
A Preliminary Formal Specification of Virtual Organization Creation with
RAISE Specification Language

Mohammad Reza Nami

Faculty of Mathematics and
Computer Science

Delft University of Technology,
Netherlands,

nami@ce.et.tudelft.nl

Mohsen Sharifi
Faculty of Computer Engineering,

Iran University of Science and
Technology,

 Iran
msharifi@iust.ac.ir

Abbas Malekpour
Faculty of Computer Science,

University of Rostock,
Germany

abbas.malekpour@uni-rostock.de

Abstract

Recently, several flavors of Formal Methods (FMs)
have been gaining industrial acceptance and
production quality software tools have begun
emerging. Domain Engineering (DE) has been
introduced as one of outstanding ideas in software
development. It serves form al methods that provide a
rigorous, mathematical based framework (domain
model) for specifying, defining, and verifying systems
in the software development. The increasing demands
for extended products and services along with
advances in IT industry have motivated researchers to
create Virtual Organizations (VOs) in order to better
respond to business opportunities and produce
qualitative services and products. The purpose of this
paper is to describe Virtual Organization and Domain
engineering with introducing formal methods
especially RAISE as a formal method that has been
used successfully on diverse applications. Then, a
primary formal model is presented using RAISE
method and its language (RSL) formula for the
improvement of VO creation process. Formal model
presented in this paper is provable to implement. It
improves reusability and reliability in such
environments.

 Keywords: Software Engineering, Formal Methods,
RAISE Method, Collaborative Networks, Virtual
Organization.

1. Introduction

Formal methods [11] provide a rigorous,
mathematical based framework for specifying,
defining, and verifying systems. These methods

provide the basis for the precise definition of
consistency, completeness, specification,
implementation, and correctness. Formal method is the
applied mathematics of computer systems engineering.
The mathematics of formal methods includes predicate
calculus (first order logic), recursive function theory,
lambda calculus, programming language semantics,
and discrete mathematics (e.g., number theory, abstract
algebra). To these mathematical base, formal methods
adds notions from programming languages such as
data types, module structure, and generics [20]. On the
other hand, a formal method in software development
is a method that provides a formal language for
describing a software artifact such as specifications,
designs, source code, such that formal proofs are
possible, in principle, about properties of the artifact so
expressed. Domain engineering [7] [3] uses this
method for developing reliable software for critical
systems such as Air Traffic Control (ATC). New
software engineering [7] for the development of safety
critical systems includes three phases consisting of
domain engineering, requirement engineering, and
design and implementation. Due to the importance of
efficient creation of dynamic VOs and lack of method,
we present a formal model for developing provable,
reliable, and reusable software. Rigorous Approach to
Industrial Software Engineering (RAISE) [16] has
been used in this paper as a strong FM that emphasizes
the use of formal (mathematical) techniques in the
development of software including requirements
analysis and formulation, specification, design and
development. RAISE offers the RAISE Specification
Language (RSL) and the RAISE method. The lack of
reliable software development approach for safety
critical systems encouraged to serve FMs in software
development. New software engineering idea was

Fifth International Conference on Software Engineering Research, Management and Applications

0-7695-2867-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SERA.2007.65

227

introduced. FMs and DEs have been used successfully
in financial domain, railway domain, and ATC [4],
[23], [17]. See also Craigen et al [15] and [11] for a
description of 12 case studies in FMs. No one has
presented domain formal model or formula in VOs.
Therefore, this research can be novel. Today, many
large scale software developments based on the
domain/requirements/software design paradigm
outlined has been systematically applied to the
experimental development of software designs for the
computing support of a number of diverse
infrastructure components.

Beside, evolution of the Internet and rapid changes
in customer demands for extended services and
products have motivated organizations toward a new
cooperation schema including geographically and
legally organizations that collaborate to achieve the
goal. This cooperation is supported by computer
networks. Researchers have introduced concepts such
as virtual company, virtual corporation, and Virtual
Enterprise (VE) in the early 1990s, but definitions and
concepts of VO/VE are still completed and grown [8].
Advances in computer networks also affected
marketing and business systems so that traditional
business systems have been metamorphosed. Virtual
Organizations have been introduced as a new
organizational schema including a temporary set of
geographically organizations collaborating, sharing
skills and resources to fulfill customer requests in a
networked environment. Efficient creation of dynamic
VOs requires a proper environment that the members
of new VOs are selected in it according to their
capabilities and trust [13] among them. For this,
Virtual organization Breeding Environment (VBE)
was introduced in [9]. The main goal of VBE is to
improve the preparedness of its member organizations
for efficiently creating VOs. To achieve this goal, VBE
can even find some external organizations to join the
VBE and select them as partners to establish a new VO
[1].

This paper is organized as follows. In section 2, an
overview of the RAISE formal method and the RSL
including their capabilities and their advantages are
discussed. Section 3 presents VOs and some issues
concerning on VOs. In section 4, domain engineering
of our domain including an abstract formal model of
VO creation (formula) is presented. Finally,
conclusions and further researches are presented.

2. An Overview of Formal Methods

This section presents an overview of formal
methods with focusing on the RAISE formal method
and the RSL.

2.1 Definitions

A formal method in software development is a
method that provides a formal model to specify and
model a system. From the formal methods point of
view, DE describes and develops formal specifications
at the beginning of the lifecycle and then automatically
derives the source code for the system. Thereby, a
formal domain model is developed. This model
includes domain abstracts that describe specifications
in formal form by formal specification languages such
as Z, VDM, and RSL and informal form. The aim is to
develop domain theorem by domain specification
language [6]. Domain engineering covers all the
activities for building software core assets [2]. These
activities include identifying one or more domains,
capturing the variation within a domain (domain
analysis), constructing an adaptable design (domain
design), and defining the mechanisms for translating
requirements into systems created from reusable
components (domain implementation). The products
(or software assets) of these activities are domain
model(s), design model(s), domain-specific languages,
code generators, and code components. In new
software engineering definition [7], DE is performed
before requirement engineering and is based on FMs
for enhancing software reliability [5].

2.2 RAISE Method

RAISE is a formal method that provides facilities
for the industrial use of Formal Methods in the
development of software systems. The aim of RAISE
is to enable the construction of more reliable software
with fewer errors, more easily maintainable software,
and better documented software. In particular, RAISE
supports development all the way to final compilable
code. The entire development from specification
through to implementation will be formally recorded
when using RAISE, and this is the first prerequisite for
optimal maintenance activities. Main properties of
RAISE include abstraction, verification, stepwise
refinement paradigm for software construction through
a series of steps, where each step represents a
refinement of the previous one. Editing, performing
justifications (proof rules), translating into imperative
languages, and document support are the RAISE tools
for editing and manipulating a variety of entities that
are relevant during a development process: modules,

228

relations between modules, theories, justifications and
hints. In comparison with other FMs, RAISE has a
distinguished property. The RAISE handles
concurrency.

2.3 RSL Language

RSL is a wide-spectrum specification language. It is
inspired by and unifies features of VDM [24], CSP
[19], and ACT-ONE [10] specification languages. It is
case sensitive. Some of advantages of RSL include
carrying through the whole development in RSL,
supporting decomposition and reuse, and integrating
concurrency and serializability.RSL supports
modularization with parameterization at the structuring
level. The basic building block in RSL is the class
expression and is often referred to as an RSL module .
All declarations are made within a class expression.
RSL specifications can be constructed in a hierarchical
manner since modules can refer to the entities of other
modules in defining their own entities. The modules
can be parameterized thus supporting generalized
specification. This is an important mechanism in
creating reusable modules [22]. RSL also supports the
following styles [22]:

 Model-oriented specifications as used in Z and

VDM.
 Algebraic specifications as used in Larch and

OBJ.
 Imperative specifications similar to the style

used in imperative programming languages
such as C and Pascal.

 Implicit definitions using pre- and post-
conditions

 Applicative specifications similar to the style
used in applicative programming languages
such as Lisp and Miranda

 Concurrent specifications as used in CSP
 Explicit definitions

Unlike Z language [12] that is basically a specification
language and is good for producing specifications,
RSL can be used for both specification and
development. RSL is more expressive than Z by virtue
of its facilities for under specification and concurrency.
Therefore, it is easier to translate a Z specification into
an RSL specification than vice versa. RSL has been
derived from VDM with added facilities such as
concurrency, axiomatic and imperative styles.
Modularity is also an integrated feature of the RSL
language and RAISE method whereas it is not
supported as part of standard VDM.

3. Virtual Organisation: An Introduction

There are three concepts used in this context:
Virtual Organization (VO), Virtual Enterprise (VE),
and Virtual organization Breeding Environment
(VBE). In this section, a brief introduction of VO is
presented.

3.1 Virtual Organization Definition

A VO is defined as a temporary coalition of
reconfigurable, independent, networked, which
geographically dispersed organizations including high
level trust and competencies that collaborate and share
their resources and competencies in order to fulfill the
customer request. A VE is a subset of VO. R.
Camacho and et al [8] define VO as a”new
organizational scheme that requires high level agility
in order to achieve a competitive advantage when a
business opportunity is identified”. L. M. Camarinha-
Matos, H. Afsarmanesh and M. Ollus [9] explain the
co-operation of independent organizations is supported
by computer networks. Partners in a VO should
collaborate in order to achieve business opportunities.
Trust among them and operation according to a
common agreement are essential things for
collaborating. Networks or breeding environments are
an appropriate context for effective creation of
dynamic VOs. [1] has called this context as VBE and
defined it as ”an association of organizations and their
related supporting institutes, adhering to a base long
term cooperation agreement, and adoption of common
operating principles and infrastructures, with the main
goal of increasing both their chances and their
preparedness towards collaboration in potential VOs”.
VBE can be local and global. Local VBE initiates
dynamic VOs from organizations located in one
geographical region while global VBE incorporates
involved organizations from geographically distributed
regions to effectively create VOs. A VBE should
identify and obtain new business opportunities, know
the competencies and capabilities of its members, then
select an appropriate set of partners for creation of new
VO. Of course, it is possible to VBE administrator
searches and recruits new organizations as member for
new VO. VBE also evaluates and coordinates created
VO during its life cycle. Each VBE has also a life
cycle. VOs are initiated within the VBEs. On the other
hand, the aim of a VBE is to improve preparedness of
the partners.

3.2 Virtual Organization Issues

229

Since VO is fixing as a master component of
dynamic collaborative networks, there are different
issues and challenges in VO creation, management,
design, and implementation. We discuss some of them
as follows.

3.2.1 VO Life cycle
As mentioned, a VO framework is created for
responding to a business opportunity and terminated
after completion. VO life cycle is formed from three
stages. These stages include VO creation, VO
operation, and VO dissolution. VO Creation identifies
business opportunities, examines the partner
competencies, selects partners from within or outside
the VBE (network), forms the best partnership in terms
of the competencies, creates the necessary databases,
and registers new members. In VO operation, activities
of the partners are integrated, competencies and
common knowledge are managed, cooperation’s are
organized, and collaboration is improved. In VO
dissolution, each VO has a limited lifetime. When a
VO fulfills the business opportunity, it is dissolved. Of
course, the partner competencies and relationships
between the partners are kept in the network (VBE)
knowledge.

3.2.2 VO Planning and Launching
VO planning activities include receiving and analyzing
business opportunities, selecting proper partners,
determining high level Work Breakdown Structure
(WBS), and setting up VO. R. Camacho and et al [8]
present a reference model for VO planning and
launching. This model integrates the elements involved
in VO creation in VO creation, modeling, and
knowledge management dimensions. VO modeling is
also created in four views: Resource, organization,
functional, and Knowledge.

3.2.3 VO Management
As a VO is composed of different members located at
dispersed sites, different issues can affect the VO.
Therefore, the VO management must be examined in
different aspects. We can categorize them in human
issues and technical issues. For example, different
experiences and cultures play the key role in
collaboration. Beside, communication between the
partners, trust among them, VO planning, and security
are important challenges from technical point of view.
Trust management [18], competency management
[14], and security management [21] are main issues in
VO management.

3.3 VBE Functionality

Efficient creation of dynamic VOs requires a proper
environment that the members of new VOs are
selected in it according to their capabilities and trust
among them. The main goal of VBE is to improve the
preparedness of its member organizations for
efficiently creating VOs. To achieve this goal, VBE
can even find some external organizations to join the
VBE and select them as partners to establish a new
VO. Each VBE serves a specific domain and attempts
to select the best members to achieve its specific aims
in the domain. Meanwhile, VBE Members can be
different organizations such as business entities,
ministries, legal service providers, and environmental
organizations. These organizations should be
registered at the VBE, accept the general VBE rules
and policies, and have access to common information
and tools for operation in a VO. A VBE member can
have different roles in different VOs established that
has been discussed in [1].

4. Presenting a New Formal Formula VO

Creation
This section presents a primary abstract formal

model for VO creation domain, representing formula
with the RAISE method and its language. This formula
is innovation for the implementation of a provable
process and improving VO creation. As mentioned
before, the aim of DE is to develop an abstract formal
model of domain with domain axioms that are
represented in specification languages such as RSL.

In general, a VO creation (VOc) can be defined
with use of mapping organizations (Org) into their
information (VOInfo) including the VO member
selection (Sel), VO member registration (Reg),
forming partnership (Par), and creating database (DB).
Meanwhile, the VO member selection (Sel) is
concluded from the VO member competency (Cmp)
and the VO member trust (Tru) according to the past
performance measurements of members saved in the
database (DBInfo) for selecting in new VOs. This
definition has been written in RSL language in the
following (Bold words are reserved words in RSL).

VOc = Org ⎯→⎯m VOInfo

VOc = Org ⎯→⎯m (Sel × Reg × Par × DBInfo

⎯→⎯m Performance Measurement)

DB: Cmp × Tru ⎯→⎯m DBInfo

An axiom of this domain is as”The member selected
for a new VO must has eligible capabilities and if the
eligible member cannot be found within the VBE, it
must be selected from outside”. Is-Sel defines this

230

axiom. Output of this function shows that member has
been selected or has not been selected.

Is-Sel: Org ⎯→⎯ bool.
o,o1: Org, t: Tru, c:Cmp
Is-Sel (o)≡
∀ o: Org, ∃ t,c ∈ dom DB(m(DBInfo))
if ∃ db: DB then Findoutside(o).

Findoutside: Org ⎯→⎯ DB
Findoutside(o1)≡ if ∃ t1,c1∈ dom
DB(m(DBInfo1)) wr

am: c1 × t1 ⎯→⎯m DBInfo ∧ o1 ⎯→⎯m VOInfo
post o1∉dom VOc* ∧ am= am* U t1,c1

⎯→⎯ partnership() end

In above function, it is specified that if there is not
eligible organization (with respect to competency and
trust) within the database, a new eligible organization
must be selected from outside. New organization as
new VO member also joins other the VO members.
Post means post condition after joining.

Hence, new VO member should not already be
within the VBE. am* means old”am”. After adding
new member, the set of new am-set includes this
member. Partnership function forms the best
partnership in terms of the competency (c1) and the
trust (t1), creates the necessary databases, and registers
new member.

To describe this formal model, work flow is needed.
Abstract state of VO creation domain includes
identifying business opportunities, evaluating the
partner competencies, selecting partners from within or
outside the VBE (network), forming the best
partnership in terms of the competencies, creating the
necessary databases, and registering new members. In
next paper, we will present formal specifications to
define above work flow and formal verification of
axioms defined for this domain with RSL and its proof
rules.

5. Conclusion and Further Work

The aim of Domain Engineering is to specify and
develop an abstract domain model and domain analysis
using formal specification languages. It is performed
before requirement engineering and software design in
the development of safety critical systems. Formal
methods are the basis of domain engineering to
develop reliably software for such systems because
they are based on mathematics and logic. Therefore,
they are provable. RAISE is a comprehensive
development formal method which we used in this

paper to develop domain model with presenting
formula. In this paper, we presented a primary formal
model (formula) of VO creation using RAISE method
and its language (RSL). This formal model can be a
provable fundamental process for the design and the
implementation of reusable and reliable members for
VO creation. Nowadays, research on serving formal
methods in distributed systems is growing. Formal
Methods for Open Object-based Distributed Systems
(FMOODS) is one of good ideas that serves
advantages of formal methods to develop provable and
reliable software and distributed processing such as
selecting eligible new member in distributed
environments. Future researches include expanding
these formulas and proceeding formal verification of
axioms defined for this domain with RSL and its proof
rules.

6. References

[1] H. Afsarmanesh and L. M. Camarinha-Matos. A
framework for management of virtual organization breeding
environment. In PRO-VE’05 , page September, 2005.
[2] D. Bjorner. Where do Software Architectures come from
? Systematic Development from Domains and Requirements.
A Re-assessment of Software Engineering? In South African
Journal of Computer Science , volume 22, pages 3–13, 1999.
[3] D. Bjorner. Domain Engineering: A Software
Engineering Discipline in Need of Research. In Lecture
Notes in Computer Science, Springer- Verlag , volume 1963,
pages 1–17, November 2000.
[4] D. Bjorner. Formal Software Techniques in Railway
Systems. In In Eckehard Schnieder, editor, 9th IFAC
Symposium on Control in Trans portation Systems, Technical
University, Braunschweig, Ge rmany. VDI/VDEGesellschaft
Mess- und Automatisieringstec hnik, VDI-Gesellschaft fr
Fahrzeug- und Verkehrstechnik. Invited plenum lecture. ,
pages 1–12, June 2000.
[5] D. Bjorner. A Cloverleaf of Software Engineering. In
Third IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2005), Koblenz,
Germany, pages 75–85, September 2005.
[6] D. Bjorner. Software Engineering 2: Specification of
Systems and Languages. In Springer, October 2006.
[7] D. Bjorner. Software Engineering 3: Domains,
Requirements, and Software Design. In Springer, October
2006.
[8] R. Camacho and et al. An integrative approach for VO
planning and launching. In PRO-VE’05 , page September,
2005.
[9] L. M. Camarinha-Matos, H. Afsarmanesh, and M. Ollus.
Virtual Organizations: systems and practices. In Springer
Science, 2005.
[10] I. Classen. Revised ACT ONE: categorical constructions
for an algebraic specification language. In Springer-Verlag
New York, Inc. , pages 124– 141, 1989.

231

[11] D. Craigen, S., Gerhart, and T.J. Ralston. An
International Survey of Industrial Applications of Formal
Methods: Volume 1 Purpose, Approach, Analysis, and
Conclusions. In National Technical Information Service,
5285 Port Royal Road, Springfield, VA 22161, USA , volume
1 and 2, March 1993.
[12] J. Davies and J. Woodcock. Using Z: SPecification,
Refinement, and Proof. In Prentice Hall , 1996.
[13] T. Dimitrakos and et al. Towards a Trust and
Contract Management Framework for Dynamic Virtual
Organisations. In Proceeding of the
eChallenges 2004, Vienna, Austria , October 2004.
[14] F. Graser et al. Towards performance
measurement in virtual organizations.
In PRO-VE’05 , September 2005.
[15] S. Gerhart, D. Craigen, and T. Ralston.
Observations on industrial practice using formal
methods. In Proceedings of the 15th international
conference on Software Engineering, Baltimore,
Maryland, United States , volume 36, pages 24–33,
May 1993.
[16] The RAISE Method Group. The RAISE
Development Method. In Prentice Hall , 1995.
[17] A. Hall. Using Formal Methods to Develop an
ATC Information System. In IEEE Software , volume
13, pages 66–76, March 1996.
[18] J. Haller. A stochastic approach for trust
management. In 22nd International Conference on
Data Engineering Workshops (ICDEW’06), Atlanta,
GA, USA , April 2006.
[19] T. Hoare. Communicating Sequential Processes.
In 1st edition, Prentice Hall , June 1985.
[20] C. Michael Holloway. Epistemology, Software
Engineering, and Formal Methods. In Presented at The
Role of Computers in LaRC , June 1994.
[21] Jaroslaw Magiera and Adam Pawlak. Security
frameworks for Virtual Organizations. In Virtual
Organizations, Springer , pages 133–148, 2005.
[22] J. Storbank Pedersen. RAISE Frequently Asked
Questions.In
 http://spdweb.terma.com/Projects/RAISE/faq.html,
June 2004.
[23] M. Penicka and D. Bjorner. From railway
resource planning to train operation.
In Building the Information Society, IFIP 18th World
Computer Congress, Topical Sessions, Toulouse,
France, volume August, pages 629–636, July 2004.
[24] W. J. Toetenel S. Prehn. VDM ’91 - Formal
Software Development. In 4th International
Symposium of VDM Europe, Noordwijkerhout, The
Netherlands, Proceedings, Volume 1: Conference
Contributions. Lecture Notes in Computer Science 551
Springer, pages 15–22, October 1991.

232

