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Abstract

Recent advances on the design of autonomous mobile agents have motivated the use of the
latter in persistent surveillance tasks with applications in agriculture, information gathering
and search and rescue missions. In these tasks the goal is to design agents’ paths so as every
point in the area of interest is covered more than once.
In literature the persistent surveillance problem has been addressed under two different frame-
works: 1) the visitation frequency of a finite set of points (discrete spaces) and 2) the amount
of coverage offered by the agents over the area of interest. In the first category agents aim at
visiting a finite set of points in the area so as the time elapsed since a point was last visited
is minimized over the set. Here, the environment is considered static and no information on
the coverage condition of the points is available. In the second category the environment is
characterized by a property that changes over time, called coverage level and the goal is to
design agents’ paths so as the coverage level is maintained at a desired level over the area. In
this approach the error between the actual and desired coverage level of the area is bounded.
However, locally no information is available on the frequency at which each point gets covered.
The novelty of this thesis lies in the integration of the aforementioned solution approaches so
as complete coverage information is provided for a finite set of points. Here, the goal is to
design the agents’ paths so as the coverage level of each point is bounded from below by a
desired level. The paths are planned over a finite optimization horizon and found as a solution
to a Mixed Integer Linear Program (MILP). Two formulations of the problem are proposed
and their efficiency is validated in simulation. The recursive feasibility of the centralized
problem is also guaranteed when a set of time-varying terminal constraints is introduced to
the problem. These constraints force agents to move along a pre-defined set of closed paths
designed in a way that the coverage level boundness constraint is always satisfied. A two-step
method is proposed for their design that relies on the solution of a Linear Program (LP) when
a set of closed paths violating the objective is given, found as a solution to a modified version
of the proposed MILP at step 1. Finally, two distributed formulations of the problem are
introduced in which agents solve in parallel a local path planning problem. The difference
on these methods lies in the accuracy of the information available to the agents for planning.
Despite this difference simulation tests show a difference of only 1.5% in the coverage level
performance when various sized teams of agents are employed for the task.
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Chapter 1

Introduction

Over the last decades technological evolution and hardware enhancement has led to the design
of robotic agents able to perform a wide range of tasks spanning from component assembly
to package delivery. These tasks have been assigned to robots as they are found to be
either time-consuming or cost-prohibitive or in some cases dangerous for humans. To meet
the task objectives, agents are often equipped with different kinds of sensors and actuators
that provide them the ability to perceive, exploit and learn their environment either from
a static position or while moving around the area. In fact, one of the most interesting and
promising capabilities of the agents is mobility due to the plethora of possibilities it offers for
a variety of tasks in domestic and outdoor environments. The applications of mobile agents
are numerous. Among others we distinct surveillance [2], cleaning [3], forest fire monitoring
[4], crop inspection [5] and information gathering e.g in inland waterways [6] or in underwater
missions [7].

In the aforementioned applications agents need to cover every point in a known environment
multiple times to ensure the currency of their observations (e.g in surveillance, crop inspection,
etc) or the collection of a rich data set in information gathering tasks or a high coverage
performance (e.g in cleaning). This problem, known in literature as the persistent coverage
control problem is the main focus of this thesis.

So far, the persistent coverage tasks were performed either manually by humans or depending
on the application using satellite imaging, commercial vehicles and Wireless Sensor Networks
(WSN). Satellite imaging has been extensively used in agriculture for water stress-detection
[8] as also in environmental monitoring tasks for oil-spill and fire detection [9], [10]. However,
as mentioned in [5] this method suffers from "the lack of of imagery with optimum spatial
and spectral resolutions and an unfavorable revisit time" for most applications. Addressing
these problems other methods were proposed using commercial vehicles such as aircrafts or
ships that allow humans to manually take pictures or measurements from the area of interest.
Nonetheless, the operational costs of these methods are often too high.

Another popular approach presented in literature for collecting information is the use of
WSNs. A WSN is defined as a collection of sensor nodes that are able to periodically collect
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2 Introduction

data from an area of predefined size around them. Sensor Networks have been successfully
used in Precision Agriculture for crop inspection in warehouses [11], in rainforests for mea-
suring CO2 flux [12] as also in surveillance tasks [13]. In a WSN each sensor is able to
communicate with the others and often a central station that is responsible for collecting and
processing the data obtained by the sensors. Although this approach, contrary to the others
provides autonomy in data collection in practice exhibits severe limitations. Two of the most
important ones are: 1) the constrained mobility of the sensors and 2) the increased number
of sensors required when large areas are considered.

On the other hand, mobile agents like those shown in Figure 1-1 are able to reach every
part of the area and provide coverage even at difficult accessible areas. In many situations,
however, a single agent may not always be able to successfully complete the task on its own. In
other cases multi-robot teams may provide a better coverage result or complete the task at a
compatible amount of time. Nonetheless, their control requires more sophisticated techniques
and poses new challenges to the research community [14].

(a) Ground Vehicle for Warehouse Applications [15] (b) UAV for weed detection [16]

(c) Networked Robotic Boats [6] (d) Autonomous Underwater Vehicle (Glider) [17]

Figure 1-1: Different Platforms used for Surveillance Tasks

In literature multi-robot control problems have been extensively studied over these years.
Depending on the amount of information available to agents, two main solution approaches
are proposed, namely the centralized and distributed approach. In the first method a single
agent is responsible for collecting the information from the others, plan the actions of team
and assign a task to each agent. In the second method agents design their action based on their
own information and the information received from their neighbors. In general, centralized
methods provide better solutions due to the global information available. However, they
usually not scale well with the number of agents in the team. Distributed approaches on the
other often sacrifice performance since their solutions rely on local information. Nonetheless,
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1-1 State of the Art 3

a great advantage of the these methods is the inherent robustness to single-agent hardware
failures. Acknowledging the advantages and limitations of each method in this thesis both a
centralized and distributed approach to the persistent coverage task is presented. Before that
we review the current State of the Art in the field.

1-1 State of the Art

Coverage Control addresses the problem of designing agents’ moves so as every point in the
area is covered either once (dynamic coverage control problems) or multiple times (persistent
coverage control problems) or until a desired level of coverage is locally reached (dynamic
coverage control problems). This thesis focuses on the persistent coverage control problem.
However, as several methods of dynamic coverage control could be applied in persistent cov-
erage tasks after slight modifications a summary on the most important work in the dynamic
coverage control field is presented.

In the following Subsections several methods are presented addressing the problem of dynamic
coverage and persistent coverage control applied in 2D areas. In these methods the agents
are considered equipped with sensors of finite range. Moreover, a point in the environment
is generally considered covered at time step k if it is included in the sensing area of an agent
at k while a point is visited at k if an agent’s position is identical to the coordinates of the
point at time step k.

1-1-1 Dynamic Coverage Control Problems

Dynamic coverage control considers the problem of deciding agents’ moves so as every point
in the area is covered only once or until a pre-defined level of coverage is reached. In the first
kind of tasks the area is decomposed into a number of cells and agents cover the cell following
a lawn-mowing pattern shown in Figure 1-2. The task terminates when every cell is covered.

In [18] a review on the recent work for complete coverage is presented and categorized based
on the type of decomposition applied to the area to: heuristic, approximate, exact and semi-
approximate decomposition methods. In these methods the number, size and boundaries of
the cells may be known a-priori by the agents or found on-line. In [19] a polygonal area is
considered and offline decomposed into polygonal sub-regions based on the agents’ sensing
abilities. In [20] the agents define the start and end of each cell online. A team-coverage
method is considered in which two agents search for the end point of the cell while the others
sweep the area. When the end point is found 2 new cells open and the team is split to cover
them. In the same article an auction-based, centralized method is also proposed. Here the
area is decomposed in stripes and agents explore them so as to identify the start and end
point of the cells. When part of the cell is not accessible the responsible agent calls an auction
assigning the exploration task of this part to an other, task-free agent.

In the second category of coverage methods the sensor model of the agents is considered
known. Then, every point in the area is associated to a level of coverage equal to the sum of
the levels of coverage provided by the agents over a finite horizon. Considering a pre-defined,
desired level of coverage the goal is to plan agents’ moves so as the error between the actual
and desired level of coverage is minimized over the area. To achieve this in [21] a local control
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Figure 1-2: Lawn-Mowing Patterns

law is introduced based on the gradient of the error forcing agents move towards points with
non-zero error. A feedback control law is also introduced for agents to escape local minima
and move towards less covered areas. Authors guarantee error convergence to zero when
the agents have full or partial coverage/position information from their neighbors. In [22]
a similar approach is followed when agents are equipped with anisotropic sensors. In [23] a
distributed method is presented based on the gradient control law of [21] and combined with
a global strategy defining the order with which points in the area should be covered.

1-1-2 Persistent Coverage Control Problems

Persistent coverage control addresses the problem of planning the agents’ actions so as every
point in the area of interest is covered more than once. Over these years, existing work in the
field has focused on the design of agents’ paths/trajectories that maximize either the frequency
of visits to a finite set of points or the amount of coverage offered by the agents over the area.
In this Section several methods from both categories are presented with an emphasis given
on the second approach due to its close relation to the subject of this thesis. The Section
concludes with a summary of selected methods that differentiate from the aforementioned
solution approaches.

Visitation Frequency Approach In this approach a finite set of points is considered and the
goal is to design agents’ paths so as the maximum time elapsed since the last visit at a point
is minimized over the set. Here, a graph G(V,E) is introduced with V the set of points to be
visited and E the set of edges, with each edge expressing whether two points are accessible
from one another. In [24] a Hamiltonian path is designed over the graph G satisfying the
frequency of visitation objective. In the same work a partition-based strategy is proposed in
which each agent is responsible for visiting the subset of points in V it was assigned to by
following a Hamiltonian path. In [25] a more detailed study on coverage methods in graph
based environments is presented and polynomial time methods are proposed for the design
of agents’ paths in chain, tree and cyclic graphs. A greedy policy is introduced in [26]. Here
agents decide their next move based on the distance to the point and the time since it was
last visited. For the first time in this work the non-holonomic constraints of the agents are
considered and their effect on the choice of the next point is studied. Finally, in [27] a method
guaranteeing a constant factor approximation of the optimal paths is proposed such that each
point of V is visited with a pre-defined priority.

Coverage Level Approach Here the goal is to design agents’ paths/trajectories so as a time
dependent quantity characterizing the environment is maintained at a desired level over the
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area. This quantity, called coverage level could be the amount of dust in a cleaning task,
the temperature or the accuracy of information in a heating or an information gathering
task respectively. As time passes the coverage level at every point changes forcing agents to
constantly move around the area to keep its coverage level close to the objective. This unique
characteristic distinguishes persistent coverage from dynamic coverage tasks as the first never
terminate.

In literature the available work on the subject could be further classified into two categories. In
the first category agents follow either a single or multiple pre-defined, closed paths and speed
controllers are designed so as the coverage level of every point in a finite set is asymptotically
bounded. In the second category the area is decomposed into sub-regions and each agent is
assigned to a region. Agents exchange coverage level information with their neighbors and
update their own. Then, based on the updated information each agent designs its path such
that it passes through less-covered points in its region.

In [28] a finite set of points is considered and each point is assigned to an uncertainty value
that grows when the point is not covered and decreases when included in the sensing area
of an agent. The agents are supposed to move along pre-defined, closed paths. The agent’s
velocity is parametrized by a set of basis functions. Then, the parameters of these functions
are found as the solution of a linear program that takes into consideration agents’ speed
limits while guaranteeing the uncertainty decrease. In [29] agents move along a single path
and speed controllers are defined as in [28] guaranteeing the coverage level of every point of a
finite set to be asymptotically maximized and every other point in the area to be periodically
covered. In [30] a similar approach to [29] is followed with a non-linear coverage level model.

In all these methods the closed paths are designed offline to satisfy a variety of objectives.
Examples of methods for designing closed paths are found in [31], [32]. In [31] a given, closed
path is considered and an adaptive controller is designed changing the shape of the path and
forcing it to concentrate on dynamic areas where points change at a high rate. In [32] a set of
polygonal paths are designed guaranteeing periodic coverage of every point in the area. These
paths are suitable for obstacle-free areas or areas with known, static obstacles. However, their
implementation is limited or even prohibitive in dynamic environments (environments with
moving obstacles). In case of a persistent coverage task if an obstacle blocks the way of an
agent along its path, path re-planning in addition to speed controller re-design is required.
The same holds in case of a sudden failure of an agent.

The latter problem is implicitly addressed in the second category [33], [34] in which distributed
methods are designed for planning paths passing through less covered points in the area when
the network is always connected. These methods are described by three major steps. In
the first step agents compute the coverage level of every point in the area and exchange
the information with their neighbors. In the second step an update of the information is
made and a second round of information exchange is proposed so as areas simultaneously
covered by many agents are identified. In that way agents ensure that the coverage level
of every point is as accurate as if global coverage information was available. In the last
step a path planning solution is proposed. In [34] a feedback control law is introduced that
comprises of a term forcing agents to move towards points that are most profitable in terms
of coverage and another term guaranteeing the transition to these points is made through less
covered areas. In [33] an optimal path planning method is proposed over the set of candidate
goal points improving the coverage level. Here, contrary to [34] the goals are chosen based
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6 Introduction

on how profitable the complete paths towards the goals are. A potential field function is
introduced that takes into consideration the coverage profit at every point and the position
of any obstacles in the area. Then, the path is computed by following the gradient descent
of the function and the path with the highest coverage profit is chosen.

Other Approaches Other methods considering the coverage level dynamics of the area are
found in [35] in which Infinitesimal Perturbation Analysis is used for obtaining optimal el-
lipsoidal trajectories with respect to the total coverage level of the area. In [36], [37] the
dynamic coverage methods presented in Section 1-1-1 are considered and modified to accom-
modate the dynamics of the coverage level. In these papers, paths are planned to follow the
gradient of the coverage error towards reaching less-covered points in the area. Finally, in [38]
a team of heterogeneous agents is considered and a distributed method is designed. Authors
follow the first two steps proposed in [34] for providing agents the most accurate coverage
level information. However, they differentiate themselves in the 3rd step by letting agents’
paths follow the gradient of the coverage level error while guaranteeing collision avoidance.

1-2 Problem Statement

The coverage level methods presented above may be further categorized based on the coverage
frequency information they offer in two main categories. In the first category we consider all
methods: 1) guaranteeing the desired level of coverage while 2) providing information on how
often each point in the area is covered. These objectives are generally achieved when pre-
defined paths are considered and found to be limited to static environments [29], [30], [39].
On the other hand, the second category includes all methods that aim at maintaining the
coverage level over the area at a desired level by planning agents’ actions online. Although
these methods are easily implementable in complex environments they do not provide specific
information on the coverage frequency of the points in the area [33], [34], [36], [37], [38].

In this Thesis an online path planning method is designed that offers complete coverage
information for the area of interest in terms of coverage frequency and coverage level. This
work is motivated by tasks requiring agents to repeatedly visit parts of the area within a
maximum time interval for guaranteeing a desired level of coverage until their next visit.
Examples of such tasks could be sterilizing an examination room in a hospital or provide
measurements of at least a desired level of accuracy within a maximum time interval.

In general providing a desired constant level of coverage at every point of a continuous area
would require agents’ sensors/actuators to provide the same amount of coverage at every
point in the area. However, in practice this is not possible. For this reason a predefined,
finite set of points is considered. Here the coverage level of every point in the set decreases
by a point-dependent, time-independent decay rate as time passes and resets to a constant
value when visited by an agent (details can be found in Chapter 2). The goal of the task is to
plan agents’ moves so as every point in the set is visited before its coverage level drops below
Z
¯
. In Figure 1-3 the evolution of the coverage level of a point in the set is shown. For every

time t ≥ ti the coverage level of the point is less than Z
¯
. Therefore, in order for the task to

be successful an agent should visit the point before ti.

Maria Charitidou Master of Science Thesis



1-3 Thesis Outline 7

t

Z

Z0

Z
¯
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Figure 1-3: Relation of Coverage Time and Desired Level of Coverage

Given the finite set of points and the the coverage level dynamics of the points in the set, the
goal of this thesis could be expressed as follows:

Design agents’ paths so as the coverage level of every point of the finite set is bounded from
below by a desired level Z

¯
.

1-3 Thesis Outline

In Figure 1-4 a schematic representation of the structure of this thesis is presented.

1. Introduction 2. Problem
Formulation

Centralized

Distributed

3. Centralized
Implementation

4. Persistent
Coverage Task
Feasibility

5. Distributed
Formulation

6. Conclusions
and Future Work

Figure 1-4: Schematic Outline of the Thesis

In Chapter 2 the area of interest, the coverage level dynamics and the admissible actions
of the agents are introduced. A Mixed Integer Linear Program (MILP) is designed the
solution of which provides the agents’ paths over a finite planning horizon. Here, two different
formulations of the problem are presented and their efficiency is validated in simulation.

In Chapter 3 further tests are conducted using the second formulation of the problem. The
performance of the first feasible and optimal solution is evaluated in terms of coverage quality
and computational effort of the solver. Finally, the scalability of the problem is studied with
respect to the number of agents employed for the task, the planning horizon and the number
of cells introduced due to the approximate decomposition implemented on the area of interest.
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8 Introduction

In Chapter 4 the feasibility of the persistent coverage task is studied. A set of constraints is
added to the problem so as the agents’ poses and the coverage level of the cells at the end
of the horizon are limited to values belonging to a time-varying terminal constraint set. This
set is considered part of a finite sequence of terminal sets the union of which defines a set of
closed paths for the agents that satisfy the objective. The recursive feasibility of the problem
is, then, proved and a two-step method is presented for constructing the closed paths of the
sequence.

In Chapter 5 two distributed formulations of the persistent coverage task are presented. In
these problems the agents solve in parallel a local path planning problem considering also their
neighbors’ actions and perform the first step of the path they computed for themselves. The
difference on these methods lies on the communication model and the amount of information
the agents have when planning their moves. The two problems are formally introduced and
their performance is evaluated for different case scenarios and team sizes.

In Chapter 6 the basic results of this thesis are summarized and suggestions are made for
future work.
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Chapter 2

Problem Formulation

In Chapter 1 an overview of the recent work on the subject of persistent coverage control was
presented. There, a vast amount of work proposed methods for designing agents’ paths so
as a desired level of coverage is maintained over the area. In this thesis a slightly different
definition of the persistent coverage task is considered. Here the goal is to plan agents’ moves
so as the coverage level of every point of a finite set is bounded from below by a desired level
Z
¯
. The persistency of the task stems from the fact that the coverage level of every point

decays over time forcing agents to constantly move to keep it above the desired level. The
order with which points are visited depends on the choice of agents’ paths. The latter are
found as a solution to a Mixed Integer Linear Program (MILP) that aims at maximizing the
coverage level of every point in the finite set over a finite horizon while minimizing subsequent
visits at a point by different agents.

In this chapter the mathematical formulation of the problem is presented. Initially, the
details on the area and agents employed are presented and the coverage level dynamics are
introduced. A straightforward MILP formulation of the problem is presented. However,
it is found to be too computational intensive even for small-sized problems. To increase
computational performance, a second problem formulation is proposed that differs from the
first one in the definition of the binary variables related to agents’ position and heading.
The chapter concludes with a discussion on the relative advantages and limitations of each
method.

2-1 Problem Preliminaries

In this thesis a plane area is considered and a finite set of points over the area is introduced.
A team of nr agents is employed for the task. Here, the agents’ position and orientation is
considered. At each time step the agents are able to move at a point of the finite set. However,
the agents’ moves are constrained in the sense that every point is not accessible by any other
point in the finite set. In the following Subsections the chosen set of points is introduced and
the agents’ admissible moves in conjunction with the coverage level dynamics are presented.
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10 Problem Formulation

2-1-1 The Area of Interest

A known, compact area Q ⊂ R2 is considered. The area is decomposed into a grid of nw square
cells with nw = C × L and C, L the number of columns and rows of the grid respectively.
A Cartesian Coordinate system is associated to the grid as shown in Figure 2-1. Each cell
in the grid is expressed by an index w ∈ I where I = {1, . . . , nw}. Let cw= (xi1 , yi2) express
the coordinates of the center of cell w. Then, the index w is found based on the following
equation:

w = i1 + (i2 − 1) · C

where i1 ∈ {1, . . . , C}, i2 ∈ {1, . . . , L}.

0 x

y

•

xi

yj
cw

Figure 2-1: Representation of the Grid

When a grid decomposition of the area is implemented a crucial decision for the success of the
task and the computational performance of the algorithm is the choice of the grid resolution.
In [40] authors mention the problem of incomplete coverage when the size of the square cells
is identical to the coverage area of an agent. This problem is usually related to the choice
of agents’ actions. For example if an agent reaches the center of a cell and makes a sharp
turn at place (e.g by 90◦) there might be points in the cell (e.g near the corners) that are left
uncovered. To avoid this kind of problems, here the square cells are chosen smaller than the
size of the coverage area of the agents. More specifically, here we consider agents with identical
coverage abilities (homogeneous agents), able to cover an area of finite size. Considering the
finite coverage area of an agent the following assumptions are made:

• Each square cell is encompassed by the the sensing area of an agent.

• When an agent is placed at cw, w ∈ I the area defined as the intersection of the agent’s
sensing area and a neighboring cell of w is negligible.

The first assumption guarantees that every point in the cell is sensed when an agent is placed
at its center while the second implies that each agent is able to cover a single cell per time
step.

Based on the above we may introduce the following definition:

Definition 2-1.1. A cell w ∈ I is considered covered by the time an agent reaches its center
cw.
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Consequently, the area is considered covered if every center cw, w ∈ I is visited at least once.
In this work except from guaranteeing a lower bound on the coverage level of the points in the
set we expect agents to satisfy the fundamental purpose of coverage control which is covering
every point in the area. To achieve this we consider as the finite set of points the set of the
centers of the cells. In that way, if an agent visits the center of a cell cw, w ∈ I the following
hold: 1) the coverage level of cw is lower bounded by Z

¯
and 2) every point in w gets covered.

2-1-2 Introducing the Robotic Agents

A team of nr agents is employed for the task. Here agents are considered equipped with
sensors/actuators able to cover all points of a cell. Moreover the following assumptions are
made:

• Agents have full knowledge of their real position with respect to a world coordinate
frame (e.g from GPS).

• Agents have full knowledge of the cell boundaries and coordinates of the centers of the
cells.

Each agent is assigned to an index r ∈ K with K = {1, . . . , nr} with its position denoted by
pkr and its heading by θkr . At each time step k an agent is placed at the center of a cell w ∈ I
with its heading θkr taking values from the set

{
0, π, π2 ,

3π
2
}
. Based on their current position

and heading agents are able to perform one of the following actions:

• Stay at place (position and heading stays the same)

• Turn at place by 90◦

• Move to an adjacent cell with respect to their heading

A directed graph G′(V ′, E′) is introduced with each node representing a possible position and
heading (xkr , ykr , θkr ) of an agent r and every edge an admissible move. More specifically, we
can define the following nodes:

• (xi1 , yi2 , θ1), i1 ∈ {1, . . . , C}, i2 ∈ {1, . . . , L}, θ1 = 0

• (xi1 , yi2 , θ2), i1 ∈ {1, . . . , C}, i2 ∈ {1, . . . , L}, θ2 = π
2

• (xi1 , yi2 , θ3), i1 ∈ {1, . . . , C}, i2 ∈ {1, . . . , L}, θ3 = π

• (xi1 , yi2 , θ4), i1 ∈ {1, . . . , C}, i2 ∈ {1, . . . , L}, θ4 = 3π
2

Then, for arbitrary center coordinates (xi1 , yi2) depending on the heading θi3 , i3 ∈ {1, 2, 3, 4}
the admissible moves are defined as in Figure 2-2. For simplicity we omit x, y, θ and use only
the indexes i1, i2, i3. An example of the graph G′ for a 2×2 grid is presented in Figure 2-3. The
graph consists of 16 nodes with each node being expressed by the triple of indexes (i1, i2, i3).
For each node the admissible moves are defined as shown in Figure 2-2. As discussed before,
nodes corresponding to different cells are connected only if the centers of the corresponding
cells share the same x or y coordinate.

Master of Science Thesis Maria Charitidou



12 Problem Formulation

(i1, i2, 1)

(i1, i2, 2)

(i1, i2, 4)(i1 + 1, i2, 1)

(i1, i2 + 1, 2) (i1, i2, 3) (i1 − 1, i2, 3)

(i1, i2 − 1, 4)
i1 6= C

i2 6= L

i2 6= 1

i1 6= 1

Figure 2-2: Representation of the admissible moves for an arbitrary node (xi1 , yi2 , θi3), i3 ∈
{1, 2, 3, 4}.

Figure 2-3: The Graph defining agents’ moves for a 2× 2 Grid

2-1-3 Coverage Level Dynamics

A positive value called coverage level is assigned to every cell center cw, w ∈ I. This value,
represented by Z(cw, kτ) may express the amount of dust at cw for a cleaning task, the
accuracy of information in an information gathering task or the temperature in a heating task.
Here τ is the period at which the the coverage level dynamics are discretized. Considering
agents moving at a constant speed, the period is equal to the time required for an agent
to move from the center of a cell to an adjacent plus the time required for an agent to
cover the cell center. The latter amount is considered negligible in information gathering and
surveillance tasks or known and same for every cell(e.g in tasks like heating or watering). To
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2-1 Problem Preliminaries 13

simplify the notation the coverage level of a cell center cw, w ∈ I at time instant kτ will be
denoted by Z(w, k) where k is the time step and the coverage level of cw at time step k will
be expressed for simplicity as the coverage level of cell w at time step k.

In this work the coverage level of w decreases over time by a constant value dw ∈ (0, 1) called
coverage decay factor. This factor expresses "how important" is to cover w. A low value of dw
results in a sharp decrease of Z(w, k) forcing agents to visit w more frequently while a higher
value of dw is assigned to cells requiring less attention. When w is covered by an agent its
coverage level resets to a positive, constant value Z̄ such that Z̄ > Z

¯
. Based on the above

the evolution of the coverage level of every cell w over time is defined as follows:

Z(w, k) = dw(1− σkw)Z(w, k − 1) + σkw Z̄, w ∈ I (2-1)

where σkw is a binary variable defined as:

σkw =
{

1, ∃ r ∈ K : pkr = cw

0, otherwise

Initially, cells are fully covered with Z(w, 0) = Z̄, w ∈ I. As time passes the coverage level of
every cell w decreases. In order to maintain a low coverage bound Z

¯
at every cell agents are

forced to visit each cell w at most after tw time steps with tw found as:

tw =
⌊ lnZ

¯
− ln Z̄

ln dw

⌋
, w ∈ I (2-2)

Here, tw could be considered as the worst case length of the time interval between two
subsequent visits at cell w. We call this value the age of cell w. At each time step of this
interval the coverage level of w decreases monotonically. When w gets covered its coverage
level resets to Z̄. Thus, Z̄ is its maximum value. Throughout this thesis we aim at planning
paths maintaining the coverage level of cells at least equal to Z

¯
. For this reason, we require

Z(w, k) to be bounded as:
Z(w, k) ∈ [Z

¯
, Z̄], w ∈ I (2-3)

An example of the coverage level evolution over time is presented in Figure 2-4. Here we
have: Z̄ = 100, Z

¯
= 20 and dw = 0.8. As expected the coverage level decreases over time

until tw + 1 when an agent covers the cell for the first time resetting its coverage level to Z̄.
After the agent leaves w the coverage level starts dropping again. However, this time its value
resets to Z̄ before it reaches close to Z

¯
. This is achieved by having an agent visiting the cell

exactly at tw − 1.

Considering now the total number of cells and the corresponding coverage level values the
problem of defining when to visit each cell becomes more complex. Therefore, a more sophis-
ticated method is needed for assigning agents to cells. In the following section an optimization
problem is designed that plans agents’ paths over a finite planning horizon N so as the cov-
erage level of the cells over N is maximized.
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14 Problem Formulation

Figure 2-4: Evolution of the Coverage Level value over Time

2-2 Problem Formulation I

In this section a first step is made towards designing an optimization problem the solution
of which defines the agents’ paths that guarantee a lower bound on Z(w, k), w ∈ I over
a finite horizon of N time steps. Here a set of binary variables is introduced expressing
whether (xi1 , yi2 , θi3), (i1, i2, i3) ∈ V ′ is the state of agent r at time step k for every r ∈
K, k ∈ {1, . . . , N}. Then, a Mixed Integer Linear program (MILP) is designed that aims at
maximizing the coverage level of every cell over the horizon while penalizing coverage of the
same cell by different agents on consecutive time steps.

To simplify the notation of the problem we will introduce a single index for every node
(i1, i2, i3) ∈ V ′ as follows:

q = 4 (i1 − 1) + 4 (i2 − 1) C + i3, (2-4)

i1 ∈ {1, . . . , C}, i2 ∈ {1, . . . , L}, i3 ∈ {1, 2, 3, 4}. The new graph with nodes the 1-index poses
of the agents (position and heading) will be denoted by G(V,E). Moreover, we will define
the adjacency matrix A = (aqq′), q, q′ ∈ V corresponding to graph G. Here aqq′ = 1 if there
exists an admissible transition from pose q to q′ in E (represented as (q, q′) ∈ E). Otherwise,
aqq′ = 0.

For each cell center there exist 4 nodes in V , one for every possible heading. Given the agent’s
state q ∈ V the index of cell w is found as:

w =
⌈
q

4

⌉
, q ∈ V (2-5)

A set of binary variables δrq(k) is introduced for every r ∈ K, k ∈ {1, . . . , N} as follows:

δrq(k) =
{

1, if (pkr , θkr ) = (xi1 , yi2 , θi3)
0, otherwise
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2-2 Problem Formulation I 15

with pkr the position and θkr the heading of agent r at time k and q ∈ V the node corresponding
to state (xi1 , yi2 , θi3) ∈ V ′.

At each time step a cell can host at most one agent. Therefore, if an agent r is about to visit
cell w at time step k, this cell is excluded from the cell choices of the other agents. This can
be formed mathematically as follows:

4w∑
q=4 (w−1)+1

∑
r∈K

δrq(k) ≤ 1, w ∈ I, k ∈ {1, . . . , N} (2-6)

An agent’s pose (position and heading) is expressed by a node of graph G and is unique per
agent and time step. This is equivalent to the following constraint:∑

q∈V
δrq(k) = 1, k ∈ {1, . . . , N}, r ∈ K

Each agent decides its next pose among the set of admissible poses related to its current
position and heading. The admissible transitions between 2 nodes are defined using the
adjacency matrix A. For any q ∈ V the pose q′ ∈ V is an admissible pose if the element
aqq′ of matrix A is equal to 1. Therefore, if the position and heading of agent r is expressed
by node q at time step k its future pose at k + 1 will be one of the nodes q′ ∈ V such that
aqq′ = 1. This is encapsulated in the following constraint:

δrq(k)−
∑
q′∈V

aqq′ δrq′(k + 1) ≤ 0, k ∈ {1, . . . , N − 1}, q′ ∈ V, r ∈ K

The choice of agents’ future move is based on the coverage level of every cell in the grid. As
time passes the coverage level of the cells decreases forcing agents to visit them and reset
their coverage level to Z̄ at most after tw time steps. The switching between the "coverage
level decreasing mode" and the "reset mode" is controlled by a binary variable σkw ∈ {0, 1}
related to agents’ current state as follows:

σkw −
4w∑

q=4 (w−1)+1

∑
r∈K

δrq(k) = 0, w ∈ I, k ∈ {1, . . . , N} (2-7)

The above constraint guarantees that σkw = 1 if there exists a single agent placed at cw
irrespective of its heading. Moreover, due to constraint (2-6) if it exists, this agent will be
unique. Substituting (2-7) to (2-1), we have the coverage level dynamics explicitly dependent
on the binary variables expressing the agents’ poses. Therefore, we consider variables σkw
redundant and will not include them as extra variables in the optimization problem.

In our task we require the coverage level to be always above a desired level Z
¯
. Considering the

coverage level dynamics introduced in (2-1), the constraint Z(w, k) ≥ Z
¯

becomes quadratic
due to the term σkw·Z(w, k−1) since σkw, Z(w, k−1) are dependent on the agents’ poses that are
the variables of the problem. To resolve this issue and keep the constraints linear we introduce
a set of mixed variables αw(k), w ∈ I, k ∈ {1, . . . , N} such that αw(k) = σkw Z(w, k − 1).
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Considering (2-7) the variables αw(k) take the value σkw Z(w, k−1) if and only if the following
inequalities are satisfied:

αw(k) ≤ Z̄
4w∑

q=4 (w−1)+1

∑
r∈K

δrq(k)

αw(k) ≥ 0
αw(k) ≤ Zw(k − 1)

αw(k) ≥ Zw(k − 1)− Z̄
(

1−
4w∑

q=4 (w−1)+1

∑
r∈K

δrq(k)
)

Substituting the newly introduced variables to (2-1) and considering the coverage level re-
sponse at time step k with respect to the initial condition Z(w, 0) = Z̄, we are in position to
define the following constraints:

Z(w, k) = dkw Z̄ +
k∑
t=1

dk−tw

(
− dw αw(t) + Z̄

4w∑
q=4 (w−1)+1

∑
r∈K

δrq(t)
)

Z(w, k) ≥ Z
¯

w ∈ I, k ∈ {1, . . . , N}.
Here, we also aim at penalizing agents’ intention to cover the same cell at consecutive time
steps. To achieve this, we introduce a set of binary variables µrw(k) as follows:

µrw(k) =
4w∑

q=4(w−1)+1

4w∑
q′=4(w−1)+1

∑
r′∈K
r 6=r′

δrq(k) δr′
q′ (k + 1)

w ∈ I, k ∈ {1, . . . , N − 1}, r ∈ K. Then, µrw(k) is equal to 1 if there exists an agent r′
covering cell w at time k+1 after r covered the same cell at time step k. The above definition
is equivalent to having the following constraints satisfied:

µrw(k)−
4w∑

q=4(w−1)+1
δrq(k) ≤ 0

µrw(k)−
∑
r′∈K
r 6=r′

4w∑
q′=4(w−1)+1

δr
′
q′ (k + 1) ≤ 0

4w∑
q=4(w−1)+1

δrq(k) +
∑
r′∈K
r 6=r′

4w∑
q′=4(w−1)+1

δr
′
q′ (k + 1)− µrw(k) ≤ 1

Having introduced the set of variables and constraints of this problem we are now in position to
introduce the objective function J(x). Here x is the variable vector with x =

[
δT αT µT

]T
and δT , αT , µT defined as:

δT =
[
δ1

1(1) . . . δ1
4nw(N) δ2

1(1) . . . δ2
4nw(N) . . . δnr4nw(N)

]T
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αT =
[
α1(1) . . . αnw(1) α1(2) . . . αnw(2) . . . αnw(N)

]T
µT =

[
µ1

1(1) . . . µ1
nw(1) µ1

1(2) . . . µ1
nw(N − 1) µ2

1(1) . . . µnrnw(N − 1)
]T

In this problem the goal is to maximize the total coverage level of the area over the opti-
mization horizon while penalizing unnecessary coverage of cells covered at subsequent time
instants. Based on that, the objective function is defined as:

J(x) =
N∑
k=1

∑
w∈I

Z(x,w, k)− β
N−1∑
k=1

∑
w∈I

∑
r∈K

µrw(k) (2-8)

where β is a positive weight expressing how important is to penalize agents’ intention to cover
cells already covered by other members of the team at the previous time step.

Considering the initial states of the agents and the initial coverage level of the area such that
the following hold:

δrqr(0) = 1, r ∈ K
Z(w, 0) = Z̄, w ∈ I

we may introduce the complete MILP formulation of the problem as follows:

max
x

J(x) (2-9)

subject to:

∑
q∈V

δrq(k) = 1

∀k ∈ {1, . . . , N}, ∀r ∈ K (2-9a)

δrq(k)−
∑
q′∈V

aqq′ δrq′(k + 1) ≤ 0,

∀k ∈ {1, . . . , N − 1}, ∀q′ ∈ V, ∀r ∈ K (2-9b)

δrqr(0)−
∑
q∈V

aqrq δ
r
q(1) = 0

∀r ∈ K (2-9c)

4w∑
q=4 (w−1)+1

∑
r∈K

δrq(k) ≤ 1

∀w ∈ I, ∀k ∈ {1, . . . , N} (2-9d)
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αw(k)− Z̄
4w∑

q=4 (w−1)+1

∑
r∈K

δrq(k) ≤ 0

∀w ∈ I, ∀k ∈ {1, . . . , N} (2-9e)

αw(k) ≥ 0
∀w ∈ I, ∀k ∈ {1, . . . , N} (2-9f)

αw(k)− Z(w, k − 1) ≤ 0
∀w ∈ I, ∀k ∈ {1, . . . , N} (2-9g)

αw(k)− Zw(k − 1) + Z̄

(
1−

4w∑
q=4 (w−1)+1

∑
r∈K

δrq(k)
)
≥ 0

∀w ∈ I, ∀k ∈ {1, . . . , N} (2-9h)

dkw Z̄ +
k∑
t=1

dk−tw

(
− dw αw(t) + Z̄

4w∑
q=4 (w−1)+1

∑
r∈K

δrq(t)
)

= Z(w, k)

∀w ∈ I, ∀k ∈ {1, . . . , N} (2-9i)

Z(w, k) ≥ Z
¯

∀w ∈ I, ∀k ∈ {1, . . . , N} (2-9j)

µrw(k)−
4w∑

q=4(w−1)+1
δrq(k) ≤ 0

∀r ∈ K, ∀w ∈ I, ∀k ∈ {1, . . . , N − 1} (2-9k)

µrw(k)−
∑
r′∈K
r 6=r′

4w∑
q′=4(w−1)+1

δr
′
q′ (k + 1) ≤ 0

∀r ∈ K, ∀w ∈ I, ∀k ∈ {1, . . . , N − 1} (2-9l)

4w∑
q=4(w−1)+1

δrq(k) +
∑
r′∈K
r 6=r′

4w∑
q′=4(w−1)+1

δr
′
q′ (k + 1)− µrw(k) ≤ 1

∀r ∈ K, ∀w ∈ I, ∀k ∈ {1, . . . , N − 1} (2-9m)

δrqr(0) = 1
r ∈ K (2-9n)
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2-3 Motivation for a New Problem Formulation 19

Z(w, 0) = Z̄

w ∈ I (2-9o)

δrq(k) ∈ {0, 1}
∀q ∈ V, ∀r ∈ K, ∀k ∈ {1, . . . , N} (2-9p)

αw(k) ∈ [0, Z̄]
∀w ∈ I, ∀k ∈ {1, . . . , N} (2-9q)

µrw(k) ∈ {0, 1}
∀r ∈ K, ∀w ∈ I, ∀k ∈ {1, . . . , N − 1} (2-9r)

2-3 Motivation for a New Problem Formulation

The optimization problem described above could be considered as a straightforward formu-
lation for defining agents’ paths, when the allowable actions and the coverage level evolution
with respect to the initial conditions are defined. Although (2-9) is easily interpretable, in
practice exhibits severe limitations that make it prohibitive for online planning. More specifi-
cally, even when small-sized problems are considered the computational time required for the
problem to converge to the optimal solution is significantly high.

This problem is typical in mixed integer programming and strongly related to the efficiency
of the available solution methods for such problems. As no method for immediately finding
the optimal integer solution is available, existing methods rely on exhaustively solving a set
of linear problems first [41]. One such method is the Branch and Bound method in which
a search tree is defined with root node the original MILP problem and child nodes MILP
problems that include the constraints of the original problem plus some constraints further
restricting the value of the integer variables.

Initially, the original MILP problem is relaxed to a linear program (LP) for which methods
like Simplex or Interior Point provide a solution in negligible time irrespective of the problem’s
size. If the linear relaxation of the problem is infeasible the same holds for the mixed integer
problem. When the linear problem is feasible we can distinguish the following two cases:

• Every integer variable of the original problem assumes an integer value. In that case the
solution of the linear relaxation and the MILP problem are identical and the Branch
and Bound algorithm is terminated.

• There exists an integer-restricted variable of the original problem that assumes a frac-
tional value. Then, a variable xi is chosen among the integer variables with the fractional
value and the search tree branches on. Two new nodes are introduced with each node
defined as an MILP problem containing all the constraints of the original problem plus
an extra constraint that restricts the value of the chosen variable xi. This constraint is
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either defined as xi ≤ bfc or xi ≥ dfe where f is the fractional value. Each subproblem
is again relaxed to a linear problem and its solution is computed. If the objective value
of the LP relaxation is no better than the best LP solution obtained so far then no
further branching is implemented. Otherwise an integer variable with a fractional value
is chosen and the procedure is repeated until each integer variable assumes an integer
value.

As the size of the search tree grows exponentially over time the performance of the algorithm
lies on its ability to early identify nodes that will not yield any improvement on the value of the
objective function of the LP formulation. To achieve this, commercial solvers like IBM ILOG
CPLEX, Gurobi etc use a variant of the Branch and Bound method called Branch and Cut.
This method differs from Branch and Bound as the LP relaxation of each node of the search
tree could be solved more than once after adding an extra set of inequality constraints called
cuts. These cuts are satisfied by any solution with integer variables taking integer values but
might be violated by solutions with the corresponding variables assuming fractional values.
Therefore, by adding these constraints we aim at obtaining a different solution of the LP
relaxation with less fractional integer variables.

An example of the Branch and Cut method is shown in Figure 2-5 for a simple maximization
integer program with two variables. The grey area represents the convex hull of the set of the
integer solutions. This set is the smallest set including all possible solutions of the integer
problem. Initially, the problem is relaxed to a LP problem and the optimal solution is found
to be the upper right corner of the polygon area. After that the LP relaxation is solved once
more after adding 2 extra constraints (cuts) shown in green. These constraints restrict further
the convex hull of the problem resulting in a new polygon area with an integer, feasible point
on its boundaries. This point is the closest among all candidates to the LP optimum point
thus the optimum of the integer program.

x1

x2

• • •

• • • •

• • • •

• • • •

• • •

Objective

LP optimum

IP optimum

Cutting
Planes

Figure 2-5: Example of Branch and Cut Method on an integer maximization problem with two
variables [1]

Acknowledging the performance improvement the addition of cutting planes to Branch and
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2-3 Motivation for a New Problem Formulation 21

Bound has led to ([42], [43]), the operational research community has paid much attention
on the design of different sets of inequality constraints (cuts). For a detailed study on the
available cuts the reader may resort in [44].

Despite the increased performance of the Branch and Cut method, the formulation of the
MILP problem still plays a critical role on the computational time required for finding the
optimal solution. More specifically, the fast convergence of the algorithm depends on how
close is the feasible set of the LP relaxation to the convex hull of the solution space of
the MILP problem. In case these sets are identical the solution of the MILP and the LP
problem is identical. A MILP formulation with this property is called a tight formulation.
However, defining the convex hull of a MILP problem in practice requires a great number of
cuts and computational effort making it more appealing to solve the original MILP problem.
Therefore, experts aim at designing a formulation that closely approximates the convex hull
while keeping the computational time required for the solution of the problem at a reasonable
level.

An example of a less-tight formulation is problem (2-9). Even when a small grid of 3 × 3
cells is considered with 2 agents employed for the task the time required for the problem to
converge is more than 1000 sec. Although the solution with the optimal objective value is
often found at a relatively short amount of time the solver requires much time to exhaustively
check every possible solution before discarding them for not improving the objective. To
resolve this problem authors of [45] suggest experts to include a set of cuts in the problem
before solving it. These cuts as aim at reducing the solution area of the LP relaxation of each
node in the search tree so as to better approximate the convex hull of the solution space of
the original problem. Furthermore, they can simultaneously activate more built-in the solver
cuts for further strengthening the LP relaxations and providing better LP objective values.

Although in many problems introducing appropriate cuts may improve the computational
time of the problem, in our case defining such cuts is not trivial. This is generally a result
of the freedom agents have on deciding the order of the cells to be visited over the planning
horizon. More specifically, in (2-9) agents are able to either stay at a cell (e.g for turning)
or move to an adjacent so as the coverage level of each cell is always lower bounded by Z

¯
.

Contrary to other MILP methods agents do not need to wait a number of steps to visit a
cell (e.g as in vehicle routing problems with time windows [46]) nor need to visit or return
at the end of the horizon at a desired place (e.g at their depot [47]). This provides them the
freedom to visit cells at any admissible order as long as the motion constraints are satisfied
without paying attention on their final destination. As the goal is to maximize the total
coverage level of the area the agents strive to keep a balance between visiting cells with high
decay rates the earliest possible and keeping the coverage level of the other cells higher than Z

¯
.

These objectives could be satisfied by having agents following several different combinations of
candidate paths. Therefore, the solver needs to exhaustively check every possible combination
of paths before finding the optimal.

Aiming at maintaining a lower bound on the coverage of each cell, an expert could consider
adding the following cuts:

tw+1∑
k=1

∑
r∈K

4w∑
q=4(w−1)+1

δrq(k) ≥ 1, w ∈ I (2-10)
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∑
r∈K

4w∑
q=4(w−1)+1

δrq(t)−
t+tw+1∑
k=t+1

∑
r∈K

4w∑
q=4(w−1)+1

δrq(k) ≤ 0, w ∈ I, t ∈ Tw (2-11)

where Tw =
{
t ∈ [1, N ] ∩ Z | t+ tw + 1 ≤ N

}
Here (2-10) guarantees that cell w will be visited at most after tw steps while the second
constraint makes sure that w will be visited at most after tw steps from the time it was
covered. Although these cuts might improve the computational time of the problem, they are
only valid when tw ≤ N−1, w ∈ I. Then, for given decay factors dw and desired coverage level
Z
¯
increasing the reset value Z̄ forces every tw to exceed N − 1. This removes the necessity of

revisiting the cells in the area over the finite planning horizon providing agents more freedom
on choosing their paths. Based on that finding an intuitive constraint set approximating the
convex hull of the problem is found to be relatively complex and strongly dependent on the
choice of the parameters of the problem. For this reason instead of improving the formulation
(2-9) we propose a different problem formulation presented in the following section.

2-4 Problem Formulation II

Aiming at reducing the computational time of the problem a new formulation of the persistent
coverage task is introduced. The novelty of this method lies on the following two factors:

• the definition of the binary variables related to the agents’ poses

• the definition of the coverage level of the cells using a set of inequality constraints,
known in operational research community as big-M constraints

Here a set of binary variables xkqq′ is introduced with each variable defining whether a transi-
tion from pose q ∈ V to q′ ∈ V at time step k is active or not as follows:

xkqq′ =
{

1, if at time step k ∃ r ∈ K performing a transition from pose q to q′

0, otherwise

where (q, q′) ∈ E, k ∈ {1, . . . , N}.

Contrary to the previous formulation here the binary variables are not explicitly defined for
every agent but a single set of variables may describe the state transition of all agents in the
team. This is possible for two reasons: 1) agents start from different cells and 2) each cell
can host at most one agent per time step. Due to the latter a transition to a pose q′ ∈ V at
time step k is allowed only for a single agent. Therefore, when the complete pose transition
history over the horizon is known starting from the final pose of an agent and propagating
back in time we are in position to find its initial pose and thus identify its index.

Considering the binary variables xkqq′ we are in position to define a new set of binary variables
µkw as follows:

µkw =
∑

(q,q′)∈Vw

∑
(s,s′)∈Vw\V ′

w

xkqq′ xk+1
ss′ (2-12)

where Vw=
{
(q, q′) ∈ E : q ∈ V, q′ = 4(w − 1) + 1, . . . , 4w

}
and V ′w=

{
(q, q′) ∈ E :

q = 4(w − 1) + 1, . . . , 4w, q′ = 4(w − 1) + 1, . . . , 4w
}
. These variables provide information
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2-4 Problem Formulation II 23

on whether a cell w is visited by different agents at consecutive time steps k, k + 1 or not.
Definition (2-12) is quadratic on the variables xkqq′ . For this reason a set of linear inequalities
is introduced so as when satisfied the variables µkw take the same values as in (2-12). These
inequalities are defined as follows:

µkw −
∑

(q,q′)∈Vw

xkqq′ ≤ 0

µkw −
∑

(s,s′)∈Vw\V ′
w

xk+1
ss′ ≤ 0

∑
(q,q′)∈Vw

xkqq′ +
∑

(s,s′)∈Vw\V ′
w

xk+1
ss′ − µkw ≤ 1

∀w ∈ I, k ∈ {1, . . . , N}.

In addition to the binary variables xkqq′ a different method for defining the coverage level
of each cell is introduced. Here the coverage levels Z(w, k) are included as variables of the
problem. A set of linear inequalities is, then, introduced that aims at defining Z(w, k) with
respect to Z(w, k−1) and the current poses of the agents rather than the agents’ pose history
(as in (2-9)). To achieve this a popular type of inequalities is used called big-M constraints.
These constraints are usually introduced to limit the value of some continuous variables based
on the value of a binary variable. These constraints have generally the following form:∑

i

xi −My ≤ 0

where xi are continuous variables, y is binary and M is a positive, large constant chosen in a
way that

∑
i xi ≤M is always satisfied for any value of xi when the binary variable y = 1.

Using these constraints we will try to define the value of Z(w, k) based on whether an agent
visited w at time step k or not. This is achieved by introducing the following constraints:

−Z(w, k) + Z̄
∑

(q,q′)∈Vw

xkqq′ ≤ 0 (2-13)

Z(w, k)− dw Z(w, k − 1)− Z̄
∑

(q,q′)∈Vw

xkqq′ ≤ 0 (2-14)

Z(w, k)− dw Z(w, k − 1)− (1− dmax) Z̄
∑

(q,q′)∈Vw

xkqq′ ≥ 0 (2-15)

Z(w, k) ≤ Z̄ (2-16)

w ∈ I, k ∈ {1, . . . , N} and dmax = maxw∈I dw.

If
∑

(q,q′)∈Vw x
k
qq′ = 1 then due to (2-13), (2-16) the coverage level Z(w, k) will be equal to Z̄

otherwise constraints (2-14), (2-15) guarantee that Z(w, k) = dw Z(w, k − 1).

Considering the new variable vector x̄T =
[
bT zT µT

]T
with:

bT =
[
x1

11 x1
12 . . . x1

4nw 4nw x2
11 . . . x2

4nw 4nw . . . xN4nw 4nw

]T
zT =

[
Z(1, 1) Z(2, 1) . . . Z(nw, 1) Z(1, 2) . . . Z(nw, N)

]T
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µT =
[
µ1

1 µ1
2 . . . µ1

nw µ2
1 . . . µ2

nw . . . µN−1
nw

]T
and the new objective function J ′(x̄) defined as :

J ′(x̄) =
N∑
k=1

∑
w∈I

Z(x̄, w, k)− β
N−1∑
k=1

∑
w∈I

µkw

where β is a positive weight expressing the importance of penalizing cell coverage at consec-
utive time steps we may introduce the new problem formulation as follows:

max
x̄

J ′(x̄) (2-17)

subject to: ∑
q∈V

∑
q′∈V

xkqq′ = nr

∀k ∈ {1, . . . , N} (2-17a)

∑
(q,q′)∈Vw

xkqq′ ≤ 1

∀w ∈ I, ∀k ∈ {1, . . . , N} (2-17b)

xkqq′ −
∑

(q′,q′′)∈E
xk+1
q′q′′ ≤ 0

{q, q′ ∈ V : (q, q′) ∈ E}, ∀k ∈ {1, . . . , N − 1} (2-17c)

−Z(w, k) + Z̄
∑

(q,q′)∈Vw

xkqq′ ≤ 0

∀w ∈ I, ∀k ∈ {1, . . . , N} (2-17d)

Z(w, k)− dw Z(w, k − 1)− Z̄
∑

(q,q′)∈Vw

xkqq′ ≤ 0

∀w ∈ I, ∀k ∈ {1, . . . , N} (2-17e)

Z(w, k)− dw Z(w, k − 1)− (1− dmax) Z̄
∑

(q,q′)∈Vw

xkqq′ ≥ 0

∀w ∈ I, ∀k ∈ {1, . . . , N} (2-17f)

Z(w, k) ≤ Z̄
∀w ∈ I, ∀k ∈ {1, . . . , N} (2-17g)

Z(w, k) ≥ Z
¯
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∀w ∈ I, ∀k ∈ {1, . . . , N} (2-17h)

µkw −
∑

(q,q′)∈Vw

xkqq′ ≤ 0

∀w ∈ I, k ∈ {1, . . . , N − 1} (2-17i)

µkw −
∑

(s,s′)∈Vw\V ′
w

xk+1
ss′ ≤ 0

∀w ∈ I, k ∈{1, . . . , N − 1} (2-17j)

∑
(q,q′)∈Vw

xkqq′ +
∑

(s,s′)∈Vw\V ′
w

xk+1
ss′ − µkw ≤ 1

∀w ∈ I, k ∈ {1, . . . , N − 1} (2-17k)

∑
(qr,q)∈E

x1
qrq = 1

∀r ∈ K (2-17l)

Z(w, 0) = Z̄

∀w ∈ I (2-17m)

xkqq′ ∈ {0, 1}
∀(q, q′) ∈ E, ∀k ∈ {1, . . . , N} (2-17n)

µkw ∈ {0, 1}
∀w ∈ I, ∀k ∈ {1, . . . , N − 1} (2-17o)

Constraint (2-17a) guarantees that only one pose transition per agent is allowed at each time
step while (2-17b) makes sure that each cell hosts at most one agent per time step. Equation
(2-17c) limits the choice of the pose for the next time step so as the transition from the current
poses to be admissible. Constraints (2-17d)-(2-17g) define the coverage level values for each
cell while 2-17h and (2-17i)-(2-17k) guarantee the lower bound of the coverage level and define
the values of the binary variables µkw respectively. Constraint (2-17l) defines the admissible
pose transition for the first time step when the initial pose of each agent r is expressed by
node qr ∈ V of graph G. Finally, constraint (2-17m) defines the initial coverage level of each
cell while (2-17n)-(2-17o) guarantee that xkqq′ , µkw are binary.

In Table 2-1 a comparison of the proposed formulations is made in terms of the number of
binary and continuous variables introduced in each problem. While the number of continuous
variables associated to the coverage level of the cells is the same for both formulations the
number of binary variables significantly differs. This difference lies on the fact that the
variables xkqq′ of formulation II associated to the agents’ moves are independent of the number
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of agents. The same holds for the binary variables µkw required for penalizing subsequent
coverage of the same cell by different agents.

On first sight the number of binary variables(BV) of formulation II is higher than the BV of
formulation I. However, in practice this is true only when a small team of agents is considered
(nr ≤ 3). As the computational time of MILP problems is generally dependent on the number
of binary variables of the problem we expect formulation II to be more efficient when a large
team of agents is employed for the task.

Formulation # BV for states # BV for penalty # CV # constraints
I 4nrnwN nrnw(N − 1) nwN < nr(N + 2) + (8nr + 5)nwN
II |E| N nw(N − 1) nwN N + nr − 3nw + (10nw + |E|)N

Table 2-1: Number(#) of Binary Variables(BV), Continuous Variables(CV) and constraints
introduced in the proposed formulations. |E| is the cardinality of the set of edges E of graph G
and is equal to 16nw − 2(C + L).

2-5 Experimental Efficiency Evaluation

In this section the performance of each optimization problem is evaluated in terms of the
computational time required for each problem to reach its optimum. A grid of 6 × 6 cells
is considered and 4 agents are employed for the task. Then, given different combinations
of cell ages tw the computational times required for each case to converge to the optimal
value are compared when formulations (2-9), (2-17) are considered. From now on we will
refer to the persistent coverage problem discussed so far as the Dense Persistent Coverage
Problem(DPCP).

To further examine how efficient the proposed formulations are a new persistent coverage
problem is introduced, called Sparse Persistent Coverage Problem(SPCP). In this problem the
goal is 1) to maximize the coverage level of a subset of cells called Cells of Interest(COI) and
2) minimize coverage of cells at subsequent time steps by different agents while 3) maintaining
the coverage level of every COI above Z

¯
. Here the Cells of Interest are defined as the cells

whose decay factors are lower than 0.85, thus dw ≤ 0.85. Let the set of COIs be expressed by
Ic. Then, the SPCP problem can be formulated in a similar way to (2-9), (2-17). However,
in this problem the coverage level constraints and the part of the objective function related
to the coverage levels are defined only for the cells of Ic.

2-5-1 Preliminaries

Here a known, square area Q is considered with area size 24 × 24 m2. A team of 4 agents
is employed for its coverage with each agent equipped with sensors of finite, known sensing
range. The area is decomposed into a grid of nw square cells. As mentioned in Section 2-1-1
the number of cells nw and the area size of the cells should be chosen such that: 1) each cell
is encompassed by the sensing area of the agents and 2) every agent senses all points of at
most 1 cell per time step. Here a grid of 6× 6 cells is considered with cells of size 16 m2.
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2-5 Experimental Efficiency Evaluation 27

By problem definition every cell can host only one agent per time step. For this reason, agents
are initially placed at different cells (depots) on the right side of the area with their headings
chosen to point towards agent-free cells in the grid. The exact initial poses of the agents are
shown in Figure 2-7.

Let t ∈ Rm>0 be a vector with elements the cell ages tw, w ∈ I. Given a sample (t1, . . . , tns)
of size ns = 10 we will evaluate the amount of time required for the optimization problem I
and II to converge to the optimal solution. Since the number and initial pose of the agents
is known tl should be chosen with elements tlw large enough for an agent to be able to reach
w from its initial position at most after tlw + 1 steps. Otherwise, the coverage level of w will
drop below Z

¯
and the problem will become infeasible. In that case it is advised to re-consider

the values of tl and ensure that a path to any cell w exists with traversal time equal at most
to tlw + 1 for any agent r ∈ K.

Admittedly, when tlw are known there exist several combinations of Z̄, Z
¯
, dw so as (2-2) is

satisfied. Here we consider Z̄, Z
¯
known and equal to 300 and 20 respectively. Then, the goal

is to assign to each tl, l ∈ {1, . . . , ns} a vector dl ∈ (0, 1)nw with elements the coverage decay
factors dw, w ∈ I such that:

tlw ≥
⌊ lnZ

¯
− ln Z̄

ln dlw

⌋
, w ∈ I

where tlw, dlw are the age and decay factor of cell w corresponding to the lth sample.

In Section 2-1-3 the choice of dw was discussed. There it was mentioned that a low value of dw
forces agents to visit w more frequently. Therefore, dw should be chosen so as the following
always holds:

tw1 ≤ tw2 ⇔ dw1 ≤ dw2

for any w1, w2 ∈ I. In addition to this constraint here dlw are chosen so as d̄l ≥ 0.85 where
d̄l is the mean value of vector dl, l ∈ {1, . . . , ns}.

Figure 2-6: Example of Worst Case
Coverage Time Steps tw

Figure 2-7: Coverage Decay Factors
corresponding to tw

An example of the maximum number of time steps tw spent before a cell w is to be covered
is shown in Figure 2-6. Here, most of the cells need to be visited at most after 5 to 120 time
steps (cells in dark blue) and only a small number requires coverage after 180 steps. A clearer
indication on the cells that need more frequent coverage is given in Figure 2-7. Here the cells
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with low tw values are represented in blue and light green and are assigned to decay factors
ranging from 0.55 to 0.8. In this example the lowest decay factor value 0.55 is assigned to
cells with center coordinates (18, 14), (14, 22) as the time step before which they should be
visited is equal to 5 steps.

2-5-2 Computational Results

In this section the computational results are presented for the DPCP and SPCP problem
when expressed by the proposed formulations of Sections 2-2 and 2-4. The tests are run
at Intel Xeon W-2145 3.70GHz CPU, 31GB RAM, Linux 4-4-0 64-bit operating system,
MathWorks MATLAB 2018b 64-bit and the MILP programs are solved using the commercial
solver GUROBI 8.0.1 64-bit for MATLAB.

In general MILP problems are known for their long convergence times. To avoid excessive
computational effort per case a time-limit is set on GUROBI equal to 3 hours. Therefore,
the optimization problem will terminate either when the optimal value is found or when the
time-limit is reached. In the latter case the solver will return the best solution obtained until
the time-limit is reached.

In Figure 2-8a the computational time required for the DPCP to converge to the optimal
solution is presented when DPCP is expressed by formulation I and II. Over the total number
of cases only the 60% converge to the optimal solution when both formulations are considered.
For these cases formulation II outperforms I as only 300 sec are required on average for the
solver to find the optimum compared to 5000 sec of formulation I. For the rest of the cases
and when problem (2-9) is considered the optimal solution is not found within the time limit.
However, when formulation II is considered for the same cases the optimal paths are found
within 440 sec on average as shown in Figure 2-8b.

The superiority of formulation II is also evident from the computational results related to
the SPCP problem. In this problem the optimal solution is found only for the 50% of the
cases with both formulations. Here the difference on the computational time is even bigger
with formulation II requiring only 60 sec to be solved compared to 5500 sec of formulation I
(Figure 2-8c). For the rest 50% of the cases the solver needs more than 10800 sec to find the
optimal solution (formulation I) while for formulation II the time is limited to 180 sec. Based
on the above, we can conclude that formulation II performs significantly better in a variety
of cases. Therefore, from now on and unless else stated this formulation will be used for our
computations.

2-6 Conclusions

In this chapter the basic elements of the problem are introduced. A grid decomposition of
the area is considered and a team of agents is employed for the task. At each time step
agents may perform one of the following actions: 1) stay at place with the current heading,
2) turn at place by 90◦ or 3) move to an adjacent cell on the direction of their heading.
Each cell of the grid is assigned to a value, called coverage level that decreases over time and
resets to a constant value Z̄ only when the cell is covered by an agent. Then, the goal of the
task is to coordinate agents’ actions so as each cell is completely covered with its coverage
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(a) DPCP:Cases converged to the Optimum (b) DPCP:Performance of F-II when F-I reaches the
Time Limit

(c) SPCP:Cases converged to the Optimum (d) SPCP:Performance of F-II when F-I reaches the
Time Limit

Figure 2-8: Evaluating MILP Efficiency in terms of Computational Time. Here F-I stands for
Formulation I and F-II for Formulation II

level maintained above a desired level Z
¯
. To achieve this a Mixed Integer Linear problem is

introduced aiming at: 1) maximizing the total coverage level of the area over a finite planning
horizon and 2) penalizing agents’ desire to visit a cell covered at the previous time step by a
peer.

Two problem formulations are introduced and their advantages and limitations are discussed.
While formulation I can be characterized as a straightforward formulation of the problem in
practice is found to be too computational intensive even for small-sized problems. To resolve
this problem, we considered adding a set of inequality constraints, called cuts so as the solution
space of the new problem could better approximate the convex hull of the solution space of
the original problem. This, however, is found to be non-trivial as agents do not have any
other restriction on the choice of the cells they have to visit than maintaining the coverage
level of the cells above Z

¯
. For this reason a new formulation of the problem is proposed. In

this formulation the number of binary variables defining the agents’ poses is independent on
the team size. Therefore, as the number of agents increases the number of binary variables
remains the same. By contrast, in formulation I this number is proportional to the number
of agents. Therefore, we expect the first formulation to be less efficient.

This is verified by the computational results presented in Section 2-5-2. Two persistent
coverage tasks are defined, namely the Dense and the Sparse that differ on the number of
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cells whose coverage level must be lower bounded. In both tasks the results show superiority
of formulation II over I. Therefore, from now on and unless else stated this formulation will
be considered for our computations.
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Chapter 3

Centralized Implementation

In this Chapter the performance of the DPCP problem is evaluated in terms of the coverage
level of the area and the computational time for convergence. Here, the problem is solved
in a centralized manner. A single agent is aware of the global position and coverage level
information and responsible for planning the actions of the team. Under this framework
three main experiments are conducted. In the first experiment the coverage performance
is tested when different combinations of cell ages tw are considered. Each combination of
tw, w ∈ I constitutes a case. For each case the number of cells, the planning horizon, the
team size and the initial poses of the agents are known and pre-defined. As the computational
time required for finding the optimal value of the optimization problem corresponding to each
case is long, in the second experiment the coverage level of the area is evaluated when agents
follow paths found as the first feasible solution of the problem. The chapter concludes with the
third experiment in which given a finite number of cases we examine how the computational
time to the optimal solution scales with respect to the parameters of the problem. Here we
consider changes of one of the following parameters: 1) the team size 2) the optimization
horizon and 3) the grid resolution while the other parameters of the problem stay the same.

3-1 Optimal Paths: Coverage Performance Evaluation

In this section the performance of the persistent coverage task is tested in terms of the
coverage level provided in the area. Here the area Q introduced in Chapter 2 is considered
and decomposed into a 6 × 6 grid. A team of 4 agents is employed for the task with agents
equipped with sensors/actuators able to cover all points inside a cell. Their initial poses
(positions and headings) are shown in Figure 3-1 .

In this experiment the cell agents tw are given specifying the longest time interval between 2
subsequent visits at a cell. Let t ∈ Rnw be a vector with elements the ages tw ∈ I with nw
the cardinality of I. Here a sample of vectors tl, l ∈ {1, . . . , 20} is considered with each tl a
vector with elements tlw, w ∈ I. As in Chapter 2 for each vector tl a vector dl ∈ (0, 1)nw is
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r1

r2

r3

r4

Figure 3-1: Initial poses of the agents

considered with elements dlw ∈ (0, 1) such that:

tlw1 ≤ t
l
w2 ⇔ dlw1 ≤ d

l
w2 , w1, w2 ∈ I, l ∈ {1, . . . , 20}

and d̄l ≥ 0.85 where d̄l is the mean value of vector dl, l ∈ {1, . . . , 20}.

The desired level Z
¯
is arbitrarily chosen and set equal to 20 (Z

¯
= 20). Moreover, the coverage

level reset value Z̄ is set equal to 300. This value has been found experimentally to be the
minimum value guaranteeing feasibility of the optimization problem associated to each tl
while the following is always true:

tlw ≥
⌊ lnZ

¯
− ln Z̄

ln dlw

⌋
, w ∈ I, i ∈ {1, . . . , 20}

Here formulation II is used as proved to be the most efficient among the proposed. Then,
paths are designed over an optimization horizon of N = 10 time steps.

In Figure 3-2 an example of the decay factors considered in a case scenario is presented. Cells
with high decay rates are shown in light green and blue. Here the cells requiring more frequent
coverage lie on the left side of the area and are assigned to decay factors ranging from 0.7
to 0.85. Therefore, we expect agents to move first towards these cells so as to maintain the
desired lower level of coverage.

As shown in Figure 3-3 our intuition on the agents’ moves matches the actual paths designed
by the planner. Initially, agents r3, r4 that are the closest agents to cells with decay factors
0.7-0.8 start moving towards them while agent r2 moves towards the upper right corner where
two cells exist with decay rate of 0.85. By time step k = 4 cells with the highest decay rate
(dw = 0.7) get covered and agents r3, r4 continue moving linearly with respect to the x-axis
so as to cover the rest "blue" cells. The upper, right corner gets covered a little later (by
k = 7) and r2 starts moving to the right side of the grid where most of the COIs are located.
Meanwhile, agent r1 having covered "less-important" cells on its way to the upper part of
the area starts covering cells of high decay rate previously covered by r4. The coverage level
of these cells (with center coordinates (2,14) to (14,14) along x-axis) drops significantly fast.
Therefore, they need to be visited at the earliest possible in order for the agents to ensure
not only task feasibility but also a high amount of coverage in the area.
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By the end of the planning horizon agents cover all COIs (cells whose decay rate is at most
0.85) at least once. Although the coverage level of the majority of these cells is sufficient
at the end of the horizon there are some cells whose coverage level is nearly equal to Z

¯
.

These cells have been visited only once at the beginning of the horizon and not again since
then. Due to their high decay rate their coverage level decreased significantly fast. However,
as shown in Figure 3-3k all agents are far away with the closest agent requiring at least
5 time steps to reach them. For this reason, if it was to continue the persistent coverage
task with initial coverage level values and agent poses as the ones shown in Figure 3-3k the
corresponding optimization problem would become infeasible. This problem, the feasibility
problem of the persistent coverage task is discussed in the next Chapter and infeasibility is
avoided by introducing a terminal constraint set in the optimization problem.

Figure 3-2: Coverage Decay Factors of a Case Scenario in a 6× 6 Grid

In Figure 3-4 the Normalized Mean Coverage Level (NMCL) per cell and time step is shown
for the 20 cases considered at the beginning of the section. Here, the average Coverage Level
of each cell is found to be between 64 and 71% of its maximum value Z̄, thus significantly
higher than Z

¯
(6.6% of Z̄). Although the planning horizon is relatively short we observe a

significant decrease on the Coverage Level compared to the initial value Z̄. This is generally
related to the number of COIs of each case and the corresponding decay factors. When the
number of COIs is large agents need to move along the area aiming at covering them all.
Depending on the horizon length, however, it is highly likely that some of these cells are
visited only once or not at all (e.g when dw is close to 0.85). Even if they get covered, by the
time agents leave them their coverage level starts dropping again sharply decreasing the total
coverage level value. The decrease is even steeper when high decay rates are considered.

These conclusions are verified by the statistical data of Table 3-1. Here the Normalized Mean
Coverage Level values are included in 4 bins, the same shown in Figure 3-4. Then, 2 basic
elements are presented: 1) the number of COIs averaged over the number of cases associated
to each bin (rounded on the first decimal) and 2) the corresponding coverage decay factors
of the COIs averaged over the number of COIs of a case and the number of cases associated
to each bin. Here the lowest NMCL values are related to the largest number of COIs (19
cells on average). In the majority of cases a large number of COIs (17 cells) is considered
in conjunction with a high average decay rate (equal to 0.7762) resulting in a relatively low
NMCL value on the interval [0.66,0.68]. The highest NMCL values as expected are found
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when a small number of COIs is considered.

NMCL [0.64,0.66] [0.66,0.68] [0.68,0.7] [0.7,0.72]
Average Number of COIs 19 17 16 13

Average decay factors of COIs 0.7819 0.7762 0.7763 0.7769

Table 3-1: Relation of NMCL to the Number of COIs and the corresponding Decay Factors

(a) k = 0 (b) k = 1 (c) k = 2

(d) k = 3 (e) k = 4 (f) k = 5

(g) k = 6 (h) k = 7 (i) k = 8

(j) k = 9 (k) k = 10

Figure 3-3: Snapshots of the Coverage Level Map when a team of 4 agents is employed for an
Optimization Horizon N = 10 steps
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Figure 3-4: Normalized Mean Coverage Level over the Horizon and Number of Cells

3-2 Optimal and First Feasible Paths: A Comparison

So far the performance of the persistent coverage task was evaluated in terms of the coverage
level of the cells over a number of case scenarios. Agents’ paths were found as a solution to
the optimization problem (2-17). This formulation of the problem was chosen as found to
be more efficient in terms of computational time when compared to formulation I. Despite
the computational time improvement the time required for the problem to converge to the
optimal solution is still found to be significantly high, thus prohibitive for online planning.

Addressing this problem, in this section we propose using the first feasible solution of the
optimization problem (2-17). This choice is motivated by the need of minimizing the compu-
tational time of the problem for the agents to be able to perform the computations on-board
at a minimum cost. In Figure 3-5 the quality of the first feasible and optimal paths is eval-
uated in terms of: 1) the normalized coverage level (NMCL) averaged over the number of
cells and planning steps and 2) the computational time. The different combinations of the
coverage decay factors considered here were introduced in Section 3-1. The desired level of
coverage Z

¯
is set equal to 20 and the problem is solved over an optimization horizon of 10

time steps. The initial poses of the agents are shown in Figure 3-1.

In this Section two different reset values are considered equal to 300 and 800. These values
are chosen so as the age at the COI with the highest decay rate is always less than the
optimization horizon length (minw∈I tw ≤ N , where tw is defined by (2-2)). When Z̄ = 300
this value is equal to 7 time steps. Therefore, agents need to visit the corresponding cell at
least once over the horizon so as to maintain its coverage level above Z

¯
. When Z̄ = 800 the

age increases to 9 time steps providing agents more flexibility on the time at which they may
visit the cell. In addition, the constraints forcing agents to maintain the coverage level of
each cell above Z

¯
are redundant for the majority of the planning steps. This increases the

computational time of the problem as the solver needs to check more combinations of paths
in order to identify the one maximizing the total coverage level of the area. This is verified
by Figures 3-5b and 3-5d. The time required for finding the optimal solution when Z̄ = 800
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is on average equal to 2000 sec contrary to 500 sec when Z̄ = 300.

While the time to the optimal solution increases as the reset value increases, when the time
for finding the first feasible solution is considered a different relation to the value of Z̄ is
observed. For Z̄ = 300 the solver needs 3 sec to find the first feasible solution contrary to 20
msec when Z̄ = 800. This time difference is related to the number of active constraints of the
problem. When a high reset value is considered the constraints forcing a lower bound on the
coverage level of every cell are almost always satisfied for the paths found as a solution to the
problem without them. Hence, the solution spaces of the problems with and without the lower
bound constraints are almost identical. However, as the reset value decreases the solution
space of the problem with the lower bound constraints becomes smaller since some solutions
of the problem without these constraints are excluded for not satisfying them. Therefore, the
solver needs more time for checking candidate solutions before finding a feasible one.

(a) NMCL per cell and time step for Z̄ = 300 (b) Computational Time for Z̄ = 300

(c) NMCL per cell and time step for Z̄ = 800 (d) Computational Time for Z̄ = 800

Figure 3-5: First Feasible versus Optimal Paths for Different Reset Values

Despite the increased computational time when Z̄ = 300 the quality of the first feasible paths
in terms of coverage level is significantly higher compared to the case of Z̄ = 800. As shown in
Figure 3-5a when Z̄ = 300 the average NMCL value associated to the first feasible solution is
almost 2% less than the corresponding value of the optimal solution. This difference rises to
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10% (Figure 3-5c) when the reset value is increased. Based on the above we can conclude that
the profitability of using the first feasible paths becomes lower as the minimum tw approaches
the optimization horizon length. Therefore, as will be discussed in Chapter 5 another solution
of the problem may be considered that maintains a balance between the coverage level loss and
computational time so as the persistent coverage task is always feasible over the simulation
horizon.

3-3 Problem Scalability

In previous Sections the path planning problem was evaluated for different combinations of
cell ages tw, w ∈ I. There the number of agents and cells in addition to the planning horizon
length were randomly chosen. In this Section we consider the same coverage decay factors
introduced in Section 3-1 for each combination of tw, w ∈ I and study how the problem scales
with the size of team, the length of the optimization horizon and the grid resolution.

3-3-1 Number of Agents

Initially, the scalability of the problem is examined with respect to the number of agents
employed for the task. Here, we consider a team of 3,4 and 5 agents with initial poses shown
in Figure 3-6. The 6× 6 grid introduced in Section 3-1 is considered and the goal of the task
is to design agents’ paths so as the coverage level of each cell is maintained at least equal to
Z
¯

= 20. The paths are designed over a planning horizon of 10 steps with the reset value Z̄
equal to 300.

Here 20 different combinations of coverage decay factors are considered. As the MILP prob-
lems often suffer from long computational times throughout this Section a time limit is set
equal to 5 hours. Then, the optimization problem will terminate either when the optimal
solution is found or when the time limit is reached. In the latter case, the best solution found
is returned.

Figure 3-6: Initial Poses of the agents when a team of 3, 4 and 5 agents is considered.

In Figure 3-7 the computational time required for finding the optimal solution is presented for
different team sizes. Here the optimal solution is found within the pre-defined time interval
only for the 80% of the cases. In the rest of the cases the time limit is reached before the
optimal paths are found when a team of 5 agents is employed for the task. As shown in the
Figure the time to the optimal solution increases more than linear with the number of agents.
When a small team of 3 agents is considered the optimal paths are found on average within 8
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sec. As the team becomes bigger more cells are covered simultaneously per time step. Agents
are able to visit more cells will low decay rates or may reach cells with high decay rate faster.
Therefore, the number of feasible paths and their combinations increases resulting in higher
computational time (300 and 4100 sec when nr = 4 and nr = 5 respectively).

Figure 3-7: Computational Time to Convergence for Different Team Sizes

3-3-2 Optimization Horizon Length

In the second experiment we examine how the computational time increases with respect to
the planning horizon N . Here a team of 4 agents is employed for the task with initial positions
shown in Figure 3-1. The area is decomposed into a grid of 6×6 cells. As before the different
decay factors introduced in Section 3-1 are considered and the reset value Z̄ is set equal to
300. Moreover, the desired coverage level Z

¯
is set equal to 20.

The optimization problem (2-17) is solved for different planning horizon lengths equal to 7, 10
and 12 time steps. In this problem the number of binary variables defining the agents’ poses
is proportional to the planning horizon length. Therefore, we expect an increasing complexity
when longer planning horizons are considered.
This is verified in Figure 3-8. Here, the time to the optimal solution is shown for the cases
terminating within the time limit for any value of N (50% of the total). When N = 7 the
computational time is significantly low and equal to 7 sec. Within this time agents move
towards the reachable COIs to minimize coverage loss. As the horizon length increases more
COIs are becoming reachable by the agents. Therefore, the number of feasible paths and
their combinations increases steeply forcing the solver to spend more time to identify the best
possible solution (281 sec for N = 10 and 6100 sec for N = 12).

3-3-3 Grid Resolution

In the final experiment the computational complexity of the problem is examined with respect
to the number of cells in the grid. Here, the area of interest is decomposed into a grid of
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Figure 3-8: Computational Time to Convergence when Different Horizon Lengths are considered

4× 4, 6× 6 and 8× 8 cells. A team of 4 agents is employed for the task and their paths are
designed over a planning horizon of 10 steps. For every cell in each newly introduced grid we
consider every cell in the 6 × 6 grid with which their intersection is non-empty. Then, the
decay factor of this cell is defined as the minimum value among the decay factors of the cells
of the 6 × 6 grid found. An example is shown in Figure 3-9. Here the first cell of the 4 × 4
grid is considered and in light grey its intersection is shown with the cells of the 6 × 6 grid.
Then, its decay factor is defined as the minimum decay factor of the cells in the 6 × 6 grid
with index w ∈ {1, 2, 7, 8} and w defined as:

w = i1 + 6 (i2 − 1), i1, i2 ∈ {1, . . . , 6}

0 i1

i2

Figure 3-9: Example of how the decay factor dw is defined for a cell w in a 4× 4 grid based on
the decay factors of the 6× 6 grid

In this experiment the agents are initially placed on the right side of the area along the last
column of the grid. The desired level of coverage is set equal to Z

¯
= 20. Furthermore, the

reset value is set equal to Z̄ = 800. This value is chosen as the minimum value for which
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every optimization problem is solved within the time limit irrespective the choice of the grid
resolution.

Figure 3-10: Computational time spent until the Optimal Solution is found when different grid
resolutions are considered

In Figure 3-10 the computational time to the optimal solution is shown when a different
number of cells is considered. Here, the problem converges to the optimal solution faster
when the number of cells is larger(290 sec on average when nw = 64 contrary to 4800 when
nw = 16). When a high resolution grid is considered and due to the definition of the decay
factors the number of COIs increases. The coverage level of these cells decreases faster than
the others’. Therefore, agents’ priority is to visit these cells as soon as possible. When a
coarse resolution (4× 4) is considered agents are able to visit all cells within a small amount
of time steps (e.g 3 steps if agents move linearly towards the opposite side of the area). This
allows the agents to cover the area multiple times within the horizon and the question is how
agents should move across the area so as the total coverage level is maximized. Since no other
restriction related to the coverage level is considered rather than the lower bound constraint,
the solver is not able to early discard non-profitable solutions. Based on that we can conclude
that a coarser resolution may result in more frequent visits at the cells in the grid, however,
at the expense of high computational time. Therefore, a grid resolution should be chosen so
as a balance between the number of cells visited and the computational effort is generally
maintained.

3-4 Conclusions

In this Chapter the optimization problem (2-17) is considered and evaluated in terms of
coverage performance and computational effort. A 6× 6 grid is considered and the efficiency
of the problem is examined for a sample of 20 different combinations of decay factors. Initially,
4 agents are employed for the task and the coverage performance is evaluated when agents
follow the optimal paths. As shown agents maintain the average coverage level of the cells
over 64% of the maximum value, thus significantly higher to Z

¯
(6.6% of Z̄). However, this is
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achieved at the cost of computational effort. Aiming at finding a solution that maintains a
balance between coverage performance and computational time, we consider the first feasible
solution of the problem and evaluate its coverage quality for different combinations of cell
ages tw, w ∈ I. As the minimum tw increases the first feasible paths are found at negligible
time but their quality in terms of coverage level is considerably less than the corresponding
optimal(10% on average). Finally, the scalability of the problem is studied with respect
to the number of agents, the planning horizon and the number of cells. As expected the
computational complexity of the problem increases as the number of agents and planning
steps rises. However, when a high-resolution grid is considered the time to the optimal
solution drops significantly since agents move towards covering the increased (compared to
the 6× 6 grid) number of COIs in the area.
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Chapter 4

Persistent Coverage Task Feasibility

So far we studied the persistent coverage problem over a finite optimization horizon N . In
this problem the resulting paths were found as a solution to an optimization problem that
maximizes coverage for a finite number of steps without, however, taking into consideration
agents’ performance after N . Therefore, if we were to solve the optimization problem with
initial conditions the coverage level values and agents’ poses at time step N the new problem
could be easily found to be infeasible. In this Chapter the feasibility of the persistent coverage
task is studied and the recursive feasibility property of the optimization problem designed in
Chapter 2 is proven when a terminal constraint is introduced to the optimization problem.

Recursive feasibility has been extensively studied in literature for the design of Model Predic-
tive controllers (MPC) [48],[49]. There, given the system dynamics an optimization problem
is designed that takes into consideration input and state constraints of the system. The solu-
tion of that problem is a sequence of control inputs. From those only the first control input
is applied to the system and the optimization problem is solved again with initial condition
the new state of the system. The feasibility of the problem is guaranteed by constraining the
terminal state of the system to be inside a pre-defined terminal set. This set is designed to
be Control Invariant. Thus, given a terminal state there always exists an admissible input
steering the system to another terminal state. Then, given the optimal control sequence of
the problem solved at absolute time step i there always exists a control sequence for i + 1
satisfying the constraints of the problem. This control sequence is the shifted by one step
optimal sequence of step i augmented in the end by the input steering the terminal state
at i to another state in the terminal set. Since i is arbitrary this holds for any time step.
Therefore, the optimization problem is considered recursively feasible.

Drawing inspiration from MPC problems and especially from the work in [50], in this Chapter
we prove recursive feasibility of the problem when a time-variant terminal constraint set is
considered. Each set includes a proposed pose for each agent and the coverage level of the
cells as a result of the agents’ actions. Based on this set a small number of constraints is
added to the MILP problem so as the agents’ poses are identical to the poses of the set and
the coverage level of each cell is lower bounded by the corresponding value of the terminal set.
A finite terminal constraint set sequence is designed such that the union of the sets defines a

Master of Science Thesis Maria Charitidou



44 Persistent Coverage Task Feasibility

set of closed paths that when repeatedly followed by the agents the coverage level of the area
is bounded from below by Z

¯
. Therefore, given the terminal constraint set X and the optimal

solution of the problem at absolute time step i, there always exists a path for each agent such
that the problem at time step i+ 1 with terminal set the one following X in the sequence (or
the first set if the terminal set at i is the last in the sequence) is always feasible.

A detailed proof of the problem’s feasibility is presented in Section 4-1. Then, in Section 4-2
a two-step method is proposed for designing the set sequence. The Chapter ends with Section
4-3 summarizing the results of the chapter.

4-1 Recursive Feasibility

In this Section the terminal constraint set sequence is formally introduced and the recursive
feasibility property of the optimization problem of Chapter 2 is proved when the final poses
of the agents and coverage level of the cells become constrained.

To simplify notation we will first introduce a general representation of the optimization prob-
lem. Let zi(k)∈ [Z

¯
, Z̄]nw be a vector including the coverage level of every cell w ∈ I =

{1, . . . , nw} at time step k. Here i is the absolute time index while k takes values in {1, . . . , N}
with N the planning horizon of the problem. As discussed in Section 2-1-3 each element of
zi(k) is monotonically decreasing when the corresponding cell is not covered and resets to Z̄
when an agent visits it. Thus, Z̄ is its maximum value. Moreover, due to the task objective
the coverage level of each cell should be lower bounded by Z

¯
. Therefore, the coverage level

of each cell takes values in [Z
¯
, Z̄].

The evolution of zi(k) over time is expressed by a function F : [Z
¯
, Z̄]nw × U → [Z

¯
, Z̄]nw as:

zi(k) = F
(
zi(k − 1),ui(k)

)
where [Z

¯
, Z̄]nw stands for the product [Z

¯
, Z̄]× . . .× [Z

¯
, Z̄] and ui(k)∈ U is a vector containing

the pose of each agent at time step k expressed as a node in the graph G. Here U is a subset
of V nr with nr the number of agents containing all vectors ui(k) ∈ V nr such that:

1. Each agent has a unique pose in V

2. Each cell hosts at most one agent per k

The function F : [Z
¯
, Z̄]nw × U → [Z

¯
, Z̄]nw is defined as:

F
(
zi(k−1),ui(k)

)
=

d1(1− σ1(ui(k)) 0
. . .

0 dnw(1− σnw(ui(k))

 zi(k−1)+Z̄

 σ1(ui(k))
...

σnw(ui(k))


where dw ∈ (0, 1) is the coverage decay factor of cell w ∈ I, Z̄ the reset value of the coverage
level and σw : U → {0, 1} a function defined for every cell w as follows:

σw(ui(k)) =

1, ∃ r ∈ K :
⌈

uri (k)
4

⌉
= w

0, otherwise
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where uri (k) is the rth element of vector ui(k), thus the pose of agent r at time step k and⌈
uri (k)

4

⌉
is the index of the cell agent r is placed at (as defined in (2-5)).

Let H
(
ui(k − 1),ui(k)

)
be a function counting the number of agents covering cells at time

step k that were covered by other peers at time step k− 1. Then, the problem can be written
in a compact way as follows:

max
ui∈UN

1T

 zi(1)
...

zi(N)

− β 1T

 hi(1)
...

hi(N)

 (4-1)

subject to:

F
(
zi(k − 1),ui(k)

)
= zi(k)

k ∈ {1, . . . , N} (4-1a)
H
(
ui(k − 1),ui(k)

)
= hi(k)

k ∈ {1, . . . , N} (4-1b)(
ui(k − 1),ui(k)

)
∈ Enr

k ∈ {1, . . . , N} (4-1c)[
zi(N)
ui(N)

]
∈ Xf

i

(4-1d)
zi(0) = z0

i

(4-1e)
ui(0) = u0

i

(4-1f)
zi(k) ∈ [Z

¯
, Z̄]nw

k ∈ {1, . . . , N} (4-1g)
ui(k) ∈ U

k ∈ {1, . . . , Np} (4-1h)

Here ui =
[
ui(1) . . . ui(N)

]T
is the variable vector containing the agents’ poses over the

horizon and β > 0 is a positive weight expressing the importance of avoiding coverage at
subsequent time steps. Equation (4-1a) defines the coverage level dynamics and (4-1b) the
number of cells being covered at consecutive time steps by different agents. Equation (4-1c)
guarantees that for every agent the transition from the current to the future pose is admissible
over the graph G. Equation (2-17d) forces the final coverage level values and poses of the
agents to be inside a terminal constraint set Xf

i ⊂ [Z
¯
, Z̄]nw × U while (2-17e)-(2-17f) define

the initial conditions of the problem. Finally, (2-17g)-(2-17h) guarantee the coverage level
values and poses of the agents to be inside the allowable sets.
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For M ∈ N, M > 1 consider a sequence of sets
{
S0, . . . , SM−1

}
. Here M could be considered

as the number of steps required for the agents to cover every cell in the area and maintain
the coverage level of each cell above Z

¯
before they return back to their initial pose. Each set

Su could be defined as:

Sv =
{[

z
u

]
∈ [Z

¯
, Z̄]nw × U : z � zv, u = uv

}
, v = 0, . . .M − 1 (4-2)

with zu a vector including the coverage level of the cells at time step v when agents’ poses
are defined as elements of the vector uv. Vectors zv,uv are chosen such that the following
always hold: {

(uv,uv+1) ∈ Enr

zu+1 = F (zv,uu+1)
∀v ∈ {0, . . . ,M − 2} (4-3)

{
(uM−1,u0) ∈ Enr

z0 = F (zM−1,u0)
(4-4)

These constraints guarantee that the union of the sets in the sequence {Sv}Mv=0 describes a set
of closed paths and the evolution of the coverage level of the cells when agents follow these
paths. In (4-3) the first constraint guarantees that for every agent the transition from the
current to the future pose is admissible over the graph G and the second that the coverage
level of each cell takes values as defined in (2-1). Constraints of (4-3) are similar to the ones
introduced in (4-1) for the optimization problem we discussed so far. The difference on the
terminal paths lies in the extra constraints of (4-4). These constraints guarantee that the
paths are closed and that the coverage level of each cell satisfies (2-1). Therefore, if agents
follow these paths repeatedly the area would be completely covered and the coverage level
will always take values in the interval [Z

¯
, Z̄]. Based on that we can prove the following:

Lemma 1. Let the vectors
[

za
ua

]
∈ Sv, v ∈ {0, . . . ,M − 2},

[
zb
ub

]
∈ SM−1 and

[
zc
uc

]
,

[
zd
ud

]
∈

[Z
¯
, Z̄]nw × U be defined such that : uc = uv+1, ud = u0. If the following are true:

zc = F (za,uc) (4-5)
zd = F (zb,ud) (4-6)

then
[

zc
uc

]
∈ Sv+1 and

[
zd
ud

]
∈ S0.

Proof. From the definition of the terminal sets of equation (4-2)
[

zc
uc

]
∈ Sv+1 and

[
zd
ud

]
∈ S0

are true if and only if: zc � zv+1 and zd � z0. Let us first prove that zc � zv+1.

When agents’ poses are defined by the vector uv+1 nr cells are covered. The index of these
cells can be found using (2-5) by replacing q ∈ V with the elements of uv+1. Since these
cells are covered their coverage level resets to Z̄ due to (4-5). Therefore, due to the equality
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uc = uv+1 the elements of the vectors zc, zv+1 corresponding to the coverage level values of
these cells are identical and equal to Z̄.

Let z′c, z′a, z′v z′v+1 ∈ [Z
¯
, Z̄]nw−nr be the vectors with elements the coverage level values of

the cells that are not covered by the agents when the poses of the latter are found in uv+1. In
these vectors the coverage level values of the cells are placed in ascending order with respect
to the cell index. Then, from (4-5) we have that:

z′c = D z′a (4-7)

where D is a positive, diagonal matrix containing the coverage decay factors of the uncovered
cells placed in the matrix with the same order as the coverage level values of z′a.

Since
[

za
ua

]
∈ Sv we have that: za � zv and also z′a � z′v. Multiplying both sides with D and

based on (4-7) we have that:
z′c = D z′a � D z′v (4-8)

From (4-3) we have that: z′v+1 = D z′v thus concluding that: z′c � z′v+1. Moreover, as
discussed above the elements of the vectors zc, zv+1 corresponding to the coverage level of
the cells being covered by the agents are identical. Hence, we can conclude that zc � zv+1.

In a similar manner we can prove that zd � z0.

Initially, the terminal constraint Xf
0 could be chosen as one of the sets of the sequence as

long as the optimization problem is feasible for the initial agents’ poses and coverage level
of the cells. Suppose Xf

0 = Sv. It follows that Xf
1 = Sv+1, X

f
2 = Sv+2, . . . , X

f
M−1−v =

SM−1, X
f
M−v = S0, . . . , X

f
M−1 = Sv. Then, for any i ∈ N we can obtain the following rule

[50]:
Xf

0 = Sv =⇒ Xf
i := S(v+i)modM (4-9)

Based on the above we are now in position to prove the recursive feasibility of the problem.

Theorem 1. Suppose problem (4-1) is feasible at time instant i with initial coverage level
values zi(0), initial agents’ poses ui(0) and terminal set Xf

i as defined in (4-9). Suppose
u∗i ∈ UN is the optimal input sequence of (4-1) at time instant i. Then, the problem will be
feasible at time instant i+ 1 with initial agents’ poses defined by the vector u∗i (1) and initial
coverage level values zi+1(0) = F (zi(0),u∗i (1)).

Proof. For any i ∈ N there exists an index p ∈ {0, . . . ,M − 1} such that:
[

z∗i (N)
u∗i (N)

]
∈ Xf

i =

S(v+i)modM = Sp where u∗i (N), z∗i (N) are the vectors including the optimal poses of the
agents and the optimal coverage levels of the cells at the end of the horizon respectively.
Then, we will have that:

Xf
i+1 =

{
Sp+1, p < M − 1
S0, p = M − 1

(4-10)

In order for the problem to be feasible at i + 1 an input sequence ui+1 ∈ UN needs to be

introduced so as
[

zi+1(N)
ui+1(N)

]
∈ Xf

i+1.
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Consider the input sequence ui+1 =
[
u∗i (2) . . . u∗i (N) u

]T
with:

u =
{

up+1, p < M − 1
u0, p = M − 1

Due to (4-1a) we have that: zi+1(N) = F (z∗i (N),u). Then, from Lemma 1 it holds that[
zi+1(N)

u

]
∈ Xf

i+1 which completes the proof.

4-2 Constructing the Terminal Constraint Set Sequence

Having proved the recursive feasibility of the problem when a terminal set of the form (4-2)
is added to the problem, in this Section we propose a 2-step method for constructing the
terminal set sequence. In the first step a set of closed paths is designed aiming at maximizing
the coverage level of the cells over the horizon while minimizing the number of cells covered
by different agents at consecutive time steps. In this optimization problem the goal is 1) to
have every cell in the grid covered and 2) to maintain the coverage level of the cells above Z

¯
.

As the paths designed are closed, at the end of the horizon agents return back to their initial
cells and heading. Nevertheless, at that point the coverage level of the cells might not be
enough for the persistent coverage task to be feasible when agents start following the designed
paths for a second time. Thus, there might be a time step for which the coverage level of a cell
drops below Z

¯
since no agent was close enough for a visit. To resolve this problem a second

step is considered. In this step a linear program (LP) is designed for finding the minimum
reset value Z̄ for which the coverage level of the cells is always bounded from below by Z

¯
as

agents follow the closed paths of step 1 repeatedly.
The aforementioned paths are found as a solution to an optimization problem. This problem
is defined in a similar manner as problems (2-9), (2-17) with an extra set of constraints.
These constraints guarantee that each cell in the area gets covered at least once and the
agents’ final poses are identical to the agents’ initial ones. In this Section we will build upon
formulation I described in (2-9) as it is straightforward to impose the final step constraints.
These constraints are formulated as:

δrqr(N) = 1, r ∈ K

where qr ∈ V is the initial pose of agent r expressed as a node of graph G.
In addition to this constraint we force agents to cover every cell in the area at least once.
This can be expressed as:

N∑
k=1

4w∑
q=4(w−1)+1

∑
r∈K

δrq(k) ≥ 1, w ∈ I

Based on the above the optimization problem of step 1 could be formulated as follows:

max
x

J(x) (4-11)

subject to:
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∑
q∈V

δrq(k) = 1

∀k ∈ {1, . . . , N}, ∀r ∈ K (4-11a)

δrq(k)−
∑
q′∈V

aqq′ δrq(k + 1) ≤ 0,

∀k ∈ {1, . . . , N − 1}, ∀q′ ∈ V, ∀r ∈ K (4-11b)

δrqr(0)−
∑
q∈V

aqrq δ
r
q(1) = 0

∀r ∈ K (4-11c)

4w∑
q=4 (w−1)+1

∑
r∈K

δrq(k) ≤ 1

∀w ∈ I, ∀k ∈ {1, . . . , N} (4-11d)

αw(k)− Z̄
4w∑

q=4 (w−1)+1

∑
r∈K

δrq(k) ≤ 0

∀w ∈ I, ∀k ∈ {1, . . . , N} (4-11e)

αw(k) ≥ 0
∀w ∈ I, ∀k ∈ {1, . . . , N} (4-11f)

αw(k)− Z(w, k − 1) ≤ 0
∀w ∈ I, ∀k ∈ {1, . . . , N} (4-11g)

αw(k)− Zw(k − 1) + Z̄

(
1−

4w∑
q=4 (w−1)+1

∑
r∈K

δrq(k)
)
≥ 0

∀w ∈ I, ∀k ∈ {1, . . . , N} (4-11h)

dkw Z̄ +
k∑
t=1

dk−tw

(
− dw αw(t) + Z̄

4w∑
q=4 (w−1)+1

∑
r∈K

δrq(t)
)

= Z(w, k)

∀w ∈ I, ∀k ∈ {1, . . . , N} (4-11i)

Z(w, k) ≥ Z
¯

∀w ∈ I, ∀k ∈ {1, . . . , N} (4-11j)
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µrw(k)−
4w∑

q=4(w−1)+1
δrq(k) ≤ 0

∀r ∈ K, ∀w ∈ I, ∀k ∈ {1, . . . , N − 1} (4-11k)

µrw(k)−
∑
r′∈K
r 6=r′

4w∑
q′=4(w−1)+1

δr
′
q′ (k + 1) ≤ 0

∀r ∈ K, ∀w ∈ I, ∀k ∈ {1, . . . , N − 1} (4-11l)

4w∑
q=4(w−1)+1

δrq(k) +
∑
r′∈K
r 6=r′

4w∑
q′=4(w−1)+1

δr
′
q′ (k + 1)− µrw(k) ≤ 1

∀r ∈ K, ∀w ∈ I, ∀k ∈ {1, . . . , N − 1} (4-11m)

N∑
k=1

4w∑
q=4(w−1)+1

∑
r∈K

δrq(k) ≥ 1

w ∈ I (4-11n)

δrqr(0) = 1
r ∈ K (4-11o)

Z(w, 0) = Z̄

w ∈ I (4-11p)

δrqr(N) = 1
r ∈ K (4-11q)

δrq(k) ∈ {0, 1}
∀q ∈ V, ∀r ∈ K, ∀k ∈ {1, . . . , N} (4-11r)

αw(k) ∈ [0, Z̄]
∀w ∈ I, ∀k ∈ {1, . . . , N} (4-11s)

µrw(k) ∈ {0, 1}
∀r ∈ K, ∀w ∈ I, ∀k ∈ {1, . . . , N − 1} (4-11t)

where J(x) is given by (2-8).
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The above problem guarantees Z(w, k) ≥ Z̄ for all cells over the horizon. However, the
constraint is not satisfied when agents are back at their initial state and are about to repeat
the same path. To resolve this issue a linear program is formulated aiming at finding the
minimum reset value for which the coverage level of each cell is always bounded from below
by Z

¯
when the same paths are repeatedly followed by the agents. Let this value be denoted

by Z̄∗.

Moreover, let amin
w , amax

w ∈ [1, N ] denote the first and last time respectively at which w is
visited when agents traverse the paths designed in step 1 for the first time. Assume that
agents have followed the path once and after N they get back their initial poses. Then, the
coverage level of every cell w is equal to Z(w,N) = d

(N−amax
w )

w Z̄. Following the same path for
a second time, an agent will visit the cell w after amin

w time instants. Thus, in order for the
coverage level of every cell to be at least Z

¯
it should hold that: N − amax

w + amin
w − 1 ≤ tw,

with tw defined in (2-2). In addition to that, the coverage level of w should also be lower
bounded by Z

¯
at the interval [amin

w , N ], w ∈ I.

Let z1(N) be the vector including the coverage level values Z(w,N), w ∈ I when agents
complete a full circle of the paths for the first time and z2(0) the initial coverage level of the
cells when agents are about to start following the paths for a second time. Then, we have
that: z1(N) = z2(0) and we require z2(0) ∈ [Z

¯
, Z̄]nw . The lower bound on the coverage level

should also hold for any k over the horizon. Hence, we have that z2(k) ∈ [Z
¯
, Z̄]nw with z2(k)

a vector with elements the coverage level of the cells at time step k. As in problem (4-1) the
evolution of z2(k) is defined by (4-1a). Here, the agents’ poses are known from step 1. We
denote with us(k) the agents’ poses found as a solution to (4-11). Then, the lower bound of
the coverage levels in maintained over the horizon when the reset value is found as a solution
to the following linear program(LP):

min Z̄ (4-12)

subject to:

z2(k) = F (z2(k − 1),u2(k))
k ∈ {1, . . . , N} (4-12a)

u2(k) = us(k)
k ∈ {1, . . . , N} (4-12b)

z2(0) = z1(N) (4-12c)

u2(0) = us(N) (4-12d)

z2(k) ∈ [Z
¯
, Z̄]nw

k ∈ {0, . . . , N} (4-12e)

Z̄ > 0 (4-12f)
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Here (4-12a) expresses the dynamics of the coverage level of the cells when the agents’ poses
are known from step 1 (4-12b). Constraints (4-12c), (4-12d) describe the initial conditions of
the problem. As discussed above the initial coverage levels are identical to the ones of the
final step when agents complete for the first time a full circle of their paths and return to
their initial poses. Finally, (4-12e), (4-12f) constrain the coverage level of the cells and reset
value to be among the admissible values.

The reset value of (4-12) guarantees the coverage level to be always lower bounded by Z
¯
.

Therefore, the persistent coverage task will always be feasible when agents follow the closed
paths repeatedly.

In Figure 4-1 an example of the closed paths is presented for the case scenario of Section 3-1.
In this scenario a 6×6 grid is considered and a team of 4 agents is employed for the task. The
initial poses of the agents and the decay factors of the cells are shown in Figure 3-2. There,
the goal was to maintain the coverage level of every cell at least equal to Z

¯
= 20. In Section

3-1 an optimization horizon of 10 steps was considered. However, when designing the closed
paths this horizon is too short for the agents to cover every cell and return to their initial
poses. Therefore, a longer horizon needs to be established.

In general, the choice of the horizon length is affected by choice of the initial reset value Z̄.
Here we randomly choose the initial reset value to be equal to 500. Then, the horizon is
chosen as the shortest one for which the optimization problem (4-11) is feasible. Here N is
set equal to 18. As expected the coverage level of the cells at the end of the horizon is not
enough for the agents to follow these paths again. Therefore, the second step of the method
is implemented and the optimal reset value (denoted by Z̄∗) is found to be equal to 1995.5.

Having designed the closed paths of the terminal sequence and defined the appropriate reset
value, we run the optimization problem (4-1) for a simulation horizon of 100 time steps. The
initial terminal constraint set Xf

0 is chosen to be S0. In Figure 4-2 the coverage level map of
the area is shown for the first 10 steps. As before agents start moving towards the left part of
the area where the cells with the lowest decay factors lie. After 10 steps there is only one cell
with low coverage level (equal to 112), shown in dark blue. However, contrary to the situation
shown in Section 3-1 here there are two agents nearby with the closest requiring only 5 steps
to reach the cell. Based on the decay factor of the cell (d15 = 0.75) its coverage level does not
drop below Z

¯
in less than 6 steps. Therefore, due to the terminal constraint the task will be

feasible. Finally, it should be noted that agents aim at maximizing the coverage level of the
area. Therefore, their actual paths shown in Figure 4-2 are totally different to the proposed
closed paths of Figure 4-1.

4-3 Conclusions

In this Chapter the feasibility of the persistent coverage task is studied. By definition, the
task is feasible if agents are able to infinitely move around the area and maintain the coverage
level of the cells above Z

¯
. To achieve this, a finite sequence of terminal constraint sets is

considered. This sequence is designed such that the union of its sets describes a group of
closed paths as also the evolution of the coverage level of the cells when the aforementioned
paths are followed. The idea behind this sequence is that if its closed paths are properly

Maria Charitidou Master of Science Thesis



4-3 Conclusions 53

r1

(a) Closed path designed for agent r1

r2

(b) Closed path designed for agent r2

r3

(c) Closed path designed for agent r3

r4

(d) Closed path designed for agent r4

Figure 4-1: Example of the Closed Paths defined by the union of the Time-Variant Terminal
Constraint Sets when a 6 × 6 grid is considered and 4 agents are employed for the task. The
decay factors are shown in Figure 3-2. Here Z̄∗ = 1995.5 and N = 18.

constructed and agents follow them repeatedly, the coverage level of the cells will always
remain above Z

¯
.

Let each set include the proposed agents’ poses and the coverage level of the cells resulting
from these actions. Considering the finite horizon optimization problem of Chapter 2, we
force the final poses of the agents and coverage level of the cells to be identical and at least
equal respectively to the corresponding values of the set. Then, it is proved that when the
new problem is solved recursively, it will always be feasible as there always exists a set of
poses, belonging to the next set of the sequence (from the current terminal set) that maintains
the coverage level of the cells above the desired Z

¯
.

In addition to the feasibility proof a two-step method is proposed for designing the set se-
quence. In the first step a set of closed paths is designed such that all cells in the area get
covered at least once. However, the resulting paths guarantee the lower bound of the coverage
levels when traversed only once. Therefore, a second step is considered in which the minimum
reset value is asked such that the lower coverage level bound is guaranteed as agents follow
these paths repeatedly. Finally, the efficiency of the 2-step method and the feasibility of the
problem are verified in simulation for the case scenario presented in Section 3-1.
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(a) k = 1 (b) k = 2 (c) k = 3

(d) k = 4 (e) k = 5 (f) k = 6

(g) k = 7 (h) k = 8 (i) k = 9

(j) k = 10

Figure 4-2: Snapshots of the Coverage Level Map when a team of 4 agents is employed. The
resulting paths are found as a solution to the optimization problem of (4-1) which includes the
terminal constraint.
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Chapter 5

Distributed Formulation

In the previous Chapters we considered the persistent coverage problem and solved it in a
centralized fashion. There a single, central agent was responsible for receiving the position
and coverage level information from its peers and planning their paths. In that method the
resulting paths, designed based on the global information available achieve a high coverage
level in the area and are collision-free. However, assigning the planning task to a single agent
often exhibits severe limitations too. Due to the nature of the problem when large teams are
considered solving the persistent coverage problem becomes computationally prohibitive for
online planning (Section 3-3-1). Moreover, we can not dismiss the possibility of task failure
due to sudden hardware failure of the agent in charge.

To avoid such problems in this Chapter we propose a distributed formulation of the problem.
Here each agent solves a local path planning problem for itself and a subset of the team, called
from now on neighbors. In this way the main problem is split into smaller sub-problems with
less variables, thus becomes more computationally efficient. In this work we assume agents
are collaborative. Therefore, prior to the planning step they communicate with their peers
sending and usually receiving information. In that way they aim at maintaining up-to-date
information of other agents’ actions and the coverage level of the cells.

In Section 5-1 an initial attempt to formulate the distributed persistent coverage control prob-
lem is presented considering agents formulating a connected network. This method provides
agents the most accurate information of the agents’ positions and the coverage condition
of the area. Nevertheless, the sub-problems often end up being identical to the centralized
problem (the communication graph is complete). Therefore, in Section 5-2-1 a new method
is proposed. Here agents consider as neighbors the two closest agents and are connected to
a centralized base. The paths are designed based on information obtained by the neighbors
while collisions with other, non-neighboring agents are avoided using the position informa-
tion obtained from the centralized base. In Section 5-2-2 the results of the latter method are
presented and the chapter ends with Section 5-3 where the main results are summarized.
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5-1 Connected Network: A Motivating Example

In this Section a first approach to mathematically formulate the distributed persistent cov-
erage task is presented. Let G(K, E) be the directed communication graph associated to the
team of agents. Every node in the graph corresponds to the index of an agent and every edge
(r1, r2) ∈ E denotes the ability of agent r1 to communicate with r2. Drawing inspiration from
the work in [34], we assume that the network is connected. Therefore, there always exists a
path of one or more edges over the graph connecting any pair of agents in both directions.
Moreover, we define the complete graph as the graph in which each pair of nodes is connected
with an edge. An example of a connected and a complete communication graph with 4 agents
is shown in Figure 5-1a, 5-1b respectively.

r1

r2

r4

r3

(a) Connected Graph

r1

r2

r4

r3

(b) Complete Graph

Figure 5-1: Examples of Connected and Complete Graphs when 4 agents are considered.

Let Nj ⊆ K denote the set of neighbors of agent rj . In this Section as neighbors we consider
the agents that are at most at a pre-defined distance from agent rj . At each time step agents
communicate with their neighbors and exchange coverage level information. Let Zcom

rj (w, k)
denote the coverage level of cell w agent rj sends to its neighbors at time step k and Zrj (w, k)
the coverage level of w agent rj computes after making its move at k. Then, Zcom

rj (w, k) is
computed based on the following equation:

Zcom
rj (w, k) =

{
dwZrj (w, k − 1), pkrj 6= cw

Z̄, pkrj = cw
(5-1)

Agent rj sends this value to its neighbors and receive theirs. Based on the information
received and its own it updates its information by keeping the most accurate/up-to-date
value per cell. By definition, the coverage level value of each cell is monotonically decreasing
between subsequent visits at the cell. Therefore, the higher the coverage level of a cell the
more recently the cell was visited. Thus, it is natural to consider as the most up-to-date
coverage level the maximum value among the available. After the update agent rj sends this
information to its neighbors and the procedure is repeated for a finite number of steps until
agents reach consensus on the coverage level of the area.
Based on this information each agent rj solves a local path planning problem of the form
(2-17) the solution of which defines the paths of rj and its neighbors. However, each agent
implements only the first step of the path it computed for its own.
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The effectiveness of the algorithm is shown over a horizon of 50 steps when the case scenario
introduced in Section 3-1 is considered. In this scenario the area is decomposed to a 6 × 6
grid and 4 agents are employed for the task. The agents are initially placed on the right side
of the area as shown in Figure 3-1. The decay factors of the cells are shown in Figure 3-2.

The feasibility of the task over the simulation horizon is generally dependent on the reset
value Z̄ and the communication radius. Nonetheless, the choice of the one highly affects the
other. For this reason, here we choose randomly the reset value to be Z̄ = 3000. Then,
the communication radius is chosen as the minimum value for which the network remains
connected over the simulation horizon. Here the communication radius is set equal to 22 m.

Initially, the distributed problem is solved by letting each local path planning problem con-
verge to the optimal solution (D-O method). However, the average time required for finding
this solution is found to be high enough for online planning(253 sec on average). An alter-
native proposed in Section 3-2 is considering the first feasible solution of each local problem.
This solution is found considerably fast. Nevertheless, when agents follow the fist feasible
paths the total coverage level of the area is significantly low. In order to keep a balance be-
tween the computational time and coverage performance we consider the best solution found
within 30 sec for each local problem (D-TL method).

In Figure 5-2 the normalized coverage level is presented over the simulation horizon averaged
by the number of the cells for both methods. Here the actual coverage level of each cell
is considered and computed as the maximum value among the corresponding coverage level
information agents possess after they implement their actions, thus maxrj∈K Zrj (w, k). Al-
though optimality is sacrificed in D-TL method the coverage level of each cell per time step is
almost identical to the one of the D-O method. However, when a time limit is introduced the
number of times the communication graph is complete increases (from 48 to 60%) as shown
in Figure 5-3. Thus, the local path planning problems become identical to the centralized
ones.

Figure 5-2: Normalized Coverage Level over the Horizon averaged by the Number of Cells when
the Network is connected. Here D-O stands for the distributed problem considering the optimal
solution and D-TL for the one considering the best solution within the Time-Limit.
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Irrespective the way the solution of each local problem is obtained maintaining the network
connected over the horizon requires a large communication radius. This in addition to the
constrained motion of the agents results in agents forming a complete communication graph
for a large portion of the simulation horizon. In that case agents communicate with the rest
of the team and solve a centralized path planning problem. In this example solving this
kind of problems requires maximum 700 sec. However, when larger teams are considered
the computational complexity of the problem increases significantly. This makes the D-O
and D-TL methods prohibitive for online planning. Therefore, a new method is designed
that prevents agents from forming a complete communication graph thus allowing them solve
smaller-sized path planning problems.

(a) Optimal Solution (b) Best Solution until the Time-Limit

Figure 5-3: Distributed Formulation with Connected Network: The Nature of the Communication
Graph when the Optimal Solution and the Best Solution obtained within the time-limit (30 sec)
is considered respectively for each local problem.

5-2 Fixed-Sized Neighboring Sets

In this Section a new distributed formulation of the problem is presented in which agents
are able to communicate with a fixed number of their peers. Consequently, the local path
planning problems designed at each step are solved for a fixed number of agents. As shown in
Section 3-3-1 when 4 or more agents are considered the computational time of the optimization
problem increases significantly. Aiming at less computationally intensive problems, in this
method each local problem is solved for a team of 3 agents (team consisting of the agent under
consideration and its neighbors). In Section 5-2-1 the new problem formulation is presented
and in Section 5-2-2 its performance is discussed compared to the previous method.

5-2-1 Introducing the Method

In this problem each agent considers as neighbors the two closest agents. If there exist
multiple agents at the shortest distance from the agent under consideration, as neighbors are
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considered those with the lowest index. Similarly if multiple agents are at the second shortest
distance from the agent, as a second closest neighbor is chosen the one with the lowest index.

At each time step each agent rj defines its neighboring setNj and the coverage level map of the
area based on the available information using (5-1). Let Mj ⊆ K be the set of the indexes
of the agents that consider agent rj as their neighbor. Since the network is not assumed
connected there might be time instants at which rj becomes disconnected. Therefore, Mj

can be also empty.

The agent rj sends the information to its neighbors and receives information from the agents
with indexes in Mj if the set is not empty. When the information exchange is over agents
update the coverage level information as follows:

Zrj (w, k) = max
rρ∈Mj∪{rj}

Zcom
rρ (w, k), w ∈ I, rj ∈ K (5-2)

Based on the updated information each agent rj solves a local path planning problem con-
sidering also its neighbors. The solution of the problem defines the paths of the agents in
Nj ∪ {rj}. However, as in Section 5-1 each agent implements only the first step of the path
it computed itself for its own.

Since the neighboring setNj is of fixed cardinality when agent rj solves the local path planning
problem it does not take into consideration the other nr − 2 agents’ decisions. Although this
might not affect the agents’ safety when these agents are far away this may no longer be valid
when agents are at close proximity. An example is shown in Figure 5-4. Agent r1 considers
as neighbors the agents r2, r3 as they are closer to it. Moreover, it receives information
from the same agents. Thus, N1 = M1 = {r2, r3}. In a similar manner we can define
N4 = M4 = {r5, r6}. Agents r1, r4 ignore the existence of one another. Therefore, it is
possible for both of them to choose simultaneously to move at the cell in the middle and thus
collide. Other cases of possible collisions are shown in Figure 5-5.

r1 r2

r3

r4

r5 r6

Figure 5-4: Example of Collision due to the Fixed Cardinality of N1

To resolve this problem we consider agents having access to a centralized base including
position information for every agent in the team. Agents update the information in the base
after completing their actions. In that way they are able to retrieve the actual position of all
the agents in the team and constrain their moves so as to avoid future collisions.
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ri rj

ri

rj

ri
rj

ri

rj

Figure 5-5: Examples of Possible Collision Scenarios for Agent ri

At each local path planning problem collision avoidance constraints should be added not only
for the agent in charge but also its neighbors. For example when agent rj solves its local
path planning problem collisions should be avoided for any agent in Nj ∪ {rj}. Let σrlw (k)
be a binary variable expressing whether agent rl is at cell w at time step k or not. Then,
constraints of the form σrlw (k + 1) = 0, rl ∈ Nj ∪ {rj}, w ∈ I should be introduced to the
optimization problem in the following cases:

pkrρ = cw, rρ ∈ K\
(
Nj ∪ {rj}

)
(5-3)

(pkrl = cw−1) ∧ (θkrl = 0) ∧ (pkrρ = cw+1) ∧ (θkrρ = π), rρ ∈ K\
(
Nj ∪ {rj}

)
(5-4)

(pkrl = cw−C) ∧
(
θkrl = π

2

)
∧ (pkrρ = cw+C) ∧

(
θkrρ = 3π

2

)
, rρ ∈ K\

(
Nj ∪ {rj}

)
(5-5)

(pkrl = cw−1) ∧ (θkrl = 0) ∧ (pkrρ = cw+C) ∧
(
θkrρ = 3π

2

)
, rρ ∈ K\

(
Nj ∪ {rj}

)
(5-6)

(pkrl = cw−1) ∧ (θkrl = 0) ∧ (pkrρ = cw−C) ∧
(
θkrρ = π

2

)
, rρ ∈ K\

(
Nj ∪ {rj}

)
(5-7)

(pkrl = cw+1) ∧ (θkrl = π) ∧ (pkrρ = cw+C) ∧
(
θkrρ = 3π

2

)
, rρ ∈ K\

(
Nj ∪ {rj}

)
(5-8)

(pkrl = cw+1) ∧ (θkrl = π) ∧ (pkrρ = cw−C) ∧
(
θkrρ = π

2

)
, rρ ∈ K\

(
Nj ∪ {rj}

)
(5-9)

Constraint (5-3) guarantees that agent rl will not visit a cell occupied by another agent at
the current time step. In that way a collision could be avoided in case agent rρ decides to
stay or turn at place. Constraints (5-4)-(5-9) are introduced so as to avoid collisions when
two agents are about to enter the same cell. The latter constraints cover cases similar to the
first 3 examples of Figure 5-5. In general the constraints introduced here consider possible
collision scenarios with agents that are not rj or any of its neighbors. Collision avoidance
between agents with indexes in Nj ∪ {rj} is already taken into consideration and guaranteed
by the constraints introduced in the optimization problems of Chapter 2. An overview of the
steps to be followed by every agent at each time step is given in Algorithm 1 by the procedure
MakeAction.

5-2-2 Simulation Results

In this Section the computational results are presented for the distributed problem introduced
in Section 5-2-1. Each local path planning problem is formulated by (2-17) with the additional
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Algorithm 1 Distributed Formulation II: Steps to be followed by agent rj at time step k
Input (pk−1

rj , θk−1
rj ), Zrj (w, k − 1), w ∈ I

Output (pkrj , θ
k
rj ), Zrj (w, k), w ∈ I

1: procedure MakeAction
2: Define Nj
3: Compute Zcom

rj (w, k), w ∈ I using (5-1)
4: Send Zcom

rj (w, k), w ∈ I to agents with index rρ ∈ Nj
5: if Mj 6= ∅ then
6: Zrj (w, k) = maxrρ∈Mj∪{rj} Z

com
rρ (w, k), w ∈ I

7: else
8: Zrj (w, k) = Zcom

rj (w, k), w ∈ I
9: Get (pk−1

rρ′ , θ
k−1
rρ′ ), rρ′ ∈ K\(Nj ∪ {rj}) from the Centralized Base

10: Introduce any Collision Avoidance Constraints when any case (5-3)-(5-9) is true for
rρ ∈ Nj ∪ {rj}

11: Solve the Path planning problem (2-17) for agents rρ ∈ Nj ∪ {rj} with the extra
collision avoidance constraints

12: Make the first move of the designed path for agent rj

13: Zrj (w, k)←
{
dw Zrj (w, k), pkrj 6= cw

Z̄, pkrj = cw
14: Update Pose Information in the Centralized Base

collision avoidance constraints. Here a time limit of 30 sec is set as finding the optimal solution
for each sub-problem was found to be too computationally intensive. Throughout this Section
the method introduced in Section 5-2-1 will be denoted for simplicity by D-II.

Initially, the method is implemented for the case scenario introduced in Section 3-1 and
compared to the D-TL method of Section 5-1. A simulation horizon of 40 time steps is
considered and the communication radius for D-TL is set equal to 22 m. Here a reset value
Z̄ = 104 is chosen as found to be the minimum value for which each local path problem of
D-II is feasible. In Figure 5-6 the normalized coverage level of each cell is presented averaged
over the number of cells and simulation time steps. Here the actual coverage level of each cell
is considered and computed as the maximum among the corresponding coverage level values
of the agents that are defined after agents make their actions (Step 13 in Algorithm 1).

As shown in the Figure the D-TL method outperforms D-II for the majority of the time
steps. At the beginning, irrespective of the method implemented agents move towards the
opposite side of the grid where the cells with the highest decay rates lie. Therefore, the mean
coverage level values of both methods are almost identical. However, as time passes agents
tend to make different decisions depending on the method implemented. This is related to the
accuracy and amount of information agents have available when solving their local problems.

In D-TL method agents are always forming a connected network and over 80% of the sim-
ulation horizon the communication graph is complete. Here agents are able to exchange
information with their peers multiple times (or once in case of a complete graph) until they
reach consensus. At that time they possess the most accurate coverage level information.
Therefore, they are able to decide their next move so as to maximize the actual coverage
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level of the area. On the other hand, in D-II agents may be disconnected at some point, thus
rely on their own information. Otherwise, they exchange information with their peers only
once. Therefore, even though they form a connected network over the 60% of the simulation
horizon each agent maintains a different coverage level map of the area. Hence, it is possible
for the agents to visit cells previously covered by others at a short notice.

Figure 5-6: Normalized Coverage Level averaged by the Number of Cells over the Simulation
Horizon for the case scenario presented in Section 3-1 when D-TL and D-II are implemented.

In Table 5-1 the maximum length of the time interval between two subsequent visits at a COI
is presented for the case scenario of Section 3-1 when D-TL and D-II are implemented. Let
this length be denoted by vw for any COI with index w. In this example there are 11 cells
with decay rate at most equal to 0.85. When D-II is implemented the COIs with the highest
decay rate are visited more frequently (every 8 and 13 time steps). By contrast, when D-TL
is implemented agents sacrifice frequent visits at these cells (they visit them at most every 15
and 17 time steps) so as to spread around the area and visit the other COIs too. This is a
direct consequence of the fact that agents are aware of all the other agents’ actions. Having
the most accurate coverage level information available they are able to make decisions that
maximize the actual coverage level of the area. For this reason, they strive at visiting every
COI more frequently than expected (less than tw steps).

Further experiments are conducted in which different coverage decay factors are assigned to
the cells. Here we consider the 20 different combinations of dw introduced for the experiments
of Section 3-1 when a grid of size 6 × 6 cells is considered. Initially, a team of 4 agents is
employed for the task with initial poses shown in Figure 3-1. Then, the performance of the
D-II method is evaluated for a larger team of 6 agents. The extra agents are placed at the
free cells of the last column of the grid with their heading equal to π. Here, the reset value
is experimentally chosen to be Z̄ = 15 · 104. For this value 75% of the cases were found to be
feasible when D-II is implemented irrespective the team size.

In Figure 5-7 the normalized coverage level is presented averaged over the number of cells and
simulation steps for the D-TL and D-II method. In D-TL the same reset value is considered
and the communication radius is set equal to 22 m. When 6 agents are considered the amount

Maria Charitidou Master of Science Thesis



5-2 Fixed-Sized Neighboring Sets 63

cw dw tw vw with D-TL vw with D-II
(6, 14) 0.7 17 17 13
(10, 14) 0.7 17 15 8
(10, 10) 0.75 21 10 10
(14, 10) 0.75 21 17 14
(2, 14) 0.75 21 9 12
(14, 14) 0.75 21 13 17
(2, 10) 0.8 27 10 12
(2, 18) 0.8 27 11 15
(6, 18) 0.8 27 12 15
(22, 18) 0.85 38 11 18
(18, 22) 0.85 38 12 13

Table 5-1: Maximum Time Elapsed since the Last Visit at a COI w (denoted by vw) for the
case scenario presented in Section 3-1 when D-TL and D-II methods are implemented. In bold
are shown the increased vw values of D-TL when compared to D-II.

of coverage provided increases significantly by almost 10% compared to the performance of
the 4 agents.

Figure 5-7: Normalized Mean Coverage Level per Cell and Time Step (NMCL) when a team of
4 and 6 agents is considered

Irrespective the team size the difference in the coverage performance of the proposed methods
is only 1.5%. This difference is again related to the amount of information available to the
agents when solving the local path planning problems. Even though in D-II agents form a
connected network over 55% of the simulation horizon when nr = 4 and 40% when nr = 6
(Figure 5-8) they share information with their peers only once. Each agent decides its actions
based on its own idea of the coverage condition of the area. Despite the lack of information
it is noticeable that D-II performs equally good to D-TL without excessive information flow
and the strong assumption of connectivity.
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(a) nr = 4 (b) nr = 6

Figure 5-8: Percentage of Time the Network is connected when D-II is implemented

5-3 Conclusions

In this Chapter two different distributed formulations of the persistent coverage task are
introduced. In the first method the agents are assumed always connected. Hence, they are
able to exchange and update their coverage level information until a maximum consensus is
reached. Based on the updated information each agent solves a local path planning problem
and implements the first step of the path it computed itself. In this method agents make their
decisions based on the actual coverage level of the area. Therefore, they achieve a maximum
coverage performance. However, for the majority of the simulation steps the communication
graph is complete. Thus, agents communicate with any other agent in the team and solve a
centralized problem.

Depending on the team size this problem might become computationally intensive. To avoid
such cases a second distributed formulation is proposed. In this formulation agents are able
to send information to only two agents. In that way the local path planning problem solved
is always of fixed team size equal to 3. Agents send coverage level information to their
neighbors and if applicable receive from other agents in the team. After that they update
their information and solve a local path planning problem for themselves and their neighbors.
However, as before each agent implements the first step of the path it computed on its own.

In the second method the network may become disconnected at some point. Even when
connected, since consensus is not achieved each agent maintains its own (local) coverage level
map based on which it decides its future actions. Despite the information inaccuracy agents
achieve an equally good coverage performance as in the first method with the average coverage
level of a cell over the horizon to be only 1.5% less that the corresponding value of the first
method.
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Chapter 6

Conclusions and Future Work

In this Chapter the contributions of this thesis are summarized and recommendations are
made for future work.

6-1 Conclusions

Path planning for persistent coverage control considers the problem of designing agents’ paths
so as every point in the area of interest is visited more than once. A vast amount of work
considers agents planning their moves so as the maximum time elapsed since a point was
last visited is minimized over a finite set of points in the area. In these methods the area is
considered static and information on the amount of coverage provided by the agents is not
available. More recent work considers the persistent coverage control problem for areas char-
acterized by a time-varying property called coverage level (non-static environment). Contrary
to previous work, here the goal is to maintain the coverage level of the area at a predefined,
desired level. Agents design their paths so as to maximize coverage by passing through less
covered parts of the area. However, it is not clear how often the points are covered and how
much the maximum coverage loss between subsequent coverage times is at each point.

Aiming at overcoming the limitations of the aforementioned work, in this thesis a two dimen-
sional area is considered and a method is proposed that provides coverage level and visitation
frequency information for a finite set of points in the area. Here the goal is to design the
agents’ paths so as the coverage level at each point is bounded from below by a constant,
pre-defined level of coverage Z

¯
. When agents visit a point in the set its coverage level resets

to a constant value. Then, in order for the coverage level of each point to always be at least
equal to Z

¯
the point should be visited within a predefined number of time steps.

In this work the area is decomposed into a grid of square cells and the finite set of points is
chosen as the set of the centers of the cells. At each time step agents are placed at the center
of a cell with their heading taking values from a finite set. The size of the square cells is chosen
such that every point in the cell gets covered by the time an agent is placed at its center.
In that way agents provide persistent coverage to a finite set of points while guaranteeing
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complete coverage of the area when every cell is visited at least once. For simplicity we refer
to the coverage level of the center of cell w as the coverage level of cell w.
In Chapter 2 a MILP problem is designed that aims at maximizing the coverage level of
every cell over a finite planning horizon while minimizing cell coverage by different agents at
consecutive time steps. Two problem formulations are proposed that differ on the definition
of the binary variables expressing the agents’ poses. In formulation I a set of binary variables,
proportional to the number of agents is introduced expressing whether an agent r has a
pose q ∈ V at time step k. The efficiency of this problem is evaluated and the problem is
found to be too computational intensive requiring on average 5000 sec to converge to the
optimal solution. This is related to the fact that the solution space of the problem is not
close enough to its convex hull. Hence, the solver requires more time to evaluate possible
solutions before finding the optimal one. To resolve this problem, adding a set of inequality
constraints (cutting planes method) is proposed so as a set of candidate solutions with integer
variables taking fractional values is excluded from further examination. In our case finding
these constraints is found to be non-trivial. Therefore, a new formulation of the problem is
designed in which the binary variables xkqq′ introduced express whether an agent performs a
specific pose transition (q, q′) ∈ E at time step k. As shown, formulation II outperforms I
requiring only 6% of the computational time of formulation I for finding the optimal solution
to a number of cases introduced.
In Chapter 3 formulation II is further examined and its optimal solution is evaluated in
terms of coverage performance and computational effort. As shown agents provide a high
amount of coverage in the area, however, at the cost of computational effort. Although the
time to the optimal solution is significantly less than of formulation I it is still found to be
high enough for online planning. For this reason, the first feasible solution is proposed as
alternative choice for defining agents’ paths and its quality is examined in terms of coverage
level and computational effort. As shown the first feasible paths are found at negligible time.
However, their coverage performance depends on the minimum age of a COI and may differ
from the optimal performance by 10%. In the last Section of the Chapter the scalability of
the problem is examined with respect to the number of agents, the horizon length and the
number of cells. As expected the computational complexity of the problem increases as the
team size and planning steps increase. However, when a higher grid resolution is considered
the time to the optimal solution is significantly less when compared to coarser ones.
In Chapter 4 the feasibility of the optimization problem is studied. Here a finite sequence
of terminal constraint sets is constructed. Each set includes a pose for every agent in the
team and the coverage level of the cells in the grid. The poses in each set are defined such
that the union of the sets in the sequence introduces a closed path for each agent. Then,
the coverage level values of the set are defined based on the agents’ poses in the set and
the coverage level values at the previous time step when agents are assumed to follow their
closed paths. Considering a terminal set of the sequence, a set of constraints is introduced
in the optimization problem of Chapter 2 that forces 1) the final poses of the agents to be
identical to the ones of the set and 2) the final coverage level values to be at least equal to the
corresponding values of the set. Then, it follows that if the problem at the current time step
is feasible, the problem introduced at the next step will also be feasible as long as its terminal
constraints are associated to the next terminal constraint set in the sequence (or the first set
when the current choice of terminal set is the last of the sequence). In the same Chapter a
two-step method is proposed for designing the closed paths. In the first step the closed paths

Maria Charitidou Master of Science Thesis



6-2 Future Work 67

are found as a solution to a modified version of the proposed MILP. However, when agents
follow these paths the coverage level of the cells is not always bounded from below by Z

¯
.

Therefore, in the next step given the closed paths of step 1, a LP problem is solved for finding
the minimum reset value Z̄ for which the coverage level boundness constraints are satisfied.

In Chapter 5 two distributed formulations of the problem are introduced. In the first method
agents are assumed always connected. At each time step agents identify their neighbors
and exchange coverage level information until consensus is reached. Here as neighbors are
considered the agents placed within a pre-defined distance from the agent under considera-
tion. Based on the updated information agents solve a local path planning problem taking
into consideration their neighbors and implement the first step of the path they computed
for themselves. In this method the network often forms a complete communication graph.
Therefore, agents solve a centralized problem the complexity of which increases with the num-
ber of agents. To avoid such cases a second formulation is proposed in which agents consider
as neighbors the two closest peers. In this method agents communicate with their peers only
once. Therefore, each agent maintains its own coverage level map based on which solves a
local path planning problem. The performance of each method is evaluated in simulation.
As shown, despite the inaccuracy on the coverage level information in the second method
agents maintain the average coverage level of the cells at a high level, only 1.5% less than the
corresponding value of the first method.

6-2 Future Work

In this thesis an attempt is made to integrate the two basic solution approaches of the per-
sistent coverage control problem so as complete coverage information is always available for
the area of interest. Towards this goal there are still several open questions and challenges to
be faced. In this Section a few of them are discussed.

Introduce a Charging Procedure for Practical Experiments Persistent Coverage tasks may
often be long lasting especially when large areas are to be covered. On the other hand, the
battery life of the agents is often too short(especially when MAVs or AUVs are considered).
Therefore, aiming at a practical implementation of the method, we need first to establish
an automatic charging policy for the agents under consideration. A straightforward way to
achieve this is by considering the cells agents are initially placed at as charging stations.
Then, a set of constraints may be introduced to the problem forcing agents to visit these cells
by the time their energy is below a certain level. As in practice a nr number of charging
stations might not available for each task, a fuel management system should be introduced
with less stations spread in the area of interest [51]. Then, a schedule should be made so as
agents visit the stations before they run out of battery, without colliding with their peers and
without leaving cells with inadequate coverage level.

Consider the Time required for Cell Coverage In this work, as discussed in Section 2-1-3
the time required for covering each cell is considered either negligible or known and constant
for all cells. However, depending on the application this assumption may not be valid. For
example when an induction heating task is considered for a domestic hob [52] the time required
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for heating is neither negligible nor the same for different sizes of inductors. In [53] the optimal
coverage times are computed for a single robot employed for covering a set of points in the
area at a predefined revisitation frequency. In [52], [39] the problem of finding the optimal
coverage times of a finite set of points is addressed for multiple robots when their paths are
known. Nonetheless, to our best of knowledge the problem of defining the amount of time
required for covering a set of points in the area while planning the agents’ paths online is still
an open problem.

Cover Multiple Cells per Time Step So far we considered agents able to cover every point
in a cell at a single time step. Moreover, we assumed that the coverage level of a cell offered
by agents placed at neighboring cells is negligible. This means that either the size of the cell
is almost identical to the size of the agent’s sensing area or the contribution of these agents to
the coverage level of the neighboring cells is ignored. To reduce conservatism we may modify
the coverage level dynamics by introducing a term coupling the coverage condition of the cell
under consideration with that of its neighbors. In that way the resolution of the grid becomes
independent of the agents’ sensing abilities and a positive effect on the computational time
of the problem may be expected.

Extend the Method to Heterogeneous Agents After the realization of the previous sug-
gestion the method could be generalized to heterogeneous agents. Such agents, as often
equipped with different sensors are able to provide better quality of coverage in the area
while overcoming inherent limitations of a single platform (AGV, AUV, etc). In coverage
control literature heterogeneous teams of agents were considered in locational optimization
[54], [55]. In these articles the question of where to place the agents is answered so as the
area of interest is completely covered. Recently, heterogeneous agents were also considered
for the persistent coverage control problem in continuous space [38] and for covering a set of
discrete points when their paths are given [52]. However, the effect of agents’ heterogeneity
on online persistent coverage control tasks in discrete spaces has not been studied yet.

Distributed Formulation with Feasibility Guarantees Although the distributed problems
presented in Chapter 5 may work well over a finite simulation horizon, in practice their fea-
sibility is not infinitely guaranteed. For this reason, a new distributed formulation of the
problem may be proposed. In Model Predictive Control (MPC) literature the distributed
control of similar problems with dynamically decoupled systems and coupled constraints has
been addressed and different solution approaches were proposed. Examples are 1) the hi-
erarchical method in [56] where a finite number of interconnected subsystems is considered
and every subsystem solves a centralized MPC problem based on the plans of the previous
(in index) subsystems and the predicted plans of the following ones and 2) the constraint-
tightening approach of [57] in which a nested method is proposed where in the inner loop
subsystems solve the MPC problem providing an approximate solution of the problem and in
the outer loop bounds are set for the constraint violation. These methods may be modified
and applied in our problem. However, it should be noted that since each subsystem solves
a centralized MPC problem the computational time of the problem might still be high and
increase with the number of agents.
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Appendix A

Designing Closed Paths with
Formulation II

In Chapter 4 a 2-step method is presented for designing the closed paths that guarantee
recursive feasibility of the task. In the first step formulation I was considered as designing
the closed paths was achieved by simply adding a set of nr + nw constraints to the problem.
While in that formulation forcing agents’ final poses to be identical to the initial ones was
achieved with (4-11q) in formulation II these constraints are not enough. This is a direct
consequence of the fact that the binary variables expressing agents’ poses do not have an
explicit 1-1 correspondence to an agent but rather express whether an agent exists performing
the corresponding pose transition. Therefore, it might happen that the final poses of some
agents are identical to the initial poses of others.

In order to avoid this an extra set of variables needs to be added. These variables should
specify and propagate over time the index of the agent performing a pose transition over the
graph G. A similar work is done in [58] for the Multi-Depot Travelling Salesmen Problem. In
[58] a set of integer variables is considered with each variable assigned to a node in the graph.
In Travelling Salesman problem every node needs to be visited. Therefore, each variable is
set equal to the index of the agent visiting the corresponding node.

Here we introduce a set of integer variables with each variable assigned to a cell and time
step. Let these variables be denoted by κkw. At each time step only nr cells are covered.
Therefore, here we modify the definition given in [58] so as the variables to take values in the
extended set K ∪{0}. If cell w ∈ I is covered by agent r ∈ K at time step k, κkw is equal to r
otherwise it is set equal to 0. This is equivalent to having the following constraints satisfied:

κkw − nr
∑

(q,q′)∈Vw

xkqq′ ≤ 0 (A-1)

κk−1
w − κkw′ + nr x

k
qq′ ≤ nr, w 6= w′ (A-2)

κk−1
w − κkw + nr

∑
(q,q′)∈V ′

w

xkqq′ ≤ nr (A-3)
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nw∑
w=1

κkw = nr(nr + 1)
2 (A-4)

κkw ∈ K ∪ {0} (A-5)

for any w ∈ I and k ∈ {1, . . . , N}. Constraint (A-2) is well defined for (q, q′) ∈ E, q ∈
{4(w + 1) + 1, . . . , 4w}, q′ ∈ {4(w′ + 1), . . . , 4w′}, w, w′ ∈ I, w 6= w′.

Due to (A-1) and (A-5) if a cell is not covered at time step k then the corresponding κkw will
be set equal to 0. Otherwise, due to (A-2)-(A-3) at each time step there will be exactly nr
binary variables active thus exactly nr constraints of the form:

κkw1 ≥ r1
...

κkwnr ≥ rnr

The variables κkw1 , . . . , κ
k
wnr

are non-zero integers belonging to the set K. Due to (A-4) this
is possible either when the equality signs of the above constraints hold or when an agent’s
index is assigned to multiple variables. In case the latter scenario is true then an inequality
constraint of the above is violated. Thus, the equality signs hold always and the variables are
well-defined.

Constraints (A-1)-(A-5) are added to the optimization problem (2-17) in addition to the
following constraints:

κ0
w =

{
r, w =

⌈ qr
4
⌉

0, otherwise
(A-6)

κNw = κ0
w (A-7)∑

(q,qr)∈E
xNq qr ≥ 1, r ∈ K (A-8)

N∑
k=1

∑
(q,q′)∈Vw

xkqq′ ≥ 1, w ∈ I (A-9)

where qr ∈ V is the initial pose of agent r.

Here constraint (A-6) defines the initial conditions of the variables κkw. Constraint (A-7)
forces each agent r to return at the cell it was initially placed while (A-8) guarantees that
agent r not only will return to the same position but will have also the same heading. Finally,
(A-9) guarantees that each cell of the grid will be covered at least once.

In general, the extra integer variables added to the problem increase the computational time
required for the problem to converge to the optimal solution. This is the case when the
example of Section 3-1 is considered. Based on that, even though the computations are
performed offline problem (2-9) is found to be a better choice for computing the closed paths
of the first step.
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Glossary

List of Acronyms

MILP Mixed Integer Linear Program

LP Linear Program

DPCP Dense Persistent Coverage Problem

SPCP Sparse Persistent Coverage Problem

COI Cell of Interest

NMCL Normalized Mean Coverage Level over the Number of Cells and Optimization
Horizon Length

List of Symbols

β Weighting factor expressing the importance of penalizing subsequent coverage
by different agents

δrq(k) Binary variable of Formulation I expressing whether agent r has a pose q at time
step k

µkw Binary Variable of Formulation II expressing whether w is covered at time steps
k, k + 1 by different agents

µrw(k) Binary Variable of Formulation I expressing whether an agent r′ 6= r covers cell
w at k + 1 after agent r did at time k

I Index Set of cells in the grid
V ′w Subset of Vw including the pose transitions expressing the ”turning at place”

actions
vw Maximum Time Spent between Subsequent Visits at a COI with index w
αw(k) Mixed Variable of Formulation I equal to Z(w, k − 1) if w is covered at k or 0

otherwise
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78 Glossary

cw Coordinates of the Center of cell w
Z(w, k) Coverage Level of cell w at time step k
Zrj (w, k) The coverage level of cell w at time step k agent rj computes after making an

action
Zcom
rj (w, k) The idea agent rj has on the Coverage Level of cell w at time step k and sends

to its neighbors
N Optimization Horizon
E Set of edges expressing whether a pair of agents communicate
G Directed Communication Graph associated to the team of agents (Distributed

Method)
nw Number of cells in the Grid
Nj Set of indexes of the agents considered neighbors of agent rj
Mj Set of indexes of the agents that consider agent rj as neighbor
nr Number of Agents
Z̄ Reset value of Z
K Set of agents’ indexes
M Number of Sets in the terminal constraint set sequence
Su The uth Terminal Constraint set of the sequence
θkr Heading of agent r at time step k
ui(k) Vector including the agents’ poses at time step k of the planning horizon with

i the absolute time index
Xf
i Terminal Constraint Set at absolute time step i

Z
¯

Desired Level of Coverage
zi(k) Vector including the Coverage level of the cells at time step k of the planning

horizon with i the absolute time index
A Adjacency Matrix of graph G
C Number of Columns in the Grid
dw Coverage Decay factor of cell w
E Set of edges of graph G expressing the admissible state transitions
F Function expressing the dynamics of the vector zi(k)
G The graph with nodes the agents’ states and edges the admissible moves
H Function expressing the Number of Agents visiting cells covered at the previous

time step by others
k Time Step
L Number of Rows in the Grid
pkr Position of agent r at time step k
r Agent’s Index
U Subset of V nr including the agents’ poses per time step such that 1) each agent

has a unique pose and 2) each cell hosts at most one agent
V Set of nodes of graph G expressing agents’ states
Vw Subset of E including the admissible pose transitions that bring an agent r ∈ K

to the center of cell w in a single time step
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w Cell Index
xkqq′ Binary Variable of Formulation II expressing whether an agent changes its pose

from q to q′ at time step k
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