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Abstract

Fast depleting fossil fuels and growing awareness for environmental protection have led us
to the urgency of a long-term energy planning where reduction of emissions, integration of
renewable supply, and energy efficiency improvement represent the main targets of a ‘smarter’
employment of primary resources. Research is needed nowadays to drive a transient phase
towards the construction of future ‘smart grids’, where multiple actors will be able to commu-
nicate with each other and efficiently adapt their production/consumption with respect to the
dynamic evolution of the increasingly complex power network. In this scenario, operational
management of small, local electricity networks (microgrids) and their two-way interconnec-
tion to the main grid are creating new opportunities and, at the same time, new technological
challenges. Advanced control schemes are being investigated to smoothen the integration of
distributed generation and to achieve optimal operation at microgrid level, through coordi-
nation and dispatching of power generation, flexible loads, and storage elements.
The residential sector is responsible for about 30% of the global energy consumption and has
historically played a passive role in the unidirectional centralised power infrastructure. A
residential microgrid that utilises controllable prime movers, such as gas engines, to compen-
sate fluctuating demand and output of renewable energy would represent a fundamental step
towards a more economic, efficient, and environment friendly energy infrastructure. This MSc
thesis project focuses on the design of energy management systems in residential buildings
where micro-Combined Heat and Power (CHP) generators are installed. Micro-CHP tech-
nology is able to produce electrical energy locally in a controllable way, having at the same
time the advantage of efficiently employing by-product heat to satisfy thermal demand of
the building where it is located. The purpose of our work is an economic analysis regarding
the profitability of investment in distributed energy resources for Dutch households and a
subsequent investigation about the benefits that advanced control techniques would lead to
microgrid operation on the long run. For this reason, specific case studies are built based
on real data of thermal and electric consumption, which have been collected through smart
meters in various Dutch houses. Two different versions of the microgrid are considered: a first
case only involves micro-CHP and thermal energy storage, whereas a second one is expanded
to include solar panels.
Advanced techniques employed for supervisory control of power flows in microgrids generally
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aim to take into account relevant information about the consequences of choosing specific ac-
tions, by considering future predictions of system evolution. Model Predictive Control (MPC)
is a well-known, established and widely used control technique that is often considered as a
natural approach to adopt in microgrids. Its main strength is the ability to turn a con-
trol problem into an optimisation problem; therefore the capability of including operational
constraints arises naturally. However, high volatility of small-scale demand and intrinsic
stochasticity of renewable energy supply lead to the hard challenge of integrating appropriate
forecasting models into the decision-making strategy. When deterministic approaches relying
on the certainty equivalence paradigma are applied in residential microgrids, frequent viola-
tions of thermal comfort constraints occur due to poor prediction accuracy of the stochastic
processes involved. The possibility to explicitly take into account the uncertainty affecting the
controlled system extends the effectiveness of the predictive control strategies, at the cost of
increased complexity. Therefore, suitable probabilistic formulation of the forecasting models
for stochastic processes and subsequent control strategies in the MPC framework are studied
in our work. Different stochastic approaches recently studied in the scientific literature, i.e.
scenario based and tree based, are implemented and compared for the defined case studies.
Their performance is evaluated in terms of economic savings, primary energy consumption,
and violation of thermal comfort constraints for the households.

The results of our work show the profitability of investment in residential microgrids for
average Dutch households willing to share the installation of distributed energy resources in
multifamily buildings, even in absence of government subsidies. Moreover, the employment of
predictive strategies for local generation scheduling results in slightly improved performance
with respect to traditional rule-based controllers. The poor prediction accuracy of demand
forecasting on small spatial scale still represents the main difficulty to overcome in order to
fill the gap with the theoretical potential benefits of ‘optimal’ predictive strategies. However,
in the investigated context, the need for a stochastic framework is motivated and highlighted
with respect to the usage of deterministic tools due to the large variance of uncertainty in
system dynamics.
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“La facoltà d’illuderci che la realtà d’oggi sia la sola vera, se da un canto ci sostiene,
dall’altro ci precipita in un vuoto senza fine, perché la realtà d’oggi è destinata
a scoprire l’illusione domani. E la vita non conclude. Non può concludere. Se
domani conclude, è finita.”
— Luigi Pirandello





Chapter 1

Introduction

During the first development of the electrical industry, back in 1882, centrally controlled elec-
trical network was not developed yet and the company led by Thomas Edison was installing
steam-powered plants with dedicated local loads. When the economical benefits related to
the usage of large-scale centralised plants drove modern society to the power infrastructure
that we have nowadays, the idea of independent and locally balanced small networks was left
apart and not considered anymore for a long time. However, as power infrastructure grew
bigger and bigger, it became progressively more complex to control and manage.
Today urban population is increasingly growing and more energy intensive activities repre-
sent the consequences of a healthier and richer urbanised society. According to the main
scenario of the World Energy Outlook 2017 [39], by 2040, the global energy demand is pre-
dicted to add the equivalent of today’s China and India consumption to the current needs.
The growing electrification of energy and the shift to a more service-oriented economy create
new challenges for the conventional power infrastructure and the system of centralised power
generation. Furthermore, the rapid deployment and falling costs of clean energy technologies,
pushed by the necessity to reduce anthropogenic carbon emissions, is introducing in the net-
work a large share of hardly controllable and intermittent sources of power, which makes the
management of this increasingly complex system a challenging task to achieve.
Hence, through a mature analysis of the many drawbacks linked to the extreme centralised
structure of power generation, that original idea by Edison has caused new interests in in-
dustry and society. The development of small local electricity networks, named microgrids,
has been investigated in the recent years with the purpose to facilitate the integration of
renewable energy resources for a cleaner energy mix, and improve efficiency of generation and
transmission processes. The diffusion of microgrids on the market has been aided by the huge
development in power electronics, which provides useful tools for control and conversion of
electric power and allows a bidirectional interconnection between microgrids and the utility
grid, distributed energy technologies, whose decreasing investment costs have encouraged their
installation on small-scale systems, and Information and Communication Technologies (ICT),
which made easier the communication between the many different components of a microgrid
and their coordination through advanced control schemes [64]. For these reasons the instal-
lation of microgrids is spreading worldwide and, according to Navigant Research [60], global
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2 Introduction

Figure 1-1: Finally energy consumption by sector in EU in 2014 [22]

microgrid capacity is expected to grow from 1.4 GW in 2015 to 7.6 GW in 2024 under a base
scenario.

1-1 Residential Microgrids: Motivation

In the European Union, buildings account for 40% of final energy consumption and contribute
about 36% of greenhouse gas emissions (as shown in Figure 1-1, [22]). Consequently, it seems
noticeable that buildings could represent a fundamental key factor in order to achieve the
main objectives of EU energy policies related to emissions cutting and overall energy effi-
ciency improvement.
Aware of the huge benefits that a smart and efficient management of domestic consumption
could lead to the modern power system, in our work we decided to focus on the residential
sector and, specifically, on the potential benefits of microgrid integration in residential build-
ings.
Two more reasons are deeply related to the motivation of this thesis topic:

• The conspicuous thermal consumption associated with electric demand in residential
buildings provides room for a notable drive in efficiency improvement by means of
micro-cogeneration processes. Micro-cogeneration technology, known as Combined
Heat and Power (CHP), aims to capture the by-product heat usually wasted in con-
ventional power generation and allows its usage directly on site, thus greatly decreasing
primary energy consumption. In northern cold countries, such as the Netherlands,
where space heating in average houses represents about 70% of total consumption [20],
the motivation for micro-cogeneration systems is even stronger.

• The lowering market price of distributed energy technologies encourage private cus-
tomers to invest in their installation, pushed by economic incentives realized in bill
reduction, and motivate their integration in energy networks as small as single houses.
Specifically, together with the micro-CHP engines, we focused our attention on the re-
newable technology whose market has experienced one of the most rapid expansion in
the last decades: PhotoVoltaic (PV) systems.

Domenico Laudiero Master of Science Thesis
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Figure 1-2: Primary energy resources. Comparison between cogeneration and separate
generation [38]

Before presenting further details of our work, in order to better explain how the efficiency of
domestic energy use is substantially improved when a micro-cogeneration system is integrated
in a residential environment, we want to briefly provide a simplified comparison with the
conventional case of separate generation. We take into consideration a single household whose
electrical and thermal demand are 20 and 80 units, respectively. In standard houses, thermal
demand is provided through the utilization of high-efficiency boilers that convert the calorific
value of natural gas into heating, while, on the other hand, electrical demand is supplied by
transmission and distribution lines which connect large power plants directly to our houses.
As showed in Figure 1-2, if we substituted the boiler with a high-efficiency micro-CHP of
comparable size, we would achieve primary energy savings of 24 units, corresponding to 19%
of total conventional consumption.

1-2 Residential Microgrids: Challenges

In order to allow penetration of flexible distributed generation, the structure of the actual
utility grid has to radically change, going from a passive unidirectional infrastructure towards
an active distribution system where electricity can flow bidirectionally from the distribution
network to the interconnected microgrids and vice versa. Indeed, the user of a microgrid can
become a net producer for some periods of the day, when local supply exceeds demand. In
this way the new figure of ‘prosumer’ starts emerging, who plays the double role of producer
and consumer of electric power. Hence, a new market should be defined in order to regulate
and balance the power flows in this dynamic power grid: on one hand, the prosumers have
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Forecasting 
Model EMS Microgrid

Figure 1-3: Control scheme for the Energy Management System (EMS) in a residential microgrid

to provide a substantial self-supply and avoid to become an obstacle for the management of
distribution networks, while, on the other hand, as investors, they want to maximise their
profits in terms of either revenues or cost savings in electricity. Consequently, it is fundamental
for the retailers to set an appropriate electricity pricing policy which takes into account both
the interests of the distribution system operators and those of the prosumers [67]. On our side,
we focus on the management of residential microgrids and their energy resources,
thus assuming that the trading between the prosumers and the distribution network has
already been solved and the decisions of prosumers have to deal with a fixed pricing scheme.
In this context, an Energy Management System (EMS) has the purpose to make optimal
decisions during microgrid operation and maximise the cost savings of the prosumer. An EMS
operating in interconnected microgrids should, therefore, employ intelligent control techniques
in order to optimally choose and schedule the production of the micro-sources integrated in
the local network.

Forecasting The supervisory control problem in a microgrid deals with the satisfaction
of electrical and thermal demand of the local consumers, under economical and technical
conditions, despite the uncertainties and disturbances that might appear in the system. In this
sense, residential microgrid management can considerably benefit from accurate short-term
forecasting of local demand or uncontrollable renewable supply, since, in order to guarantee
continuous balance between supply and demand, economy of operations is quite sensitive to
information regarding the future behaviour of the network. Consequently, the general control
scheme employed in many scientific works is compactly represented in Figure 1-3. Here, a
first block containing the forecasting model of microgrid uncontrollable dynamics (i.e. local
energy demand or renewable supply) is clearly highlighted and provides the necessary input
for the EMS.
While traditional forecasting techniques have been widely applied in the power sector to
estimate future load profiles of aggregated consumption on national or regional scale, the
intrinsic stochastic behaviour of the end users becomes more relevant and, consequently, the
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accuracy of prediction deteriorates, as the spatial scale of forecasting decreases (disaggregated
consumption) [33]. A large amount of data, highly granular both temporally and spatially, is
requested for the identification of appropriate forecasting models on small-scale environments.
Timely, the smart meter deployment over the past decade is providing the industry with the
necessary datasets, even though their public availability for research purposes seems to be
still limited.

Control In the scientific literature and in many industrial processes, Model Predictive
Control (MPC) is the most widespread control strategy applied for solving high-level su-
pervisory problems where constraints on the manipulated and controlled variables have to be
considered in the control design [52]. The MPC framework seems to perfectly suit the pur-
pose of an EMS in order to control and schedule set-points for dispatchable energy resources
within a microgrid.
However, even though classic deterministic MPC has been widely applied in the microgrid
literature [68, 38, 65, 12, 10], many issues are kept unsolved in its employment for residential
environments. High volatility of small-scale demand leads to the necessity of explicitly taking
into account the uncertainty affecting the system under study. Moreover, possible integration
of renewable power sources, such as PV modules, introduces a further degree of stochastic-
ity due to their intermittent and uncontrollable power generation. Appropriate probabilistic
formulation of the forecasting models for the mentioned stochastic processes and subsequent
control strategies in the MPC framework are therefore researched and analysed in this work.
In the considered field of stochastic optimization, great improvements were led in the re-
cent years through the inclusion of uncertainty models in the formulation of the optimization
problems [24, 55]. However, the method to acquire or define the exact probability distribu-
tions, which should be accurate enough for planners to rely on, is still a tough and unsolved
problem. Often, the probabilistic distributions of stochastic variables associated with solar
irradiation and electrical or thermal loads have been assumed as already known in scientific
works [85, 30, 17]. For this reason, the use of stochastic MPC in real world problems or in
other applications is still limited or not fully explored.

1-3 Research Objectives

In the presented context, we focused our thesis work on the actual conditions for investment
in microgrid technologies in the Dutch residential sector, with the aim to provide practical
results to quantify and evaluate the economic profitability granted during the lifetime opera-
tion of the microgrid under a suitable control strategy.
To this purpose we advance the two following objectives:

1. Assess economic profitability of investment in a residential microgrid

2. Evaluate the impact of stochastic control strategies in order to minimise
operational costs in a residential microgrid

Target ‘1’ is pursued through an economical investigation focused on the distributed energy
resources presently available on the market and the analysis of energy demand of average
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6 Introduction

Dutch customers. It is then concluded at the end of Chapter 3 with the definition of two case
studies (‘A’ and ‘B’), whose components are optimally sized with respect to the economic
objective. The main difference between the two considered examples is represented by the
employment of solar panels in the second case, which introduces a source of uncertainty on
the supply side, besides to the intrinsic uncertainty in the energy demand.
On the other hand, target ‘2’ is considered in the second part of this thesis and deals with
the implementation of control strategies in the EMS to optimally operate the residential
microgrids previously defined. Specifically, our aim is to evaluate the potential benefits of
stochastic strategies with respect to the traditional deterministic framework in the field of
optimal power flows. Indeed, stochastic formulation of the control problem explicitly considers
and models the uncertainties related to the volatile external processes perturbing the system,
i.e. energy consumption of the households and PV intermittent generation, thus adding a
degree of complexity which is expected to pay off in terms of economic performance.

1-4 Thesis Contribution

This thesis work has been guided by the purpose to evaluate the benefits of actual technolo-
gies and employment of intelligent control strategies for microgrid management in real life
conditions. Moreover, we focused our attention on the specific context of the Netherlands.
For these reasons, we decided to build case studies inspired by real datasets, and we avoided
any theoretical assumptions about the processes affecting microgrid operation. Hence, fore-
casting models for the volatile stochastic processes appearing in the system dynamics are
identified based on the mentioned real datasets.
Moreover, different stochastic approaches recently studied in the scientific literature, i.e.
scenario-based [76] and tree-based [49] MPC, have been adapted, implemented and com-
pared on the defined case studies. Finally, performance of the control strategies have been
evaluated in terms of economic savings, primary energy consumption and potential viola-
tions of thermal comfort constraints for the households. Indeed, in the small scale context
of a residential microgrid, a conventional deterministic framework is strongly affected by the
uncertainty of forecasting models and, consequently, leads to aggressive decisions that eas-
ily incur in several constraint violations of the thermal comfort bounds for the households.
Subsequently, when the effects of these violations are practically considered, it emerges that
stochastic strategies can actively control the violation limit and offer the best performance
between the tested algorithms.

1-5 Thesis Outline

This thesis report comprises 7 chapters, including the current chapter. A detailed outline of
the work is presented as follows:

Chapter 2 introduces the scenario of decentralised generation in which residential microgrids
have the opportunity to expand. The technologies having the potentiality to be integrated
in small-scale networks are separately analysed and their usefulness is discussed in detail.
Finally, the concept of a microgrid as a controllable unit of grouped micro-sources, storage
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1-5 Thesis Outline 7

systems and local loads is provided and the mathematical model employed for its control is
formulated.

Chapter 3 performs an investigation on the economic profitability for investment in dis-
tributed energy resources for Dutch households. Hence the microgrids representing our case
studies are defined in terms of technologies and typology of customers through economic mo-
tivation. Finally, a method to select the size of each energy resource, based on the potential
economical savings led by microgrid operation, is discussed and the two definitive case studies
are presented.

Chapter 4 deals with the identification of forecasting models to predict demand and supply
behaviour in the microgrid. Firstly, state-of-the-art forecasting methodologies and techniques
are analysed looking at the concerning scientific literature. Then, more attention is given to
the specific models of forecasting for residential energy demand and solar power generation.

Chapter 5 analyses predictive strategies that can be applied to control microgrid operation
with the specified objective to reduce operational costs. After an exhaustive presentation of
MPC strategies from a theoretical perspective, deterministic and stochastic techniques are
applied and adapted to our case studies.

Chapter 6 provides a detailed performance comparison between the previously described
algorithms when implemented to control the power flows in the microgrids representing our
case studies. A single section is dedicated to each of the two case studies of our work.

Chapter 7 summarizes the thesis with a discussion and contributes with recommendations
for future work.

Master of Science Thesis Domenico Laudiero
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Chapter 2

Microgrid: Description and Modelling

Domestic energy consumption in the residential sector is differentiated into electrical and
thermal demand, which are respectively satisfied in conventional conditions by centralised
power and gas infrastructures. As regards residential heating systems, two main categories
can be analysed: domestic hot water and space heating. In most of the cases, in standard
houses, both demands are provided through the utilization of high-efficiency boilers that con-
vert the calorific value of natural gas into heating. On the other hand, electrical demand is
supplied by transmission and distribution lines which connect large power plants directly to
our houses.
In this chapter we want to present a deeply researched alternative to the conventional gen-
eration scenario: the interconnection of many small-scale electricity networks, where supply
and demand are aimed to be locally balanced, and which have the potential to transform
actual power infrastructure in a more efficient and dynamic ‘smart grid’. In Section 2-1 we
introduce the framework of distributed generation in which residential microgrids have the
opportunity to expand. In Section 2-2 the technologies that can be integrated in small-scale
networks are separately analysed and their usefulness is discussed in detail. Finally, in Sec-
tion 2-3 a complete mathematical model of the residential microgrid we consider in this thesis
is formulated.

2-1 Distributed Generation in Smart Grids

Nowadays, new technologies are emerging on the market with the capability to either increase
overall efficiency of energy generation or deeply reduce the emissions of the generation pro-
cess: two main objectives for the climate challenge that we are facing. The first category of
technologies is represented by micro-cogeneration systems, which can capture the by-product
heat usually wasted in the conventional power generation and make it directly usable on site.
The second category is related to renewable energy sources, which are based on regenerative
natural resources and convert the energy of the latter into disposable electricity. Both of
them, however, have the potential benefit to be installed with low investment on small-scale
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10 Microgrid: Description and Modelling

systems and close to the required source of demand, avoiding any transmission losses due to
energy delivery and aiming to locally balance power flows within the network where they are
integrated.
In this section we want to analyse the main differences between the conventional centralised
power generation and the more complex infrastructure of a smart grid where distributed
energy resources are interconnected.

Figure 2-1: Centralised/Distributed generation in power infrastructure [78]

2-1-1 Centralised Electricity Infrastructure

Electricity generation in the classical model of electric power systems is centralised in a very
small number of elements, big power plants, which are normally located far away from final
users. As example, the Dutch power plant park is characterised by a high share of fossil-
fuel based generation units, the majority of which are gas-fired (Figure 2-2). Generation
companies produce electricity and sell it to the markets. Large industrial consumers buy
the electricity directly from the market, whereas domestic and commercial users acquire it
through retail companies (energy suppliers) working at the distribution level. At the same
time, power lines are managed by transmission and distribution system operators, whose
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2-1 Distributed Generation in Smart Grids 11

objective is to guarantee system reliability and energy balance in each specific control zone.
Hence, power networks that supply our houses with the necessary requested demand are
based on unidirectional flow from generators to loads and are vertically structured. In this
way, historically, the final consumers have not been taken into account in the power system
except for when it comes to pay the bill. Their aggregated consumption is mainly measured
by means of manual metering readings on monthly or yearly intervals.

Figure 2-2: Power generation in the Netherlands according to the International Energy Agency
(IEA), 2016 [2]

Traditionally, scheduling plans of production for fossil-fuel power plants can easily be deter-
mined one-day in advance, since present infrastructure allows demand prediction to be made
on aggregated scale where the behaviours of single customers are smoothed due to averaging
effects. However, the larger penetration of renewable energy sources is characterised by in-
termittent and stochastic nature of power generation, that strongly contrasts with the long
reaction times of the network for adaptation to dynamic requirements. Hence, the major
negative consequence of the new emission-free power generation systems is the high complex
control system that should be designed to manage network operation. The growing electrical
demand related to high-consuming appliances will therefore need a mixed combination of
fuel-based and renewable generation sources. Therefore, an ideal solution would be to use the
strengths and disadvantages of each source to counterbalance those of the others in a more
distributed scenario of power generation.

2-1-2 Decentralisation of Power Generation

Distributed generation offers the possibility to produce energy close to the demand, enhancing
reliability and power quality of the delivered electricity, while improving overall efficiency of
the energy infrastructure. Significant benefits are offered in the distributed generation sce-
nario for both the single customers and the utility grid as a whole (at least potentially). From
an economical perspective, energy policies of every agent in the decentralised grid would be
more cost effective due to its possibility of efficiently responding to real-time market prices
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12 Microgrid: Description and Modelling

and react to the dynamics of the whole network. Secondly, primary energy consumption
would be reduced by avoiding transmission losses in the power lines and by using highly effi-
cient or renewable-based generation systems. Finally, one of the most important effects would
be related to environmental conservation: penetration of controllable distributed generators
makes easier to invest in renewable green energy and helps the transition to a more sustain-
able energetic infrastructure [64]. Associated savings of CO2 emissions and primary resources
in the distributed scenario highly depend on the fuel mix with which power is centrally gener-
ated, consumption of the privates willing to invest in distributed energy resources, typologies
of generation and storage technologies employed, and control strategies implemented in the
small-scale network.

Distributed energy resources are usually grouped in local controllable units, which play the
role of single actors in the smart grid. These small-scale local energy grids are called mi-
crogrids and have the purpose to generate and regulate the flow of power according to their
internal demand. Microgrids can be interfaced with the main grid through smart switches,
thus allowing microgrid to function both in interconnected and isolated configuration. The
interconnection with the power network guarantees that electric demand can be satisfied at
any time instant.
In order to allow penetration of distributed generation, however, the structure of the utility
grid has to change radically, going from a passive system towards an active distribution sys-
tem. When generation exceeds demand in an interconnected microgrid, the electricity surplus
can flow back in the distribution network so that the owner can become a net producer in
some intervals of the day. In this way the energy market system becomes far more dynamic
and interactive with the new emerging figure of ‘prosumers’, who play the double role of
producers and consumers of electric power.
Local markets could arise where different prosumers trade energy among each other and new
business opportunities could emerge for retailers [67]. Distribution system operators can
thus have the possibility to expand their role, since they can no longer remain passive when
it comes to managing the energy flows on their systems. Hence, they should manage the
key activity to make the distributed supply cooperate with the centralised system, since the
production of electricity in the distribution network can become highly unpredictable when
many renewable sources are employed by prosumers. However, controllable microgrids aim
to make the impact of extreme situations less severe for the operator as their functionality
allows supply and demand to be balanced before the meter.

2-1-3 Local Energy Management System (EMS)

This thesis is focused on the interests of single prosumers willing to invest in residential micro-
grids and enter the current market of a smart grid. While, on one side, the initial installation
of distributed energy resources in a residential building represents the highest cost for this
investor, it is fundamental, at the same time, to manage the use of these resources in a cost-
effective manner during daily operation.
Accordingly, an Energy Management System (EMS) serves the purpose to minimise the run-
ning costs of a single microgrid, while continuously balancing local demand and supply [64].
In order to achieve this goal, the operational strategy that an EMS implements has the ob-
jective to make decisions about the power flowing in the local network. In this section we
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2-1 Distributed Generation in Smart Grids 13

analyse the three energy aspects which can be controlled (completely or partially) on high
level from an EMS: supply, demand, and storage.

Supply The main distinguishing characteristic among all types of distributed generation
technologies is the possibility to actively control their power output.
Dispatchable units can follow the optimal scheduling plan produced by the EMS. They are
subject to technical constraints and are crucial for microgrid self-supply, by offering a certain
amount of flexibility in power generation. Depending on the type of fuel, dispatchable gener-
ators can be more or less polluting, but they are necessary in order to compensate for local
net imbalance in the microgrid in moment of high fluctuation in demand or renewable supply.
Non-dispatchable units, on the other hand, are mainly renewable generators, characterised
by intermittency and volatility. Control can be applied with the only objective to maximise
their production, but their input source (sun, wind) is clearly uncontrollable.
For the purpose of this thesis, where an optimal control strategy has to be developed in order
to schedule the generation plan in the microgrid, larger interest has clearly been directed to
the study of dispatchable units. However, the available technologies for solar power generation
are also discussed with the aim to integrate solar panels in case study ‘B’ of our work.

Demand Loads in a microgrid are commonly categorised into fixed and flexible ones, ac-
cording to the comfort choices defined by the user. Flexible loads can be controlled by the
smart system with the purpose to respond to economic targets, and become part of control
techniques of demand side management, in which residents willing to decrease their comfort
level allow less restrictive constraints for the EMS [64].
Flexibility options in electrical demand consist of load curtailment, when the supplied power
can be shedded (e.g. lighting), or deferment, when demand is allowed to be shifted in off-peak
hours at the price of reduced bill for the customer (e.g. washers, dish-washers, dryers). As
regards thermal consumption, flexibility can be assumed on space heating when households
allow the system to control internal building temperature within a predefined comfort range.
However, in order to introduce this extra degree of flexibility a detailed model of the building
as a thermal load would be required [12].
Demand side management could further modify energy consumption patterns in the future,
but it will not be taken into account any further in this thesis project. Only fixed loads, both
thermal and electrical, will be considered in the next.

Storage Storage systems can be useful in order to guarantee a certain degree of flexibility
in the local production, by decoupling supply and demand. Indeed, when storage systems are
installed, the effects of requested power variability can be mitigated, allowing the generation
to be less restricted to balance the instantaneous demand.
However, a great distinction should be made between electrical and thermal storage systems.
On one hand, the option to store heat is the main enabler for flexible operation in smart
buildings, since generated heat has necessarily to be consumed locally, otherwise the effort
of the generation would be totally wasted. Moreover, from an economic point of view, the
relatively low initial investment for a thermal storage is expected to be paid-back in short
time. Indeed, in some cases, hot water tanks are already present in conventional houses.
On the other hand, the usage of domestic batteries will most probably not lead to acceptable
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14 Microgrid: Description and Modelling

investments at the present time due to their high cost and to the risk of short lifetime due to
irregular cycles of charge/discharge [37]. For this reason, in the further development of this
thesis electric batteries are not included in the constitutive elements of a residential microgrid.
However, we observe that, with the advent of electrical vehicles, the possibility to integrate the
usage of their batteries in intelligent control schemes via vehicle-to-grid technology is under
investigation in the recent years [3]. The level of profitability for electrical storage could grow
dramatically in this case, since the stored energy would serve as a buffer by supplying loads
during the peak hours, when the market price is high.

2-2 Available Technologies: Elements of a Residential Microgrid

In the next sections we want to investigate the available energy resources that can be inte-
grated in the design of a residential microgrid. Techno-economical aspects are evaluated in
order to motivate the choice of their usefulness in the operation of a microgrid.

Figure 2-3: Micro-CHP system [9]

2-2-1 Micro-CHP Technologies

The miniaturization of cogeneration systems into small and micro units is an important topic
of interest today. Combined Heat and Power (CHP) systems generate electricity locally and
utilize the co-produced heat to satisfy thermal demand at the same time. The two typolo-
gies of power outputs are provided through different energy conversion mechanisms of the
primary resource (usually natural gas). The portability and simplicity of CHP technologies
should allow their installation in millions of homes, particularly where there is a huge market
for heating fuel [50]. Their availability in the residential sector is expected to play a major
role in curbing CO2 emissions and reducing primary energy consumption for space heating,
domestic hot water supply and electricity in the next future.
Complete micro-CHP systems are usually intended as a combination of a prime mover tech-
nology, a thermal storage system and an auxiliary boiler, as depicted in Figure 2-3. For a
given scenario, the profitability of a micro-CHP system depends on the choice of prime mover
technology and size, and of the proper thermal storage system.
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2-2 Available Technologies: Elements of a Residential Microgrid 15

Technology ηCHP, el C ηCHP, tot Engine Size Market availability
Internal Combustion Engine 20-30 % 0.3-0.4 85-90 % 1-5 kW Well-established
Micro Gas Turbine 12-16 % 0.2-0.3 80-90 % ≥ 3 kW Prototype
Stirling Engine 13-20 % 0.15-0.3 85-95 % 1-9 kW Available
Fuel Cell ≈ 40-50 % 1 80-90 % 1-3 kW High cost / R&D

Table 2-1: Comparison of prime mover technologies for micro-CHP [50, 57]

Prime movers employed in the residential sector are developed with electrical capacities of
up to 5 kWe, and heat capacity, depending on technology, of up to 20 kWth. Electricity
production (PCHP) and heat generation (QCHP) of the prime mover in a micro-CHP system
are strongly correlated at any time instant, as explained by the following mathematical for-
mulation:

PCHP(t) = ηCHP, el · fCHP(t) =
ηCHP, el

ηCHP, th︸ ︷︷ ︸
C

·QCHP(t) (2-1)

In the above equation fCHP stands for the amount of fuel (usually natural gas) burned in
CHP, here expressed by its energetic value, whereas ηCHP, th and ηCHP, el represent respectively
thermal and electrical efficiency of the CHP. Power-to-heat ratio (C) is the fundamental
physical parameter that distinguishes the technologies of prime mover, together with the
overall efficiency:

ηCHP, tot = ηCHP, el + ηCHP, th (2-2)

In the next paragraphs we will discuss about the prime mover technologies presently available
on the market (even though not widespread or industrialised). A summarised comparison
among the main characteristics of each technology is showed in Table 2-1, while more complete
reviews can be found in the literature [50, 57].

Internal Combustion Engine (ICE) Micro-CHP systems based on internal combustion en-
gines are commercially widespread and the most well-established technology for CHP applica-
tions worldwide [34, 83]. They are similar to vehicle engines modified to run on natural gas or
compression-ignition diesel. Considerable works have been carried out in the last decade, by
taking advantage of research coming from the automotive sector, for improving performance,
lowering emissions, and reducing the cost of micro-CHP systems based on ICE. Their electric
efficiency ranges from 20% to 30%, with the power-to-heat ratio generally increasing with size
and a potential total efficiency up to 90%.

Micro Gas Turbines Gas turbines are a well-established technology for power output higher
than 30 kWe, whereas some disadvantages related to small-scale effects and investment costs
make commercial development of micro turbines quite complicated [50]. However, recently
EnerTwin has been testing a 3 kWe micro turbine [21], even though the commercial price
has not been announced yet. All the thermal power recovered in gas turbines is at a high
temperature, coming from the exhaust gases (micro turbines cannot be used for cooling
generation). Positive benefits of their usage are low maintenance request, multi-fuel usage,
long lifetime, and very low emissions. It is considered that micro turbines could be suitable
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16 Microgrid: Description and Modelling

to meet the electrical and thermal requirements of multifamily residential, commercial, and
educational buildings. Their electric efficiencies mainly depend on the size: target values for
residential sector are not higher than 20%.

Stirling Engines Stirling engines are external combustion engines, working by the repeated
heating and cooling of a sealed working gas that is moved by a piston between hot and cold
heat exchangers. Stirling engines indicate an interesting application for the household sector,
thanks to their features of having a simple design, producing minimal noise and vibration,
and allowing multi-fuel flexibility. They have relatively low electric efficiencies of around 13-
20%, leading to high heat-to-power ratio. It seems a promising technology for the usage in
small residential microgrids, since its advantages with respect to other technologies increase
as power range decreases. The commercial price of Stirling engines is still high, but many
companies are investing in their development [80].

Fuel Cells Fuel cell systems are electrochemical devices that directly convert chemical energy
into electricity, while a fraction of the unused energy becomes available as heat. They are
the most promising technologies for local supply of electricity thanks to their high power-to-
heat ratio, but the large investment cost appears to be the main barrier to their widespread
application. Typically the used fuel is hydrogen, but with the use of reforming processes
many other hydrocarbons can be used, e.g. natural gas. We can distinguish between two
completely different technologies, according to the operating temperature of the fuel cell.

• The polymer-electrolyte-membrane fuel cell, which operates around 80 ◦C and is based
on the use of a specific polymer able to conduct hydrogen atoms.

• The solid-oxide fuel cell, which operates between 500 and 1000 ◦C, and allows the fuel
reforming to happen internally, thanks to the high fuel cell operating temperature.

The appropriate choice of micro-CHP prime mover for our case study will be treated in more
detail in Chapter 3.

2-2-2 Gas-Fired Boiler

An auxiliary boiler is usually included in any residential microgrid in order to meet thermal
demand peaks that cannot be satisfied by both the CHP and the thermal storage system,
or in cases in which the CHP prime mover is idle due to operational constraints. Gas-fired
boilers are already installed in most of the houses connected to the gas grid and are used
to satisfy thermal demand when no decentralised power generation is assumed. They are
characterised by high levels of efficiency in the burning process (ηBOIL ≈ 100%), and by a fast
dynamics able to react to quick changes in hot water demand [38]. The conversion process
can be easily modelled as follows:

QBOIL(t) = ηBOIL · fBOIL(t) (2-3)

where fBOIL represents the amount of natural gas burned in the boiler, expressed by its
energetic value.
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2-2 Available Technologies: Elements of a Residential Microgrid 17

Figure 2-4: Data from Fraunhofer ISE, 2016 [27]. Left - Expected pay-back time of PV rooftop
systems in Europe. Right - Commercial prices for PV modules [e/Wp].

2-2-3 Thermal Energy Storage (TES)

Generated heat can be efficiently stored in insulated water tanks. Indeed, water is a convenient
heat storage medium, thanks to its high specific heat capacity and low cost. Cold water supply
is heated by micro-CHP prime mover or auxiliary boiler and flows in the tank in order to
keep its stored energy in the form of temperature level. When water flows out from the
tank water releases its heat, which can be used for space heating and hot water demand.
Through stratification, water at different temperatures can be stored in the same tank having
a temperature gradient profile throughout its length and used for different thermal needs
[75]. Nevertheless, in our simplified model we assume the temperature in the water tank to
be homogeneously represented by its average value.
The amount of stored heat in the tank (∆QTES) is physically linked to the difference in
temperature between stored hot water and cold water supply (∆TTES), according to the
formula

∆QTES(t) = cH2OρH2OVTES∆TTES(t) (2-4)

where cH2O and ρH2O represent unit thermal capacity and mass density of water, respectively.
Hence, the capacity of the thermal energy storage is strictly related to the volume of the
tank VTES . As example, if the insulated tank keeps water at the average value of 60◦C (50
◦C higher than temperature of cold water supply), the energy density of the thermal energy
storage is approximately 70 Wh/litre.

2-2-4 PhotoVoltaic (PV) Systems

The application of renewable energy sources in microgrids is one of the extensively studied
topics in the recent literature. Nevertheless, in regions with relatively weak natural energy a
necessary compensation between micro-sources should be developed to mitigate the effects of
high variability in the renewable power output. Including a diverse set of renewable energy
generation technologies and optimizing the mix of renewable units could potentially reduce
energy balance fluctuations in a small-scale microgrid [64].
However, in the residential environment the huge investment on a large mix of micro-sources
can never be practically compensated by the economical savings due to operational manage-
ment. Hence, here we only want to focus on the renewable technology whose market has
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18 Microgrid: Description and Modelling

experienced one of the most rapid expansion in the last decades: PhotoVoltaic (PV) systems.
As we can see from Figure 2-4, the trend towards a decreasing commercial price for PV tech-
nology makes the benefits of investment incredibly profitable even in less sunny countries as
the Netherlands.
In order to better understand the average electricity yield from a certain PV array, we give
here a brief explanation of its functioning. The PV system consists of a photovoltaic array
which converts the light photons falling on its surface into electrons. This generates a direct
current which has to be converted to deliver AC power to the loads though power electronic
interface. The efficiency of a PV panel is strongly dependent on the ambient conditions,
the most influential being the incident solar irradiance on the surface Gc and the solar cell
temperature Tc [48]. Moreover, the cell temperature is in turn correlated to the global solar
irradiance, which becomes the main influential parameter for the generated solar power.
Solar irradiance, representing the amount of solar energy received on a surface per unit time
per unit area, is affected by solar elevation angle, haze effect, and cloud cover. While the
elevation angle is deterministically defined by the latitudinal location and the specific time of
the day/year [48], the cloud cover and the haze effect are stochastic. Consequently, the latter
make solar power generation of a PV module highly unpredictable and lead a clear cause of
uncertainty in microgrid operation.

A simple model for the PV power production is presented in [25]:

PPV(t) = PSTC

Gc(t)
GSTC

[
1 + α(Tc(t)− TSTC)

]
(2-5)

The nominal power PSTC , the cell temperature TSTC and the global irradiance GSTC under
Standard Test Conditions (STC) (1000W/m2, 25◦C) are usually provided from the manufac-
turers, together with the power temperature coefficient α. The nominal power PSTC is related
to the effective area of the installed module APV , together with the efficiency of the panels.
From a control perspective, the only action that can be performed on high level to maximise
power generation of a solar panel is to alter the tilt angle in order to modify the radiation
Gc incident on the surface. At a lower control level, for any value of solar radiation, there is
a unique point on the current-voltage characteristic of the solar cells at which they generate
maximum power. Hence, maximum power point tracking is a low-level control strategy used
to make solar cells generate power always at this point, but it is often already integrated
in the commercialised PV system, included the power electronics interface employed for the
DC/AC conversion.

2-3 Microgrid Modelling

For the purpose to locally control residential microgrids, it is common to use a hierarchical
control structure. In the literature this structure is often described by means of three broad
layers: a primary control that stabilizes frequency and voltage in the electrical network using
droop controllers, a secondary control that compensates the steady state deviations in voltage
and frequency, and a tertiary control whose objective is to define a supervisory strategy that
provides set-points to the main system components [64]. While primary and secondary con-
trols are managed by low-level controllers for the individual energy resources, tertiary control
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2-3 Microgrid Modelling 19

Figure 2-5: Model of residential microgrid. Electric (’yellow’) and thermal (’red’) networks.
Symbol ’∼’ represents uncertainty related to a stochastic process.

is implemented for a high-level centralized operator that deals with the medium-long term
behaviour of the microgrid: the EMS previously discussed.
At high level, the elements composing a residential microgrid can be represented in a flow
diagram (Figure 2-5). Each energy resource can be modelled separately and the instantaneous
balance of their input/output power flows serves the purpose of their dynamic coupling.
The variables involved in the description of microgrid dynamics are intrinsically hybrid in
nature. On one hand, discrete variables represent the functioning modes (on/off) of the con-
trollable energy resources integrated in the microgrid, whereas, on the other hand, continuous
variables describe the amount of production generated or exchanged with the storage elements
at any time instant. A Mixed Logical Dynamical (MLD) system is usually employed with
the purpose to model nonlinear microgrid dynamics in the literature [65, 38]. The procedure
was originally proposed in [7] in order to deal with easier tractability of on-line optimization
problems, due to MLD ability to convert all the nonlinear logical relations of an hybrid system
into constraints which are linear in the new variables. Hence, the modelled system can be
described by linear dynamic equations representing power balances within the microgrid and
a set of inequalities involving real and integer variables that represent logical and technical
constraints.

2-3-1 Power Balance

In the residential sector, when micro-CHPs are integrated in the system, the definition of
microgrids is extended to deal with thermal energy flows exchanged within the network.
Both electrical and thermal power have to be balanced in the microgrid at any time instant.
However, while heat can only be generated locally and has to be consumed on site, electricity
can flow back in the utility grid. Local balances of energy flows are expressed through the
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20 Microgrid: Description and Modelling

following equations, representing a discrete-time model with sampling time Ts:

QTES(t+ 1) = QTES(t) +QCHP(t) · Ts +QBOIL(t) · Ts −DQ(t) (2-6)
G(t) = DE(t)− PCHP(t) · Ts − PPV(t) · Ts (2-7)

The two typologies of power output, PCHP and QCHP , from the prime mover of the micro-CHP
are correlated through (2-1). Together with the heat generated by the auxiliary boiler QBOIL ,
they are the only controllable inputs of the system, and are supplied uniformly during a single
time step. The variables DE and DQ represent local demand of electricity and heat that have
to be satisfied within the microgrid during any time step, while PPV is the uncontrollable
power output produced by the PV panels for each time step.
We can clearly distinguish the different behaviours of thermal and electrical network: on one
hand, the dynamics of the thermal energy storage QTES is directly integrated in the model
by means of heat balancing (2-6) and provides the useful degree of flexibility in the operation
of the microgrid by decoupling thermal supply and demand, whereas, on the other hand,
the utility grid works as a sort of potentially infinite electricity buffer, so that the amount
of electrical energy exchanged with the grid G practically represents the local net imbalance
(2-7). For the whole thesis we keep the convention that considers G as positive when the
microgrid buys power from the main grid and negative when the microgrid sells power to it.
A different way to impose satisfaction of heat demand could be to consider the heat required
for residential space heating in terms of more relaxed thermal comfort constraints on desired
indoor temperature [10]. However, an additional thermal load model of the building should
be defined in this case to convert the heat variables in (2-6) in terms of temperature [82].

2-3-2 Operational Constraints

In the supervisory framework, fast dynamics of the generators are negligible, since the EMS
operates at sampling times in the order of several minutes. A set of binary variables (δCHP,
δBOIL) is used to model the discrete modes of the CHP and the auxiliary boiler, indicating
whether the generation process is active or not. Moreover, the dispatchable generators and
the storage system are forced to satisfy some technical constraints, which are presented in
detail in the following.

Micro-CHP Prime Mover Power output of the micro-CHP is limited by the maximum
generator capacity, depending on the choice of engine size. Furthermore, the generator is
unable to produce electricity below a certain operative threshold. Since from 40% of their
full capacity all the considered micro-CHP devices are able to modulate their power output,
the minimum output of the generator can be defined as a fixed percentage of their engine
size. The latter considerations lead to the following operational constraint for the micro-CHP
device:

minCHP · δCHP(t) ≤ PCHP(t) ≤ maxCHP · δCHP(t) (2-8)

where minCHP and maxCHP respectively represent the minimum and maximum electrical en-
ergy that the engine is able to supply to the network within one sampling time. Moreover,
the constraint (2-8) includes the logical implication that the generation mode (δCHP(t) = 1) is
equivalent to the effective power production (PCHP(t) > 0), whereas the ’off’ mode (δCHP(t) =
0) implies a null power output.
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2-3 Microgrid Modelling 21

No constraints about maximum amount of operational hours were found in the literature, since
micro-CHP engines "must operate for as long as possible in order to improve the economic
profitability of their implementation" [73]. However, a minimum running time can be set in
order to avoid frequent on/off switching of the engines, which could deteriorate micro-CHP
performance. The following constraints force minimum operation times (up time TUP , down
time TDOWN) in which the generator has to be kept on/off after a switching [65] :

δCHP(t)− δCHP(t− 1) ≤ δCHP(τ) τ = t+ 1, . . . , t+ TUP − 1 (2-9)
δCHP(t− 1)− δCHP(t) ≤ 1− δCHP(τ) τ = t+ 1, . . . , t+ TDOWN − 1 (2-10)

Indeed, the first constraint implies that, after a switching on of the micro-CHP (δCHP(t) = 1,
δCHP(t − 1) = 0), the engine has to keep working for TUP time steps (δCHP(τ) ≥ 1, for
τ = t+ 1, . . . , t+TUP − 1). Similarly, the second constraint implies that, after a switching off
of the engine (δCHP(t− 1) = 1, δCHP(t)=0), the operating status of the prime mover has to be
‘off’ for TDOWN time steps.

Gas-Fired Boiler The functioning of the auxiliary burner should also be modelled by means
of binary variables (δBOIL) and continuous ones (QBOIL) describing the generated heating
power. Then, operational constraints due to the limit on power output have to be considered
as follows

minBOIL · δBOIL(t) ≤ QBOIL(t) ≤ maxBOIL · δBOIL(t) (2-11)

where minBOIL and maxBOIL respectively represent the minimum and maximum thermal energy
that can be generated by the boiler within one sampling time.
The up/down operation times for the auxiliary burner can be neglected, since it is assumed
to have a very fast dynamics (within the sampling time). Differently, they could be modelled
in the same way as for the micro-CHP prime mover.

Hot Water Tank For thermal energy storage, the main parameter to be assessed is water
average temperature, since it is correlated to the energy density of the water tank according
to (2-4). An average temperature of required hot water for domestic use can be assumed
approximately 40-50 degrees higher than temperature of cold water supply (10 ◦C), according
to the cited studies. Hence, water tank has to maintain its temperature in the range of 40-
70◦C. Consequently, the thermal energy in the water storage has to be kept between a
minimum and maximum value, as follows:

minTES ≤ QTES(t) ≤ maxTES (2-12)

2-3-3 Stochastic Formulation

The residential microgrid has been treated up to now by analysing all its energy resources,
and modelled as a MLD hybrid system. However, it is fundamental to highlight that the
uncontrollable processes affecting system dynamics as external disturbances are intrinsically
stochastic and their behaviour has to be modelled and identified in order to include prediction
of the evolution of the whole system in the control strategy. Indeed, in Figure 2-3 the power
flows related to domestic demand and supply from renewable generation are purposefully
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marked by a ’∼’ sign.
When the model defined by (2-1) and (2-6)-(2-12) is used to investigate the future evolution of
power flows within the microgrid, heat and power demand (DQ , DE), together with the power
generated by renewable sources PPV , lead to the necessity to identify forecasting models able
to capture the dynamics of their behaviour. Many scientific studies aim to build deterministic
models of energy demand patterns and renewable generation that are unable to explain the
degree of uncertainty related to the forecasting procedure. However, the analysis of our work
aims to quantify the advantages for the control system when uncertainty is explicitly taken
into account in appropriate formulation of the mentioned stochastic processes.
Hence, in stochastic formulation, the three processes are modelled by separating their future
average value ( ·̂ ), deterministically forecast at each time step, from the additive uncertainty
perturbing the prediction ( ·̃ ):

DE(t) = D̂E(t) + D̃E(t)
DQ(t) = D̂Q(t) + D̃Q(t)
PPV(t) = P̂PV(t) + P̃PV(t)

(2-13)

2-3-4 Performance Indices

The control strategy implemented in the EMS aims should aim to maximise the operational
benefits of microgrid operation with respect to the conventional working conditions of an
household connected to the distribution network of electricity and natural gas. Performance
indices regarding primary energy consumption, emission savings and cost reduction are dis-
cussed in the following. Their employment will be used in this thesis to quantify the positive
impact of the installation of residential microgrids in the Netherlands. All the indices are
computed by considering a time span of a single year of microgrid operation. Consequently,
the yearly consumption for each of the energy needs is identified through a ‘Y’ superscript.

Primary Energy Savings Primary energy savings are computed by comparing efficiency of
centralised power generation and local distributed generation when new technologies are em-
ployed in the microgrid. Efficiency of power supplied by the utility grid strongly depends
on specific country infrastructure. In the Netherlands, centralised energy mix provides elec-
tricity with an efficiency of 44%, whereas transmission and distribution losses only count for
3.9% [19]. Therefore power delivered at our homes is supplied with a total grid efficiency
ηGRID=42.3%. The primary energy savings (PES) are analytically defined as the normalised
difference between the primary energy consumed in conventional generation (PESTD) and the
primary energy consumed when a microgrid is installed (PEMG), which will be better defined
in the next chapters.

PES = PESTD − PEMG

PESTD

PESTD =
DY

E

ηGRID

+
DY

Q

ηBOIL

(2-14)
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Emission Savings With a similar reasoning, we can compute emission savings when a mi-
crogrid operates (EMG) with respect to conventional centralised generation (ESTD):

EmS = EmSTD − EmMG

EmSTD

EmSTD = efGRID ·D
Y
E + efGAS ·D

Y
Q

(2-15)

The emission factor for electricity transmitted through the utility grid (efGRID) strictly de-
pends on the energy mix of the considered country. Due to the highly dependence on natural
gas (the ‘cleanest’ fossil fuel used for power generation), the emission factor of Dutch utility
grid is relatively low compared to other European countries [1], even though a large share
of the production is still handled by high-pollutant coal (Figure 2-2). On the other hand,
gas-fired engines, as condensing boilers or CHP prime movers have emission factors (efGAS)
related to the produced thermal energy [11]. The numerical values for the emission factors
employed in this thesis are reported in Table 2-2.

efGAS 230 gCO2/kWhth
efGRID 384 gCO2/kWhe

Table 2-2: Emission factors for gas-fired engines and for electricity distributed through the utility
grid [1, 11]

Cost Savings Economical benefits are the main factors that provide an incentive to cus-
tomers to invest in residential microgrids. These are mainly related to the reduced use of
primary resources during the operation of the microgrid. Standard costs in domestic energy
consumption (CSTD) are computed by considering market prices for electricity and natural
gas from the utility grid, and the correspondent cost savings are computed as follows:

CS = CSTD − CMG

CSTD

CSTD = cEL ·D
Y
E + cGAS ·D

Y
Q

(2-16)

Since liberalisation of the energy market has created a range of different prices for each
retailer, in this thesis we consider average costs in the Netherlands as defined in Table 2-
3. Moreover, the prices are assumed fixed in time, independently from the hour of the day.
Feed-in tariff is also included in this table to represent the price paid back from the retailer
to the prosumer when electricity produced in the microgrid flows back in the utility grid. In
this thesis we assume that this tariff is computed as the net price of supplied electricity from
the grid, hence excluding taxes and transportation costs from the gross tariff.

Natural Gas cGAS 7 ce/kWhth
Electricity cEL 18.5 ce/kWhe
Feed-in Tariff cFIT 6.5 ce/kWhe

Table 2-3: Average cost for domestic consumption in the Netherlands [84]
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Cost savings will represent the main objective of the control strategies proposed in this thesis
due to their direct incentive for private investors. Indeed, the only way to include more
factors, such as fuel and emissions reduction, in the mindset of an investor, and subsequently
push the expansion of residential microgrids, would be to convert and evaluate the previous
performance indices in terms of economical subsidies or incentives.

2-4 Conclusions

In this chapter we have exploited the concept of residential microgrids. First, we have provided
details on the distributed energy resources that can be installed in local networks to improve
efficiency and reduce emissions of the generation process for both electrical and thermal
energy. Later, we presented the high-level mathematical model employed by the EMS in
order to make decisions about the reference set-points of supply for the local controllable
generators. With this discussion in mind, we can now proceed to evaluate the benefits of
residential microgrids in the actual Dutch market, starting by the choice of their correct
sizing when average domestic demand has to be satisfied.
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Chapter 3

Economic Profitability: Investment in
Residential Microgrids

High up-front investment costs in distributed technologies is an important obstacle to the
spreading of residential microgrids. Therefore, when we evaluate the performance of a mi-
crogrid from an economical perspective, the initial investment cost represents a fundamental
parameter to be compared with operational savings during lifetime of the resources.
A government subsidy could help the economic profitability of the investment, motivated by
the reduction in CO2 emissions and the increase in energetic efficiency when distributed re-
sources are installed in Dutch houses. Indeed these factors can help in the direction to reach
the targets of Paris agreement [59], at least as regards the efforts in the residential sector.
Nevertheless, we did not investigate about actual subsidy policies in the Netherlands. Hence,
the whole thesis makes no assumption on cost reduction for the analysed resources and only
considers actual market prices.

This chapter is aimed to perform an investigation on the economic profitability for invest-
ment in distributed energy resources for Dutch households. Moreover, in order to consider
appropriate case studies for the evaluation of control strategies in residential microgrids, the
technologies and typology of customers are selected through economic motivation. The inves-
tigation starts from an analysis of domestic energy demand in the Netherlands in Section 3-1.
Then, in Section 3-2, potential benefits of investment in micro-CHP and PV solar panels are
evaluated for the Dutch scenario, and are employed to properly choose the customers and
the technologies of our case studies. Finally, in Section 3-3 the size of each energy resource is
selected, based on the potential economical savings led by microgrid operation, and two case
studies are ultimately presented.

3-1 Analysis of Energy Demand

Energy consumption patterns in residential scenarios are highly time-dependent and unique
for every household. They are characterised by high fluctuation of power demand on short
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Figure 3-1: Scatter plot of yearly consumption for 39 clients in Amsterdam, from the Liander
dataset [5]. Black ellipsis represent the contour plot of a bivariate Gaussian distribution having
centre in the point indicated by the red mark.

time scale, due to the stochastic behaviour of households. These patterns will be deeply
analysed in Section 4-2.
However, in this context, we are interested to highlight that the variability in power demand
strongly affects the operation of the energy resources integrated in the microgrid. The ag-
gregated measurements of consumed energy, usually available either on spatial or temporal
scale, are unable to take into account peaks and oscillations of actual small-scale demand that
could not be covered by the local supply during the operation of the controlled system.
For this reason, we started this thesis work by searching for granular data regarding actual
energy consumption in Dutch houses. Indeed, since one of the main targets of this thesis is
to analyse the practical implementation of an EMS on case studies inspired by real life, we
decided to avoid data manipulation used to build simulated reference profiles.

Real data for residential consumption were obtained from open-source dataset by Liander,
the largest utility company operating in the Netherlands [5]. The available data for gas and
electricity cover a single year of measurements collected by smart meters installed in 80 houses
in Amsterdam.
Electricity measurements are expressed in kWh consumed on 15-minutes scale, whereas gas
consumption is measured in m3 on an hourly basis. We assumed all the gas to be consumed
for thermal needs (negligible cooking activities) and converted the used volume of gas to
thermal demand. Net calorific value (ρLHV) of natural gas in the Netherlands is approximately
equivalent to 38.05 MJ/m3 (=10.57 kWh/m3) [18], whereas energy efficiency of gas-fired
condensing boiler (ηBOIL) is assumed to be 100%, as explained in Section 2-2-2. Hence, the
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conversion process can be expressed as follows:

DQ(t) = ηBOIL · ρLHV · VGAS(t) (3-1)

where VGAS is the hourly gas consumption collected in Liander dataset.
After this procedure, households have been characterised according to their yearly energy
consumption (DY

E , D
Y
Q ). In Figure 3-1 a scatter plot represents heat and electricity demand of

the considered customers. Their correlation and distribution are approximated by a bivariate
Gaussian distribution, whose contour plot is showed through elliptic black lines. The mean of
the distribution is marked in red and represents average consumptions for Dutch households:

D̄Y
E = 3.5 MWh D̄Y

Q = 14 MWh

In this thesis we decided to consider only households who are close to the average consumption,
in order not to bias the subsequent discussion. Hence the clients from the Liander dataset
are ordered by increasing Mahalanobis distance from the computed distribution and only the
first elements of the sorting are analysed as potential investors in a residential microgrid. The
Mahalanobis distance is a metric function employed to measure the distance of a single point
from a probability distribution. Mathematically, it is defined for our case as:

M =
√

( ~DY − D̄Y)TC−1( ~DY − D̄Y) (3-2)

where D̄Y and C represent the mean and the covariance of the demand distribution, while
~DY is the vector containing yearly consumption of electrical and thermal energy for each
customer.
Finally, we want to highlight here that, due to absence of more granular data from smart
meters, we have been forced to employ a sampling time Ts of one hour to simulate and
control the microgrid (modelled in Section 2-3) for the rest of the work. For this reason, the
values of power supplied from the generators within a time step, expressed in kW, will be
numerically equivalent to the delivered energy expressed in kWh.

3-2 Initial Economic Assessment for the Dutch Scenario

In this section, we want to quantify operational economical savings and perform an investi-
gation on the economic profitability for investment in distributed energy resources for Dutch
households.
The up-front investments (I) for microgrid technologies are usually approximated as costs
that increase linearly with resource size (S). An investment is considered profitable if the
pay-back period due to operational savings that the technology entails is shorter than the
lifetime (l) of the considered resource. In order to compare the up-front costs and the bene-
fits due to the installation, the ‘annualization’ procedure is used to rescale the investment on
a single year of operation, in which the operational savings are computed [11]. Once defined
an inflation rate (r = 3% per year), the annualized investment for a single resource can be
approximated as follows:

Iann =

 r · (1 + r)l

(1 + r)l − 1


︸ ︷︷ ︸
annualization : a(r,l)

·I = a(r, l) · Iu · S (3-3)
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CHP Lifetime lCHP 15 years
CHP Investment ICHP

u 3000 e/kWe
CHP Maintenance cO&M 1.5 ce/kWh

Table 3-1: Economical parameters of micro-CHP engines [11]

where in the second equation we substituted the up-front investment (I) with the product
between the unitary investment (per unity of resource, Iu) and the size of the considered
resource (S).

3-2-1 Potential Benefits of Micro-CHP

Micro-cogeneration technologies reduce the amount of primary resources required to supply
a fixed final energy use, due to their high overall efficiency, and, subsequently, they can lead
to additional economic and environmental benefits. Indeed, when micro-CHP are installed in
residential environments to provide local supply of both electrical and thermal demand, the
final customer will consume a larger amount of gas with respect to traditional supply through
domestic gas-fired boiler, whereas the electricity bill will be substantially reduced. Hence,
economical benefits in the operation of a micro-CHP fundamentally depend on the price for
gas and electricity in a specific country: the cheaper is the gas with respect to the electricity
from the utility grid, the more convenient CHP operation would be.
We highlight that the more electric power is locally supplied by the micro-CHP during opera-
tion, the larger the economical savings for the owner of the microgrid are, since the customer
avoids to buy it from the more utility grid.

Operational Savings In the following reasoning we assume that the heat produced by a
micro-CHP cannot be dumped. Hence, the installation of a hot water tank is necessary to
store the heat and reuse it when the household requires it. Furthermore, we assume infinite
capacity of the thermal energy storage in order to neglect practical operational constraints
and completely decouple thermal demand from thermal supply. This assumption simplifies
the discussion regarding the choice of micro-CHP engine, whereas thermal storage is only
reconsidered in Section 3-3-2.
When this situation occurs all the generated heat can be employed to satisfy the local demand
DQ , and we can compute the amount of extra gas (∆GAS) which has to be burned with respect
to the standard thermal supply with an highly efficient boiler. In the equation below the
efficiency ηBOIL is assumed to be unitary, while the fuel quantities fCHP and fBOIL are computed
through formulas (2-1) and (2-3) in case of balance between supplied and demanded heat:

∆GAS := fCHP − fBOIL =

=
DQ

ηCHP, th

−
DQ

ηBOIL

=
1− ηCHP, th

ηCHP, th

·DQ

(3-4)

At the expense of burning ∆GAS the micro-CHP system provides to the final customer the
electric power PCHP defined in (2-1), together with the generated DQ(= QCHP · Ts). Hence,
the net additional efficiency of the CHP can be defined as the ratio between provided electric
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energy and additional burned gas :

η̄CHP := PCHP · Ts
∆GAS

=
ηCHP, el

1− ηCHP, th

(3-5)

Finally, unitary cost per kWh of the energy supplied by the CHP engine, can be computed
as the sum of fuel cost and maintenance cost for engine operation:

cCHP = cFUEL + cO&M = 1
η̄CHP

· cGAS + cO&M (3-6)

As analysed in the Section 2-2-1, the efficiency parameters highly vary with the prime mover
technology of the system. However, in the following, total efficiency ηCHP, tot (2-2) can be
assumed fixed at 92% (top quality available engines [50]). In this case, the parameter η̄CHP only
varies with power-to-thermal ratio C = ηCHP, el/ηCHP, th , which becomes the most important
characteristic of the technology to focus on.
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Figure 3-2: Potential benefits for an average customer due to micro-CHP supply with respect
to conventional centralised generation

In order to fully exploit the potential of CHP operation, we assume that all the electricity can
be produced locally as soon as co-generated heat is not larger than requested yearly demand

EY
CHP = min

(
DY

E , CD
Y
Q

)
(3-7)

In this way, operational supply has a different impact according to the relation between
power-to-thermal ratio C of the prime mover and customer ratio between electric and thermal
consumption Ccust:

• when C is smaller than Ccust, CHP yearly supply is limited by thermal demand
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• when C is larger than Ccust, CHP yearly supply has the potential to completely cover
electrical demand and lead to more cost-effectiveness for microgrid operation

Additional thermal and electrical demand that cannot be provided by the micro-CHP are
respectively supplied by the conventional 100%-efficient auxiliary boiler and the utility grid.
Performance indices are computed for an average household as expressed in (2-14)-(2-16),
where the values for the microgrid are substituted by the following parameters for primary
energy consumption, emissions and costs:

PECHP =
EY

CHP

ηCHP,el

+
(DY

Q − E
Y
CHP/C)

ηBOIL

+
(DY

E − E
Y
CHP)

ηGRID

EmCHP = efGAS · (EY
CHP/C) + efGAS · (DY

Q − E
Y
CHP/C) + efGRID · (DY

E − E
Y
CHP)

CCHP = cCHP · E
Y
CHP + cGAS · (DY

Q − E
Y
CHP/C) + cEL · (DY

E − E
Y
CHP)

(3-8)

In Figure 3-2, the three relative savings with respect to conventional residential supply are
represented, as functions of the varying power-to-thermal ratio. We can clearly observe that
savings increase with electrical efficiency, making potential benefits from fuel cells (C = 1) the
highest. However, present high investment cost for fuel cells (about double w.r.t. other prime
movers) cannot compete with more widespread traditional technologies. For these reasons we
decided to consider an Internal Combustion Engine (ICE) (C = 0.3) in both our case
studies.

Investment An installation cost of 3000 e/kWe is considered as a good linear approximation
for the reference price of a gas-fired micro-CHP prime mover [11]. When a Dutch household
invests this amount of money for an engine with an expected 15 years lifetime, a minimum
yearly electricity consumption is required to pay back the investment.

In Figure 3-3, economical savings obtained when electricity is produced by an installed micro-
CHP are plotted in blue over power-to-thermal ratio of the prime mover. The curve represents
the difference between standard cost of electricity in the Netherlands and cost of CHP local
supply defined in (3-6).
In the same figure, red line shows the amount of electricity that the smallest (and cheapest)
micro-CHP available on the market (1kWe) has to supply per year to the final customer in
order to pay back the initial investment within CHP lifetime. The investment is annualized
at an interest rate of 3%/year through the formulation expressed in (3-3). Clearly, when
this minimum yearly supply is less than cumulated user demand, investment in micro-CHP
will not make any sense from an economic perspective. Since a Dutch household averagely
consumes 3.3 MWh of electricity per year (Enerdata, [19]), it seems that investment in micro-
CHP is not profitable for single households in the Netherlands.
Moreover, it is important to consider that up to now we have considered optimal conditions
for CHP supply, where no operational or technical constraints are taken into account and
the heat storage has potentially infinite capacity. However, when instantaneous demand is
larger than nominal power rate of CHP during run-time operation, electricity has necessarily
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Figure 3-3: Economical benefits of micro-CHP installation in the Netherlands. Blue line shows
cost savings of electrical local supply w.r.t. conventional grid supply - Red line shows the minimum
yearly consumption which pays back the investment within CHP lifetime.

to be supplied from the utility grid. This means that actual demand to motivate the invest-
ment should be largely higher than the computed value for minimum supply, and only very
high-demanding households could economically benefit from the installation of micro-CHP
at present time. Hence, a more beneficial option would be to install the CHP system in
multi-family apartment complexes.

To this purpose, we have investigated the effects of micro-CHP systems employed to cover
domestic needs of a larger number of families. In this analysis we have used Liander dataset
and considered the following limits for a given size of a CHP gas-fired engine:

• Minimum suppliable electricity to pay back the installation costs: through previous
comparison between operational savings and up-front investment we considered that a
micro-CHP system based on ICE has to supply at least 4MWh of electric power per
year (Figure 3-3).

• Maximum suppliable electricity: when an engine runs continuously for a whole year, it
clearly reaches the physical limitation of 8760 operational hours (number of hours in a
year).

• Maximum satisfiable demand: electric demand that exceeds the maximum power rate
of a CHP system is excluded from the computation of satisfiable demand.

In Figure 3-4, satisfiable demand is plotted for an increasing number of families. Optimal size
of the engines for each number of families are represented by red marks and are computed
as the values that produce the maximum gap between satisfiable demand and minimum
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Figure 3-4: Potential supply versus satisfiable demand. Optimal size of CHP engines for increas-
ing number of families

generation. Indeed, for these values the potential economic savings are maximised for the
investors. As we observe from the plot, a residential microgrid composed by 1-3 families
should invest in CHP engines with a size smaller than 1kWe, but this technology is not
available on the market. Moreover, considering that the investigation was performed in the
‘optimal’ scenario of perfect knowledge about hourly consumption of the households, even
the scenario with 4 average families would require an engine size too close to the market limit
to allow a profitability gap in the investment. Hence, in order to justify the investment for a
micro-CHP in the residential sector, we proceed in this thesis work by assuming the customer
to be composed by 5 average households willing to share the investment in distributed
energy resources in a multifamily building.

3-2-2 Potential Benefits of Solar Panels

Installation of PV panels was considered in order to integrate a renewable energy resource in
the residential microgrid. For this reason, a model to simulate power supply of the modules
based on weather variables was defined in (2-5).
However, the simplest model for PV supply is represented through the approximation of a
fixed efficiency of the photovoltaic conversion ηPV , independent from cell temperature. Hence,
if we set the coefficient temperature α = 0 in (2-5), and we make the dependence from the
area of the module APV explicit, we obtain the direct proportionality between the incident
radiation on the module surface and the supplied power:

PPV(t) = ηPV ·APV ·Gc(t) (3-9)
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Figure 3-5: Components of solar radiation on PV panels: direct, diffuse and ground-reflected
[61]

In this way the photovoltaic efficiency is expressed as the ratio between the nominal power
yield per unit area of the module and the standard solar radiation GSTC= 1kW/m2, as follows:

ηPV = PSTC/APV

GSTC

(3-10)

The climatological database from the ‘Ministerie van Infrastructuur en Milieu’ [42] has been
used to provide hourly measurements of global irradiation, the main parameter affecting solar
power supply. The closest meteorological station to Amsterdam that we have selected for the
simulation is located in Schiphol.

Tilted Angle When PV panels are mounted on a rooftop the geometry of their surface
is characterised by a tilt angle with respect to the ground (γ) and an azimuth angle with
respect to the south (ε). Both these variables are usually adjusted in order to maximise the
optimal yield of the module over an entire year, thus increasing the profitability of the up-
front investment.
However, in order to compute global radiation incident on a tilted surface, it is necessary to
highlight that solar radiation can be modelled as the combination of a direct and a diffuse
component (the reflected component is usually neglected), which act in a different way on a
flat surface (Figure 3-5). The direct radiation, or beam radiation B follows the direction of
solar rays and describes the solar radiation travelling on a straight line from the sun down to
the surface of the earth. On the other hand, the diffuse component D describes the radiation
that has been scattered by molecules and particles in the atmosphere, and it is often modelled
as uniformly distributed in the sky. Hence, the amount of direct radiation is maximised when
the surface of PV panels is perpendicular to sun rays, whereas the diffuse radiation only
depends on tilted angle and is always maximum for horizontal panels, which receive sunlight
from the whole hemisphere. Solar radiation data are usually available for horizontal surfaces.
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Figure 3-6: Yearly incident radiation on a PV module in Amsterdam w.r.t. its tilt angle γ. The
azimuth angle is fixed at ε∗ = 2◦W

Indeed, also in our case, the employed dataset from the ministerial database provides the
global irradiation measurements for horizontal surfaces. Hence, a procedure to decompose
direct and diffuse components (B0, D0) of solar radiation is applied on the dataset, according
to [16].
Finally, the optimal panel angles (γ∗, ε∗) have been numerically computed by optimising the
sum of global irradiation incident on an arbitrarily oriented surface for a period of 5 years
(2006-2011). Indeed, the hourly global irradiation is a function of both solar coordinates
(varying with time of the day and day of the year) and panel coordinates [77]. We considered,
for our case studies, that the choice of the angles could be arbitrary and independent from
building structure or orientation. Clearly, if this is not the case, limited choices of angles have
to be imposed, thus decreasing the optimal yield of the PV system.
For our scenario the selection of γ∗ = 30◦ and ε∗ = 2◦W leads to an increase of more than
10% in the annual incident irradiation with respect to horizontal panels. A simplified one-
dimensional plot is shown in Figure 3-6 to highlight the variation of the incident radiation on
the inclined surface with respect to the tilt angle γ, when the azimuth angle is kept fixed.
In the following of this thesis we have employed the selected panel orientation to compute the
hourly incident solar radiation Gc(t) leading to PV power supply for case study ‘B’.

Investment When a customer invests in a PV system, it has to properly choose the amount
of modules, the electric interconnection between them, their geometric orientation, and the
electrical characteristics of power and voltage output of the single panels [48]. In a simplified
analysis, we assume that the considered panels have an approximately fixed efficiency ηPV =
0.16 (good market availability, [11]), the orientation is set according to the analysis of previous
paragraph, and the only decision parameter left for system description is the effective area
covered by the modules APV . Indeed, the interconnection topology only affects voltage output
(not explicitly considered in this thesis), while the amount of panels is strictly correlated to
the defined area.
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PV Lifetime lPV 20 years
PV Investment IPV

u 1800 e/kWp
PV Efficiency ηPV 16%

Table 3-2: Techno-economical parameters of PV module [11]

As we highlighted in (3-10) the conversion efficiency ηPV links the peak power supplied under
STC (PSTC) and the effective area covered by the PV system. This means that we can
equivalently select the area or the nominal power peak of the system. For instance, an
efficiency ηPV of 16% implies that a module of 1m2 produces an electric peak power of about
160Wp when irradiated in STC.

Nowadays, an average installation cost for a 16%-efficiency PV system is about 1800e/kWp,
including the necessary devices for power conversion and electronic interfaces [11]. The same
system, optimally oriented on a rooftop in Amsterdam, yields approximately an yearly supply
PY

PV of 1.1MWh, the numeric equivalent to the incident solar radiation per squared meter
shown in Figure 3-6. Since a PV system does not lead to extra operational costs during its
lifetime, a rough estimation of photovoltaic generation cost in the Netherlands can be easily
performed as:

cPV = IPV
u

lPV · PY
PV

≈ 8ce/kWh (3-11)

Economical savings with respect to the purchase of electricity from the utility grid (cEL=
18.5ce/kWh, Table 2-3) are evident. However, it is fundamental that the PV supply is
mostly locally consumed and that the system is correctly sized.

3-3 Optimal Sizing of Energy Resources

Once the technologies to be installed in the residential microgrid have been selected and
the typology of beneficiaries have been defined in terms of specified electrical and thermal
demand, we are left with the objective to optimally choose the size of each energy resource,
based on the potential economical savings that their operation would lead for the investors.
The problem of optimal sizing is built as a simulation of microgrid operation (2-6)-(2-12) where
sizes of the energy resources are left as decision variables. Under the simplified assumption of
perfect knowledge of both consumption and renewable supply on hourly basis, the difference
between yearly operational savings and annualized up-front investment is minimised.

It is well known that mixed integer programming problems are NP-complete and their com-
putational complexity mainly depends on the number of integer variables [63]. Hence the
optimisation problem increases its complexity with the amount of time steps considered in
the simulation. In order to reduce problem complexity a choice of representative ‘typical days’
is performed before solving the actual sizing problem.

3-3-1 Selection of Typical Days

The basic idea of typical days is to select some representative days of the year that, repeated,
can reproduce the energy demand of the whole year [62]. For this reason, hourly electrical
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36 Economic Profitability: Investment in Residential Microgrids

and thermal demand of the customers are discretized in Nel and Nth intervals of equal width.
The distribution of occurrences in each interval defines two cumulative energy density curves:
CEDel and CEDth. In the next discussion we will use the nomenclature

CEDk
i,j

to define the number of occurrences of demand k ∈ {el,th} in the j-th interval of the distribu-
tion for the i-th day. Therefore, the selection of typical days is mathematically defined as the
search for a reduced subset of days that, repeated with their corresponding weights (RPi),
approximate the yearly cumulative energy density.

Mathematical formulation An optimisation problem which selects T typical days over a
specific period of N days is set as a mixed-integer-linear problem where δi binary variables
define whether day i is considered or not among the typical ones. Hence, the repetition factors
RPi are allowed to be strictly positive if and only if the corresponding binary variable is equal
to 1 (selected day). Moreover, the choice of T days is considered as an upper bound, instead
of a perfect equivalence, because of a decreased computation complexity in the optimization
problem. Hence, the two following constraints describe the selection procedure:

for i = 1, . . . ,N : RPi ≤ N · δi
N∑
i=1

δi ≤ T
(3-12)

The objective of the optimisation is to minimise the difference between the CED of the whole
period and the CED of the repeated typical days, for both the typologies of demand (thermal
and electrical). Relative errors for each interval of the two distributions are defined at this
purpose, and their sum is minimised as follows:

min
RPi,δi

Nel∑
j=1
|eel
j |+

Nth∑
j=1
|eth
j | (3-13)

for j = 1, . . . , Nth : eth
j =

N∑
i=1

RPi · CEDth
i,j

N∑
i=1

CEDth
i,j

− 1

for j = 1, . . . , Nel : eel
j =

N∑
i=1

RPi · CEDel
i,j

N∑
i=1

CEDel
i,j

− 1

(3-14)

In the equalities (3-14) the denominators are set equal to 1 in the cases in which no occur-
rences of hourly demand happen for the specific intervals during the N days, in order not to
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Figure 3-7: Comparison between CED of the whole year (blue bars) and CED of typical days
approximation (red dots). Top figures represent the first approximation with 24 days (average
error 29%). Bottom figures represent the approximation after recombination procedure with peak
days (average error 21%)

incur in infinite values.
To conclude, minimisation of (3-13) subject to the constraints (3-12) and (3-14) represents
the mathematical formulation to solve the selection of typical days and find their optimal rep-
etition factors. For computational purpose, in algorithmic implementation the cost function
(3-13) is transformed into a linear cost through the application of a common ‘trick’ used for
absolute values. The slack variables e are substituted by a set of positive variables e+ and
e−, such that

e = e+ + e−

and the absolute values can be removed.

Procedure and results Due to the high computational complexity related to the amount
of binary variables when a whole year is considered (365 binary variables), the problem has
been reduced and slightly approximated. A single year has been divided into six periods of
two months. For each period 4 typical days have been chosen by solving problem (3-12)-
(3-14) with T = 4. Finally, peak days of both electric and thermal demand were added
and recombined with the 24 typical days, in order to include the most demanding, even
though rarest, situations in the simulation period for optimal sizing [62]. In the recombination
procedure, the problem (3-12)-(3-14) is simplified in a linear version without the use of binary
variables: days are already chosen, only their repeating factors are recomputed. Final results
lead to an approximation within 21% of average error, improving the first result of 29% when
no recombination is applied. The comparison between yearly CED and its approximation is
plotted in Figure 3-7. Logarithmic scale has been chosen to better analyse the results.
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38 Economic Profitability: Investment in Residential Microgrids

TES Lifetime lTES 15 years
TES Investment ITES

u 3 e/l

Table 3-3: Economical parameters of TES [11]

3-3-2 Sizing Problem

The optimal sizing problem is formulated and implemented under the assumption that re-
peated typical days represent operation over an entire year.
The objective of the optimal sizing problem is to choose the sizes (Sj) of the energy resources
that the investor decides to purchase, in order to maximise the economical benefits of micro-
grid operation during their lifetime lj . The operational costs CMG are computed through the
simulation of the microgrid during a whole year, represented by selected typical days. The
up-front investment for energy resources are approximated as costs that increase linearly with
resource size and annualized as in (3-3).
The simulation of microgrid operation is modelled as in Section 2-3, thus defining problem
constraints. However, the constraints (2-8) and (2-12) are extended in order to include size
variables Sj . The minimum operating times TUP and TDOWN of the CHP, showing up in
constraints (2-10), are respectively set to 1 and 0 hours [38]. In case ‘B’, the supply of PV
modules is described by (3-9), where incident radiation Gc(t) has already been precomputed
in Section 3-2-2. Finally, in order to distinguish between electricity flows from or to the utility
grid the electric imbalance G is decomposed into two positive variables, as follows:

G = G+ −G−

With the defined constraints, the cost function of the optimisation problem is aimed to min-
imise the sum of both the yearly operational costs and the annualized investment costs:

min
T∑
i=1

24∑
k=1

RPi · CMG(i, k) +
∑

j∈DER
Ijann(Sj) (3-15)

Microgrid costs at any time step are computed as the sum of four different components: the
cost for the burned fuel (both fCHP and fBOIL), the maintenance cost of the CHP engine
(computed with respect to its supplied electricity), the cost of electricity purchased from the
utility grid (G+), and the revenue (negative cost) of the electricity sold back to the grid (G−).
Therefore, CMG is mathematically defined, for each hour i of the day k, as:

CMG(i, k) =
(
fCHP(i, k) + fBOIL(i, k)

)
· cGAS +

(
ηCHP, elfCHP(i, k)

)
· cO&M+

+G+(i, k) · cEL −G
−(i, k) · cFIT

(3-16)

Investment parameters of each energy resource (DER ∈ {CHP, PV, TES}) are respectively
defined in Table 3-1, Table 3-2 and Table 3-3. Maximum power rate of the CHP engine
(SCHP) and volume of the thermal energy storage (STES) are left as optimisation variables
for both the case studies; area of PV modules (SPV) is included for case study ‘B’. The size of
auxiliary boiler is not included in the optimisation procedure because we assume that gas-fired
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Internal Combustion Engine 1.3 kWe
TES 815 l (≈ 57 kWhth)
Up-front Investment 6358 e
Cost Savings 774e (9.4%)

considering investment: 249e (3.0%)
Primary Energy Savings 9.4%
Emission Savings 14.5%

Table 3-4: Case A: CHP+TES

Internal Combustion Engine 1 kWe
TES 815 l (≈ 57 kWhth)
PV panels 4.4 kWp (≈ 27.4 m2)
Up-front Investment 13320e
Cost Savings 1407e (17.0%)

considering investment: 435e (5.3%)
Primary Energy Savings 15.9%
Emission Savings 18.1%

Table 3-5: Case B: CHP+TES+PV

boilers are already available in most houses and do not represent an extra investment cost.
Its maximum power rate is considered equal to the thermal peak of the aggregated demand of
customers (60kWth), since the installed boilers should already be able to satisfy the demand
in the worst case.

3-3-3 Definition of Case Studies

The results of the sizing problem for the two case studies are here presented, respectively in
Table 3-4 and Table 3-5. Together with the cost savings, representing the explicit objective
of the sizing procedure, all the main performance indices described in Section 2-3-4 (primary
energy savings and emission reduction) are also showed.
Potential savings obtained by the optimization have to be considered as overestimated due
to the assumed known consumption of the households and known photovoltaic generation.
Therefore, the results will serve as theoretical benchmarks on which to evaluate the perfor-
mance of the control strategies discussed and implemented in the next chapters.

The installation of distributed energy resources indicates potential benefits for both the case
studies. However, we highlight that the employment of a PV system in case ‘B’ is strongly
motivated by larger economical savings on the long run, even considering the higher up-front
investment. Moreover, the size of the CHP engine is reduced in case of PV panels integration,
because of their capacity to supply energy at lower cost with respect to the micro-cogeneration
system. We want to observe, however, that the installation of the CHP engine is convenient
even in case of solar panels employment, due to its capacity of dispatchable supply.
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3-4 Conclusions

In this chapter we have analysed and discussed the profitability of investment in residential
microgrids at the actual market conditions, and through the data of real domestic consumption
of Dutch families.
A first important conclusion for our research regards the investment conditions in micro-CHP
systems. We have highlighted that the high cost of the technology does not allow a profitable
investment for a single Dutch family. However, a small ICE appears to be economically
competitive in multifamily buildings (with at least 5 families), even though its market price
should decrease in order to express the full potential of the technology.
Then, we analysed the economic benefits of roof-mounted solar panels and evaluated their
lifetime yield. Finally, by means of the previous considerations, we have defined two case
studies (with or without solar panels) and applied a method to optimally size the employed
resources in the corresponding microgrids. The conclusive results of this chapter represent the
initial step in order to begin to evaluate the practical effects of operational control strategies
implemented in a residential EMS.
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Chapter 4

Forecasting of Stochastic Processes

It is envisioned that the smart grid of the future will support large penetration of distributed,
intermittent generation resources, large-scale demand response, and plug-in hybrid electric
vehicles [3, 64]. Interconnected microgrid environments will employ intelligent and adaptive
elements that require advanced control techniques in order to work optimally. Hence, it seems
clear that research and development are taking a main direction: the integration of forecast-
ing technologies as a key input element to support the increasing ICT of the smart grid.
In our context, residential microgrid management and scheduling can considerably benefit
from accurate net demand forecasting, because economy of operations and control of power
systems are quite sensitive to information regarding future behaviour of the network. More-
over, an accurate prediction of power flows from prosumers can also help the aggregator on
the distribution level to obtain better information and impose real-time prices to implement
demand response policies.
Proceeding in our work, once the two case studies have been defined, the first step in order to
design and implement a local EMS is to build forecasting models of the uncertain processes
affecting the microgrid. Hence, on one side, we consider energy demand, represented by heat-
ing and electricity consumption of the households, while, on the other side, we focus on the
forecasting of renewable energy supply, which strongly depends on weather conditions.

In this chapter, we first analyse state-of-the-art forecasting methodologies and techniques
Section 4-1. Then, more attention is given to the specific topics of forecasting of energy
demand patterns (Section 4-2) and of solar power generation (Section 4-3).

4-1 Literature Background

Forecasting models are employed when it is reasonable to assume that some of the patterns
in past numerical data of a measured process are expected to continue into the future. Hence,
the predictions are based on solid and realistic data, and they can be considered accurate as
long as the derived model correctly represents the historical performance.
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42 Forecasting of Stochastic Processes

Given a specific time-dependent variable y, measured at discrete time steps t, we define its
k-steps-ahead prediction as:

ŷ(t+ k|k) = fk
(
X(t), X(t− 1), . . . , X(t−N)

)
(4-1)

where fk represents the general k-step-ahead forecasting model andX(j) is a vector containing
measured information at time step j of variables that are correlated to the variable of interest
y. Variables X are commonly called predictors and could contain both past values of y or
external explanatory variables. In cases in which the variable y(t) is self-correlated to values
adjacent in time (as it is the case for energy demand and renewable generation), the process
is said to be a time series.
With respect to the output form one aims to predict, two main typologies of forecasting
methodologies can be distinguished: in point forecasting the predicted output ŷ(t+ k|k) has
the form of a single numeric value representing the most probable event at time t+k, whereas
in probabilistic forecasting the whole probabilistic distribution of the dependent variable is
modelled and the uncertainty of its outcome is considered.

In general, there is not yet any single technique that is known to dominate all others for
a specific problem; data often determine which technique we should use, rather than the
other way around. For many techniques that rely on explanatory variables, an important
preliminary step is determining which input variables to use in forecasting models and their
functional forms. Then, forecasting models are built through a minimisation of prediction
errors, once a parametric relation between input and output of the model is assumed. Here
we want to present an overview of the most used basic forecasting approaches in the state-of-
the-art literature, inspired by the survey papers [33, 35].

4-1-1 Point Forecasting

Point forecasting methodologies can be considered as the traditional tool to estimate the
expected value of future events, based on available past and present data. The scientific
literature is rich in studies showing how to apply different techniques in order to obtain
precise and effective predictions, and a mature understanding of the topic has been reached
during the years. In the following, we present the most applied point forecasting techniques,
and finally we present the common metrics used to evaluate the prediction results.

Regression Model The regression framework includes the estimation of parameters in in-
put/output model whose functional form has been already predefined. Usually, linear regres-
sion is assumed in the model, due to the simplicity of the related estimation procedure based
on ordinary least-square method. Here, the linearity only refers to the dependence on the
parameters, whereas the independent variables can be any nonlinear function of the measured
variable determined by means of statistical analysis.
When nonlinear relationship with the parameters is allowed and defined, a more complex
estimation method has to be used [33].

Time Series Model Time series analysis is based on the assumption that adjacent points in
time of sampled recorded data are correlated.
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Most of the studies about time series are related to the assumption of stationarity in the
investigated process. A stationary time series is a stochastic process where the autocorrelation
does not depend on the specific time window in which it is measured. Hence, only the lag
between two points in time determines the autocorrelation between them [79]. Under this
assumption, the description of a stationary stochastic process is made by combination of
polynomials of three different forms:

• Autoregressive (AR) : it defines the dependence on p past values of the estimated vari-
able.

• Moving average (MA) : it defines the dependence on q values of a zero-mean white noise
series {w(t)}.

• Exogenous input (X): it defines a linear combination of b past explanatory variables.

A complete ARMAX(p, q, b) model is showed below for a better understanding, composed of
the three described polynomials:

y(t) =α1y(t− 1) + · · ·+ αpy(t− p)︸ ︷︷ ︸
AR

+ θ1w(t− 1) + · · ·+ θqw(t− q)︸ ︷︷ ︸
MA

+

+ β1u(t− 1) + βbu(t− b)︸ ︷︷ ︸
X

+w(t)
(4-2)

In our research we only focus on non-stationary time series such as energy consumption and
solar power generation, whose patterns are highly correlated to the specific hour of the day
that we want to forecast. In many situations, to face this non-stationarity issue, time series
can be thought of as being composed of two components: a non-stationary trend component
and a zero-mean stationary component. To this purpose ARIMA models are designed as a
broadening class of ARMA to include differencing operation (∆), which is recursively defined
as follows:

∆y(t) = y(t)− y(t− 1) ;
∆2y(t) = ∆y(t)−∆y(t− 1) = y(t)− 2y(t− 1) + y(t− 2)

(4-3)

The differencing of data at higher order allows the partial or total elimination of non-
stationarity [79]. Hence, ARIMA model can be build by using the series obtained after
differencing each of the polynomials in (4-2). Moreover, when data patterns are related to a
high seasonal fluctuation, some modification to the models can be made to include seasonal
lags. In this way SARIMA models are defined, that include the most complete description of
seasonal time series as load demand and solar generation.

Artificial Neural Network Artificial Neural Networks ANN are the most widespread tool
in machine learning thanks to their powerful computation ability. ANNs are computational
models whose structure is inspired by biological neurons [41]. Since the model is treated
as an input-output nonlinear black box, they are able to learn, to generalize, or to cluster
data. During the training phase, application of the back-propagation algorithm for a multi-
layer neural network is one of the key reasons that allows the network to include nonlinear
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functions in its structure [31]. With respect to statistical techniques, supervised ANNs can
discover nonlinear relations between input and output, such that the knowledge base of the
underlying model is inherently reduced. Hence, the steps to follow in order to design an ANN
are few: a correct choice of input parametrization, and a topological definition of the network
in its layer structure.

Support Vector Regression Support vector regression distinguishes itself from other meth-
ods of predicting continuous variables by exhibiting a high degree of generalization when in-
troduced to previously unseen data [40]. The algorithm aims at finding a nonlinear mapping
(kernel) of the input data into a higher dimensional space and then solving a linear regression
problem in this feature space. The estimated target is described by a linear combination of
preprocessed input mapped in the feature space.

Fuzzy Regression The fundamental difference between the assumptions of linear and fuzzy
regression relates to the interpretation of deviations between the observed and estimated
values. Whereas linear regression assumes that these values are measurement errors, fuzzy
regression assumes that they are due to the indefiniteness of the system structure. Hence,
instead of singletons, the regressors are assumed to be fuzzy parameters with a symmetrical
structure defined by their ‘centres’ and their ‘spreads’. When improving the underlying linear
model, one could observe a reduction in the fuzziness, which was originally recognized by
a deficient model [36]. An identification of the parameters can be formulated as a linear
programming. For more details, the reader is referred to [81].

Evaluation Metrics

Once a forecasting model has been trained on a specific dataset, through the estimation of
its parameters, prediction performance is validated by analysis of residuals (forecast errors
defined as e(t) = y(t) − ŷ(t)) on a different dataset. If the model fits well, the standardized
residuals should behave as a Gaussian distribution. One of the big problems with non-
normality in the residuals is that the amount of error in the forecasting model is not consistent
across the full range of the observed data. This means that the predictive ability is not the
same across the full range of the dependent variable [87].
The most common computations of aggregate errors used to evaluate the prediction accuracy
of a forecasting models are:

• Mean Absolute Percentage Error (MAPE)

MAPE = 100
N
·
N∑
t=1

∣∣∣∣∣ e(t)y(t)

∣∣∣∣∣ (4-4)

This measure is not defined when the actual value y(t) can be null, as in case of ther-
mal demand. Hence, a weighted version named WAPE can be employed as an useful
alternative in these cases:

WAPE = 100 ·
∑N
t=1
∣∣e(t)∣∣∑N

t=1
∣∣y(t)

∣∣ (4-5)
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• Root Mean Square Error (RMSE), whose metrics is strictly related to the standard
deviation of the residual distribution:

RMSE =

√∑N
t=1 e

2(t)
N

(4-6)

4-1-2 Probabilistic Forecasting

The main drawback in point forecasting is its inability to report a probabilistic answer to
prediction accuracy. Hence, point forecasting could be particularly failing when the process
we want to predict is highly stochastic as in the case of electrical load or heat demand in a
residential environment.
Probability represents an important tool in decision making frameworks because it provides a
mechanism for measuring, expressing and analysing the uncertainties associated with future
events. To improve the decision making and operational planning in a stochastic system, the
modeller should be aware of uncertainties associated with the forecasts, since the impact of
the uncertainty is reflected in a range of possible outcomes. Hence, despite the mature devel-
opments in point forecasting methods, a stochastic process should better be defined through
a model that has the ability to explicitly take its intrinsic uncertainty into account. These
kind of models are named as probabilistic forecasting.
In the last years, researchers have been moving from the traditional deterministic decision
making framework to its probabilistic counterpart [35]. In the scientific literature, the un-
certainty of point forecasting model is usually defined by the distribution of residuals. This
distribution can only be analysed ex post, when the values of the dependent variable are ac-
tually observed. However, most of the probabilistic forecasts have been based on immature
methodologies, such as simulating residuals using a normal distribution assumption [87].
In the following subsections a complete guideline to how probabilistic forecasting can be
categorized and evaluated is presented, based on the study in [35].

Output Form

A probabilistic forecasting can have different output forms for the estimated conditional dis-
tribution of the dependent variable: known density function, discrete empirical distribution,
or prediction intervals. While from the continuous density function we can always retrieve
both the other two forms, the opposite is not possible. However, as it will be analysed in
Section 5-4, a continuous density function is not useful from a practical point of view, since
it makes a numerical optimization procedure intractable. Hence, forecasting methods that
produce directly either empirical distribution or prediction intervals for the random variables
are usually considered.

Empirical Distribution Empirical (or discrete) distribution is used to describe a sample of
Ns realizations of a given random variable. The intuition is that if the samplings are rep-
resentative of the original population, then the empirical distribution can be used to make
inference about the true one.
Scenario generation is the technique used to create a limited discrete distribution to ap-
proximate the true distribution of a stochastic process. Scenario generation methods can
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Figure 4-1: Example of tree structure with four scenarios [70]

well approximate distributions when the number of outcomes go to infinity, but can perform
poorly when using only a few outcomes [13].
An important consideration is that forecast trajectories of stochastic processes have generally
small differences at the initial stage of the forecast, then they tend to diverge because of the
increasing prediction horizon. For this reason, methods to reduce the number of representative
scenarios are applied in many situations with the purpose of improve problem tractability. For
instance scenario trees can be generated by an ensemble data by aggregating trajectories
over time, such that only significant branches are considered (Figure 4-1, [70]). A tree serves
the scope of embedding ensemble data while exploiting more information about its structure,
since it specifies moments when some of the uncertainties in the scenarios are resolved in
branching points. At any bifurcation of the tree, the entire set of possible scenarios splits in
mutually exclusive subsets, called branches. Indeed, from that moment on, an observation of
the random variable will have unequivocally recognized which relative ensemble member has
occurred.

Figure 4-2: Quantile forecasts of monthly peak load for a US utility [35].

Prediction Intervals Prediction intervals are an alternative and more compact way to de-
scribe the output of a probabilistic forecasting. A prediction interval is comprised of upper
and lower bounds that bracket a future unknown value with a prescribed probability level.
In order to better analyse prediction intervals, the notation regarding quantile forecasts has
to be introduced. A q-quantile forecast is a specified quantile of the forecast distribution. It
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is a single-value prediction representing a cut-point that splits the cumulative distribution
function F of the predicted data around the probability level q [35]. It can be computed as
the minimum value such that the estimated distribution of Y , conditioned on the measured
predictors U(t), is larger than the fixed level q :

ŷq(t+ 1) = inf
{
y : FY |U(t)(y) ≥ q

}
(4-7)

Consequently, a prediction interval (PI) can be built by using symmetric quantile forecasts
as interval extremes, as follows

(1− α)% PI = [ŷ(α/2)(t+ 1), ŷ(1−α/2)(t+ 1)] (4-8)

An example of prediction interval is plotted in Figure 4-2, where α = 0.2 has been chosen for
the quantile forecasts. The 80% prediction interval is therefore comprised between the 10-th
quantile (green line) and the 90-th one (red line). Prediction intervals take into account the
tails of the distribution as well as the centre. As a result, they have great sensitivity to the
assumption of normality.

Methodologies

Many probabilistic forecasting techniques and methodologies have heavy computational re-
quirements. However, since point forecasting has reached a solid maturity in the scientific
literature, it is usually more useful to focus on extending those techniques traditionally based
on point forecasting.
Indeed, the requested probabilistic framework can be formulated once a simple point fore-
casting model has been applied to identify a stochastic process. In the post-processing, either
a distribution on residuals is estimated to simulate the unmodelled uncertainty, or many
single-value forecasts can be combined together in a probabilistic fashion. In the first case,
residual distribution can either be parametrized when its shape is assumed to be known,
e.g. Gaussian, or computed through discrete approximation in non-parametric form. On the
other hand, a combination of point forecasts can result in an interesting and valid approach
in order to build a probabilistic forecast. For instance, bootstrap method is one of the most
common techniques in probabilistic framework, based on the combination of an ensemble of
single-value forecast models. This technique is applied for neural networks in order to build
prediction intervals [41], or for nonlinear regression models to build empirical distributions
[23].
On the other hand, methodologies applied to directly produce a probabilistic forecast are also
widely researched and are worth to be mentioned here. They can be distinguished into two
different groups, based on their original purpose: methods in which point forecasting tech-
niques are extended to deal with probabilistic framework in the identification process [46],
and methods entirely based on stochastic analysis (i.e. Bayesian networks [28] and Markov
processes [69]), commonly based on the discretisation of the forecast probability distribution.
The simplest methodology in this context is the approximation of the predicted distribution
by means of the relative frequency distribution, built through historical data for each time
slot of interest [58].
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4-2 Energy Consumption Patterns

Energy demand is a major source of uncertainty in microgrid short-term scheduling. Within
the innovative context of smart buildings, it is essential to retrieve information about the
energy behaviour (electricity and heat demand) of the household.
Two types of approaches for energy estimation in buildings are possible [26]:

• The forward approach (‘white-box’) utilizes the equations modelling the physical be-
haviour of the system to predict the energy demand. However, the model would require
availability of information about building design data and household habits.

• The data-driven approach (‘black-box’) utilizes the data containing the records of input
and output variables which govern the performance of the system. Data-driven tech-
niques have the advantage of identifying and discovering models from large datasets by
means of the forecasting techniques previously described.

In the following discussion, a data-driven approach will be tacitly assumed.

Demand forecasting can be classified according to the scope and the aim of the prediction.
The scope indicates the period of time to be predicted, i.e. the prediction horizon. A rough
classification in short and long term load forecasting, with a cut-off horizon of two weeks is
usually adopted [35]. On the other hand, the aim of the prediction indicates the number
of variables which have to be predicted. In this context, we distinguish between prediction
of a single variable (e.g. load of next hour or next day) and prediction of multiple values.
Our main interest for the purpose of this thesis is to consider short term load forecasting
for multiple temporal intervals, such as hourly forecast of next day. This kind of forecast is
defined as load profile.

Even though load forecasting has been a fundamental business problem since the origin of the
electric power industry, most of the research until now traditionally refers to predict the ex-
pected electricity demand at aggregated levels, since it represents the most useful information
for centralised network management [33]. Traditional load point forecasting has been widely
applied through both statistical and machine learning techniques in order to estimate future
load profiles of single households. However, as the spatial scale of prediction decreases (dis-
aggregated consumption), the intrinsic stochastic behaviour of the end users becomes more
difficult to predict and a larger amount of data are requested for the identification of the fore-
casting model. The massive smart meter deployment over the past decade has provided the
industry with a huge amount of data that is highly granular, both temporally and spatially.
Hence, more user-specific models have been built with the purpose to integrate accurate in-
formation in local EMS.
Indeed, in these conditions of high granular stochastic process, both on temporal and spatial
scale (5 aggregated households), we need to focus our attention on probabilistic forecasting. A
measurement of prediction uncertainty is really valuable when it comes to predict stochastic
time series of small scale energy demand.
As first step of our forecasting procedure we want to compare performance of different pre-
diction techniques on the hourly electrical and thermal load. Then, we start from that basis
in order to identify a probabilistic forecasting model.
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Figure 4-3: Autocorrelation of demand, plotted over hourly lags. Electrical consumption on the
left and thermal consumption on the right.

4-2-1 Prediction Factors

Domestic demand can be considered as a non-stationary time series with strong seasonality.
Three seasonal patterns are often being investigated in energy consumption: hour of a day, day
of a week and month of a year. Moreover, many studies have proved that weather variables,
such as average temperature and global solar irradiation, are highly correlated with electrical
consumption [32]. Similarly, energy consumption related to the heat demand in a residential
building is dependent on a huge number of external factors. Among them we can highlight
two main variables: average outside temperature and behavioural patterns of the occupants
in the house, which represent the strongest cause of stochasticity [74].
Independently from the model we want to use for prediction, a fundamental step for build
any forecasting model is to properly select its input signals, called prediction factors. Due
to the high volatility of the analysed processes, a point forecasting model that does not
consider external explanatory predictors (e.g. temperature, sunlight, occupancy at home) is
not expected to be very accurate. However, the consideration of explanatory factors would
force the EMS to highly increase its complexity due to either a communication link with a
meteorological service or the presence of additional local sensors to be installed in the building.
Hence, the forecasting methodologies implemented in this thesis are only founded on local
measurements of energy consumption in Dutch houses, and no external information is
employed or integrated in the EMS.

We start our analysis with the observation of the autocorrelation function of the time series
in Figure 4-3. The time series is the aggregated sum of electrical consumption of 5 different
households in Amsterdam (from dataset [5]) and represents the electrical demand in the
microgrid that we have selected for our case studies.
Firstly, we highlight the strong volatility of the time series, as the correlation factor is largely
above 0.5 for many time instants in the past. This means that the autoregressive patterns are
not particularly strong and could not be sufficient to obtain an accurate forecasting model.
However, the main predictor factors can be observed from the plot: autoregressive components
for the last hours, and daily autoregressive components for the previous day (24-hour lag).
In the following the three main seasonal patterns are separately analysed and discussed.
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Figure 4-4: Daily demand along the year, data from [5]. Electrical consumption is shown on the
left and thermal consumption on the right.
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Figure 4-5: Demand for every day of the year. Electrical consumption on the left and thermal
consumption on the right. Red lines represent the average daily patterns.

Yearly Pattern Yearly seasonality can be more clearly studied if we analyse daily cumulative
demand during the year (Figure 4-4). The electrical demand varies substantially along the
year with a sinusoidal-like behaviour with a peak during winter season. The seasonality is
more evident for thermal demand, due to the correlation between space heating and environ-
mental temperature. Moreover, larger intra-seasonal oscillations in thermal demand could be
explained by peaks of colder periods.
In forecasting model the yearly pattern can be learnt by using predictors as day of the year,
over a period of 365 days, but due to our reduced dataset (a single year of measurements)
this pattern cannot be explicitly identified.

Daily Pattern Daily seasonality is the strongest characteristic of load curves. We can plainly
distinguish ‘morning’ and ‘evening’ peaks which are repeated on a daily basis for both the
energy needs. Apart from a strong volatility of demand behaviour (partially explained by
yearly seasonality) a daily pattern is visible for both the energy consumptions (red lines in
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Figure 4-6: Daily consumption for different weekdays. Electrical consumption on the left and
thermal consumption on the right. Top figures show average daily profiles, while bottom figures
cumulative daily demand.

Figure 4-5). This pattern cannot easily be represented by a known function and appears to
be highly nonlinear. Moreover, thermal consumption presents a visible clusterisation in two
groups, due to high-demanding winter and low-demanding summer days.

Weekly Pattern As regards the weekdays, we have not found any interesting pattern in the
datasets, as already observed in the autocorrelation plots of Figure 4-3. Indeed, the use of
day of week as a predictor in the identified models was found not to influence the accuracy
performance.
However, we can demonstrate the presence of clear correlation between consumptions and
typology of considered day (working days or weekends). As observed in Figure 4-6, the
difference is more evident for electrical consumption (left side). The cumulative demand
per weekdays (bottom figures) highlights that the consumptions during working days are
statistically equivalent.
Due to this analysis, we conclude that a boolean variable representing the typology of day
has the potential to improve forecasting models, even though it is not linearly correlated to
the demand.
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Figure 4-7: Naive forecasting model for electrical demand: average hourly consumption.
The ’blue’ line represents the consumption assumed by the model; the ’red’ line shows the standard
deviation of the prediction error for every hour, and the ’yellow’ line the same value normalised
with respect to the predicted value.

4-2-2 Benchmark: Naive Forecasting

Before proceeding with the identification and validation of forecasting models for the aggre-
gated energy demand in our case studies, we want to provide the reader with two benchmark
forecasting strategies (for electric and thermal consumption), which are inspired by the sci-
entific literature and employed to compare the prediction accuracy of our models.
The performance of forecasting models for electric consumption is evaluated with respect to
a naive methodology which assigns a specific load profile to every day. This benchmark case,
named time-of-the-day model, is built by computing the average values of the electrical
hourly consumption. We observe that, when a time-of-the-day model is applied, the predic-
tion error for every hour is strictly proportional to the actual value of consumption: the higher
the hourly demand, the wider the probability distribution of its occurrences throughout the
whole year. Indeed, the ‘yellow’ line in Figure 4-7, which represents the normalised error
deviation with respect to the naive prediction, is almost constant for any hour of the day.
On the other hand, since gas usage highly varies with seasons (due to space heating) a time-of-
the-day model results in very bad estimation. Hence, we assumed a persistence forecasting
model which assigns a daily load profile based on the consumption of the previous day. Perfor-
mance accuracy of the two models are presented in Table 4-1 in terms of RMSE and MAPE.
For thermal demand, due to hourly intervals of null consumption, the latter cannot be defined

MAPE (WAPE) RMSE
Electrical Demand 27.3% 840 Wh
Thermal Demand ( 42.8% ) 5.95 kWh

Table 4-1: Performance of the benchmark models
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Electrical Demand Thermal Demand
Technique MAPE [%] RMSE [Wh] n-RMSE [-] WAPE [%] RMSE [kWh] n-RMSE [-]
SARIMA 42.8 ± 1.3 982 ± 26 1.17 52.6 ± 1.3 6.01 ± 0.22 1.01

Lin. Regression 26.5 ± 0.4 748 ± 10 0.89 36.2 ± 1.5 4.72 ± 0.13 0.79
ANN 26.9 ± 1.2 712 ± 22 0.85 36.1 ± 0.9 4.71 ± 0.14 0.79

Table 4-2: Point forecasting performance for energy demand (± 1 standard deviation). The
value ‘n-RMSE’ represents the normalized index with respect to the benchmark models.

and it is substituted by its weighted version (WAPE). These values represent the benchmark
with respect to which we compare performance of point forecasting methodologies discussed
in the next.

4-2-3 Point Forecasting Models

Dynamics of energy demand can be modelled in different ways. Firstly, we test traditional
techniques for the identification of demand forecasting model. Subsequently, in the next
section, we present an innovative periodic model which performs better than the previous
ones in terms of both the evaluation metrics and is useful to integrate a detailed uncertainty
model in a probabilistic framework. For each of the presented methods, available data for a
single year are split into training (60% of data) and validation sets, by considering random
days sampled throughout the year. The validation set is further employed for the simulation
phase in Chapter 6.
Evaluation is reported in Table 4-2 according to the discussed metrics and a further parameter
is computed: n-RMSE represents the correspondent quantity normalised with respect to the
performance of the naive forecasting techniques. Each model has been trained and validated
for 10 different random choices of the days selection in order to avoid bias in the results.
Hence, the performance is expressed as the average of the different tests, with a range error
representing the measured standard deviation.

SARIMA

SARIMA is traditionally used for demand forecasting on aggregated level for large scale
generation, due to its relatively low complexity. However, the model is based on the strong
assumption that seasonal differencing is able to almost completely remove the non-stationarity
of time series. Hence, the following differencing is applied as a pre-filter to the analysed time
series:

∆Dy(t) = y(t)− y(t−D) (4-9)

where D represents 24 hours seasonality.
Nevertheless, for volatile small-scale systems differencing operation does not lead to the sta-
tionarity of the process, thus violating Gaussian assumption and corrupting technique per-
formance. Indeed, the accuracy of the SARIMA model is even worse than naive forecasting,
even though the amount of model parameters resulting in the best validated performance are
selected for the forecasting.
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Linear Regression

A linear model can be developed inspired by the traditional SARIMA model, in case the
moving average part is neglected. In this case, the dynamical model of the time series is
reduced to a one-step-ahead forecasting model in which no Gaussian assumption is forced on
the additive noise. Hence, together with the simple autoregressive components, we consider
a second set of predictors in the model in order to take daily seasonality into account: data
from the previous day (24 hour lag), which were already proved to be strongly correlated
with present measurements, and those of the adjacent hours. Therefore, the final model is
described as follows:

ŷ(t+ 1) = w(t)+α1y(t) + · · ·+ αpy(t− p+ 1)︸ ︷︷ ︸
AR

+

+ θ0y(t− 24) + · · ·+ θqy(t− 24 + q) + θ2qy(t− 24− q)︸ ︷︷ ︸
S

(4-10)

The choice of model parameters is the one leading to the best validation performance. Au-
toregressive term is set to a linear combination of the measurements for the last 3 hours
(p = 3), while, on the other hand, we also consider as predictors measurements collected
between 2 hours before and 2 after the 24-h lagged load (q = 2). This model largely increase
its prediction performance with respect to the SARIMA model for both thermal and electrical
demand.

Neural Network

The greatest advantage of a neural network when modelling a dynamical process is the oppor-
tunity to detect underlying non-linearities in the data through its high generalization power.
In case of demand forecasting, a linear model is unable to detect the nonlinear daily or weekly
pattern that characterizes the processes, as highlighted in Section 4-2-1. Indeed, as input of
the ANN, together with autoregressive and seasonal regressive variables, we can include those
variables that are not linearly correlated with the value to be forecast even though strongly
affect the prediction: hour of the day and typology of weekday. However, as the evaluation
metrics suggests, the added information is unable to improve the prediction power of the
linear regression model.
The model is structured as a feed-forward neural network with a single hidden layer of 10
neurons. The topology has been chosen with a tuning procedure: extra complexity did not
lead to any accuracy improvement.

4-2-4 Probabilistic Forecasting

As expected, point forecasting techniques for residential demand are not very accurate when
no external explanatory variables are employed in the models (more than 25% of average
prediction error). The main issue in the identification of forecasting models for energy con-
sumption is represented by their high non-stationarity within a daily periodicity. Indeed,
regardless of the underlying point forecasting model, the sample variance of prediction errors
is always larger during the busiest peak hours.
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Figure 4-8: One-step-ahead forecasting with periodic model. Validation and training errors are
compared for an increasing amount of modes

Since linear regression model and ANN seems to have very similar performance, as showed in
Table 4-2, and due to lower complexity of the regression model, we chose to extend the latter
in a way that explicitly considers daily patterns, together with their stochastic behaviour.

Periodic Model

Electric and thermal demand predictions are modelled by separating their expected cumu-
lative value during the future time steps from an additive disturbance depending on the
behaviour of customers.
A periodic stochastic hybrid system whose modes depend directly on the time of the day is
therefore defined in the following form:x(t+ 1) = Aix(t) +Bwi(t) if k(t) ∈ Ti i = 1, · · · , N̄m

k(t+ 1) = mod(k(t) + 1, 24)
(4-11)

where Ti are the sets representing specific periods of the day, N̄m represents the amount of
modes and for each of them a compact linear system describes the dynamics (4-10). The
state x(t) is a vector of proper dimension including all the relevant past measurements and
the matrices Ai are sparse with non-zero values occupying elements of the first row. The dis-
turbances wi(t) are distributed according to unknown probability distributions Wi and B is
the first vector of the canonical base in the state dimension. The main purpose of the periodic
model is to distinguish the uncertainty distribution on a temporal basis, while highlighting
the same patterns as in the linear regression model.
For model training, firstly a provisional Nm is set equal to the total number of time steps
during the day, i.e. 24. Then, the Nm linear models are clustered through the well-known
k-means algorithm in N̄m temporal classes, in order to define the regions Ti. Finally, the N̄m
regression models are recomputed for each mode by means of linear least squares.
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Figure 4-9: Evaluation metrics of the periodic model for multi-step-ahead forecasting of thermal
consumption

The choice of N̄m is performed by analysing the validation error over an increasing number
of clusters. When a single cluster is selected the model is equivalent to the standard linear
regression (4-10), but performance improves for increasing N̄m. In Figure 4-8, we observe
model performance for thermal demand forecasting: validation error for an number of clus-
ters larger than 8 stays within 10% of the asymptotic performance when 24 different hourly
models are considered, while the training error clearly keeps decreasing. Hence, in case of
thermal demand, N̄m is set equal to 8. The same procedure is applied for electrical demand,
leading to a choice of N̄m equal to 10. These choices define the forecasting models that are
used for the rest of the thesis.
Results of the model accuracy for one-step-ahead forecasting show better performance with
respect to all previous techniques. For larger prediction horizons, prediction accuracy de-
creases, until an asymptotic performance level is reached, as showed in Figure 4-9 for thermal
demand. The latter case is motivated by the irrelevance of present information for improve
the accuracy of prediction on the long-term. Specifically, for horizons beyond 6 hours the
measurements of past thermal consumption are not adding any significant information to the
forecasting.
However, it is important to highlight that the main objective of the periodic model is to
disaggregate the description of system uncertainty into different time clusters, such that the
probabilistic representation results more accurate.

Empirical Distribution

The ex-post distributions W̃i of prediction errors on the training set can well approximate the
true probabilistic distributionsWi for each of the N̄m modes in the periodic model. However,
Kolmogorov-Smirnov test [86] applied on W̃i rejects Gaussian assumption and no parametric
formulation of the distributions can be inferred. Hence, the obtained distributions are stored
in a non-parametric form as vectors of sample probabilities in equally spaced intervals, rep-
resenting an empirical distribution. However, the tails of these distributions are cut in order
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Figure 4-10: Empirical distributions of periodic model uncertainty Wi for each mode of the
system.
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to remove outliers in the residuals: the extreme 1% of each probability distribution is not
considered for the uncertainty model.
In Figure 4-10 the uncertainty models computed for the 8 modes of thermal demand forecast-
ing are plotted as empirical distributions. Each mode (or cluster) is identified by the hours
of day defined in brackets.

4-3 Photovoltaic Generation

Solar energy is subject to considerable temporal and spatial fluctuations. However, with the
expansion of photovoltaic generation in the energy supply system, the necessity for accurate
solar forecasts is increasing. These forecasts form the basis for the cost-optimised strategy of
an EMS, with the aim of integrating solar power generation in microgrids.
In Section 3-2-2, we have explained the high correlation between the solar irradiance incident
on a tilted PV panel in a specific location and the output power produced by the correspon-
dent PV array. Due to this correlation, the forecasting model for photovoltaic supply can
be similarly computed either for previously measured incident global radiation or directly for
past power output. Hence, we can distinguish two main forecasting strategies in the context
of solar power prediction: physical and statistical.
The physical strategy is based on ensembles of meteorological data (numerical weather pre-
diction) that are used as predictors to forecast solar irradiance [72]. The PV model (3-9) is
successively applied in order to output the generation forecast. This methodology is espe-
cially useful as an approximated simulation in the case PV panels are not installed yet at the
desired location, and their physical model is only theoretical.
On the other hand, statistical strategy is based on the availability of historical data and the
modelling framework of time series. The data are collected and recorded by sensors installed
with the purpose to measure PV power output. In this way, the estimated forecasting model
can also be adapted on-line in order to obtain a better performance in real world applications,
when PV system are subject to changes due to snow cover, leaves or dirt on the panel [6].
The two approaches can easily be combined by considering the numerical weather prediction
of the global irradiance as explanatory variable of the statistical model [6, 8]. In this scenario
the prediction results to be more accurate on the long run, since the correlation between global
irradiance and power output is learnt by the forecasting model instead of being theoretically
imposed. In the reviewed works, it is recognized that for short term forecasting (within 2-
4 hours), the relevant inputs consist of past observations of PV power output, whereas for
longer horizons information from numerical weather predictions is more relevant.
In our case, since the panels are not installed yet and their output would be simulated through
the radiation measurements, the two computational strategies would offer exactly the same
result. Hence, we proceeded by considering forecasting model for the incident solar radiation,
whereas PV supply will be simulated through the physical model (3-9).

4-3-1 Clear Sky Model

It is well-known that global radiation follows seasonal patterns related to Sun-Earth position
[48]. While this seasonality is deterministic, stochastic behaviour of solar power supply is
due to variability in cloudiness and sky overcasting during the day. For this reason, in many
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Figure 4-11: Comparison of radiation distributions before and after the normalization. ’+’
represent outliers
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Figure 4-12: Autocorrelation of {τ(t)}. The ‘red’ circle highlights the daily correlation with 24-h
periodic lag.
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literature studies [6, 8], a so called ‘clear sky model’ is computed and used to estimate the
global solar irradiance without taking into account haze/cloud effects, as though the radia-
tion was measured during a clear day. This model aims to separate the stochastic component
(transmittance of radiation through clouds) from the deterministic one.
To this purpose, the normalized radiation is defined as the ratio between the measured radi-
ation and the clear sky one:

τ(t) = Gc(t)
Gcs

c (t) (4-12)

The clear sky radiation (Gcs
c ) is approximated as a local constant model with respect to

the day of the year and the time of the day. Indeed, the latter two variables represent the
only source of irradiance variability once the location is set and the sky is assumed clear.
The procedure is usually performed through statistical smoothing techniques such as quantile
regression [6]. In this way, no physical explanation has to be modelled and the estimation is
uniquely referred to the available data. It is important to notice that, when a sparse number
of clear sky observations (especially in winter period) is present in the data, the procedure
could lead to biased results.

4-3-2 Forecasting Model

The discussed clear sky approach is applied in our case to identify a forecasting model for solar
power generation. Firstly, meteorological data from KNMI [42] are used to compute incident
solar radiation in Schiphol (closest station to Amsterdam) for a period of 5 years, as explained
in Section 3-2-2. Then, a smoothing technique based on weighted quantile regression is applied
to build the clear sky model Gcs

c (t) for every day/hour couple of the year. Finally, once the
clear sky model is estimated, solar power prediction can be performed on the normalized time
series.
The normalization procedure makes the series {τ(t)} a stationary process, as we can see by
the box-plot in figure 4-11. Indeed, the mean of the process becomes time-invariant. For
this reason, traditional time series analysis can be applied to forecast future values of solar
radiation incident on the mounted solar panels.
The daily seasonality can still be retrieved in the time series by observing the autocorrelation
function of the process in Figure 4-12. Hence, due to the previous observations, a simple
seasonal autoregressive model can be assumed to describe the stationary process {τ(t)}, as
follows:

τ̂(t+ 1) = aτ(t) + bτ(t− 23) + w(t) (4-13)

Clearly, during night time, when Gcs
c (t) is null, the normalized radiation is not defined and

no prediction has to be performed for those time steps. Hence, the correspondent data are
removed from the training set.
Since the uncertainty in residuals of the trained model does not pass the Kolmogorov-Smirnov
test, the Gaussian assumption is rejected also in this case. The obtained ex-post distribution
of the normalized radiation is stored in a non-parametric form as an empirical distribution,
and the model is easily integrated in the probabilistic framework.
During the forecasting procedure, the incident radiation Ĝc(t + k) can be predicted, by in-
verting (4-12), as:

Ĝc(t+ k) = τ̂(t+ k) ·Gcs
c (t+ k) (4-14)
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Figure 4-13: Performance of solar radiation forecasting

and subsequently employed to compute PV hourly supply by means of the panels model (3-9).
The performance of the clear sky model is evaluated for the incident radiation in terms of
RMSE and plotted in Figure 4-13 for an increasing prediction horizon. In the same figure,
a comparison with a simple persistence forecasting model, in which the predicted output is
assumed equal to the corresponding 24-h lagged measurement, is proposed in order to better
understand the results. Similarly to demand forecasting, for horizons larger than 6-7 hours
prediction accuracy reaches an asymptotic performance.

4-4 Conclusions

Supervisory control strategies are mainly based on the information they are able to process
about future evolution of the microgrid. Indeed, our first step for the implementation of
a local EMS has been to focus on the identification of forecasting models for stochastic
processes affecting the power balances of the microgrid: thermal and electrical consumption
of the customers on one hand, and PV uncontrollable supply on the other hand.
The forecasting techniques analysed in this chapter are exclusively based on data that can be
easily collected by the controller, i.e. previously measured values of the considered processes
and calendar information. As a consequence, the prediction error, even for the best identified
models, results relatively large due to the high volatility of the stochastic processes. We
believe that the prediction accuracy could be improved by introducing extra information
collected by local sensors, e.g. occupancy, or obtained through web communication with a
meteorological database, e.g. outside temperature or numerical weather prediction for solar
irradiation, but these measurements were not included in our thesis.
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Chapter 5

Control Strategies for Energy
Management Systems

A local Energy Management System (EMS) takes into account technical and economic con-
siderations and determines power flows within the microgrid and the exchange of electricity
with the utility grid to achieve optimal operation. The decisions that the EMS can make are
intrinsically hybrid in nature: firstly it has to choose which micro-sources should be switched
on/off (unit commitment problem), then it has to fix the amount of production generated
from each micro-source or exchanged with the grid at any time step (economic dispatch).
Moreover, a crucial feature for the correct control strategy is to consider the technical con-
straints related to the energy resources integrated in the microgrid.
In this chapter we analyse predictive control strategies that can be applied to supervise
the microgrid operation with the specified objective of cost minimisation for the owners. In
Section 5-1, we firstly investigate the state-of-the-art Model Predictive Control (MPC) strate-
gies from a theoretical perspective and highlight advantages and disadvantages of different
algorithms that aim to deal with systems affected by uncertainties. Then, in Section 5-2
a rule-based benchmark strategy is presented to control the micro-CHP and the auxiliary
boiler. Finally, the MPC techniques will be employed and adapted to our case studies. The
‘certainty equivalence’ paradigma is firstly assumed in Section 5-3 such that the predictive
strategy can be formulated in a deterministic framework. Lastly, in Section 5-4, the core
strategy of this thesis is presented through a reformulation of the original problem with a
stochastic approach that explicitly considers the uncertainties affecting microgrid operation.

5-1 Literature Background: Model Predictive Control

Model Predictive Control (MPC) is a control strategy widely applied in process industries
and power systems for solving problems where constraints on the manipulated and controlled
variables naturally arise and have to be considered in the control design [52]. It is a control
strategy in which the current control action is obtained by solving on-line, at each sampling
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time, a finite horizon open-loop optimal control problem, using the measured state of the
system as the initial state. The optimization yields an optimal control sequence and the first
control element in this sequence is applied in a receding horizon fashion [71].
The main advantage of MPC is its ability to handle control problems in which an off-line
computation of the control law is difficult or technically impossible. Furthermore, due to
the reformulation of the control problem into an optimization one, MPC can easily include
constraints. This makes the strategy more powerful with respect to classical control schemes
(e.g. PID, H-infinity) [71].
However, on the other hand, necessary conditions for the implementation of MPC algorithms
are slow dynamics of the controlled system, such that the optimization can be solved on-line
within each time sample, and the availability of a mathematical model that identifies the
underlined system dynamics explicitly.
Before a detailed explanation of the control strategies applied for the optimal power flows in
the case studies defined in Section 3-3-3, in this section we present the state-of-the-art MPC
algorithms used to control perturbed systems.

5-1-1 Classic MPC

Model Predictive Control is traditionally applied on a discrete-time dynamic system (5-1), in
which the state and the input are constrained to be confined within specified sets.

x(t+ 1) = f
(
x(t), u(t)

)
x ∈ X, u ∈ U

(5-1)

An MPC strategy converts the control problem into a finite horizon optimization procedure
to be solved at each time step, parametrized on the currently measured state x0. In the
following, the notation ‘ ·̂ ’ is used to indicate the variables involved in the definition of the
optimization problem.
The optimization objective of an MPC is to minimize a specific user-defined cost function VNp ,
which considers Np future control actions û(k) that affect the evolution of the system (5-1)
in an open-loop fashion. The decision variable u = [û(0), . . . , û(Np)]T belongs to the decision
space UNp of feasible control sequences, which have to respect the input bounds (û(k) ∈ U)
and, at the same time, keep the controlled state x̂u inside its constraints (x̂u(k+ 1) ∈ X), for
all the time steps k = 0, . . . , Np − 1 within the prediction horizon.
Then, after the optimization problem is solved, a receding horizon scheme is implemented for
a closed-loop control at any time step: the implicit MPC law u(t) = lNp(x0) applied to the
system is defined as the first value û(0) of the optimal control sequence u∗.
From a theoretical perspective, in the MPC framework two main issues have to be assessed:
stability and recursive feasibility. These are discussed in the following.

Recursive Feasibility Recursive feasibility is probably the most important property for a
MPC strategy, both from a theoretical and practical point of view. It implies that, if the
optimization problem can be solved for the initial state x(0), it can be solved for any subse-
quent state reached by the controlled system [71].
The feasible set of initial states XNp for which a solution to the optimization problem exists is
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called region of attraction, and is defined as the set of states allowing a not empty decision
space :

XNp = {x | UNp(x) 6= ∅} (5-2)

Hence, recursive feasibility can be mathematically defined in the following form:

x(t) ∈ XNp =⇒ x(t+ 1) = f
(
x(t), lNp(x(t))

)
∈ XNp (5-3)

thus guaranteeing that the next-time state of the controlled system is kept in the region of
attraction when current state belongs to it.
It is fundamental to assure recursive feasibility if we want to implement MPC to control an
existing system. If this is not possible, any implementation of the MPC algorithm should be
modified to include a feature that enables recovery from faults that cause infeasibility.

Stability As Kalman himself pointed out in one of his classic papers, optimality does not
ensure stability:

“ In the engineering literature it is often assumed (tacitly and incorrectly) that a
system with optimal control law is necessarily stable. ” R. F. Kalman [71]

Indeed, when we apply a finite horizon optimization problem, even when its objective is to
regulate the state to the origin, instability issues could arise. This is due to the fact that
MPC controller solves an open-loop optimization problem, whereas the control action is im-
plemented in closed-loop. Therefore, the actual controlled state could significantly differ from
the predicted one on the long run. In the nominal scenario (deterministic system) these two
variables are identical if, and only if, we consider an infinite horizon for the optimization prob-
lem. However, apart from very simple systems (linear unconstrained system), where a closed
form solution to the infinite horizon problem does exist, in any other case the optimization
would be intractable.
For this reason, a dual-mode paradigm was introduced in [53] and further motivated in [51]
in order to formalise the discussion over the stabilising ingredients for classical MPC. This
paradigm is widely applied in the literature and consists of a double control mode for the
decision variables in the optimization procedure on the open-loop system:

• A discrete control sequence u is applied for the first Np time steps by means of the
implicit control law lNp(x).

• A pre-defined stabilising control law lf (x) working in the terminal set Xf is applied
at the end of the prediction horizon. Based on this law, the stabilising ingredients Vf
(terminal cost) and Xf (terminal set) are computed and introduced in the optimization
problem.

Eventually, when the dual-mode paradigm is applicable, the new version of the optimal and
stable control problem has a reduced region of attraction XNp due to the presence of a terminal
constraint x̂u(Np) ∈ Xf .
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5-1-2 Robust MPC

As we previously highlighted, for a deterministic system the optimal open-loop control prob-
lem for a given initial state is equivalent to its closed-loop formulation (dynamic programming)
[71]. However, for any perturbed system this equivalence of trajectories does not hold any-
more.
In the following we assume system dynamics to be affected by an additive disturbance w.
Hence, the model (5-1) is modified as follows:

x(t+ 1) = f
(
x(t), u(t)

)
+ w(t)

x ∈ X, u ∈ U, w ∈W
(5-4)

where the introduced set W describes the uncertainty range.
Due to the disturbance, the open-loop problem can result in very poor predictions, leading
to divergence of the state trajectory from its reference.
For the optimal control problem to give the same solution as that obtained by dynamic
programming it is necessary for the decision variable to be a control policy, i.e. a sequence
of feedback control laws, instead of a simple control sequence. Pure feedback MPC strategy,
based on control policies, is theoretically optimal, but computationally intractable due to the
infinite dimension of the policy space. Hence, optimality has necessarily to be sacrificed for
tractability, by imposing a parametrization of the control policy.
In this context, robust optimization is usually implemented to deal with the presence of un-
certainty in the problem definition. The robust goal is to minimize the cost function VNp ,
while guaranteeing that the operational constraints are satisfied for any permissible
realization of the uncertainty. Hence, robust approach is based on the assumption of a
finite and measurable support of system uncertainty. Specifically, in case of additive distur-
bance, the set W is assumed to be bounded.
The classic approach in robust MPC synthesis is to employ a minimax strategy, i.e. minimiza-
tion of a worst-case performance measure, where the worst-case is defined as the disturbance
sequence leading to the largest open-loop cost [53]. Hence, the minimax robust strategy solves
the following optimization problem (subject to system constraints) :

min
u

max
w
{VNp(x0,u,w) | w ∈WNp , u ∈ UNp} (5-5)

where the cost function is explicitly dependent on the disturbance sequence w, together with
the control sequence u, due to the perturbed model dynamics (5-4) of state evolution.
The main problem with minimax MPC algorithm is that the controller can become overly
conservative, since it has to find a single control sequence that works well in open-loop for all
admissible disturbance realizations. On the other hand, closed-loop minimax approach could
lead to tractability issues because the amount of cases that have to be investigated to solve
the optimization problem (5-5) increases exponentially with the dimension of W [47].
A fundamental tool to reduce conservatism in robust MPC is the introduction of a feedback
parametrization of the input law. One of the most well-known approach, used to control a
linear perturbed system subject to input and state constraints, is the tube-based MPC [54].
This control strategy is based on the concatenation of two controllers in a cascade scheme:

• A deterministic MPC law, which is used to generate the nominal open-loop trajectories
(centres of the tubes) and is defined on the nominal system (when no disturbance is
assumed) with precomputed tightened constraint sets.
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• An outer ancillary controller that aims to steer all the trajectories towards the nominal
reference, and parametrizes the control law with respect to the closed-loop error e
between the state of the controlled system and its open-loop nominal trajectory.

The main disadvantages of the tube-based strategy can be identified in the parametrization of
the outer control law and the approximation of the new constraint sets, which could lead to
a certain degree of conservativeness and sub-optimality.

Robust MPC law can be quite conservative and lead to poor performance when applied to un-
certain systems, since it does not take into account the probabilistic nature of the disturbance
and assumes that it can uniformly take any value into the disturbance set. Moreover, robust
satisfaction of the constraints may be impossible to enforce if the support of the disturbance
is unknown or possibly unbounded. Indeed, in residential microgrids, where energy demand
highly fluctuates, the forecasting error for thermal consumption can be even larger than TES
size, leading to infeasible operation in the robust framework. Hence, robust MPC strategies
cannot be implemented in our case studies.

5-1-3 Stochastic MPC

Due to the previously discussed issues, robust optimization can be relaxed and recast in a
stochastic framework by allowing the constraints to be violated at a certain degree,
with the aim to enlarge the feasibility region of the optimization problem and reduce its
conservativeness. The violation rate is aimed to be controlled by fixing a probability risk
level p for each relaxed constraint [24].
To show how system constraints can be properly recast in a probabilistic setting, we refer for
simplicity to an individual linear state constraint of the form :

gTx(t) ≤ h (5-6)

If we want to allow a specific rate of point-wise violation, the correspondent chance constraint
in the stochastic formulation of the optimization problem, once all variable dependences are
made explicit, is defined as :

P
{
gT x̂u,w(k) ≤ h

}
≥ 1− p for k = 1, . . . , Np

=⇒ P
{
gT [x̂u(k) + ew(k)] ≤ h

}
≥ 1− p

(5-7)

where p is a design parameter to be tuned in order to obtain a trade-off between performance
and constraint violation. The second inequality highlights how, for the superposition princi-
ple, the effect of the additive disturbance on the state trajectory can be decoupled from its
nominal evolution in the form of the closed-loop error e.
More generally, when g is a matrix, for instance when the goal is to express the probability
that the state and/or the control are inside a certain set, the constraint is called joint chance
constraint. The simplest way to work with a joint chance constraint is, however, to approx-
imate it by splitting the overall set into a sequence of individual chance constraints, whose
probability sums up to the original one. This technique is called risk allocation and is well
described in [24].
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Some recent overviews about the state-of-the-art algorithms for stochastic MPC strategies
highlight a great interest for the topic in the contemporary literature [55, 24]. These papers
helped to categorise the stochastic MPC algorithms in two major schools-of-thought:

• Analytical approaches: based on the reformulation of the chance constraints in deter-
ministic terms, they take explicitly into consideration the stochastic properties of the
disturbance.

• Randomized approaches: based on a discretisation of the probability distribution of the
disturbance, sampling strategies are considered. Hence, the stochastic formulation is
translated on a deterministic multi-scenario problem by means of a statistical approxi-
mation.

Analytical Approaches

In analytical approaches, the chance constraint (5-7) can be generally reformulated by consid-
ering the action of the disturbance sequence w as a tightening factor of the nominal constraint
set:

gT x̂u(k) ≤ h− qw(k, 1− p) for k = 1, . . . , Np (5-8)
The constraint tightening level qw(k, 1 − p) is nothing more than the left quantile of the
distribution gT ew(k) and can be computed based on the available information about the
disturbance. It is analytically defined as the minimum value obtained by the following opti-
mization problem :

min
q

{
q | P

{
gT ew(k) ≤ q

}
= 1− p

}
(5-9)

In the probabilistic framework, the worst-case scenario of the robust approach can still be
retrieved by imposing p = 0, reconverting the chance constraint in its ‘hard’ form.
A feedback parametrization of the control law lNp(x, e) is widely employed in the scientific
literature in order not to incur in an uncontrolled open-loop evolution of the state trajectories,
thus making the input variable û(k) always depend on the stochastic disturbance [24]. For
this reason we want to highlight that hard constraints on the input can only be imposed in
two cases for analytical approaches: when the disturbance is supported on a bounded set, or
when assumptions on recursive feasibility can be relaxed. Moreover, on the other hand, the
evolution of the error trajectory ew and subsequently the values of the quantiles computed in
(5-9) strictly depend on the input parametrization of the control law, which also affects the
computational complexity of the applied algorithm.
Guarantees on recursive feasibility and bounds on the violation level probability have been
already provided for linear systems, by adding extra constraints to the optimization problem
[45, 43, 44, 29]. On the other hand, analytical approaches for nonlinear system (as in case
of the hybrid model described in Section 2-3) have not been deeply researched, due to the
impossibility to express the closed-loop error trajectory ew in closed form and subsequently
compute the analytical properties of the quantiles (5-9).

Randomized approaches

The randomized, or scenario-based, methods rely on the on-line random generation of a
sufficient number of disturbance realizations (w[j]) in order to reformulate the stochastic
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optimization in a tractable deterministic framework. The main objective of the randomized
approaches is to compute a lower bound to the number of requested scenarios Ns in order to
ensure a prescribed level of constraint violation p.
Each chance constraint of the form (5-7) is enforced by a set of deterministic ones, as follows:

gT x̂u,w[j](k) ≤ h for j = 1, . . . , Ns

k = 1, . . . , Np
(5-10)

Furthermore, in this framework, the cost function is redefined as a sampled average over the
Ns realizations:

VN (x0,u,w) = 1
Ns

Ns∑
j=1

VN (x0,u,w[j]) (5-11)

The main advantage of scenario generation approaches is that they are applicable to wide
classes of systems (both linear and nonlinear) affected by general disturbances. Moreover,
joint chance constraint can be enforced without any extra conservativeness However, stability
and recursive feasibility are not established by none of the investigated works in the scientific
literature. Thus, open issues on this area concern the possibility of formally guaranteeing
feasibility and stability properties.

The relationship between a lower bound on Ns and the number of decision variable d in a
stochastic programming optimization has firstly been analysed in [14]. Here, the relation
is carried out by means of the ‘confidence level’ concept: since the optimization procedure
depends on a specific multi-extraction of the disturbance realizations w[j], the computed
optimal solution u∗ could lead to actual constraint violation; hence, the confidence level β
is defined as the allowed probability that the ‘unseen’ disturbance realizations violate the
predicted result. Moreover, when the possibility to remove R of the generated scenarios is
introduced in [15], with the aim to reduce potential conservativeness of the result, a definitive
inequality was finally presented, which correlates all the variables of interest:

β ≥
(
R+ d− 1

R

)
R+d−1∑
i=0

(
Ns
i

)
(1− p)ipNs−i (5-12)

The formula is independent from any chosen generation and removal algorithm and from any
disturbance distribution, as long as the scenarios used in the optimization are representative
of the true distribution. Hence, for practical engineering purposes, once a very small value
(≈ 10−6) of the confidence level has been fixed, and the correspondent minimum number
of scenarios is used in the optimization, we may conclude with ‘practical certainty’ that
the stochastic formulation of the optimization problem is solvable for any realization of the
uncertainty [15]. This fundamental property allows for generalization of unseen scenarios, not
used in the computation of the solution.

In [76], the presented result is adapted to the multi-stage optimization for the MPC frame-
work. The classic scenario approach is therefore extended: each constraint may affect only a
certain subspace of the whole decision space, due to a strict relation with a single temporal
stage. The dimension of this subspace is called support rank.
In this context, the number Ns of required disturbance realizations is proved to be just de-
pendent on the support rank of the first-step constraints (ρ1). Thus, a great mathematical
result is achieved: the sample size necessary to implement an MPC randomized approach is
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decoupled from the prediction horizon, and the variable d in (5-12) can be substituted by the
significantly smaller value ρ1.
Furthermore, in the same work [76], the average-in-time (instead of point-wise) probability
of constraint violation is considered, in order to further reduce conservativeness of the result.
Consequently, the confidence level β can be neglected for the expected time-average violation
and removed from the computation of lower bound for the scenarios. An admissible sample-
removal pair (Ns, R) can be selected by solving the one-dimensional integration of βmin (right
hand side of (5-12)) over any possible value of point-wise violation probability v:∫ 1

0

(
R+ ρ1 − 1

R

)R+ρ1−1∑
i=0

(
Ns
i

)
(1− v)ivNs−i dv

Then, we have to guarantee that the computed result is smaller than the fixed admissible
average-in-time level p. In case no scenario removal is performed (R = 0), the integration can
be solved analitically, leading to the least restrictive condition for the amount of scenarios in
stochastic multi-stage optimization:

ρ1
Ns + 1 ≤ p =⇒ Ns ≥

ρ1 − p
p

(5-13)

5-2 Benchmark Strategy: Rule-Based Control

As explained in Chapter 2, the only energy resources on which the supervisory control can
impose its decisions are the dispatchable generators. Micro-CHPs are employed in our case
studies with the aim to supply the households with the requested electrical and thermal de-
mands. Since the two forms of power output are physically correlated, the control strategy
has to consider that only one of them can be used as a controlled variable.
In the literature, the micro-CHP units are typically controlled according to two different
rule-based approaches, called heat-led or electricity-led [57]. As their names suggest, through
these strategies, the prime mover is turned on/off according to the heat or power demand,
respectively. Since thermal efficiency of a micro-CHP unit is commonly greater than its elec-
trical efficiency (with the exception of fuel cell technologies) and the employment of thermal
storage allows decoupling between corresponding supply and consumption, thermal demand
is usually chosen as the driving variable.
Due to local consumption, the heat flows out from the storage which thereby decreases in
temperature, while heat supplied by both the micro-CHP and the auxiliary boiler increases
water temperature. In heat-led framework, the prime mover output is controlled such as to
keep the storage temperature at an average value, corresponding with an average energy level
Q̄TES . When this strategy is applied, the next hour demand is defined either by means of
reference profile [38] or through a point forecasting model as in predictive strategies. As we
analysed in Chapter 4, naive ‘time-of-the-day’ models would lead to far worse performance
due to poor prediction accuracy. Hence, in the following we apply the periodic forecasting
models based on linear regression already described in Chapter 4 for one-step-ahead prediction
D̂Q . Furthermore, the use of the same forecasting procedure will help us to better compare
the performance of all the presented control strategies.
Microgrid operation described in Section 2-3 is therefore controlled with the heat-led control
law for micro-CHP and the auxiliary boiler, presented in Algorithm 1.
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Algorithm 1 Rule-Based Strategy
CHP:
if δCHP(t− 1)− δCHP(t− 2) > 0 or

Ts
C
·minCHP +QTES(t)− D̂Q(t) < maxTES then

QCHP(t)← 1
Ts

max
(

min
(
Q̄TES −QTES(t) + D̂Q(t), Ts

C
·maxCHP

)
,
Ts
C
·minCHP

)
δCHP(t)← 1

else
QCHP(t)← 0
δCHP(t)← 0

end if

BOILER:
if TsminBOIL + TsQCHP(t) +QTES(t)− D̂Q(t) < maxTES then

QBOIL(t)← 1
Ts

max
(

min
(
Q̄TES−TsQCHP(t)−QTES(t)+D̂Q(t), TsmaxBOIL

)
, TsminBOIL

)
δBOIL(t)← 1

else
QBOIL(t)← 0
δBOIL(t)← 0

end if

Firstly, CHP status and power output are selected, then the extra heat supplied by the boiler
is subsequently determined. Standard operation is computed through microgrid heat balance
(2-6), where demand and TES level at next time step are respectively substituted by the
output D̂Q of thermal forecasting model and the desired thermal level Q̄TES . The generation
process is conditioned for both the engines, when it could lead to violation of the maximum
allowable temperature in the thermal storage. Moreover, a further constraint on the choice
of CHP status is related to the switching between ‘on’ and ‘off’ modes in consecutive hours,
as expressed in (2-10).
The rule-based strategy explicitly considers technical constraints related to CHP and boiler
operation. Indeed, the range of heat generation for the two engines (when they are ‘on’) is
limited by their nominal size on one hand and their minimum output on the other hand.
However, this naive strategy does not exploit the full potential of cost minimisation when
energy demand has to be met, and more advanced techniques can be implemented.

5-3 Certainty Equivalence: MPC

When future predictions of system dynamics are considered by the controller, a supervisory
strategy is said to be ‘intelligent’, since all relevant information about the consequences of
choosing actions are taken into account [37]. In many literature works [17, 38, 49, 66, 65,
82, 10, 75, 85] the idea to propose more advanced control schemes is developed through the
formulation of optimization problems, which consider the heat coverage as a constraint of the
cost minimization problem on a prediction horizon longer than a single time step. Therefore,
the framework of MPC strategy, deeply analysed in Section 5-1, can be perfectly adopted in
the EMS for a residential microgrid.
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Figure 5-1: Nominal MPC scheme

In the largest part of literature, the uncertainties related to renewable energy generation and
to load demands are not modelled in their stochastic dynamics [38, 65, 82, 10, 75]. According
to the certainty equivalence paradigma the forecasts are assumed to be deterministically pre-
dicted with point forecasting methodologies. Hence, the scheme implemented for conventional
MPC strategy is presented in Figure 5-1: the microgrid has been defined for the two case
studies in Section 3-3-3, while the forecasting models for energy demand and PV supply have
been presented in Chapter 4. Hence, in this section we discuss the receding horizon strategy
corresponding to the MPC block, which receives as input Np predictions of the stochastic
processes and the current status of TES and generators.

5-3-1 Deterministic Formulation

The economic objective of the control strategy is represented by the minimization of opera-
tional costs over the prediction horizon, in a way similar to the sizing procedure presented in
Section 3-3-2, but re-adapted to a receding horizon structure.
More in detail, the cost function is represented by the operational costs of the microgrid
(3-16) along a fixed prediction horizon Np, evaluated at any time step. However, in order
to take into account the benefits of the limited-in-time operation management beyond the
considered horizon, a terminal cost is added to the function (5-14). Indeed, the heat stored
in the TES after the Np time steps can be consumed in the future, thus avoiding to buy
and burn additional gas in the auxiliary boiler to supply thermal energy. For this reason, we
decided to consider as terminal cost for our predictive strategy the negative price (revenue)
of the saved gas. The optimization problem to be solved at any time step is therefore defined
as :

min
f ,δ

Np−1∑
k=0

[
(cGAS + cO&M · ηCHP) · f̂CHP(k) + cGAS · f̂BOIL(k) + cEL · Ĝ

+(k)−

−cFIT · Ĝ
−(k)

]
− cGAS ·

(
Q̂TES(Np)−minTES

)
︸ ︷︷ ︸

terminal cost

(5-14)
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The constraints of the optimization problem are expressed by the equations (2-6)-(2-12) rep-
resenting the model of microgrid operation for Np time steps, starting from t. The initial
state for the optimization Q̂TES(0) is given by the measured state QTES(t), while the energy
demands (and the PV supply for case study ‘B’) are provided from the point forecasting
model for the next Np time steps. Therefore, the problem can be solved as a Mixed Integer
Linear Programming problem and the controlvariables related to the first time step (k = 0)
are effectively applied to the system for the next hour.
Due to the effect of the uncertainties in consumption and renewable supply (when present),
large perturbations of the nominal system can lead to problem infeasibility when heat cov-
erage of the TES is not guaranteed. Hence, a recovery strategy has to be introduced, which
substitutes the computation of the optimal supply in case of infeasibility. We decided to
employ the benchmark rule-based strategy to recover from these kind of faults.

5-3-2 Practical Disadvantages

When deterministic MPC strategy is applied to a stochastic system, no constraints satisfac-
tion nor recursive feasibility can be guaranteed [52]. From a practical point of view, in our
case studies, large violations of the thermal constraints in the water storage tank occur. This
means that inevitable disturbances and forecast errors deteriorate the actual performance
of the controller and lead to several ex post constraint violations, especially in small scale
environments, where the stochastic component is highly volatile.
This behaviour would imply the necessity of a lower-level controller to recompute input of
the generators within the time step and reduce the constraint violations. This two-level strat-
egy would strongly affect the computed economic savings of the deterministically scheduled
microgrid operation. However, due to absence of available data samples for thermal demand
within the hourly time step Ts, the lower-level control cannot be implemented neither the
overall performance exactly evaluated.
Recovery and saturation A rough estimate of performance deterioration can be computed
by assuming a recovery strategy for lower bound violation of the thermal constraint (2-12) and
a saturation process for the upper bound violation of the same constraint. On one hand, we
can assume that the auxiliary boiler is capable to react fast enough to avoid any lower bound
violation of the temperature in the TES, such that the scheduled boiler supply is augmented
in the following way:

QBOIL(t) = min
(
ηBOIL · f̂BOIL(0) + min

(
minTES −QTES(t+ 1)︸ ︷︷ ︸

lower bound violation

, 0
)
, maxBOIL

)
(5-15)

The external minimum is applied to take into account technical limit of maximum generation
of the boiler. Clearly, boiler generation should practically be adjusted on-line, within the
time step, in order to know the actual level QTES(t+ 1).
On the other hand, the overproduced heat, which cannot be stored in the TES, is assumed
to be dumped. Hence, the following saturation condition holds:

QTES(t+ 1) = min
(
QTES(t) + Ts ·QCHP(t) + Ts ·QBOIL(t)−DQ(t), maxTES

)
(5-16)
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5-4 Stochastic Reformulation

Stochastic methods are considered as the right balance between the conservativeness of robust
design and the poor performance of deterministic approach, in cases in which uncertainties
affect the controlled system. Stochastic control strategies aim to recast the problem into a
probabilistic framework by explicitly taking uncertainty into account, such that undesired
unmodelled effects do not lead to suboptimal performance and deteriorate theoretical prop-
erties.
Without requiring an explicit probability distribution, the uncertainty of disturbance can be
characterized more flexibly. For this reason, the most common stochastic approach for super-
visory control in microgrids are, undoubtedly, scenario-based methods, which can characterize
the uncertainty by means of historical data. However, in the majority of the scientific litera-
ture no probabilistic bounds on the amount of constraint violation are explicitly considered
and the number of generated scenarios is empirically selected [66, 49, 4]. Moreover, the un-
certainty in the system is often assumed or theoretically modelled instead of being evaluated
and quantified as in our work.

5-4-1 Scenario-Based Approach

In the scenario-based approach one single control sequence of the decision tuple (f , δ) along
the prediction horizon has to be determined, such that the optimization problem is solved
for a fixed amount Ns of generated uncertainty realizations. The deterministic optimization
problem (5-14) is extended to deal with stochastic trajectories of the forecast processes related
to demand and PV supply.
The theoretical result showed in (5-13) provides a lower bound to Ns related to the support
rank ρ1 of the relaxed constraint and the allowed probability p of constraint violation. Since
microgrid dynamics are defined by a single state (TES level), the support rank of the sys-
tem corresponds to ρ1 = 1; hence, an allowed risk of 5% average-in-time violation of the
temperature in the thermal storage leads to a requested amount of scenarios:

Ns = ρ1 − p
p

= 19

The stochastic processes affecting the controlled system are represented by the forecast de-
mand and, for case study ‘B’, the forecast photovoltaic supply. For this reason Ns tuples of
(D̂[j]

Q , D̂[j]
E , P̂ [j]

PV) have to be generated through the probabilistic forecasting models defined in
Chapter 4. These variables affect power balance equations (2-6)-(2-7) and, subsequently ther-
mal constraint (2-12) regarding TES level. Therefore, each of these constraints is repeated
in the optimization problem for the generated scenarios, whereas the constraints that only
involves decision variables are considered analogously to the deterministic approach. Finally,
the recovery strategy in case of infeasibility is considered to be, as in deterministic approach,
the benchmark rule-based controller.

It is important to highlight that, due to large uncertainty in thermal demand model, the level
of TES for multiple realizations can easily spread on an interval wider than the range D∗
allowed by the installed water tank. In these cases the optimisation problem, which requires
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Figure 5-2: Roulette Wheel Mechanism for the uncertainty model of electrical demand. The
unit interval is sliced in probability levels (on the right) according to the empirical distribution (on
the left). The red ’X’s represent two independent samples generated from a uniform distribution:
their position on the roulette wheel determine the subintervals where to extract the realizations
of forecast error

all the constraints to be satisfied for all the generated scenarios, will result to be infeasible.

∃k : max
j
Q̂[j]

TES(k)−min
j
Q̂[j]

TES(k) > maxTES −minTES︸ ︷︷ ︸
D∗

=⇒ unfeasible problem (5-17)

Hence, the main issue with the scenario-based approach consists of a large infeasibility rate due
to wide probabilistic distributions of the uncertainties related to thermal demand. A possible
way to decrease this rate would be to use a higher sampling frequency for the supervisory
strategy. Indeed, the absolute values of demanded thermal energy for shorter time steps
would decrease, and the probability of a large range due to forecast error would decrease
consequently. However, more granular data are not available and we have to deal with the
forecasting errors produced for time steps of one hour.

Scenario Generation

The forecasting models of thermal and electrical demand were defined through a periodic
linear regression system affected by an additive disturbance, which is described by a set of
empirical distributionsWi for each temporal mode. A complete formulation of the model was
presented in Section 4-2-4.
The procedure we employ to generate the requested amount of scenarios in the stochastic
framework is based on the so called roulette wheel mechanism [56]. This mechanism
is widely applied when one wants to sample from a non-parametric empirical distribution,
which assigns given probabilities to each interval of the possible outcomes, named bin. A
roulette wheel divides the probability unity [0,1] in slices whose width corresponds to the
specific probability level of each bin (Figure 5-2). Then, a random number is generated from
a unitary uniform distribution for each scenario. The value of the random number falls in
one of the slices of the roulette wheel, thus determining a specific range for the error forecast.
Once a specific bin is selected, the value of wi(k) is uniformly sampled within the extracted
bin. Hence, the degree of approximation due to discretisation is strictly dependent on the
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width of bins. The sampled uncertainty is propagated through the forecasting model for each
of the Ns scenarios.
On the other hand, as regards PV supply, a simpler generation method can be applied.
Indeed, the decomposition of the supply between the deterministic clear-sky component and
the stochastic normalized component allow us to employ the Gaussian error of the AR model
to propagate the forecasting error.

5-4-2 Tree-Based Approach

When the original ensemble of scenarios is provided, an exploitation of a tree structure, as
explained in Section 4-1-2, has the potential to better describe the uncertainty distribution.
While in scenario-based MPC a unique control sequence is required to satisfy system con-
straints for any realized scenario, in tree-based MPC each control sequence has to satisfy
only the constraints related to the disturbance in its branch. Indeed, a different control se-
quence for each root-to-leaf path has to be considered, leading to an increase of the decision
space with respect to the classical scenario-based approach. However, the increment of com-
putational complexity is paid off by a less conservative result, due to a more representative
uncertainty approximation.
In order to define a tree structure it is sufficient to assign a parent member P [i] and a branch-
ing point B[i] to each ensemble member [70]. The branching point represents the time step
when a scenario is considered to be separated from its parent. The branching point is ‘infinite’
in case when a scenario is undistinguishable from its parent until the end of the prediction
horizon. Moreover, the parent of the root scenario is conventionally chosen as 0.
In order to reduce the large amount of decision variables corresponding to each separate sce-
nario, it is necessary to introduce the so called non-anticipative constraints by exploiting the
information given in the tree structure: two control sequences will be equal before the bifur-
cation point of their respective branches [70]. The non-anticipativity constraints are defined
for each generated scenario except for the tree root:

û[j](k) = û[P [j]](k) for k = 1, . . . ,min{B[j]− 1, Np}
∀j ∈ {1, . . . , Ns}\{j : P [j] = 0}

(5-18)

In this way the input tree will exactly have the same structure as the disturbance tree. Since
the tree has a unique root, the first component of any control sequence will be the same and
the MPC algorithm can be implemented in a receding horizon fashion.

Tree Construction

In order to deal with the large infeasibility rate due to uncertainty in thermal demand, we
decided to build a scenario tree whose branching is based on the condition that the cumulative
‘distance’ between scenario couples cannot be larger than the allowed energy range in the
thermal energy storage D∗, as expressed in (5-17).
The tree construction is inspired by the algorithm in [70] and leads to the minimum number
of branches with the fixed distinguishability condition. Hence, a symmetric distinguishability
matrix D is first computed, having as entries the branching time in which a couple of scenarios
(i, j) have to be considered as belonging to different branches. Here, branching time is the
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minimum time in which the cumulative ‘distance’ between scenario couples results to be larger
than D∗:

Dij = min

t :

∣∣∣∣∣∣
t∑

k=1
D̂[i]

Q (k)− D̂[j]
Q (k)︸ ︷︷ ︸

∆QTES (t)

∣∣∣∣∣∣ ≥ D∗, 2 ≤ t ≤ Np

 i, j = 1, · · · , Ns (i 6= j)

(5-19)

Branching time has to be necessarily larger than 1, because all the branches are required to
have the same root at the first time step, and is at most equal to the prediction horizon Np,
since no information is available after that point in time. However, it can happen that two
trajectories are close enough to each other so that, even at the end of the horizon, when all the
available observation will have been collected, one ensemble member is not distinguishable
from the other. In this specific case, Dij has an infinite value. On the other hand, the entries
on the main diagonal (i = j) are not defined, since they represent the distance of a scenario
from itself.
Once the distinguishability matrix D has been computed, the following algorithm is applied
to build the tree:

1. The maximum element of D is retrieved at the position (i, j). The correspondent
parameters of the row member are assigned:

P [i] = j B[i] = Dij

2. The element (and its symmetric) is removed from the matrix by means of a ‘NaN’
assignment. Indeed, a removal would modify the matrix structure.

3. The distinguishability properties of the member i are propagated to its parent, in order
not to lose any information:

D:j = min{D:i, D:j}

4. Eventually, i-th row and column are both set to ‘NaN’, such that the child member is
not reconsidered anymore.

5. Steps 1-4 are repeated until the tree parameters are assigned for any scenario.

The number of scenarios used to build the tree has to be coherent with the allowed probability
risk p. As example, we show in Figure 5-3 the tree structure built from Ns = 19 scenarios of
thermal demand forecasting, computed at 6 a.m. during a winter day. Scenarios plotted with
the same colour are considered to belong to the same branch, thus they have to be controlled
by the same control sequence. To better understand the distinguishability criteria, in the
bottom figure we also plotted the cumulative thermal demand along the increasing prediction
horizon. This variable directly affects the storage level QTES due to the linear relation of the
heat balance (2-6) and represents the storage loss when no supply is provided to the system.
Hence, we can clearly see how our construction of the disturbance tree separate scenarios with
different demand level. In this example, D∗ is equivalent to 25kWh.
The feasibility rate of a tree-based MPC algorithm highly increases with respect to scenario-
based method, at the expense of a greater computational complexity due to augmentation of
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Figure 5-3: Tree structure built fromNs = 19 scenarios of thermal demand forecasting. Scenarios
plotted with the same colour are considered to belong to the same branch

the decision space. However, we can afford this extra complexity without any practical issue
due to our model simplicity. Indeed, with a 2,7 GHz Intel processor, the optimisation is still
solvable in at most 0.6 seconds, whereas the sampling time of the implemented supervisory
control is 1 hour.

5-5 Conclusions

The heat-led rule-based controller described in Section 5-2 is considered as the benchmark
control strategy to be implemented in a local EMS. Then, a deterministic MPC strategy,
based on the certainty equivalence paradigma of forecasts, is implemented, in order to ex-
plicitly optimise the operational costs of the microgrid on the long run. Indeed, when future
predictions of system behaviour are considered by the controller, the strategy is said to be ‘in-
telligent’ since all relevant information about the consequences of choosing actions are taken
into account. The disadvantages of deterministic strategies to the residential microgrid are
related to frequent violations of the thermal comfort constraints, hence the necessity to inte-
grate model uncertainty into a more complete stochastic framework is highlighted.
Subsequently, stochastic MPC strategies are formulated in a randomised approach that nu-
merically approximates disturbance uncertainty by means of scenario realizations of the
stochastic processes involved. Finally, a method to build a tree structure for the thermal
demand forecasting is presented, with the purpose to implement a tree-based MPC and im-
prove the feasibility rate of the stochastic control strategy.
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Chapter 6

Simulation and Comparison

The purpose of the investigated supervisory control strategies is to select set-points for the
supply of the generators in the microgrid (gas engine and auxiliary boiler). This final chapter
presents and compares the results obtained by the different control strategies described in
Chapter 5, when applied on the two case studies defined in Section 3-3-3.
Before presenting our final results, we want to briefly recap our problem statement by means
of the following conditions:

• electric and thermal local demand have to be satisfied at any time step within the
microgrid

• water temperature of the thermal energy storage, used to decouple thermal supply and
demand, has to be kept within predefined bounds

• the technical constraints regarding operation of the generators have to be considered

• the operational cost of the microgrid has to be optimised in order to maximise econom-
ical savings for the households that invested in the distributed resources

The four proposed control strategies have been tested on the same 40% days selected through-
out the whole year, representing the validation set of the forecasting models for energy demand
and solar power supply. All the models have been implemented and simulated on MATLAB
2017b. Performances are evaluated in terms of cost savings, primary energy savings, and
emissions savings with respect to the conventional case of centralised electric generation and
standard domestic boiler. Moreover, violation rate of thermal constraints in the TES repre-
sents an additional fundamental parameter to be evaluated.
The necessity to satisfy thermal demand for comfort of the households at any time instant
would require a lower-level controller to recompute the set-points of the generators within the
hourly time step. This two-levels strategy would strongly affect the computed savings of the
scheduled microgrid operation. A rough estimate of performance deterioration is computed
for all the investigated cases by assuming, on one hand, that supplied heat violating upper
bounds of the thermal storage would be dumped and lost, whereas, on the other hand, that
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Control Strategy Rule-Based Classic MPC Scenario MPC Tree MPC
Cost Savings 6.14 % 6.60 % 6.25 % 6.17 %
Primary Energy Savings 5.85 % 6.30 % 5.93 % 5.86 %
Emission Savings 11.78 % 12.60 % 12.12 % 11.91 %
Violation Rate (Up/Down) 8.6/1.5 % 6.11/16.24 % 2.5/1.6 % 0.7/3.6 %
Infeasibility Rate - 1.6 % 26.7 % 2.9 %

Table 6-1: Control strategies comparison. Prediction horizon Np is set to 6 hours for all MPC
controllers.

the auxiliary boiler is capable to react fast enough to avoid lower bound violations within the
time step, at the price of additional gas consumption. Hence, the recomputed performance
indices are showed in a separate table for the two cases studies, thus highlighting larger sav-
ings obtained when stochastic strategies are applied.
We recall that, for predictive strategies, infeasibility issues are addressed by considering the
rule-based controller as back-up strategy. Moreover, for all the predictive strategies, the hori-
zon Np has been fixed to 6 hours because this choice offers the best performance. For
larger horizons, the increasing uncertainty in the forecasting deteriorates the results of the
MPC optimization.

6-1 Case Study ‘A’: Micro-CHP

For the first case study, described in Table 3-4, the supervisory control considers the forecast
energy demand of the end-users and makes hourly decisions about the production of both the
CHP engine and the gas-fired boiler connected to the microgrid.
Four different simulations have been run for the proposed control strategies and their results
are showed in Table 6-1. Since the cost savings represent our explicit objective, only the best
performance according to this index is highlighted in the table.
We want to make clear that the performance indices of the four methods belong to a quite
narrow range, thus highlighting the limited benefits of the control strategy applied in a local
EMS, when unit commitment and economic dispatch represent the only decisions to make.
However, the following discussion helps to understand the differences between the tested
strategies.
All the considered indices are the lowest in the case in which the rule-based controller is
applied. The result is completely reasonable if we consider that this controller does not make
any ‘smart’ decision about the production schedule of the microgrid resources. Indeed, it just
selects the CHP supply based on the TES level, without even considering electricity needs.
On the other hand, the classic MPC framework displays the best performance in terms of
operational savings.
However, the effect of stochastic strategies can be proved by the reduced rate of constraint
violations in the TES. The decisions made by scenario and tree-based MPC are more con-
servative due to the explicit consideration about uncertainty in energy demand evolution:
the amount of constraint violation is drastically reduced with respect to the deterministic
framework, at the price of a lower optimised cost. Finally, the main difference between the
two stochastic strategies consists of the ability of the tree-based MPC to deal with conditions
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Control Strategy Rule-Based Classic MPC Scenario MPC Tree MPC
Cost Savings 5.80 % 5.79 % 6.00 % 6.02 %
Primary Energy Savings 5.49 % 5.45 % 5.69 % 5.70 %
Emission Savings 11.44 % 11.71 % 11.70 % 11.71 %

Table 6-2: Control strategies comparison when thermal violations are avoided. Prediction horizon
Np is set to 6 hours for all MPC controllers.

that would be infeasible in cases in which a scenario-based strategy is implemented.

In the Figures 6-1–6-4, we show the power flows within the microgrid when the different con-
trol strategies are implemented in the EMS. Only six days, which are representative of the
whole dataset (144 days), are shown for matter of clearness. Each day is randomly selected
in a single bimester in order to cover the seasonality of the year.
The figures consists of 4 different plots, where the ones on the left represent the thermal
network of the microgrid and the ones on the right the electrical network. Moreover, the top
plots display the energy balances between local supply (coloured bars) and demand (black
line), whereas the bottom plots display the correspondent network imbalances: the TES level
for the thermal network and the amount of bought (or sold) electricity from (to) the utility
power grid as regards the electrical network.
We observe that rule-based controller operates the CHP engine at its maximum or minimum
power supply (when the TES is close to its full capacity) for most of the time. Indeed, it does
not regulate the supply based on information regarding the electrical demand. Moreover, due
to its myopia about the future network evolution it often incurs in forced switching off of the
CHP engine which can be avoided with predictive strategies.
When MPC strategies are implemented, the controller takes into account both future dynam-
ics and electricity needs, managing to choose a more beneficial action in the enlarged decision
space. Moreover, the evident difference between deterministic and stochastic strategies is the
behaviour of the TES: when the forecasting uncertainty is explicitly considered in stochastic
MPC strategies, the storage level is averagely pushed at a larger distance from the bounds.

The benefits of implementation of stochastic strategies and the subsequent reduction in con-
straint violations can be better understood if we look at the same simulation results when all
the violations are explicitly penalized and assumed to be solvable. Hence, an upper saturation
of thermal level in the water storage, as in (5-16), can be considered for the evaluation, and
a recovery strategy is assumed on the auxiliary boiler in order to compensate for the lower
bounds violation, as in (5-15).
In these updated conditions, we can observe the results showed in Table 6-2. Performance
of classic MPC are consistently reduced and they appear to be even worse than the simple
rule-based controller. On the other hand, stochastic strategies, which aim to reduce the ther-
mal violation rate, keep their performance closer to the standard problem. Tree-based MPC
becomes the best among all the proposed control strategies in this context. However, we have
to highlight that the larger computational complexity of the tree-based algorithm seems not
to pay off the slightly larger performance with respect to scenario-based MPC, which would
probably be the chosen algorithm to implement in a local EMS.
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Figure 6-1: Rule-based control strategy applied to case study ‘A’
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Figure 6-2: Deterministic MPC strategy applied to case study ‘A’
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Figure 6-3: Scenario MPC strategy applied to case study ‘A’
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Figure 6-4: Tree-based MPC strategy applied to case study ‘A’
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6-2 Case Study ‘B’: Micro-CHP and PV Generation

In case study ‘B’ we have assumed that the previous microgrid scenario is modified and
enlarged with an interconnected PV system. The optimal sizing procedure for the energy re-
sources led us to the microgrid defined in Table 3-5. Since the PV system is not controllable
and its power output entirely depends on atmospheric conditions, the implemented control
strategies only differs from case study ‘A’ due to a more complex forecasting model that
attempts to predict net electricity demand in the microgrid. Indeed, the clear-sky model pro-
posed in Section 4-3-1 is used to forecast PV power production within the prediction horizon
for all the MPC strategies. The added information is considered in the optimization proce-
dure by computing the reduced electric demand with respect to the case study ‘A’.
Figures 6-5 – 6-8 show the simulation results for the same six days of the previous case study.
The fundamental difference in microgrid operation regards, on the electrical side, a new local
source of energy supply: the electricity produced by the PV panels represented in yellow bars.
The rule-based controller behaves quite similarly to case study ‘A’, because its decisions are
not based on the dynamics of the modified electrical network. Predictive strategies, on the
other hand, can better adapt the micro-CHP production during sunny days, when the sup-
plied PV power can almost completely satisfy the internal demand.
Conclusions about the proposed control strategies are very similar to the previous case. In-
deed, classic MPC offers the best performance when constraint violations are not penalized
(Table 6-3), whereas a tree-based algorithm highly improves its rank when up saturation and
low bound recovery are considered to avoid violation of thermal bounds (Table 6-4).

Control Strategy Rule-Based Classic MPC Scenario MPC Tree MPC
Cost Savings 12.63 % 12.99 % 12.91 % 12.94 %
Primary Energy Savings 10.87 % 11.43 % 11.29 % 11.36 %
Emission Savings 16.59 % 16.45 % 16.53 % 16.48 %
Violation Rate (Up/Down) 3.8/1.5 % 3.4/16.7 % 1.1/2.4 % 0.5/2.7 %
Infeasibility Rate - 0.38 % 26.8 % 0.5 %

Table 6-3: Control strategies comparison. Prediction horizon Np is set to 6 hours for all MPC
controllers.

Control Strategy Rule-Based Classic MPC Scenario MPC Tree MPC
Cost Savings 12.40 % 12.13 % 12.75 % 12.77 %
Primary Energy Savings 10.63 % 10.53 % 11.13 % 11.15 %
Emission Savings 16.35 % 15.49 % 16.34 % 16.36 %

Table 6-4: Control strategies comparison when thermal violations are avoided. Prediction horizon
Np is set to 6 hours for all MPC controllers.

6-3 Conclusions

In the last chapter of this thesis, we showed the results of the proposed control strategies for
the two residential microgrids selected as our case studies.
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Figure 6-5: Rule-based control strategy applied to case study ‘B’
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Figure 6-6: Deterministic MPC strategy applied to case study ‘B’
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Figure 6-7: Scenario MPC strategy applied to case study ‘B’
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Figure 6-8: Tree-based MPC strategy applied to case study ‘B’
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In the small scale context of a residential microgrid, deterministic optimization is strongly af-
fected by the uncertainty of forecasting models and, consequently, leads to aggressive decisions
of the supervisory controller that do not take system uncertainty into account. Hence, from a
practical point of view, deterministic MPC strategy incurs in several constraint violations of
the thermal comfort bounds in the hot water TES. When the consequences of these violations
are considered, it emerges that stochastic strategies, as tree-based MPC, can actively control
the violation limit and offer the best performance between the tested algorithms.
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Chapter 7

Conclusions & Recommendations

7-1 Summary

In this thesis we have investigated the profitability of investment and employment of dis-
tributed generation technologies in residential microgrids. Our look has been focused on
actual market conditions and has been limited to the Dutch scenario. Specifically, we de-
veloped an economic profitability analysis for the installation of a micro-CHP system, whose
power and heat production reduce the primary fuel consumption in residential environments,
and solar roof PV panels. Hence, two case studies have been defined, on which to perform our
analysis: case study ‘B’ is different from case study ‘A’ due to the presence of an integrated
non-controllable PV system in the microgrid, together with the micro-cogeneration engine.
In both cases the resources were optimally sized with respect to the maximum economic
profitability they could lead to the customers during their lifetime.

Subsequently the thesis has been developed with the purpose to evaluate the effects of the
strategy implemented to control the power generated by the distributed energy resources
composing the residential microgrid.
Supervisory control strategies are mainly based on the information they are able to process
about future evolution of the microgrid. Indeed, our first step consisted of the implementation
of forecasting models for stochastic processes affecting the power balance of the microgrid:
thermal and electrical consumption of the customers on one hand, and PV uncontrollable
supply on the other hand. The forecasting are exclusively based on data which can be easily
collected by the controller, i.e. previously measured values of the considered processes and
calendar information. As a consequence, the prediction error, even for the best identified
models, results relatively large due to the high volatility of the stochastic processes. We as-
sume that prediction accuracy could be improved by introducing extra information collected
by local sensors, e.g. occupancy, or obtained through web communication with a meteoro-
logical database, e.g. outside temperature. However, on small scale forecasting, the effect of
the behaviour of the customers represents the largest and most unpredictable source of un-
certainty, and it would be impossible to reduce the prediction error below a certain physical
threshold.
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After forecasting models have been identified, we designed and implemented predictive con-
trol strategies that are based on the MPC framework and are adapted to our case studies.
The main target of our work, at this point, was to measure the beneficial effects of stochastic
strategies, which take model uncertainty explicitly into account into the optimization proce-
dure, with respect to the standard deterministic framework. Stochastic MPC strategies are
formulated in a randomised approach that numerically approximates disturbance uncertainty
by means of scenario realizations of the stochastic processes involved. A scenario-based MPC
and a tree-based MPC were adapted and implemented on the defined case studies and the
simulation results were discussed.

7-2 Conclusions

The first results of this thesis have showed that micro-CHP engines have not reached a
mature enough development to justify their widespread installation in residential buildings.
Indeed, their high technology cost is never practically compensated by the operational savings
obtained by the households during CHP lifetime. Only very high-demanding customers or,
more likely, clusters of 4-5 families willing to share the investment can have the economical
motivation to establish a residential microgrid. However, in these cases, the CHP engine would
be undersized with respect to the potential operational savings it could lead to the investors,
because of its large market cost: an increase in the engine size represents a cost that cannot be
balanced by adequate economical savings. Hence, we conclude that the investment decision
should be helped through government subsidies, which can be motivated by the beneficial
effects in emissions reduction and efficiency improvement led by micro-CHP employment.
Additionally, this reasoning is further magnified when we consider fuel cells as CHP prime
mover. In this case, the technology cost (almost double with respect to other CHP engines)
represents the fundamental obstacle to even more promising results in terms of operational
savings.
On the other hand, the integration of solar panels for local electricity supply in a residential
microgrid results to be highly recommended from an economic point of view, even in less
sunny countries as the Netherlands. Indeed, the incredible growth of PV market in the last
years has dramatically reduced the technology cost and made their employment profitable.

Our second research question, regarding the benefits of stochastic strategies, is then answered
through simulations performed on MATLAB on the previously built case studies. Indeed,
predictive strategies based on MPC perform better than standard rule-based control laws in
terms of cost, primary energy, and emissions savings. However, in the small scale context of
a residential microgrid, deterministic optimization is strongly affected by the uncertainty of
forecasting models and, consequently, leads to aggressive decisions that do not take system
uncertainty into account and incur in several constraint violations of the thermal comfort
bounds in the hot water TES. When the consequences of these violations are practically
considered, it emerges that stochastic strategies, as tree-based MPC, can actively control the
violation limit and offer the best performance between the tested algorithms.
However, it is fundamental to highlight that all the evaluated results for the operational
cost savings are enclosed in a really small range, which consists of about 0.5% of the total
yearly expenses (≈40 e/year). One of the main reasons of this result can be retrieved in
the undersized CHP engine, whose decision space is not large enough to develop the full
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potential of microgrid operational savings. Indeed, the high investment cost of the considered
technology represents a fundamental obstacle to its market maturity and to a more beneficial
sizing procedure.

7-3 Future Work

In this section, recommendations for future work are listed.

1. Since we have identified in the high installation cost of micro-CHP technologies the main
obstacle if we want to take full advantage of its operational savings (especially in terms
of primary energy consumption and emissions), it would be fundamental to evaluate
the effects of the proposed strategies on larger CHP engines. Indeed, we are aware that
an increased decision space can lead to larger benefits of predictive strategies over rule-
based controllers. To this purpose, the sizing procedure should follow different targets
than pure economic reasoning, e.g. minimisation of primary energy consumption, and
could also include the integration of a battery bank for electrical storage.

2. More factors could be considered to enlarge the beneficial gap of predictive strategies
in the residential microgrid context. For instance, a variable real-time pricing scheme
for the electricity cost, the use of demand response for electrical flexible loads, or,
more easily, a more flexible space heating strategy which considers the building thermal
model, have the potential to be included in this work and offer a larger decision space
for the supervisory controller.

3. We have estimated that about 15% of yearly potential benefits (in case of perfect predic-
tion) are lost due to forecasting errors. Hence, any improvement in forecasting models
for the stochastic processes involved in the microgrid system could lead to a benefi-
cial increase in operational savings. The inclusion of external explanatory variables,
such as house occupancy and outside temperature, should be considered to improve the
forecasting models and evaluate the effect of the enhanced prediction accuracy on the
performance of the controlled system.

4. To the same purpose of the previous point, it would be interesting to repeat and improve
our results with a reduced sampling time to measure sensor information and impose
control decisions. Indeed, on a time scale of 15 or 20 minutes the prediction error would
be reduced in absolute terms. Moreover, the results could be evaluated more accurately,
due to the not considered intra-hour dynamics of domestic consumption. However, more
granular data are needed for this goal.
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Glossary

List of Acronyms

CHP Combined Heat and Power

ICE Internal Combustion Engine

PV PhotoVoltaic

STC Standard Test Conditions

TES Thermal Energy Storage

EMS Energy Management System

MPC Model Predictive Control

MLD Mixed Logical Dynamical

MAPE Mean Absolute Percentage Error

WAPE Weighted Absolute Percentage Error

RMSE Root Mean Square Error

ANN Artificial Neural Network

ICT Information and Communication Technologies

IEA International Energy Agency
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