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Abstract

This thesis explores the development and application of clustering-based reduced-order mod-
eling (ROM) for chaotic systems, with an emphasis on both predictive modeling and control
strategies. Chaotic systems, characterized by their sensitivity to initial conditions and com-
plex spatio-temporal dynamics, present significant challenges in terms of prediction and con-
trol. Traditional numerical methods for solving these systems are computationally intensive
and often impractical for real-time applications. Reduced-order modeling techniques, which
seek to represent high-dimensional systems in lower-dimensional subspaces, offer a promising
alternative.

Clustering-based ROM is highlighted as a potentially effective method due to its data-driven
nature and computational efficiency. This study focuses on studying the influence of different
parameters in the clustering-based ROM approach in modeling and developing a robust control
algorithm to mitigate extreme events. This is investigated on three different chaotic systems
of increasing complexity: the Lorenz system, the truncated Charney-DeVore (CDV) system
and the Moehlis-Faisst-Eckhart (MFE) system. The ability of the clustering-based ROM in
reproducing those systems’ statistics is confirmed. The influence of the number of clusters
and the order of modeling on the ROM accuracy is explored, and a quantitative method to
determine the number of clusters when modeling with clustering-based ROM is proposed.

For the control part, a clustering-based control strategy is applied to the CDV system and
MFE system. In the CDV system, the control aims to move the system away from the blocked
state, and in the MFE system, the objective is to prevent extreme events (which take the
form of quasi-relaminarisation events). In both cases, the clustering-based control manages to
achieve these objectives, with a reduction of 90% of extreme events in the MFE case. These
results highlight the potential of clustering-based control.

This research contributes to the field by providing a viable approach to managing chaotic
systems with reduced computational demands, offering potential applications in various engi-
neering and scientific domains.

Keywords: Chaotic system, Reduced-order modeling, Clustering, Extreme events, System
control
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Introduction

Typical chaotic dynamical systems such as climate, stock market, neural network in brain, and
turbulence are important to study but quite difficult to predict, control and optimize. These
systems usually have a large range of time and spatial scales, which lead to high dimensional-
ity in addition to nonlinear dynamics. Dynamic modeling is needed to better understand the
principles of these systems and control them. Traditional method to model these systems is to
numerically solve the governing equations [1] based on a spatial and temporal discretization.
However, since these systems are extremely high dimensional and chaotic, to obtain precise
results often require large computational resources. Meanwhile, the control strategies based
on the full order model will become excessively complicated. Therefore, reduced-order mod-
eling (ROM) techniques has been developed in past decades. These techniques focused on
representing the system in a much lower dimension subspace, which can substantially reduce
the computational cost. The fast development in machine learning contributed to this area in
recent years [2].

This study mainly focuses on one specific reduced-order modeling method, the cluster-based
ROM, which is utilized to discover the dynamic evolution of the chaotic systems. Furthermore,
a cluster-based control strategy is proposed to prevent the dynamical systems from extreme
events. These techniques are applied on the complex systems as Lorenz attractor, truncated
Charney-DeVore (CDV) system, and Moehlis-Faisst-Eckhart(MFE) system.

The structure of this thesis is organized into eight chapters, each contributing to the overarching
narrative of the research. Below is a brief overview of the contents of each chapter:

Chapter 1 introduces the thesis by providing the introduction, where the origins and moti-
vations behind the research are discussed. This chapter sets the stage by highlighting the
significance and urgency of exploring chaotic systems and reduced-order modeling in the cur-
rent scientific landscape. And in this chapter, the structure of the whole thesis is represented.

Chapter 2 delves into the Research Background, offering a review of the current state of research
in chaotic systems and reduced-order modeling. This background serves as a foundation for
identifying the research gaps that are addressed in this thesis. Building on this,Chapter 3
outlines the Research Questions, clearly defining the core issues that this study seeks to solve
and articulating the specific goals of the research.

Chapter 4 provides an in-depth discussion of the Clustering-Based Reduced Order Modeling
and Control algorithm, detailing its various components. This chapter begins by introducing



the clustering algorithm, which plays a crucial role in reducing the complexity of the system
by grouping similar states or behaviors. Following this, two distinct reduced-order modeling
techniques are presented. The chapter includes an explanation of the corresponding control
algorithms as well, which are specifically designed to operate within the reduced-order frame-
work, ensuring effective and efficient system control.

Chapter 5, the three Test Cases used to evaluate the proposed algorithms are presented. How
to generate the data for testing is also explained in this chapter. This chapter also includes a
detailed explanation of the modeling and control strategies implemented in these cases.

Chapter 6 presents the Modeling Results, showcasing the effectiveness and accuracy of the
developed models through extensive experimentation and analysis.

Chapter 7 focuses on the Control Results, discussing the design and implementation of control
strategies and evaluating their performance across different test cases.

Finally, Chapter 8 concludes the thesis by summarizing the key findings from Chapter 6 and
Chapter 7, and offering suggestions for future research directions.



Research Background

In this chapter, the basic background of chaotic dynamical system and reduced-order modeling
is discussed. Concepts such as phase space and attractors in dynamical systems are explained.
In the reduced-order modeling part, several prevailing methods are introduced. Their advan-
tages and short-comes are discussed as well, which leads to the the research gaps that will be
filled by this thesis.

2.1. Chaotic Systems

A dynamical system is a concept used across various disciplines, including mathematics, physics,
engineering, biology, economics, and more. At its core, it refers to a system that evolves over
time, where the state of the system at any given moment depends not only on its current
conditions but also on its history and external influences [3].

In mathematics and physics, dynamical systems are often described using differential equations,
which capture how the system’s variables change with time. These equations may represent
anything from the motion of celestial bodies to the behavior of chemical reactions.

Engineering applications of dynamical systems can range from control systems in robotics
and industrial processes to the design of complex mechanical systems like aircraft and auto-
mobiles. Understanding the dynamic behavior of these systems is crucial for predicting their
performance, stability, and response to various inputs.

If given the equations of motion together with the initial and boundary conditions, the evolution
of the system can be computed as a function of time, the system can be called deterministic [4].
For example, if the initial velocity and position of a single pendulum are known, the velocity
and position of that pendulum can be described as a function of time easily. However, this is

Figure 2.1: Chaotic dynamical system
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Figure 2.2: Examples of attractors

not always the case in practice. Some of the dynamics systems are sensitive to the initial and
boundary conditions. This suggests that only with infinite accuracy of initial and boundary
conditions can the accurate solution of the system be obtained [5]. Once a tiny perturbation
is added into the initial or boundary condition, the prediction of the equations will be totally
differently. This property widely occurs in systems involving non-linear terms. These systems
are defined as ill-posed and known as deterministic chaotic systems.

There are various famous examples. Newton successfully solved the two-body problem, where
he found the elliptic Kepler-trajectories as the solution, which are considered the hallmark of
a completely predictable solution [4]. When the French mathematician Henri Poincaré tried
to solve the three-body problem using the same method, he found that the solution is not
integrable [6]. The three-body system is chaotic.

Turbulence is another important instance of chaotic systems. With the Navier-Stokes equations
and proper initial and boundary conditions, we can define the problem as deterministic [7].
However, tiny variations in the starting state can lead to vastly different outcomes over time.
In turbulent flows, even minuscule disturbances can cascade through the system, amplifying
into large-scale eddies and swirls that contribute to the overall complexity and unpredictability.

In dynamical systems and control theory, a phase space also known as a state space
provides a framework for representing all possible “states” of a dynamical or control system.
Each unique state is represented as a distinct point within this space. For mechanical systems,
the phase space generally includes all potential values of position and momentum variables.
This space is essentially the Cartesian product of direct space and reciprocal space. The
concept of phase space was first introduced in the late 19th century by Ludwig Boltzmann,
Henri Poincaré, and Josiah Willard Gibbs [8].

The dimensions of the phase space are always equal to the number of degrees of freedom (DOF)
of the system. Once the phase space is established, the state of the system at certain time can
be represented as a point in the phase space. The time evolution of the system can be seen as
trajectories in the phase space, representing the progression of the system from one state to
the next.

Attractor, in the context of the dynamical systems, is a set of states towards which a system
tends to evolve, for a wide variety of initial conditions of the system. In other words, the
solution intends to stay in this attractor structure in the phase space. When the evolving
variable involves two or three dimensions, the attractor of the dynamic process can be visually
represented in two or three dimensions. An attractor can be a single point, a finite collection
of points, a curve, a manifold, or even a complex set exhibiting a fractal pattern, referred to
as a strange attractor. In cases where the variable is a scalar, the attractor is confined to a
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subset of the real number line. The characterization of attractors within chaotic dynamical
systems stands as a significant accomplishment within chaos theory.

A good example of singular attractor is the famous Lorenz system’s butterfly shaped attractor
[9]. This will be discussed later in Chapter 5.

2.2. Reduced-order Modeling (ROM)

Since some chaotic dynamical systems are rather high dimensional in space, reduced-order
modeling techniques are significant to reduce the computational cost. Meanwhile, other meth-
ods more focuses on simplifying temporal evolution of the system to reduce cost. And some
research combines both methods and achieve better results.

The main reduced-order modeling techniques can be divided into two categories. One is
knowledge-based, which means that they usually need the governing equations. These methods
include proper orthogonal decomposition (POD) with Galerkin projection [10] on Navier-Stokes
equations. In contrast are the methods that are purely data-driven. An important example is
dynamic-mode decomposition (DMD) [11]. Both sets of methods are discussed below.

2.3. Overview of Existing Methods

2.3.1. Proper Orthogonal Decomposition (POD)

One of the most used ROM techniques is proper orthogonal decomposition (POD) or principal
component analysis (PCA) with Galerkin projection [10]. Snapshots of the system are used to
extract dominant energy-containing structures, or orthogonal modes to create a reduced-order
representation that captures the essential features and dynamic behavior of the system. The
temporal evolution of the system is solved with a Galerkin projection, which means projecting
the governing equations onto these POD modes, reducing the system to a lower-dimensional
model that captures the dominant dynamics with fewer variables. This facilitates dimension-
ality reduction and provides insights into coherent structures for more efficient analysis and
modeling. POD shares close ties with principal-component analysis (PCA) and singular-value
decomposition (SVD) [12], both being fundamental dimensionality-reduction methods widely
employed in data-driven modeling. This method depends on a linear subspace to approximate
data, even though many systems clearly involve nonlinear manifolds. Further, Galerkin pro-
jection require the governing equation to model the temporal properties. That forbids this
reduced-order method to be used for systems where the set of governing equations is unknown.

2.3.2. Dynamic-Mode Decomposition (DMD)

Dynamic-mode decomposition (DMD) is a purely data-driven method that is also widely used
to reduce the dimension of the system [11]. While POD decomposes data into spatial modes
and temporal coefficients, DMD decomposes it into dynamic oscillatory modes with a singular
frequency [2]. In other words, DMD reduces the order of the system both temporally and
spatially. DMD excels in capturing transient dynamics, whereas POD is better suited for quasi-
steady flow. DMD has a strong relation with the Koopman mode decomposition [13]. Rowley
[14] proposed that DMD modes are a numerical approximation of the Koopman modes. DMD
can model the systems’ spatial and temporal properties simultaneously. DMD also use a linear
subspace to approximate the data, which weakens its ability to capture the nonlinear properties
of the system. DMD is sensitive to data length, and its performance may be limited when the
time series data length is insufficient, resulting in inaccurate patterns being extracted. When
the input data becomes enormous, the computational cost of DMD will increase extremely.
Thus, the selection of data length becomes an important problem for DMD. Moreover, DMD
is rather sensitive to the noise in the input data. Noise may affect the accuracy and stability



2.3. Overview of Existing Methods 6

of the extracted patterns.

2.3.3. Autoencoders (AE)

With the development of neural networks, these strong tools are also used in reduced-order
modeling. Deep nonlinear autoencoders involve neural networks that are used to extract low
dimensional manifolds from the snapshots data. Convolutional neural network-based autoen-
coder (CAE) shows impressive ability to reduce the spatial dimensions with little error when
applied on Kolmogorov flow [15]. The latent space found by CAE [15] not only can be related
to the physical space directly, but also exhibits good generality.

Isomap-K nearest neighbor (KNN) manifold learner is another new method to discretize the
systems spatially [16]. The tensors obtained in the encoder have clear physical explanations.
This method is anticipated to be highly significant in estimation, dynamic modeling, and
control across a wide array of configurations characterized by dominant coherent structures.

Autoencoder methods present notable challenges in fluid modeling. Firstly, they demand exten-
sive datasets for effective training, a requirement that can be particularly daunting in the realm
of fluid dynamics, where obtaining large volumes of data, especially for intricate systems, can
prove to be costly or impractical. Additionally, the computational demands of training sizable
autoencoder models are significant, especially when dealing with high-resolution or complex
fluid simulations, necessitating ample computational resources and time. Moreover, while au-
toencoders offer powerful modeling capabilities, their black-box nature limits interpretability,
hindering the comprehensive understanding of fluid phenomena essential for accurate model-
ing and prediction. These shortcomings underscore the importance of carefully considering
the trade-offs and exploring strategies to mitigate these challenges, such as integrating comple-
mentary techniques or refining model architectures to enhance performance and applicability
in fluid modeling tasks.

2.3.4. Temporal ROM Techniques

Some other methods are more focused on modeling the temporal nonlinear dynamics of the
system. Long short-term memory (LSTM) network [17], echo-state network (ESN) [18] are
two examples of neural network that are capable to capture the temporal evolution of the
system. Advances in parsimonious modeling have given rise to the “sparse identification of
nonlinear dynamics” (SINDy) [19] algorithm, which efficiently identifies accurate models from
data. However, all these approaches face challenges in scalability, proving computationally
expensive for even moderately dimensional feature spaces. Thus, they are always used in
cooperation with spatial reduced-order techniques.

2.3.5. Other Black-box Model

There are also some pure black box techniques, including Volterra series, autoregressive models,
eigensystem realization algorithms, and neural network models [20]. However, their limited
interpretability constrains their usage. And some of them require a large volume of data,
which is not always available.

In addition to autoencoder methods, several other techniques in dynamical system modeling
fall under the category of pure black box methods. These include the Volterra series [21],
autoregression models [22], eigensystem realization algorithms [23], and neural network models
[20]. Each of these methods offers its own set of advantages and challenges in modeling chaotic
dynamical systems.

The Volterra series is a mathematical framework used to represent nonlinear systems. It offers
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the advantage of capturing nonlinear interactions within the chaotic system. However, like
autoencoders, Volterra series models are often considered black box models due to their com-
plex mathematical formulations, which can limit their interpretability. Moreover, accurately
estimating Volterra series coefficients typically requires a large volume of data, which may not
always be readily available in fluid dynamics experiments or simulations.

Autoregressive models, on the other hand, are a class of statistical models that predict future
values based on past observations. While these models can be relatively straightforward to
implement and interpret, they may struggle to capture the complex dynamics of fluid systems,
particularly in cases involving turbulence or other nonlinear phenomena. Additionally, autore-
gressive models may require a significant amount of training data to accurately capture the
underlying dynamics of the system, posing challenges in data-constrained scenarios.

Eigensystem realization algorithms (ERA) are data-driven techniques used to identify dynamic
modes or coherent structures within fluid flow data. ERA offers the advantage of being able
to extract dominant flow features directly from data without relying on predetermined models.
However, like autoencoders and Volterra series, ERA algorithms may suffer from limited in-
terpretability, as the identified modes may not always correspond directly to physically mean-
ingful quantities. Moreover, accurate identification of dynamic modes using ERA typically
requires a sufficient amount of high-quality flow data, which may be challenging to obtain
when simulation or experiment of the dynamical system becomes too expensive.

Neural network models, including deep learning architectures like convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), have gained popularity in fluid dynam-
ics due to their ability to learn complex patterns and relationships from data. While neural
network models can offer high predictive accuracy and flexibility in capturing nonlinear dy-
namics, they are often criticized for their black box nature, as understanding the underlying
mechanisms learned by the network can be challenging. Additionally, training neural network
models typically requires a large volume of data to generalize well to unseen scenarios, which
may be a limiting factor in fluid dynamics applications where data availability is constrained.

In summary, while pure black box techniques such as Volterra series, autoregression models,
eigensystem realization algorithms, and neural network models offer powerful modeling capa-
bilities in fluid dynamics, their limited interpretability constrains their usage. Additionally,
the requirement for a large volume of data, which is not always available, poses challenges
in applying these techniques effectively to real-world fluid dynamics problems. As such, a
careful consideration of the trade-offs between model complexity, interpretability, and data
requirements is necessary.

2.3.6. Cluster-based Modeling Methods

A novel reduced-order method is cluster-based modeling. This modeling of the system is
human interpretable by representing dynamics by a handful of coherent structures and their
transitions. Kaiser et al [24] first applied cluster-based Markov model (CMM) to a mixing
layer. The snapshots are projected into a latent phase space and clustered using the K-means
algorithm. Then the temporal evolution is modelled as a probabilistic Markov model of the
transition dynamics. The state vector of cluster probabilities may initially start in a single
cluster but eventually diffuses to a fixed point representing the post-transient attractor. One
obstacle for CMM lies in temporal evolution, where the state rapidly diffuses across the entire
attractor, typically within a single time period. This challenge is mitigated by the cluster-based
network model (CNM) by Li et al [25], which incorporates time-resolved data to alleviate the
loss of dynamic information. Instead of using fixed time period, the dynamics is modeled on
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a directed network based only on motion between the clusters. This enables the model to
have a more accurate long-time behavior. Illustrating this motion through an airport analogy,
the centroids can be likened to nodes, akin to airports, and the flights represent the edges,
resembling a deterministic-stochastic flight schedule. This schedule permits only a select few
possible flights with associated probabilities and flight times that align with the provided data.

Trajectory-optimized cluster-based network model (tCNM) was proposed by Hou et al [26].
This model optimizes the centroid position and promotes the performance of the model. Deng
et al [27] propose a self-supervised cluster-based hierarchical reduced-order modeling methodol-
ogy to analyze the complex dynamics of a two-dimensional fluidic pinball flow, revealing distinct
shedding regimes and providing a visual representation of multi-frequency, multi-attractor be-
havior through a cluster-based hierarchical network model (HICNM).

For complex systems such as turbulence, just like POD-Galerkin method, cluster-based mod-
eling contains two stages. First is to find a latent phase space so that the snapshots can be
represented as points and be clustered. Then the time evolution of these clusters is modeled.
While most researchers focus on the time evolution of the clusters, it is also important to
study the method to find the proper latent space. Since the cluster-based modeling can easily
give the time evolution of the clusters, if the clusters can be connected to coherent structures
in turbulence, the understanding of evolution of coherent structures in turbulence could be
developed profoundly.

Cluster-based ROM also showed an impressing potential for dynamical system control. A.G.
Nair et al [28] introduced a cluster-based feedback control strategy for post-stall separated
flows over airfoils. By partitioning flow trajectories into clusters and optimizing feedback
control laws, they minimized the power consumption in aerodynamic flight. This model-free
approach effectively redirects flow trajectories to favorable regions, enhancing aerodynamic
performance. Applied to turbulent separated flows over a NACA 0012 airfoil, the optimized
control laws mitigate high-drag clusters, reducing mean drag. This work addresses challenges
in feedback control design for turbulent separated flows at moderate Reynolds numbers.

Wang and Deng [29] proposed a Cluster-Based Control (CBC) strategy aimed at achieving
model-free feedback drag reduction. This strategy utilizes multiple actuators and full-state
feedback. The full-state CBC method further elucidates the evolution of control flow associated
with centroids, thereby contributing to a more comprehensive physical interpretation of the
feedback control process. However, CBC has so far not been applied to chaotic systems that
can exhibit extreme events.

An important problem for cluster-based reduced-order modeling is that, when dealing with
systems with extremely high degree of freedom, the selection of the latent space in which
clustering is applied is quite arbitrary. It does not always ensure that the model can preserve
the properties of the system. Thus, a general method to find the latent space is required.



Research Questions

Chaotic systems are omnipresent. They demonstrate a high sensitivity to their initial con-
ditions and evolve patterns that appear to be random [5]. However, in many areas, having
quick and reasonably accurate solution of these systems are necessary. Thus, reduced-order
modeling for chaotic dynamical systems is important, since it is significant for predicting and
controlling the systems. Various methods have been proposed, including both knowledge-based
methods and pure data-driven methods. This array of methodologies underscores the multi-
faceted efforts aimed at addressing the challenges posed by chaotic systems. Among these
methods, cluster-based reduced-order modeling appears to be a promising one. This method
is purely data-driven with quite a limited computational cost and has a good potential for
system control.

Based on the drawbacks identified in the previous section, the research questions of this study
is established as follows:

How to model and control chaotic systems which can exhibit extreme events using
cluster-based reduced-order method?

And the sub-questions are listed as followed:

o What are the key parameters influencing the performance of cluster-based reduced-order
methods in capturing coherent structures?

e Does these parameters influence the performance of modeling both in statistical and
dynamical aspects?

o Is there a method that can determine these parameters quantitatively?

o (Can control algorithm based on cluster-based ROM be used to keep the system in certain
state and prevent extreme event from happening?



Methodology

As mentioned the Chapter 3, this study focuses on using cluster-based modeling techniques
to model the dynamics of chaotic systems and endeavor to propose a cluster-based control
algorithm to prevent the system from extreme events.

In this chapter, several aspects of the research methodology are introduced, including clustering,
cluster-based Markov model, cluster-based network model, and cluster-based control strategies.

4.1. Clustering

K-means clustering algorithm [30] is used in this study to cluster the snapshots in the (latent)
phase space.

K-means algorithm is an unsupervised classification algorithm where samples are partitioned
into K representative clusters. Every cluster, denoted as %}, is characterized by its centroid,
¢k, computed as the mean over all observations within that cluster. These centroids serve to
reduce the number of degrees of freedom within the feature space.

For a set of cluster-based centroids {ck}g;ll , the within-cluster variance (J,,) as defined in the
work by Goutte and colleagues [31], are given by

1 Nei
Jo= 3 s —al? (4.1)

k=1 s€%;,

Here, s denotes the snapshots, N is the total number of observations, and N is the number
of clusters. And ¢, the cluster centroids is defined as:

1
k= — Z s (4.2)
Nk SEGL

Where Ny is the number of observations in cluster %

The optimization problem is to find a set of centroids that can minimize J,.

(c1,...cn,) = argmind, (4.3)
€

10
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After the random initialization of the centroids, the optimization process can be done in two
stages [32], and they are run iteratively to find the optimized set of centroids.

The first stage is Assignment. In this process, each observation is assigned to its nearest
centroids. Mathematically, this entails partitioning the observations based on the Voronoi
diagram defined by the cluster centroids.

@ = {o: o= < - i < o) w0

)

where each s is assigned to exactly one ‘Ki(t
them.

, even if it could be assigned to two or more of

The second stage is Update. The means of the observations assigned to each cluster are
recalculated and these centroids serve as the nearest centroids for the next iteration.

t+1) 1 Z
B (4.5)
Nk SEC)

K-means algorithm has converged when the assignments no longer change. The algorithm
is not guaranteed to find the global optimum, sometimes it leads to a local optimum. As a
result, the initialization is rather significant for K-means algorithm. The initial guess of the
centroids will not only determine the quality of the clustering but also the iteration times of
the algorithm. In this study, K-means++ is utilized. This algorithm spreads the initial guess
of centroid: the first cluster center is chosen uniformly at random from the data points that are
being clustered, after which each subsequent cluster center is chosen from the remaining data
points with probability proportional to its squared distance from the point’s closest existing
cluster center [33]. Though this seeding method itself cost more computation time than the
original K-means, the initial guess of centroids provides a much shorter convergence time for
the clustering part.

4.2. Cluster-based Markov Model (CMM)

The cluster-based Markov model simplifies the evolution of dynamical system into transitions
between each cluster with a Markov process. And the transitions are elucidated as a cluster
transition matrix (CTM), which serves as the propagator in terms of probability.

Since we assume the dynamical system as a Markov process, the state in the next time step is
only dependent on the state at the current time step. Firstly, the state is defined as a vector
that represent the probability of the snapshots to fall in each clusters.

p(t) = [p1, ...,chl]T (4.6)

The CTM is noted as P. P;; represents the transition probability from cluster %; to €} in one
forward time-step, the elements of the resulting CTM can be inferred by

(4.7)

where IV;; is the number of snapshots that move from €} to 4;, and N; is the number of
snapshots in ;.
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Every element in P are positive by definition.

P;>0, i,j=12,..,Ng. (4.8)

The column sum of P is equal to unity, as the total probability for all transitions is one. This
property is necessary to preserve the normalisation condition of the probability vector.

Ny
S Py =1 (49)
7=1

Two important properties of the cluster probability vector at time step n p™ can be derived
from Equation 4.8 and Equation 4.9, and are given in Equation 4.10 and Equation 4.11.

Ncl
dopi=1 (4.10)
k=1

pp >0 (4.11)

With this CTM, the dynamic property of the system can be identified. The probability of state
at time step n + 1 is equal to the step at time step n times P.

p"tt =p"P, n=0,1,2... (4.12)

Let p° be the initial probability distribution vector. Then, the cluster probability vector at
time n + 1 p"*! is compactly given by

pn+1 — pOPn (413)

The CTM, which serves as the propagator, defines a time-homogeneous Markov chain with
well-known properties [34].

The long-term behavior can be analyzed by considering the powers of the CTM as defined in
Equation 4.13. The asymptotic probability distribution is obtained by

p>® := lim P"p’ (4.14)
and the infinite-time CTM P° is defined as

P> := lim P" (4.15)

n—oo
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4.3. Cluster-based Network Model (CNM)

While the Markov model sees the dynamics of the system as transitions between each centroid,
cluster-based network model resolves the deterministic transition time and allow the model to
predict the state as a function of time. Discarding the critical transition time step in CMM,
CNM model defines two important time parameters.

g 'r.ll +1 s
] ™~
Cluster j T, Cluster i

Figure 4.1: Sketch of times and periods employed in the cluster-based network model [25]
The residence time for each cluster is defined as

Tn = g1 — tn (4.16)

The process is illustrated in Figure 4.1. Equation 4.16 states that the residence time is the
time when the system state stays in that cluster, which is equal to the exit time minus the
entrance time of that cluster.

Let j and ¢ be the indices of the clusters after ¢, and ¢, respectively. Then the transition
time from j to ¢ is defined as half of the residence time of both clusters.

Tn + Tn+l

. (4.17)

Tij =
It is the half of sum of the residence time in the two clusters. And the direct transition time
T;; from cluster j to cluster ¢ is defined as the average of all values of 7;;.

Ty = (7ij) (4.18)

With this direct transition time matrix T and the CTM, the dynamics of the system can
be modelled. Notably here the definition of CTM has been changed. In CNM, rather than
assuming a Markov process, more previous states can be taken into account. And this is
quantified by the order of model L, which is defined as the number of clusters the system have
previously visited before entering the current one that will have an effect on determining its
next destination. Thus, the CTM becomes much more complicated. Instead of a square matrix
with the rows representing the "from states”, and the columns representing the "to states”, the
CTM for CNM has much more rows than columns. The "from states” is now a sequence of
clusters from which possible transition is happening. The calculation for the CTM is similar
to Equation 4.7. For instance, if the order of model is set to be L = 2, the probability of the
system to move to ¢; , which has previously visited ¢} and ¢} is given by

Nija
Ni;j

Puji = (4.19)
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where Vi ; is the number of snapshots that move to ¢; before it visited 4}, and € in succession,
and Nj; is the number of all snapshots that visited %}, and ¢ in succession.

For each transition between clusters, the next cluster is firstly selected based on the probability
given by CTM. And the direct transition time of this process is given by the direct transition
time matrix and added to the total time. The states within that time period are interpolated
between two centroids. The prediction for ¢ € [t,, t,+1] is given by

b — ¢

u(t) = an(t)ck, + [1 — an(t)] Ckpi1s  On = (4.20)

tn+1 - tn .

where ¢, represents the centroid of the cluster that the system enters at time ¢t = ¢,,, and
Ck,., Tepresents the centroid of the cluster that the system enters at time ¢ = #,, 1.

4.4. Cluster-based Control (CBC) Algorithm

After the latent space is selected and the cluster analysis is performed, a cluster-based control
strategy can be developed. A forcing term can be added into the governing equations and the
forcing amplitude can be defined as [28]:

b (b s(t)) = b b POl
| Sopet, e~lls(®)—exll*/

(4.21)

where (3 is the feedback gain which is set to unity, unless otherwise noted. And J; denotes the
inter-clusters variance.

1 Ncl
Ji= Y Nillex — @l (4.22)
N3

And &= (1/N) S0 Nyc.

The system is controlled by a proportional feedback controller depending on the current state in
the feature space s(t). To find the cluster-based control amplitude {b;}, an objective function
whose input are control amplitude {b} is needed. Thus, the problem becomes an optimization
problem for a nonlinear multivariate objective function. In each test cases, the objective
function varies based on the purpose of control.

In this study, simplex searching method is chosen since it does not require the computation of
the gradient or derivatives of the objective function. And it can be quite effective for optimizing
smooth and well-behaved functions in moderate-dimensional spaces.

Simplex search method, also known as the Nelder-Mead method, proceeds through a series
of iterations, gradually narrowing down the region of interest in the parameter space until a
satisfactory solution is found. The detail of Nelder-Mead method is presented in Appendix B

The iteration contains four steps: initialization, ordering, reflection and expansion, contraction
and shrinkage.

This iterative process continues until a termination criterion is satisfied, typically resulting in
a parameter vector that corresponds to a local minimum (or maximum) of the objective func-
tion. However, due to the lack of global convergence guarantees, multiple runs from different
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initial conditions may be necessary to obtain the global optimum in non-convex optimization
problems.

Once the amplitude for each cluster is found, the controller will be able to lead the system to
certain direction and achieve the control objective.



Test cases Set Up

The modeling algorithm is applied on three different chaotic dynamical systems varying in
complexity to validate the accuracy of prediction. They are Lorenz system, Truncated Charney-
DeVore (CDV) System, and Moehlis-Faisst-Eckhart (MFE) System.

The control algorithm is applied on Truncated Charney-DeVore (CDV) system and Moehlis-
Faisst-Eckhart (MFE) system with different purpose of control. Different kinds of objective is
used to examine the robustness of the cluster-based reduced-order control method.

5.1. Lorenz System

The Lorenz system was abstracted from atmospheric convection studies. Specifically, it was
developed by meteorologist Edward Lorenz in 1963 [9] while he was investigating simplified
models of fluid motion in the atmosphere, particularly to understand and simulate chaotic be-
havior in weather patterns. This system can be expressed as a set of three ordinary differential
equations which is known as the Lorenz equations.

dx

5—5(19—95),

dy

-7 _ _ ) — 5.1
o = =2~y (5.1)
dz

a—xy—ﬁz

The equations describe the behavior of a two-dimensional fluid layer that is uniformly heated
from below and cooled from above. Specifically, they represent the rate of change over time
of three key variables: x, which is proportional to the convection rate; y, related to the
horizontal temperature variation; and z, corresponding to the vertical temperature variation.
The constants d, p, and 3 are system parameters that are proportional to the Prandtl number,
Rayleigh number, and certain physical dimensions of the fluid layer.

One of the most widely used parameter set of §, p, and §is 6 = 10, p = %, and 8 = 28, which is
also assumed in this thesis. With these parameters, the Lorenz equations can be easily solved
with the Runge-Kutta method when initial conditions are given. A typical initial value of the
system is (z, Yo, 20) = (—3,0,31), and it is used for all Lorenz system test cases in this thesis.

16
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Figure 5.1: Lorenz system variables with time

The time evolution of the three variables are shown in Figure 5.1, where a bimodal property
can be identified clearly. Since Lorenz system only has three variables, the selection of the
phase space is quite simple. A vector space with x, y, and z as the axis is determined to be
the phase space, and the system can be expressed as the famous Lorenz attractor in it. The
shape of the attractor looks like a butterfly, and can be found in Figure 5.2.

Figure 5.2: Lorenz attractor
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Lorenz system is mainly used to analyse the parameters in cluster-based reduced-order mod-
eling, since it is simple and no effort is needed to find a latent space to applied the clustering
techniques. Notably, the first 5% of the data is truncated to eliminate the influence of the
initial conditions. Unless otherwise specified this truncation will be applied to all the test cases
in this thesis.

5.2. Truncated Charney-DeVore (CDV) System

The Charney-DeVore system is used to describe the regime behavior of the atmosphere. The
regime behavior of the atmosphere encompasses the various stable or shifting patterns and
states that define how the atmosphere behaves over different time scales and conditions. Un-
derstanding these regimes helps in predicting weather patterns, assessing climate impacts, and
studying the dynamics of atmospheric circulation. However, to understand and model such
behavior is extremely difficult. Charney and DeVore [35], who stated that flow regimes should
be identified with equilibrium solutions of the equations describing the evolution of large-scale
atmospheric flow, proposed a set of differential equations to model such behavior.

The model is derived by applying a Galerkin projection and truncation to the barotropic
vorticity equation (BVE) within a §-plane channel.

The finite-dimensional model of the Charney-DeVore system consists of six ordinary differential
equations as:

7 = yiz3 — C (21 — 27)

2y = — (qx1 — P1) ¥3 — Cry — 017476

73 = (a1r1 — B1) 12 — M121 — Caz + d1w475 (5.2)
2y = vax6 — C (x4 — ) + € (X226 — T325)
T5 = — (a2r1 — f2) 6 — Cw5 — d27473

Tg = (Oégxl — 52) Ts — Vo4 — Cxg + dox420

With:
~8vV2m? (b +m? — 1) 5, = [b?
am_w(4m2—1)(b2+m2)’ b2 4 m?’
5o 6020 —mril 4y/2mb
= B et

157 2+m? ™ T rEm2—1)

161/2 4/2m>b

st T T @m2 — 1) (02 + m2)

for m = 1,2, where the model coefficients are:
] = 0.95; 3 = —0.76095; 8 = 1.25; v =0.2; b= 0.5; C = 0.1.

The initial condition is set to (0.11,0.22,0.33,0.44,0.55,0.66). Since the CDV system is a low
dimensional ordinary differential equation as well, the Runge-Kutta method is used to obtain
data.
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Figure 5.3: CDV system time evolution

The time evolution of each variables is shown in Figure 5.3. A bifurcation can be identified.
The system alternates in between two representative regimes, the zonal regime and the blocked
regime, both of which originate from the combination of topographic and barotropic instabili-
ties. The zonal regime reveals strong fluctuations of all modes, while the blocked regime shows
a slow evolution and a large decrease in x1. Clustering will be directly applied on the phase
space with the six variables considered as the basis. To identify the regime of the system
more obviously, the system is projected into a 2-dimensional latent space, using x; and x4 as
the basis. The corresponding regimes are clearly illustrated. A singular attractor is shown in
Figure 5.4.
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Figure 5.4: CDV system projection on x1 — x4 latent space

The purpose of this projection is to provide a simple way to determine the regime of the
system. This information is essential for the implementation of the control algorithm, as the
primary objective for the CDV system will be to maintain the system within the zonal regime.
Specifically, this entails attempting in constrain the attractor towards the lower right corner of
the projected phase space. The details of how to achieve this will be elucidated in Chapter 7.

5.3. Moehlis-Faisst-Eckhart (MFE) System

Moehlis-Faisst-Eckhart (MFE) system is a low-dimensional model for turbulent shear flows
[36]. The system models a sinusoidal shear flow with nine ordinary differential equations, in
which the fluid flows between two free-slip walls subjected to a sinusoidal body force. a;
to ag represent the amplitude of each modes, describing the basic mean velocity profile and
its modification, downstream vortices, streaks, and instabilities of streaks, with other modes
being a consequence of the non-linear interactions. Once the time evolution of the nine modes’
amplitude is obtained, the flow field can be reconstructed by multiplying with the orthogonal
basis modes, whose expressions can be found in Appendix A.

The differential equations for the nine modes are
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dy + Crar = (1 + &n1asas + E12a2a3
da + (a2 = &a1a4a6 — E22a5a7 — Ea3asag — Eaaa1a3 — 250309
as + (sas3 = €31 (aaay + asap) + 320408

ag + Quay = —&p1a1a5 — Eapa2a6 — Eazazar — Eaaa3as — E45a5a9

ds + (sa5 = Es1a1a4 + Ex2a2a7 — Es53a2as + Epaa4a9 + 550306 (5.3)
dg + Ceas = Se1a1a7 + Ee2a1as + Ee3a2as — Eeaazas + Eesarag + Eeeagag

d7 + Grar = —&71 (a1a6 + agag) + Eraazas + {r3azay

ag + (gag = &£g1a20a5 + Egaa3a4

dg + Coag = g1a2a3 — E92a60a8

Where: , ) ) )
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K1 = s Ky = ———
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The parameters of the system were equal to: o« = 27/L,; = m/2; v =2n/L,.

The size of the domain is set to L, = 4w, L, = 27 for the whole thesis. The Reynolds number
is determined to be 800 [37] to ensure a complete turbulent system. The initial condition is set
to (1.0,0.07066,—0.07076,0.001x,0.0,0.0,0.0,0.0,0.0), where = is a random number between
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0 and 1 [38]. Similar to the Lorenz system and the CDV system, with all the parameters and
initial condition, MFE system data can be generated with the Runge-Kutta method. The time
evolution of the MFE system is shown in Figure 5.5.
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Figure 5.5: Time series of MFE system

However, the time evolution of the amplitude of each modes does not provide much information
regarding the prevention of extreme events. Even identifying extreme events is quite hard when
only given fluctuation on the nine modes’ amplitude. Thus, another latent space is needed to
identify and control the extreme events. The time evolution of kinetic energy k& and mean
dissipation rate € are calculated to define where the extreme events happen. Sudden spikes in
kinetic energy and dissipation rate are used as indicators of extreme events, as demonstrated
in Figure 5.6.
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Figure 5.6: Extreme events in MFE system

Furthermore, the extreme events of the system can be more clearly seen by projecting the
MFE system on to the k — € phase space. Curves that are far from the origin with high
kinetic energy and dissipation rate are the indicators of extreme events. This approach also
provides an effective means to explicitly evaluate the performance of the control algorithm.
Given that the objective of the MFE system is to reduce extreme events, a well-functioning
control algorithm should ensure that the projection of the controlled system remains close to
the origin, with minimal deviations or distant trajectories.
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Figure 5.7: Extreme events in MFE system in phase space



Modeling Results

In this chapter, the results of reduced-order modeling are illustrated and discussed for all three
systems. Additionally, the effect of two main modeling parameters, the number of clusters N
and the order of model L are studied for the CNM method. The results for these parameters are
compared from both statistical and dynamical perspective. Furthermore, a general approach
to determining the optimal number of clusters N is proposed.

6.1. Lorenz System

6.1.1. CMM Results of the Lorenz System

N, = 10 is selected in this section to check if CMM can capture the features of the Lorenz
system. The clustering result is shown in Figure 6.1. Each color-coded cluster represents
distinct regions in the phase space, with the central black dots indicating the centroids of
these clusters. The dense clustering near the attractor’s lobes reflects the system’s propensity
to spend more time in these areas, effectively capturing the dynamic structure of the Lorenz
attractor. These clusters can simplify the analysis and control of the chaotic system by focusing
on significant states and their interactions, facilitating the creation of reduced-order models
that approximate the complex dynamics of the Lorenz system.

24



6.1. Lorenz System 25

Figure 6.1: Clustering result of the Lorenz system

A simplified network graph of the Lorenz system when applying CMM method is shown in
Figure 6.2. This represents the Lorenz system with reduced-order, where each node corresponds
to a cluster identified in the system’s state space, and directed edges indicate transitions
between these clusters. The self-loops on nodes suggest that the system frequently returns to
the same cluster. The connections between different nodes illustrate the dynamic pathways
through which the system evolves over time, revealing the likely transitions between clusters.
This graph-based representation simplifies the complex dynamics of the Lorenz system into
a manageable structure, allowing for a clearer understanding of the system’s behavior and
facilitating the analysis of state transitions.

@ @

Figure 6.2: Network graph representation of the Lorenz system

The cluster transition and distance matrix are illustrated in Figure 6.3 and Figure 6.4. The
cluster transition matrix (CTM) provides a quantitative perspective to study the transition
between and within the clusters. Figure 6.3 displays the likelihood of transition from one
cluster to another, with darker shades indicating higher probabilities. The diagonal dominance
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in this matrix suggests that the system has a high probability of remaining in the same cluster,
reflecting the system’s tendency to persist in specific states. The off-diagonal elements, while
generally lighter, indicate occasional transitions between different clusters, providing insight
into the dynamics and flow of the Lorenz attractor. This is considered to be an inherent
drawback of the CMM method. Because when predicting the system’s time evolution with
CTM, it is very likely that the system is stuck in the same cluster. The distance matrix, which
is a diagonal matrix, shows the distances between each cluster in the phase space, with darker
shades representing larger distances. This matrix reveals how distinct the clusters are from
each other, indicating significant separation for certain pairs, which suggests that the clustering
is successful.
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Figure 6.3: Transition matrix of Lorenz system Figure 6.4: Distance matrix of Lorenz system

A comparison between the distribution of Lorenz system staying in each cluster and the distri-
bution predicted by CMM model is shown in Figure 6.5. The red bars represent the distribution
of samples in each cluster calculated from the original data, while the black bars represent the
distribution predicted by the CTM over a sufficiently large number of time steps. The close
alignment between the red and black bars indicates that the CMM model’s predictions are
quite successful from a statistic perspective. This agreement serves as a validation of the
CMM model, demonstrating its reliability in predicting the proportion of time the system will
spend in each cluster over a long period. From a practical standpoint, this successful prediction
implies that the CMM model can be effectively used to approximate the long-term behavior of
the Lorenz system, which is particularly useful in applications requiring an understanding of
steady-state distributions in chaotic dynamics, such as climate modeling. However, while the
statistic predictions are accurate, CMM cannot predict the state of the system in particular
time, and can only suggests the centroids of each clusters as the state of the system.
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Figure 6.5: Accuracy of prediction for Lorenz system with CMM

6.1.2. CNM Results of the Lorenz System

Figure 6.6: Original Lorenz system Figure 6.7: Reduced order Lorenz system with CNM

CNM can give prediction at any given time, allowing a time evolution of z, y and z in the
reduced-order Lorenz system to be obtained. An illustration of the reduced-order model using
CNM is shown in Figure 6.7. Compared to the original clustered system shown in Figure 6.6,
the reduced-order system simplifies the complex dynamics of the Lorenz system by reducing
it to transitions between centroids of clusters. This model utilizes interpolation to generate
sample data at any given time point, creating smooth transitions between clusters rather
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than direct jumps. The edges connecting these centroids indicate the paths taken by the
system. This approach ensures that intermediate states are captured, showing the system’s
position between two centroids over time. By using these interpolated transitions, the CNM
model captures the essential dynamics of the Lorenz system in a more computationally efficient
manner, making it easier to analyze and predict the system’s behavior, although simplifying
some features.

The z,y and z evolution in the original Lorenz system and the reduced-order Lorenz system
with CNM are shown in Figure 6.8 and Figure 6.9. Although there is a noticeable phase shift
between the original and the reduced-order model, the overall prediction by the CNM model
is quite accurate. The red curves closely follow the general pattern and amplitude of the black
curves, demonstrating that the CNM model effectively captures the essential dynamics of the
Lorenz system. Despite the phase differences, the reduced-order model maintains the integrity
of the system’s behavior, reflecting its capability to accurately predict the chaotic evolution of
the Lorenz attractor.
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Figure 6.8: x,y and z evolution in original Lorenz  Figure 6.9: x,y and z evolution in reduced-order Lorenz
system system with CNM

6.1.3. Discussion

Two main parameters are studied here to study their effects on the model: the order of the
model and the number of clusters, both of which are evaluated from a dynamical perspective
using auto-correlation function and from statistic perspective using distribution of x, y and z.
Specially, auto-correlation function reads

1

R(7) := T

/T/Qu(a:,t—T)-u(ac,t)dacdt, rel0,7) (6.1)

This function quantifies the similarity or correlation between data points in a time series as a
function of time lags. It measures how much the system is related to itself at different time
lags, which can detect periodic patterns in a time series. If the series has a periodic component,
the auto-correlation function will show peaks at time lags corresponding to the period of the
signal. This property of auto-correlation function helps to reveal the dynamical properties of
the system, excluding the influence of phase shift.
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(b) Auto-correlation for Lorenz system when Ncp, = 20 and L = 3
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(c) Auto-correlation for Lorenz system when N¢p, =50 and L = 3
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(d) Auto-correlation for Lorenz system when Nep = 100 and L = 3

Figure 6.10: Comparison of Auto-correlation function when N wvaries for Lorenz system
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Figure 6.11: Comparison of distribution for Lorenz system when N; varies

Figure 6.10 shows the auto-correlation functions of the reduced-order Lorenz system using the
CNM model with different numbers of clusters (10, 20, 50, and 100) while keeping the model
order fixed at 3. The black curves in each sub-figures represent the uncontrolled Lorenz system,
serving as a reference.

It can be observed that in each sub-figures, the red curve (reduced-order Lorenz system) shows
high consistency with the black curve (original system) in terms of the auto-correlation function



6.1. Lorenz System 31

for small time shift. This indicates that, regardless of the number of clusters, the reduced-
order Lorenz system effectively captures the dynamic characteristics of the original system in
the short term. The good fit in the short term indicates that the CNM model is effective in
capturing the initial response and short-term dynamics of the system. When comparing the
sub-figures with each other, increasing the number of clusters N does not improving the CNM
model’s capability to capture the dynamical properties of Lorenz system. On the contrast, the
consistency of the predicted system and original system with larger number of clusters becomes
worse compared to the case of Ny = 10. This suggests that simply increasing the number of
clusters does not enhance the model’s dynamical predictive capability.

Figure 6.11 illustrates the statistic distribution of z, y and z of the reduced-order Lorenz
system using the CNM model with different numbers of clusters (10, 20, 50, and 100) while
keeping the model order fixed at 3. The blue shaded areas serve as a reference for comparison,
representing the distribution of the original Lorenz system. In Figure 6.11a with 10 clusters,
the noticeable peaks on the orange curves (predictions), which represent the centroids of the
clusters, show deviations from the blue curves (actual data) across all three variables, indi-
cating that the model lacks the ability to accurately capture the statistic distribution of the
system’s states from a continuous perspective. Figure 6.11b with 20 clusters shows an im-
proved alignment, but there are still noticeable discrepancies, particularly in the distributions
of the variable z. Figure 6.11c with 50 clusters demonstrates a much closer match, with the
predicted distributions aligning well with the actual distributions, indicating that the model
now has sufficient detail to capture the statistic properties of the system. Figure 6.11d with 100
clusters shows the closest alignment, with the orange curves almost perfectly overlapping with
the blue curves, suggesting that the model can accurately predict the statistic distribution of
the system’s states. This progression indicates that increasing the number of clusters enhances
the CNM model’s ability to make accurate statistic predictions, allowing it to capture finer
details in the distribution.

It is intuitive that infinitely increasing the number of clusters will make the predicted distri-
bution more closely match the original system, as this approach would converge to a model
where each cluster contains only one sample, effectively becoming the original system itself.
Thus, one approach to quantitatively determine the optimal number of clusters is proposed.
The mean variance of the samples in each cluster and the the centroid of the cluster is given
by

Ly Ly :
Jn=— >~ > s —ll (6.2)
Net ;= Nk jc2,

Figure 6.12 illustrates the relationship between the number of clusters and the J,, for the Lorenz
system. As the number of clusters increases, J,, decreases, reflecting a finer representation of
the data. However, the rate of decrease is not uniform. Initially, there is a steep decline in J,,
as the number of clusters increases. Beyond 50 clusters, the reduction in J,, becomes much
less pronounced, indicating diminishing returns in model improvement. Therefore, the optimal
number of clusters N is selected at around 50. This point balances model complexity and
accuracy, ensuring that the clusters are sufficiently detailed to capture the system’s features
without unnecessary computational cost.
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Figure 6.12: J,, of reduced-order Lorenz system when NN, increases

Order of model

Figure 6.13 and Figure 6.14 shows the auto-correlation functions of the reduced-order Lorenz
system using the CNM model with order of model L equals to 3 and 20 while keeping the num-
ber of clusters N, fixed at 20. The black curves in each sub-figures represent the uncontrolled
Lorenz system, serving as a reference.

In the first plot, with L = 3, the red curve (CNM model) closely follows the black curve
initially but deviates more significantly as 7 increases. This indicates that the lower-order
model captures the short-term dynamics well but struggles with longer-term predictions.

In the second plot, with L = 20, the red curve shows a much closer alignment with the black
curve across the entire range of 7. The higher-order model maintains the accuracy of the short-
term predictions while also significantly improving the long-term dynamics representation.

This comparison suggests that increasing the order of the model enhances the CNM model’s
ability to capture the repeated dynamical properties of the Lorenz system, providing a more
accurate and reliable representation of both short-term and long-term dynamics. Thus, while
a lower-order model may suffice for capturing immediate behavior, a higher-order model is
necessary for a comprehensive and precise depiction of the system’s dynamics.
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Figure 6.13: Auto-correlation for Lorenz system when Figure 6.14: Auto-correlation for Lorenz system when
Nerp =20and L =3 Ncrp =20 and L =22

Figure 6.15 and Figure 6.16 illustrates the statistic distributions of x, y and z of the reduced-
order Lorenz system using the CNM model with order of model L equals to 3 and 22 while
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keeping the number of clusters N fixed at 20. The blue shaded areas serve as a reference
for comparison, representing the distribution of the original Lorenz system. The results seems
rather similar, indicating that when predicting the statistic distributions, increasing the model
order alone does not significantly improve accuracy.

As a conclusion, increasing the order of model can be beneficial to capturing dynamical prop-
erties, but cannot increase the accuracy when predicting the possibility of the state.
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6.2. Truncated Charney-DeVore System
6.2.1. CMM Results of the CDV System

As discussed above, the same approach to determine the optimal number of clusters N, can
be applied to the CDV system as well. The relation of J,,, versus Ny is shown in Figure 6.17.
Following the same standard as Lorenz system, it can be observed that the reduction in J,,
becomes much less pronounced after N, exceeds 50, indicating diminishing returns in model
improvement. Therefore, the optimal number of clusters N is selected at 50, which balances
model complexity and accuracy.
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Figure 6.17: J,,, of the reduced-order CDV system when N, increases

N, = 50 is selected in this section to check if the CMM can capture the features of the CDV
system. A simplified network graph of the CDV system when applying the CMM method is
shown in Figure 6.18. Each node represents a cluster in the system’s phase space, and the
directional edges indicate how the system transitions between these clusters. The self-loops on
nodes suggest that the system frequently revisits the same cluster. This graph helps simplify
and visualize the complex behavior of the CDV system, making it easier to understand how
the system moves from one state to another.

Figure 6.18: Network graph representation of the CDV system

The cluster transition and distance matrix are illustrated in Figure 6.19 and Figure 6.20, which
have the same definitions describe in the section of the Lorenz system. Similar to the Lorenz
system CTM of the reduced-order CDV system also shows strong diagonal dominance which
suggests that the system tends to stay in the same cluster rather than transitioning to another
cluster. The distance matrix shows that the clustering effectively distinguishes distinct regions
in the CDV system’s state space.
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Figure 6.19: Transition matrix of the CDV system Figure 6.20: Distance matrix of the CDV system

A comparison between the distribution of the CDV system staying in each cluster and the
distribution predicted by CMM model is shown in Figure 6.21. The red bars represent the
distribution of samples in each cluster calculated from the original data, while the black bars
represent the distribution predicted by the CTM. The close alignment between the red and
black bars suggests that the CMM model’s predictions are statistically accurate. However,
as discussed in the context of the Lorenz system, the CMM model cannot predict the exact
state of the system at a specific time and can only identify the centroids of each cluster as the
system’s state.
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Figure 6.21: Accuracy of prediction for the CDV system with CMM
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6.2.2. CNM Results of the CDV System
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Figure 6.22: Results of phase space clustering and auto-correlation for CDV system
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The results are projected on the x1 — x4 plane to visualized the high dimensional system. The
clustering results are be found in Figure 6.22 with different numbers of clusters (20, 50, 100,
and 200). Each cluster is represented by different colors and centroids are marked with black
dots.

Figure 6.22b, Figure 6.22d, Figure 6.22f, and Figure 6.22h shows the corresponding auto-
correlation functions, with the black curves representing the original CDV system and the red
curves representing the predictions from the reduced-order model. While the auto-correlation
function initially shows some improvement in accuracy with an increased number of clusters
(from 20 to 50), further increases (100 and 200 clusters) do not significantly improve the align-
ment between the model and the original system. This suggests that there is a diminishing
return in terms of dynamic accuracy when simply increasing the number of clusters. As a
conclusion, for this complex dynamical system, using too few clusters will lead to inaccurate
prediction. However, beyond a certain point, increasing the number of clusters does not neces-
sarily lead to better model performances. Therefore, an optimal number of clusters is required
to balances model complexity and predictive accuracy, which appears to be around 50 in this
case. This value also aligns with the optimal N, that we obtained using the J,, plot.

The time evolution of x1, o, x3, T4, =5, and xg in the original CDV system and the CDV
modelled with CNM with different numbers of clusters (20, 50, 100, and 200), while keeping
the model order L fixed at 3. As the number of clusters increases, the time series generated by
the reduced-order model show increasingly similarity to the original system. When N is 20,
many unnatural peaks appears in the time series of {x}. When N,; reaches 50, the evolution of
{z} seems quite similar to the original CDV system. However, further increasing the number
of clusters N, does not significantly improve the performance of the model. This result also
aligns with the optimal number of clusters that we determined with J,,.
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Figure 6.23: Time series for the CDV system without modeling
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Figure 6.26: Time series for the CDV system when Figure 6.27: Time series for the CDV system when
Ny =100 and L =3 Ny =200and L =3

Figure 6.28 and Figure 6.29 illustrate the auto-correlation function of the modelled and the
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original CDV system when N is fixed at 50, and L changes (3 and 20). The corresponding
time evolution of /z/ can be found in Figure 6.31 and Figure 6.32.

The auto-correlation plots show that when L = 3, the red curve (modelled system) deviates
significantly from the black curve (original system) as time progresses, indicating that the
model struggles to accurately capture the system’s dynamics. However, with L = 20, the red
curve aligns much more closely with the black curve, suggesting that the higher-order model
can better replicate the temporal correlations of the original CDV system.

In terms of the time series, the plots show that with L = 3, the time series of the reduced-order
CDV (red) fails to capture the tendency seen in the original system (black). Several unexpected
peaks appears in time series of 2 and z4. When the model order is increased to L = 20, the
time series generated by the model more closely matches the original system, showing better
alignment in terms of the variability and overall behavior of the system. Though there is still
some unexpected peaks, the amount reduces.

The results suggest that increasing the order of modeling, both results in auto-correlation
function and time series are improved. As a conclusion, the order of modeling needs to be
carefully determined, especially for high dimensional systems.
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Figure 6.28: Auto-correlation for the CDV system Figure 6.29: Auto-correlation for the CDV system

when Ny =50and L =3 when N = 50 and L = 20



6.2. Truncated Charney-DeVore System

40

x5 x4 X3 X2 x1

& o

5 8
x5

I

- 8

X0

X0

Figure 6.31: Time series for the CDV system when
Ny =50and L =3

e VPR EYRLITL AL A VUL VL ISP, H
05 05
—
0.0 > oo
—0.5 -0.5
10 1o
05 05
L L L L) %
0.0 > 0o
—0.5 —0.5
10 1o
05 05
m
" OV e, )
—0.5 -0.5
L0 Lo
05 05
=t
0.0 X oo

x4 X3 X2 x1

x5

X0

Figure 6.30:

L0 I AL AL AL AR ML

0.5

o 2000 4000 G000 8000 10000 12000 14000

t

Time series for the CDV system without modeling

10000 12000 14000 i} 2000 4000

Figure 6.32: Auto-correlation for the CDV system
when N, =50 and L = 20



6.3. Moehlis-Faisst-Eckhart System 41

6.3. Moehlis-Faisst-Eckhart System
6.3.1. CMN Results of the MFE System

Based on the same approach, an optimal number of clusters N, is determined for the MFE
system. The relation of J,,, versus N, for MFE system is shown in Figure 6.33. Following the
same standard, it can be observed that the reduction in .J,,, becomes much less pronounced
after IV, exceeds 80, indicating diminishing returns in model improvement. Therefore, the
optimal number of clusters N is selected at around 80, which balances model complexity and
accuracy. This number of clusters N is also used for further cluster-based control.
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Figure 6.33: J,, of the reduced-order MFE system when N changes

N, = 80 is selected in this section to evaluate whether the CMM method can capture the
features of the MFE system. A simplified network graph of the MFE system, generated using
the CMM method, is shown in Figure 6.34.

Figure 6.34: Network graph representation of the MFE system

The cluster transition and distance matrix are shown in Figure 6.35 and Figure 6.36. Due to
strong diagonal dominance, logarithmic scale is applied to well illustrate the transition matrix.
Similar conclusion as discussed in sections for the Lorenz system and the CDV system can
be derived. The MFE system also has very high probability to stay in the same cluster. The
distance matrix suggests that the clustering effectively distinguishes distinct region in the MFE
system’s phase space.
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Figure 6.35: Transition matrix of the MFE system Figure 6.36: Distance matrix of the MFE system

Figure 6.37 presents a comparison between the actual distribution of the MFE system across
clusters and the distribution predicted by the CMM model. The red bars show the distribution
of samples within each cluster based on the original data, while the black bars represent
the distribution predicted by the CMM model over a sufficiently large amount of time steps.
The strong agreement between the red and black bars demonstrates that the CMM model
is statistically accurate in its predictions. This outcome validates the clustering process and
supports the implementation of subsequent control algorithms.
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Figure 6.37: Accuracy of prediction for the MFE system with CMM
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6.3.2. CNM Results of the MFE System

CNM method is also proved to be successful in a more complex system as the MFE system.
And same trends for order of model and number of clusters can be found for the MFE system
as well.

The auto-correlation function for fixed order of model and different number of clusters can be
found in Figure 6.38. The results indicated that increasing the number of clusters can improve
the model’s ability to capture the dynamical properties, however, after exceeding a certain
value, this improvement becomes negligible considering its cost.
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Figure 6.38: Comparison of Auto-correlation function when N; varies for the MFE system
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The auto-correlation function for fixed number of clusters and different order of model can
be found in Figure 6.39. It can be seen that when increasing L from 3 to 20, the red curve
becomes closed to the black curve, which indicating a better performance of the model. But
when increasing L from 20 to 40, the result almost does not change, which indicating there is
a limit.
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Figure 6.39: Comparison of Auto-correlation function when L varies for the MFE system

To well capture the dynamical properties of the MFE system, Ny = 80 and L = 20 is selected.
The time evolution of the nine variables of the original system and the modeled system are
shown in Figure 6.40 and Figure 6.41. The prediction of each variables’ ranges and trends
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seems quite successful.
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Figure 6.40: Time series for the MFE system
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Control Results

In this chapter, the results of the control algorithm are examined for both the CDV and the
MFE systems. Each section begins with an introduction to the control objectives and how
the forcing term is introduced, followed by a discussion of the potential objective functions to
optimize the control. Finally, the outcomes of the control implementation are detailed.

7.1. Truncated Charney-DeVore System

The CDV system is used as a benchmark case to test the control algorithm. To reduce the
computational cost, N, = 10 is applied for the CDV system in this section. As discussed
in Chapter 5, there are two regimes when the CDV system evolves. We decide the purpose
of control to be maintaining the system in the zonal regime as much as possible, and get rid
of slow evolution. To achieve this, a forcing term is added to the time derivative of x1, and
the magnitude is constrained within 5% of the range of @1 observed in the uncontrolled case.
Consequently, the differential equations of the controlled CDV system becomes

7y = yixg — C (x1 — 27) + b(by, %)
Zy = — (a1x1 — P1) 23 — Cwp — 017476

73 = (a121 — B1) x2 — 1171 — Cw3 + d12475 (7.1)
Ty = ’yékxﬁ -C (:U4 - JIZ) +e€ (.Tgx(; - .7331’5) ’
25 = — (px1 — P2) v — Cas — bax4x3

Zg = (w1 — P2) x5 — Yox4 — Cxg + doxaxo

The forcing term b is dependent on the location of the system x in the phase space, and a
set of control parameters {b;} with each parameter corresponding to a specific cluster. These
parameters are found by optimizing the objective function as discussed in Chapter 4.

Two kinds of objective function is used. The first aims to keep the mean value of 23 + x3 for
all samples as close to the zonal states as possible. The objective function is defined as the
distance between the mean value of 2?2 + 3 for all the samples and the centroids closest to
the center of zonal regime. To identify the target centroid, the three centroids with the largest
1 values are selected, and the one with the smallest x4 value is designated as the objective
centroid. Additionally, to achieve the control goal with minimal energy consumption, a term
representing the magnitude of the forcing term must also be included. Both terms need to be
normalized to balance their influence. The expression the the objective function is given by
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S = Jovj + S (7.2)

Where Z,; is the term that is used to achieve the control objective, while ¢, is related to
minimizing the energy cost. And the expression of both is given by

1 _
Hobj = ﬂ[(xl — @1,007)° + (T4 — Ta,005)°)] (7.3)
(&%)

Where z, and 24 are the mean value of z; and x4 for current system, and 1 ;) and x4 ;) are
the value of of 1 and x4 of the centroids closest to the center of zonal regime. N, represents
the normalized factor for objective term.

1 XN
Se =iy 2 blbe x(id1)) (7.4)
€ =0

Where N is the total number of samples in the system, and N, represents the normalized factor
for energy cost term.

With the well-defined objective function, {b;} can be obtained with the Nelder-Mead method.
For each iteration in the optimizer, the system with a certain set of {b;} is simulated over
a limited test time, and the corresponding objective function ¢ is calculated for further
optimization. Thus, this test time need to be choose carefully to ensure that the property of
the system can be capture within such time. In this thesis, the test time when applying Nelder-
Mead method is determined by Lyapunov time (LT') of the system, which can be calculated
by the Lyapunov exponent [39] of the system. For control of the CDV system, 10LT is used
to make sure most of the characteristics of the system are well captured.

The result when using the first objective function is shown in Figure 7.2. It can be seen that
the samples have largely shifted, but the overall distribution still extends across a relatively
wide area. The control managed to translate the mean value of 23 + 23 towards the lower right
corner in the phase space but does not succeed in concentrating them within the zonal regime.
This outcome suggests that while the control is effective in influencing the system’s state, it is
insufficient in driving the system into the desired zonal regime. The broader spread indicates
that the control function is perhaps too simplistic, focusing on a global translation rather than
a targeted compression into the zonal regime.
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Second, the CDV system is controlled from a statistical perspective. Instead of solely focusing
on the mean value of z? + % for all the samples, the control strategy considers the distri-
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bution of the samples on the 1 — x4 phase space. Thus, the objective location becomes a
normal distribution with the mean equal to the objective centroids as discussed above. The
objective function is then formulated as the Kullback—Leibler (K-L) divergence between the
system’s sample distribution and the target normal distribution near the zonal regime. The
K-L divergence is given by

Dict(Pi[P) = Y PA(9) n ];—8 (7.5)

By definition, K-L divergence is naturally normalized. Thus, the expression of the objective
term of objective function is given as

Hobj = Dicr.(Peurr|| Povs) (7.6)

where P, is the distribution of samples for the current system, and Py; is the objective
distribution, which is defined as a normal distribution with the mean value equals to the
objective centroids and the variance equals to 0.01.

Similarly, a term representing the cost of control _Z. is necessary as well, and is defined the
same as Equation 7.4. With the well-formulated objective function, {by} for each clusters
can be efficiently optimized with Nelder-Mead method. The test time is the same as the first
control strategy.

The result of the second objective function is shown in Figure 7.3. The result indicates a
more effective control strategy, where the points have been compressed towards the lower right
corner of the phase space. Although the sample distribution remains somewhat broad, it shows
better performance compared to both the uncontrolled system and the system controlled with
strategy 1. This demonstrates that the statistical control objective possess enormous potential
in controlling the CDV system, as the points are more concentrated within the desired zonal
regime. The successful compression suggests that this control function is better at guiding the
system’s states towards the target region, balancing the need to minimize energy cost while
controlling the system effectively.

[ 5000 10000 15000 20000 ] 5000 10000 15000 20000
t t

Figure 7.4: Time series for the original CDV system Figure 7.5: Time series for the controlled CDV system
with control strategy 1
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The comparison of the time evolution of the 6 variables of the original CDV system and
the controlled CDV system with control strategy 2 is shown in Figure 7.4 and Figure 7.5
respectively. As has been discussed in Chapter 5, the features of blocked regime is a slow
evolution of variables and a large decrease in z;. From Figure 7.5, there is nearly no slow
evolution observed. When the system enters a state with low x1, it quickly recovers, exiting
that state in a short time.

7.2. Moehlis-Faisst-Eckhart System

The MFE system is an ODE system with extreme events that occasionally occur. The control
objective is to prevent extreme events from happening. As discussed in Chapter 6, to ensure
the effectiveness of the control, Ny = 80 is used for the MFE system in this section. Based
on literature, one valid method to achieve this control objective is to increase the Reynolds
number occasionally [40]. In the the controlled MFE system, Reynolds number is multiplied
by a forcing term b, which is dependent on the location of the system a in the phase space,
and a set of control parameters {b;} with each parameter corresponding to a specific cluster.
The forcing term is restrained to 5, which means for Re = 800, the forced Reynolds number
will not exceed 4000.

Two groups of objective functions are studied to examine the capability of the cluster-based
control method.

The first is directly based on kinetic energy k, which is considered the most crucial indicator
of extreme events. Two control strategies based on k are tested: one aims to minimize the
mean value of k, while the other focuses on reducing the occurrence of extreme events. In this
context, extreme events are defined as samples where k exceeds 0.1. Thus, the definition of
the objective functions are

71 = Mean(k) (7.7)
and

n

S = (7.8)
With these well-formulated objective function, the clusters-specified control parameters {by}
can be obtained with the Nelder-Mead method. The test time of the Nelder-Mead method is
determined by the Lyapunov time (LT') of the system as well. For control of the MFE system,
20LT is used to make sure that a sufficient number of extreme events occur in the uncontrolled
system.

However, both control strategy appear to fail. A typical result can be found in Figure 7.6. This
is a k — € projection of the controlled and the uncontrolled MFE system using Equation 7.8 as
objective function, and the yellow curve is representing the controlled system, while the blue
curve is representing the uncontrolled system. It can be found that even though the control
algorithm effectively reduced the samples with large k, it simultaneously causes a significant
increase in the dissipation rate e, which is unacceptable.
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Figure 7.6: k£ — ¢ plot for kinetic energy control Figure 7.7: k — € plot for dissipation rate control

The other groups of objective functions is based on mean dissipation rate. Since in a turbulence
flow, the kinetic energy will finally dissipate, constraining the dissipation rate at a low level
should, in theory, reduce the occurrence of extreme events. Based on this assumption, mean
value of dissipation rate is used as the objective function, which is given by

I3 = Mean(e) (7.9)

Then, using optimizing approach the clusters-specified control parameters {b;} can be obtained.
The test time is also 20L7T .However, one drawback of this objective function is its computa-
tional cost. Calculating the mean dissipation rate requires the gradient of the velocity field.
Thus, a rather time consuming matrix multiplication is required for all the samples within the
test time for each iteration in the optimizer.

A result of the k — € projection of the controlled and the uncontrolled MFE system can be
found in Figure 7.7. It appears to be quite effective, significantly reducing extreme events.
The samples from the system are now predominantly located in the low k& and low € region.
Quantitative results are presented in Table 7.1. Compared to the original MFE system, the
control algorithm reduce the mean kinetic energy by 20.7%. Additionally, it decreases the
amount of extreme events by 97%.

Mean kinetic energy k Percentage of extreme events occurrence

Uncontrolled MFE system 0.0332 2.96%
Controlled MFE system 0.0263 0.29%

Table 7.1: Quantitative results for the MFE system control

The time evolution of k£ and e for the MFE system before and after control are shown in
Figure 7.8 and Figure 7.9. Both figures cover a time span that is 100 times longer than the
test time used in the optimization. From these figures it is evident that both £ and € in
the controlled system are maintained at a relatively low level compared to the uncontrolled
system. Moreover, most of the large peaks in the figure, which indicates extreme events, are
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eliminated. Conclusively, {b;} parameters, optimized over a short test time, demonstrates
sufficient capability to control the system over a significantly extended time span.
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Figure 7.10 shows the probability density function (PDF) of the kinetic energy for the uncon-
trolled and controlled MFE system. The z-axis represents the kinetic energy(k), while the
y-axis, on a logarithmic scale, shows the PDF values. An identical conclusion can be derived
from these graphs. The controlled system effectively reduces the mean kinetic energy, as evi-
denced by the overall shift of the PDF curve to lower kinetic energy values. Especially, samples
with large kinetic energy are eliminated.
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Figure 7.10: Probability density function of the uncontrolled and controlled MFE system



Conclusion and Recommendations

8.1. Conclusion

In this concluding chapter, reflections upon the key findings and outcomes from the cluster-
based modeling and control method are presented. The primary goal of the research was to
develop and validate efficient modeling and control strategies for chaotic dynamical systems,
which are characterized by high-dimensional dynamics and chaotic behavior. The influence
of key parameters on the cluster-based reduced-order modeling was well evaluated, from both
static and dynamical perspective. And a quantitative approach to determine the optimal
number of clusters N, was proposed, ensuring a balance between model accuracy and compu-
tational efficiency. Additionally, the cluster-based control algorithm was shown to be effective
both in keeping the system in a certain state and prevent extreme event from happening. Dif-
ferent kinds of objective functions for each system were tested, and excellent control result was
obtained, affirming the potential of cluster-based control algorithm for chaotic system control.

This thesis firstly explores the application of cluster-based Markov modeling (CMM) and
cluster-based network modeling (CNM) techniques to chaotic systems, specifically focusing on
the Lorenz, Truncated Charney-DeVore (CDV), and Moehlis-Faisst-Eckhart (MFE) systems.
The results given in Chapter 6 indicates that good models were obtained by the CMM and
CNM methods. Furthermore, the effect of number of clusters and model order were elucidated
for the CNM. For all three systems, CMM method was proved to be effective in capturing the
system’s key features, as evidenced by the close alignment between the predicted and actual
distributions in the phase space. The cluster transition matrix (CTM) and distance matrix
confirmed the model’s ability to represent the system’s state transitions accurately, although
the method showed limitations in dynamical prediction, particularly in forecasting specific
states at specific times. For the Lorenz system and CDV system, CNM method provides more
accurate time-series predictions, demonstrating its superior capability in capturing the chaotic
dynamics of both systems. By fixing the order of model, the effect of the number of clusters on
the performance of modeling was examined. It turns out that increasing the number of clus-
ters did not necessarily enhance dynamical prediction accuracy, but can noticeably improve
the CNM model’s ability to make accurate statistical predictions. However, this improvement
has a diminishing trend, highlighting the need for an optimal number of clusters. In this thesis,
the mean variance of the samples in each cluster and the centroid of the cluster J,, was used
to quantitatively determine the optimal number of clusters, preventing high computational
cost. The optimal number of clusters for the Lorenz system, CDV system, and MFE system
was determined to be 50, 50, and 80 respectively. While keeping the number of clusters the
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same, the effect of the order of model L can be explored. The comparison of auto-correlation
functions of different L suggests that increasing the order of the model enhances the CNM
model’s ability to capture dynamical properties of the system, providing a more accurate and
reliable representation of both short-term and long-term dynamics. However, the compari-
son of distribution of state illustrated that statistical distribution of the reduced-order system
seems rather similar, indicating that when predicting the statistical distributions, increasing
the model order alone does not significantly improve accuracy. As a conclusion, increasing the
order of model can be beneficial to capturing dynamical properties, but cannot increase the
accuracy when predicting the state.

The results given in Chapter 7 validates the effectiveness of the cluster-based control algorithm
which was tested on both the CDV system and the MFE system. The results demonstrated
the potential of this approach in managing the complex dynamics of chaotic systems, particu-
larly in maintaining desired states and preventing extreme events. The CDV system serves as a
benchmark to evaluate the control algorithm’s performance. The control strategy considers the
distribution of the samples within the phase space and uses the Kullback-Leibler (K-L) diver-
gence as the objective function. This method proves to be significantly effective, compressing
the samples toward the target region and demonstrating a superior ability to maintain the
system within the zonal regime. The comparison of time evolution between the original and
controlled system further highlights the success of this approach, as the controlled system
quickly recovered from states with low z1, effectively avoiding slow evolution characteristic of
the blocked regime.

The MFE system, characterized by the occasional occurrence of extreme events, presents a
more complex challenge. The control purpose focuses on preventing these extreme events. The
objective function, which focused on minimizing the mean dissipation rate, proves to be effec-
tive. This strategy not only reduces the occurrence of extreme events but also maintain both
kinetic energy and dissipation rate at lower levels over an extended time span. Quantitative
results show a substantial decrease in the mean kinetic energy and a significant reduction in
the percentage of extreme events. The probability density function (PDF) further confirms
these findings, with the controlled system exhibiting a clear shift towards lower kinetic energy
values and the elimination of samples with high kinetic energy.

These findings highlight the potential of cluster-based control methods in practical applications,
offering a powerful tool for managing the dynamics of chaotic systems. Especially, without the
need for an analytic model, this control strategy can be of great significance for those systems
whose governing equations is extremely hard to obtain. However, the results also indicate the
importance of selecting appropriate control objectives.

8.2. Recommendations

For future research, several recommendations are given here.

1. In this thesis, only ordinary differential system are examined, and the system’s degree
of freedom doesn’t exceed 9, allowing directly to apply clustering techniques to reduce
the order of system. However, in reality, many of the chaotic dynamical systems are
governed by partial differential equations with much more degrees of freedom. For these
cases, a general approach to find the latent phase space to apply clustering is required.
Proper orthogonal decomposition (POD) and autoencoders (AE) have already proved to
be capable in finding a usable latent space for cluster-based modeling and control. Nev-
ertheless, it is difficult to relate the latent space found by POD and AE with the original
physical fields, leading to a dilemma to capture some evolution of coherent structures in
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the original physical field. The approach that can generally find a latent phase space for
cluster-based modeling and control for high-dimension system can be regarded as a good
research direction, and future researchers can focus on the physical explanation of the
latent space.

2. The influence of the model order L is well examined in this thesis. However, a way to
determine the optimal model order is missing. Future researchers can study this further
from two different perspectives. One is to consider the governing equations to check
how far back in time can information influence the current state while the other can use
machine learning techniques to determine the optimal L only with data.
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Nine modes of MFE system

The MFE system is based on Fourier modes and describes sinusoidal shear flow, in which
the fluid between two free-slip walls experiences a sinusoidal body force. The original partial
differential equation is

ou 1 _o
n =—(u-V)u—Vp+ EV u+ F(y) (A.1)

with Reynolds number defined to be

Uod
= 2= A2
Re 5y (A.2)
and the non-dimensionalized body force is defined to be
2 2
F(y) = V2 sin(my/2)é, (A.3)

4Re

The nine nodes of MFE system are Fourier modes that of the velocity in all three directions.
The velocity field can be attained by

9
i=1
Nine modes are presented below.

V2sin(my/2)

uy = 0 (A5)
0
ig cos?(my/2) cos(yz)
0
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: ( 0 )
ug = —————| 2vycos(my/2) cos(yz)
Va2 + 7] mysin(my/2) sin(yz)

0
" ( 0 )
% cos?(my/2) cos(ax)

0
Us = 0
2sin(my/2) sin(ax)

42 ( —~ cos(ax) cos?(my/2) sin(v2) )
U = —F————< 0
30 +9%) | wsin(ax) cos(ry/2) cos(72)

92 v sin(ax) sin(7wy/2) sin(yz)
R !

a cos(ax) sin(my/2) cos(vz)
masin(ax) sin(my/2) sin(yz)
ug = N | 2 (a? +9?) cos(ax) cos(my/2) sin(yz)
—my cos(ax) sin(my/2) cos(yz)
where

2v2
V(a2 +72)(4a2 + 442 + 72)

( V2sin(3my/2) )
ug = 0
0

Ng =

(A.10)

(A.11)

(A.12)

(A.13)
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Nelder-Mead Method

The Nelder-Mead method, or also known as simplex searching method, is an optimization algo-
rithm used to find the minimum (or maximum) of an objective function in a multidimensional
space. It’s particularly useful for functions that are not differentiable or when gradient infor-
mation is unavailable. The method is often applied in situations where the function is noisy,
complex, or discontinuous.

Key Features:

e Simplex Structure: The Nelder-Mead method uses a geometric shape called a ”simplex”

which, in an n-dimensional space, consists of n + 1 vertices for instance a triangle in 2D,
or a tetrahedron in 3D. Each vertex represents a point in the search space.

Operations: The method iteratively moves the simplex through the search space using
operations like reflection, expansion, contraction, and shrinkage. These operations adjust
the shape and position of the simplex to explore different areas of the search space.

No Derivatives Needed: Unlike gradient-based methods, Nelder-Mead does not require
the calculation of derivatives, making it suitable for functions that are non-smooth or
noisy.

Steps of the Nelder-Mead Method:

1.

Initialization: Start with an initial simplex formed by n + 1 points in the n-dimensional
space.

Reflection: Reflect the worst vertex across the centroid of the remaining vertices. If this
new point is better, replace the worst point with it.

3. Expansion: If the reflection point is the best point so far, expand further in that direction.

Contraction: If the reflection point is not better, contract the simplex either towards the
best point (outside contraction) or towards the centroid (inside contraction).

Shrink: If contraction fails to improve, shrink the simplex towards the best vertex.

Termination: The algorithm stops when the simplex converges, meaning that the vertices
are close enough in space or the function values at the vertices are sufficiently similar.
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