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Summary

The Tydi (Typed Dataflow Interface) specification was introduced to bridge a gap in the High Level
Synthesis (HLS) domain, enabling engineers to easily define component interfaces, mapping com-
plex, dynamically sized data structures onto hardware streams. While Tydi successfully defines the
static bit-level layout, it lacks a formal description for the dynamic procedure of mapping elements in a
stream onto hardware lanes. This ambiguity has hindered the development of Tydi related tools and
its integration in HLS frameworks. This work introduces a layered formalism for Tydi, centred around
a modular operational semantics. It defines a two-tiered type system that separates a flexible user-
facing syntax, from a canonical, hardware-oriented representation, strengthening the link between a
type’s composition and runtime behaviour. The dynamic mapping is implemented by a configurable
set of small-step semantics rules. These are derived from a user provided set of formal properties,
replacing the specifications monolithic complexity levels with fine-grained control over interface logic.
We define key structural determinism and progress metrics for the formalism, enabling the verification
of interface implementations for streams of arbitrary type. This foundation enables developers to de-
fine verifiably correct, typed hardware stream interfaces as easily as software, while retaining control
over critical engineering trade-offs. A simulator of the semantics has been implemented, and provides
empirical verification of the formalism and an insightful overview of the parsing logic [48].
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Structure of the Thesis
This thesis is organized into seven chapters that progressively develop the formal foundation for the
Tydi specification.

Chapter 1: Introduction and Background. This chapter introduces the data streaming paradigm and
the specific challenges of designing stream interfaces in hardware. It presents the core concepts of
the existing Tydi specification, including the distinction between logical and physical streams and the
concept of “streamspace” used to map data over time.

Chapter 2: Analysis: Towards a Formal Foundation. An analysis of the status quo identifies a “specifi-
cation gap” regarding the runtime behaviour of Tydi interfaces, placing the focus on the loss of hierarchy
information between physical streams. The chapter evaluates existing formalisms (e.g. dependent type
theory, operational semantics) and proposes a tiered formal framework. This framework separates the
interface specification from its implementation, and the static and dynamic domains of the formalism.

Chapter 3: The Formalism. This chapter defines the core mathematical components of the proposed
solution. It introduces: 1) The Normalisation Function (J·K) to reduces the user exposed top-level type
to a normalized type in Canonical Form, removing semantically ambiguous type compositions. 2) The
Streaming Context (Γ), is a stateful device encapsulating buffers and the parse tree. 3) Interface Proper-
ties and Semantics, which use small-step operational rules to define themapping procedure, interacting
with the streaming context. 4) The Implementation Complexity Metric (ICM), a method to quantify the
logic cost of specific interface configurations.

Chapter 4: Examples and Empirical Validation. The functionality of the formalism is demonstrated
through a full parsing example. The chapter also details the TinyTydi simulator, a Python-based tool
implemented to provide empirical verification of the normalisation and operational semantics.

Chapter 5: Verification of the Formalism. This chapter provides formal proofs to verify the correctness of
the framework. It proves that the normalisation function always produces Canonical Form, that parse
trees terminate properly, and that the core ruleset adheres to Structural Determinism and Progress
(finite parsing).

Chapter 6: The Union Type: Handling Variant Data. The formalism is extended to include the Union
type, addressing the complexity of variant data in hardware. It introduces a “deferred parsing commit”
mechanism to maintain determinism and synchronicity between tag and data streams.

Chapter 7: Conclusion and Discussion. The final chapter summarizes the research contributions. It
discusses the implications for the Tydi specification, such as the potential for automated interface gen-
eration and verification, and outlines future work.
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1
Introduction and Background

This chapter will introduce the data streaming paradigm, the challenges it presents for hardware devel-
opment and how Tydi aims to improves this. The last section presents an analysis of the shortcomings
of the specification, laying the foundation for the core contributions of this work.

1.1. The data streaming paradigm

Figure 1.1: From the 1992 paper: A mail operator,
overwhelmed by piles of unstructured messages, depicting the
practical pressures that motivated automated and continuous

filtering rather than periodic, one-shot processing [23].

Early work on information systems began to
recognize that data was no longer delivered
in neat, static batches, but arrived continu-
ously, unstructured, and in volumes too large
for manual sorting. Figure 1.1 shows a
quaint illustration from a 1992 Xerox paper,
introducing Tapestry, a system for managing
streams of documents in the advent of ”elec-
tronic mail”. In the same year, these re-
searchers at Xerox built upon their experience
of Tapestry to develop the notion of continu-
ous queries. Such queries remain active over
an append-only stream, only reporting results
whenever new data satisfies a condition, ef-
fectively treating query evaluation as an ongo-
ing process rather than a discrete event [49].
It introduces a rudimentary model of computa-
tion with streams of messages sent across in-
terfaces, and providing semantics for compos-
ing and reasoning about such flows. These
early systems mark the beginning of the data
streaming paradigm, where computation is de-
signed around the realities of unbounded, evolv-
ing information flows, rather than static evalua-
tion.

As detailed in a recent comprehensive survey by Fragkoulis et al. [19], the evolution of the field can
be categorised into three distinct generations, each addressing the growing complexity of data velocity
and volume.

First Generation (2000–2010): The Era of DSMS.

Although the notion of continuous queries was introduced by Tapestry in 1992, much of the founda-
tional formalisation and system design for stream processing occurred in the late 1990s and early

1



1.2. Designing stream interfaces in hardware 2

2000s, where the field diverged from standard database management into Data Stream Management
Systems (DSMS). Researchers recognized that the ”one-size-fits-all” approach of traditional relational
databases could not meet the low-latency requirements of real-time applications [47]. Systems such
as Aurora, Borealis, and TelegraphCQ formalised the requirements for stream processing, establishing
that systemsmust keep data moving and allow for ”windowing”, the ability to perform computations over
finite slices of an infinite stream [1, 11]. While these systems successfully introduced sliding-window
aggregation and continuous SQL-like queries, they targeted primarily on architectures that relied on
increasing machine performance instead of parallelism, and maintained state in abstract, internal struc-
tures known as ”synopses” [19].

Second Generation (2011–2019): Scale-Out and Dataflow. The paradigm matured significantly with
the advent of the ”Big Data” era and the introduction of the Dataflow model. Influenced by the scalability
of MapReduce [17], focus shifted to distributed architectures. This modern approach decoupled the
execution engine from the programming model, allowing developers to focus on what is being com-
puted rather than how the stream is physically managed. The work by Akidau et al. clarified the critical
distinction between event time (when an event occurred) and processing time (when the system ob-
served it), providing a framework for balancing correctness, latency, and cost [3]. These systems (e.g.,
Apache Flink, Spark Streaming, Google Cloud Dataflow) introduced sophisticated state management,
allowing for large, partitioned, and persistent user-defined state [10, 54].

Third Generation (2020–Present): Edge and Hardware Acceleration. We are currently witnessing a
shift toward the third generation, characterized by the decentralisation of pipelines to the Edge and the
use of specialized hardware. As noted by Zhang et al. and emphasized in recent surveys, the need for
ultra-low latency is driving the adoption of hardware accelerators, such as FPGAs and GPUs, directly
into the streaming pipeline [55, 19]. Projects like Fleet [50] demonstrate the potential of processing
streams directly on FPGAs. While the software domain enjoys elegant, high-level frameworks [53, 20],
the hardware domain is still lacking in standardized, type-safe interfaces for describing these complex
data flows [22, 8, 13]. Recent formal work in the software domain has also addressed the potential
of hardware oriented adaptations of stream processing formalisms [28, 31]. This sets the stage for
the introduction of Tydi (Typed Dataflow Interface), an open hardware stream specification [40]. It
expresses how complex, dynamically sized data structures can be exchanged between components
using streaming interfaces, based on an intuitive, hardware-oriented type system.

1.2. Designing stream interfaces in hardware
Before we dive into Tydi, it is important to substantiate why working with streams is particularly difficult
in the hardware domain. Designing hardware is fundamentally about managing spatial resources and
enforcing timing constraints. Unlike software, where memory and dynamic containers can hide layout
and temporal ordering, hardware requires explicit decisions about how many wires exist, their widths,
where data is stored, and exactly when it is valid. In the domain of dataflow programming, channels that
connect components are usually implemented as streams: FIFO, point-to-point links where transfers
flow in order. Components that consume and produce streams, “streamlets“, therefore need interfaces
that describe both the shape of the data and the timing of its elements. A transfer is a set of data
elements, sent simultaneously over a single physical stream. Complex, dynamically sized data, (e.g. a
chat-message comprised of a single timestamp and a variable length sequence of characters), cannot
be exposed as a single fixed-width port, so the data must be serialized. This serialisation requires
designers to make various non-trivial design considerations: how to break the structure into smaller
chunks of data; primitives, how to indicate sequence boundaries, how to drive the validity signals, and
how to propagate back-pressure when downstream logic stalls. These tasks are repetitive and error-
prone.

This difficulty is illustrated by the Fletcher framework, which predates the Tydi specification and di-
rectly motivated its development [37, 38]. Fletcher demonstrates that, even when a high-level software
schema (Apache Arrow) precisely describes complex, nested data structures, translating this descrip-
tion into efficient hardware stream interfaces requires non-trivial interface logic. In Fletcher, a rudimen-
tary form of Tydi is used to automatically generate interfaces that decompose complex data types into
multiple coordinated streams, handling serialisation, boundary signalling, buffering, and back-pressure
explicitly. While this approach proved that such interfaces can be generated automatically, it also illus-
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trates how relatively trivial software data structures, already require complex implementations.

To implement stream interfaces, designers can opt for low-level bit protocols or resort to designing
their own protocols, each requiring explicit boundary markers, parsing logic, and buffering. HLS tools
handle simple aggregates but typically generate interfaces for primitive types only. Expressing more
complex structures would still require manual control logic and custom conventions. As a result, in-
terfaces accumulate implicit assumptions about packing, alignment, ordering, and throughput settings,
limiting reuse and making composition difficult. Additional engineering considerations further compli-
cate the implementation of these interfaces. For example, throughput scaling, alignment rules, per-lane
strobes, and control-signal complexity; all of these interact with area and timing. Additionally, a wider
transfer may reduce cycle count but increases wires; fine-grained strobes ease packing but will require
more control logic, etc. These trade-offs may be revisited for every interface in a design. Because of
this, hardware stream-processing systems are costly to design and maintain. Interfaces are bespoke,
converters proliferate, and correctness relies on matching many low-level conventions. A standardised,
type-oriented description of both the spatial layout and temporal behaviour, combined with explicit engi-
neering parameters such as the number of lanes, can greatly reduce this burden. The Tydi specification
intends to provide exactly this: a mapping from data types to well-defined stream interfaces that can
be implemented consistently, and reused across components.

1.3. The Tydi specification
Due to the elaborate process needed to design an interface for a component that interacts with streams,
Tydi was introduced to significantly improve this procedure, as an open, hardware-oriented specification
for streaming complex, nested data types. Given a high-level logical type and a set of engineering pa-
rameters, Tydi prescribes both the spatial layout of signals on a component interface and the temporal
mapping of data onto transfers over that interface. The original work illustrates its value by comparing
the software and hardware perspectives of mapping a chat message to either memory, or a hardware
stream, shown in figure 1.2. This chat message will be a recurring example throughout this work,
comparing implementations and illustrating the impact of mapping procedures.
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1.3.1. Analogy: The Universal Lego Machine

Figure 1.3: The lego tower construction box, operating on
streams of tower segments, building towers of arbitrary height.

To build intuition for the challenges Tydi ad-
dresses, consider a Lego assembly machine as
shown in figure 1.3. Suppose the machine is de-
signed to build towers. Each tower always begins
with a single foundation plate, followed by an ar-
bitrary number of identical tower segments. The
instruction booklet describes this structure, but
the number of segments is not known in advance.
To feed this machine, the interface must expose
holes shaped like the required pieces: one hole
for the foundation plate and one hole for tower
segments. Unlike a standard Lego set where all
pieces are available at the start, here the tower may be of any height, making it impossible to pre-
allocate storage for ”all” pieces; The machine must start building as soon as the first pieces arrive.

This illustrates a critical temporal constraint: the order matters. The foundation plate must arrive first;
only after it is accepted can the machine consume segments. The interface must therefore communi-
cate not only what piece is provided, but also when it is valid, where the boundaries between towers
lie, and when a tower is complete. In hardware, complex, nested, and variably sized data structures
cannot be represented as a single fixed-width port. They must be serialized into elements arriving over
time, with explicit signals marking structure and validity. The Tydi specification provides the formal
”instruction booklet” to describe these shapes and when they are needed. If every layer of the tower
requires 4 pieces, it is possible to expand the interface to 4 holes, however, if the component providing
the pieces can only provide 2 pieces at a time, this would be a waste of resources. This illustrates how
performance and resource requirements can further impact designing the interface.

For a normal Lego build, the steps of the instruction booklet describe, when which pieces are needed.
For the Tydi example, you might need to stay on the same page of the Lego booklet, repeating the
same steps until the supply of some types of pieces are used up, and then continuing with the rest of the
booklet. This is however where the Lego analogy falls short, since stream interfaces may have much
more elaborate conditions, requiring ”skipping through the instruction booklet” in arbitrarily complex
ways. Still, it highlights that interacting with streams in hardware is not an obvious procedure, especially
when it needs to be defined using finite, statically known resources.

1.3.2. The Core Concepts of Tydi
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Figure 1.4: Comparing how 2D char
seq. {{she}, {is}, {a}, {dolphin}}
can be mapped to streamspace,

where a) terminates inner sequences,
b) allows delayed termination signals,
c) no inner seq. termination + delayed

signalling, and d) no inner seq.
termination and enforced packing.

Similar to how Apache Arrow specifies data layouts in memory, Tydi
specifies data layouts ”in-flight” [6]. It defines a two-layer interface
model that separates abstract stream descriptions from their concrete
hardware realisation. At the top layer, a logical stream specifies the
structure and behaviour of data exchanged between components, ex-
pressed using a small, hardware-oriented type system. At the lower
layer, one or more physical streams implement this specification as
concrete bundles of wires, complete with handshake, data, and con-
trol signals. This separation allows designers to reason about com-
plex, dynamically sized data structures at a high level, while delegat-
ing bit-level layout and protocol details to a synthesis algorithm. Con-
ceptually, the logical stream defines what data is communicated and
how it is structured, while the physical stream defines how this con-
tract is realised in hardware. Tydi defines “streamspace“ as the 2d
plane represented by the physical dimension of parallel lanes or wires,
and the temporal dimension of transfers. An example of streamspace
mappings is shown in figure 1.4.

Logical streams. Logical streams are defined using the Tydi type
system, which distinguishes between data layout and temporal be-
haviour. Data layout is described using a small set of types: Null,
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Figure 1.5: This figure shows (a) the layout of lanes for signals and data carrying wires, and (b) how each complexity level
impacts the potential transmission of a 2 dimensional char array [15].

representing a singleton value; Bits(b), denoting a bit vector of width b; Group, a product type contain-
ing named fields; and Union, a sum type representing a tagged variant. These element types describe
how data is structured, but are agnostic to how it is transferred over time. Temporal structure is intro-
duced by the logical Stream type of the form:

Stream(Te, t, d, s, c, r, Tu, x)

It represents a sequence of elements of type Te, together with a number of engineering parameters
that determine its runtime behaviour. The throughput parameter t specifies the minimum number of
elements transferred per handshake, and determines the degree of parallelism exposed at the inter-
face. The dimensionality d captures the nesting depth of sequences, governing how many indepen-
dent sequence boundaries must be represented. The complexity parameter c encodes ordering and
packing guarantees made by the source, trading implementation simplicity against flexibility. Lower
complexity levels impose stricter constraints on transfer patterns, while higher levels permit more re-
laxed scheduling. Synchronicity represents the relation between the dimensionality information of the
parent stream and the child stream The user defined data can be used to further customise the con-
tract between source and sink. Figure 1.5 shows how a 2 dimensional char array can be transmitted
for various complexity levels. Through recursive composition of Stream, Group, and Union types, logi-
cal streams can express arbitrarily complex, nested, and dynamically sized data structures, including
inter-stream relations. The chat message example in figure 1.2 is typed using the Dim shorthand no-
tation of a specific logical stream node, which adds an additional dimension to its subtype. This gives
Group〈Bits〈64〉, Dim〈Dim〈Bits〈8〉〉〉〉, defining a group of a 64-bit primitive, together with a 2 dimensional
sequence of 8 bit primitives, representing the timestamp and chat message respectively.

Physical streams. A physical stream is the concrete hardware realisation of a logical stream, defined:

PhysicalStream(E,N,D,C,U)

Here E denotes the element payload fields, N the number of parallel element lanes, D the dimension-
ality, C the complexity level, and U the user-defined transfer fields. A physical stream is implemented
as a bundle of signals, all synchronous to a shared clock.
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At its core, each physical stream includes a valid/ready handshake pair, which governs flow control
between source and sink. The data payload is carried on the data signal, consisting of N lanes, each
encoding one element of typeE. Sequence boundaries are communicated using the last signal, which
contains D termination bits per lane, one for each level of nesting. Additional signals such as stai,
endi, and strb provide fine-grained control over which lanes are active in a given transfer, enabling
partial transfers and relaxed packing when permitted by the selected complexity level. An optional user
signal carries auxiliary control or metadata alongside the data stream.

Not all signals are required in every configuration. Their presence and interpretation depend system-
atically on the parameters N , D, C, and U . In particular, increasing the complexity level enables pro-
gressively more flexible lane utilisation and sequence termination behaviour. Figure 1.5 provides an
overview of which signals are used at each complexity level and how their streamspace representation
evolves.

Streamspace. Underlying both logical and physical streams is the notion of streamspace. Rather
than mapping data structures solely onto space (bits), Tydi models communication in a two-dimensional
plane spanned by spatial resources (element bits and lanes) and temporal resources (stream transfers).
Complex and dynamically sized data structures are therefore mapped not onto bit-vectors, but across
multiple transfers over time. In this view, the logical stream defines the allowed complete streamspace
representations of the data, where physical streams occupy specific regions of streamspace, with the re-
lationships between regions on the plane delegated to the logical stream’s responsibility. Streamspace
provides the conceptual foundation for reasoning about nested sequences, parallelism, and ordering
guarantees.

Streamspace Types and the Container Library. To facilitate concise and reusable descriptions of
common data structures, Tydi introduces a set of streamspace types shorthand notation, and a standard
container library. At the lowest level, shorthand notations such as DIM, REV, and NEW provide a more
concise way to interact with the logical stream type.

• DIM introduces an additional dimension to its subtype:

Dim(Te, t, c, Tu) 7→ Stream(Te, t, 1, Sync, c, Forward, Tu, false)

• REV creates a physical stream that flows in the opposite direction of its parent, enabling request-
response style interfaces:

REV(Te, t, c, Tu) 7→ Stream(Te, t, 0, Sync, c, Reverse, Tu, false)

• NEW introduces an additional physical stream at the same dimensional level, allowing independent
streams to coexist without implicit ordering:

NEW(Te, t, c, Tu) 7→ Stream(Te, t, 0, Sync, c, Forward, Tu, false)

Building on these, the specification defines a library of container types that act as canonical mappings
of familiar data structures, such as lists, vectors, structs, and variants, into streamspace. These con-
tainers are aliases for well-defined compositions of the underlying types.

From Logical to Physical: Synthesis. The connection between logical and physical streams is
established by a synthesis algorithm defined in the specification. This algorithm traverses the logi-
cal stream type, extracts element and user fields, and computes the corresponding physical stream
parameters. For each logical Stream node, the element type is flattened into a linear bit-level repre-
sentation, the throughput parameter determines the number of lanes N , and the dimensionality and
complexity parameters are carried over directly. The result is a canonical PhysicalStream description
that prescribes the exact signal set and widths required for the interface.

This synthesis process is deterministic: any two tools or designers that start from the same logical
stream type and parameters will derive bit-level compatible physical interfaces. By construction, this
should eliminate the need for bespoke glue logic between independently developed components that
adhere to the same Tydi specification. Additionally, when two interfaces are of the same logical stream
type, but their properties differ, Tydi can assist their composition by synthesising the required glue logic.



1.3. The Tydi specification 7

Putting it all together. The core concepts of Tydi form an abstraction stack. Logical streams provide
a precise, compositional description of complex data structures and their temporal behaviour. Physical
streams realize these descriptions as concrete, parametrized hardware interfaces. The synthesis algo-
rithm bridges the two layers, ensuring that high-level specification is properly lowered to its implemen-
tation. This separation of concerns is central to Tydi’s goal: enabling reusable, type-safe, and verifiable
stream interfaces, while preserving explicit control over performance and implementation complexity.



2
Analysis: Towards a Formal

Foundation for Tydi

2.1. Status quo and problem statement
Tydi successfully specifies how complex, dynamically sized data structures can be exchanged, by defin-
ing streaming interfaces based on an intuitive, hardware-oriented type system. However, there is a no-
table omission from the original specification, namely how a hardware interface must be implemented
in order to adhere to the specification. To a certain extent this is to be expected, as such open hardware
specifications are usually only prescriptive regarding the static layout of signals. However, Tydi also
describes the temporal layout of data using its notion of streamspace. When two distinct parties de-
velop interfaces in accordance with the specification, their implementations should be compatible for a
matching type and complexity level. Any ambiguities in the specification inevitably result in occurrences
where this is not the case.

The core problem arises from the lack of a formal description of the runtime mapping procedure. This
omission has already hindered the development of Tydi-related tools and hardware utilities. Notably,
the original authors have expressed that they attempted a more formal approach during the Fletcher
development era, but abandoned it due to time constraints and complexity. The angle bracket notation
for the type system is a quirk that originated from this attempt at a formalism.

Through further conversations with the original authors, I have identified that Tydi can be viewed as hav-
ing three distinct layers: a high-level data structure specification, a low-level physical stream of wires,
and a ”mid-level” protocol layer. While the top and bottom layers are well-defined, their connection has
been considered as a “gap“ in the specification. More specifically, there are uncertainties regarding the
transmission of data in nested streams, and how this is impacted by their inter-stream dependencies.
The authors describe the current Tydi specification as a ”factory” for interfaces: it is generic and flexible,
but it lacks the prescriptive power to define exactly what a functioning hardware interface should do in
complex scenarios, such as nested streams with interdependencies.

This indicates that the ”hardware-oriented” type system does not provide intuitive assertions regarding
how elements are actually transmitted. For example, when the existence of a Group type does not pro-
vide strong guarantees regarding how its fields are interleaved or concatenated over physical streams,
any formalism interacting with the type must account for the larger structure by also evaluating the
fields of the group. Allowing distinct types to correspond to equal streamspace mappings, (and thus
technically compatible interfaces), is undesirable for verification.

The flexibility is a double-edged sword: while it enables standards such as JSON to be mapped to
Tydi with ease, but it complicates the definition of a formal process for implementation; connecting
the top to the bottom. The type of a Tydi stream remains only loosely coupled to its actual runtime
behaviour, undercutting the effectiveness of its hardware-oriented nature. Therefore, a core challenge
is to formally describe this ”mid-level” runtime procedure such that it algorithmically determines an

8
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interface implementation from a flexible Tydi type and its engineering parameters, providing a provable
bridge between high-level data structures and low-level physical streams. This can be seen as the
semantic domain of the interface definition: How can we infer how data is transmitted, from the structure
of a stream’s type?

2.2. Requirements for a formal foundation
Tydi’s core ambition is to allow hardware designers to describe complex, nested, and dynamically
sized data structures at a high level, while retaining precise control over how these structures are
transmitted over streaming interfaces. The absence of a description of the runtime procedure, mapping
the typed data to streamspace, is an awkward omission. While the Tydi type determines what data is
communicated, and using which signals, it does not effectively describe how this communication is
actually achieved.

In this context, a quote comes to mind, attributed to Mark Manasse in the Types and Programming
Languages book by Benjamin C. Pierce: “The fundamental problem addressed by a type theory is to
ensure that programs have meaning. The fundamental problem caused by a type theory is that mean-
ingful programs may not have meanings ascribed to them. The quest for richer type systems results
from this tension.“ [41] It highlights how the intention to give meaning to interfaces through static struc-
ture alone, the Tydi “hardware-oriented type system“, inevitably leaves some aspects of the runtime
behaviour underspecified. The Tydi type system successfully defines what may be communicated, but
falls short of giving explicit meaning to how this communication actually unfolds over time. The resulting
ambiguity mirrors Manasse’s tension, motivating the need for a richer formal foundation that connects
interface types to a precise, incremental runtime semantics. To close this gap, the additional param-
eters such as synchronicity and complexity are introduced, alongside the type in the Logical Stream
specification. How these relate physical streams after synthesis is currently phrased too informally,
which has contributed to the existing ambiguities.

From an engineering perspective this has concrete consequences. Two independently developed in-
terfaces that nominally adhere to the same Tydi type may still be behaviourally incompatible, since the
specification leaves room for interpretation in the temporal packing of elements, especially when deal-
ing with nested streams. To solve this, I set out to define a formal foundation for Tydi that establishes a
precise, algorithmic way to derive the runtime behaviour of an interface from its type and configuration
parameters alone. This is a prerequisite for reasoning about compatibility of senders and receivers,
and for enabling verification of interface implementations.

At the same time, the formalism must respect the realities of hardware design. All stateful resources
implied by this formal foundation, such as buffers, counters, or indices, must be statically bounded and
known at design time. Approaches that rely on unbounded queues, memory, or make use of abstract
notions of time, are fundamentally incompatible with hardware synthesis. The formal description must
therefore remain hardware-aware, ensuring that every construct corresponds to implementable logic
with well-defined resource requirements. More specifically, such a formalism must operate incremen-
tally. Streaming interfaces process data element-by-element, potentially with arbitrary delays between
transfers, and the formalism must mirror this behaviour. The runtime procedure should therefore be de-
fined as an incremental mapping that consumes and emits data stepwise, rather than as a monolithic
transformation over entire data instances. When dealing with streams, we cannot cache the ‘entire‘
chat message, since the message has an arbitrary size.

Finally, an important requirement is accessibility. Tydi is explicitly intended as a practical tool for hard-
ware engineers, and shouldn’t require an exercise in advanced formal methods. While the formalism
must be sufficiently rigorous to support proofs of correctness and determinism, it should avoid imposing
heavyweight mathematical machinery on the end user. Ideally, the user-facing model remains intuitive
and type-driven, with the formal rigour largely hidden away in the underlying formalism.

To conclude, initially I will focus on identifying the ambiguities and omissions, by constructing a formal-
ism for a subset of the specification, while maintaining the ability to expand this formalism later. The
process of determining which portions of the specification to include is an important design considera-
tion in itself, potentially shedding light on how certain ambiguities arose in the first place.
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2.3. Evaluation of existing formalisms
A natural starting point for formalising Tydi is the body of work on expressive type systems. In the
context of stream interfaces, dependent, session, and refinement types are good candidates for further
investigation.

Dependent types allow their definition to depend on their assigned value. In principle, dependent type
theory can relate values and types closely enough to encode the detailed invariants governing the hi-
erarchy of nested streams [36]. It can make structural properties (e.g. sequence lengths, alignment
relationships, or numeric relations between nested dimensions) part of the type itself, so these proper-
ties are checked by the type system rather than expressed as separate interface properties. Recent
applications to hardware include the modelling of parametrised DSP circuits in Idris, which captures
relationships between data values and bit-level structures like wordlengths or register pruning [43].
Other approaches have utilized dependent types to reason about the physical structure of hardware
interfaces and ensure they adhere to standards like AXI [33]. While these systems effectively describe
the static layout and structural correctness of an interface, they do not provide an intuitive way for a
hardware designer to express the temporal unfolding of a stream. As a result, dependent type systems
remain a powerful verification tool but are not a good fit for Tydi’s goal of remaining an approachable
design entry point.

Session types and behavioural type systems excel at verifying communication protocols and ensur-
ing interface compatibility through duality [24]. They have been successfully applied to FPGA-based
designs to guarantee communication-safety and deadlock-freedom in reconfigurable parallel kernels
[34]. Furthermore, they induce a Labelled Transition System (LTS), mapping naturally to the Finite
State Machine (FSM) logic for hardware implementations. However, a fundamental mismatch exists
in semantic granularity: session transitions are atomic, whereas Tydi transfers are incremental. While
a session type can describe which element comes next in a sequence, it lacks the ability to describe
“how much” of that element is transmitted in a specific instance of time. It reasons about transmitting
the entire chat message but does not provide sufficient control over the transmission of individual char-
acters across physical lanes. Consequently, session types fail to account for the spatial lane-packing
and complexity-level constraints inherent to Tydi’s concept of streamspace mapping.

Refinement types offer a middle ground by augmenting base types with logical predicates [21]. At-
taching predicates to base types (e.g. Bits(64){t | t ≤ MAX_TS}), is convenient for checking value-level
invariants such as valid ranges or non-empty sequences. In a Tydi context, they could formalise critical
data invariants, such as ensuring a Bits(64) timestamp represents a valid POSIX range. However,
refinement types share the same limitation as the aforementioned systems regarding temporal exe-
cution: they are essentially static. They can describe the validity of a data instance once it is fully
assembled but offer no mechanism to govern the incremental, state-dependent logic required to pack
partial elements into physical hardware lanes across multiple cycles.

More recently, specialized type systems have emerged to bridge the gap between abstract data
and hardware timing. Space-Time Types, as implemented in Aetherling, use type-directed scheduling
to map data-parallel programs onto hardware, with specific throughput requirements [18]. Similarly,
Timeline Types in Filament provide a modular way to specify and enforce cycle-accurate timing and
structural constraints for hardware modules [35]. However, these formalisms are not directly applicable
to the Tydi problem due to their fundamental reliance on static scheduling. By ‘static scheduling‘ I
mean the compile-time, fixed assignment of computation and data transfers to specific cycles (typical
of Aetherling), in contrast with the run-time, handshake-driven flow control found in latency-insensitive
designs such as Tydi.

Aetherling explicitly targets “statically scheduled, streaming hardware” and operates on homogeneous,
fixed-length sequences whose lengths must be known at compile time [18]. It is therefore optimized
for designs that intentionally avoid the control-logic overhead of dynamic flow control. Filament like-
wise focuses on statically timed pipelines and explicitly contrasts its approach with latency-insensitive
interfaces (i.e., valid/ready handshaking), which it identifies as inefficient for its target domains [35].

In contrast, Tydi is designed to support dynamically sized data structures and relies on latency-insensitive
handshaking to manage dataflow over nested streams. Because it does not bake a cycle schedule into
the type system, scheduling decisions emerge at run time from the interface properties and the actual
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composition of data instance. Where Aetherling and Filament resolve timing into rigid, cycle-accurate
constraints, Tydi deliberately leaves multiple valid physical mappings for the same logical structure.
Consequently, these systems are well suited to regular, statically timed data-parallel kernels, but are
too specialized to capture the flexible, state-dependent, and irregular mapping required for Tydi.

Since the software streaming paradigm is more mature, formal work in this domain could provide
effective candidates for a Tydi formalism. Frameworks such as Kahn Process Networks and coalge-
braic stream semantics provide elegant mathematical descriptions of streaming computation [27, 45,
16]. Interfaces can be reasoned about as specific category of stream transformers themselves, there-
fore these formalisms could describe their runtime procedures effectively. However, models from the
software domain typically assume arbitrary buffers, not providing sufficient granularity regarding execu-
tion timing, which clashes with the finite resources and discrete timing inherent to hardware interfaces.
Adapting such models to the hardware domain, which has been expressed as a valuable future work
in recent studies [28], is far beyond the scope of this work.

Interface automata and contract-based models offer ways to reason about compatibility through
assumptions and guarantees [4, 7]. While useful for higher level protocol reasoning, they struggle
to scale to rich, nested data structures without incurring state-space explosion. Furthermore, algo-
rithmically determining an automaton for arbitrary type and interface properties would be a significant
challenge, certainly requiring additional formal frameworks. The concepts regarding defining interface
contracts through automata are an insightful way to reason about Tydi implementations. I deem it fea-
sible to extend these to a higher level of abstraction, which will require a mapping to the existing Tydi
type system.

In essence, we are trying to determine the “meaning” of a Tydi type, where its meaning is concretely the
runtime behaviour. This corresponds with the domain of formal semantics of programming languages,
describing how the syntax of a system determines its execution. Two main styles of semantics are
commonly distinguished: denotational and operational.

Denotational semantics gives each syntactic construct mathematical “meaning“, such as a set of
behaviours or execution traces, where the meaning of a larger construct is built systematically from the
meanings of its parts. For Tydi this view is useful: a type (plus interface properties) can be read as
denoting the set of admissible streamspace traces or transfer sequences, which supports high-level
equivalence reasoning and a compact specification of “what” behaviours are allowed. To a certain
extent, this is what Tydi currently is, describing the complete streamspace mapping of a given Tydi
type in one (ambiguous) step. The denotational style abstracts away the step-by-step mechanism
that produces a trace and therefore lacks the temporal granularity required to reason iteratively about
element-by-element packing, termination placement, or handshake-driven flow control.

Operational semantics instead describes execution as more granular state transitions. Small-step,
rule-based operational semantics are naturally suited to cycle-accurate, hardware-aware descriptions:
a configuration can include the current parse configuration, and each rule corresponds to an incre-
mental transfer or controller action. This style has been applied effectively to hardware languages, in
the origins of structural operational semantics and recent, cycle-accurate rule-based treatments such
as Bluespec/Koika [42, 9]. Moreover, techniques exist to relate stepwise and whole-execution views:
the big-stop extension presents a mapping from small-step derivations to big-step judgments, allowing
compact high-level proofs to be connected to low-level transition traces[26]. In order to map these
methodologies to the Tydi specification, additional structure is required. Since these semantic frame-
works naturally integrate with the type theory domain they are strong candidates for integrating in a
Tydi formalism.

To summate, the survey of existing formalisms shows that no single approach meets Tydi’s combined
needs for usability, hardware awareness, and incremental, cycle-accurate behaviour. Dependent and
refinement systems capture rich static invariants but are heavyweight or essentially atemporal; sessions
capture protocol definitions but lack the fine-grained spatial/temporal control that Tydi requires; and
static, schedule-driven type systems (Aetherling/Filament) are ill-suited to dynamically sized, latency-
insensitive streams. The software formalisms are interesting tools to reason about streamlets, but are
fundamentally incompatible with the hardware domain, and would require a significant amount of work
to effectively describe Tydi. Semantics, in particular the operational style, provide a natural way to
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describe Tydi’s incremental streamspace mapping procedure, but would still need to be connected to
its type system to be used effectively.

2.4. Proposal for a tiered formal framework
By zooming out and evaluating what Tydi currently is, and what it intends to be, I note that the specifica-
tion can be split in two distinct ways. One axis separates the user-facing from the inner-working, while
the other divides Tydi’s static from its dynamic domain. The user-facing parts of Tydi are intended to be
accessible: a hardware-oriented type system, naming conventions, and the layout of data signals for a
particular physical stream. The inner-workings are abstracted away; the algorithms synthesising logical
streams into bundles of physical streams, the (currently non-existent) description of how streamspace
mappings are actually achieved, how Tydi conformant interfaces are implemented, why they are com-
patible, etc. From the other perspective, static concepts are the hardware-oriented type system, the
signal layouts and naming conventions, while dynamic concepts include engineering parameters like
complexity levels, inter-stream synchronisation, and the implementation of streamspace mappings at
runtime. This split allows us to apply requirements only to the relevant domain of the formalism; not
encumbering the user-facing with semantic rigour, and not requiring accessibility from the type systems
at the inner-working. Figure 2.1 provides a visual representation of these domains.

Figure 2.1: The two ways to split the formalism,
showing the proposed top-level type T , and its

normalised form N , the interface properties P and
its corresponding ruleset R, with the stateful
device Γ connecting the static to the dynamic.

Formalisms can now be mapped to their most suitable do-
main, further aiding reasoning about what experts have re-
ferred to as the ”specification gap”. As noted in my conver-
sations with the original authors, Tydi acts as a generic fac-
tory of sorts. While it succeeds at the high-level (data struc-
tures) and low-level (physical wires), it lacks a prescriptive
”middle layer” or protocol layer to define how the dynamic
domain is actually implemented. My intuition is that, in the 4
split view, the principle gap exists in the inner-working level,
between the static and the dynamic domain.

This section proposes a tiered formal framework for Tydi,
where an interface specification consists independently of
(1) the type T , and (2) a set of its dynamic interface prop-
erties P. Each can be translated to the inner-working level,
where the interface type is mapped to a more hardware-
oriented, unambiguous normalised form N , and the dy-
namic interface properties to its corresponding semantics, implemented by a ruleset R. In order to
actually implement an interface, the gap needs to be bridged between the static and the dynamic,
which is achieved by a stateful device represented by Γ. Figure 2.1 shows how these two ways to split
the formalism, effectively categorise the responsibilities for each aspect of Tydi.

2.4.1. Types, normalisation, and streaming context
The existing synthesis algorithm concatenates all primitive Bits fields that correspond to the same
physical stream in “Natural Order“. This natural ordering is the order of appearance, as written down,
or more specifically, pre-order DFS traversal of the type hierarchy. After synthesis, the physical stream
node becomes difficult for a formalism to interact with, since the overarching type hierarchy is lost,
the inter-stream relationships are hardly evident. The concatenation is still required however, since
it ensures that all primitives that correspond to the same physical stream, are transmitted as one.

Figure 2.2: A hardware view of
the registers holding a

normalised timestamp + emoji,
and a register for the single

character input stream

If we can define a procedure that restructures the type while remaining in
the type domain, we can derive a hardware-oriented view of the stream
while maintaining inter-stream relations. One such method could concate-
nate the primitive fields “in-place“. When extending the chat message ex-
ample by adding a 32bit emoji field that is transmitted once per message,
we get: Group〈Bits〈64〉, Dim〈Dim〈Bits〈8〉〉〉, Bits〈32〉〉. The synthesis al-
gorithm would create two physical streams, one for the timestamp + emoji,
carrying 96bit elements, and another for the individual characters that com-
prise the message. The hierarchy between these two physical streams
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is now obscured, their respective type not contained in an overarching structure. I propose a nor-
malisation method that maintains the hierarchy, for example by normalising the emoji example to:
Group〈Bits〈96〉, Stream〈Bits〈8〉, d = 2〉〉. This way we can separate the type in which an interface
is defined from the type used by physical streams. Figure 2.2 shows the register view of this approach.
The user-facing type maintains its flexibility, while the ”inner-working” type contains the hierarchy of
physical streams, while satisfying a Canonical Form (CF) that removes semantically ambiguous struc-
tures.

The Normalisation Function
The mapping between these domains can be defined by a normalisation function ‖·‖ : T → N , which
reduces a flexible top-level type T to a normalised typeN . A Canonical Form specification can enforce
properties that remove semantically ambiguous structures in the normalised type. It should disallow di-
rectly nested streams or groups, since semantically, Stream〈Stream〈T, d = 1〉, d = 1〉 ≡ Stream〈T, d =
2〉, similarly any group composition of the form Group〈T1, . . . , Group〈T ′

1, . . . , T
′
m〉, . . . , Tn〉 is semanti-

cally equivalent to Group〈T1, . . . , T
′
1, . . . , T

′
m, . . . , Tn〉. Singular groups can be reduced: Group〈T 〉 ≡ T .

The index of a primitive in a group in the normalised domain does not carry any semantic implications,
therefore it should be moved to a consistent location by always placing it at the head.

These procedures guarantee that at most one primitive exists per stream node, and its location in the
type is deterministic, while maintaining the hierarchy of the streams. Additionally, the Tydi shorthand
notations for the stream node (Dim, New, etc), and the container types (ConcatStruct, PackedVariant,
RASElem etc), are all defined by the streamspace types (Bits, Group, Union, etc). The type system
that the dynamic formalism interacts with should ideally not include the shorthand and container types.
Just like the synthesis function reduces the shorthand notations to bundles of physical streams, my
proposal separates the top level from the normalised type, allowing for flexibility, and extensibility at
the top level, while retaining the semantic clarity in the normalised domain.

The Streaming Context

Figure 2.3: The parse
tree for the normalised
chat message example
where φ indicates the

root in focus.

As we’ve seen, the normalised type in canonical form provides a deterministic
structure for the dynamic formalism to interact with. However, since we explicitly
decoupled the static from the dynamic specification, we have thus far not con-
sidered how the type of an interface, actually impacts the runtime behaviour. As
shown in diagram 2.1, the dynamic, operational domain interacts with the static,
type domain through a streaming context Γ. The streaming context is stateful
and deterministically instantiated by the normalised typeN . It exposes the fixed
set of “dials and switches” by which the dynamic formalism can operate; the
dynamic formalism never uses N directly, it only manipulates Γ.

Concretely, Γ materializes the explicit buffers, per-stream wire layouts, how the
component’s internal streams are connected with the tydi interface and a parse
tree that maintains the state of the hierarchy of nested streams. All these com-
ponents should have exact sizes at instantiation, since we cannot define buffers
or trees of arbitrary size. The parse tree is constructed based on the normalised
type to maintain the hierarchical relations between streams. By terminating
nodes in a tree, various behaviours and interleavings can be implemented. For the chat message
example, this gives the tree shown in figure 2.3. The root φ of this tree encapsulates the normalised
type in a stream with a singular dimension. It carries the termination information of the outer sequence.
Like an API of sorts, the streaming context exposes a set of operations to the dynamic formalism, that
can use them to implement interface behaviour. These operations can for example inspect the cur-
rent state of the streaming, send data, update buffers etc. The dynamic formalism would therefore be
defined as a set of transitions on this streaming context, Γ → Γ′.

2.4.2. Interface Properties and Semantics
The dynamic domain of the formalism also has its own user-facing and inner-working split. In the
current specification, the parts of Tydi that specify the dynamic properties of a stream are intertwined
with the static; The Logical Stream definition contains the stream’s type and parameters impacting the
static signal layout, alongside the synchronicity and complexity levels impacting the dynamic nature
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of the interface. The complexity level is the main dynamic interface property, directly determining the
allowed streamspace mappings. A notable feature of Tydi is the use of this parameter to balance the
complexity of the implementation logic of the sending and receiving interfaces. However, it is never
substantiated how the complexity levels actually achieve this balancing.

Figure 2.4: The sending and receiving component
with their respective interfaces Γ and internal
stream properties IP∗. The transmission is

governed by the streamspace properties SP∗.

A larger perspective on defining hardware interfaces, allows
us to reason about constraints on inputs of an interface, and
guarantees it provides regarding its output. The interface
of a component can be considered a streamlet of a specific
kind, where its inputs are the way it is connected to the com-
ponent, and its output is the set of wires connecting to the
interface of a receiving component. When reasoning about
the implementation complexity of an interface, we cannot
only rely on the properties of the output of the interface, we
must also consider the way this interface is connected to
the internals of the component.

For example, component 1 processes chat messages and we want to construct a sending interface for
component 1, incrementally sending a chat message to component 2. If component 1 internally takes
more time for certain letters, it cannot always guarantee that the next letter will be available for sending.
The implementation of the sending interface will need to take this into account. Crucially, if the output
of the sending interface, also does not guarantee that the stream of letters is sent without interruptions,
the internal ”slowness” of component 1 has less of an impact on the implementation complexity of its
sending interface. Whereas, if the sending interface does guarantee a continuous stream of letters,
this will require additional logic and buffering, increasing the complexity.

I note a dual: strong input constraints and weak output guarantees decrease implementation complex-
ity, while weak input constraints and strong output guarantees increase implementation complexity.
This aligns well with the field of formal interface contracts. Such contracts can be used to reason about
compatible interfaces, formalising their assumptions/constraints and their guarantees, providing strong
connection to their compositional behaviour in the hardware domain [7, 4]. The classes of properties
describing such constraints and guarantees, can be differentiated as shown in Figure 2.4. It shows
how the properties describing the internal streams of the component, are separated from those de-
scribing the streamspace mapping, the communication between components. When considering the
compatibility of interfaces, only the Streamspace Properties are relevant. As such I define interfaces
as compatible if the Streamspace Properties of the sender and receiver are identical. Concretely, I
distinguish the properties as follows:

IP∗ Internal-Stream Properties: predicates over normalised element streams inside a component.
Examples include element ordering, presence/absence of empty elements, and per-element ter-
mination markers.

SP∗ Streamspace Properties: predicates over sequences of transfers. Examples include transfer
utilisation, element alignment, and sequence-termination. The original Tydi complexity levels
only describe properties in this domain.

This allows describing the original complexity levels, but also other combinations of interface proper-
ties. The original authors have expressed that the hierarchy of complexity levels is somewhat arbitrary,
obscuring the fact that interfaces might have properties that do not fit neatly in a specific level. For in-
stance, if an interface requires a high-complexity feature like lane offset but adheres to low-complexity
constraints otherwise, it must currently be described as ”high complexity”. The sets of dynamic inter-
face properties would alleviate this restriction, allowing the designer of an interface to pick the exact
interface properties that suit their needs.

Named Property Sets
At the user facing level, I initially proposed that each interface property relates to a specific transition
in the semantics, forming a convex hull of rules where each subset would describe a valid interface.
This was however needlessly complicated, making individual properties less intuitive, the underlying
semantics exceedingly complex, while allowing the description of rather ill-advised interfaces (e.g. an
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interface that has no delays on its internal streams, but introduces delays in its streamspace mapping).
Therefore, I propose to usage of “Named Property Sets“, similar to the complexity levels, but without the
inherent hierarchy. Each property setP maps to a corresponding semanticsP at the inner-working level.
This is related to the idea that motivated the original Standard Container Library, providing engineers
with a shorthand notation corresponding to higher level structures that one may be more familiar with.
The first named property set that should be introduced is a “core“, implementing a rudimentary mapping
procedure.

Semantics
The property sets are strictly related to sets of transitions, expressed in an operational small-step se-
mantics. Each transition is can be seen as a “rule“, governing the allowed behaviour of some inter-
face. The terminology of rule and transition is generally used interchangeably. Rule-based, hardware-
oriented approaches such as Bluespec/Koika give a valuable perspective on how one might implement
formal hardware descriptions, while remaining explicit about resource bounds needed for synthesis,
and providing the methodologies used to verify the formalism [9]. It is my intention to first define a set
of default rules required for interacting with the streaming context. These rules will be shared among
all rulesets, and can be extended with the transitions that are needed to implement the behaviour spec-
ified by the property-set. To make the semantics tractable and focused on the mapping behaviour I
introduce three simplifying but deliberate abstractions up front:

1. Temporal granularity (handshaked transfers). Time is quantified in handshaked transfers
(valid/ready occurrences). I abstract over inter-transfer cycles and sub-cycle timing. This con-
centrates the semantics on when and which elements are presented and acknowledged, rather
than on low-level timing artefacts that are irrelevant for the purpose of this work.

2. Deferral of bit-level layout. The explicit layout of lanes and signals are omitted from the pro-
posed formalism, since these can be inferred from the original specification. Omitting these details
reduces clutter in the semantics.

3. Staged support for Union. The initial formalism excludes the Union (variant) from the core
development. This choice isolates the canonical mapping behaviour for sequences, groups, and
sequences. The semantics and proofs are constructed such that the Union can be reintroduced
as an extension of the formalism. Its inclusion is presented in chapter 6, and illustrates how the
framework is an effective foundation for the entire Tydi specification.

Proving functionality
A formal foundation for Tydi facilitates rigorous verification of the interfaces that it defines. I need to
verify the correctness of the mapping of an arbitrary data instance of a given type. A key challenge
is ensuring that this holds true, not just for the core ruleset, but also for any potential alterations of its
semantics. Therefore, I will base the correctness argument on two fundamental properties that any
valid ruleset R must adhere to: 1) Structural Determinism: For any valid streaming context Γ, exactly
one transition rule must be applicable at all times. This can be enforced by defining rules with mutually
exclusive and exhaustive premises [2]. 2) Progress (Finite Parsing): For any finite instance, its mapping
must be implemented in finite transitions. I ensure this by requiring that every rule (or finite sequence
of rules) advances the context by strictly decreasing a well-founded metric (e.g., by consuming input or
terminating a node), thus guaranteeing termination. This method is inspired by Kôika, an operational
semantic description for Bluespec System Verilog (BSV), enabling formal reasoning about its execution,
maintaining a hardware aware, cycle-accurate perspective [9]. These arguments will only work if the
normalisation always maps a top level type to canonical form, and if terminating streams always validly
terminate the parsetree. Therefore, these processes will need to be verified beforehand.

2.4.3. Connecting the layers of the formalism
While the original specification hardly mentions the receiving perspective of streamspace, it doesn’t
really need to since the signal layout is static, and the streamspace mapping is inexact. The receiving
interface is mentioned in the specification, regarding the balancing of hardware implementation logic
complexity of the sender and receiver. It is however never substantiated how this balancing of logic is
actually achieved. Since this work provides sufficient detail to describe the actual mapping procedure, it
is important to specify how this connects to the receiving interface, and the balancing of implementation
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complexity, as these are valuable aspects of the specification. This section will address both these
subjects, finalising in a brief overview of the proposed formalism, how it relates to the requirements
identified in the previous chapter and where it deviates from the original specification.

The receiving interface
For the purpose of this work I focus on the sender interface, illustrating how its internal stream and
streamspace properties give rise to the semantics describing its runtime mapping procedure. The
semantics of the receiving interface can be implemented as the dual of the sending interface, given
that the its ruleset is structurally deterministic and injective. More specifically, Γ τ−→ Γ′ denotes the
sender small-step transition that emits a transfer (observation) τ . We require that for every context Γ
there is at most one outgoing step:

∣∣{(τ,Γ′) | Γ τ−→ Γ′}
∣∣ ≤ 1. This reads as, “the number of possible

pairs of transfer and successor state (τ,Γ′), that can be reached from a given context Γ is at most one.”
For injectivity, distinct predecessors cannot reach the same successor under the same observation:
(Γ1

τ−→ Γ′) ∧ (Γ2
τ−→ Γ′) ⇒ Γ1 = Γ2.

A Perspective on Implementation Complexity
The original specificationmentions balancing the required hardware logic to implement a sender-receiver
interface set, but does not substantiate how different configurations actually achieve this. My proposed
separation of Internal-Stream Properties (IP∗) and Streamspace Properties (SP∗) does more than de-
fine compatibility; it directly governs the implementation complexity of the sending and receiving logic.
This idea is natural to the field of interface automata [4], where relaxing input assumptions or strength-
ening output guarantees strictly influence the state space a component must manage. Therefore, the
proposed interface properties also enable the design of a quantifiable Implementation Complexity Met-
ric (ICM). I propose defining a mapping from the semantic definition of an interface, to its automata or
FSM equivalent, and analysing the state space. Such a metric will allow us to formally reason about
the trade-offs between interface implementations of specific types, and their resulting hardware logic
cost.

Deviations from the original specification
Besides starting with a subset of the type system, excluding the union, there are fundamental differ-
ences. In the proposed formalism, all streams in a type must adhere to the same properties, while Tydi
allows interleavings where only some nested physical streams are not synchronised to their parent
streams.

Tydi distinguishes complexity level 1 and 2 from the rest, by reasoning about the valid signal not going
down. Since the proposed formalism abstracts the temporal resolution of streamspace as “handshaked
transfers“, it is not expressive enough to reason about signal validity between those transfers. For this
formalism, the gaps that are shown between the transfers corresponding to complexity level 2 in figure
1.5, are indistinguishable from the directly adjacent transfers. To represent such a gap, an empty
transfer would need to sent, with a handshake taking place.

An overview of the proposal
The proposed tiered formal framework addresses the ”specification gap” by distinguishing between the
user-facing definition and the inner-working semantics. An interface is specified by a top-level type T
and a set of properties P. The type T is algorithmically reduced to a hardware-oriented Normalised
form N via a normalisation function J·K. This normalised type instantiates a stateful Streaming Context
Γ, which bridges the static and dynamic domains. The runtime behaviour, the mapping of data to
streamspace, is then governed by a ruleset R derived from the properties P.



3
The Formalism

Building on the findings from the analysis, this chapter defines the formalism. It is structured to mirror
the path from design intent to hardware behaviour. The highest level of abstraction encompasses the
entire definition of an interface. It is defined as a tuple: InterfaceSpecification := (T ,P) consisting of
the static type of the interface T , and the set of dynamic interface properties P. The top-level type (T )
expresses the type of the interface. The normalised type (N ), is defined to be of Canonical Form (CF)
when it adheres to a set of conditions, disallowing semantic ambiguous structures. The normalisation
function (J·K) algorithmically maps T to N and enforces the Canonical Form. A stateful streaming
context (Γ) is defined, instantiated using the normalised typeN , and the user specified number of lanes
L It encapsulates all runtime state, including input buffers (I), a navigable parse tree (ZN ) and transfer
buffers TB . The type agnostic, incremental mapping procedure, is defined by the provided interface
property set P. A mapping procedure R is based on its corresponding property set, and defined as a
ruleset composed of small-step operational semantics (→) transitions that operate on Γ. Deterministic
sequences of such transitions are abstracted by multi-step transitions (→∗), enabling reasoning about
the mapping of a complete data instance as a sequences of cycles. Finally, it is shown how an interface
specification can algorithmically map to an Abstract Finite State Machine, which is used to define an
Implementation Complexity Metric (ICM). This provides a method for quantifying the complexity of the
logic required to implement a given interface specification in hardware.

3.1. Types, Normalisation and the Streaming Context
3.1.1. Top-Level and Normalised Types

T ::= Bits(n) (n ∈ N)
| Group(T1, T2, . . . , Tk) (k ≥ 1)

| Dim(T )

N ::= Bits(n) (n ∈ N)
| Group(N1,N2, . . . ,Nk) (k ≥ 1)

| Stream(N , d) (d ∈ N+)

Figure 3.1: The top-level and normalised types

We define the top-level Type T as a grammar,
shown in figure 3.1. Here, Bits(n) represents a
primitive type with n bits, Group(T1, . . . , Tk) forms
a group of k fields. Dim(T ) annotates adding a
dimension, defining a sequence, or lifting a se-
quence to a higher dimension through nesting
Dim(Dim(T )). The normalised type N adapts
T by introducing an explicit stream constructor.
Here, Stream(N , d) is a stream of normalised
type N with dimension d.

3.1.2. Normalisation Function
We define the normalisation function: J·K : T → N as shown in figure 3.2. It maps a top-level type to a
normalised type using two auxiliary functions. coalesce takes a group of normalised types (N1, . . . ,Nk)
and constructs flattened groups by: 1) replacing nested groups by their contents: Group(N1, Group
(N2,N3)) becomes Group (N1, N2,N3), 2) concatenating all Bits(ni) fields, summing their widths into
a single Bits(n) placed at the first index of the group, and 3) if the resulting group contains has only
1 field, it removes the outer group: coalesce(Group(N )) 7→ N . The lift function sums nested stream

17
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dimensions, leaving other types unchanged: lift(Stream(Stream(N ′, d′), d)) 7→ Stream(N ′, d+ d′)

JBits(n)K 7→ Bits(n)JGroup(T1, . . . , Tk)K 7→ coalesce
(
Group(JT1K, . . . , JTkK))JDim(T )K 7→ lift

(
Stream(JT K, 1))

Figure 3.2: Recursive definition of the normalisation function

3.1.3. The Streaming Context
The context Γ is the stateful device that orchestrates the mapping procedure. It is constructed as
Γ(N , L) := (I, ZN , TB), where N is the normalised type definition and L = (l1, . . . , ln) is a tuple
specifying the number of lanes per normalised physical stream. This constructs the tuple where: I
is a tuple of input stream prefixes, holding the next available element ik for each stream. We define
an element as a tuple: ik := (tk, vk) where k is the index of the stream in focus, tk ∈ {0, . . . , dk}
is the termination depth, a natural number indicating which dimension of the sequence is terminated
by this element, where dk is the dimension of the respective stream, and vk is the value represent-
ing the data carried by an element, which either has the type of its normalised stream or is empty:
Γ ` ik : (tk, vk) where 0 ≤ tk ≤ dk and vk ∈ {Bk, ε}. Terminating any dimension constitutes the
termination of all lower dimensions, e.g. terminating the entire chat message (tk = 2), also means
termination of the last word (tk = 1). ZN is a navigable parse tree representing the instance of N
being processed, with the root node represented as φ. Each node can be marked as terminated. TB

is a tuple of transfer buffers, one buffer TBk
per physical stream k, each matching the sizes specified

in L, and can be marked as terminated. The slots of buffers are distinctly initialized with ∅. On the
context Γ, I define metaFunctions(Γ) and Γ.context_operations, where the former leaves the context
unchanged, and the latter performs context transformations:

focus(Γ) := returns the type of the node currently in focus,
isLeaf(Γ) := returns true iff all direct child nodes of the focus are terminated,
Γ.next := advances focus to the next non-terminated node (post-order DFS),
Γ.term := marks the focused node terminated, subsequently invokes next,

Γ.reset := restores initial parse tree state (all nodes non-terminated),
Γ.parse := maps ik into its transfer buffer; if full or tk == dk, invokes send,
Γ.send := marks the current transfer buffer TBk

as terminal,
Γ.cycle := produces terminated transfers and refreshes the parsed input buffers.

The post-order, depth first search traversal of the parse tree is crucial, since it ensures that 1) nodes
are visited from left to right, and 2) all nodes are visited before any of their parent nodes are. These
properties are essential for adhering to the notion of ”natural ordering” from the original spec, while
ensuring proper parse tree termination. Natural ordering is equal to pre-order DFS, which would not
be ideal for the proposed formalism, since the evaluation of the data carrying nodes would occur after
the structural nodes, making termination logic more complex.

3.2. Interface Properties and Semantics
The interface properties P from the interface specification, describe the assumptions and guarantees
regarding the data on a component’s internal streams, and the streamspace representation of this data.
This section will introduce a variety of properties that be combined to form a property-set. The com-
plexity levels from the original specification are an example of such sets. ”Named Property-sets” are
predetermined sets of properties with specific characteristics. These facilitate reasoning about inter-
face behaviour and improve accessibility by allowing engineers to specify interfaces without manually
composing individual properties.
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3.2.1. Interface Properties
Internal-stream Properties
Predicates over the component-local element streams (I).

IPTO Internal true order. Let Ek = (e1, e2, . . . , em) be the ordered sequence of elements for a stream
k as defined by a complete data instance. Let C(Γ

∗−→ Γ′) be the sequence of elements ik
consumed from the input prefix Ik during the full mapping Γ →∗ Γ′. This property asserts that
C(Γ

∗−→ Γ′) = Ek. The logical order of the data instance is strictly preserved on the component’s
input.

IPCoh Input cohesion. This property guarantees data availability for every input element. For any
stream k, when an element ik = (tk, vk) is present in the input prefix I, its value vk must not be
empty. Formally: ∀k, ∀ik ∈ I, vk 6= ε. This implies vk ∈ {Bk}. This property simplifies the core
ruleset by guaranteeing that any focused Bits node has valid data to parse.

IPElemTerm Data element termination. This property asserts that a termination signal must be attached to
a data-carrying element. An element cannot only be a termination signal. F or any input element
ik = (tk, vk), the value vk can only be empty (ε) if no dimension is being terminated (tk = 0).
Formally: vk = ε =⇒ tk = 0. This ensures that the last element of any sequence (which must
have tk > 0) also carries a valid data payload vk = Bk.

Streamspace Properties
Predicates over the observable wire-level sequences of transfers (τ ).

SPTO True order. This is the streamspace equivalent of IPTO. It asserts that the relative order of
elements consumed from Ik is strictly preserved in their placement onto the output transfers. If
element ea is consumed before eb, then ea will be placed in streamspace in a transfer τi at lane lx
that is temporally or spatially precedent to eb’s placement in τj at ly (i.e., i < j or i = j ∧ x < y).

SPCoh Transfer cohesion. Elements mapped into a single transfer buffer TBk
must occupy consecutive

lanes. If TBk
has Lk lanes [0 . . . Lk − 1] and the parse operation has filled slots [0 . . . j], the

next element will be placed starting at slot j + 1. No ∅ slots (gaps) are permitted between valid
elements within an emitted transfer.

SPUtil Transfer utilisation. Every transfer τ emitted to streamspace must contain at least one data
element. A transfer where all lanes are ∅ is forbidden. This is enforced by the core semantics,
as the Γ.send operation (which marks a buffer for emission) is only invoked by Γ.parse, which is
triggered by the data-processing rules Bits-Parse and Bits-Term .

SPSync Inter-stream sync. This property guarantees transactional atomicity for a full data instance. Let
Tn be the sequence of all transfers generated by the mapping of data instance n. This property
asserts that the full sequence of transfers T is a concatenation · · · ◦ Tn ◦ Tn+1 ◦ . . . . No transfer
from Tn+1 can be emitted until the M-Full-Map transition for instance n has occurred.

SPAlign Element alignment. When mapping elements to an empty transfer buffer TBk
, the first element

is always placed starting at the least-significant lane (lane 0). This disallows arbitrary offsets,
simplifying receiver logic. Subsequent elements are packed contiguously per SPCoh.

SPElemTerm Data element termination. The streamspace equivalent of IPElemTerm. It guarantees that a se-
quence’s termination signal is contained in the same element as its final data element. If an
element ik = (tk, Bk) with tk = dk is the last element of a sequence, the Bits-Term rule ensures
that both Bk and the signal tk are parsed and emitted in the same transfer.

SPTransTerm Transfer element termination. This is a weaker version of SPElemTerm. It guarantees that a
sequence’s termination signal is contained in the same transfer as its final data element. This
does not disallow the termination signal to be contained in an element without data.

SPTermInner Terminate inner dimensions. This property enforces that any end of a subsequence of stream
k, will terminate the respective transfer buffer TBk

. More specifically, for element ik = (tk, vk)
with dk > tk > 0, the parsing of this element will ensure the corresponding transfer buffer is sent
to streamspace on the next cycle.
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3.2.2. Default interface semantics
The transitions that are shared across all property-sets interface properties, are the ones responsible for
the traversal of the parsetree, the cycle behaviour and the termination of the full data instance. These
are captured in single step semantics for the tree traversal, and multi step semantics for the cycle and
full-map transitions.

Parse tree traversal
The traversal and termination of the parse tree is achieved by two rules shown in figure 3.3 Struct-
Enter and Struct-Term. Struct-Enter traverses the parse tree when the node in focus is of type Stream
or Group and has non-terminated children. Struct-Term terminates the node in focus and traverses the
parse tree when the node in focus is of type Stream or Group, and its children are terminated.

Struct-Enter
focus(Γ) ∈ {S,G} ¬isLeaf(Γ)

Γ → Γ.next

Struct-Term
focus(Γ) ∈ {S,G} isLeaf(Γ)

Γ → Γ.term

Figure 3.3: The default single-step transitions responsible for traversing the parse tree

Multi-step transitions

M-Refl

Γ →∗ Γ

M-Step
Γ → Γ′ Γ′ →∗ Γ′′

Γ →∗ Γ′′

Figure 3.4: The definition of →∗

Each full traversal of the parse tree constitutes a cycle, updating
buffers, and potentially resulting in observable transfers. To enable
reasoning about a sequence of transitions I first define a reflexive tran-
sitive closure →∗ inductively by M-Step and M-Refl shown in figure
3.4. Here, M-Refl expresses base case of zero steps, and M-Step
composes successive small-step transitions. M-Cycle represents the completion of one traversal of
the parse tree, from root to root. M-Full-Map captures the complete mapping of an entire data instance,
resetting the context to prepare for the next instance. These definitions simultaneously represent the

M-Cycle
focus(Γ) = focus(Γ′) = φ ¬isLeaf(Γ′)

Γ →∗ (Γ′.cycle).next

M-Full-Map
focus(Γ) = focus(Γ′) = φ isLeaf(Γ′)

Γ →∗ (Γ′.cycle).reset

Figure 3.5: The multi-step transitions

single and multi-step transitions. Notably, the notion of a cycle is not just the traversal of the tree, but
can be translated to the hardware domain, albeit not one to one. The sequence of transitions after
M-Cycle is invoked is fully deterministic, ending with the focus back a the root. This is the case since
the variables that determine the sequence, the inputs and the transfer buffers, are updated per cycle.
Thus we may reason about the mapping of a complete data instance as a sequence of cycles, by
M-Full-Map.

3.3. Named Property-Sets
To provide a basic implementation of the formalism, a named property set for the core is introduced,
alongside two complexity levels.

3.3.1. The Core
The core is a named property-set corresponding to the basic mapping procedure. It is characterized
by the following interface properties:

Pcore := {IPTO, IPCoh, IPElemTerm, SPTO, SPCoh, SPUtil, SPSync, SPAlign, SPElemTerm}

The core is implemented as a set of small-step transitions (→) that traverse the parse tree, iterating
over input buffers and mapping elements to transfer buffers.

The core ruleset Rcore consists of the default semantics together with two rules governing the parsing
and termination of Bits nodes shown in figure 3.6. Bits-Parse applies when the focused node is of type
Bits and the input element is non-terminal, while Bits-Term applies when the input element terminates
the outer dimension.
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Struct-Enter
focus(Γ) ∈ {S,G} ¬isLeaf(Γ)

Γ → Γ.next

Struct-Term
focus(Γ) ∈ {S,G} isLeaf(Γ)

Γ → Γ.term

M-Cycle
focus(Γ) = focus(Γ′) = φ ¬isLeaf(Γ′)

Γ →∗ (Γ′.cycle).next

M-Full-Map
focus(Γ) = focus(Γ′) = φ isLeaf(Γ′)

Γ →∗ (Γ′.cycle).reset

Bits-Parse
focus(Γ) = Bk Γ ` ik : (tk, Bk) tk < dk

Γ → (Γ.parse).next

Bits-Term
focus(Γ) = Bk Γ ` ik : (tk, Bk) tk = dk

Γ → (Γ.parse).term

Figure 3.6: The default semantics with the core transitions responsible for parsing and terminating Bits nodes.

3.3.2. Complexity Levels
The complexity levels from the original specification can be seen as named property sets. Here I will
provide the property-sets for various complexities. Since the original specification does not reason
about properties of internal streams, these are interpreted to be their streamspace equivalent. For
example, if some complexity level does not include empty element in its streamspace representation,
Input Cohesion will also not be violated.

C = 3: For complexity level 3, terminating innermost sequences terminates the transfer. To accom-
plish this, we alter the core property-set to send on inner dimensions. Instead of removing constraints
from the core, we add SPTermInner, ensuring that inner dimensions also terminate transfers:

PC3 := {IPTO, IPCoh, IPElemTerm, SPTO, SPCoh, SPUtil, SPSync, SPAlign, SPElemTerm, SPTermInner}

Implementing this behaviour requires the premise of Bits-Parse to be updated to tk = 0, maintaining
structural determinism when Bits-Send-Inner is added. For RC3, shown in figure 3.7, the resulting
behaviour is mapping a) from figure 1.4.

Struct-Enter
focus(Γ) ∈ {S,G} ¬isLeaf(Γ)

Γ → Γ.next

Struct-Term
focus(Γ) ∈ {S,G} isLeaf(Γ)

Γ → Γ.term

M-Cycle
focus(Γ) = focus(Γ′) = φ ¬isLeaf(Γ′)

Γ →∗ (Γ′.cycle).next

M-Full-Map
focus(Γ) = focus(Γ′) = φ isLeaf(Γ′)

Γ →∗ (Γ′.cycle).reset

Bits-Parse
focus(Γ) = Bk Γ ` ik : (tk, Bk) tk = 0

Γ → (Γ.parse).next

Bits-Term
focus(Γ) = Bk Γ ` ik : (tk, Bk) tk = dk

Γ → (Γ.parse).term

Bits-Send-Inner
focus(Γ) = Bk Γ ` ik : (tk, vk) 0 < tk < dk

((Γ → Γ.parse).send).next

Figure 3.7: The complete ruleset for complexity level C = 3.

C= 4When the signal indicating the end of a (sub)sequence, can be delayed on the internal streams, we
violate IPElemTerm, which forces this signal to arrive on an empty element, making ik : (tk, ε) where tk > 0
valid input, thereby also violating IPCoh. Relaxing this constraint requires the inclusion of Bits-Empty-
Skip. If the empty element is mapped onto streamspace, SPElemTerm is also violated. Furthermore,
since only at C = 5 the inner sequences can be split up across multiple transfers, the interface ad-
heres to SPTermInner and Bits-Send-Inner needs to be incorporated. To accommodate these changes, I
propose the addition of Bits-Empty-Skip and Bits-Empty-Term, which match the type in their premises.
Bits-Empty-Skip ensures we do not map empty elements without termination data to streamspace,
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Bits-Send-Inner will send empty elements to streamspace if they terminate an inner sequence, and
Bits-Empty-Term will terminate the node and send the transfer if the empty element carries the outer
dimension termination signal. Notice that any transfer will at least contain termination information, and
thus SPUtil is not violated, since ε 6= ∅. This gives the property-set for complexity level 4:

PC4 := {IPTO, SPTO, SPCoh, SPUtil, SPSync, SPAlign, SPTermInner}

The ruleset RC4 corresponding to complexity level 4, and its property-set PC4, is shown in figure 3.8.
Bits-Empty-Term is equal to the core semantics of Bits-Term, except it specifies the type of the input
element as ε.

Struct-Enter
focus(Γ) ∈ {S,G} ¬isLeaf(Γ)

Γ → Γ.next

Struct-Term
focus(Γ) ∈ {S,G} isLeaf(Γ)

Γ → Γ.term

M-Cycle
focus(Γ) = focus(Γ′) = φ ¬isLeaf(Γ′)

Γ →∗ (Γ′.cycle).next

M-Full-Map
focus(Γ) = focus(Γ′) = φ isLeaf(Γ′)

Γ →∗ (Γ′.cycle).reset

Bits-Parse
focus(Γ) = Bk Γ ` ik : (tk, Bk) tk = 0

Γ → (Γ.parse).next

Bits-Term
focus(Γ) = Bk Γ ` ik : (tk, Bk) tk = dk

Γ → (Γ.parse).term

Bits-Send-Inner
focus(Γ) = Bk Γ ` ik : (tk, vk) 0 < tk < dk

((Γ → Γ.parse).send).next

Bits-Empty-Skip
focus(Γ) = Bk Γ ` ik : (0, ε)

Γ → Γ.next

Bits-Empty-Term
focus(Γ) = Bk Γ ` ik : (tk, ε) tk = dk

Γ → (Γ.parse).term

Figure 3.8: The complete ruleset for complexity level C = 4.

3.4. The Implementation Complexity Metric
The proposed formalism provides a concrete implementation of an interface, derived from its type and
properties. This foundation allows us to quantify the logic cost required to implement a given interface
specification, addressing the Tydi specification’s goal of “balancing implementation complexity”. While
the original specification implies this balance through Complexity Levels, it lacks a method to substan-
tiate it. By leveraging the formal semantics defined in this chapter, we can introduce a quantifiable
Implementation Complexity Metric (ICM).

3.4.1. From Semantics to Automata
The derivation of the ICM relies on mapping the operational semantics to a hardware-equivalent model.
This is supported by two key observations regarding the nature of the semantics:

1. Deterministic Intervals: The small-step transitions (→) that occur between invocations of M-Cycle
have no temporal equivalence in hardware. When synthesising an interface, these sequences
are collapsed to a single execution.

2. State Abstraction: The sequence of multi-step transitions, Γ →∗ Γ . . . do have temporal equiv-
alence and are fully determined by the input data instance. The state of the hardware interface
between cycles is therefore equivalent to the state of the streaming context Γ when the focus is
on to the root φ.

We can construct an Abstract Finite State Machine (AFSM) that accurately represents the control logic
of the interface. The states of this machine correspond to the distinct configurations of the parse tree
ZN where the focus is on the root.
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3.4.2. Defining the Metric
The AFSM is formally defined by a tuple (S, I, δ):

• Abstract States (S): The set of reachable equivalence classes of contexts Γ where focus(Γ) = φ.
These states are distinguished solely by the termination status of the nodes in the parse tree ZN .

• Transition Function (δ): The mapping δ : (S×I) → S′, defined by the application of M-Cycle and
M-Full-Map, and the set of possible input elements I.

We define the Implementation Complexity Metric (ICM) as the cardinality of the transition function δ,
representing the number of distinct transitions between streaming contexts, reflecting the paths the
hardware implementation must support: ICM (N ,P) = |δ|. It captures both the state space required to
track the sequence status and the logic required to handle valid inputs, moving between these states.

3.4.3. Case Study: The Chat Message
To demonstrate themetric, we revisit the chatmessage example: Tmsg := Group〈Bits〈64〉, Dim〈Bits〈8〉〉〉.
This is normalised toN := Group〈Bits〈64〉, Stream〈Bits〈8〉, d = 1〉〉. We compare the ICM for property
sets.

Case A: Core Property Set
First, we analyse the interface under Pcore, tracing the parsing of a message instance msg := (′12 :
30′, {′h′,′ e′,′ y′}).

• State (1) (Init): All nodes unterminated. Parsing (’h’) transitions to State (2), as the timestamp
Bits〈64〉 is terminated (it is a singleton), but the character stream is not.

• State (2) (Timestamp Terminated): The Bits〈64〉 node is skipped. Parsing (’e’) results in a self-
loop State (2) → (2). Parsing (’y’), which is the last element, transitions to State (3).

• State (3) (All Terminated): The parse tree is fully terminated. The M-Full-Map rule applies, reset-
ting the tree and transitioning back to State (1).

An additional transition exists, for a data instance where the message consists of a single character,
which would terminate both the timestamp, and the character sequence in the first cycle, which corre-
sponds to the transition from (1) → (3). This configuration yields 3 reachable states and 5 transitions
shown in figure 3.9a, and gives ICM = |δ| = 5.

Case B: Relaxed Cohesion
Next, we modify the specification by removing Input Cohesion (Pcore\IPCoh). This requires the inclusion
of the Bits-Empty-Skip rule, allowing empty elements (ϵ) on internal streams, while still adhering to IPCoh

This relaxation introduces complexity:

1. Empty Cycles: If no data is available, the system self-loops at the initial state ((1) → (1)).
2. Desynchronized Termination: Since input availability is not guaranteed, it is possible for the char-

acter stream to terminate before the timestamp is received. This necessitates a new state, State
(4), where the stream is terminated but the timestamp is not.

This results in an expanded state machine with transitions for partial data availability (e.g., (1) → (4),
(4) → (4) and (4) → (3)). The resulting AFSM has 4 states and 8 distinct transitions, giving ICM = 8.
Figure 3.9 compares the FSMs for the two interfaces. To reiterate, the transitions between states
in the FSM, strictly correspond to the usage of M-Cycle and M-Full-Map, moving between distinct
streaming contexts Γ, governed by the input elements. This comparison illustrates how relaxing input
constraints strictly increases the implementation complexity of the interface logic, effectively quantifying
the engineering trade-off between flexibility and resource cost.
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Figure 3.9: Abstract finite state machines for N := Group⟨Bits⟨64⟩, Stream⟨Bits⟨8⟩, d = 1⟩⟩. States correspond to distinct
streaming contexts Γ with focus at the root. Each transition is labelled by a pair (Ti, cj) denoting the ith timestamp element
and the jth character element in a cycle; _ denotes an element is not considered since its stream is terminated, an overline

indicates that the element terminates its stream, and ϵ denotes the empty element.



4
Examples and Empirical Validation

4.1. Full chat message parsing example
To illustrate the functionality of the formalism, I describe the experience from a hardware designer’s per-
spective: from defining the top level type, to the actual transmission of data. Using the core properties
+ SPTermInner, parsing the chat message example plus the single 32-bit emoji, typed as:

Tmsg := Group〈Bits〈64〉, Dim〈Dim〈Bits〈8〉〉〉, Bits〈32〉〉

which is normalised to:

JTmsgK 7→ Group〈Bits〈96〉, Stream〈Bits〈8〉, d = 2〉〉

The user specifies the number of lanes for the outer physical stream, and for the physical stream carry-
ing the characters: L := (1, 4). Now the streaming context can be constructed: Γ(N , L) := (I, ZN , TB)
The input buffers I1 and I2 are initialized corresponding to the size of their elements (t1, v1) and (t2, v2),
just like the transfer buffers TB1

and TB2
, where TB1

has 1 lane: ∅ and TB2 has 4: ∅ ∅ ∅ ∅ . A marked
transfer buffer is visualized as having a thicker outline: ∅ . The parse tree ZN is constructed as shown
in figure 2.3, with the focus on the root φ. Its inline representation is: φ G (B96

,S (B8 )). The element
containing the timestamp + emoji corresponding to the first message is represented as (1, msg1), where
msg1 is the binary concatenation of the timestamp and the emoji. Since this is a singular element flowing
on the outer stream, it always the ‘last‘ element of a sequence of 1: t1 == d1 == 1.

Parsing example
Table 4.1 shows the first and last parsing iterations for the text message. I strongly recommend also
viewing the more elaborate representation that can be found in Appendix B.

1) The initial state with empty buffers, the focus on the root and its children are not terminated, thus
M-Cycle is invoked. This updates the input buffers, and shifts the focus to B96 according to post-order
DFS traversal. 2) Since the focus is B96, Bits-Term can be invoked, moving the element from I1 to TB1

and marking it: (1,msg1) , terminating the node B96, and moving to the next node, which is the leaf node
B8 corresponding to the char stream. 3) The input element (0, s) has t2 = 0 thus Bits-Parse maps it
to the transferbuffer, and next is invoked, moving to S. 4) S has a non terminated child node B8 thus
we apply Struct-Enter moving the focus to G. 5) G has a non terminated child node S thus we apply
Struct-Enter moving the focus to φ. 6) φ has a non terminated child node G thus we apply M-Cycle,
sending the terminated transferbuffer TB1

to streamspace, updating both inputs I1 and I2 and moving
to the next non terminated node B8. In iterations 7 to 10, (0, h) is parsed and mapped to the TB2

. 11)
the input (1, e) has 0 < tk < dk, thus by inclusion of the SPTermInner property, the Bits-Send-Inner rule is
invoked, parsing the element, marking TB2 as terminal, and advancing the focus.

This results in the transfer (0,s) (0,h) (1,e) ∅ being sent at the next cycle (step 15). This sequence of
parsing and sending repeats until the final element of the message is reached. 60) M-Cycle is invoked,

25
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loading the final input element (2, n) into I2. The focus moves to B8. 61) The focus is B8, the input
element has tk = dk = 2, thus Bits-Term is invoked, mapping (2, n) to the transfer buffer, marking TB2

as terminal, terminating the B8 node, and advancing the focus to S. 62) The focus is now on S. Its
only child, B8, is terminated (isLeaf(Γ) is true), so Struct-Term is invoked, terminating S and advancing
to G. 63) The focus is on G. All its children (B96 and S) are now terminated. Struct-Term is applied,
terminating G and advancing the focus to the root, φ. 64) The focus is at φ. All its children (node G)
are terminated, so isLeaf(Γ′) is true. This triggers the M-Full-Map rule. The final transfer buffer TB2 is
sent to streamspace, the input buffer is updated (for the new message), and the parse tree is reset.

ID I1 I2 ZN TB1
TB2

Streamspace output Justification
1 ∅ ∅ φ G (B96

,S (B8 )) ∅ ∅ ∅ ∅ ∅ - init
2 (1, msg1) (0, s) φ G (B96

,S (B8 )) ∅ ∅ ∅ ∅ ∅ - M-Cycle
3 ∅ (0, s) φ G (��B96

,S (B8 )) (1, msg1) ∅ ∅ ∅ ∅ - Bits-Term
4 ∅ ∅ φ G (��B96

,S (B8 )) (1, msg1) (0,s) ∅ ∅ ∅ - Bits-Parse
5 ∅ ∅ φ G (��B96

,S (B8 )) (1, msg1) (0,s) ∅ ∅ ∅ - Struct-Enter
6 ∅ ∅ φ G (��B96

,S (B8 )) (1, msg1) (0,s) ∅ ∅ ∅ - Struct-Enter
7 (1, msg2) (0, h) φ G (��B96

,S (B8 )) ∅ (0,s) ∅ ∅ ∅ (1, msg1) M-Cycle
8 (1, msg2) ∅ φ G (��B96

,S (B8 )) ∅ (0,s) (0,h) ∅ ∅ - Bits-Parse
9 (1, msg2) ∅ φ G (��B96

,S (B8 )) ∅ (0,s) (0,h) ∅ ∅ - Struct-Enter
10 (1, msg2) ∅ φ G (��B96

,S (B8 )) ∅ (0,s) (0,h) ∅ ∅ - Struct-Enter
11 (1, msg2) (1, e) φ G (��B96

,S (B8 )) ∅ (0,s) (0,h) ∅ ∅ - M-Cycle
12 (1, msg2) ∅ φ G (��B96

,S (B8 )) ∅ (0,s) (0,h) (1,e) ∅ - Bits-Send-Inner
13 (1, msg2) ∅ φ G (��B96

,S (B8 )) ∅ (0,s) (0,h) (1,e) ∅ - Stuct-Enter
14 (1, msg2) ∅ φ G (��B96

,S (B8 )) ∅ (0,s) (0,h) (1,e) ∅ - Stuct-Enter
15 (1, msg2) (0, i) φ G (��B96

,S (B8 )) ∅ ∅ ∅ ∅ ∅ (0,s) (0,h) (1,e) ∅ M-Cycle
. . . . . . . . . . . . . . . . . . . . . . . .

60 (1, msg2) (2, n) φ G (��B96
,S (B8 )) ∅ (0,h) (0,i) ∅ ∅ - M-Cycle

61 (1, msg2) ∅ φ G (��B96
,S (��B8 )) ∅ (0,h) (0,i) (2,n) ∅ - Bits-Term

62 (1, msg2) ∅ φ G (��B96
,�S (��B8 )) ∅ (0,h) (0,i) (2,n) ∅ - Struct-Term

63 (1, msg2) ∅ φ�G (��B96
,�S (��B8 )) ∅ (0,h) (0,i) (2,n) ∅ - Struct-Term

64 (1, msg2) (t2, v2) φ G (B96
,S (B8 )) ∅ ∅ ∅ ∅ ∅ (0,h) (0,i) (2,n) ∅ M-Full-Map

Table 4.1: The first and last cycles of parsing the chat message example.

4.2. Empirical Validation with the TinyTydi Simulator
The TinyTydi simulator provides an executable version of the small-step operational semantics, realised
in Python [48]. At startup the simulator normalises a random or user-supplied top-level type and instan-
tiates the streaming context Γ(N , L), with a a parse tree ZN , a fixed set of per-stream transfer buffers
and a tuple of input prefixes I. The Python implementation centres on the StreamContext abstraction:
_build_tree() constructs the parsetree Γ and assigns leaf indices; cycle(inputs) injects Element
values into the context; parse() maps an input Element into its leaf buffer and, when an element is ter-
minal or a buffer is full, calls _buffer_to_transfer() to produce a Transfer; and term(), next() and
upnext() implement the tree traversal an dnod termination. Notably, the traversal used in the simulator
is not yet updated to use post-order DFS travesal, instead relying on an earlier manual implementation
of a similar traversal, still using the now defunct .upnext operation.

After a type has been normalised, the simulator generates a random data instance of this normalised
type, which consists of a set of elements and termination signals for each internal stream. The top-level
apply_semantics(sc) routine directly encodes the rule hierarchy used in the thesis (Root, Stream,
Group, NBits cases): it inspects the current focus, performs the rule-specific actions (terminate, parse,
send, advance focus) and returns any generated Transfer objects. The simulator effectively oper-
ates by invoking applying apply_semantics(sc) until it halts, at which point the output transfers are
compared with the original initialized data instance, ensuring no order constraints were violated. Dur-
ing each application of the semantics, the state of the streaming context is printed, alongside the
streamspace representation, an example of which can be found in Appendix 4.1. The simulator can
continuously generate random top-level types, normalise them, generate a data instance, and apply
the semantics. This procedure provides a solid empirical foundation for the stability of the formalism,
operating on much more complex type structures than would be feasible for a human operator.



5
Verification of the Formalism

This chapter will present a set of arguments, verifying that the proposed formalism implements inter-
faces without fault. I use the core as an example, subsequently detailing how this can be applied for
arbitraryR. First, I will show that the normalisation function always gives canonical form. This ensures
that the guarantees provided by a normalised type in CF can be used by subsequent arguments. It
is shown that the parse tree properly terminates for an arbitrary finite data instance. The subsequent
argument shows that structural determinism holds for the core. It illustrates how matching each con-
text state exhaustively and uniquely in a ruleset, ensures that the parsing logic never stalls. Finally, by
showing that a ruleset strictly decreases a metric for progress, I show that on finite input, any ruleset
will eventually terminate. Furthermore, it is shown that this termination will always happen properly, ter-
minating the parsetree without resulting in disallowed tree states. Together, these arguments provide
a foundation for the effectiveness of the proposed formalism.

5.1. Correctness of Normalisation
Canonical Form Definition
The set of Canonical Form normalised types CF ⊆ N is defined:

Bits〈n〉 ∈ CF ⇐⇒ n ∈ N+.

Stream〈N ′, d〉 ∈ CF ⇐⇒ d ∈ N+, N ′ ∈ CF, and N ′ is not of type Stream〈·〉.

Group〈N1, . . . ,Nk〉 ∈ CF ⇐⇒ k > 1, for every i ∈ {1, . . . , k} we have Ni ∈ CF and Ni 6= Group〈·〉.
At most one Ni may be of the form Bits〈n〉, and if such a Bits〈n〉 field
exists it appears at N1.

Proof of Proper Normalisation
Theorem 1. For any top-level type T , its normalisation JT K is in Canonical Form (CF).

Proof. We proceed by structural induction on the definition of T .

Base Case: T = Bits(n) By definition, JBits(n)K = Bits(n). This satisfies CF condition (1).

Inductive Step 1: T = Group(T1, . . . , Tk) Assume the inductive hypothesis (IH) that for all i ∈
{1, . . . , k}, JTiK = Ni,Ni ∈ CF . We analyse N = coalesce(Group(N1, . . . ,Nk)). The coalesce func-
tion executes three steps:

1. Flattening: Any Ni of the form Group(N ′
1, . . . ,N ′

m) is replaced by its children. By the IH, Ni is in
CF, so its children (N ′

j)must satisfy the Group conditions. Specifically, they are in CF and are not
Group types. Thus, the flattened list L = (N1, . . . , Np) consists only of Bits and Stream types, all
in CF.

27
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2. Concatenation: All Bits(nj) types in L are removed, summed into Bits(nsum), and this single
Bits type is placed at the head of the list. The list now contains at most one Bits type (at the
head) and all original Stream types.

3. Group Removal: The function inspects the resulting Group(N ′′
1 , . . . , N

′′
q ).

• Case A: The group contains a single field (i.e., q = 1). This field must be Bits(nsum) or a sin-
gle Stream(. . . ). The function returns this single field N = N ′′

1 . By the IH (and construction),
this field is in CF.

• CaseB: The group containsmultiple fields (i.e., q > 1). The result isN = Group(N ′′
1 , . . . , N

′′
q ).

This type satisfies condition (3) of CF because:

– All children N ′′
j are in CF (from step 1).

– No child is a Group (from step 1).
– At most one child is Bits (from step 2).
– If a Bits child exists, it is N ′′

1 (from step 2).

In all cases, the conditions hold, thus N ∈ CF

Inductive Step 2: T = Dim(T ′) Assume the (IH) that JT ′K = N ′,N ′ ∈ CF . We analyse N =JDim(T ′)K = lift(Stream(N ′, 1)), and proceed by case analysis on the type of N ′.

1. N ′ is not of type Stream: By the IH, N ′ must be of type Bits(n) or Group(·). By the definition of
lift,N ′ is unchanged. This result satisfies condition (2) of CF, sinceN ′ ∈ CF and is not a Stream.

2. N ′ is of type Stream: By the IH, N ′ must be Stream(N ′′, d′) where N ′′ ∈ CF thus N ′′ is not of
type Stream. By the definition of lift, N = lift(Stream(N ′′, d′), 1) 7→ Stream(N ′′, d′ + 1). This
result satisfies condition (2) of CF since N ′′ ∈ CF and is not of type Stream.

In all cases, N ∈ CF holds. By the principle of structural induction, the property holds for all T .

5.2. Well-formed tree termination
Theorem 2 (Well-formed tree termination). For any context Γ with focus node F , if Struct-Term is
applicable, then all nodes in the subtree rooted at F must be in a terminated state.

Proof. The proof is by contradiction.

1. Assumption: Assume Struct-Term is applicable to F , but there exists at least one non-terminated
node N in the subtree of F .

2. Premise: The applicability of Struct-Term on F requires isLeaf(Γ) to be true. By definition, this
means all direct children of F are in a terminated state.

3. Implication: Since N is in the subtree of F and its direct children are terminated, N cannot be
F or a direct child of F . Thus, N must be a proper descendant of some direct child Ck.

4. Ancestors: Let P0, P1, . . . , Pm be the unique path of ancestors from P0 = N up to Pm = Ck.
5. Inductive Argument: We prove by induction on i that Pi must be non-terminated.

• Base Case (i = 0): P0 = N is non-terminated by our initial assumption (1).
• Inductive Step: Assume Pi (for i < m) is non-terminated. Its parent is Pi+1. For Pi+1 to
be marked as terminated, the Struct-Term rule must have been applied to it at some point (it
must be a structural node, S or G, to have children). However, the premise for Struct-Term
on Pi+1 requires all of its children, including Pi, to be terminated. Since Pi is non-terminated,
the premise isLeaf for Pi+1 is false. Therefore, Struct-Term could not have been applied to
Pi+1, and Pi+1 must also be non-terminated.

6. Contradiction: By induction, Pm = Ck must be non-terminated.
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7. Conclusion: This leads to a contradiction. Step (2) states that Ck (a direct child of F ) is ter-
minated. Step (6) proves that Ck must be non-terminated. Our initial assumption (1) must be
false. Therefore, no non-terminated node N can exist in the subtree of F when Struct-Term is
applicable.

5.3. Proving the Core
This section will provide the structural determinism and progress proofs for the core. These proofs
provide a rather verbose view of how structural determinism and progress of a ruleset are determined,
functioning as a template for proofs of other rulesets.

5.3.1. Structural Determinism
Theorem 3 (Structural Determinism). For any valid streaming context Γ exactly one rule from the core
ruleset is applicable.

Proof. The proof proceeds by a case analysis on the type of the focus, focus(Γ).

Case 1: focus(Γ) ∈ {φ, S,G} (Structural nodes) The rules that can apply are Struct-Enter, Struct-
Term, Cycle and Full-Map. Their premises are only differentiated by isLeaf(Γ). For all these rules,
either isLeaf(Γ) or ¬isLeaf(Γ) must be true, thus they are mutually exclusive and exhaustive regarding
the Stream, Group and φ nodes.

Case 2: focus(Γ) = Bk (Primitive node) The rules that can apply are Bits-Parse and Bits-Term. The
applicability is differentiated by the input element ik : (tk, vk). By the Internal-Stream Property IPCoh,
vk ∈ {Bk}, so vk 6= ε. By IPElemTerm, tk = 0 is only possible if vk 6= ε. The applicability is therefore
differentiated only on the value of tk relative to the stream dimension dk.

• The premise for Bits-Parse is tk < dk.
• The premise for Bits-Term is tk = dk. (Note: tk > dk is ruled out by the context definition).

These two conditions, tk < dk and tk = dk, are mutually exclusive and exhaustive for any tk ∈
{0, . . . , dk}. Therefore, exactly one of these two rules is applicable.

Conclusion Since the case analysis covers all possible node types in the parse tree and the con-
ditions within each case are mutually exclusive and exhaustive, exactly one rule is applicable for any
valid context Γ.

5.3.2. Progress and Termination
Lemma 1 (Finite Instance). For any normalised type N and corresponding set of input streams I,
every well-formed data instance (N , I) is finite. In particular, the parse tree ZN induced by N has
finitely many nodes, and each complete input stream Ik ∈ I has finite elements.
Theorem 4 (Progress). For any well formed data instance (N , I), every sequence of small-step tran-
sitions Γ0 → Γ1 → . . . is finite, terminating when Full-Map is applicable.

Proof. To prove termination, we define a metric M(Γ) that maps each context to a value in a well-
founded set.

1. Well-founded Set: We use (N×N, <lex), the set of pairs of natural numbers ordered lexicograph-
ically: (n, s) <lex (n′, s′) iff n < n′ or (n = n′ and s < s′) This relation is well-founded.

2. Metric Definition: Define M(Γ) := (N,S), where:

• N the number of non-terminated nodes in the parse tree ZN ;
• S the sum of the remaining lengths of all input streams in I.

By Lemma 1, both N and S are finite, hence M(Γ) ∈ N× N.
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3. Transition Analysis: We show that every rule application either strictly decreases M or, after
finitely many steps, leads to a rule that does:

• Struct-Term, Bits-Term: Each application marks one node as terminated, so N ′ = N − 1.
Since (N − 1, S′) <lex (N,S) for any S′, the metric strictly decreases.

• Bits-Parse: Consumes one element from an input stream, so S′ = S − 1 while N ′ = N .
Thus (N,S − 1) <lex (N,S) again, the metric strictly decreases.

• Struct-Enter: Changes the focus but not N or S, so M(Γ′) = M(Γ). However, since ZN
is a finite, acyclic tree (by Lemma 1), repeated Struct-Enter steps can only traverse finitely
many nodes before reaching a leaf or a fully-terminated structure, where one of the above
rules applies and decreases M .

Conclusion. Every transition either strictly decreases M(Γ) or occurs in a finite sequence that cul-
minates in a strict decrease. Since <lex is well-founded, no infinite sequence of transitions exists.
Therefore, all derivations must terminate in a state where no rule is applicable. This terminal state
occurs when all inputs are consumed (S = 0) and all nodes are terminated (N = 1, for the root φ).
By the proof of Determinism, this state satisfies focus(Γ) = φ and isLeaf(Γ), the premises for applying
Full-Map.

5.4. Connecting the results
It is not obvious why the proofs above together ensure that Rcore always properly parses a data in-
stance of arbitrary type N . Firstly, proper normalisation ensures that the normalisation function always
provides types in Canonical Form, with its corresponding guarantees. Then, the well-formed tree ter-
mination shows that for any interface specification, regardless T or P, and regardless of data instance,
the tree will always terminate from leaf to root, never leaving nodes inaccessible. This also enables the
reduction required for the ICM equivalence classes, of contexts where the root is in focus. The subse-
quent two proofs are related to the core specifically, and really operate more like “checks“, ensuring that
Rcore is structurally deterministic, and the progress property holds. This is achieved by 1) ensuring the
transitions are exhaustive and unique w.r.t. the possible context states, and secondly 2) applying the
transitions will always decrease the size of the input, and/or decrease the number of non-terminated
nodes of the parsetree. Since the ruleset is structurally deterministic, the parsing will never halt, and
since the tree is guaranteed to terminate properly (on finite input), showing that the number of active
node decreases is sufficient.

5.4.1. Proving other property-sets
The first two proofs are valid for any interface specification, but the latter, structural determinism and
progress, are specific to the core. These proofs are rather verbose, and for other property-sets it is
possible (and desirable) to show they implement structural determinism and ensure progress in much
shorter proofs, using the above as templates.

Analysing Complexity level 4
Lets look at the property-set for complexity level 4, and determine if structural determinism and progress
hold.

Structural Determinism Proof Outline. For the case of structural determinism we use case analysis on
focus(Γ). The structural nodes are parsed by the default semantics, which is verified for the core, and
since all other semantics only considers the case focus(Γ) = Bk, these results can be reused, and we
only have to verify structural determinism for the case where the focus is on bits. Since IPCoh /∈ PC4, we
know that for any input stream Ik the set of input elements is: {Bk, ε}. For Γ ` ik : (tk, Bk), Bits-Parse,
Bits-Term and Bits-Send-Inner are applicable, depending on the value of tk Bits-Parse accounts for
the case tk = 0, Bits-Term accounts for the case tk = dk, and Bits-Send-Inner accounts for the case
0 < tk < dk, which are mutually exclusive, and cover all possible values of (tk, Bk). For Γ ` ik : (tk, ε),
Bits-Empty-Skip, Bits-Send-Inner and Bits-Empty-Term are applicable, depending on the value of tk.
Bits-Empty-Skip accounts for the case tk = 0, Bits-Empty-Term accounts for the case tk = dk, and Bits-
Send-Inner accounts for the case 0 < tk < dk, which are mutually exclusive, and cover all possible
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values of (tk, ε). Therefore, for any valid context, exactly one rule is applicable, and RC4 is structurally
deterministic.

Progress Proof Outline. In order to prove that progress holds forRC4, we use themetricM(Γ) := (N,S)
over the well-founded set (N×N, <lex), whereN is the count of non-terminated nodes and S is the total
size of input prefixes. Since every transition (or finite sequence of non-decreasing transitions) strictly
decreases M(Γ), the system must reach a terminal state (Full-Map) in a finite number of steps for any
finite input. Using the results from the core, we know that Struct-Term and Bits-Term strictly decrease
N , Bits-Parse strictly decreases S while N is constant. Bits-Empty-Term strictly decreases N , and
Bits-Send-Inner decreases S while N stays constant. The odd one out is Bits-Empty-Skip, which does
not decrease S or N . However, by lemma 1, finite instance enforces that an input stream Ik has finite
number of ε entries. Therefore, the repeated invocation of Bits-Empty-Skip and M-Cycle, ensures that
eventually the input element will no longer be empty, Γ ` ik : (tk, Bk), and a metric decreasing rule will
apply. Struct-Enter leads in a finite number of steps to a leaf node where another (metric-decreasing)
rule applies. Since every transition (or finite sequence of non-decreasing transitions) strictly decreases
M(Γ), the system must reach a terminal state (Full-Map) in a finite number of steps for any finite
input.



6
The Union Type: Handling Variant

Data

This chapter will discuss the the inclusion of the Union type and the specific challenges it presents.
I first intend to define a what is considered semantically ambiguous when working with the Union,
defining the Canonical Form and the required normalisation function. Then, the semantics will need to
be expanded to include transitions for the Union, utilising the structure enforced by the normalisation
function, ensuring deterministic streamspace mappings of the elements corresponding to sequences
in Unions.

6.1. Design considerations for variant types in hardware
The Union is fundamentally different from the other types in the Tydi type system since it carries inherit
unknowns. It is defined as a variant type: Union〈T1, T2, . . . , Tn〉 which is instantiated with a tag t,
indicating which field is active: I(T ∈ {T1, T2, . . . , Tn}, t ∈ (1, . . . , n)). Since the tag determines which
field is active at runtime, we cannot determine its type statically. The complexity it introduces lives
on two levels, how to normalise a Union such that its canonical form gives useful structure for the
semantics to interact with, and how to implement this semantics without invalidating the properties
that enable the verification of the parsing. This section will illustrate the subtle design considerations
regarding normalisation and semantics, leading to the eventual solution presented in the subsequent
section.

Design considerations for integrating the Union type
Since the normalisation and the resulting canonical form have strong implications for the semantics, this
is the first procedure that needs to be defined. Restating the goal of normalisation: ensuring the size
of the elements flowing over the physical stream is made explicit, while also enforcing unambiguous
structures for the semantics to interact with. Let’s start small with a Union that only contains primitives:
Union〈Bits1〈·〉, Bits2〈·〉, . . . , Bitsn〈·〉〉 Since only one of the fields is active, we determine the size
of the element on the physical stream by taking the largest possible primitive in the union. The tag
field can be made explicit by encasing the union in a group, together with a primitive representing the
tag. The normalisation would then be JUnion〈Bits〈2〉, Bits〈3〉〉K 7→ Group〈Bits〈1〉, Union〈Bits〈3〉〉.
The tag is of size 1, since it can either select Bits〈2〉 or Bits〈3〉. Even for unions that only contain
primitives, this normalisation does not to adhere to the requirements I proposed for canonical form of
Groups. Since the tag field and the data inside the Union correspond to the same physical stream, the
proposed normalisation is not sufficient. Consequently, it requires an additional step, either changing
the way the Union node is parsed by the semantics, making the Union node a data-carrying node
like the Bits node, possibly normalising it as: JUnion〈·〉K 7→ Uniontag〈·〉, or by defining method that
deterministically combines the primitives in a union, together with its tag data. The latter solution seems
more suitable for the integration with the Tydi formalism, since it adheres to the structure that the
semantics expects. Furthermore, concatenating the tag field with the data field makes the size of

32
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the element lanes explicit, in contrast with the alternative, which obscures the width of the lanes of a
PhysicalStream, by separating the tag field. This would result in the above example to be normalised as
such: JUnion〈Bits〈2〉, Bits〈3〉〉K 7→ Bits〈4〉. The downside of this approach is that the Union type may
be completely obscured after normalisation, leaving the logic in the receiver to decode the data field. It
is, however, important to restate that the aim of the normalisation is to enforce semantic unambiguity in
the normalised type, which may not necessarily overlap with a ‘human intuitive’ type. In fact, the above
example matches the way synthesis would generate the physical streams, with element lanes of width
4, since the specification explicitly states that it does not specify how the bits should be interpreted:
such interpretation is explicitly out of scope.

Expanding the normalisation
Now, within the Tydi spec it is entirely possible to have nested stream structures within a Union, which
already occurs when mapping a nullable string to Tydi: string is a sequence, and if it can be null, the
Union needs to be utilized since it is now a variant type containing the singleton, or the sequence of
characters. If we imagine the parsetree for a type that contains unions with nested streams, a problem
for its semantics becomes apparent. For example, if we extend the chat message by allowing it to
be encoded in 8- or 16-bit characters: Group〈Bits〈64〉, Union〈Dim〈Bits〈8〉〉, Dim〈Bits〈16〉〉〉〉 When
initialising the streaming context, what should the parse tree look like? The previously proposed style
of normalisation would proceed as follows:JGroup〈Bits〈64〉, Union〈Dim〈Bits〈8〉〉, Dim〈Bits〈16〉〉〉〉K

1. Each Dim type is normalised into an explicit Stream node:

Group〈Bits〈64〉, Union〈Stream〈Bits〈8〉, d = 1〉, Stream〈Bits〈16〉, d = 1〉〉〉

2. Since the Union contains two alternatives, a tag field of width 1 is introduced to signal the active
field. In accordance with earlier discussion, the tag is made explicit by enclosing the union in a
Group together with the tag primitive:

Group〈Bits〈64〉, Group〈Bits〈1〉, Union〈Stream〈Bits〈8〉, d = 1〉, Stream〈Bits〈16〉, d = 1〉〉〉〉

3. The outer Group is then normalised by eliminating the nested Group. Since the Bits〈64〉 and
Bits〈1〉 primitives correspond to the same physical stream, they are merged into a single primitive
of width 65:

Group〈Bits〈65〉, Union〈Stream〈Bits〈8〉, d = 1〉, Stream〈Bits〈16〉, d = 1〉〉〉

Figure 6.1: The parse tree for
the Union example, with 2

encodings of chat messages

The resulting normalised form of the type would correspond to the parse
tree shown in figure 6.1. According to the existing formalism, the streaming
context should be initialised with all tree nodes non-terminated. How would
the current style of semantics interact with this tree?

Let’s assume the property-set of the interface is P ′
core, a hypothetical ver-

sion of the core that supports the Union. First, the Bits〈65〉 node is visited,
which contains the 64-bit timestamp plus the 1-bit tag information for the
Union. This highlights the importance of the normalisation procedure of
groups, moving the primitive to the first index of the group, since it needs
to be certain that the tag data is parsed before evaluating the Union node.
Furthermore, since input cohesion is guaranteed by the core, the 65-bit el-
ement is available on the internal streams, and can be parsed. Say the
value of the tag is ‘1’, indicating the second field of the Union is active for
this data instance, containing the 16-bit character stream. However, post
order DFS traversal would visit the node corresponding to the 8-bit charac-
ter stream first, since it is the next non-terminal node. Furthermore, if input cohesion is not guaranteed,
the tag field may not be available, and the semantics continues traversing into the subtrees of union1
and union2, which would violate TrueOrder, since it may be possible to transmit elements in a different
order than they existed in the data instance. This highlights that the parsing of the union tag field, needs
to have consequences for the semantics, only enabling the subtree corresponding to the selected field
of the union.
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During traversal subtree activation
Based on the proposed union normalisation a question arises: How can the semantics differentiate
between a regular Bn node, and one that contains tag information from the Union?

The following is proposed: for any bits field, when it is parsed, also enable all union nodes that are in its
level of the hierarchy. For S〈B·〉, if the B· node is parsed, the semantics that parses it will also activate
the unions at its current level (regardless of their existence), so in this example none exist and parsing
would happen as usual. Similarly, for G〈B·, S1〈·〉, S2〈·〉〉, it would achieve nothing, and less obviously,
for

N := G〈S1〈G1〈B1, U1〈·〉〉〉, S2〈G2〈B2, U2〈·〉〉〉〉,

parsing B1 would only activate U1, not U2, even though U2 may appear on the same level as B1 (removed
as many steps from the root), it is in a separate subtree, so not in the same hierarchy, therefore not
activated.

If we have
N := G〈B·, S〈·〉, U1〈·〉, U2〈·〉〉,

the union fields, and their subtrees, would be initialized as terminated, however, when Bits-Parse parses
the B· field, it activates the Union nodes. Subsequently, when traversing the parse tree, first the S〈·〉
subtree is visited, then we visit U1 (not its subtree since only the union node is activated), and the
semantics for parsing the union node reads the tag from B· and activates its corresponding subtree.
Working through an example: 1) visit B·, it activates the two union nodes, subsequently visiting the
stream subtree, 2) we visit the first union node U1〈·〉, it reads the tag field and activates its corresponding
subtree, 3) the subtree is now active so .next will traverse to the bottom of the subtree, according to
post-order DFS, 4) we parse some primitive in a stream at the bottom of the union subtree (ensured
to exist by CF for the union), the element is terminal, the bits node is terminated and post-order DFS
iterates up the subtree, the stream node is terminated etc., traversing up until we hit the union node
again, 5) now the union node is again an effective leaf node, but it is impossible for the semantics
differentiate between state (2) and the current state. The proposed solution would evaluate the tag
again, and activate the subtree.

This leaves us with a few fundamental considerations to make. What is semantically unambiguous
when considering the Union? Consider the proposed normalisation: making the tag field explicit by
enclosing the union in a group and adding a primitive corresponding to its tag. When normalising the
structure further, this tag field primitive will be concatenated with other, data carrying primitives, that
correspond to the same physical stream, creating the B65 field for the chat message example. This
seems to introduce ambiguity again, since it is now no longer obvious whether B65 is just a 65-bit wide
data element, or if it contains tag information. In the problem statement I articulated a similar problem:
“When the existence of a G type does not provide strong guarantees regarding how its fields are in-
terleaved / concatenated over physical streams, any formalism interacting with the type must account
for the larger structure by also evaluating the fields of the group.’ The proposed Union normalisation
seems to cause ambiguity regarding the semantics of the Bits field; its existence no longer provides
strong guarantees regarding how data is transmitted, requiring the formalism to account for the larger
structure by also evaluating nodes of the parse tree around the Bits field, to potentially activate any
Unions. The parsing of the tag field should therefore not be done by the semantics for the primitive,
but for the union, since its existence requires the tag field to exist in the parent stream.

Maintaining structural determinism
Say we implement normalisation as proposed initially: the union is encapsulated by a group, with a
primitive corresponding to its tag field, and the primitives in the fields of the union are subsequently
incorporated according to natural ordering. When initialising the streaming context, in the parse tree
the subtrees of the union are terminated, but the union nodes are not. During evaluation, the bits field is
parsed as normal by the semantics of the interface, using Bits-Parse or Bits-TermWhen the union node
is in focus, and it is a leaf node (its subtrees are terminated), the semantics evaluate the index of the
input buffer that corresponds to the tag field. (this requires the index of the tag to be deterministic, which
is ensured by the natural ordering of the normalisation) If the data is valid, meaning the primitive carrying
the tag was parsed during the current tree traversal, the semantics activates the subtree corresponding
to the selected tag.



6.1. Design considerations for variant types in hardware 35

A problem remains: the Union’s subtree corresponding to the tag needs to be activated, before evalu-
ating the Union node, otherwise the same behaviour occurs where the Union node can be visited twice
during the same traversal, while being unable to differentiate between the two.

There were various attempts to create a distinction between primitive nodes with, and without tag data,
like having B· and Btag

· , or utilising a value dependent type theory, where the semantics can adapt
based on the value of its instance. All these ideas are fundamentally flawed: they violate structural
determinism from the perspective of the cycle.

If we want to incorporate the Union with the existing formalism, the exact route taken while iterating
over the parse tree, cannot depend on a value that is evaluated halfway through the traversal. No
matter the formalism or type-theoretic approach, if we want to maintain the property that the small-step
semantics can be reduced to the multi-step semantics, all the transitions between each invocation of
M-Cycle need to be fully deterministic. Therefore, when dealing with dependent sum type such as
the union, the only valid solution is to defer the evaluation of its subtree, postponing the parsing of its
corresponding physical stream to the next tree traversal / cycle. This can be implemented by using
the tag to mark the subtree that should be activated in the subsequent cycle, similar to how the .send
context operation marks the transfer buffer that should be transmitted. For the chat message example
this would mean that, if the tag field selects the 12-bit primitive, it would be transmitted in the same
cycle, and no subtree would be activated, otherwise, if one of the two character streams is selected by
the tag field, only in the subsequent cycle would the first character of the message be parsed.

To reiterate this idea: at the beginning of each cycle, an itinerary is created; the post-order DFS traversal
of the tree, with all the terminated nodes removed. In essence this already happens for the existing
formalism excluding the Union, but this is not mentioned since without the union, the itinerary could not
change based on the value of an element. When a subtree of a Union is activated, this is not reflected
in the itinerary of the current tree traversal, since it was created at the start of the cycle, before any
elements were evaluated. Therefore invoking .next will continue as if the subtree was still terminated.
For the chat message + 12-bit example, the initial itinerary would be:

Cycle Itinerary Judgement / Argumentation
1 [B78, U, G, Root] B78 is parsed and the tag selects S1, carrying the 8-

bit characters.
2 [B8, S1, U, G, Root] B78 is not visited since it was terminated during the

first traversal. The first 8-bit character is parsed.

Maintaining tag-data synchronicity
In the previous example, everything went according to plan, since for

N := G〈B78, U〈S1〈B8, d = 1〉, S2〈B16, d = 1〉〉〉

it is ensured that B78 always exists once per instance. This is the case, since the root represents the
outer sequence; a stream with d = 0, ensuring that every element ik : (vk, tk) on its physical stream
is parsed as if it were the last of the sequence. What if this type is encapsulated in another stream, in
which case the bits node B78 containing the tag field, is not necessarily terminated on the first iteration?
This gives:

N := S0〈G〈B78, U〈S1〈B8, d = 1〉, S2〈B16, d = 1〉〉〉, d = 1〉.

This could lead to the following problem:

Cycle Itinerary Judgement / Argumentation
1 B78 → · · · B78 is parsed, tag selects S1. Node not terminated

due to S0. Subtree for S1 is marked.
2 B78 → B8 → · · · B78 parsed again, its tag selects S2. B8 parsed non-

terminal. Ambiguity arises whether to activate S2.
3a B78 → B8 → B16 → · · · Simultaneous activations lead to illegal interleavings

of S1 and S2 and loss of tag information.
4a · · · Union subtrees terminate, but tag information from

cycle 3a is lost.
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The above example illustrates a new problem: the information for activating S1 a second time, contained
in the third element of B78, was lost due to the fact that its physical stream can transmit data before the
union’s subtree has terminated. One way to solve this is by enforcing back-pressure in the specification;
disallowing the receiver to accept transfers from B78 until the physical streams corresponding to the
union have finished. This is not desirable, since it disregards the notion of implementing the receiver
as the dual of the sender interface. Additionally, the intention is to implement a semantics that always
produces a valid, unambiguous streamspace mapping, regardless of the order in which the receiving
interface accepts the transfers.

Sending the tag over the parent stream, while ensuring that the streamspace mappings of the physical
streams corresponding to the parent stream and the union do not contain illegal interleavings, is rather
complicated. In the example without the outer stream, the root ensured that B78 was sent once. We
could attempt to replicate this, by explicitly synthesising the union, its tag plus the maximum of its fields,
as a separate physical stream of d = 0. This would normalise the expanded chat message example

T := D〈G〈B64, U〈B12, D〈B8〉, D〈B16〉〉〉〉

to
N := S0〈G0〈B64, S1〈G1〈B14, U〈S2〈B8, d = 1〉, S3〈B16, d = 1〉〉〉, d = 0〉〉, d = 1〉.

The stream S1 with d = 0 functions as the NEW shorthand that the original specification proposes, where
a separate physical stream is created at the same dimensionality as the parent stream. It ensures
that the tag information is always sent together with the physical stream corresponding to the union’s
subtree. Let’s check how this would behave:

Cycle Itinerary Judgement / Argumentation
1 B64 → B14 → · · · B64 non-terminal. B14 terminal, tag selects S2.
2 B64 → B8 → · · · First 8-bit element parsed, non-terminal.
3 B64 → B8 → · · · B64 terminal. B8 non-terminal.
4 B8 → · · · B8 terminal. Union terminates. Full-map reached.

The solution avoids activating multiple subtrees of the union, and the loss of tag data, since B14 is
transmitted once, and the data corresponding to the selected subtree is also transmitted once. However,
a different problem arises, since the G type enforces that all its fields are transmitted together, and we’ve
seen the B64 being transmitted three times, while the second field of G0, namely S1, has only been
terminated once. Full-Map can only be applicable after the complete data instance has been parsed,
which is not the case This imposes a strict synchronisation requirement for the separate physical stream
that we’ve created for the Union data. Additionally, if the union, and thereby its tag information, is part of
a larger sequence, the union must fully terminate before any data corresponding to the larger sequence
can be sent. Making the example even more complicated:

N := S0〈G0〈B64, S1〈G1〈B14, U〈S2〈B8, d = 1〉, S3〈B16, d = 1〉〉〉, d = 0〉, S4〈·〉〉, d = 1〉,

Even though the outer sequence S0 has dimension 1, exactly one instance of B64 and S4〈·〉may be sent
over their respective physical streams before S1 has finished. The inner stream, enclosing the union
as a sequence of d = 0, cannot enforce this synchronisation for its parent.

Deferred Parsing Commit
From the various attempts at normalisation and integration in the semantics, a few important observa-
tions are made: 1) The size of the physical stream elements should be explicit in the normalised type,
including the tag for a union, 2) the union must affect the parse tree, initialising its subtrees as termi-
nated, activating the required subtree based on tag evaluation, 3) to maintain structural determinism,
the itinerary of the current tree traversal cannot depend on an evaluation within the current traversal,
and 4) the state of the union should enforce strict tag-data synchronicity between its parent stream and
the streams in its subtrees, avoiding the loss of tag data.

The core idea is to make the parsing transitions non-committal within a cycle: parsing a parent-stream
primitive marks the corresponding input buffer as ready to parse, but the effect of that parse on the
streaming context is deferred until the next time M-Cycle is invoked. Concretely, this means that
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Γ.parse does not consume an input element during the tree traversal; it just marks the element as
’to parse’. This mirrors the existing .send context operation, and better reflects the hardware reality
since traversing the parse tree has no real temporal equivalence. To integrate this behaviour with
unions I add a small piece of internal state to each Union node: a stored tag record containing

stored_tag := (tag_value, term_flag)

where term_flag contains the termination data tk from the input element ik, for the parent stream k
that the union corresponds to. It indicates whether the parent stream was terminated in the cycle that
supplied the tag. The invariant is:

The union may only refresh its stored_tag when it has no active subtrees; whenever the
union has active subtrees those subtrees must terminate before the union considers a new
tag.

Figure 6.2: The tree
representing a sequence of

variable encoded chat
messages, initialized with
terminated union subtrees.

This design results in three behaviours, requiring two new context opera-
tions:

1. Read-and-store (deferred activation). When the stored termination
data indicates the parent stream is active, and the Union currently has
no active subtrees, the Union reads the tag and the termination value
from the parent stream and stores them. The semantics does not
enter the selected subtree during the same cycle; instead it invokes
.activate to mark the subtree for activation in the subsequent cycle.

2. Undo / unparse when busy. If the parent primitive is parsed
while the Union still has active subtrees, the semantics must invoke
.unparse on the parent. This effectively implements back pressure
on the internal streams of the component.

3. Terminal-tag handling. If the stored_tag indicates the parent
stream is terminated and the Union has no active subtrees, the Union
node is terminated, erasing the stored record and ensuring the union
and its parent stream remain synchronized.

Let’s consider the sequence of chat messages, with 2 encodings and the
12-bit ‘neither’ field. Its parsetree is shown in figure 6.2. The transitions in table 6.1 show that the
parsing is effectively undone on the parent stream, and that the itinerary can be determined at the
cycle, ensuring deterministic parsing and maintaining tag-data synchronicity.

6.2. Formalism extension for the Union
Based on the analysis, this section presents the canonical form and normalisation for the Tydi type
system including unions Subsequently, the required extensions to the streaming context and semantics
are introduced, after which an argument is given to show that the resulting formal framework adheres
to structural determinism and progress.

6.2.1. Normalisation and Canonical Form
Firstly, the top-level type T and normalised type N must be expanded to include the union type:
Union〈T1, . . . , Tn〉, which is normalised to Union〈N1, . . . ,Nn〉. We do not add the null type, instead
adding 1 to the tag, making unions inherently nulla and up to user specification, thereby also allowing
singular unions to exist. For a Union to adhere to Canonical Form, it must contain no primitives, be
enclosed in a group carrying a single primitive at the head, all its fields must be normalised types ad-
hering to canonical form, these cannot include unions since they should be enclosed in groups, they
can include groups, which can contain additional unions, and they can include streams. Different from
groups, singular unions are allowed, since this defines a nullable type. To achieve normalisation, I
propose a “hoist“ function for the Union, similar to the “coalesce“ function for the Group. It is respon-
sible for enforcing Canonical Form, integrating in the normalisation function without invalidating the
normalisation of other types.
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Cycle Itinerary Judgement / Argumentation
1 [ B78, U, G, Root ] B78 parsed, U has no active subtrees ⇒ read tag+term from

B78 which contains tag selecting S1 and is non-terminal; invoke
.activate to mark S1 for the next cycle.

2 [ B78, B8, S1, U, G, Root ] B78 parsed. Because S1 is active we begin parsing B8 which
is non-terminal. On visiting U we see it has an active sub-
tree ⇒ undo parsing of B78 on the parent stream by invoking
.unparse.

3 [ B78, B8, S1, U, G, Root ] B78 parsed, B8 reaches terminal; S1 terminates. U now has no
active subtrees ⇒ invoke .activate to refresh the tag+term
from the (most recent) B78 transient parse and schedule acti-
vation of the other subtree (S2) for the next cycle.

4 [ B78, B16, S2, U, G, Root ] B78 parsed, B16 parsed; U has an active subtree (now S2), so
invoke .unparse on the parent stream B78.

5 [ B78, B16, S2, U, G, Root ] B78 parsed, B16 parses and is terminal; S2 terminates. U has
no active subtrees and the stored tag is non-terminal; invoke
.activate which selects the B12 primitive (non-terminal), this
has no effect since it has no subtree.

6 [ B78, U, G, Root ] B78 parsed and is terminal. U has no active subtrees and the
stored tag is non-terminal; invoke .activate which selects S1

and is terminal, thereby marking S1 for the next cycle.
7 [ B8, S1, U, G, Root ] B8 parsed and is terminal; S1 terminates. U now has no active

subtrees and the stored tag is terminal; terminate the Union
node. G then has no children and terminates, S0 has no chil-
dren and terminates. Root is leaf node.

Table 6.1: The iteration when using the deferred parsing commit method for the extended chat message example:
N := S0

(
G⟨B78, U⟨S1(B8, d = 1), S2(B16, d = 1)⟩

)
, d = 1

)

Union Hoisting Integrating the Union into the normalisation function is defined as:

JUnion(T1, . . . , Tk)K 7→ hoist
(
Union(JT1K, . . . , JTkK))

The hoist function takes a Unionwith already-normalised fields. This guarantees that before application
of the hoist function, the fields are either 1) Primitives, 2) normalised streams, or 3) Groups with either
a) one primitive at the head, and at least one Union or Stream, or b) Groups containing multiple Unions
and/or Streams. The hoist function operates as follows:

1. Calculating the tag size based on the number of fields btag = dlog2(k + 1)e (where tag 0 is ”null”),
subsequently calculate themaximumdata width bprim from any childNi that is a Bits or a primitive
in a Group type.

2. Creating a new primitive Btag = Bits〈btag + bprim〉, and removing all primitives from the Union
and from Groups in the Union.

3. If this removes all fields (i.e., the original Union only contained primitives), the function returns
only Btag.

4. Otherwise, it returns Group
(
Btag, Union(N ′′

1 , . . . ,N ′′
p )

)
, where (N ′′

1 , . . . ,N ′′
p ) is the sequence of

remaining non-primitive fields.

6.2.2. Default Semantics proposal
This section extends Rcore with the small-step semantics supporting the Union as an example im-
plementation. No existing core transition is modified; instead, I expand the context operations and
inference rules, with the goal of preserving structural determinism and progress, enabling the proofs to
remain applicable.



6.2. Formalism extension for the Union 39

Additional context operations
The initialisation of the streaming context Γ adds the ability for the union nodes to maintain a register for
recording the tag and termination data. Additionally, Γ is extended with the following context operations:

• Γ.unparse: reverts any effect that Γ.parse, Γ.send or Γ.termmay have had for the physical stream
corresponding to the Union node currently in focus.

• Γ.activate: reads the tag and termination data from the parent stream’s transient parse, stores
the pair (tag, term) in the internal state of Union node U , and marks the subtree corresponding
to the stored tag as active for the subsequent cycle.

Union ruleset expansion

Union-Busy
focus(Γ) = U ¬isLeaf(Γ)
Γ → (Γ.unparse).next

Union-Terminate
focus(Γ) = U isLeaf(Γ) stored_tag = (_, dk)

Γ → Γ.term

Union-Activate
focus(Γ) = U isLeaf(Γ) stored_tag = (_, tk) tk < dk

Γ → (Γ.activate).next

Figure 6.3: Additional small-step transitions for Union semantics.

Union-Busy undoes any effect on the parent stream when it has an active subtree and thus is not a leaf
node. Union-Terminate terminates itself when it is a leaf node, and its stored termination data indicates
that the parent stream has been terminated. Union-Activate reads the tag and termination data from
its parent stream, if the union node has no active subtrees and its stored termination data indicates
that the parent stream is not terminated. Together, these rules integrate Unions into the semantics
corresponding to Pcore while adhering to structural determinism and progress.

Compatibility with structural determinism and progress arguments
Structural determinism holds by the fact that: 1) the added rules are distinct from theRcore differentiated
by the node in focus being the Union, and 2), the added rules are mutually exclusive since when the
union is not a leaf node Union-Busy applies, and when it is a leaf node, either Union-Terminate or
Union-Activate is applicable, based on the stored termination signal tk being dk for Union-Terminate
and tk < dk for Union-Activate.

For the progress property, it is slightly less obvious since the addition of Union-Busy can undo the
effect of Bits-Parse and Bits-Term, which invalidates the result of the transition analysis 5.3.2. A similar
solution as used for proving PC4 can be applied here. By lemma 1, the Union substructure must be
finite, therefore a finite number of invocations of M-Cycle will result in a termination of the Union subtree,
which violates the premise of Union-Busy and enables either Union-Terminate or Union-Activate, which
will strictly decrease either N or S. Therefore, a finite number of transitions will decrease the metric,
ensuring the result of our argument is valid and progress is maintained.
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Conclusion and Discussion

This chapter will present the conclusion of this work, including 1) a brief overview of how the scope
developed throughout the period of research, 2) a summary of the contributions, connecting to 3) the
impact on the existing Tydi specification, and 4) the future work that remains. Subsequently, 5) the
related work and positioning of this research is illustrated, concluding this chapter with 6) a discussion
and 7) acknowledgements.

7.1. Research overview
During the period of research, the scope and deliverables were quite ill-specified for a long time, and
the direction has changed various times. To provide some additional context, this section first presents
an overview of the research period, subsequently outlining the contributions that it resulted in.

7.1.1. Evolution of the Research Scope
The research began with a question that had existed for a while: Can we prove that compatible Tydi
interfacesmaintain correct communication in practice? Initial investigation relied on anecdotal evidence
of ambiguities regarding the mapping of nested streams, described as a “missing middle“ between the
high-level logical stream and the physical implementation. The focus slowly shifted from “finding out
what’s wrong“, which proved difficult without a formal basis to begin with, to constructing a formal
foundation for the specification itself.

This resulted in a period of time where I attempted to capture the essence of Tydi; what it intended to ef-
fectuate through the way it was defined. Consequently, the scope was narrowed to “TinyTydi,“ a subset
of the specification excluding Union types, and focusing on a basic, low complexity mapping. A lot of
time was spent on determining which formal framework would be most suitable for describing the Tydi
specification. This phase, characterized by the “evolution of the whiteboard“, showed that the proposed
normalisation function closely mirrored the hardware synthesis algorithm, and how the semantics could
be simplified by ensuring unambiguous structures of the normalised type. I initially introduced a high
detail semantics, even reflecting concepts such as maintaining individual buffer pointers in the dynamic
formalism, eventually moving to a more abstracted approach using the context-operations. Before a
hiatus to work at CERN, a Python-based simulator provided empirical verification, highlighting edge
cases and motivating the need for properties like structural determinism.

Upon returning, the objective evolved from defining a stand-alone formalism to integrating it back into
the existing Tydi specification. This effort produced the “two-way split“ perspective, distinguishing be-
tween static/dynamic and user-facing/inner-working domains. In the final stages of research, I started
building upon the concepts that I had proposed instead of tweaking the foundations. I established the
Implementation Complexity Metric and Named Property-Sets, driven by an attempt to articulate the fun-
damental concepts for a broader audience. This led to a formalism that harmonized Tydi’s seemingly
incompatible intentions; providing an accessible interface specification for complex hardware streams,
while maintaining formal rigour that enabled provably correct hardware implementations.

40
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7.1.2. Summary of Contributions
The contributions of this work can be separated in two sections: An analysis investigating the Tydi spec-
ification, what it is and what it intends to be, identifying problems and ambiguities that were speculated
to exist and 2) the proposal for a formal foundation for the Tydi specification, capturing the original intent
of the specification while providing provably correct transmission / streamspace mapping of arbitrary
Tydi instances, ensuring that matching interfaces are rigorously specified and verifiably compatible.

First, through a thorough analysis of the specification and its usage, I identified the conceptual “gap“ in
the specification, where it lacked the prescriptive rigour to define how runtime behaviour for complex,
nested streams actually produced the streamspacemappings. After synthesis, the hierarchy of physical
streams was lost, and how this mapped to the complexity levels remained undefined.

To resolve this, I introduced a tiered formal framework centred on a modular operational semantics.
This framework contributes the following:

• The Two-Way Split: A separation between the user-facing definition and the inner-working for-
malism, and between the static type domain and the dynamic runtime domain. This allows the
specification to remain accessible and flexible for the engineer while utilising more rigorous for-
malisms to define the inner-workings.

• Normalisation and Canonical Form: A procedure to map flexible top-level types to a hardware-
oriented Normalised form. This removes structural ambiguities andmakes the hierarchy of nested
physical streams and their element sizes explicit.

• The Streaming Context, Interface Properties and Semantics: The introduction of a stateful
abstraction (Γ) bridges the gap between static types and dynamic behaviour. The formalisation of
Internal-Stream and Streamspace Properties replace monolithic complexity levels together with
other dynamic stream parameters, and map to modular sets of small step operational semantics.
These iteratively determine the streamspace mapping for arbitrarily typed instances.

• The Implementation Complexity Metric (ICM): A new metric, utilising the detailed specification
of the interface implementation, allowing engineers to more accurately quantify the logic cost of
specific interface configurations.

A less tangible contribution was expressed by engineers that work with the specification; the formal-
ism shows that what Tydi attempts to achieve, is actually formally feasible. Before, the specification
offloaded the rather complex and fault-sensitive work of implementing an interface exactly as it should
be implemented according to the spec, to the engineer. When using the formalism, after providing the
type and interface properties, the engineer is presented with the normalised inputs streams, and the
internal stream properties that these should adhere to, leaving all the complexity of building transfers
and managing lane validity/signalling to the specification.

7.2. Related Work and Positioning
Dataflow and stream-processing models A large body of work studies streams from a high-level,
software-oriented perspective, providing semantic foundations that inform hardware-oriented formalisms.
Type- and trace-based models expose precise composition and ordering properties for streams, which
are useful when mapping logical stream specifications to implementations [16, 5, 30, 28]. Other sys-
tems and languages (e.g., AquaLang, StreamQRE and related flow dataflow formalisms) show how
type and effect systems can enforce progress, ordering, and determinacy properties for transforma-
tions over streams [46, 31]. These high-level frameworks provide fundamental concepts for reasoning
about the relation between Tydi’s types and its observable stream behaviour.

Formal semantics for hardware design There is an active thread of work utilising operational se-
mantics for hardware aware formalisms. For example, Koika, a core language for Bluespec, gives a
deterministic operational semantics for rule-based hardware, together with mechanized artifacts and
a verified compiler [9]. Their ORAAT methodology for structural determinism inspired the construction
of my modular ruleset approach. Recent efforts also develop mechanized operational semantics for
dataflow circuits and structurally-defined small-step semantics for pipelined processors; these works
show how transitions can closely mirror real hardware stages and support machine-checked proofs
of properties such as determinism and progress [29, 12]. This line of research validates my choice
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of small-step operational semantics as a practical and verifiable method for expressing cycle-aware
streaming behaviour.

Hardware interface and conformance formalisms Several alternative approaches target interface
compatibility and correctness. Tripakis et al. formalise a conformance relation between abstract dataflow
models and cycle-accurate FSM hardware to preserve performance properties such as throughput and
latency [52]. Interface automata and contract-based interface theories capture temporal assumptions
and guarantees, permitting compatibility and refinement checks independent of an operational model
[4, 7]. These provide the fundamental concepts required for my reasoning about interface compatibility
and implementation complexity. Aetherling represents a third, important approach: it encodes space-
and time-aware interface properties in a type system (the Lst space-time IR with SSeq and TSeq types)
and uses type directed scheduling to produce statically scheduled streaming circuits. This enables a
well-typed composition to corresponds to correct-by-construction, statically scheduled hardware imple-
mentations [18].

7.2.1. The Tydi Ecosystem
The Tydi framework provides a typed, data-centric approach to defining hardware stream interfaces.
Peltenburg et al. introduced the Tydi specification as an open standard for expressing complex and
variable-length data structures over hardware streams, enabling higher-level, software-like abstractions
for streaming dataflow interface designs [40]. Building upon this foundation, Reukers et al. developed
an intermediate representation (IR) for Tydi that codifies its type system and stream composition rules,
allowing structured interfaces to be instantiated, connected, and verified independently of computation
logic [44]. Tian et al. further extended this ecosystem with Tydi-lang, a domain-specific language that
integrates Tydi-spec into a hardware description workflow and compiles to the Tydi IR, demonstrating
efficient translation from high-level stream-oriented descriptions to synthesizable VHDL [51]. The IR
and language together provide a reusable foundation for design tools that reason about streamlet in-
terface contracts. Recent extensions of the Tydi ecosystem emphasize composability and integration
with hardware design languages. Cromjongh et al. integrate Tydi into Chisel, enabling the generation
of Tydi-compliant streaming accelerators with significantly reduced interface boilerplate and improved
component reuse [15]. Meloni et al. present Tywaves, a type-aware waveform viewer that preserves
Tydi’s hierarchical type information during simulation and debugging [32]. Additionally, the open-source
visualisation tool tydi-stream-vis provides interactive visualisations of Tydi data structures and stream
transfers, further aiding education and design exploration [14]. Tydi’s broader motivation aligns with
recent work on raising abstraction in FPGA-based dataflow design. Peltenburg and colleagues identify
the abstraction gap between high-level big data frameworks and hardware accelerators, arguing that
typed streaming specifications like Tydi can help bridge this divide [25]. Similarly, their JSON-to-Arrow
FPGA accelerator design using Tydi streams demonstrates the practical benefits of structured, variable-
length data handling for high-throughput streaming hardware [39]. Together, these works establish Tydi
as a unifying framework for typed hardware streams, bridging high-level data semantics with low-level
synthesis, verification, and debugging workflows.

7.3. Future Work
The formalism provides a strong motivation for Tydi, how it can be implemented on both the user facing
level, and the formal inner-workings. This success became apparent when the foundation started to
empower the addition of new concepts, for example enabling the union integration. Still, there remains
a lot of potential for adding parts of the specification that have yet to be incorporated. I will first address
the implications for the Tydi specification, illustrating the various paths forwards, subsequently outlining
the practical work that will support these efforts.

7.3.1. Implications for the Tydi Specification
Mapping the Tydi specification in its current form to the proposed formalism is an interesting challenge.
Arguably, the Logical Stream is the main point of interaction of Tydi, and connecting it to the formalism
is not trivial. The top level type is restricted to the Bits, Group, Union and Dim types, but in the Tydi
specification, the Dim type represents a Logical Stream shorthand. Therefore, to map these concepts,
the top level type should be normalised, subsequently wrapped in an additional logical stream, with its
parameters determined by the streamspace properties.



7.3. Future Work 43

For the complexity levels, the streamspace properties are its obvious parallel. Synchronicity, can be
implemented by treating the stream node like the union node; Since canonical form ensures exactly 1
stream node per physical stream, we can implement a rule that when a child stream is visited, it checks
the dimension of its parent stream, potentially applying back-pressure by unparsing like the Union node
would. This can be expressed by a streamspace property, even providing additional detail regarding
when to apply back-pressure, for which dimensionality of the parent and child stream. The throughput
parameter in the logical stream is replaced with an explicit lane definition, provided to the user after
normalisation has been applied, and the physical streams are concrete.

A fundamental difference is the freedom to express different stream properties per physical stream. In
the formalism, the interface properties are determined for the entire stream, each physical stream in the
structure reflecting the same decisions regarding complexity and synchronicity, whereas in the original
specification, the user is free to express a nested stream that does not adhere to synchronicity, while its
parent stream encapsulating stream does. The decision to apply the interface properties globally has
beenmade to ease the formalisation, while retaining the ability to expand the formalism tomore complex
type constructions. For example, extending the type system by differentiating between synchronised
and asynchronous streams, can implement the same behaviour as the group synchronisation described
above. This would mean that the inclusion of certain types could be incompatible with certain interface
properties, creating a dependency between the static, user-facing domain T , and the dynamic user-
facing domain P. Therefore, in order to maintain compatibility with the formalism, if the user wants
to violate the synchronisation properties for certain nested streams, these are violated for all streams.
This may seem like a big constraint on the Tydi specification, but it is important to note that this only
applies to alleviating constraints on the streamspace mapping. For example, if a classic Tydi interface
adheres to complexity level 7, it can still create streamspace mappings that would adhere to complexity
level 2, it just isn’t guaranteed. Similarly, in the formalism, if the user wants to remove synchronicity
constraints for some nested stream, these are also removed for the parent stream, but the interface
can still produce this streamspace mapping if the user supplies the parent stream elements in a “low-
complexity“ fashion on the internal streams.

As it stands, this will need a more thorough investigation, determining how much freedom we want to
give regarding changing complexities halfway through the type structure. In this effort we should also
include the shorthand types that have been excluded from the formalism thus far such as the reverse
stream.

The signal layout can be specified for each named property-set, similar to the way that the current
definition exists for the complexity levels. This means that by creating the named property-sets and
the corresponding semantics for each complexity level, the existing signal layout can be mapped to the
formalism as is. The container types are defined using the existing Tydi types, and can therefore be
mapped naturally mapped to the formalism, since the original Tydi types have a 1 to 1 correspondence
with the top level type definition.

Overall, the formalism proves to be a flexible foundation that, though motivating which portions of the
original specification to incorporate and which to exclude, will further refine the underlying Tydi speci-
fication, removing ambiguities or ill-defined concepts from the original. Since the interface properties
are more flexible than the original complexity levels, expanding the formalism can eventually make a
formal Tydi specification more expressive than its current form, while also providing provably correct
interface implementations and quantifiable logic requirements through the implementation complexity
metric.

7.3.2. Practical considerations
Regarding the formalism, various additions can be made. Most of these revolve around expanding
the named property-sets, providing each with the correct semantics and an implementation complexity
metric. For each property-set, a sufficiently accurate ICM algorithm needs to be defined, such that an
interface designer can easily compare the implications of choosing certain properties. In its current
state, the ICM is an interesting proposal, but leaves room for improvement since it is not as intuitive as
the complexity levels. It can be argued that the complexity levels did not substantiate how they actually
represented the implementation complexity, but this does not take away from the fact that the ICM in its
current state is not an easy metric to use for balancing sending and receiving interface logic. Ideally, the
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formalism would provide an algorithmic way for determining the ICM, for each interface specification.
Since the interface specification consists of both the type, and interface properties, the a user could
also consider different ways to type their data to potentially lower the required logic complexity.

Besides this, I note that it would be a great step forward to update the simulator to use the most recent
semantics, integrating the union. This will allow for an empirical verification of the union together with
various property-sets. Additionally, I have started on a mechanisation of the formalism in Lean4. Fully
implementing this would be a significant selling point for critical engineering applications.

Lastly, to better reflect the hardware realities, the simulator can be adapted to an FPGA implementa-
tion. Here we could define arbitrary JSON interfaces, synthesising randomized top level types and data
instances and parsing them by the generated interfaces, providing empirical evidence for the effective-
ness of the formalism. Similar work has already started for the chisel integration of Tydi, providing an
illustrative verification of Tydi’s use case.

7.4. Discussion
A fundamental consideration has to be made regarding how Tydi presents itself. If the formal rigour
provided in this work is incorporated into the specification, it would be very prescriptive regarding imple-
mentation. This is necessary to formally verify that no illegal interleavings will exist in the streamspace
mapping of compatible Tydi interfaces, but is it not too restrictive for a specification? Potentially, the
dynamic formalism can just be used for the generator and compositor tooling that implement Tydi, leav-
ing the static specification as a separate entity, giving engineers the freedom to implement their own
hardware that adheres to the specification. It remains to be seen how results of this work should be
reflected in an update to Tydi. Needless to say, being able to generate compatible component inter-
faces, by only supplying the type of the stream and the desired interface properties, is a very attractive
proposition.

Regarding the implementation complexity metric, it does not account for distinct streaming context
states w.r.t. the buffers, only distinguishing states by the tree termination. If we implemented the ICM
to also incorporate resource elements required for implementing an interface it would better reflect
hardware cost. When considering the “who’s responsible for the buffer“ example, the ICM would better
reflect making design trade-offs. Since currently certain interface properties will not impact the ICM,
while in practice there will be a concrete difference in logic required.
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Figure A.1: Three consecutive steps of the simulator, showing the parse tree and the transfer on stream 0

--- Simulation Step 101 ---
STREAM���
NGroup <-----���

NBits(0)���
Stream����

NBits(1)���
Stream���

NBits(2)

--- Global Transfer History
---

Stream 0:
28 46 (t) 69
55 * 18
93 * 25
87 * 73
80 (t) * 69

Stream 1:
13 7
23 61
27 97
14 (t) 6
* 80 (t)
* *
* *
* *
* *

Stream 2:
49 1
100 10
61 (t) 33
* 38
* 89
* 40
* 31 (t)
* *
* *

--- Simulation Step 102 ---
STREAM���
NGroup���

NBits(0) <-----���
Stream����

NBits(1)���
Stream���

NBits(2)

--- Global Transfer History
---

Stream 0:
28 46 (t) 69
55 * 18
93 * 25
87 * 73
80 (t) * 69

Stream 1:
13 7
23 61
27 97
14 (t) 6
* 80 (t)
* *
* *
* *
* *

Stream 2:
49 1
100 10
61 (t) 33
* 38
* 89
* 40
* 31 (t)
* *
* *

Output Transfers from apply_
semantics (step 102):

Transfer(stream_idx=0,
payloads=[

Element(stream_idx=0,
payload=13, is_terminal=
False),

Element(stream_idx=0,
payload=50, is_terminal=
False),

Element(stream_idx=0,
payload=7, is_terminal=
False),

Element(stream_idx=0,
payload=25, is_terminal=
True),

None
])

--- Simulation Step 103 ---
STREAM���
NGroup���

*NBits(0)���
Stream <-----����

NBits(1)���
Stream���

NBits(2)

--- Global Transfer History
---

Stream 0:
13 28 46 (t) 69
50 55 * 18
7 93 * 25
25 (t) 87 * 73
* 80 (t) * 69

Stream 1:
13 7
23 61
27 97
14 (t) 6
* 80 (t)
* *
* *
* *
* *

Stream 2:
49 1
100 10
61 (t) 33
* 38
* 89
* 40
* 31 (t)
* *
* *s
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