitor was placed around 2 m in
front of the participant (Fig. 1) to show the location of
the virtual targets (see subsection B). The game was imple-
mented using Unity (Unity Technologies, US) on the desktop
computer.

Fig. 2. The virtual environment shown to the participants. The participants
controlled the lateral position of the virtual bicycle by steering the real
bicycle on the treadmill. The task consisted of collecting stars that appeared
on the horizon and approaching at 15 km/h (same speed as the treadmill).
After passing through a star, a score appeared on the top of the screen that
depended on the distance between the virtual bicycle and the center of the
star. The red walls correspond to the edges of the treadmill.

B. Steering and Navigation Task: Collecting Virtual Stars

The steering task consisted of collecting virtual star-shaped
targets approaching the rider at a constant velocity of
15 km/h (the same speed as the treadmill) resembling an
‘endless runner’ game [15]. A first-person perspective of
the virtual bicycle was shown on a road of the same width
as the width of the treadmill (Fig. 2). The real bicycle
acted as a Human Interface Device for the game, i.e., the
virtual bicycle moved in the lateral direction, mapping to the
measured lateral position of the real bicycle on the treadmill
measured with the HTC tracker placed at the back of the
bicycle. This tracker location was chosen to ensure model
consistency and realistic cycling behavior, aligning with the
Whipple-Carvallo model’s coordinate system.

To collect a star, the rider had to steer and navigate
the real bicycle which in turn steered the virtual bicycle
(shown on a screen in front of them) to place it in front
of the star and pass through it. The interval between the
appearance of two consecutive stars was 6 s. A score was
displayed each time a star was passed to provide feedback
to the participants about their navigational steering in the
star collection task. The score was calculated based on the
distance between the lateral position of the bicycle’s rear
wheel contact point on the treadmill (yP) and the lateral
position of the star’s center yS, both in meters. Scores were
assigned using three conditions: 100 for distance ≤ 0.02 m,
0 for distance > 0.22 m. For distances between 0.02 and
0.22 m, the score ranged linearly from 100 to 0, calculated
as 500 · (0.22−distance).

C. The MPC Robotic Assistance

Our MPC used a mathematical model of the bicycle lateral
dynamics [16] to predict the system’s behavior throughout a
specified time horizon. We choose a control signal such that
the predicted system state follows a given reference state. A
cost function (and its weights) is specified —e.g., minimizing
the assistance and minimizing the distance to the stars—
which is then used by the controller to determine the control
action at each time step t, through real-time optimization.
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Several constraints can be put on the system to guarantee,
e.g., safety.

The linear MPC problem employed in our study is stated
in Equation 1, where k represents the discrete time index
that iterates over the time steps, J is the cost function to be
minimized, t is the current time, N is the number of steps in
the time horizon, x is the bicycle state, r is the reference
state, u is the control input, and Q and R are designer-
defined weighing matrices. The input varies stepwise across
the N steps, resulting in N input values to be optimized
by the MPC. Only the first (next) input is applied and the
following inputs are reoptimized at the next time step based
on the updated system state. The subscripts lb and ub stand
for lower bound and upper bound, respectively, and are
used to enforce constraints on the controller, i.e., maximum
and minimum values of lateral position (±0.5m), steering
angle (±40deg), roll angle (±20deg), and assisting torque
(±10Nm). The matrices A and B are linear time-invariant
state-space matrices.

J =
t+N

∑
k=t

(xk − rk)
T Qk(xk − rk)+

t+N−1

∑
k=t

uT
k Rkuk

subject to xk+1 = Axk +Buk

xlb,k ≤ xk ≤ xub,k

ulb,k ≤ uk ≤ uub,k

(1)

In our study, N was set to 150, which is equal to a time
horizon of 2 s with a sample rate of 75 Hz. The control input
u is the steering torque applied by the handlebar motor. The
bicycle and reference states, x and r, consist of the lateral
position of the rear wheel of the bicycle yP, the yaw angle
ψ , the roll angle φ , the steering angle δ , the roll rate φ̇

and the steering rate δ̇ . Thus, the cost function stabilizes the
bicycle in steer and roll while minimizing deviation from
the target and motor steer effort. The target tracking task is
represented by the lateral position relative to the target at the
time needed to reach the target. Thus, the MPC derives an
optimal steering sequence to reach the target. The state-space
matrices A and B were obtained using the HumanControl
software [17], which can convert the equations of motion
of a linear Whipple-Carvallo bicycle model to a state-space
representation. Bicycle parameters of the Davis Instrumented
Bicycle (specified under Rigid on pages 91-92 of [18]) were
used due to their physical similarity to the bicycle used in this
study. A forward speed of 15 km/h, equal to the treadmill’s
speed, was chosen.

D. Study Protocol

Ten healthy adult participants were divided into two groups
(9 between 25-39 years old and one between 60-64 years
old; 3 female). All gave written consent to participate in the
experiment. The study was approved by the TU Delft Human
Research Ethics Committee (HREC).

The study protocol is depicted in Fig. 3. The experi-
ment consisted of six blocks: Familiarization (Free riding),
Baseline (BL), Training 1 (T1), Mid-Training evaluation
(MT), Training 2 (T2), and Post-Training evaluation (PT).

The experimental design followed a between-subject format,
where participants were randomly assigned to one of two
groups. The five participants allocated to Group 1 (MPC
first) trained with MPC assistance during T1 and without
assistance during T2, while the order was reversed for Group
2 (MPC second).

In the Free riding (Familiarization) session, participants
spent 5 minutes bicycling on the treadmill without any
assistance and were verbally encouraged to carry out lane
change maneuvers of varying amplitudes.

Baseline, Mid-Training, and Post-Training blocks were
designed to evaluate the participants’ skill acquisition and
steering performance before, after the first, and after the
second training block, respectively. During these evaluation
blocks, no MPC assistance was provided, and riders cycled
for 2 x 1-min trials trying to collect the stars appearing on
the screen by steering the bike. Each (1-min) trial contained
10 stars to be collected. The location of the 10 stars was
pseudo-randomized but similar for all participants with var-
ied placements on the virtual road.

The training blocks T1 and T2 were started right after the
Baseline and Mid-Training blocks, respectively. Participants
were informed that they may be assisted during the training.
Two-minute breaks were enforced between T1 and Mid-
Training blocks, and between T2 and Post-Training blocks.

E. Data Analyses

We investigated the motor skill (development and acqui-
sition of skill) and motor performance (actual execution of
developed skill).

1) Skill Acquisition and Performance Measures: To eval-
uate the skill acquisition in the stars collecting task, the
average and standard deviation (SD) of the distance (in
meters) from the bike position to targeted stars averaged
over 20 stars per evaluation time point (BL, MT, and PT)
was obtained. This measure aims to indicate changes in the
accuracy (average distance) and consistency (standard
deviation of distance) in the steering and navigation task
compared to the baseline measurement. A decreased average
and standard deviation indicate higher precision (accuracy)
and repeatability (consistency) in task execution, respec-
tively, associated with an improved skill acquisition [19].

For evaluating the participants’ navigation and steering
performance, the average steering rate (rad/s) quantified
by the mean absolute value of the steering rate [20] and
the standard deviation of steering rate (SD of steering rate
(rad/s)) in a 6-second time frame from appearing until hitting
the stars were calculated. These values provide insights into
how smoothly the riders maneuver the bicycle within each
6-second interval between star appearances. For statistical
analysis, the average and standard deviation of the steering
rate across 20 stars (2 x 10 stars) for each evaluation time
point (BL, MT, and PT) were calculated, reflecting the
participants’ average performance over a total of 120 seconds
(2 x 1-min trial). The standard deviation of the steering
rate serves as an indicator of consistency or variability in
the steering rate, where a decreased SD of the steering
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Fig. 3. Study protocol. Participants were randomly assigned to one of two groups. Each trial was 1 minute long and contained 10 stars. BL: Baseline
evaluation, MT: Mid-training evaluation, PT: Post-Training evaluation, MPC: training with MPC, No MPC: training without MPC

rate implies a more consistent and refined motor control in
steering behavior.

2) Statistical Analyses: We applied a repeated measures
ANOVA on the average and SD of the distance to stars, and
on the average and SD of the steering rate. The analysis
specifically focused on two factors and their interaction that
might influence participants’ skill acquisition and perfor-
mance: evaluation Time Points (Baseline [BL], Mid-Training
[MT], and Post-Training [PT]), and Group, denoting the
different participant groups subjected to varying training se-
quences, enabling a detailed evaluation of how the sequence
of training interventions influenced participants’ task skill
acquisition and steering performance. The statistical analyses
were performed in Jasp (version 0.16). The significance level
was determined at p-values < 0.05.

III. RESULTS

All participants completed the experiment without falling
or reporting motion sickness, as assessed by the experi-
menter’s observation and self-reports. The analysis focused
on changes in accuracy and consistency of collecting stars by
evaluating the average and standard deviation of the distance
to virtual stars, respectively, together with the average and
standard deviation of steering rate (Fig. 4). Results from the
statistical analyses are summarized in Table I.

A significant improvement in skill was evidenced by a
decrease in the standard deviation of the distance to stars
(improved consistency), with no effects of Group or interac-
tion of Time Point x Group (Table I, Fig. 4). However, we
did not find a significant effect of evaluation Time Point or
Group on the average distance to the stars (Table I, Fig. 4).

We found a significant effect of the evaluation Time
Points on average steering rate and a significant interaction
between Time Points and Group, as shown in Table I and
Fig. 4. Posthoc analysis for Group 1 (MPC first) revealed
no significant improvement in average steering rate between
the Baseline (BL) and Mid-Training (MT) or BL and Post-
Training (PT) evaluation time points (t = 2.535, p = 0.171,
Mean Difference = 0.015 (rad/s) and t = 1.251, p = 0.806,
Mean Difference = 0.007 (rad/s), respectively). In contrast,
significant differences in average steering rate were observed
within Group 2 (MPC second). Specifically, a significant
improvement was noted between BL and MT (t = 3.914,
p= 0.013, Mean Difference= 0.022 (rad/s)), indicating en-
hanced steering performance (decreased steering rate) during
this training period. Furthermore, a significant improvement

from BL to PT was also observed (t = 5.165, p = 0.001,
Mean Difference = 0.030 (rad/s)) in Group 2.

Similarly, we found a significant effect of the evaluation
Time Points on the standard deviation of steering rate and
a significant interaction between Time Points and Group
as shown in Table I and Fig. 4. Posthoc analysis for
Group 1 (MPC first) revealed no significant improvement
in SD of steering rate between the Baseline (BL) and Mid-
Training (MT) or BL and Post-Training (PT) evaluation
time points (t = 2.463, p = 0.193, Mean Difference = 0.018
(rad/s) and t = 1.171, p = 0.844, Mean Difference = 0.008
(rad/s), respectively). However, posthoc analysis revealed a
significant difference in SD of steering rate within Group
2 (MPC second) between the Baseline (BL) and Mid-
Training (MT) evaluation time points (t = 4.113, p = 0.009,
Mean Difference = 0.030 (rad/s)), indicating a significant
improvement in steering performance (decreased variation
of steering rate) during this training period. Furthermore, a
significant improvement was also noted from the Baseline
(BL) to Post-Training (PT) time points in Group 2 (MPC
second) (t = 5.1005, p = 0.001, Mean Difference = 0.037
(rad/s)). These results suggest that Group 2 (MPC second),
which started training without MPC assistance, experienced
substantial improvements in steering performance over the
course of the training, something that was not observed in
Group 1 (MPC first).

TABLE I
RESULTS FROM THE REPEATED MEASURES ANOVA

Variable F-value p-value η2
p

Average of Distance to Stars
Time Points (Level) 2.775 0.109 0.258
Group (MPC Order) 1.785 0.218 0.182
Level*Group Interaction 0.061 0.903 0.008

SD of Distance to Stars
Time Points (Level) 5.083 0.048 0.389
Group (MPC Order) 0.213 0.657 0.026
Level*Group Interaction 0.195 0.697 0.024

Average of Steering Rate
Time Points (Level) 13.791 <.001 0.633
Group (MPC Order) 0.359 0.566 0.043
Level*Group Interaction 3.942 0.041 0.330

SD of Steering Rate
Time Points (Level) 13.876 <.001 0.634
Group (MPC Order) 0.365 0.563 0.044
Level*Group Interaction 3.998 0.039 0.333
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Fig. 4. The average and the standard deviation of the lateral distance to stars (m), the average of steering rate (rad/s), and the standard deviation of
steering rate (rad/s) at Baseline (BL), Mid-Training (MT) and Post-Training (PT) time points. Error bars indicate the standard errors. The results at each
time point represent the average group behavior.

IV. DISCUSSION

We investigated the impact of MPC assistance on motor
skill acquisition and motor performance in a complex bicy-
cling task (steering and navigation), with a particular focus
on the timing of MPC introduction during training. Contrary
to our initial hypothesis that training with MPC assistance
would be inherently superior, the skill acquisition results
revealed that both training methods led to improvements in
motor skill, yet the improved steering performance results
proved that the sequence of training without MPC followed
by training with MPC is more effective for refined motor
learning and retention of acquired skill.

Group 1, which received MPC assistance initially, did
not show significant changes in the average and variation
of steering actions. In contrast, Group 2, which started
training without MPC assistance, experienced significant
improvements in the steering actions average and variation
over the course of the training. This result highlights the
potential benefits of gradually introducing MPC assistance
to enhance learning. This finding is particularly intriguing as
it suggests the importance of mastering fundamental skills
before introducing technological assistance in this particular
bicycling task. This is aligned with the principles of motor
learning, particularly the Guidance Hypothesis, which states
that too much augmented feedback during training, i.e.,
additional to the natural feedback mechanisms inherent in
performing a task, guides learners but can cause depen-
dency (slacking) if used too frequently [5]. MPC provided
additional information to the participants, augmenting their
natural sensory feedback with predictive data about future
states of the system. Thus, in line with the Guidance Hy-
pothesis, our results suggest that MPC use might disrupt the
development of intrinsic motor skills, especially during the
early stages of learning, necessitating a balanced approach
with unassisted training in its application to prevent over-
reliance. The observed worsening of post-training steering
rate and its standard deviation when participants trained first
with MPC assistance indicates potential dependency on the
assistance, suggesting that reliance on MPC could impair the
retention of motor skills in its absence.

A potential problem of providing robotic assistance while
learning to interact with environments with complex dy-
namics is that the assistance could inadvertently mask the
perception of the dynamics of the environment, just as
adding training wheels disturbs the perception of the bicycle
dynamics. The study by Wähnert and Müller-Plath (2021)
states the functionality hypothesis in motor learning of a
balancing task, indicating that an internal focus, emphasiz-
ing body-internal senses, is more beneficial in tasks where
external feedback could add cognitive load [21], or in our
study, hinder the perception of the task dynamics through
body-internal senses. Our findings support the functionality
hypothesis in motor learning suggesting that training initially
without MPC likely fostered an internal focus, enabling
participants to develop a deeper intrinsic understanding of
the navigating and steering through their body-internal senses
in this bicycling task. This phase of self-reliance in learning
appears to be crucial for establishing a solid foundation upon
which technological assistance can build.

Furthermore, the study on audio-motor coordination in
learning piano performance skills provides relevant insights
into our findings [22]. Their research demonstrates that pre-
dictive motor control mechanisms, essential for determining
the sequence and timing of actions, play a crucial role even
in the early stages of learning complex motor skills. In our
study, the initial training phase without MPC might have
similarly encouraged the development of internal predictive
motor control skills, allowing participants to independently
navigate the task and refine their ability to anticipate and
respond to the bicycling dynamics. The subsequent introduc-
tion of MPC then provided targeted feedback and assistance,
leading to further refined motor control and enhancing and
retention of the skills developed during the initial phase.

Our preliminary results on a confirmatory post-experiment
test on one rider showed that with minimal rider steering
input, MPC assistance significantly outperformed the non-
MPC approach. This finding may suggest that in cases
where riders rely on MPC assistance due to inaccuracies
in sensory processing, balance disorders, or age-related im-
pairments, the application of MPC could be more effective.
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This potential enhancement of MPC’s efficacy is particularly
relevant when riders, aware of their limitations, rely on
the technology, minimizing reliance on their compromised
internal models [5]. These observations offer insights for
future research and practical applications.

We studied steering actions in a bicycling task without the
effect of pedaling. While this allowed us to focus on steering
performance and ensure cognitive effort was concentrated on
steering, future work should investigate the combined task
to provide a more comprehensive understanding of motor
learning in realistic cycling scenarios.

The small sample size (n = 10) raises questions about the
generalizability of our findings. Further research is neces-
sary to validate these preliminary findings comprehensively,
particularly in aiding those with diminished skill perception
and balance impairments. Future studies could benefit from
a larger, more diverse participant group and the addition of
two focused groups, one training exclusively with MPC and
the other solely without it, to strengthen our conclusion.

Moreover, the MPC model could be enhanced to adjust
to individual rider characteristics. This includes calibrating
the weights in the MPC cost function to align with each
rider’s responsiveness and control preferences, modifying
constraints to match their specific steering abilities, and fine-
tuning the feedback mechanism to offer customized guidance
based on the rider’s skill level. These targeted modifications
aim to optimize the MPC system for each individual rider,
potentially increasing the training effectiveness. Furthermore,
future research should investigate the long-term impacts of
various training sequences and the optimal, tailored inte-
gration of technological aids like MPC in enhancing motor
performance.

V. CONCLUSION

Our study highlights the feasibility and effectiveness of
Model Predictive Control in complex steering and bicycling
tasks, with a focus on the training sequence. We found that
unassisted learning strategies beginning with the develop-
ment of intrinsic predictive motor control, followed by the
integration of MPC-assisted learning, led to more refined
motor control. This highlights the importance of mastering
fundamental skills before introducing robotic assistance and
the need for well-structured training sequences.

While the study provides valuable findings, its small
sample size and focus on a bicycle steering task limit
generalizability. Future research should involve larger partic-
ipant groups and diverse tasks to validate and expand these
insights.
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