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The Adaptive Robust Design Approach
Improving Analytical Support under Deep Uncertainty

Policymaking often involves different parties such as policymakers, stakeholders, and analysts 
each with distinct roles in the process. To assist policymakers, policy analysts help in structuring the 
problem, designing, and evaluating policy alternatives. Analysts face many challenges, like complexity 
and uncertainty in a system of interest, while supporting the policymaking process. Frequently, analysts 
rely on mathematical models that represent the key features of the system. Assumptions made during 
modelling introduce a significant level of uncertainty in the models, and forecasting based on models 
is therefore always bound by this uncertainty. Instead of focusing on limited best-estimate predictions 
under uncertainty, exploring a plethora of plausible futures by using mathematical models can help 
supporting decision-making.

In current practice, uncertainty analysis for decision-making is mostly limited to technical and shallow 
uncertainties but not focused on deep uncertainty. This thesis contributes to a solution for enhanced 
handling of deep uncertainty to support policymaking. We have developed a new methodological 
approach for improving analytical support for policymaking under deep uncertainty, and demonstrated 
each analytical advancement stage with case studies. 

This thesis proposes to improve analytical support for policymaking to better handle deep uncertainty. 
Building upon the existing pragmatic practice, a systematic approach for designing adaptive policies 
under uncertainty is developed. The Adaptive Robust Design (ARD) approach in combination with 
multi-objective robust optimization will improve the support for policymaking under deep uncertainty. 
The effectiveness of ARD for developing adaptive robust policies under deep uncertainty is shown by 
illustrative case studies. 

The Next Generation Infrastructures Foundation
represents an international consortium of knowledge institutions, market players  

and governmental bodies, which joined forces to cope with the challenges faced  

by today’s and tomorrow’s infrastructure systems. The consortium cuts across  

infrastructure sectors, across discplinary borders and across national borders,  

as infrastructure systems themselves do. With the strong participation of  

practitioners in a concerted knowledge effort with social and engineering scientists, 

the Foundation seeks to ensure the conditions for utilization of the research results  

by infrastructure policy makers, regulators and the infrastructure industries.
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PREFACE 

This thesis has been the final product of the research was primarily conducted between 

2010 and 2014, during which the articles that constructs the body chapters of this 

thesis were published. The chapters of this thesis, which address the methodological 

questions (Chapter 2, 3 and 4), have been published as research articles between 

2010 and 2014 in different journals. We have deliberately chosen to publish distinct 

chapters of this methodological thesis as timely articles, and made them quickly 

accessible to the research community. There has been an unanticipated delay that 

resulted in the thesis-writing period that took longer than expected, which was mainly 

due to the interruption by starting a new job before finishing the thesis writing. As 

widely cited journal articles and many conference proceedings independently published 

from this research raised wide interest, it has been worthwhile to put the final effort to 

bring them together and complete the writing process. I am glad that this thesis has 

finally come to an end. 

The thesis aims to improve analytical support for policymaking in the presence of deep 

uncertainty. This thesis provides a comprehensive overview of the articles published 

during the research period, and makes the developed methodologies more accessible for 

policy researchers by presenting the complete research as a single thesis. 

During the period in which the research was conducted, this study field has been 

booming and what has been done in the course of this study has contributed to this 

development. The researchers who work on policymaking under uncertainty have built 

further research upon these already published articles. Thanks to the researchers in 

this field, further advancements have been made during the last years that made this 

line of research more visible and more established. 
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Chapter 1 -  INTRODUCTION 

1.1. Policymaking under uncertainty 

Policymaking is a process that often involves different parties such as policymakers, stakeholders 

and analysts. Policy analysts assist policymakers by defining the problem content and by designing 

and evaluating policy alternatives (Hermans & Thissen, 2009). It is up to the policymakers whether 

to make use of the guidance provided by the analysts or to design policies by themselves. The 

policymaking process can be challenging as there are aspects to be considered for any policymaking 

problem. One is the time horizon, as the nature of policymaking differs for short and long-term 

issues. Complexity is another important aspect and it is present in almost any decision-making 

issue. According to Senge (Senge, 1990), there are two types of complexity: detail complexity and 

dynamic complexity. Detail complexity refers to the sort of complexity where there are many 

elements in a system, whereas dynamic complexity can be defined as “situations where cause and 

effect are subtle, and where the effects over time of interventions are not obvious” (Senge, 1990). 

Most conventional methods are equipped to handle detail complexity but not dynamic complexity. 

Long-term policymaking is particularly difficult because as the time horizon expands, uncertainty 

increases. Uncertainty can be defined as “any departure from the unachievable ideal of complete 

determinism” (Walker, et al., 2003). Uncertainty is not only due to a lack of knowledge, but 

additional knowledge about unknown aspects can contribute to uncertainty. Shallow uncertainty, 

where the possibilities and their probabilities are known, is relatively easier to tackle than deep 

uncertainty, where “analysts do not know, or the parties to a decision cannot agree on, (1) the 

appropriate conceptual models that describe the relationships among the key driving forces that 

will shape the long-term future, (2) the probability distributions used to represent uncertainty about 

key variables and parameters in the mathematical representations of these conceptual models, 

and/or (3) how to value the desirability of alternative outcomes” (Lempert, Popper, & Bankes, 

2003). There can be different strategies for policymaking that policymakers can follow under 

uncertainty. Thissen & Agusdinata (2008) categorize four different strategies to deal with 

uncertainty: (1) ignore uncertainty, (2) delay the decision and wait for uncertainty to be reduced by 

time, (3) reduce uncertainty, and (4) accept uncertainty and act consciously. These strategies can be 

used separately or in combination with each other. Ignoring uncertainty can lead to undesirable 

outcomes, delaying the decision can cause to miss opportunities and reducing uncertainty can be 

costly due to the actions required for uncertainty reduction such as doing research, buying 

information, insurance or negotiation with stakeholders. When acting by accepting uncertainty, 

possible strategies can be to design static decisions that do well in most future conditions or to 

design adaptive policies that can adapt in time as the future unfolds.  

Policymaking under deep uncertainty has emerged as a topic that gets increasing attention in the 

planning literature. Under deep uncertainty, predictive planning approaches that, in essence, ignore 
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uncertainties, are likely to result in plans that perform poorly. In response, an alternative planning 

paradigm has emerged. This paradigm suggests that, in the light of deep uncertainty, one needs to 

plan dynamically and build in flexibility (Albrechts, 2004; Eriksson & Weber, 2008; Lempert, 

Popper, & Bankes, 2003; Neufville & Odoni, 2003; Schwartz & Trigeorgis, 2004; Swanson et al., 

2010; Walker, Rahman, & Cave, 2001). This paradigm can be regarded as an elaboration of the 

fourth strategy proposed by Thissen & Agusdinata (2008) to deal with uncertainty, which is to 

accept uncertainty and act consciously.  

Two main streams can be distinguished in the literature, we will label them ‘adaptive management’ 

and ‘planned adaptation’. The core idea of adaptive management is one of trial and error, or, 

formulated more positively, learning and adaptation. The initial ideas for adaptive management 

were proposed by Dewey (1927): policies should be treated as experiments, with the aim of 

promoting continual learning and adaptation in response to experience over time (Busenberg, 

2001). Similar ideas can be found in the field of environmental management (Holling, 1978; McLain 

& Lee, 1996), where policies may be designed from the outset to test clearly formulated hypotheses 

about the behaviour of an ecosystem being changed by human use (Lee, 1993). A similar attitude 

is also advocated by Collingridge (1980) with respect to the development of new technologies. 

Given ignorance about the possible side effects of technologies under development, he argues that 

one should strive for correctability of decisions, extensive monitoring of effects, and flexibility. 

There have been attempts to develop structured and stepwise approaches for adaptive 

management, for example, Brans et al. (1998) proposed an iterative approach that combines System 

Dynamics, adaptive control theory and multi-criteria decision aid to design and to implement long-

term policies for socio-economic systems. All of these approaches have in common that policies 

or plans are not designed in advance to be adaptive but adaptations are developed as the future 

unfolds. 

Alternatively, in ‘planned adaptation’ plans are designed where the plan itself already includes 

specified adaptation actions at certain moments and under certain pre-specified conditions. 

Scenario Planning (Schoemaker & van der Heijden, 1992) provides a generally well-known example 

of this approach. Planned adaptation requires thinking ahead to pre-define adaptations at 

predetermined conditions in time (Kwakkel & Haasnoot, 2019). A further elaboration of this 

approach proposed by Walker et al. (2001) is called Adaptive Policymaking. This approach 

advocates that plans should be adaptive: one should preferably take only those actions that are 

non-regret and time-urgent, and postpone other actions to a later stage so that one can take 

advantage of information that becomes available in the future. In order to realize this, it is suggested 

that a monitoring system and a pre-specification of responses when specific trigger values are 

reached should complement the basic plan (Kwakkel, Walker, & Marchau, 2010). 

1.2. Use of mathematical models in policymaking  

Using mathematical models as representation of a real world system is a method for analysts to 

support policymakers with information to develop policies. A mathematical model can be defined 
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as an abstract description of relevant features of a system using mathematical language, where 

modellers aim to represent these features of real world system in the form of mathematical 

equations/relations. Such models can be used for studying and understanding the behaviour of a 

system of interest. Models can have different types of characteristics such as linear, nonlinear, static, 

dynamic, discrete or continuous. Various tools and techniques are available for building different 

types of mathematical models. For instance, using spreadsheets (e.g. Microsoft Excel) for building 

models has been very popular in business. Mathematical models are extensively used in natural 

sciences and engineering, as well as in the social sciences.  

Model(s) can be used for studying a system of interest with different purposes. A common 

approach is to use models for forecasting the future state of a system. Modellers make assumptions 

about the real-world system of interest. These assumptions about parameter values, relationships 

between variables, worldview about the system of interest constitute the model. Since the 

assumptions used in models incorporate various uncertainties, it is preposterous to conclude that 

assumptions about the future can be taken as the “truth”. For this reason, the use of models with 

(many) fixed assumptions for predictive purposes should be questioned. Bankes (1993) therefore 

proposed to use models for decision-making in an explorative manner- exploration of an ensemble 

of plausible futures. Instead of focusing on best-estimate predictions under uncertainty, the models 

are used to explore as many plausible futures as possible.  This proposal by Bankes (1993) has been 

picked up many others (Haasnoot et al., 2013; Hamarat et al., 2013; Kwakkel et al., 2010; Lempert 

et al., 2003; Walker et al., 2001; Walker et al., 2013). Similarly, this thesis adopts Bankes’ proposal 

to use exploratory modeling and builds the methodological developments proposed in this thesis 

on this explorative approach.  

1.3. Recent developments of analytical support in model-based 

policymaking under deep uncertainty 

In recent years, several model-based approaches and methods have emerged to answer the problem 

of dealing with deep uncertainty in decision-making. At this point, a historical perspective on this 

thesis and the literature needs to be clarified for the readers. As the research reported on in this 

thesis has been conducted between 2010 and 2014, the developments in this period occurred in 

parallel to this thesis. Although the developments after 2014 are not considered in the analysis 

conducted in this thesis, they are explained here to give a comprehensive understanding and to link 

this thesis to the current state-of-the-art in the analytical support in model-based policymaking.  

Info Gap Theory is a method for analysis, planning, decision and design under uncertainty (Ben 

Haim, 2006). Info-Gap Theory has three main components: a system model representing the 

system of interest, an info-gap uncertainty model that quantifies uncertainties in a non-probabilistic 

way and performance requirements aimed for by decision makers.  

Real options analysis (de Neufville & Scholtes, 2011) is another method for tackling uncertainties 

in engineering design, especially for infrastructure designs or investment decisions. An option is 
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defined as “a right, but not an obligation, to do something under predefined arrangements” similar 

to the way in which options are used as contracts in financial markets (Neufville, 2003). Real 

options analysis considers options as physical things (i.e. elements of a system), rather than financial 

contracts. This method helps to build a flexible plan which treats uncertainty as an opportunity, 

instead of as risk to avoid, through the use of “real” options (Neufville, 2003). To make use of the 

flexibility that options can provide, they can be used as elements of an adaptive plan.  

Buurman & Babovic (2016) have proposed a systematic methodology to incorporate real options 

analysis that helps policymakers design adaptive plans in which options are used as elements. In 

this systematic approach, Buurman & Babovic (2016) combine real options analysis with the 

Adaptive Policymaking approach which allows analysts to handle uncertainties by creating adaptive 

policies that are robust across a range of plausible futures.  

Robust Decision Making (RDM) (Lempert, Groves, Popper, & Bankes, 2006) has been another 

approach for developing robust strategies under deep uncertainty. RDM is an iterative, analytic and 

systematic approach that combines the qualitative part of narrative scenarios and the power of 

quantitative analysis to support decision-making under deep uncertainty. It has been developed by 

researchers from the RAND Corporation (Groves & Lempert, 2007). RDM is applied iteratively 

in four main steps: (1) conceptualization of the system of interest, identification of uncertainties 

and building simulation model(s), (2) generation of cases by exploring uncertainties, (3) scenario 

discovery, which is a computer-assisted method to identify relevant or interesting scenarios by 

using machine learning algorithms, and (4) trade-off analysis for comparing performances of 

different strategies (Lempert, et al., 2013). RDM aims to provide a ‘robust’ policy design, i.e., a 

design that performs well across an ensemble of plausible futures, instead of a policy design which 

performs optimal over a single future.  

Based on the adaptive policymaking approach, Kwakkel et al. (2010) introduce the Adaptive 

Airport Strategic Planning approach that synthesizes concepts from Flexible Strategic Planning 

(Burghouwt, 2007) and Dynamic Strategic Planning (De Neufville & Odoni, 2003).  

A similar line of research has been conducted by Haasnoot et al. (2013) called Dynamic Adaptive 

Policy Pathways (DAPP), which helps designing adaptive plans (i.e. pathways that describe a 

sequence of actions that can be taken depending on how future unfolds). DAPP is the combination 

of Adaptive Policymaking (APM) with Adaptation Pathways (Haasnoot, Middelkoop, Offermans, 

Van Beek, & Van Deursen, 2012; Haasnoot M. , 2013).  

Many-Objective Robust Decision Making (MORDM) (Kasprzyk, Nataraj, Reed, & Lempert, 2013) 

has been another approach that offers support for policymaking by synthesizing RDM with many 

objective evolutionary optimization. MORDM tries to tackle the difficulty of multiple conflicting 

objectives by developing Pareto approximate trade-off sets. Watson & Kasprzyk (2017) extend the 

MORDM approach by utilizing robust optimization techniques. Original MORDM applies 

optimization under a single baseline scenario and then explores candidate scenarios under 

uncertainty, whereas this extended MORDM performs a multiple multi-objective exploration that 
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helps to find solutions that work well under multiple conditions. Beh et al. (2015) propose another 

interesting approach which is an adaptive, multi-objective optimal sequencing approach. This 

approach resembles a combination of adaptation pathways and many-objective robust decision-

making, for which various optimal sequence plans are developed for various future scenarios using 

multi-objective evolutionary algorithms. 

Exploratory Modeling and Analysis (EMA) (Agusdinata, 2008) is a computational approach to 

support the design of long-term plans under deep uncertainty and it can be useful for providing a 

methodological support for approaches such as APM, RDM or MORDM. EMA generates a large 

variety of computational experiments by combining plausible models and uncertainties. This 

ensemble of experiments are used to analyze complex uncertain systems, support the development 

of long-term strategic policies under deep uncertainty, and test policy robustness. EMA could also 

be used to develop adaptive policies under deep uncertainty since it allows for generating and 

exploring a multiplicity of plausible scenarios by sweeping the multi-dimensional uncertainty space. 

EMA could be used to identify vulnerabilities and opportunities present in this ensemble of 

scenarios, paving the way for designing targeted actions that address vulnerabilities or seize 

opportunities. The efficacy of the resulting policies could then be tested over the entire ensemble 

of scenarios. Moreover, EMA could be used to identify conditions under which changes in a policy 

are required (Hamarat, Pruyt, & Loonen, 2013). That is, it could help in developing a monitoring 

system and its associated actions, which is a common approach also used in the Adaptive 

Policymaking process (APM). APM identifies actions that can triggered based on critical values of 

signposts to be tracked as monitoring system. This monitoring system of APM can be integrated in 

EMA’s iterative policy formulation process. It thus appears that EMA could be of use in line with 

the adaptive policymaking approach. 

Not surprisingly, current approaches for policymaking under uncertainty have specific limitations 

and are not able to handle challenges such as, pre-identifying the conditions under which changes 

in policy are required or identifying ‘optimal’ signposts and triggers. For instance, Info-Gap theory 

focuses only on parametric uncertainties where uncertain parameters are explored in certain 

intervals with boundaries. Uncertainties that are categorical or related to functions or structures in 

a model are not tackled by Info-Gap Theory. From an outcome perspective, Real Options analysis 

focuses mostly on binary outcomes, in other words success or failure of an investment or project. 

Real options are related to investment decisions, in which the focus is on the success of the 

investment. However, deep uncertainties prevail when the outcome space has many possibilities 

that cannot be reduced to success or failure. Furthermore, Real Options analysis assesses the value 

of options based on their associated probabilities, where they are not available in case of deep 

uncertainty. In the Robust Decision-making (RDM) approach, the scenario discovery step helps 

identify vulnerabilities of the candidate policy that shows for which ranges of uncertainties the 

policy fails to meet its goals. However, RDM does not suggest exploring opportunities for which 

ranges of uncertainties the candidate policy can perform better to exploit such opportunities. 

Furthermore, there is a lack of guidance on explicitly considering the dynamic adaptation of the 

plan over time which results in a robust but static strategy (Walker, Haasnoot, & Kwakkel, 2013). 
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In other words, the RDM approach lacks adaptivity, a crucial element for designing robust long-

term policies. 

1.4. Gaps to be addressed for supporting model-based policymaking  

Dealing with uncertainty in policymaking involves significant challenges that are difficult to handle 

all at once, namely revealing useful information from the complex uncertainty space, a structured 

approach for operationalizing adaptivity and supporting policymaking under multiple conflicting 

objectives.  

Mainly due to the lack of advanced analytical support in model-based policymaking it is still very 

difficult to understand what the joint root causes of problematic behaviours are or under which 

conditions a system fails to operate. Current approaches in policymaking support do not provide 

advanced analysis to explore the uncertainty space thoroughly, mostly due to the computational 

complexity required. Advanced data analysis has not been used for supporting model-based 

policymaking. The utilization of advanced data analysis techniques becomes more available with 

the advances on computational power. Various data analysis techniques are available that are used 

in other fields such as computational biology or data mining. Therefore it is worthwhile to explore 

the utility of innovative data analysis techniques for exploring the deep uncertainty space. 

One of the challenges is to identify the relative importance of the various uncertainties in the input 

space of the problem of interest. The importance ranking of uncertainties can help design policies 

that target important uncertainties. To address this problem, feature scoring can be a possible 

advanced data analysis technique. Feature scoring is a machine learning technique that helps 

understand the relative impact of the uncertainties on the outcome(s) of interest.  

One of the iterative steps of Robust Decision-making is the step to identify scenarios that 

characterize the vulnerabilities of the proposed policies (Lempert, et al., 2013). Vulnerabilities are 

plausible events or developments that can deteriorate the policy performance so the objectives are 

not met. (Kwakkel, Walker, & Marchau, 2010). Scenario discovery uses cluster-finding data-mining 

algorithms such as the Patient Rule Induction Method (PRIM) that is used to find specific 

combinations of uncertainty ranges that result in vulnerabilities (Groves & Lempert, 2007). An 

alternative technique for scenario discovery is Classification and Regression Trees (CART), which 

is a classification algorithm that can be easily translated into boxes useful for scenario discovery 

(Lempert, Bryant, & Bankes, 2008). Using such advanced analytical techniques to support model-

based policymaking can be useful for addressing the gap of identifying the relations between the 

complex uncertainty and output spaces.  

In a recent special issue of Technology Forecasting and Social Change on adaptivity in decision-making, 

the special issue editors conclude: “Adaptive policymaking is a way of dealing with deep uncertainty 

that falls between too much precaution and acting too late. While the need for adaptation is 

increasingly acknowledged, it is still a developing concept, and requires the further development of 

specific tools and methods for its operationalization” (Walker, Marchau, & Swanson, 2010). More 
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specifically, for adaptive policymaking to become a useful planning approach, it will be necessary 

to specify in more depth how the various steps can be carried out and which methods and 

techniques can be employed in each of the steps. Adaptive policymaking needs to move from being 

a high-level concept captured in a flowchart, to being an operational planning approach. It is 

possible that many of the available traditional techniques, such as forecasting, scenarios, and 

exploratory modeling, can be of great use in the various steps of adaptive policymaking. However, 

exactly how these tools can be employed for the purpose of developing an adaptive policy needs 

to be studied (Kwakkel, 2010). Formulated more generally, the lack of operationalization of 

adaptive policymaking for supporting policymaking is another gap that needs to be addressed.  

Policymaking for complex and uncertain systems often involves multiple stakeholders where each 

has a different, possibly conflicting, objective. Different stakeholders may give different weights 

on the outcomes of interest that lead to different valuations – and this may change in the future in 

uncertain ways. Clearly, uncertainty in the valuation of outcomes is another key dimension in the 

definition of deep uncertainty.  Therefore, how to deal with the multiplicity of different objectives 

is also a gap to be addressed in policymaking under deep uncertainty. Multi-objective optimization, 

which is a field of optimization where there is more than one objective involved, can help model-

based policymaking address the issue of multiple conflicting objectives under uncertainty. Multi-

objective optimization has been used in fields such as engineering and finance (Marler & Arora, 

2004) and can be incorporated in model-based policy support.   

1.5. Objective and research questions 

The objective of this thesis is to improve analytical support for model-based policymaking in 

order to handle deep uncertainty better. The approach to be developed aims to help develop 

adaptive policies that are robust. In this thesis, robustness is defined as “a measure of the 

insensitivity of the performance of a given strategy to future conditions” (Maier, et al., 2016). 

Therefore, an improvement of the robustness measure reflects a policy design which performs 

better under deep uncertainty.  The methodological approach will combine EMA and the Adaptive 

Policymaking framework.  

More specifically, based on the analysis in the previous sections of this chapter, the following key 

questions need to be answered.  

 Can advanced analytical tools/techniques/methods be used with Exploratory Modeling 

and Analysis (EMA) to improve policymaking support under deep uncertainty?  

 How can the Adaptive Policymaking framework be operationalized by using EMA to 

support model-based policymaking? 

 In the presence of multiple conflicting objectives under uncertainty, what can be done to 

improve analytical support for adaptive policymaking? 
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1.6. Scope and aims of the study 

This thesis consists of five chapters where the three main body chapters aim to tackle the key 

questions listed above and the final chapter will include the discussions.  

 

Figure 1: Mapping of research questions to chapters 

Chapter 2 will explore the use of analytical tools/methods for supporting policymaking under deep 

uncertainty. This chapter will investigate the combination of advanced data analytical methods with 

Exploratory Modeling and Analysis to design dynamic policies. It will be a preparatory step towards 

a dynamic approach for policy development under deep uncertainty.  

In Chapter 3, an iterative model-based approach for designing adaptive policies that are robust under 

deep uncertainty will be introduced. The Adaptive Robust Design (ARD) approach aims to meet 

the need for operationalization of the Adaptive Policymaking framework. This proposed approach 

will be illustrated through a case study about energy transitions. 

In order to improve support for adaptive policymaking in the presence of conflicting objectives, 

Chapter 4 will introduce the use of multi-objective robust optimization in combination with ARD. 

This chapter will show how advanced data analysis and optimization techniques can be used for 

robust adaptive policy design in the presence of uncertainty and multiplicity of diverging objectives.  

Finally, Chapter 5 will summarize the answers to the research questions that are posed in this thesis. 

This chapter will explain how each key question is answered per chapter and how these answers 

contribute to improve the analytical support for policymaking under deep uncertainty. It will also 

reflect on the ARD approach, which is the fundamental basis, and the contributions of this study 

such as using multi-objective robust optimization for policymaking. Lastly, this chapter will put 

this thesis in the context of current literature and will finish by introducing a future research agenda 

for further improvements for model-based policymaking under uncertainty.  
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In the previous chapter, we have introduced the current 

approaches that are used for supporting model-based 

policymaking. However, as stated, current approaches for 

policymaking have issues about dealing with uncertainty, more 

specifically deep uncertainty.  

The main research question to be answered in the scope this 

study is how to improve analytical support for policymaking 

to handle deep uncertainty better. One important issue is the 

role of adaptivity in policymaking in the presence of deep 

uncertainty.   

To this purpose, we will introduce how Exploratory Modeling 

and Analysis can be used for exploring the uncertainty space, 

analyzing the output space extensively for better guidance to 

develop adaptive policies. 
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Chapter 2 -  Model-based Policymaking under 

Uncertainty1 

2.1. Introduction  

Decision-making can be a difficult task when there is a lack of knowledge or disagreement about 

the model that represents the system of interest and about how to evaluate the outcomes. Deep 

uncertainty can be defined as the situations where analysts do not know, or the parties to a decision 

cannot agree on (1) the appropriate conceptual models that describe the relationships among the 

key driving forces that will shape the long-term future, (2) the probability distributions used to 

represent uncertainty about key variables and parameters in the mathematical representations of 

these conceptual models, and/or (3) how to value the desirability of alternative outcomes (Lempert, 

Popper, & Bankes, 2003). Since there is a lack of information on the conceptual models, probability 

of alternatives, it is difficult to predict the future. However, there is still the fallacy of thinking that 

the future can be predicted based on assumptions. These assumptions often fail when dealing with 

deep uncertainty. Therefore, the focus should be on the exploration of deep uncertainty for an 

ensemble of plausible futures, instead of best estimate models based on limited assumptions.  

Models can be considered as formal representations of the real world. The common aim of the 

modellers is to represent the real world as a mathematical model and to use that model for 

supporting decision-making. Modellers make many pre-analytic and analytic assumptions when 

modeling (parameter estimates, model structures and worldviews). Modellers, who try to forecast 

the future, often fall in the trap of assuming their assumptions are true. However, in the presence 

of deep uncertainty, it is impossible to conclude that a single assumption about the future is true. 

For this reason, the use of models as predictive tools should be challenged. Furthermore, since 

predictions about the future are usually wrong, it might be misleading to use models for predictive 

purposes. The goal of this chapter is to illustrate the use of models for decision support in an 

exploratory manner- exploring an ensemble of plausible futures- instead of focusing on a single (or 

a few similar) future(s). 

Uncertainty analysis for decision-making has been mostly focused on technical and shallow 

uncertainties about model parameters, input data or initial states. Dealing with model/structural 

uncertainties is highly complex and difficult. In this chapter, both parametric and structural 

uncertainties are explored and analyzed. 

                                                 
1 This chapter is largely based on the publication Hamarat, C. and E. Pruyt (2011). Energy Transitions: Adaptive 
Policy Making Under Deep Uncertainty. The 4th International Seville Conference on Future-Oriented Technology 
Analysis (FTA), Seville, Spain. 
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2.2. Methodology: Exploratory Modeling and Analysis (EMA) 

Exploratory Modeling and Analysis (EMA) (Bankes 2001, Lempert, Popper et al. 2003, Agusdinata 

2008) is a research methodology for exploring and analyzing complex and uncertain systems and 

supporting long term strategic decision-making under deep uncertainty. EMA is a methodology 

that provides insights and understanding about the system behaviour and effectiveness/robustness 

of policies by using computational experiments. It originated at the RAND Corporation as 

Exploratory Modeling (Bankes, 1993) and was relabeled EMA by Agusdinata (2008).   

EMA can be contrasted with the use of models to predict system behaviour, where models are 

built by consolidating known facts into a single package (Hodges and Dewar 1992). In predictive 

modelling, a single best estimate model is used as a representation for the actual system. Where 

applicable, this consolidative methodology is a powerful technique for understanding the behaviour 

of complex systems. Unfortunately, for many systems of interest, the construction of a model that 

may be validly used as surrogate is simply not a possibility (Campbell, Farmer et al. 1985, Hodges 

and Dewar 1992). For many systems, a methodology based on consolidating all known information 

into a single model and using it to make best estimate predictions can be highly misleading. If the 

model assumptions, such as parameter values or system behaviour, are not valid, then the 

prediction based on a single model can lead to incorrect decision support. However, models can 

be constructed that are consistent with the available information, but such models are not unique. 

Rather than specifying a single model and falsely treating it as a reliable image of the system of 

interest, the available information supports a set of models, whose implications for potential 

decisions may be quite diverse. A single model run drawn from this potentially infinite set of 

plausible models is not a “prediction”; rather, it provides a computational experiment that reveals 

how the world would behave if the various guesses made in any particular model about the various 

unresolvable uncertainties were correct. By conducting many such experiments, EMA provides 

insights and understanding about the system behaviour and effectiveness/robustness of policies 

under a wide set of different assumptions. EMA is not a modelling technique by itself, but it is a 

methodology for building and using models under deep uncertainty. 

The main steps of EMA can be stated as follows: (1) conceptualization of the system of interest, 

(2) specification of the uncertainties to be explored, (3) development of exploratory fast and relatively 

simple computational models of the issue of interest, and (4) specification of policy option(s) for 

the system. In Step (5), an ensemble of future worlds are generated by sweeping uncertainty ranges 

and varying uncertain structures and boundaries in order to compute the performance of the 

policies. Computational experiments are performed by exploring uncertainty space. The outcomes 

of computational experiments are analyzed to reveal insights for designing/improving policy 

option(s). Steps 4 and 5 are iterated until the suggested policy/policies provide satisfying results.  

In model-based policymaking, the input space is composed of various uncertainties and policies to 

be explored. The output space is the sets of outcomes that is the output of the exploration of the 

input space. Both the input and output space have too many elements and the nonlinear complexity 

makes it difficult to understand the relation between the input and output spaces. In order to design 



 

 19 

better policies, one should have better insight on the dynamics of input and output spaces. Possible 

solution to seize useful insights is to use pattern analysis and data mining techniques. It should be 

noted that dealing with time series data by using pattern analysis techniques could be technically 

difficult. Despite the difficulty level of such techniques, they can be significantly helpful to improve 

model-based policymaking using EMA. It has been effectively used for model-based policymaking 

studies (Kwakkel & Pruyt, 2013; Kwakkel & Yucel, 2014) in various fields such as energy studies, 

environmental sciences, transportation.  

There are various methods/techniques/algorithms for data analysis to derive relevant insights. For 

instance, data-mining techniques, such as classification or regression, or decision-making 

techniques, such as multi-criteria decision analysis (MCDA) or decision trees, can be good examples 

of such analytical methods. These are well established and frequently used methods in a wide scope 

of fields from computer science to biology. EMA can be used flexibly to be in cooperation with 

such other powerful methods. Other techniques, such as MCDA, can be used in combination with 

EMA. 

2.3. Analytical techniques used together with EMA 

In this chapter, we focus on three potential analytical techniques that can be used in line with EMA 

for improving model-based policymaking support. Feature scoring shows which uncertainties have 

more importance in terms of the impact on the outcome(s) of interest. Classification and 

Regression Trees (CART) is a machine-learning method to create subsets of uncertainty space in 

terms of decision trees (classification and/or regression trees). Patient Rule Induction Method 

(PRIM) is a data-mining algorithm to find subset(s) in the input space that result in desired output 

space. PRIM has been used in the context of the scenario discovery. It is a computer-assisted approach 

for finding policy-relevant scenarios by using statistical and data-mining algorithms (Bryant and 

Lempert, 2010). Scenario discovery approach suggests using not only qualitative but also 

quantitative algorithms for finding relevant scenarios. These techniques such as CART and PRIM, 

are used as scenario discovery tools and will help examine the underlying structure of the 

uncertainty space and understand how the input space is interrelated with output space.  

2.3.1. Feature Scoring 

Feature scoring is a machine-learning algorithm, which aims to give relative scores to features based 

on their contribution to the outcome of interest. There are different feature scoring techniques, 

which are commonly used in fields such as bioinformatics or pattern analysis, that help to identify 

most important or indifferent features in the model. In this thesis, we use a tree-based method, 

specifically based on the extra trees algorithm (Breiman, 2001; Geurts et al, 2006). This algorithm 

creates decision or regression trees where the nodes are split randomly to reduce the variance. It is 

similar sensitivity analysis in terms of identifying the relevance of uncertainties in the model, but 

by using a tree-based approach. In the scope of this study, feature scoring can be very useful for 

identifying the relevant impact of the uncertainties on model outcomes. We use the end state values 

of the outcomes of interest over time as the output indicator for the feature scoring algorithm. The 
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relative scores of uncertainties can help identifying the importance level of uncertainties. Such 

information can be used to focus on specific regions in the uncertainty space and to design better 

guided policies by tackling the output space more effectively.    

2.3.2. Classification and Regression Trees (CART) 

Another convenient method is Classification and Regression Trees (CART) (Breiman, 1984) which 

combines classification tree and regression tree together. CART is a popular machine leaning 

method, which is used for model-based policymaking (Lee et al, 2006; Kurosaki et al., 2010). CART 

aims to create a binary tree where each branch represents a part of output region with specific 

characteristics. CART is a powerful method because it can handle both continuous variables by 

using regression trees and categorical variables by using classification trees simultaneously, whereas 

similar tree algorithms target either continuous or categorical variables separately. In our analysis, 

we explore various uncertainties, which can be parametric, continuous, categorical, model 

structure, etc. Therefore, CART helps us identify regions of interest in the uncertainty space so 

that policies can be better targeted for specific combinations of uncertainties.   

2.3.3. Patient Rule Induction Method (PRIM) 

Patient Rule Induction Method (PRIM) (Friedman and Fisher, 1999) is an algorithm, which aims 

to find combinations of input variables, which result in similar values for the outcomes of interest. 

PRIM is used to identify subspaces in the input space, which are called PRIM boxes. PRIM, as a 

scenario discovery tool, has been used in the context of EMA and model-based policymaking to 

identify the subspaces of experiments of interest. In this chapter, PRIM is used for identifying 

subspaces of uncertainty space, which can be used for targeting specific regions of interest in the 

output space. 

2.4. Case: A simple case on energy transitions 

2.4.1. Details of the model 

Energy transitions are deeply uncertain and dynamically complex, where various feedbacks, delays 

and deep uncertainties about initial values, parameters and structures are prevalent. Given these 

uncertainties and dynamic complexity, there are many plausible transition trajectories for 

competing energy technologies, both existing and new sustainable technologies. There is an 

ongoing debate about sustainability of energy technologies. The necessity of transforming our 

energy systems towards more sustainable technologies is gaining ground. In this chapter, a System 

Dynamics model about the competition of four different energy technologies is presented. 

Technology 1 represents the existing dominant technology and the other three are considered as 

the future technologies (wind, hydro, solar, etc.) that are more sustainable. The model structures 

describing the development of all four technologies are represented similarly to give the model 

generic functionality. 
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Figure 2: Stock flow diagram of the generic SD model 

There are two main stock structures that are installed capacity and cost of new capacity. Cost of new 

capacity changes according to an experience curve structure driven by a progress ratio. This 

progress ratio also influences capacity change via an expected performance structure. Capacity 

change is driven also by preference structures according to expected progress, marginal cost, CO2 

emissions and expected cost per MW energy produced. Since all these structures are deeply 

uncertain, various methods are employed to represent the uncertainties. For example, randomizers 

are used for representing real progress ratio and switch structures are utilized for quantifying the 

relative preferences. In the next section, details of the uncertainties that are explored will be further 

explained. The main aim of developing such a model is, instead of ignoring or trying to reduce 

uncertainties, to explore all plausible transition trajectories for energy technologies by including 

relevant uncertainties. In this study, this model is used to illustrate the methods proposed here and 

more background about this model can be found on (Pruyt E. , Kwakkel, Yucel, & Hamarat, 2011). 

As mentioned before, development of a fast and relatively simple model of the issue of interest is 

the initial step of EMA and the simple model used in this study is explained in the previous 

section. Following that, a wide ensemble of plausible futures needs to be generated by sweeping 

the uncertainty ranges. In our model, uncertainties that are considered include parametric 

uncertainties (initial values), structural uncertainties (lookup functions, progress ratios), model 

structure uncertainties (switch structures, preferences) and randomizers. A detailed description of 

the uncertainties used in the model and the corresponding ranges can be found in Table 1. A 

range of initial values for capacities, cumulatively decommissioned capacities, and marginal costs 
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of new capacity for each technology is included. Additionally, alternative values for parameters 

such as lifetimes of technologies and average planning and construction periods are analyzed. 

Structural uncertainties explored include progress ratios and (structures that enable to swap 

between) different lookup functions.2 Switch structures for enabling technologies 3 and 4 and for 

enabling different preference structures represent deep model uncertainties. Technologies 1 and 2 

are always active in the model. Furthermore, randomizers for a more realistic progress ratio 

structure are utilized and a categorical uncertainty is used for differentiating the order of delays 

used in the stock-flow structure of the decommissioning of technologies based on their lifetimes. 

By sweeping across all these uncertainties, 5000 simulations using a Latin Hypercube Sampling 

(LHS) technique are performed. The time horizon considered is between years 2000 and 2100. 

Computational simulations are held by using a shell written in Python programming language 

forcing Vensim DSS software to execute experiments. Vensim is forced by Python to execute each 

experiment and output data is stored by Python. Using Vensim and Python together provides 

several advantages such as easily modeling in Vensim and flexibly making, controlling experimental 

design, analyzing and visualizing outcomes in Python.  

In our analysis, the outcomes of interest are total capacity installed, and total fraction of new 

technologies (2, 3 and 4). The graphs will be presented in this order in the following sections.  

  

                                                 
2 For swapping between three different lookup functions, a categorical uncertainty that can be 1, 2 or 3 enables three 
different lookups with correspondence to its number.   
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Table 1: The uncertainties used in EMA and their ranges 

Parameter Ranges 

initial capacity Tech1 14000 - 16000 

initial capacity Tech2, Tech3, Tech4 1-2 

lifetime technology Tech1 30 - 50  

lifetime technology Tech2, Tech3, Tech4 15 - 40  

initial cumulatively decommissioned capacity Tech1 5M - 10M 

initial cumulatively decommissioned capacity Tech2, Tech3, 

Tech4 

1 - 100 

average planning and construction period Tech1 1 - 5 

average planning and construction period Tech2, Tech3, 

Tech4 

1 - 5 

progress ratio Tech1 0.85 - 0.95 

progress ratio Tech2, Tech3, Tech4 0.70 - 0.95 

initial marginal cost new capacity Tech1 0.5M - 1.5M 

initial marginal cost new capacity Tech2, Tech3, Tech4 5M - 10M 

performance expected cost per Mwe Tech1 1 - 2 

performance expected cost per Mwe Tech2, Tech3, Tech4 1 - 5 

performance CO2 avoidance Tech1 4 - 5 

performance CO2 avoidance Tech2, Tech3, Tech4 1 - 5 

absolute preference for marginal investment cost (MIC) 2 - 5 

absolute preference against unknown 1 - 3 

absolute preference for expected progress 1 - 3 

absolute preference against specific CO2 emissions 2 - 5 

absolute preference for expected cost per Mwe 2 - 5 

Switches for different preferences 1  /  0 

SWITCH Tech3, Tech4 1  /  0 

economic growth t1 0.03 - 0.035 

economic growth tx (other than t1) -0.01 - 0.03 

random PR min 0.9 - 1.0 

random PR max 1.0 - 1.1 

seed PR Tech1 1 - 100 (integer) 

order lifetime Tech1, Tech2, Tech3, Tech4 1 / 3 / 10 / 1000 

 

2.4.2. Results without Policy 

The first analysis is performed without implementing any policy, by only sweeping the 

uncertainties explained in Table 1 using LHS. Out of 5000 runs, there are 320 cases where all 

preference switches are zero. It is unrealistic to have no active preference so these 320 cases are 

excluded out from further analysis. Figure 3 shows 4680 single lines for each run for the total 

capacity installed and the total fraction of new technologies. The range of the end value for the 
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total fraction of new technologies is spread between 0 and 1 widely. However, it is difficult to 

derive useful insight from this representation of the outcome of 4680 LHS runs because it does 

not reveal clear distinct patterns. Installed capacities of technologies tend to increase after 2060 

and for some of the technologies, cyclic behaviors are observed. In order to derive useful insight 

from such output data, innovative approaches are required. An available technique for a better 

insight is to illustrate the envelopes of upper and lower limits for each graph and a histogram 

distribution of the end states of outcomes (See Figure 4).  

 

Figure 3: LHS results for 4680 runs without policy implementation3, 4 

Figure 4 illustrates the envelopes of outcomes and histograms of the end states of each graph. 

Although the total capacity installed seems to be distributed along a wide range, the histogram in 

                                                 
3 The figures including 2 different graphs are presented in the order of  (from top to bottom): total capacity 
installed and total fraction of  new technologies. 
4 Currently, more advanced and improved visualization techniques are available. The visualization techniques 
used in this thesis are based on the available techniques at the time when the research was conducted.  
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Figure 4 reveals that most of the end states of the runs are gathered around low levels that is below 

60%. For the total fraction of new technologies, it shows a bell shaped behavior. In order to ensure 

a better future for new technologies, the bell shape should be forced upwards which means to 

increase the number of cases with higher end states.  

 

Figure 4: Envelopes and end state histograms for 4680 runs without policy 

 

 

2.4.3. Advanced analysis (Feature Scoring, CART, PRIM) 

Feature scoring helps identify the importance score of various uncertainties relative to the outcome 

of interest. In this thesis, we use a tree-based feature scoring algorithm, which uses extra trees 

(Geurts et al, 2006). We analyzed the initial dataset of 4680 runs without policy by using feature 
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scoring algorithm. Table 2 shows the first 20 most important uncertainties where the importance 

is relative to their impact on the end state of the total fraction of new technologies.  

Table 2: First 20 most important uncertainties in relation with the total fraction of new technologies 

Uncertainty Importance Score 

SWITCH preference against specific CO2 emissions 0.2177 

SWITCH preference for expected cost per MWe 0.1456 

SWITCH Tech4 0.1048 

SWITCH Tech3 0.1037 

SWITCH preference against unknown 0.0975 

performance expected cost per MWe Tech2 0.0273 

SWITCH preference for MIC 0.0258 

ini PR Tech2 0.0242 

performance CO2 avoidance Tech2 0.0225 

SWITCH preference for expected progress 0.0123 

lifetime Tech2 0.0118 

absolute preference against unknown 0.0098 

lifetime Tech1 0.0090 

performance CO2 avoidance Tech4 0.0083 

performance CO2 avoidance Tech3 0.0081 

performance expected cost per MWe Tech1 0.0075 

ini cost Tech1 0.0065 

performance expected cost per MWe Tech4 0.0065 

order lifetime Tech1 0.0061 

performance expected cost per MWe Tech3 0.0060 

The feature scores show that the variations in preferences are more important than the other 

uncertainties. Since these are model structure uncertainties, it is not surprising that they have direct 

impact on the fraction of new technologies. Performance related uncertainties of Technology 2 

and the lifetimes of Technology 1 and 2 have also important impact on the fraction of new 

technologies. Feature selection helps identify the importance of the uncertainties in the model but 

it does not tell much about what range of the uncertainty results in (un)favorable outcomes.  

Classification and Regression Trees (CART) is a decision tree algorithm, which can be used with 

both categorical and continuous variables together. Our uncertainty range includes both categorical 

and continuous uncertainties; CART can help us identify which uncertainties5 play an important 

role in the region of interest for the selected outcome. As seen in Figure 4, there is a significant 

                                                 
5 Switch structures are excluded from CART because they are so dominant on the results that only the switch 
uncertainties appeared on the CART boxes.  
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number of runs where the end state of the total fraction of new technologies is below 40%. The 

total number of cases of interest that fall in this undesired region is 614, which is approximately 

13% of 4680 runs. CART identifies the combination of uncertainty ranges where the outcome of 

interest is the result of the selected uncertainty ranges. A combination of uncertainty ranges is called 

a box, which can be interpreted as multidimensional region in the uncertainty space. Table 3 shows 

the summary details of the three uncertainty boxes that are identified using CART.  The total 

number of the cases that can be identified by these three boxes is 374, which is more than half of 

the 614 cases of interest. Coverage is defined as the number of cases identified by a box over the 

total number of cases of interest (e.g. for CART box A, 138/614 = 22.5%). The CART boxes 

where the number of cases of interest is less than 100 are not shown due to low coverage levels.  

Table 3: Summary details for three CART boxes 

  Coverage # of Uncertainties # of Cases of Interest 

CART box A 22.5% 3 138 

CART box B 21.8% 2 134 

CART box C 16.6% 3 102 

The first box covers 138 cases and it is identified by combination of three uncertainties. Similarly, 

the second and third boxes covers 134 and 102 cases, and identified by two and three uncertainties, 

correspondingly. Table 4 shows the range combination of the relevant uncertainties for each box, 

where they are highlighted as red. To interpret this table, when the red highlighted uncertainties 

are between the ranges shown, the end state of the total fraction of new technologies is below 40%.  

Table 4: Uncertainty ranges for the three CART boxes 

Uncertainties   CART box A       CART box B      CART box C 

  Min Max Min Max Min Max 

absolute preference against unknown 2.26 3.00 1.00 3.00 1.00 2.26 

performance CO2 avoidance Tech3 1.00 2.79 1.00 4.00 1.00 4.00 

performance CO2 avoidance Tech4 1.84 4.00 1.00 1.84 1.84 4.00 

lifetime Tech1 30.00 50.00 38.26 50.00 30.00 50.00 

lifetime Tech4 15.00 40.00 15.00 40.00 15.00 25.87 

It is clear that the lower levels of CO2 avoidance performances for new technologies have negative 

impact on achieving higher end states of the fraction of new technologies. As shown in CART box 

A, the performance CO2 avoidance of Tech3 is on the lower range and for Tech4 on the middle 

range of the full range of 1 to 5. In combination with upper range of absolute preference against 

unknown, the total fraction of new technologies stay below 40%. Additionally, the higher levels of 

the lifetime of the Technology 1 should also be considered as playing an important role.  

Another method for further analysis is PRIM, which can help identify the characteristics of the 

specific regions in outcome space. We applied the PRIM algorithm on the 4680 runs and 

specifically focused on the outcomes where the end state of the fraction of new technologies is 
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below 40%. Three boxes are selected from the PRIM analysis and the details of the boxes are 

shown in Table 5. 

Table 5: Summary details for three PRIM boxes 

  Coverage # of Uncertainties # of Cases Covered 

PRIM box A 55.2% 3 339 

PRIM box B 49.8% 4 306 

PRIM box C 48.5% 5 298 

The specific ranges of the uncertainties that are included in the boxes are shown in Table 6. It is 

clear that the cases where new technologies are not activated lead to outcomes where the fraction 

is below 40%. It is clear that new technologies should be promoted to give more opportunity for 

renewables so that higher levels of the renewable fraction can be achieved. PRIM box B and C 

show that when Technology 3 and 4 are not activated and CO2 avoidance performance of 

Technology 2 is low in combination with CO2 emission preference activated, new technologies 

become less preferable over the Technology 1. As the switches for Technology 3 and 4 are zero, 

this means that Technology 2 is less preferable over Technology 1. It can be interpreted that it is 

crucial to make new technologies preferable over the existing technology.    

Table 6: Uncertainty ranges for the three PRIM boxes 

Uncertainties 
PRIM Box 

A 

PRIM Box 

B 

PRIM Box 

C 

  Min Max Min Max Min Max 

SWITCH Tech3 0 0 0 0 0 0 

SWITCH Tech4 0 0 0 0 0 0 

SWITCH preference against specific CO2 emissions 1 1 1 1 1 1 

performance CO2 avoidance Tech2   1.00 3.36 1.00 3.36 

average planning and construction period Tech1     1.00 4.75 

 

2.4.4. Results with Static Policy 

In the light of the previous analysis by using feature scoring, CART and PRIM, the preference 

related uncertainties and the lifetimes of the technologies have impact on the progress of the new 

technologies. Therefore, the first part of the initial policy design focuses on making the new 

technologies more preferable by introducing cost attractiveness. An upper limit of 1.000.000 

Euros is set for the initial marginal cost for new capacities of Technology 2, 3 and 4. This is a 

static approach where only an upper limit is set for the costs of new technologies. The aim of this 

policy design is to mimic the structure of the governmental and/or national incentives for 

promoting renewable technologies. The other part of the initial policy design targets the lifetimes 

of the new technologies. The lifetimes of all four technologies are explored using the uncertainty 

ranges specified in Table 1. This policy design proposes that the lifetime of the new technologies 

will improve as technology advances. So, the lifetimes of the technologies 2, 3 and 4 are assumed 
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to increase by 5 years every 25 years until 2050. The reason for stopping the increase after 2050 is 

that the lifetime improvement is expected to reach its maturity.  

The proposed cost and lifetime structures are implemented as a policy design and the 4680 

simulations (excluding 320 unrealistic cases where all preference switches are zero) are rerun on 

the same uncertainty range. Figure 5 shows the envelopes and end state histograms for No Policy 

and Static Policy together for comparison. Although the envelopes do not reveal much insight, the 

end state histograms show that there is an improvement on achieving higher levels of end states 

by implementing the static policy. The mean of the bell shaped histogram for static policy increases 

approximately from 50%, as for no policy, towards 70%. Although the static policy helps a slight 

improvement, there is still need for better policy design, which will ensure higher levels of the 

fraction of the new technologies. A dynamic policy that can adapt over time under deep uncertainty 

may improve the fraction of new technologies.  

 

Figure 5: Envelopes and end state histograms comparing No Policy and Static Policy 

2.4.5. Results with Dynamic Policy 

The models in this study and, generally, with EMA are used for analyzing the behavior of a system 

over time. Therefore, the dynamics over time is important for understanding the system behavior 

and designing policies that can adapt over time. In order to propose dynamic policy designs, it is 

necessary to understand the outcomes of the static policy. Similar to the previous analysis, PRIM 

is used to get a better insight about the uncertainties and their relation with the outcome of interest. 

We applied the PRIM on the outcomes of the static policy where the fraction of new technologies 

are below 40%. The algorithm returned the PRIM box A with a coverage percentage of 68.4%. 

The details can be seen in Table 7. 



 

 30 

Table 7: Details for the PRIM box where the fraction of new technologies is below 40% 

  Coverage # of Uncertainties # of Cases Covered 

PRIM box A 68.4% 3 212 

There are three uncertainties included in this box, where all uncertainties are switch structures. The 

details of the PRIM results are presented in Table 8 that means that if new technologies are not 

activated, it will result in low levels of new technology fraction.  

Table 8: PRIM results for the fraction of new technologies is below 40% 

Uncertainties          < 40% 

  Min Max 

SWITCH Tech3 0 0 

SWITCH Tech4 0 0 

SWITCH preference against specific CO2 emissions 1 1 

So far, we used PRIM to analyze the undesirable regions in the outcome space. However, it is also 

possible to apply PRIM for understanding the uncertainty relations for the positive outcome space. 

Therefore, we used PRIM this time for analyzing the outcome space where the fraction of new 

technologies above 80%. The aim is to find out what combination of uncertainties result in 

desirable results. The total number of cases where the end state of the new technology fraction is 

above 80% is 916. PRIM identified one box that covers 78.1% of 916 cases, namely 715 cases of 

interest (see Table 9). This means that 715 of 916 desirable cases can be explained with a specific 

uncertainty combination whereas the remaining cases do not relate to a specific uncertainty 

combination.  

Table 9: Summary for the PRIM box where the fraction of new technologies is above 80% 

  Coverage # of Uncertainties # of Cases Covered 

PRIM box B 

 

78.1% 2 715 

The uncertainties identified by PRIM are shown in Table 10. When the two switches for 

preferences on unknown and CO2 emissions are zero, then the fraction of new technologies has 

end states that are higher than 80%. There are 5 different preferences that are marginal 

investment cost (MIC), expected progress, expected cost per MWE, against unknown and 

specific CO2 emissions. The PRIM box B where the switches for unknown and specific CO2 

emissions are not active can be interpreted that the other preferences have more impact for 

higher than 80% fraction of new technologies. 

 

Table 10: PRIM results for the fraction of new technologies is above 80% 

Uncertainties          > 80% 

  Min Max 

SWITCH preference against unknown 0 0 

SWITCH preference against specific CO2 emission 0 0 
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In addition to the static policy design, it is crucial to include dynamic policy design to ensure higher 

levels of new technology fraction. In the light of both the negative and the positive PRIM analysis, 

preferences for (1) CO2 emissions, (2) expected cost per MW energy produced and (3) marginal 

investment cost (MIC) have been selected to be components of the dynamic policy design. Instead 

of static constants, these preferences have been set to change dynamically according to the installed 

capacity level of technology 1 (See Figure 6). The higher the installed capacity of Technology 1, the 

more selected preferences preferred so that the new commissioning of Technology 1 slows down. 

The aim of this dynamic policy design is to slow down the commissioning of Technology 1 if the 

installed capacity of Technology 1 increases. This policy can help achieving higher level of new 

technologies fraction.  

 

Figure 6: Lookup table used for absolute preferences for (1) specific CO2 emissions, (2) expected cost per MW energy 

produced and (3) MIC 

 

Figure 7: Envelopes and end state histograms comparing No Policy, Static Policy and Dynamic Policy 
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By implementing the proposed designs in the model, a dynamic policy is designed and similarly 

4680 runs (320 cases excluded due to infeasibility) are executed by exploring the same uncertainty 

space as static policy and no policy options. All three options are represented together in the same 

graph (See Figure 7) for comparing the policy options. As seen previously, there is only slight 

improvement from No Policy (green line) to Static Policy (red line). On the contrary, Dynamic 

Policy (blue line) makes a significant difference for ensuring higher levels of new technologies. The 

peak of the bell shaped curve of the blue line increased approximately to 90%, in comparison to 

70% for the red line of static policy. Figure 7 clearly shows the contribution of the dynamic policy 

design for achieving desirable outcomes.   

2.5. Conclusions 

In this study, a System Dynamics model of energy transitions has been explored by sweeping the 

uncertainties listed in Table 1. The analysis of different policies reveals that a dynamic policy 

performs better than a static policy for sustaining a better future for new sustainable energy 

technologies. In order to better illustrate the policy comparison, the number of runs that are 

above certain levels (20%, 30%, 40%, 50%) of the fraction of new technologies out of 4680 runs 

are shown in Table 11 for each policy option. There is a clear dominance of the dynamic policy 

over the other policy options for almost all the levels. For instance, almost 95% of all 4680 runs 

with dynamic policy have an end state of at least 50% fraction of new technologies. For the 

dynamic policy, there are still approximately 2% of runs that are below 40%. In addition, there is 

still almost 4% of runs that have an end state between 40% and 50% and this region of outcomes 

should be investigated in depth.  

Table 11: Number of runs over certain levels of new technologies fraction for 4680 runs 

 > 20% > 30% > 40% > 50% 

No Policy 4649 4483 4084 3318 

Static Policy 4668 4608 4362 3852 

Dynamic policy 4680 4666 4604 4434 

As the main purpose of this chapter is to illustrate the use of analytical tools/methods for 

supporting policymaking, we have used EMA as the primary methodology. EMA is a methodology 

for handling deep uncertainty in dynamically complex issues of interest by using models. In this 

chapter, a System Dynamics model about energy transitions is explored and analyzed. Various deep 

uncertainties about parameters, functions and model structures are swept across wide ranges. A 

dynamic policy that can adapt over time is implemented to ensure a better future for new energy 

technologies. The advantage of dynamic policymaking is its flexibility against uncertainties and the 

ability to adapt over time. Dynamic policymaking ensures that it is possible to implement policies 

that are robust over an ensemble of plausible futures (Walker, Rahman, & Cave, 2001; Haasnoot, 

Kwakkel, Walker, & ter Maat, 2013). Since the future of energy transitions is dynamically complex 

and deeply uncertain, policy recommendation is difficult under these conditions. Although a 

relatively simple dynamic policy has been implemented in this chapter, it illustrates that dynamic 

policymaking helps better for ensuring desirable outcomes under conditions of deep uncertainty. 



 

 33 

There are various algorithms/tools available, which can be useful for time series data analysis and 

help for a better deep uncertainty analysis. In this study, we have used algorithms and techniques 

such as PRIM, CART and feature scoring for analyzing the outcome space and understanding the 

relations between uncertainties and model outcomes. These techniques help designing better 

guided and targeted policies to achieve desired outcomes. For instance, feature scoring allows us 

to understand the importance ranking of the uncertainties on the outcome space. However, this 

technique identifies the individual importance of uncertainties but does not show the importance 

ranking for combinations of uncertainties. As the elements of nonlinear and complex systems 

interact, the uncertainties need to be considered in relation with each other. Nevertheless, feature 

scoring guides us to which uncertainties to focus on. PRIM and CART aim to cover uncertainties 

together and to identify relevant combinations of uncertainties where the outcome space has the 

desired characteristics. Both are used as scenario discovery algorithms to find regions of interest in 

the uncertainty space for designing policies that target such regions. However, there is no clear 

evidence that one is superior to the other (Kwakkel & Jaxa-Rozen, 2016; Lempert, Bryant, & 

Bankes, Comparing algorithms for scenario discovery, 2008). PRIM requires more user interaction 

such as setting various algorithm parameters but the results are easier to interpret by users. On the 

contrary, CART requires less interaction for execution but can result in many uncertainty sub-

spaces that will make it difficult for scenario discovery.  

Using such data analysis algorithms/techniques in combination with Exploratory Modeling and 

Analysis (EMA) for analyzing complex and uncertain systems has been an innovative approach. 

During the course of this study, using EMA with data analysis techniques was not yet established 

in a structured way but was being done more in an exploratory and unpremeditated manner. 

Moreover, we have not compared the algorithms for which one is better. It is crucial that a more 

structured framework, which combines EMA together with innovative data analysis algorithms, 

should be introduced. Such framework will make analysis more evident and coherent that will lead 

to improved policy support. Thus, EMA will be a more powerful and elaborate method for 

developing better policy designs under deep uncertainty.  
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We have demonstrated how Exploratory Modeling and 

Analysis (EMA) can be effectively used for developing 

adaptive policies under deep uncertainty in the previous 

chapter. Together with EMA, we have used various methods 

such as Feature Scoring, CART or PRIM. However, using 

EMA together with such techniques had been done not by 

using a clear established approach.  

In the next chapter, we will introduce the Adaptive Robust 

Design (ARD) approach, which is an iterative model-based 

approach for designing adaptive policies that are robust under 

deep uncertainty. It is based on an established framework, 

Adaptive Policymaking framework. This chapter shows that 

ARD can be used to develop long-term, adaptive and robust 

policies.  
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Chapter 3 -  The Adaptive Robust Design (ARD) 

Approach6 

3.1. Introduction 

Conceptual, formal, and computational models are commonly used to support decision-making 

and policymaking (Walker, Harremoës et al. 2003, Kwakkel, Walker et al. 2010, Pruyt and Hamarat 

2010, Yucel 2010, Pruyt, Kwakkel et al. 2011). The term ‘model’ refers here to a representation of 

the most crucial aspects of a system of interest for extracting usable information (Eykhoff 1974). 

The term ‘decision-making’ is used here for the act or process of making strategies or conscious 

decisions by an individual or group of actors, and ‘policymaking’ for the act or process of designing 

policies by those in charge of designing (public) policy. Hence, decision-making is more general 

than, and to some extent includes, policymaking. Although the approach proposed in this chapter 

applies equally well to long-term decision-making as to policymaking, we will, from here on, 

consistently refer to ‘policymaking’ and ‘policies’, for our work mainly focuses on policymaking 

and the case we use to illustrate the approach here relates to policymaking for stimulating energy 

transitions.  

Although some uncertainty, defined here as any type of aberration from utter certainty (Walker, 

Harremoës et al. 2003), is mostly taken into account in traditional model-based policymaking, it 

mainly includes what is known and certain. However, uncertainty is prevalent in complex systems 

and policymaking related to complex issues. Policy failures are often attributable to the omission 

of uncertainties in policymaking (Walker, Marchau et al. 2010). Policies that would be optimal for 

one particular scenario often fail in most other scenarios. In addition, policies that are optimal for 

dynamically complex issues at a particular point in time often fail at other moments in time. Hence, 

in case of complex issues under uncertainty, there is a strong need for policies that are designed to 

adapt over time to new circumstances and surprises, i.e. adaptive policies, and to perform 

acceptably well in all circumstances, i.e. robust adaptive policies (Lempert, Popper et al. 2003, 

Walker, Marchau et al. 2010).  

In order to develop policies under uncertainty, analysts often use techniques such as exploratory 

scenarios (van der Heijden 1996), Delphi surveys (Lindstone and Turoff 1975), and the analysis of 

wild cards and weak signals (Saritas and Smith 2011). Characteristic for these techniques is that 

they aim at charting the boundaries of what might occur in the future. Although useful, these 

traditional methods are not free of problems. Goodwin and Wright (2010 , p. 355) argue that “all 

the extant forecasting methods – including the use of expert judgment, statistical forecasting, 

                                                 
6 This chapter is largely based on the publication Hamarat, C., J. H. Kwakkel and E. Pruyt (2013). "Adaptive Robust 
Design under Deep Uncertainty." Technological Forecasting and Social Change 80(3): 408-418. 
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Delphi and prediction markets – contain fundamental weaknesses”. Popper et al. (2009) state that 

the traditional methods “all founder on the same shoals: an inability to grapple with the long-term’s 

multiplicity of plausible futures”.  

Modeling used for policymaking under uncertainty long faced the same inability to grapple with 

the long-term’s multiplicity of plausible futures. Although testing parametric uncertainty is standard 

practice in modeling, and the importance to present a spectrum of runs under very different 

hypotheses covering the range of their variation was recognized decades ago (Meadows, 

Richardson et al. 1982, p.149), modellers were until recently unable to truly overcome this inability 

due to computational barriers encountered when dealing with complex systems (Lempert, Popper 

et al. 2003). Adaptive foresight studies would also hugely benefit from enhanced computational 

assistance (Eriksson and Weber 2008).  

If uncertainties are not just parametric, but also relate to functional relations, model hypotheses 

and aspects, model structures, mental and formal models, worldviews, modeling paradigms, the 

effects of policies on modeled systems, and the lack of consensus on the valuation of model 

outcomes, i.e. in case of ‘deep uncertainty’, then traditional modeling and model-based 

policymaking tends to fail. Deep uncertainty pertains according to Lempert et al. (Lempert, Popper 

et al. 2003) to those “situations in which analysts do not know, or the parties to a decision cannot 

agree on, (1) the appropriate conceptual models which describe the relationships among the key 

driving forces that shape the long-term future, (2) the probability distributions used to represent 

uncertainty about key variables and parameters in the mathematical representations of these 

conceptual models, and/or (3) how to value the desirability of alternative outcomes”. Deep 

uncertainty pertains, in other words, from a modellers’ perspective to situations in which a 

multiplicity of alternative models could be developed for how (aspects of) systems may work, many 

plausible outcomes could be generated with these models, and outcomes could be valued in 

different ways, but one is not able to rank order the alternative system models, plausible outcomes, 

and outcome evaluations in terms of likelihood (Kwakkel, Walker et al. 2010). Hence, all alternative 

system models, plausible scenarios, and evaluations require consideration, without exception, and 

none should be treated as the single best model representation, true scenario, or correct evaluation. 

It is clear that there is a strong need for policymaking approaches that allow for dealing with deep 

uncertainty, i.e. with many different kinds of uncertainties, multiple models, a multiplicity of 

plausible scenarios and evaluations of these scenarios (Porter, W.B. et al. 2004).  

In this chapter, we propose an iterative model-based approach for designing adaptive policies that 

are robust under deep uncertainty. The approach starts from a conceptualization of the decision 

problem and the identification of the key uncertainties. Next, an ensemble of models is developed 

that explicitly allows for the exploration of the uncertainties. The behavior of the ensemble is 

analyzed and troublesome or advantageous (combinations of) uncertainties are identified, 

stimulating policy design. Iteratively, the initial design is fine-tuned until there are no remaining 

troublesome (combinations of) uncertainties or the policy is deemed satisfactory based on other 

grounds. This approach thus explicitly uses the multiplicity of plausible futures for policy design, 
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addressing one of the shortcomings of many traditional approaches and practices, i.e. the poor 

utilization of the potential to be prepared for uncertainties and surprises of future developments 

(Volkery and Ribeiro 2009). The systemic characteristic of the proposed approach enables a holistic 

and systemic exploration of the future, which is of great importance in FTA (Cagnin and Keenan 

2008).  

The proposed approach is illustrated by means of a long-term policymaking case related to the 

transition of energy system toward sustainability. Energy systems are complex, their development 

over time is dynamically complex, and many aspects related to these systems and their future 

developments are deeply uncertain. Current attempts at steering the transition toward a more 

sustainable and cleaner configuration are static and may not be very effective and efficient in 

various futures, i.e. they may not be robust. This energy transition case is therefore used for 

illustrating how this approach could be used for policymaking, and more generally, decision-making 

under deep uncertainty.  

The rest of the chapter is organized as follows. Section 3.2 introduces an adaptive policymaking 

framework and our Adaptive Robust Design approach. Section 3.3 contains the energy transition 

case and the illustration of our approach to it. Section 3.4 includes the discussion. Concluding 

remarks are made in section 3.5.  

3.2. Methodology: The Adaptive Robust Design (ARD) Approach 

3.2.1. The Adaptive Policymaking Framework 

Under deep uncertainty, predictive approaches are likely to result in policies that perform poorly. 

In response, an alternative policymaking paradigm has emerged. This paradigm holds that, under 

deep uncertainty, policymaking needs to be dynamic with built-in flexibility (Walker, Rahman et al. 

2001, Lempert, Popper et al. 2003, Neufville and Odoni 2003, Albrechts 2004, Schwartz and 

Trigeorgis 2004, Eriksson and Weber 2008, Swanson, Barg et al. 2010). The initial ideas for this 

paradigm were developed almost a century ago. Dewey (1927) put forth an argument proposing 

that policies be treated as experiments, with the aim of promoting continual learning and adaptation 

in response to experience over time (Busenberg 2001). Policy learning is also a major issue in 

evolutionary economics of innovation (Mytelka and Smith 2002, De La Mothe 2006, Faber and 

Frenken 2009). Early applications of adaptive policies are also found in the field of environmental 

management (Holling 1978, McLain and Lee 1996), where policies are designed from the outset to 

test clearly formulated hypotheses about the behavior of an ecosystem being changed by human 

use (Lee 1993). A similar attitude is also advocated by Collingridge (1980) with respect to the 

development of new technologies. Given ignorance about the possible side effects of technologies 

under development, he argues that one should strive for correctability of decisions, extensive 

monitoring of effects, and flexibility. More recently, Brans et al. (Brans, Macharis et al. 1998) and 

Walker et al. (2001) developed a structured, stepwise approach for dynamic adaptation. Walker et 

al. (2001) advocate that policies should be adaptive: one should take only those actions that are 

non-regret and time-urgent and postpone other actions to a later stage. In order to realize this, it is 
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suggested that a monitoring system and a pre-specification of responses when specific trigger 

values are reached should complement a basic policy. The resulting policy is flexible and adaptive 

to the future as it unfolds.  

 

 

Figure 8: Steps of the Adaptive Policymaking Framework. Source: (Kwakkel, Walker et al. 2010) 

Figure 8 shows a framework that operationalizes the high-level outline of adaptive policymaking. 

In Step I, the existing conditions of an infrastructure system are analyzed and the goals for future 

development are specified. In Step II, the way in which this is to be achieved is defined. This basic 

policy is made more robust through four types of actions, which are specified in Step III, namely 

by mitigating actions to reduce the certain adverse effects of a policy; hedging actions to spread or 

reduce the negative impacts of uncertain adverse effects of a policy; seizing actions to profit from 

opportunities; and shaping actions to reduce the likelihood that an external condition or event that 

could make the policy fail will occur, or to increase the chance that an external condition or event 

that could make the policy succeed will occur. Even with the actions taken in Step III, there is still 

the need to monitor the performance of the policy and take action if necessary. This is called 
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contingency planning, and is implemented in Step IV. Signposts specify information that should 

be tracked in order to determine whether the policy is progressing toward success. Critical values 

of signpost variables (triggers) are chosen, beyond which actions should be implemented to ensure 

that the policy keeps moving the system at a proper speed in the right direction. There are four 

different types of actions that can be triggered by a signpost: defensive actions are taken to reinforce 

the basic policy, preserve its benefits, or meet outside challenges in response to specific triggers 

that leave the basic policy unchanged; corrective actions are adjustments to the basic policy; 

capitalizing actions aim at taking advantage of opportunities that improve the outcomes of the 

basic policy; and a reassessment of the policy is initiated when the analysis and assumptions critical 

to the policy’s success have lost validity. 

In a recent special issue of Technological Forecasting and Social Change on adaptivity in decision-making, 

the guest editors conclude, “Adaptive policymaking is a way of dealing with deep uncertainty that 

falls between too much precaution and acting too late. While the need for adaptation is increasingly 

acknowledged, it is still a developing concept, and requires the further development of specific 

tools and methods for its operationalization” (Walker, Marchau et al. 2010). More specifically, for 

adaptive policymaking to become a useful policymaking approach, it is necessary to specify in more 

depth how the various steps could be carried out and which methods and techniques could be 

employed in each of the steps. That is, adaptive policymaking needs to move from being a high-

level concept captured in a flowchart, to being a detailed policymaking approach. A possible 

qualitative approach for operationalizing the Adaptive Policymaking Framework is through 

structured workshops (Van der Pas et al. , 2012). A possible quantitative approach for 

operationalizing the Adaptive Policymaking Framework is by using Exploratory Modeling and 

Analysis (Bankes 1993, Agusdinata 2008, Pruyt and Kwakkel 2012). This computational approach, 

which we call the Adaptive Robust Design (ARD) approach, is proposed and illustrated below. 

3.2.2. The Adaptive Robust Design approach 

EMA is a methodology that uses computational experiments to combine plausible models and 

other uncertainties in order to generate a large variety of scenarios that are in turn used to analyze 

complex uncertain systems, support the development of long-term strategic policies under deep 

uncertainty, and test policy robustness over. EMA could also be used to develop adaptive policies 

under deep uncertainty since it allows for generating and exploring a multiplicity of plausible 

scenarios by sweeping multi-dimensional uncertainty space. EMA could then be used to identify 

vulnerabilities and opportunities present in this ensemble of scenarios, paving the way for designing 

targeted actions that address vulnerabilities or seize opportunities. The efficacy of the resulting 

policies could then be tested over the entire ensemble of scenarios. Moreover, EMA could be used 

to identify conditions under which changes in a policy are required. That is, it could help in 

developing a monitoring system and its associated actions. It thus appears that EMA could be of 

use in all adaptive policymaking steps. 

Hence, our Adaptive Robust Design (ARD) approach starts along the lines of the EMA 

methodology with: (1) the conceptualization of the problem, (2) the identification of uncertainties 
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(and certainties), and (3) the development of an ensemble of models that allows generating many 

plausible scenarios. It then proceeds with (4) the generation of a large ensemble of cases, where 

each case represents a realization of one specific future. Subsequently, (5) using scenario discovery 

(Bryant and Lempert 2010), this ensemble of cases is analyzed in order to identify troublesome 

and/or promising regions across the outcomes of interest, as well as the combination of 

uncertainties that cause these troublesome and promising regions. The next steps are: (6) the design 

–informed by the analysis in Step 5– of policies for turning troublesome regions into unproblematic 

regions, (7) the implementation of the candidate policies in the models, (8) the generation of all 

plausible scenarios subject to the candidate policies, (9) the exploration and analysis of the 

ensemble of scenarios obtained in Step 8 in order to identify troublesome and/or promising regions 

across the outcomes of interest, as well as the main causes of densely concentrated troublesome 

and/or promising regions, etc. Steps 5-8 should be iterated until (an adaptive) policy emerges with 

robust outcomes (see Figure 9).  

 

Figure 9: The Iterative Adaptive Robust Design process 

The identification of troublesome and/or promising regions is crucial for this approach to be 

efficacious. These sub-regions of the uncertainty space represent combinations of uncertainties 

that either have highly negative or highly positive effects. The troublesome regions and the 

promising regions correspond respectively to vulnerabilities and opportunities in the adaptive 

policymaking framework. If uncertainties have a positive or negative effect across all the regions, 

then they are typically best addressed in the basic policy or through actions aimed at enhancing the 

robustness of the basic policy, while uncertainties of relevance only in particular regions are 

typically better handled through monitoring and associated corrective, defensive, or capitalizing 

actions. 

In order to identify the troublesome and promising regions, we use an adapted version of the 

Patient Rule Induction Method (PRIM) (Friedman and Fisher 1999, Lempert, Groves et al. 2006, 

Groves and Lempert 2007, Kwakkel, Auping et al. under review) –one that can deal with categorical 
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and continuous uncertainties– which allows distilling uncertainty sub-spaces with high positive 

match ratios for a pre-specified binary classification function and with high relative masses (above 

a pre-specified threshold relative to the total scenario space). PRIM is particularly valuable as a 

scenario discovery algorithm for identifying troublesome subspaces of the multi-dimensional 

uncertainty space, and hence, for developing specific adaptive actions for adaptive policies. CART 

has been illustrated as an alternative scenario discovery algorithm in the previous chapter. Both 

PRIM and CART can be used to find regions of interest in the uncertainty space for designing 

policies that target such regions. Although PRIM requires more interaction than CART, as the 

regions identified by PRIM are easier to interpret, we have chosen to use only PRIM in this chapter.  

PRIM has been used in combination with EMA by other authors (Lempert, Groves et al. 2006, 

Groves and Lempert 2007, Kwakkel, Auping et al. 2013). Those applications, however, aimed at 

translating the troublesome regions back to qualitative scenarios that could then be presented to a 

decision maker. Here, the troublesome and promising regions identified with PRIM are used 

directly for designing adaptive policies and the corresponding monitoring structures.  

The approach for developing adaptive policies as presented here shares characteristics with ‘Robust 

Decision-making (RDM)’ (Lempert, Popper et al. 2003, Lempert, Groves et al. 2006, Lempert and 

Collins 2007, Bryant and Lempert 2010). Like in RDM, we emphasize the iterative character of 

policy formation. However, by connecting this to a particular framework for the design of adaptive 

policies, our approach is more specific on the various ways in which uncertainties can be handled 

through policies. Related to this, the approach focuses not solely on the negative side of the 

uncertainties, but also explicitly considers the opportunities that uncertainties can present. Another 

difference is that RDM relies on the notion of regret and uses a modified version of the expected 

utility framework (Lempert and Collins 2007), our approach does not entail such a stance. We use 

a robustness metric similar to signal-to-noise ratio, where mean is divided by standard deviation. 

Finally, in the exemplary paper on RDM (Lempert, Groves et al. 2006), there is a need for 

significant computational power due to sampling techniques used, whereas through the utilization 

of computationally more efficient methods such as PRIM, more efficient sampling techniques can 

be employed. 

3.3. Case: The ARD Process Elucidated 

3.3.1. Introduction to the Energy Transitions case 

In order to illustrate how the ARD approach helps in designing adaptive policies, we present an 

illustrative case study about developing an adaptive policy for stimulating the transition of the 

electric power generation sector toward a more sustainable one. Transitions are large systematic 

societal transformations that, in general, are characterized by long periods over which they play 

out. Energy transitions are characterized by many deep uncertainties related to transition 

mechanisms, to the various competing technologies, and to human and organizational decision-

making (Störmer, Truffer et al. 2009). Here we focus on the competition between technologies. 
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In order to achieve a sustainable future, there is a strong need for a transition in many domains, 

including transportation, housing, water and energy (Martens and Rotmans 2005). Energy is a 

crucial domain in which a fundamental transition toward clean generation technologies is desirable 

(Loorbach, Frantzeskaki et al. 2010) for environmental and security reasons. The current energy 

system is mainly dominated by fossil energy generation technologies, which are being challenged 

by rapidly evolving emerging technologies. Although new sustainable energy technologies are 

entering the market, their contribution to the total amount of energy generation is still relatively 

small. Transition of the energy system toward sustainability depends on the developments related 

to new technologies.    

Such developments are typically characterized by nonlinearity and uncertainty regarding 

technological characteristics and market adoption (Abernathy and Clark 1985, Rip 1995). For 

example, precise lifetimes of technologies are not known and expected values are used in planning 

decisions. In addition, since the installation of new capacity mostly happens in large chunks, 

planning is complex and happens under uncertainty, and construction times are open to surprises 

affecting the actual completion time. Other important uncertainties are related to learning effects 

on costs and technological performance. Costs and technological performance, and expectations 

related to them, in turn influence the adoption and survival of technologies during the transition. 

These uncertainties play a crucial role and need to be taken into account when analyzing the 

dynamics of energy transitions and when trying to influence them by means of adaptive policies. 

In order to explore the problem and the uncertainties of energy transitions, a System Dynamics 

(Forrester 1961, Sterman 2000) model developed for exploring the dynamics of energy systems 

transitions (Pruyt, Kwakkel et al. 2011) is used in this study which is the same SD model used in 

Chapter 2. The SD model incorporates, at a high level of aggregation, the main structures driving 

the competition among four energy technologies. Technology 1 represents old dominant non-

renewable technologies. The other three technologies are at the start of the simulation relatively 

new, more sustainable, and more expensive. Since fast and relatively simple models are needed 

for EMA, the more sustainable technologies (2, 3 and 4) are considered generic for the sake of 

simplicity. The four technologies compete with each other in order to increase their share of 

energy generation, driven by mechanisms such as total energy demand, investment costs and the 

effect of learning curves on costs. A more detailed explanation of the model can be found in 

(Pruyt, Kwakkel et al. 2011). Moreover, the uncertainties taken into consideration and their 

corresponding ranges are displayed in Table 12. 

. 
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Table 12: Overview of the uncertainties 

Uncertainties Description Type Range or Categories 

Initial capacities 
Starting value of the installed 

capacity of a technology 
Parametric 

Varying between 1 and 

16000 MW for different 

technologies 

Lifetimes 
Expected lifetime of a 

technology 
Parametric 

Varying between 15 and 50 

years for different 

technologies 

Delay orders of 

lifetimes 

Orders of the 

decommissioning delays  
Categorical 1st, 3rd, 10th, 1000th  

Initial 

decommissioned 

capacities 

Initial values of the total 

decommissioned capacities 

of the technologies 

Parametric 

Varying between 10 and 

10,000,0000 MW for 

different technologies 

Planning and 

construction 

periods 

Average period for planning 

and constructing new 

capacity for a technology 

Parametric 

Varying between 1 and 5 

years for different 

technologies 

Progress ratios 

Ratio for determining cost 

reduction due to learning 

curve 

Parametric 

Varying between 70% and 

95% for four different 

technologies 

Initial costs 

Initial investment cost of 

new capacity of a particular 

technology 

Parametric 
Varying between €500000 

and €10 million per MW 

Economic growth Economic growth rate Parametric 

Randomly fluctuating 

between -0.01 and 0.035 

(smoothed concatenation of 

10-year random growth 

values) 

Investment 

preference 

structures 

Preferences criteria and 

weights for investing in new 

capacity of each of  the  

technologies 

Parametric 

weights & 

categorical 

switches  

Preference for (more) 

familiar technologies [called 

here the Preference ‘Against 

unknown’]; Preference for 

(higher) expected progress; 

Preference for (higher) ‘CO2 

avoidance’;  Preference for 

(lower) ‘Cost per MWe’ 

3.3.2. Results without policy 

In order to explore the behavior of the simulation model over a wide variety of conditions, we 

utilize a workbench that is written in Python (Van Rossum 1995) which controls Vensim through 

its Dynamic Link Library (Ventana Systems Inc. 2010, Ventana Systems Inc. 2011). Using Latin 

Hypercube Sampling (LHS) (McKay, Beckman et al. 1979), a ‘no policy’ ensemble of 10,000 
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simulations7 was generated. In the model used, at least one preference criterion must be activated 

(switch value equal to 1) for each run, else the run needs to be excluded: out of 10,000 simulations, 

651 cases were excluded for that reason. Figure 10 shows the results of 1,000 randomly selected 

cases out of the remaining 9349 runs in the post-processed ‘no policy’ ensemble. The figure shows 

the behavior over time for the outcome indicator ‘fraction of new technologies of total energy 

generation’ as well as the Gaussian Kernel Density Estimates (KDEs) (Eric Jones, Travis Oliphant 

et al. 2001) of the end states.  

 

Figure 10: Total fraction of new technologies for the ‘no policy’ ensemble 

These results show that the fraction of new technologies seems to be concentrated around 60% of 

total generation capacity by the simulated year 2100, which means that over the 100-year simulation 

time, the fraction of new technologies remains below 60% for about half of the runs. If the goal is 

an energy transition toward sustainability, then this ensemble as a whole is unlikely to be acceptable 

and requires policy intervention. Hence, we use PRIM to identify relatively large regions in the 

uncertainty space that generate relatively high concentrations of undesirable results, and the 

combinations of uncertainties and their values that lead to these regions. To this end, the end states 

for the total fraction of new technologies are classified as 1 if the fraction is below 0.60 and 0 

otherwise Using PRIM; three troublesome uncertainty sub-spaces that contain at least 70% of the 

cases of class 1 are identified. These regions are characterized by specific combinations of 

uncertainties: Table 13 shows the full range of the uncertainties (first row), and the uncertainty 

ranges for each of these troublesome regions (other rows). Since PRIM seeks for regions in the 

uncertainty space with specific characteristics, not all of the uncertainties but only the uncertainties 

that determine the sub-spaces are shown. The lower range of the ‘lifetime of Technology 1’ is 

relevant for all three sub-spaces, i.e. the adoption of new sustainable technologies is hampered –in 

combination with the other uncertainties of the sub-spaces– by longer lifetimes of the dominant 

technology. Although a low performance of Technology 2 on the ‘CO2 avoidance’ criterion, a high 

performance of Technology 1 on the ‘expected cost per MWe’ criterion, a short lifetime for 

                                                 
7 Although we used the same SD model as in the previous chapter, we ran a bigger set of  experiments as we had 
more computational power and improved computational scripts used for analysis. 
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Technology 3, and a short planning and construction time for Technology 1 also hinder the 

transition toward sustainability, none of these uncertainties and their ranges are as unambiguous as 

the lifetime of Technology 1 (for all regions, not the lower ranges). Shortening the lifetime of 

Technology 1 therefore seems to be promising, i.e. a policy design that is implemented in this 

analysis into the basis policy design. 

Table 13: PRIM results for the no policy ensemble 

  

Preference 

against 

unknown 

Average 

planning & 

const. period 

Tech. 1 

Lifetime of 

Tech. 1 

Lifetime of 

Tech. 3 

CO2 

avoidance 

performance 

of Tech. 2 

Expected 

cost per 

MWe 

performance 

of Tech. 1 

  Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 

Original 2 5 1 5 30 50 15 40 1 5 1 2 

Region1 2 5 1 5 34.4 50 15 37.5 1 4.2 1.1 1.8 

Region2 2 5 1 4.8 33.7 50 15 37.5 1 4.4 1.1 2 

Region3 2.9 4.9 1 4.5 32.6 50 16.3 40 1 5 1.2 2 

 

3.3.3. Basic adaptive policy 

Shortening the lifetime of Technology 1 could be achieved by increasing its decommissioning, for 

as long as the fraction of new technologies remains below a particular target fraction, say 0.8, 

assuming that 80% is a reasonable target for the fraction of sustainable technologies. To assess the 

performance of this basic policy, the same 9,349 experiments used for exploring the no policy case 

are now executed with the basic policy. Figure 11 displays the envelopes spanning the upper and 

lower limits of the total fraction of new technologies for the no policy ensemble (in blue) and the 

basic policy ensemble (in green) as well as the KDEs of the end states of all runs in the respective 

ensembles.  

 

Figure 11: Comparison of no policy and basic policy for total fraction of new technologies 
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The upward shift of the sustainable fraction in Figure 11 means that the need for new capacity 

resulting from the additional decommissioning of Technology 1 is to a large extent filled by new 

technologies. Hence, the basic policy stimulates the transition from Technology 1 to new 

technologies, at least to some extent. Although there is an improvement in terms of the fraction of 

sustainable technologies, there is still room for further improvement. Many runs still end below 

the 60% new technologies threshold. For this reason, we applied PRIM once more with the same 

classification rule in order to identify troublesome regions for the basic policy.  

The basic policy aimed at increasing the decommissioning of the dominant technology, since all 

PRIM boxes indicated decreasing the negative effect of the lifetime of Technology 1 would help 

to increase the fraction of new technologies. The second iteration PRIM results show there are 

three very different troublesome regions in the basic policy ensemble: The first region relates to 

the performance of the technologies on the CO2 avoidance criterion, the second region relates to 

the underperformance of Technology 2, and the third region is determined by uncertainties related 

to economic growth and expected progress. 

3.3.4. Robust policy 

To redesign and improve the basic policy, it is necessary to analyze the characteristics of the PRIM 

regions to identify the vulnerabilities that generate the undesirable outcomes. The main drivers of 

the first region are the CO2 avoidance performance values for Technology 1, 2, and 3. If the CO2 

avoidance performance of the dominant technology is high, while it is low for the new technologies, 

then transition toward new technologies is limited. Additionally, the region shows that higher 

performance for expected cost per MWe of the dominant technology also limits the transition. 

This outcome is not undesirable: it means that the old dominant technology outperforms the other 

technologies in terms of expected investments costs and CO2 avoidance, which, in our case (not 

considering long-term security of supply), serves the same goal as the transition. Hence, it is not 

necessary to design a strategy for this region; this uncertainty sub-space consists of acceptable 

scenarios in terms of CO2 avoidance even though the transition to new technologies is limited.  

The second region is mainly driven by uncertainties related to Technology 2. A shorter lifetime, 

lower performance of CO2 avoidance, and longer planning and construction period for Technology 

2, lead to low fractions of sustainable technologies. The results indicate that Technology 1 becomes 

more preferable than Technology 2, which is initially the main alternative to Technology 1. In this 

situation, a reasonable defensive action would be to focus on the other sustainable technologies, in 

order to promote the transition toward these technologies instead. To address this vulnerability, a 

signpost tracking the progress of Technologies 2, 3 and 4 could be used. The point where the 

performance of Technology 3 or 4 equals the performance of Technology 2 could be the trigger 

for this signpost. Using this trigger, the corrective action would be to stop investing in Technology 

2 and to shift investments to Technologies 3 and 4 instead. Therefore, we modified our basic policy 

by adding the monitoring and corrective actions and reran the experiments. Although the end state 

of the total fraction of new technologies does not improve much, the installed capacities of 
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Technologies 3 and 4 increase. This means that the defensive action developed for the second 

region served its purpose by steering the commissioning toward Technologies 3 and 4. 

The third region shows that certain combinations of economic growth factors and preference for 

the expected progress criterion may also hinder the energy transition. Each of the economic growth 

parameters indicated in the third region corresponds to the value of economic development for 

ten years and together they constitute the overall behavior of economic development over 100 

years. Although it is difficult to interpret the combination of these economic growth parameters, 

one could conclude that certain combinations of these parameters hinder the breakthrough of new 

technologies. Since the way in which economic development is represented in this model creates 

cyclic behavior, a possible corrective action could be to partly decouple the adoption of new 

technologies from the economic cycle with the help of subsidies and additional commissioning of 

new technologies. For this purpose, we use the investment cost of new technologies as a signpost. 

A possible defensive action would be to subsidize one or more sustainable technologies for some 

time to make them competitive. Hence, the costs of Technology 2, 3 and 4 are monitored over 

time and when their costs are close enough to the cost of the dominant technology, a 20% cost 

reduction of the new technologies is triggered over a period of 10 years. To further address this 

vulnerability, we also add a hedging action to the basic policy in the form of additional 

commissioning of Technologies 3 and 4 in their early years. These actions together aim at making 

the sustainable technologies more cost efficient once their costs are reasonably affordable levels, 

and to promote the transition toward new technologies in their early years. The economic action 

is successful in promoting sustainable technologies and increasing the total fraction after the first 

10 years (around 2020). The adoption of the new technologies in later years is also higher than 

under the basic policy, suggesting that these cost reductions are effective. 

To improve the performance of the adaptive policy even further, the triggers used for adaptivity 

were optimized using robust optimization (Ben-Tal and Nemirovski 1998, Ben-Tal and Nemirovski 

2000, Bertsimas and Sim 2004). Using the trigger values optimized over the entire ensemble for 

the actions previously discussed significantly improves the adaptive policy. Figure 12 shows a 

comparison in terms of the total fraction of new technologies of the ‘no policy’ ensemble, the ‘basic 

policy’ ensemble, and this ‘adaptive policy’ ensemble over the same uncertainty space, i.e. using the 

same experimental design. 
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Figure 12: Comparison of no policy, basic policy and adaptive policy for total fraction of new technologies 

It shows that the ‘adaptive policy’ ensemble, although hardly improving the extremes, outperforms 

the ‘basic policy’ and ‘no policy’ ensembles on this key performance indicator. The adaptive policy 

is a better guarantee for a successful transition towards new technologies under deep uncertainty. 

The distribution of the end values for adaptive policy (in red) shows that there are more runs that 

have higher fractions of new technologies.  

3.4. Conclusions 

In this chapter, we proposed an iterative computational approach for designing adaptive policies 

that are robust under deep uncertainty. The proposed approach has been illustrated on an energy 

transition case. Several of our findings warrant further discussion. 

An important issue relates to the hedging action of Tech 3 and 4, and the monitoring of the costs. 

Figure 12 shows that these actions are effective in the early years, but lose their effect after 2020 

due to the time-restricted nature of the hedging action. However, it is not possible to conclude that 

this reduction in effectiveness is caused only by the nature of the hedging action. The figure allows 

only seeing the bandwidth of the outcome but not revealing the dynamics over time. To reveal the 

underlying mechanism leading to a decline after 2020, it is necessary to identify those runs that 

improve around 2020 and then collapse. A modified classification in combination with PRIM could 

be utilized for such an analysis.  

This study also has implications for Future-Oriented Technology Analysis (FTA). Transitions 

represent large structural and systematic transformations and the transition toward a more 
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sustainable energy generation system is a grand societal challenge. This study shows how EMA and 

the proposed iterative Adaptive Robust Design approach can be employed for shaping and steering 

transitions toward more sustainable energy systems. Thus, this study is in line with the purpose of 

FTA projects that aim at developing long-term, adaptive, and robust policies for socio-economic 

and technological changes (i.e. energy transitions). This study illustrated the potential of EMA for 

FTA as suggested by Porter et al. (2004).  

Uncertainties and surprises are inevitable and intrinsic to FTA projects. The adequate handling of 

uncertainty is thus of prime importance. Using FTA for planning for action is one area where the 

handling of uncertainty is crucial. Here, the goal should be to aim for plans that are adequate across 

the multiplicity of plausible future worlds. This chapter shows a way in which EMA can be utilized 

to support the iterative development and refinement of adaptive policies in light of a clear 

exploration of the multiplicity of plausible futures. That is, the chapter offers a new technique for 

FTA practitioners in their work of supporting long-term planning.  

Another important challenge in many FTA projects is supporting a multi-actor process. Different 

perspectives, different worldviews or different mental models of various stakeholders are usually 

the norm in FTA projects and may result in situations where the results of FTA projects are 

contested by one or more of the actors involved in the process if the diversity of views and/or 

actors is not properly cared for. Here, EMA can be of use, since EMA allows incorporating a 

multiplicity of perspectives, worldviews, mental models or quantitative models. That is, EMA could 

be used to support an inclusive modeling process from the start, where different beliefs about how 

a system functions, or which aspects of a problem are important, are explicitly taken into account 

and assessed for their consequences. 

We have proposed an iterative model-based approach for developing adaptive policies under 

uncertainty. The proposed approach, which we call Adaptive Robust Design, has been illustrated 

through a case about the structural and systemic transformation of energy generation systems 

toward a more sustainable future. Our analysis shows that ARD can be used to develop long-term, 

adaptive and robust policies for grand societal transformations. Furthermore, this study has shown 

that Exploratory Modeling and Analysis can be utilized successfully in the context of adaptive 

policymaking. The iterative approach for designing robust adaptive policies helps to identify and 

address both vulnerabilities and opportunities, resulting in a dynamic adaptive policy that improves 

the extent to which the energy system transits to a more sustainable functioning. 

There is a growing awareness about the need for handling uncertainty explicitly in decision-making. 

The recent financial and economic woes have rekindled a wider interest in approaches for handling 

uncertainty. However, there is also a certain degree of skepticism about the extent to which models 

can be used for decision-making under uncertainty. In addition, all the extant forecasting methods 

contain fundamental weaknesses and struggle deeply in grappling with the long-term’s multiplicity 

of plausible futures. The presented case illustrates how models can be used to support decision-

making, despite the presence of a wide variety of quite distinct uncertainties and a multiplicity of 

plausible futures. A central idea in this approach is to use the available models differently, instead 
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of using them in a predictive manner and ignoring many uncertainties. The models were used here 

to explicitly explore a plethora of uncertainties in order to assess the implications of these 

uncertainties for decision-making.  
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In the previous chapter, we have introduced the Adaptive 

Robust Design (ARD) approach, robust optimization and 

how it can be used together with ARD approach. Robust 

optimization has helped design robust policies that can deal 

with deep uncertainty in the policymaking. It is also crucial to 

deal with the multiplicity of possibly conflicting objectives in 

the policy design. 

Now, we will introduce how to use multi-objective 

optimization and illustrate how useful it can be for policy 

design. Together with robust optimization, next chapter 

demonstrates how multi-objective robust optimization 

approach helps alleviate the problem of multiple objectives with 

diverging preferences.
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Chapter 4 -  ARD & Multi-Objective Robust 

Optimization8 

4.1. Introduction 

Policymaking for complex adaptive systems requires dealing with dynamic complexity and deep 

uncertainty. Complex adaptive systems are composed of interacting heterogeneous agents that act 

independently, interact with each other, and adapt their behavior over time (Miller and Page 2009, 

Desouza and Lin 2011). Out of these interactions, emerge global regularities that show dynamic 

behavior over time due to the intrinsic adaptations taking place by the individual heterogeneous 

agents. The result of this is that when making policy for complex adaptive systems, one is 

confronted by intrinsic unpredictability (Desouza and Lin 2011). Various traditional approaches 

have been proposed to improve policymaking. There are two main analytical reasons why 

traditional approaches for policymaking mostly do not perform satisfactory when applied to 

complex adaptive systems. First, traditional planning approaches start from predicting the future 

and preparing a plan for meeting this future (Quay 2010). Second, the typical plan is static and not 

designed to be changed over time (Walker, Rahman et al. 2001, Albrechts 2004, Wilby and Dessai 

2010, de Neufville and Scholtes 2011). Due to their nature, static policies based on predictions of 

the future are ineffective and inappropriate for dealing with complexity under uncertainty. Hence, 

there is a need for innovative approaches for dealing with complexity and uncertainty, especially 

deep uncertainty.  

Deep uncertainty is encountered when the different parties to a decision do not know or cannot 

agree on the system model that relates consequences to actions and uncertain model inputs 

(Lempert, Popper et al. 2003), or when decisions are modified over time (Hallegatte, Shah et al. 

2012). In these cases, it is possible to enumerate the possibilities  (e.g. sets of model inputs, 

alternative relationships inside a model, etc.), without ranking these possibilities in terms of 

perceived likelihood or assigning  probabilities to the different possibilities (Kwakkel, Walker et al. 

2010).  

Policies that can be adapted over time in response to how the uncertainties resolve have been 

suggested as a way of improving the performance of policies in the presence of deep uncertainty 

(Walker, Marchau et al. 2010). The idea of adaptivity dates back almost a century ago. Dewey 

(Dewey 1927) suggested that policies could be used as experiments that can stimulate learning and 

adaptation, allowing the policy to evolve based on experience (Busenberg 2001). Early applications 

of adaptive policies can be found in the field of environmental management (Holling 1978, McLain 

and Lee 1996). Policies are designed from the outset to test well-formulated hypotheses about how 

the behavior of an ecosystem will react to human actions (Lee 1993). A similar attitude is also 

                                                 
8 This chapter is largely based on the publication Hamarat, C., J. H. Kwakkel, E. Pruyt and E. T. Loonen (2014). "An 
exploratory approach for adaptive policymaking by using multi-objective robust optimization." Simulation Modelling Practice and Theory 
46 (2014): 25-39. 
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advocated by Collingridge (Collingridge 1980) with respect to the development of new 

technologies. Given ignorance about the possible side effects of technologies under development, 

he argues that one should strive for correctability of decisions, extensive monitoring of effects, and 

flexibility.  

Over the last few years, substantial work has been done on the design of adaptive policies in a 

variety of policy domains. In transport policy, (Walker, Rahman et al. 2001, de Neufville and Odoni 

2003, Kwakkel, Walker et al. 2010) all put forward adaptive planning approaches for airports, 

(Marchau and Walker 2003, van der Pas, Marchau et al. 2010, van der Pas, Kwakkel et al. 2012) put 

forward adaptive policies for the implementation of intelligent speed adaptation measures, and 

more broadly (Marchau, Walker et al. 2009) outlines the benefits of adaptive policies for transport 

policy in general. In water resources management, examples of adaptive policymaking include 

(Dessai and Hulme 2007, Matrosov, Padula et al. 2013, Matrosov, Woords et al. 2013). In climate 

adaptation, (Dessai, Hulme et al. 2009, Hallegatte 2009, Lempert and Groves 2010, Haasnoot, 

Middelkoop et al. 2012, Hall, Brown et al. 2012, Haasnoot, Kwakkel et al. 2013, Weaver, Lempert 

et al. 2013) all argue for adaptive policies. A common theme running through this work in different 

policy domains is that one should take only those actions that are non-regret and time-urgent and 

postpone other actions to a later stage (Walker, Haasnoot et al. 2013). However, in none of this 

work so far, a method has been put forward for identifying when to adapt the policy (IISD 2006, 

Walker, Marchau et al. 2010, Hamarat, Kwakkel et al. 2013).  

It has been argued that computational modeling approaches are promising for designing adaptive 

policies (Bankes 2002, Dessai, Hulme et al. 2009, Desouza and Lin 2011). Various model-based 

decision support techniques have been put forward that can be used to support the design of 

adaptive policies. These include Robust Decision-making (RDM) (Lempert 2002, Lempert, Popper 

et al. 2003, Lempert and Groves 2010), Info-gap decision theory (Ben Haim 2006), Real options 

(de Neufville and Scholtes 2011) and Adaptive Robust Design (Hamarat, Kwakkel et al. 2013). 

There is an emerging literature comparing and contrasting these different approaches (Hall, 

Lempert et al. 2012, Matrosov, Padula et al. 2013, Matrosov, Woords et al. 2013, Walker, Haasnoot 

et al. 2013).  

Here, we focus on Adaptive Robust Design, which in essence combines RDM with an explicit 

framework for adaptive policies (Hamarat, Kwakkel et al. 2013, Walker, Haasnoot et al. 2013). Of 

central importance to adaptive policymaking is the idea that future actions are activated only if and 

when necessary. That is, the design of a monitoring system with associated trigger values for 

activating pre-specified actions is at the heart of adaptive policymaking. The outlined approach can 

be used to identify the conditions under which changes in the policy are required. However, this 

leaves unresolved the question at which trigger values actions should best be activated. The 

challenge here is finding an appropriate balance between activating actions too early and too late. 

Specifying appropriate trigger values is further complicated by the presence of different 

stakeholders with different preferences. A good trigger value for one actor might be far from ideal 
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for another. This chapter specifically addresses the problem of specifying good trigger values in 

the presence of multiple stakeholders with different preferences.  

When a simulation model is used to find the optimum input parameters of a given system to 

determine expected performance, this is called simulation optimization (Pierreval and Paris 2003, 

Andradóttir 2007). The literature on model-based decision support for adaptive policymaking has 

ignored the use of simulation optimization until very recently. It has been argued that optimization 

is impossible because of uncertainty and the presence of multiple stakeholders with diverging 

preferences (Lempert, Groves et al. 2006). Kasprzyk et al. (Kasprzyk, Nataraj et al. 2013) used a 

simulation optimization approach to identify feasible designs, the robustness of which was 

subsequently tested using RDM; and Matrosov et al. (Matrosov, Padula et al. 2013) compared 

economic optimization with RDM and argued that these approaches should somehow be 

combined. In this chapter, we build on this work. We argue that the problem caused by uncertainty 

can be addressed using robust optimization and adopting a multi-objective optimization approach 

can alleviate the problem caused by the presence of multiple stakeholders with diverging 

preferences. More specifically, we argue that the problem of identifying when to adapt a policy can 

be addressed through multi-objective robust optimization. We demonstrate this multi-objective 

robust optimization approach with a case study of the design of an adaptive policy for steering the 

transition of the EU energy system towards a more sustainable functioning. Our work thus differs 

from (Kasprzyk, Nataraj et al. 2013) in that we include the robustness analysis inside the simulation 

optimization approach, and as such we follow the suggestion of (Matrosov, Padula et al. 2013) on 

combining simulation optimization and RDM.  

The rest of this chapter is structured accordingly. Section 4.2 presents more details on the 

methodology. Section 4.3 introduces details on the case and simulation model used. Section 4.4 

presents the results. Section 4.5 contains our concluding remarks.  

4.2. Methodology: Multi-Objective Robust Optimization 

Vulnerabilities and opportunities are central concepts in adaptive policymaking. In order to design 

robust policies, it is crucial to identify combinations of uncertainties that have a substantial positive 

(opportunity) or negative (vulnerability) influence on the degree of goal achievement. Targeted 

actions can then be designed to either take advantage of the opportunity, or reduce the effect of 

the vulnerability. Such actions can be taken immediately, or at some future point in time when the 

conditions warrant it. The Patient Rule Induction Method (PRIM) (Friedman and Fisher 1999, 

Groves and Lempert 2007, Kwakkel, Auping et al. 2013) can be used for discovering vulnerabilities 

and opportunities. PRIM can be used for data analytic questions, where the analyst tries to find 

combinations of values for input variables that result in similar characteristic values for the 

outcome variables. Specifically, one seeks one or more subspaces of the model input space within 

which the value of an outcome of interest is considerably different from its average value over the 

entire model input space. PRIM describes these subspaces in the form of hyper-rectangular boxes 

of the model input space. It has been shown that the results of PRIM could be enhanced 
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significantly by preprocessing the data with Principal Component Analysis (PCA) (Dalal, Han et 

al. 2013). In this chapter, we use PCA PRIM for identifying vulnerabilities and opportunities.   

The adaptive part of an adaptive policy or plan takes the form of a monitoring system that specifies 

what information should be tracked, and under which pre-specified conditions pre-specified 

actions will be taken (Walker, Rahman et al. 2001, Kwakkel, Walker et al. 2010). A signpost is the 

information, which is tracked to decide whether it is necessary to take actions and a trigger is the 

critical value of a signpost that triggers to take actions. These signposts and triggers are defined 

during the contingency planning phase in adaptive policymaking. The efficacy of an adaptive plan 

hinges on the care with which the contingency planning is carried out. In the current adaptive 

policymaking literature, the values used for triggers are mostly based on logical guesses, expert 

opinions, or historical data (McDaniels, Mills et al. 2012). Given the importance of the monitoring 

system for the overall efficacy of an adaptive policy, there is a need for a more substantial way of 

determining appropriate trigger values. The use of optimization can be a possible solution for this 

problem. 

Optimization is widely used in various aspects of policymaking and in fields ranging from 

engineering to science, and from business to daily life. Optimization mostly refers to finding the 

optimum solution among a set of plausible alternatives under given constraints. However, this 

approach might be misleading for policymaking under deep uncertainty where optimizing a single 

goal is not the main aim (Bankes 2011). Under deep uncertainty, one best solution among a set of 

possible alternatives without violating the given constraints, i.e. an optimal solution, usually does 

not exist (Rosenhead, Elton et al. 1973, Bankes 2011). A field within optimization that allows to 

overcome the difficulties posed by uncertainty is robust optimization (Bertsimas, Brown et al. 

2011). Robust optimization methods aim at finding optimal outcomes in the presence of 

uncertainty (Ben-Tal and Nemirovski 2000, Bertsimas and Sim 2004, Dellino, Kleijnen et al. 2010). 

Adaptive policymaking requires proper handling of both parametric and structural uncertainties in 

order to develop robust policies. Therefore, robust optimization methods can be of great use for 

adaptive policymaking (Gabrel, Murat et al. 2013). 

The use of computational simulations for analyzing dynamic systems helps gather significant 

information about the system of interest (Pierreval 1992). More specifically, simulation is used for 

evaluating the performance of complex systems (Andradóttir 1998). In the simulation optimization 

field, several approaches have been proposed (Azadivar 1999, Fu 2002, Fu, Chen et al. 2008), 

although many of them assume a certain or fixed environment (Dellino, Kleijnen et al. 2010). 

However, improper handling of uncertainty may result in undesirable solutions. Given an 

uncontested objective function,  uncertainty can affect either or both the constraints and the score 

on the objective function (Beyer and Sendhoff 2007, Gabrel, Murat et al. 2013). Several approaches 

have been proposed to handle uncertainty in simulation optimization (Schuëller and Jensen 2008, 

Dellino, Kleijnen et al. 2010, Dellino, Kleijnen et al. 2010, Kleijnen, Pierreval et al. 2011). The basic 

idea shared by these approaches is that the uncertainties are somehow directly incorporated in the 

optimization problem. There are at least three distinct ways in which this can be done (Schue ̈ller 
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and Jensen 2008), namely (i) the direct simulation approach where the robustness measures are 

calculated by repeatedly running the simulation model (e.g. (Nejlaoui, Houidi et al. 2013)); (ii) the 

metamodel approach where the results of a simulation model are approximated using a metamodel 

(e.g. (e.g. Dellino, Lino et al. 2009, Dellino, Kleijnen et al. 2010, Dellino, Kleijnen et al. 2010)); and 

(iii) the stochastic approximation approach where the values of the random functions are used 

directly in the optimization algorithm (Al-Aomar 2006). In this chapter, we adopt a direct 

simulation approach and are interested in the situation where the uncertainty affects the objective 

function.  

In robust optimization, robustness can be operationalized in many different ways. Rosenhead et al. 

(1973) understand robustness as flexibility, that is, as leaving options open. Other ways of 

operationalizing robustness include Wald’s minimax criterion, which chooses the decision 

alternative that minimizes the maximum risk (Wald 1945); Minimax regret (Savage 1951), which 

results in choosing the solution with the least maximum regret (Lempert, Popper et al. 2003); and 

various forms of satisficing (Simon 1955), such as risk discounting, and certainty equivalents 

(Rosenhead, Elton et al. 1973). With the direct uncertainty treatment, adaptive robust design 

resembles Monte-Carlo strategies where simulation techniques are used to obtain objective 

function values (Beyer and Sendhoff 2007).  

Within the literature on computational support for designing adaptive policies, robustness has been 

defined in a number of ways such as the first order derivative of the objective function (McInerney, 

Lempert et al. 2012); as reasonable performance over a wide range of plausible futures (Lempert 

and Collins 2007, Hamarat, Kwakkel et al. 2013); as regret (Lempert, Popper et al. 2003, Kwakkel, 

Walker et al. 2012); and as sacrificing a small amount of optimal performance in order to be less 

sensitive to violated assumptions (Lempert and Collins 2007). This last definition bears a large 

similarity to the local robustness model employed in info-gap decision theory (Ben Haim 2006). 

Another approach, used for robust parameter design, is the signal-to-noise ratio, which can be 

simplified as mean divided by standard deviation (Madu and Madu 1999, Bérubé and Wu 2000). In 

this chapter, we will use an approach that is very similar to signal-to-noise ratio for our robustness 

scores.  

For complex and uncertain systems where decision-making involves multiple stakeholders, it may 

be treacherous to design plans that are based on a single objective or objectives that are imprecisely 

merged into a single objective. Multi-objective optimization helps to grasp the multiplicity of 

different and possibly conflicting objectives. For mostly, there is no single solution for a multi-

objective optimization problem because of trade-offs between the different objectives. If it is 

possible to assign precise and uncontested weights to the different objectives, then it might be 

possible to merge multiple objectives into a single overarching objective. However, it is often 

difficult to decide on the appropriate weights for different objectives in complex and uncertain 

systems, in particular when various stakeholders are involved. An alternative approach is to find a 

set of solutions that are not dominated. A given solution is non-dominated if there does not exist 

a solution that performs better on all criteria. These solutions are called Pareto optimal and the 
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result of the optimization is not a single optimal solution but a set of solutions that, together, form 

the Pareto front. Multi-objective optimization has been used before for simulation optimization 

(Tekin and Sabuncuoglu 2004, Alrefaei and Diabat 2009, Dellino, Lino et al. 2009, Lin, Sir et al. 

2013). 

A general formulation of the multi-objective optimization problem is shown in Equation 1, where 

Ω is the total decision space, 𝑥 the decision vector of decision variables in the decision space, 𝐹 

the multi-objective function, fi the ith objective function, ci the ith constraint function, 𝜀 the set of 

equality constraints, and  𝒳 the set of inequality constraints.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥∈ 𝛺           𝐹(𝑥) =  [𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑚(𝑥)]  

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 𝑐𝑚(𝑥) = 0, ∀𝑚 ∈  ℰ 

                                     𝑐𝑛(𝑥)  ≤ 0, ∀𝑛 ∈  𝒳   

Equation 1: The general multi-objective optimization problem. (Adapted from (Reed, Hadka et al. 2013)).  

Several approaches have been developed to solve multi-objective optimization problems such as 

the weighted sum approach, the utility function method, the lexicographic method, goal 

programming, and Successive Pareto Optimization (Marler and Arora 2004, Mueller-Gritschneder, 

Graeb et al. 2009). Downsides of these approaches include the need for inter-criteria information, 

and the fact that they generate only a single solution at a time (Coello Coello 2006). Evolutionary 

algorithms that simultaneously generate populations of candidate solutions address both points. 

Such a population-based approach can be used for generating the solutions on the Pareto front in 

a single run of an evolutionary algorithm (Goldberg 1989). To this purpose, evolutionary 

algorithms can be beneficial for solving multi-objective optimization problems (Coello Coello 

2006, Reed, Hadka et al. 2013). In this study, a well-established multi-objective evolutionary 

optimization technique, the Nondominated Sorting Genetic Algorithm-II (NSGA-II) (Deb, Pratap 

et al. 2002), is used.  

In short, we are arguing that the problem of identifying appropriate conditions for adapting a policy 

can be resolved through multi-objective robust optimization. In this application, the decision space 

Ω is formed by the set of triggers, each of which can be subject to one or more constraints ci. The 

multi-objective function F specifies the robustness for the different outcomes of interest. In this 

chapter, we use a signal-to-noise ratio as our robustness metric, but there is no principal reason 

that other metrics could not be used instead. This metric is computed over a specific number of 

scenarios. Similar approaches have been applied in other fields such as environmental systems and 

engineering design (Deb and Gupta 2006, Kasprzyk, Nataraj et al. 2013). The result of solving this 

optimization problem is an approximation of the Pareto front, containing a set of Pareto optimal, 

i.e. non-dominated, trigger values.  
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4.3. Case: An elaborated case on energy transitions 

The European Union (EU) has targets for the reduction in carbon emissions and the share of 

renewable technologies in the total energy production by 2020 (European Commission 2010). The 

main aim is to reach 20% reduction in carbon emission levels compared to 2010 levels and to 

increase the share of renewables to at least 20% by 2020. However, the energy system includes 

various uncertainties related to technology lifetimes, economic growth, costs, learning curves, 

investment preferences and so on. For instance, precise lifetimes of technologies are not known 

and expected values are used in planning decisions. Furthermore, it is deeply uncertain how the 

economic conditions, which have a direct influence on the energy system, will evolve. Thus, it is 

of great importance to take these uncertainties into consideration when analyzing the energy 

system, and preparing policies for meeting the EU targets.  

In order to meet the 2020 goals, the EU adopted the European Emissions Trading Scheme (ETS) 

for limiting the carbon emissions (European Commission 2010). ETS imposes a cap-and-trade 

principle that sets a cap on the allowed greenhouse gas emissions and an option to trade allowances 

for emissions. However, current emissions and shares of renewables show a fragile progress of 

reaching the 2020 targets. It is necessary to take additional actions for steering the transition toward 

cleaner energy production. This requires a better handling of the uncertainties in the energy system 

and more robust policies that can promote renewable technologies. 

 

Figure 13: The main causal loop diagram of the EU energy model. 
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In this study, a System Dynamics (Forrester 1961, Sterman 2000, Pruyt 2013) model is used for 

simulating the plausible futures of the EU electricity system. The model represents the power sector 

in the EU and includes congestion on interconnection lines by distinguishing seven different 

regions in the EU. These are northwest (NW), northeast (NE), middle (M), southwest (SW), 

southeast (SE) of Europe, United Kingdom and Ireland (UKI) and Italy (I). Nine power generation 

technologies are included. These are wind, PV solar, solid biomass, coal, natural gas, nuclear energy, 

natural gas with Carbon Capture and Sequestration (CCS), coal gasification with CCS, and large-

scale hydropower. The model endogenously includes mechanisms and processes related to the 

competition between technology investments, market supply-demand dynamics, cost mechanisms, 

and interconnection capacity dynamics. Not only endogenous mechanisms but also various 

exogenous variables are included. Figure 13 shows the main sub-models that constitute this model 

at an aggregate level. These are installed capacity, electricity demand, electricity price, profitability, 

and levelised costs of electricity. At an aggregated level, there are two main factors that drive new 

capacity investments: electricity demand and expected profitability. An increase of the electricity 

demand leads to an increase in the installed capacity, which will affect the electricity price. This will 

cause a rising demand, in turn resulting in more installed capacity. On the other hand, decreasing 

electricity prices will lead to lower profitability and less installed capacity, which will result in 

electricity price increases. Each sub-model has more detailed interactions within itself and with the 

other sub-models and exogenous variables and these causal relationships drive the main dynamics 

of the EU electricity system. 

Figure 13 is a graphical representation of the causal relationships in the model. In order to run 

computational simulations, these relationships are translated into a system of differential equations, 

which are implemented in Vensim (Ventana Systems Inc. 2010). The model includes 33 ordinary 

differential equations, 499 auxiliary equations, and 632 variables. In this study, we are particularly 

interested in certain outputs and inputs. The output variables that we are interested in are the 

fraction of renewable technologies, the fraction of carbon emission reduction and the average total 

costs of electricity production. The differential equations for these outputs are given in Equation 

2. It is beyond the scope of this chapter to include all the equations and variables separately. More 

detail on the model can be found in (Loonen 2012), including detailed descriptions of each equation 

and variable.  
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∀𝑖 =  1,2,… , 7 (𝑅𝑒𝑔𝑖𝑜𝑛𝑠 𝑖𝑛 𝐸𝑈)
∀𝑗 =  1,2,… , 9 (𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠 𝑢𝑠𝑒𝑑)
∀𝑗𝑟 = 1,2,3,4 (𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠:𝑊𝑖𝑛𝑑, 𝑃𝑉, ℎ𝑦𝑑𝑟𝑜, 𝑏𝑖𝑜𝑚𝑎𝑠𝑠)
𝑡 ∈ [2010,2050]

    

Equation 2: The equations for the output variable of interest 

From a range of various deeply uncertain inputs, we are interested in exploring and analyzing their 

influence on the key output variables. In order to explore the uncertainty space, not only parametric 

but also structural uncertainties are included in the analysis. For exploring structural uncertainties, 

several alternative model formulations have been specified and a switch mechanism is used for 

switching between these alternative formulations. Parametric uncertainties are explored over pre-

defined ranges. Table 14 provides an overview of the uncertainties, 46 in total, that are analyzed 

and their descriptions.  

Table 14: Specification of the uncertainties to be explored 

Name Description 

Economic lifetime For each technology, the average lifetimes are not known precisely. 
Different ranges for the lifetimes are explored for each technology.  

Learning curve It is uncertain for different technologies how much costs will decrease 
with increasing experience. Different progress ratios are explored for 
each technology.  

Economic growth It is deeply uncertain how the economy will develop over time. Six 
possible developments of economic growth behaviors are considered.  

Electrification rate The rate of electrification of the economy is explored by means of six 
different electrification trends. 

Physical limits The effect of physical limits on the penetration rate of a technology is 
unknown. Two different behaviors are considered.  

Preference weights Investor perspectives on technology investments are treated as being 
deeply uncertain. Growth potential, technological familiarity, marginal 
investment costs and carbon abatement are possible decision criteria.  

Battery storage For wind and PV solar, the availability of (battery) storage is difficult 
to predict. A parametric range is explored for this uncertainty.  

Time of nuclear ban A forced ban for nuclear energy in many EU countries is expected. 
The time of the nuclear ban is varied between 2013 and 2050.  

Price – demand elasticity A parametric range is considered for price – demand elasticity factors.  
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4.3.1. Results: From ETS toward an adaptive policy 

ETS is currently used in Europe to reduce carbon emissions. It introduces an annual cap on the 

maximum amount of emissions and the option for trading these carbon emission rights. The results 

of the ETS policy so far leave much to be desired. This creates the need to explore plausible futures 

under this policy and identify ways of complementing this policy in pursuit of the desired CO2 

reduction.  

Using a workbench written in Python (Kwakkel and Pruyt 2013) which controls Vensim (Ventana 

Systems Inc. 2010), the model has been simulated 10,000 times to generate an ensemble of cases, 

generating time series between 2010 and 2050. Each case is a selection of 46 different uncertainties 

and certain assumptions about the future state of the system via Latin Hypercube Sampling (Pilger, 

Costa et al. 2005). The results of the ETS policy under uncertainty indicate that it is difficult to 

meet the 2020 targets through ETS only. For most futures, the fraction of renewables remains 

around 25% and the carbon emissions reduction fraction is around 10. It is obvious that there is a 

need for further actions in order to achieve a sustainable energy future.  

Through scenario discovery using PCA PRIM, we identify the key vulnerabilities and opportunities 

of the ETS policy, in light of which the ETS policy can be redesigned. This analysis did not produce 

useful information with respect to vulnerabilities because there was no uncertainty combination 

identified by PCA PRIM that results in undesirable outcomes. However, there are useful findings 

related to opportunities that could be taken advantage of. PCA PRIM is used to identify the 

opportunities that can lead to futures where the fraction of renewables is higher than 40%. These 

opportunities are mainly related to technology lifetimes and the learning curves of the technologies. 

To be more precise, longer lifetimes of renewables, shorter lifetimes of non-renewables (especially 

coal and gas), and stronger learning effects for renewables are opportunities for achieving a more 

sustainable functioning. Hence, in order to improve the ETS system, three adaptive actions are 

added to the current ETS policy.  

Action 1 aims at accelerating the phase out of the old non-renewable technologies. The gap between 

the desired and the current level of the renewable fraction is tracked. The desired level for 2050 is 

assumed to be 80%. This action introduces an additional decommissioning flow, factored by the 

gap, for non-renewable technologies. 

Action 2 aims at making the renewable technologies more cost-attractive by introducing a subsidy 

fraction on the marginal investment costs of renewable technologies. The costs of the most 

expensive non-renewable technology and the renewable technologies are monitored. If the cost of 

a renewable is close to the most expensive non-renewable, here within 25% (proximity), then a 

subsidy of 25% is introduced for 10 years.  

Action 3 aims at sustaining the targeted renewable fraction in the future. A forecast of the renewable 

fraction for 10 years ahead is made. A desired fraction is also assumed to be 80%. If the gap 

between the desired fraction and the forecast is bigger than the trigger level of 10%, non-renewable 

technologies are decommissioned with an additional percentage of 25%.  
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The resulting policy with these adaptive actions is called the adaptive policy. For testing the 

performance of the adaptive policy, it is again run for the same ensemble of 10,000 computational 

experiments. There is a remarkable improvement in policy performance. Figure 14 compares the 

ETS policy (in dark gray and dashed line) and the adaptive policy (in light gray and solid line) for 

three outcomes: the carbon emissions reduction fraction, average total costs, and the renewables 

fraction. The figure shows the envelopes of the outcomes (left) which span the upper and lower 

limits for 10,000 simulations over time and the Kernel Density Estimates (Eric Jones, Travis 

Oliphant et al. 2001) of the terminal values in 2050 (right) in the respective ensemble. The adaptive 

policy improves the fraction of renewables dramatically from 40% to 50% on average in 2020 and 

to 70% in 2050. Similarly, there are clear improvements in terms of the fraction of carbon emissions 

reduction and average total costs.  

 

Figure 14: Comparison of ETS and Adaptive policies 

4.3.2. Fine-tuning trigger values 

For the multi-objective robust optimization, we use three objectives: (1) the fraction of renewable 

technologies, (2) the fraction of carbon emission reduction in 2050 compared to 2010, and (3) the 

average total costs of electricity production. The simulation model used in this study produces the 

values for these three objectives. The EU has specific targets for the share of renewable 

technologies and the reduction fraction of carbon emissions by 2020. Hence, these are the first two 

objectives. They are to some extent dependent and/or similar. However, the average total cost of 

electricity generation is dissimilar. While the first two objectives are to be maximized, the third 

objective is to be minimized.  
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In order to design an adaptive policy, signposts and triggers are used for ensuring the adaptivity 

and flexibility of the policy. The specification of the triggers is of a crucial importance for the 

performance of the adaptive policy. In the adaptive ETS policy, there are 8 components of 3 

actions. In Table 15, these components, including the triggers, are given together with their brief 

descriptions and it also shows which trigger is part of which action.  

Table 15: List of components and their descriptions 

 Components Brief Description 

Action 1 Desired Fraction (df) Trigger for the desired fraction of renewable 

technologies. 

 Additional 

Decommissioning (ad) 

Additional fraction of non-renewable technologies to 

be decommissioned. 

Action 2 Subsidy Factor (sf) Additional fraction of subsidy for renewables. 

 Subsidy Duration (sd) Duration for how long the subsidy for the renewables 

will be active. 

 Proximity (pr) Trigger for the proximity of cost to the cost of the most 

expensive non-renewable technology.  

Action 3 Decommissioning 

Factor (dcf) 

Fraction to be decommissioned for non-renewables 

when the gap between desired and forecasted fraction 

for renewables is above the Trigger. 

 Forecast Time Horizon 

(fth) 

Time horizon over which the forecast for the level of 

renewable fraction is done. 

 Trigger (tr)  Trigger for the proximity of the forecasted renewable 

fraction to the desired fraction.  

The robustness metric used here is based on the idea of increasing the expected outcomes of a 

given policy while making them more insensitive, i.e. certain, no matter how various uncertainties 

play out. The goal is thus to increase the certainty about the expected outcomes across many 

plausible scenarios. More formally, this means that there is an expected value and dispersion around 

this value. In this chapter, in case of maximizing, we define robustness as the mean divided by the 

standard deviation. The higher the mean, the higher the metric. The smaller the standard deviation, 

the higher the metric. This will not work in case of minimizing, so there we use the mean multiplied 

by the standard deviation. The lower the mean, the lower the metric. The lower the standard 

deviation, the lower the metric. In order to calculate such a robustness metric, each candidate needs 

to be evaluated using many simulations.  

Combining the foregoing description of the outcomes of interest and the decision space, we get 

the multi-objective optimization problem shown in Equation 3. We have three objective functions. 

The first two are to be maximized and the third one is to be minimized. The objective function fi 

shows how the robustness metrics are calculated. For these functions, a correction factor of 1 is 

added to the means and standard deviations to prevent division by zero. lp is the decision space and 
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consists of the triggers specified in Table 15. The set of constraints in Equation 3 shows the 

boundaries within which the triggers will be optimized. 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒         𝐹(𝑙𝑝) = (𝑓𝑓𝑟𝑎𝑐, 𝑓𝑐𝑎𝑟𝑏𝑜𝑛, −𝑓𝑐𝑜𝑠𝑡𝑠) 

𝑤ℎ𝑒𝑟𝑒                  𝑙𝑝 = 

[
 
 
 
 
 
 
 
𝑝𝑑𝑓

𝑝𝑎𝑑

𝑝𝑠𝑓

𝑝𝑠𝑑

𝑝𝑝𝑟

𝑝𝑑𝑐𝑓

𝑝𝑓𝑡ℎ

𝑝𝑡𝑟 ]
 
 
 
 
 
 
 

𝑓𝑓𝑟𝑎𝑐(𝑦𝑓𝑟𝑎𝑐) =  
(𝜇𝑓𝑟𝑎𝑐 + 1)

(𝜎𝑓𝑟𝑎𝑐 + 1)

𝑓𝑐𝑎𝑟𝑏𝑜𝑛(𝑦𝑐𝑎𝑟𝑏𝑜𝑛) =  
(𝜇𝑐𝑎𝑟𝑏𝑜𝑛 + 1)

(𝜎𝑐𝑎𝑟𝑏𝑜𝑛 + 1)

𝑓𝑐𝑜𝑠𝑡𝑠(𝑦𝑐𝑜𝑠𝑡𝑠) =  (𝜇𝑐𝑜𝑠𝑡𝑠 + 1)  ∗  (𝜎𝑐𝑜𝑠𝑡𝑠 + 1)

         

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐           𝒄𝒅𝒇:              𝟎. 𝟓 ≤  𝒑𝒅𝒇  ≤ 𝟏. 𝟎

𝒄𝒂𝒅:             𝟎. 𝟎 ≤  𝒑𝒂𝒅  ≤ 𝟎. 𝟕𝟓

𝒄𝒔𝒇:              𝟎. 𝟎 ≤  𝒑𝒔𝒇  ≤ 𝟎. 𝟓

𝒄𝒔𝒅:             𝟎. 𝟎 ≤  𝒑𝒔𝒅  ≤ 𝟐𝟎. 𝟎

𝒄𝒑𝒓:             𝟏. 𝟎 ≤  𝒑𝒑𝒓  ≤ 𝟐. 𝟎

𝒄𝒅𝒄𝒇:            𝟎. 𝟎 ≤  𝒑𝒅𝒄𝒇  ≤ 𝟎. 𝟓

𝒄𝒇𝒕𝒉:            𝟏𝟎. 𝟎 ≤  𝒑𝒇𝒕𝒉  ≤ 𝟒𝟎. 𝟎

𝒄𝒕𝒓:              𝟎. 𝟎 ≤  𝒑𝒕𝒓  ≤ 𝟏. 𝟎

 

 

Equation 3: The mathematical formulation of multi-objective optimization 

The robustness metric is calculated over a series of computational experiments. Choosing the 

number of experiments is important and requires trading off computational time and accuracy. To 

this purpose, a stability check is performed to have a better understanding of the appropriate 

number of experiments to be used. Figure 15 shows the robustness scores for the three objectives 

as a function of the number of computational experiments over which the scores are calculated. 

Again, these computational experiments are generated by sampling across the 46 different 

uncertainties (see Table 14). As can be seen, after around 500 experiments, the robustness score 

stabilizes for all objectives. This means that using more than 500 experiments does not add value 

to the optimization. Thus, for each candidate solution during the optimization, we calculate the 

mean and the standard deviation for the robustness scores for three objectives over 500 different 

experiments.  

In this study, we use the System Dynamics model for the computational experiments. Each 

computational experiment specifies a single simulation with this model. The robustness scores fi 
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are calculated over 500 experiments. These 500 experiments cover the space spanned by the 46 

different uncertainties (see Table 14) and are generated using Latin Hypercube Sampling (Pilger, 

Costa et al. 2005). This means that for a single evaluation of the objective function, the simulation 

model is run 500 times.  

 

Figure 15: Robustness Check 

In this study, we use a real-coded NSGA-II because the triggers have real values. The triggers form 

the chromosomes, where each chromosome represents a policy setting. We use a binary 

tournament selection operator in combination with a crowded-comparison operator for the 

selection criterion (Deb, Pratap et al. 2002). This crowding distance mechanism preserves diversity 

among non-dominated solutions. The genetic operators used are binary simulated crossover and 

polynomial bounded mutation (Deb and Agrawal 1995). The NSGA-II algorithm is executed for a 

pre-defined number of 80 generations with a population size of 200, crossover rate of 0.8 and 

mutation rate of 0.05. To check convergence, Figure 16 shows the number of additions as a solid 

line and removals as a dashed line to an archive of Pareto front solutions. As can be seen, the 

additions are almost stabilized and not many new solutions are being included in the Pareto front 

from the 65th generation on. Although the removals also seem to be stabilizing, around the 65th 

generation, there is a big number of removals from the Pareto front. However, the total number 

of changes to the Pareto front does not fluctuate dramatically for the last 15 generations.   
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Figure 16: Changes to the Pareto front over the generations 

Figure 17 shows a 3D representation of the robustness scores of the three objectives that are 

normalized between 0 and 1. The gray dots represent the dominated non-Pareto solutions and the 

black ones the solutions on the Pareto front, which is composed of 98 Pareto solutions. It can be 

observed how the optimization algorithm has evolved from the initial non-pareto solutions toward 

a Pareto front by following the gray dots converging to the black dots in Figure 17. As expected, 

the trade-off between the renewables and emissions objectives and the cost objective can be seen 

from these results.  

 

Figure 17: Non-Pareto solutions in gray and Pareto front in black (normalized btw. 0-1) 
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The Pareto solutions in Figure 17 show that there are two clusters of solutions. In order to have a 

better understanding of these clusters of solutions, we looked at the robustness scores of the Pareto 

front solutions and illustrated them by using a parallel coordinates plot in Figure 18. The original 

robustness scores are scaled between 0 and 1 in order to visualize multiple axes with different scales 

together. It can be seen that the scores for the average costs form clusters around two points, 

whereas the renewables fraction is more distributed but still with two clusters, and CO2 reduction 

is distributed more evenly. Hence, this suggests that there is a clear and distinct trade-off between 

renewable fraction and the average costs. If lower average costs are desired, then the trade-off will 

be lower renewable fraction. However, it is difficult to interpret the CO2 reduction as it is dispersed 

among the normalized scores. It should be noted that each line in this figure represent one of the 

98 Pareto solutions that have same robustness score. Therefore, regardless of the selection of a 

solution from the Pareto set, the robustness score will be the same.  This figure helps to understand 

the trade-off relation between the outcomes of interest included in the objective function, but it is 

not useful to understand by which combination of triggers the Pareto solutions are identified.  

 

 

Figure 18: The scores for the solutions in the Pareto approximate set, visualized on a parallel coordinates plot 

For a better understanding of how the different solutions on the Pareto front are composed of, it 

is useful to visualize the values for the decision levers. Figure 19 shows this in a parallel coordinates 

plot. The trigger values are normalized between 0 and 1 due to the scaling issue of different ranges 

for each trigger. The parallel coordinates in Figure 19 show that the desired fraction (df), the 

forecast time horizon (fth), the decommissioning factor (dcf), and the subsidy duration (sd) are the 

binding constraints. In order to achieve the Pareto front, the desired fraction needs to be set to its 

maximum, the forecast for the renewable fraction should be restricted to a maximum of 12 years 
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ahead, the decommissioning factor of Action 2 should be larger than 50% and the subsidy duration 

should at least lie between 18 and 20 years.   

 

Figure 19:  The values of the decision levers for the solutions in the Pareto approximate set, visualized on a parallel 

coordinates plot 

4.4. Conclusions 

In recent years, there has been an increasing interest in adaptive policies. These policies are 

designed from the outset to be adapted over time in response to learning and new information. 

The efficacy of adaptive policies hinges on identifying appropriate conditions, or triggers, for 

adapting the policy. Here, one has to find a balance between adapting a policy too early or too late. 

Up until now, the literature on adaptive policies used best guesses and historic data in specifying 

these conditions. Given the importance of appropriate trigger for the efficacy of an adaptive policy, 

there is a need for a method for supporting the identification of appropriate triggers. In this chapter, 

we have argued and demonstrated that robust multi-objective optimization is a method for this. By 

focusing on robustness, the presence of uncertainty is explicitly accounted for. By using a multi-

objective optimization approach, the multiplicity of outcomes of interest intrinsic to multi-

stakeholder decision problems is addressed. The outlined approach helps in identifying multiple 

alternative policies, instead of producing a single “best” policy. Thus, it creates room for a better-

informed policy debate on trade-offs.  

We demonstrated the efficacy of multi-objective robust optimization for specifying trigger values 

in a case study on improving the current ETS policy of the European Union. It is clear that there 

is a need for more innovative policies than the current ETS policy to promote the transition toward 

a sustainable system. We developed a basic adaptive policy using educated guesses for the different 

triggers. Although this adaptive policy outperformed the ETS policy, we then showed it is possible 

to improve the performance of this adaptive policy even further through multi-objective robust 

optimization. Figure 20 shows a comparison of the adaptive policy and three solutions randomly 

chosen from the Pareto front identified by the multi-objective robust optimization. The solid line 

represents the basic adaptive policy and the dashed lines represent the three optimized policies. 

The results indicate that the proposed approach can be efficiently used for developing policy 

suggestions and for improving decision support to policymakers in energy policy. By extension, it 
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is possible to apply this methodology in dynamically complex and deeply uncertain systems such 

as public health, financial systems, transportation, water resources management, climate adaptation, 

and housing.  

 

Figure 20: Comparison of the adaptive and three optimized policies from the Pareto front 

The choice of robustness metric has an important influence on the Pareto solutions identified. In 

this study, we have used a robustness metric based on the mean divided by the standard deviation 

for maximization, and the mean multiplied by the standard deviation for minimization. It is 

plausible that if a different robustness metric had been used, the resulting trigger values would be 

substantially different. For instance, a regret based metric (Lempert and Collins 2007) can lead to 

different results. However, our work does not hinge on the particular robustness metric. Still, 

further work is needed to compare and contrast alternative robustness metrics, in pursuit of 

guidance on the selection of robustness metrics appropriate to the specific decision problem at 

hand. 

Multi-objective optimization and robust optimization in isolation are already computationally 

intensive. Combining the two makes this even worse. Computational constraints may therefore 

limit the scope of the analysis. However, sometimes quick analysis is essential, for instance, if the 

time window for making a decision is very short. For such conditions, it might be better to take 

advantage of faster and quicker techniques such as Multi-Criteria Decision Analysis (Belton and 

Stewart 2002, Figueira, Greco et al. 2005). Another consequence of the time consuming nature of 

the outlined approach is that it becomes necessary to work with relatively small, less detailed 

models. This is motivated by the fact that it is better to be roughly right, than precisely wrong. In 

this chapter, we used a System Dynamics model. Although such models are often focused on the 
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general dynamics over time, rather than exact values, there has been some work on coupling these 

models to optimization algorithms for a variety of purposes including model testing (Miller 1998, 

Oliva 2003, Yücel and Barlas 2011), model calibration (Oliva 2003, Yücel and Barlas 2011), and,  

most notably in this context, policy design (Coyle 1985, Yücel and Barlas 2011, Kwakkel and Pruyt 

2013).  

In this chapter, we used NSGA-II for solving the multi-objective optimization problem. Although 

it is one of the best-known algorithms, NSGA-II can perform poorly in particular classes of 

problems (Reed, Hadka et al. 2013). The approach that we have presented in this chapter does not 

necessarily rely on NSGA-II. Other more modern algorithms can be used instead of NSGA-II and 

might even have better performance characteristics. For example -NSGA-II, an extension to 

NSGA-II, combines -dominance archiving with adaptive population sizing, and time 

continuation, which prevents deterioration in the Pareto approximate set while maintaining 

diversity (Goldberg 2002, Kollat and Reed 2006). Even more sophisticated and of potential 

relevance are auto-adaptive algorithms such as Borg (Hadka and Reed 2013) which tailor the 

various optimization parameters and evolutionary operators to the specific problem(Hadka and 

Reed 2013, Reed, Hadka et al. 2013). Future work is needed to investigate the potential of these 

more recent and more sophisticated algorithms to supporting the robust adaptive design approach.  

The proposed approach in this study does not aim to replace decision makers but aims to provide 

a better guided decision-making process. The Adaptive Robust Design approach, which combines 

RDM with an explicit framework for designing adaptive policies (Hamarat, Kwakkel et al. 2013, 

Walker, Haasnoot et al. 2013), together with multi-objective robust optimization helps to design 

robust adaptive policies in the presence of uncertainty and a multiplicity of objectives. The 

identification of the Pareto front provides the decision maker with a multiplicity of choices and 

makes the trade-offs between these choices transparent. As such it can be used to facilitate a 

process of deliberation with analysis (National Research Council 2009).  
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The previous chapter has illustrated how the multi-objective 

robust optimization approach helps policymaking answering 

the problem of multiple conflicting objectives. Three different 

objectives have been optimized by fine-tuning the triggers that 

are used for designing adaptive policies. This has been the final 

part of the research that has been conducted during this study.  

Now, we will close this thesis with the conclusions and 

discussions chapter. We will summarize what has been done 

throughout this study and will provide the answers for the key 

research questions. A review of the important research topics 

will be shown and it will be followed up by a future research 

agenda. 
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Chapter 5 -  Conclusions, Discussion and Reflection 

5.1. Brief integrated summary 

Each piece of scientific research is a small contribution to the overall scientific knowledge. Science 

builds on itself by constructing scientific knowledge based on what is available and then paving a 

way to new knowledge. For instance, we have used the Adaptive Policymaking framework, which 

was available, to develop a new approach named Adaptive Robust Design. The initial step of 

scientific method is to make observations and ask questions where there are no answers yet. To 

make a small contribution for our common scientific knowledge, we have formulated a research 

objective to be addressed. The objective of this study was to improve the analytical support for 

model-based policymaking in order to handle deep uncertainty better. As this research 

objective can be difficult to address in a single step, it is logical to break the main question into sub 

questions. Therefore, we have formulated our research direction through three distinct but strongly 

interrelated sub questions. Addressing these sub questions has contributed to the research objective 

of this thesis.  

In order to introduce the current practice in analytical support for model-based policymaking under 

deep uncertainty, the introduction chapter opened the stage by illustrating the recent developments. 

Several approaches such as Info-Gap Theory, Real Options analysis, Adaptive Policymaking 

approach, Robust Decision Making, Dynamic Adaptive Policy Pathways and Many-Objective 

Robust Decision Making, and Exploratory Modeling and Analysis are explained. We note that 

different approaches have different limitations for supporting policymaking under uncertainty. 

Info-Gap theory focuses only on parametric uncertainties and Real Options analysis assesses the 

value of options based on associated probabilities. These approaches provide limited support for 

policymaking in the existence of deep uncertainty. Another approach, RDM, explores only the 

vulnerabilities, instead of also exploring opportunities for which ranges of uncertainties the candidate 

policy can perform better to exploit such opportunities. Furthermore, the RDM approach lacks 

adaptivity due to a lack of guidance on explicitly considering the dynamic adaptation of the plan 

over time which results in a robust but static strategy. We also point out the importance of using 

advanced data analysis techniques that are not but can be utilized in combination with model-based 

policy design. Although some approaches, such as RDM, use machine learning algorithms, a clearly 

structured approach to integrate advanced analysis techniques into analytical support for model-

based policymaking is required. Another important issue in model-based policymaking is how to 

address the multiple conflicting objectives of multiple stakeholders involved. A possible solution 

can be to use multi-objective optimization in combination with robustness considerations.  

5.1.1. Answers to key research questions 

Following the introduction, the next key research topic was the utilization of advanced data 

analysis techniques to deal with deep uncertainty in policymaking support. This question 

has been addressed in Chapter 2, which illustrates the use of Exploratory Modeling and Analysis 
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in dynamic policy design in combination with advanced analytical techniques. EMA is a 

methodology that uses mathematical models for analyzing dynamically complex issues under 

uncertainty. As a case, we have used simple System Dynamics models about energy transitions to 

explore a wide range of deep uncertainties on parameters, model structures and so on. To answer 

the key research question on the utilization of the analytical tools, we have focused on developing 

dynamic policies by using various analytical methods/techniques such as feature scoring, CART 

and PRIM. We used feature scoring to identify the importance ranking of the uncertainties in terms 

of their impact on the end state of the fraction of renewable technologies. Furthermore, CART 

and PRIM analysis helped to have a better understanding of which combination of uncertainties 

lead to (un)favorable outcome spaces. Using the findings of these techniques, the policy design has 

been iteratively improved. Chapter 2 shows that using analytical techniques such as feature scoring, 

CART and PRIM together with EMA can help improve analytical support for policymaking deep 

under uncertainty. 

The most important research question, which forms the foundation of the main objective of this 

thesis, was how to operationalize the Adaptive Policymaking framework. The Adaptive 

Policymaking framework was proposed by  Walker et al. (Walker, Rahman, & Cave, Adaptive 

policies, policy analysis, and policy-making, 2001) and extended by Kwakkel et al. (2010) and 

illustrates a stepwise approach for developing adaptive policies. As also stated by the authors, there 

was a need for the operationalization of this framework and further development of adaptive and 

robust tools and methods. Therefore, we have proposed an iterative model-based approach for 

developing adaptive policies under uncertainty and we have called this approach Adaptive Robust 

Design (ARD). The iterative approach that utilizes EMA for designing robust adaptive policies 

helps to identify and address both vulnerabilities and opportunities, resulting in a robust adaptive 

policy. The main steps of Adaptive Policymaking framework such as assembling a basic policy, 

identifying vulnerabilities and opportunities, and contingency planning have been included in the 

ARD approach along the lines of the EMA methodology. The proposed Adaptive Robust Design 

approach has been a contribution for improving policymaking under uncertainty as illustrated by 

the citations that can be found on this article (Hamarat, Kwakkel, & Pruyt, 2013). ARD has been 

referenced for being a valuable approach for designing adaptive policies, using robust optimization 

in adaptive policymaking and for the use of triggers and signposts to ensure adaptivity (Kwakkel, 

Haasnoot, & Walker, 2016; Kwakkel, Haasnoot, & Walker, 2016; Bhave, Conway, Dessai, & 

Stainforth, 2016; Werners, et al., 2013). For instance, Eker & van Daalen (2015) have followed our 

ARD approach for solving robust optimization problem. Additionally, Kwakkel et al. (2015) has 

pointed our ARD approach as one of the important reference source for the basis of the Dynamic 

Adaptive Policy Pathways (DAPP) approach that is developed by Haasnoot et al. (2013). This 

approach combines Adaptive Policymaking and Adaptation Pathways (Haasnoot, Middelkoop, 

Offermans, Van Beek, & Van Deursen, 2012) into an integrated stepwise method, which supports 

policymaking under uncertainty. The fundamental concept of Adaptation Pathways are the 

adaptation tipping points, which determine the points to take new actions to achieve objectives. 

This concept has strong similarities with using triggers and signposts in our ARD approach. An 

adaptation tipping point occurs when a particular action is not adequate anymore and a new action 
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should be taken, whereas a trigger in our approach specifies the conditions that require to take a 

pre-specified action to change the plan. 

As a follow-up question, we have asked what can be done for supporting adaptive policymaking 

in the presence of multiple conflicting objectives. Different valuation of outcomes by different 

stakeholders is one of the characteristics of deep uncertainty. To support adaptive policymaking 

under deep uncertainty, the situations that involve multiple objectives need also to be addressed. 

In general, optimization methods tackle a single objective or multiple objectives merged into a 

single one. However, policymaking issues under deep uncertainty often include multiple and 

possibly conflicting objectives, which are difficult to combine as one. To this purpose, we have 

developed an approach to use multi-objective robust optimization in the context of adaptive 

policymaking. The triggers and signposts are essential components of ARD, and these trigger 

values have been explained and optimized in section 4.2. We used multi-objective robust 

optimization for finding optimal trigger values. The optimization method that we used combines 

two different approaches, namely robust optimization and multi-objective optimization. Robust 

optimization helps to consider the presence of deep uncertainty, and multi-objective optimization 

helps consider multiple conflicting objectives. Multi-objective robust optimization helps finding a 

list of Pareto optimal solutions, which do not dominate each other for different combinations of 

trigger values. That is to say, these different policy designs on the Pareto list are multiple alternative 

policy designs that policymakers can choose from based on subjective preferences. This approach 

helps policymakers by eliminating the inferior choices and providing a multiplicity of Pareto-

optimal choices.  

We have tackled each sub research question step by step to provide answers that will contribute to 

the main research objective. This thesis concludes that the Adaptive Robust Design approach 

in combination with multi-objective robust optimization will improve the support for 

policymaking under deep uncertainty. 

5.2. Review of the research  

The main contribution of this study to the field has been the Adaptive Robust Design approach, 

which operationalizes the Adaptive Policymaking framework. By illustrative case studies in the 

previous chapters, it is shown how ARD can be effectively used for developing adaptive robust 

policies under deep uncertainty. The key contribution has been on the methodological niche. This 

approach can be applied to any system of interest where mathematical models are available. By 

following the steps of ARD, it is possible to develop adaptive robust policies. In the scope of this 

study, we have used small high-level System Dynamics models about the energy transition towards 

renewables. The first two models used are smaller and more generic in terms of the model structure 

representations. The last model used is still about the same system of interest but in more detail 

and provides a better representation of the real world system. Multiple stakeholders with multiple, 

possibly conflicting, objectives are represented more elaborately in this model. However, since all 

models are wrong (Sterman, 2002), any single model should not be treated as the “true” 
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representation. Therefore, it is proposed to use an ensemble of models in an exploratory manner 

to cover an ensemble of futures. In this study, all the mathematical models have been used in an 

exploratory manner and for illustrative purposes only. Therefore, it should be reminded and 

emphasized that the focus of this study is more on the methodological contribution than the precise 

policy designs on energy transitions. 

As the key contribution of this study is about the methodological approach, there are some areas 

where I would like to provide a more in-depth perspective. These are explained below in more 

detail.  

5.2.1. Patient Rule Induction Method (PRIM) 

Another important part of the ARD approach was to operationalize the Patient Rule Induction 

Method (PRIM) to discover subspaces of the multidimensional uncertainty space. PRIM is a data 

mining technique, which identifies problematic (vulnerabilities) and promising (opportunities) sub-

regions in the output space and the regions in the input space that result in these specific regions 

of the output space. This valuable information helps us translating these subspaces into a 

combination of specific uncertainty ranges and these combinations can be interpreted as different 

scenario settings where each uncertainty subspace represent a scenario. Therefore, PRIM is 

commonly used for scenario discovery in the presence of deep uncertainty (Kwakkel, Auping, & 

Pruyt, 2013; Kwakkel & Jaxa-Rozen, 2016). Although the aim of PRIM is to identify orthogonal 

boxes in the input space, this becomes difficult in the presence of nonlinear interactions of 

uncertainties. Auping (2018) argues that this difficulty is due to two main reasons: nonlinearity and 

equifinality. It is possible that the specific regions of interest in input space, namely the orthogonal 

boxes, can be spread among the complete range of uncertainties due to nonlinear interactions. As 

we also have faced similar problems, we used the enhanced version of PRIM that is proposed by 

Kwakkel et al. (2013) and called Principal Components Analysis PCA-PRIM. It includes a 

preprocessing step to transform input parameters of the uncertainty space into a smaller number 

of clusters of input parameters that still contain the information of the uncertainty space. The 

version of PCA-PRIM used in this thesis allows rotating clusters of input parameters, instead of 

uncertain parameters separately. This enhancement of PRIM enables to identify high quality PRIM 

boxes with higher coverage rates, in other words, improved scenario discovery. We have used this 

enhanced version in this study, which has been an important part of the ARD approach. It should 

be noted that the PCA method used can be less effective in terms of transforming the input 

parameters into clusters for categorical uncertainties. A possible future enhancement can be 

utilizing PCA together with a categorical PCA (Linting, Meulman, Groenen, & van der Koojj, 2007) 

to handle categorical uncertainties properly. 

5.2.2. Robustness metrics  

In Chapter 4, we used an optimization approach, which combines multi-objective optimization and 

robust optimization. Robust optimization is a method that helps finding optimal outcomes under 

deep uncertainty where probability distributions of uncertainties are unknown. The quantification 

of robustness is critically important for robust optimization and this is related to the choice of 
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robustness metric used. In this study, we have used a robustness metric based on the mean divided 

by the standard deviation for maximization, and the mean multiplied by the standard deviation for 

minimization. The mean-variance metric is similar to the signal-to-noise ratio used in control 

theory. This metric is calculated using statistical information (i.e. mean, standard deviation) which 

is a practical and useful approach. Since using robust optimization together with multi-objective 

optimization for adaptive policymaking in this study was new and not experimented before, we 

preferred this practical robustness metric in our analysis. Eker and van Daalen have also utilized 

this similar signal-to-noise ratio robustness metric in their article on biomethane production in the 

Netherlands (2015). On the other hand, Kwakkel et al. (2016) used mean and standard deviation 

separately as they claim that it allows easier interpretation and more decision relevant information. 

Eker and Kwakkel (2018) used both mean-to-standard deviation together with a metric based on 

maximum regret but concluded that the results of the analysis were indifferent for the choice of 

metric. Furthermore, Eker (2016) made an extensive comparison of several robustness metrics 

from three different approach groups that are expectation based, regret based and statistical 

measures. Although Eker does not provide a clear comparison of different metrics, she discusses 

the benefits and shortcomings of different groups of metrics. Assessment of policy performance 

by using the expectation- based metrics can be considered to have a limited view due its focus on 

a single aspect of the scenario space. Regret-based metrics are more powerful than statistical 

measures as regret-based metrics assess each policy in each scenario, whereas statistical metrics 

measure the impact of a policy over the entire scenario space. Nevertheless, statistical ones can be 

more preferable over regret-based ones in the existence of an uneven distribution of the scenario 

space. Obviously, there are many other metrics available to use for quantifying robustness but it is 

not clear and straightforward how to select the appropriate metric. A detailed categorization and 

comparison of robustness metrics is done by McPhail, et al. (2018), where they propose a unifying 

framework. This framework helps determining when and which robustness metrics to use for 

assessing different decision alternatives by considering different robustness families and 

preferences of decision maker on risk and robustness. The pairwise comparison of several 

robustness metrics shows that our mean-variance metric has a high ranking stability with most of 

other metrics, where “a ranking stability of 100% indicates that the metrics agreed on the rankings 

for every pair of decision alternatives, while 0% indicates that one metric ranked the decision 

alternatives in reverse to the other metric” (McPhail, et al., 2018). However, our metric is criticised 

as mean and variance combination is not always monotonically increasing and good and bad 

deviations are treated equally. As a future research, it can be interesting to try different robustness 

metrics such as minimax, maximin or Huurwicz with our Adaptive Robust Design approach for a 

comparative analysis.  

5.2.3. Multi-objective optimization  

Policymaking issues generally involve multiple stakeholders where each has its own objective to 

achieve. In the presence of multiple objectives, a common approach is to attempt to combine these 

objectives into a single objective if possible. A possible solution is to give weights to each objective 

and create a single weighted objective. However, it is often not clear how to assign proper weights 
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to objectives, especially in the presence of complexity, deep uncertainty and multiple stakeholders. 

It might be problematic that different stakeholder preferences may not be considered properly. 

Different weights may lead to different optimal solutions for which one objective dominates 

another one. Therefore, a possible approach can be to provide a set of solutions where no solution 

dominates others and such non-dominated solutions are called Pareto optimal solutions. Multi-

objective optimization helps dealing with multiplicity of conflicting objectives by finding Pareto 

optimal solutions. To make use of this competence, we utilized multi-objective optimization 

together with the ARD approach to deal with multiple conflicting objectives. In the light of the 

combination of ARD and multi-objective robust optimization in Chapter 4, Kwakkel et al. (2015) 

have also applied multi-objective robust optimization together with DAPP. By using this combined 

method, a set of robust candidate pathways can be identified in the presence of deep uncertainty. 

For communicating the results of the multi-objective robust optimization clearly, we have used 

parallel coordinate plots for visualizing the Pareto front solutions. This visualization technique is 

used for multivariate and numerical data to illustrate the relationships between the variables. This 

helped us to see whether there are clusters of scores for different objectives. Furthermore, we 

visualized eight trigger values of the different solutions on the Pareto front to see the relationships 

between these triggers. This technique enabled us to identify which set of trigger values 

characterizes the Pareto front solutions.  

Evolutionary algorithms, which are inspired by biological evolution and population dynamics, are 

well suited for multi-objective optimization problems. Therefore, we used the NSGA-II algorithm 

(Deb, Pratap et al. 2002) which is one of the most efficient algorithms. This multi-objective 

evolutionary algorithm generates a population of candidate policy settings, defined by different 

combinations of trigger values. Iteratively, the algorithm aims to identify a population for which 

candidate policy settings are on the Pareto front. As our approach in this study is not specifically 

dependent on the NSGA-II algorithm, it is also possible to utilize other algorithms if performing 

better. An example is -NSGA-II, an extension to NSGA-II, which has new capabilities such as 

adaptive population sizing and time continuation (Goldberg 2002, Kollat and Reed 2006). In 

parallel to this study, Kasprzyk et al. (Kasprzyk, Nataraj, Reed, & Lempert, 2013) utilized this 

extended version of NSGA-II in their many-objective robust decision-making research. More 

complex algorithms are auto-adaptive algorithms such as Borg, which tailor the various 

optimization parameters, and evolutionary operators to the specific problem (Hadka and Reed 

2013, Reed, Hadka et al. 2013) (Trindade, Reed, Herman, Zeff, & Characklis, 2017; Jaxa-Rozen, 

Bloemendal, Rostampour, & Kwakkel, 2016). The usage of evolutionary algorithms clearly shows 

that they have significant potential in supporting complex and uncertain policy analysis problems, 

which is also stated in the position paper of Maier et al. (2014).  

5.2.4. Limitations of the research 

This study provides a methodological approach towards the research objective of how to improve 

model-based policymaking support under deep uncertainty. We have proposed an approach for 

designing adaptive robust policies, and furthermore to be used in combination with multi-objective 
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robust optimization techniques. To illustrate the performance of the proposed approach we have 

used mathematical, specifically System Dynamics (SD), models in which the dynamics of energy 

transitions are explored. As the focus of this study is primarily on the methodological development, 

the models used in this study are small but exploratory models, which are not very detailed, and at 

an aggregated level that still captures the main dynamics of system of interest.  

5.3. Reflection on the relevance for real-life policy issues 

This study focuses on the methodological development of analytical support for policymaking 

under uncertainty. To that purpose, we have used relatively simple and generic models for analysis 

purposes to illustrate the performance of the proposed methodology of this study. Beside the 

methodological focus, we reflect here on several relevant aspects that relate to application of the 

methodology in real-life policy settings.  

An important consideration point is the computational cost of using the proposed approaches in 

real-life studies for policymaking support. Simple and generic models can still be useful for a fast 

explorative high-level analysis. However, for analysis purposes of complex real-life cases, utilization 

of comprehensive models with detailed specifications will be required to design real-life policies. 

As the proposed approach in this study necessitates extensive computational power, it can be very 

costly to use this approach for a system of interest with complex models. However, with advancing 

computational power, this methodological approach can also support real-life cases such as energy 

policymaking, health policy development, migration issues, and water management.  

Another issue to point out is that model-based policy analysis brings already a significant level of 

complexity to be grasped by policymakers. It does not make much sense to try to explain the 

advanced analytical approaches to policy makers. If however this advanced model-based analysis 

is seen as a black box, it is possible that the policymakers may have a lack of trust in such 

approaches and their results.  Therefore, analysts should make serious efforts to explain the 

rationale of their findings in a clear and comprehensible way to policy makers. And this will require 

to establish communication methods to funnel complex results into simple and clear stories. To 

this purpose, advanced visualization techniques (e.g. parallel coordinate plot, high-dimensional 

bubble chart, heatmap, etc.) can help analysts prepare a clear-cut story.   

Adaptive policymaking has been applied to real-life situations when confronted with uncertainties. 

For example, the pension age in the Netherlands after 2022 will be adapted based on the average 

life expectancy (CBS Statistics Netherlands, 2014). As there is uncertainty on the average life 

expectancy, developing a static policy on the pension age possibly requires to revise the pension 

age policy frequently. A policy that adapts based on the average life expectancy can help tackling 

deep uncertainty. This is a clear example of how adaptive policymaking can be implemented for 

designing adaptive policies in real-life. There are also other recent examples where adaptive 

policymaking is applied in different areas: For example, Jittrapirom et al. (2018) applied adaptive 

policymaking for implementing Mobility-as-a-Service (MaaS), an innovative transport concept that 

combines a range of transport modes and services to provide a user-orientated service via a single 
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interface, for the city of Nijmegen. The authors show that adaptive policymaking addresses 

uncertainty by incorporating adaptation as part of the process and provides alternative transport 

planning methods different than the traditional approaches. Another similar example is the 

potential future use of automated taxis (AT) in a city that is confronted with deep uncertainty about 

the implementation of these ATs (Walker & Marchau, 2017). The authors apply the dynamic 

adaptive policymaking approach and illustrate that “compared to traditional policymaking, the 

adaptive approach is highly promising in terms of handling the range of uncertainties related to AT 

implementation. Dynamic Adaptive Policy Pathways, an elaboration of adaptive policymaking, is 

implemented in a simulation game environment for a real-life case of flood risk management in 

New Zealand (Lawrence & Haasnoot, 2017). The ‘safe’ simulation game environment showed that 

adaptive pathways planning for climate change adaptation can be adopted under conditions of deep 

uncertainty.   

Multi-objective robust optimization provides a set of non-dominated solutions, namely the Pareto 

front, by eliminating dominated solutions gradually. Although the Pareto front offers multiple 

options to select from, it can nevertheless be perceived as too narrow by the policymakers. Policy 

makers may wish to take other considerations into account than those included in the model-based 

analysis. . Therefore, it is important to communicate with the policymakers that this proposed 

approach is a guide for them to help making informed decisions, but not a substitute that chooses 

the best policy option for a system, in place of the policymakers who usually seek a feasible satisfying 

option.    

5.4. Future research agenda 

This thesis has proposed an answer for improving support for model-based policymaking to 

better handle deep uncertainty by providing a new methodological approach. Starting from a 

pragmatic approach, we have developed a systematic approach for designing adaptive policies 

under uncertainty. Furthermore, we have combined complex optimization techniques with the 

adaptive robust design approach. There are however many new challenges available for the future 

of the field.   

One of the future research areas is about exploring deep structural uncertainty of models of 

the system of interest. The adaptive policymaking studies using exploratory modeling have, so 

far, predominantly focused on the uncertainty exploration of model parameters or model 

structures. Commonly, a model of the system of interest is built which incorporates the parametric 

and structural uncertainties. This model is significantly dependent on the modeller’s mental model, 

which can be defined as the conceptual representation of the perceived structure of the system 

(Kwakkel & Pruyt, 2015). This means that one model represents one perception of the system of 

interest, whereas it is known that multiple different perceptions can be applicable, especially under 

deep uncertainty. Therefore, there is an evident need to consider exploring uncertainty caused by 

multiple perspectives leading to multiple models (Auping, Pruyt, & Kwakkel, 2014). Initial attempts 

for exploring multiple models have been made by researchers (Pruyt & Kwakkel, 2014) (Auping, 
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Pruyt, & Kwakkel, 2014), which needs to be further investigated. Recently, Auping (2018) has 

proposed an enhanced model development cycle to incorporate multiple conceptual and simulation 

models for exploratory modeling practices. Considering uncertainty in early stages of model 

development can help developing multiple models, instead of using a single consolidative model 

in an exploratory manner. Furthermore, Pruyt et al. (2018) recently developed a new modeling 

technique that allows developing multi-layered/multi-scale System Dynamics models by 

implementing spatial concepts. This innovative technique can help easily build advanced models 

that consider complex geospatial interactions for cases where policymaking is extremely difficult 

such as global migration dynamics (Wigman, 2018). Using this multi-layered SD modeling 

approach in combination with ARD approach can be a future research topic, which will 

help improve policymaking support for challenging issues involving complex geospatial 

interactions. A possible central issue will be the limitation of the computational capacity that can 

handle the extensive number of model elements. For instance, when the detail level of multi-layered 

SD model of global migration dynamics is on the city level, the number of possible migration flows 

between 50000 cities will be approximately 2.5 billion. As the number of model elements can grow 

exponentially, the added value of the additional detail level should be evaluated in comparison to 

the added computational complexity (Wigman, 2018).  

The ARD approach requires the use of mathematical models in an explorative manner, which is 

computationally very intensive. Moreover, we combine ARD with multi-objective and robust 

optimization techniques that make computation even more exhaustive. Hence, it is certainly crucial 

that the computational support for this research field should be extensive and efficient. In this 

study, we have used a workbench developed in Python language, which allows for generating 

explorative experiments, analysis of outcomes and visualization. This workbench is called the 

Exploratory Modeling Workbench and it is publicly available (Kwakkel J. H., 2017). Another 

similar framework is the open source framework focused on many objective robust decision-

making, which is called OpenMORDM (Hadka, Herman, Reed, & Keller, 2015). This framework 

is developed in R language, which is another popular programming language, and provides analysts 

a platform for planning under deep uncertainty. Both the workbench and the platform are publicly 

available and more importantly, they are open source. The computational coding support, such as 

using Python or R, of such platforms is significant to provide necessary technical resources for 

analysts to operationalize the theoretical approaches. Such coding support will provide accessibility 

and quick implementation of analytical support. Therefore, there should be more open source 

platforms that provide advanced analytical support for policymaking under deep 

uncertainty studies. Increasing the collaboration among researchers plays an essential role and 

this can be done by establishing new societies of multi-disciplinary researchers, such as the DMDU 

Society (DMDU Society, 2018) that is a group of people working on improving decision-making 

under deep uncertainty.  

As a summary of a possible future research agenda, one important direction can be to use more 

complex models for policymaking support in combination with the ARD approach. For building 

complex models, the enhanced model development cycle by Auping (2018) or the advanced multi-
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layered SD model building technique by Pruyt (2018) can be used. However, using complex models 

with the ARD approach will be computationally more intensive. Therefore, computational coding 

support for advanced analysis should be improved in the future. A possible direction is to go out 

and explore openly the useful analytical techniques from different fields to be used for policymaking 

under uncertainty. This open exploration can be facilitated by establishing new societies of multi-

disciplinary researchers to empower collaboration. Exploration of new techniques and 

collaboration with multi-disciplinary researchers will result in an inventory of new analytical 

techniques that can be used to develop new methods/approaches. Recently, a taxonomy of 

analytical tools and approaches for supporting decision making under deep uncertainty has been 

proposed (Kwakkel & Haasnoot, 2019) that “analysts can use the taxonomy for designing context-

specific approaches to support decision making under deep uncertainty”. In addition to the variety 

of existing approaches, this list of new methods/approaches should be categorized according to 

which method or technique is more suitable for the problem of interest. Such a categorization can 

be used as a guidebook for policy analysts to help select methods and techniques when faced with 

different policy problems. Furthermore, this guidebook categorization can provide advanced 

assistance for policy analysts and avoid potential miscommunication between analysts and 

policymakers by creating transparency on methods used by policy analysts. This need for further 

guidance on when and how to apply a specific DMDU approach has been also put forward by 

(Marchau, Walker, Bloemen, & Popper, 2019) as one of the challenges of DMDU society.  
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Appendix A. Python Scripts 

In this thesis, we have conducted a large set of computational experiments and applied various 

analytical techniques for the analysis required in the main body chapters, respectively the chapters 

2, 3 and 4. For this purpose, we have used the Exploratory Modeling Workbench (Kwakkel J. H., 

2017), which is implemented in Python language. Further details of the workbench can be accessed 

from this website. https://emaworkbench.readthedocs.io/en/latest  

Reference: Kwakkel, J. H. (2017). The Exploratory Modeling Workbench: An open source 

toolkit for exploratory modeling, scenario discovery, and (multi-objective) robust decision 

making. Environmental Modelling & Software, 239-250. 

In this appendix, the Python scripts that are used in the chapters 2, 3 and 4 are provided.  

Chapter 2: 

5000 simulations without policy, static policy and dynamic policy 

from __future__ import division 
from ema_workbench.em_framework import (ModelEnsemble, RealParameter, 
                                        TimeSeriesOutcome, ScalarOutcome, Outcome) 
from ema_workbench.em_framework.parameters import Policy, IntegerParameter, CategoricalParameter 
from ema_workbench.util import ema_logging, save_results 
from ema_workbench.connectors.vensim import VensimModel 
 
if __name__ == '__main__': 
    ema_logging.log_to_stderr(ema_logging.INFO) 
    model = VensimModel("FTA", wd="D:\Workspace\EMA_workbench\src\FTA_Ch2\models", 
                        model_file = "ESDMAElecTrans_NoPolicy.vpm") 
    model.outcomes = [TimeSeriesOutcome('total fraction new technologies'), 
                      TimeSeriesOutcome('total capacity installed')] 
    #Plain Parametric Uncertainties  
    model.uncertainties = [ 
        RealParameter("ini cap T1", 14000,16000),   
        RealParameter("ini cap T2", 1,2),  
        RealParameter("ini cap T3", 1,2),  
        RealParameter("ini cap T4", 1,2),  
        RealParameter("ini cost T1",500000,1500000), 
        RealParameter("ini cost T2",5000000,10000000), 
        RealParameter("ini cost T3",5000000,10000000), 
        RealParameter("ini cost T4",5000000,10000000), 
        RealParameter("ini cum decom cap T1",5000000,10000000),  
        RealParameter("ini cum decom cap T2", 1,100), 
        RealParameter("ini cum decom cap T3", 1,100), 
        RealParameter("ini cum decom cap T4", 1,100), 
        RealParameter("average planning and construction period T1",1,5),  
        RealParameter("average planning and construction period T2",1,5),  
        RealParameter("average planning and construction period T3",1,5),  
        RealParameter("average planning and construction period T4",1,5),  
        RealParameter("ini PR T1", 0.85,0.95), 
        RealParameter("ini PR T2", 0.7,0.95), 
        RealParameter("ini PR T3", 0.7,0.95), 
        RealParameter("ini PR T4", 0.7,0.95), 
        RealParameter("lifetime T1", 30,50), 
        RealParameter("lifetime T2", 15,40), 
        RealParameter("lifetime T3", 15,40), 
        RealParameter("lifetime T4", 15,40), 
        RealParameter("ec gr t1", 0.03,0.035), 
        RealParameter("ec gr t2", -0.01,0.03), 
        RealParameter("ec gr t3", -0.01,0.03), 
        RealParameter("ec gr t4", -0.01,0.03), 
        RealParameter("ec gr t5", -0.01,0.03), 
        RealParameter("ec gr t6", -0.01,0.03), 
        RealParameter("ec gr t7", -0.01,0.03), 
        RealParameter("ec gr t8", -0.01,0.03), 

https://emaworkbench.readthedocs.io/en/latest
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        RealParameter("ec gr t9", -0.01,0.03), 
        RealParameter("ec gr t10", -0.01,0.03), 
        RealParameter("random PR min", 0.9,1),         
        RealParameter("random PR max", 1,1.1), 
        IntegerParameter("seed PR T1", 1,100), 
        IntegerParameter("seed PR T2", 1,100), 
        IntegerParameter("seed PR T3", 1,100), 
        IntegerParameter("seed PR T4", 1,100), 
        RealParameter("absolute preference for MIC", 2,5), 
        RealParameter("absolute preference for expected cost per MWe",2,5), 
        RealParameter("absolute preference against unknown",1,3), 
        RealParameter("absolute preference for expected progress",1,3),         
        RealParameter("absolute preference against specific CO2 emissions",2,5),   
        CategoricalParameter("SWITCH preference for MIC", (0,1), default = 1), 
        CategoricalParameter("SWITCH preference for expected cost per MWe", (0,1), default = 1), 
CategoricalParameter("SWITCH preference against unknown", (0,1), default=1), 
CategoricalParameter("SWITCH preference for expected progress",(0,1),default=1), 
CategoricalParameter("SWITCH preference against specific CO2 emissions",(0,1)), 
        RealParameter("performance expected cost per MWe T1",1,2), 
        RealParameter("performance expected cost per MWe T2",1,5), 
        RealParameter("performance expected cost per MWe T3",1,5), 
        RealParameter("performance expected cost per MWe T4",1,5), 
        RealParameter("performance CO2 avoidance T1",4,5), 
        RealParameter("performance CO2 avoidance T2",1,4), 
        RealParameter("performance CO2 avoidance T3",1,4), 
        RealParameter("performance CO2 avoidance T4",1,4),             
        CategoricalParameter("SWITCH T3", (0,1), default=0 ), 
        CategoricalParameter("SWITCH T4", (0,1), default=0 ), 
        CategoricalParameter("order lifetime T1", (1,3,10,1000), default = 3), 
        CategoricalParameter("order lifetime T2", (1,3,10,1000), default = 3), 
        CategoricalParameter("order lifetime T3", (1,3,10,1000), default = 3), 
        CategoricalParameter("order lifetime T4", (1,3,10,1000), default = 3),] 
ensemble = ModelEnsemble() 
ensemble.model_structures = model 
policies = [Policy('no policy', 
model_file=..\models\ESDMAElecTrans_NoPolicy.vpm'), 

Policy('static policy',          model_file='..\models\ESDMAElecTrans_StaticPolicy.vpm'), 
Policy('adaptive policy',        model_file='..\models\ESDMAElecTrans_AdaptivePolicy.vpm') ] 

ensemble.policies = policies 
     
ensemble.parallel = True  
nr_runs = 5000 
results  = ensemble.perform_experiments(nr_runs) 
fn = './data/FTA {} experiments.tar.gz'.format(nr_runs) 
save_results(results, fn) 

Feature scoring algorithm on simulations without policy 

import ema_workbench.analysis.feature_scoring as feature_scoring 
 
if __name__ == '__main__': 
    fn = './data/FTA 5000 experiments without policy.tar.gz'.format(nr_runs) 
    experiments, outcomes = load_results(fn) 
    x = experiments, y = outcomes  
    fs = feature_scoring.get_feature_scores_all(x, y) 
    i=0 
    for row in fs['total fraction new technologies'].values: 
        print(fs['total fraction new technologies'].index[i]) 
        print (row) 
        i=i+1 

CART algorithm on simulations without policy 

import ema_workbench.analysis.cart as cart 
 
def classify(data): 
    result = data['total fraction new technologies'] 
    classes =  np.zeros(result.shape[0]) 
    classes[result[:, -1] < 0.4] = 1 
    return classes 
 
if __name__ == '__main__': 
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    fn = './data/FTA 5000 experiments without policy.tar.gz'.format(nr_runs) 
    results = load_results(fn) 
    cart_alg = cart.setup_cart(results, classify, incl_unc=[ 

"ini cap T1","ini cap T2","ini cap T3","ini cap T4", 
"ini cost T1","ini cost T2","ini cost T3","ini cost T4", 
"ini cum decom cap T1","ini cum decom cap T2","ini cum decom cap T3","ini cum decom cap T4", 
"average planning and construction period T1","average planning and construction period 
T2","average planning and construction period T3","average planning and construction period 
T4", 
"ini PR T1","ini PR T2","ini PR T3","ini PR T4", 
"lifetime T1","lifetime T2","lifetime T3","lifetime T4", 
"absolute preference for MIC","absolute preference for expected cost per MWe","absolute 
preference against unknown","absolute preference for expected progress","absolute preference 
against specific CO2 emissions", 
"performance expected cost per MWe T1","performance expected cost per MWe T2","performance 
expected cost per MWe T3","performance expected cost per MWe T4", 
"performance CO2 avoidance T1","performance CO2 avoidance T2","performance CO2 avoidance 
T3","performance CO2 avoidance T4", 
"SWITCH T3","SWITCH T4"], mass_min=0.05) 

    cart_alg.build_tree() 
    print (cart_alg.stats_to_dataframe()) 
    print (cart_alg.boxes_to_dataframe().T)  
    cart_alg.display_boxes(together=False) 
    plt.show() 

PRIM algorithm on simulations without policy 

import ema_workbench.analysis.prim as prim 
from sympy.polys.rationaltools import together 
 
def classify(data): 
    result = data['total fraction new technologies'] 
    classes =  np.zeros(result.shape[0]) 
    classes[result[:, -1] < 0.4] = 1 
    return classes 
 
if __name__ == '__main__': 
    fn = './data/FTA 5000 experiments without policy.tar.gz'.format(nr_runs) 
    results = load_results(fn) 
    experiments, results = results 
    prim_obj = prim.setup_prim(results, classify, threshold=0.5, threshold_type=1) 
    box_1 = prim_obj.find_box() 
    box_1.inspect(style='graph') 
    box_1.write_ppt_to_stdout() 
    print(prim_obj.stats_to_dataframe()), print(prim_obj.boxes_to_dataframe())     
    prim_obj.display_boxes(together=False), plt.show() 
 

PRIM algorithm on static policy runs where the fraction of new technologies is below 40% and above 80% 

# the fraction of new technologies is below 40% 
def classify(data): 
    result = data['total fraction new technologies'] 
    classes =  np.zeros(result.shape[0]) 
    classes[result[:, -1] < 0.4] = 1 
    return classes 
# the fraction of new technologies is above 80% 
def classify(data): 
    result = data['total fraction new technologies'] 
    classes =  np.zeros(result.shape[0]) 
    classes[result[:, -1] > 0.8] = 1 
    return classes 
 
if __name__ == '__main__': 
    fn = './data/FTA 5000 experiments without policy.tar.gz'.format(nr_runs) 
    results = load_results(fn) 
    experiments, results = results 
     
    logicalIndex = experiments['policy'] == 'static policy' 
    newExperiments = experiments[ logicalIndex ] 
    newResults = {} 
    for key, value in results.items(): 
        newResults[key] = value[logicalIndex] 
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    results = (newExperiments, newResults)  
    prim_obj = prim.setup_prim(results, classify, threshold=0.5, threshold_type=1) 
    box_1 = prim_obj.find_box(), box_1.inspect(style='graph')  
    box_1.write_ppt_to_stdout() 
    print(prim_obj.stats_to_dataframe()), print(prim_obj.boxes_to_dataframe()) 
      
    prim_obj.display_boxes(together=False) 
    plt.show() 

Chapter 3:  

10000 simulations without policy, basic policy, adaptive policy 

from __future__ import division 
from expWorkbench import SimpleModelEnsemble, CategoricalUncertainty,\ 
                         ParameterUncertainty, save_results, Outcome 
 
import expWorkbench.EMAlogging as logging 
from expWorkbench.vensim import VensimModelStructureInterface 
 
class EnergyTrans(VensimModelStructureInterface): 
    def __init__(self, workingDirectory, name): 
        """interface to the model""" 
        super(EnergyTrans, self).__init__(workingDirectory, name ) 
        self.modelFile = r'\ESDMAElecTrans_NoPolicy.vpm' 
        #outcomes     
      self.outcomes.append(Outcome('total fraction new technologies' , time=True)) 
      self.outcomes.append(Outcome('installed capacity T1' , time=True)) 
      self.outcomes.append(Outcome('installed capacity T2' , time=True)) 
      self.outcomes.append(Outcome('installed capacity T3' , time=True)) 
      self.outcomes.append(Outcome('installed capacity T4' , time=True)) 
      self.outcomes.append(Outcome('total capacity installed' , time=True)) 
      #Initial values 
    self.uncertainties.append(ParameterUncertainty((14000,16000), "ini cap T1")) # 
    self.uncertainties.append(ParameterUncertainty((1,2), "ini cap T2")) # 
    self.uncertainties.append(ParameterUncertainty((1,2), "ini cap T3")) # 
    self.uncertainties.append(ParameterUncertainty((1,2), "ini cap T4")) # 
self.uncertainties.append(ParameterUncertainty((5e6,15e6), "ini cost T1"))  
self.uncertainties.append(ParameterUncertainty((5e6, 1e7), "ini cost T2"))  
self.uncertainties.append(ParameterUncertainty((5e6, 1e7), "ini cost T3"))  
self.uncertainties.append(ParameterUncertainty((5e6, 1e7), "ini cost T4"))  
self.uncertainties.append(ParameterUncertainty((5e6,1e7), "ini cum decom cap T1"))  
self.uncertainties.append(ParameterUncertainty((1,100), "ini cum decom cap T2"))  
self.uncertainties.append(ParameterUncertainty((1,100), "ini cum decom cap T3"))  
self.uncertainties.append(ParameterUncertainty((1,100), "ini cum decom cap T4"))  
self.uncertainties.append(ParameterUncertainty((1,5), "average planning and construction period T1"))  
self.uncertainties.append(ParameterUncertainty((1,5), "average planning and construction period T2"))  
self.uncertainties.append(ParameterUncertainty((1,5), "average planning and construction period T3"))  
self.uncertainties.append(ParameterUncertainty((1,5), "average planning and construction period T4"))  
        self.uncertainties.append(ParameterUncertainty((0.85,0.95), "ini PR T1"))  
        self.uncertainties.append(ParameterUncertainty((0.7,0.95), "ini PR T2"))  
        self.uncertainties.append(ParameterUncertainty((0.7,0.95), "ini PR T3"))  
        self.uncertainties.append(ParameterUncertainty((0.7,0.95), "ini PR T4"))  
        #Plain Parametric Uncertainties  
        self.uncertainties.append(ParameterUncertainty((30,50), "lifetime T1")) 
        self.uncertainties.append(ParameterUncertainty((15,40), "lifetime T2")) 
        self.uncertainties.append(ParameterUncertainty((15,40), "lifetime T3")) 
        self.uncertainties.append(ParameterUncertainty((15,40), "lifetime T4"))         
        #One uncertain development over time -- smoothed afterwards 
self.uncertainties.append(ParameterUncertainty((0.03,0.035), "ec gr t1")) #0.03                         
self.uncertainties.append(ParameterUncertainty((-0.01,0.03), "ec gr t2")) #0.03 
self.uncertainties.append(ParameterUncertainty((-0.01,0.03), "ec gr t3")) #0.03 
self.uncertainties.append(ParameterUncertainty((-0.01,0.03), "ec gr t4")) #0.03 
self.uncertainties.append(ParameterUncertainty((-0.01,0.03), "ec gr t5")) #0.03 
self.uncertainties.append(ParameterUncertainty((-0.01,0.03), "ec gr t6")) #0.03                         
self.uncertainties.append(ParameterUncertainty((-0.01,0.03), "ec gr t7")) #0.03 
self.uncertainties.append(ParameterUncertainty((-0.01,0.03), "ec gr t8")) #0.03 
self.uncertainties.append(ParameterUncertainty((-0.01,0.03), "ec gr t9")) #0.03 
self.uncertainties.append(ParameterUncertainty((-0.01,0.03), "ec gr t10")) #0.03                         
        #Uncertainties in Random Functions 
        self.uncertainties.append(ParameterUncertainty((0.9,1), "random PR min"))         
        self.uncertainties.append(ParameterUncertainty((1,1.1), "random PR max"))  
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self.uncertainties.append(ParameterUncertainty((1,100), "seed PR T1", integer=True))  
self.uncertainties.append(ParameterUncertainty((1,100), "seed PR T2", integer=True)) 
self.uncertainties.append(ParameterUncertainty((1,100), "seed PR T3", integer=True)) 
self.uncertainties.append(ParameterUncertainty((1,100), "seed PR T4", integer=True)) 
#Uncertainties in Preference Functions 
self.uncertainties.append(ParameterUncertainty((2,5), "absolute preference for MIC")) 
self.uncertainties.append(ParameterUncertainty((1,3), "absolute preference for expected cost per MWe")) 
self.uncertainties.append(ParameterUncertainty((2,5), "absolute preference against unknown"))         
self.uncertainties.append(ParameterUncertainty((1,3), "absolute preference for expected progress"))         
self.uncertainties.append(ParameterUncertainty((2,5), "absolute prf against specific CO2 emissions"))   
self.uncertainties.append(CategoricalUncertainty((0,1), "SWITCH prf for MIC", default = 1)) 
self.uncertainties.append(CategoricalUncertainty((0,1), "SWITCH prf for expcost per MWe", default = 0)) 
self.uncertainties.append(CategoricalUncertainty((0,1), "SWITCH prf against unknown", default = 0)) 
self.uncertainties.append(CategoricalUncertainty((0,1), "SWITCH prf for exp progress", default = 0)) 
self.uncertainties.append(CategoricalUncertainty((0,1), "SWITCH prf agnst CO2 emissions", default = 0)) 
self.uncertainties.append(ParameterUncertainty((1,2), "performance expected cost per MWe T1")) 
self.uncertainties.append(ParameterUncertainty((1,5), "performance expected cost per MWe T2")) 
self.uncertainties.append(ParameterUncertainty((1,5), "performance expected cost per MWe T3")) 
self.uncertainties.append(ParameterUncertainty((1,5), "performance expected cost per MWe T4")) 
self.uncertainties.append(ParameterUncertainty((4,5), "performance CO2 avoidance T1")) 
self.uncertainties.append(ParameterUncertainty((1,5), "performance CO2 avoidance T2")) 
self.uncertainties.append(ParameterUncertainty((1,5), "performance CO2 avoidance T3")) 
self.uncertainties.append(ParameterUncertainty((1,5), "performance CO2 avoidance T4"))         
#Switches op technologies 
self.uncertainties.append(ParameterUncertainty((0,1), "SWITCH T3", integer=True)) 
self.uncertainties.append(ParameterUncertainty((0,1), "SWITCH T4", integer=True))        
#ORDERS OF DELAYS 
self.uncertainties.append(CategoricalUncertainty((1,3,10,1000), "order lifetime T1", default = 3)) 
self.uncertainties.append(CategoricalUncertainty((1,3,10,1000), "order lifetime T2", default = 3)) 
self.uncertainties.append(CategoricalUncertainty((1,3,10,1000), "order lifetime T3", default = 3)) 
self.uncertainties.append(CategoricalUncertainty((1,3,10,1000), "order lifetime T4", default = 3)) 
 
    def model_init(self, policy, kwargs): 
        try: 
            self.modelFile = policy['file'] 
        except: 
            logging.debug("no policy specified") 
        super(EnergyTrans, self).model_init(policy, kwargs) 
 
 
if __name__ == "__main__": 
    logger = logging.log_to_stderr(logging.INFO) 
    model = EnergyTrans(r'..\..\models\EnergyTrans', "ESDMAElecTrans") 
    model.step = 4 #reduce data to be stored 
    ensemble = SimpleModelEnsemble() 
    ensemble.set_model_structure(model) 
     
    policies = [{'name': 'no policy', 
                 'file': r'\ESDMAElecTrans_NoPolicy.vpm'}, 
                {'name': 'basic policy', 
                 'file': r'\ESDMAElecTrans_basic_policy.vpm'}, 
                {'name': 'adaptive policy', 
                 'file': r'\ESDMAElecTrans_ap_with_op.vpm'}, 
                ] 
    ensemble.add_policies(policies) 
    ensemble.parallel = True 
    results = ensemble.perform_experiments(10000) 

    save_results(results, 'TFSC_all_policies.cPickle') 

PRIM algorithm on no policy runs where the fraction of new technologies is above 60% 

def classify(data): 
    result = data['total fraction new technologies'] 
    classes =  np.zeros(result.shape[0]) 
    classes[result[:, -1] > 0.6] = 1 
    return classes 
 
#load data 
results = load_results('TFSC_all_policies.cPickle') 
cases,results=results 
logicalIndex = cases['policy']=='no policy' 
newCases = cases[logicalIndex] 
#newCases = newCases[1000:2000] 
newResults = {} 
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for key, value in results.items(): 
    value = value[logicalIndex] 
    newResults[key] = value[:,:] 
results = (newCases, newResults) 
#perform prim on selected outcome 
boxes = prim.perform_prim(results, classify,threshold=0.7, threshold_type=1) 
 
prim.write_prim_to_stdout(boxes) 
prim.show_boxes_individually(boxes, results) 
plt.show() 

 

Chapter 4:  

Robustness Check 

import cPickle 
import numpy as np 
from expWorkbench.util import load_optimization_results 
from deap.benchmarks.tools import convergence 
from mpl_toolkits.mplot3d import Axes3D 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
from expWorkbench import load_results, MINIMIZE, MAXIMIZE 
from deap import creator, base 
from analysis.b_and_w_plotting import set_fig_to_bw 
 
weights = (MAXIMIZE, MAXIMIZE, MINIMIZE) 
creator.create("Fitness", base.Fitness, weights=weights) 
creator.create("Individual", dict, fitness=creator.Fitness) #@UndefinedVariable 
data, pop, cases = 
load_optimization_results(r'..\cPickles\MultiObjRobOpt\SIMPAT_80gen_200pop_500cases.cPickle', weights) 
 
data = data.change 
data1 = [] 
data2 = [] 
data3 = [] 
 
for entry in data: 
    data1.append(entry[0] + entry[1]) 
    data2.append(entry[0]) 
    data3.append(entry[1]) 
 
change = data.change 
change = np.asarray(change) 
 
fig = plt.figure() 
ax = fig.add_subplot(111) 
ax.plot(data1) 
ax.plot(data2) 
ax.plot(data3) 
 
ax.set_xlabel("generations") 
ax.set_ylabel("nr. of changes to pareto front") 
 
ax.plot(change[:, 0], label='added') 
ax.plot(change[:, 1], label='removed') 
ax.legend(loc='best') 
ax.set_xlabel("# of generations") 
ax.set_ylabel("# of changes") 
 
fig = set_fig_to_bw(fig) 
plt.show() 

 

Setup and execute robust optimization  

class SIMPAT_Opt(VensimModelStructureInterface):  
    #outcomes 
    outcomes = [ 
                Outcome('cumulative carbon emissions', time=True), 
                Outcome('carbon emissions reduction fraction', time=True), 
                Outcome('fraction renewables', time=True), 
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                Outcome('average total costs', time=True), 
                Outcome('total costs of electricity', time=True), 
                ]         
    #Plain Parametric Uncertainties  
    uncertainties = [ParameterUncertainty((0.9,1.1),"year"),#1                     
         ParameterUncertainty((0,0.5),"demand fuel price elasticity factor"),#0.25                                
         ParameterUncertainty((30,50),"economic lifetime biomass"),#40 
         ParameterUncertainty((30,50),"economic lifetime coal"),#40 
         ParameterUncertainty((25,40),"economic lifetime gas"),#30 
         ParameterUncertainty((30,50),"economic lifetime igcc"),#40 
         ParameterUncertainty((25,40),"economic lifetime ngcc"),#30 
         ParameterUncertainty((50,70),"economic lifetime nuclear"),#60 
         ParameterUncertainty((20,30),"economic lifetime pv"),#25 
         ParameterUncertainty((20,30),"economic lifetime wind"),#25 
         ParameterUncertainty((50,70),"economic lifetime hydro"),#60                
         ParameterUncertainty((0.5,1.5),"uncertainty initial gross fuel costs"),#1                  
         ParameterUncertainty((0.5,4),"investment proportionality constant"),#1 
ParameterUncertainty((0.2,2),"investors desired excess capacity investment"),#0.5                     
ParameterUncertainty((-0.07,-0.001),"price demand elasticity factor"),#-0.05                
ParameterUncertainty((0.1,0.2),"price volatility global resource markets"),#0.2                       
ParameterUncertainty((0.85,1),"progress ratio biomass"),#0.915 
ParameterUncertainty((0.9,1.05),"progress ratio coal"),#0.95 
ParameterUncertainty((0.85,1),"progress ratio gas"),#0.915 
ParameterUncertainty((0.9,1.05),"progress ratio igcc"),#0.95 
ParameterUncertainty((0.85,1),"progress ratio ngcc"),#0.915 
ParameterUncertainty((0.9,1.05),"progress ratio nuclear"),#0.95 
ParameterUncertainty((0.75,0.9),"progress ratio pv"),#0.80 
ParameterUncertainty((0.85,1),"progress ratio wind"),#0.915 
ParameterUncertainty((0.9,1.05),"progress ratio hydro"),#0.9                                                     
ParameterUncertainty((0.1,3),"starting construction time"),#1                     
ParameterUncertainty((2013,2100),"time of nuclear power plant ban"),#2060 
ParameterUncertainty((1,10),"weight factor carbon abatement"),#5 
ParameterUncertainty((1,10),"weight factor marginal investment costs"),#5     
ParameterUncertainty((1,10),"weight factor technological familiarity"),#5     
ParameterUncertainty((1,10),"weight factor technological growth potential"),#5                    
ParameterUncertainty((0.2,3),"maximum battery storage uncertainty constant"),#1  
ParameterUncertainty((0.2,0.6),"maximum no storage penetration rate wind"), 
ParameterUncertainty((0.1,0.4),"maximum no storage penetration rate pv"),#0.15       
#### "Categorical Uncertainty" 
CategoricalUncertainty((1,2,3,4),"SWITCH lookup curve TGC", default=1), 
CategoricalUncertainty((1,2),"SWTICH preference carbon curve", default=1), 
CategoricalUncertainty((1,2,3,4,5,6),"SWITCH economic growth", default=2),  
CategoricalUncertainty((1,2,3,4,5,6),"SWITCH electrification rate", default=2),                
CategoricalUncertainty((1,2),"SWITCH Market price determination", default=1), 
CategoricalUncertainty((1,2),"SWITCH physical limits", default=1),  
CategoricalUncertainty((1,2,3,4),"SWITCH low reserve margin price markup"),  
CategoricalUncertainty((1,2,3,4),"SWITCH interconnection capacity expansion"),  
CategoricalUncertainty((1,2,3,4,5,6,7),"SWITCH storage for intermittent supply"),  
CategoricalUncertainty((1,2,3),"SWITCH carbon cap", default=2),   
CategoricalUncertainty((1,2,3),"SWITCH TGC obligation curve", default=2),  
CategoricalUncertainty((1,2,3),"SWITCH carbon price determination", default=2),                       
 
model_file = r'\RB_V25_ets_1_policy_modified_adaptive_extended_outcomes.vpm' 
     
    def model_init(self, policy, kwargs): 
        '''initializes the model''' 
        ema_logging.debug("starting to run policy: %s" % (policy['name'])) 
        self.policy = policy 
        self.policy.pop('name') 
        super(SIMPAT_Opt, self).model_init(policy, kwargs) 
 
    def run_model(self,case): 
        for key, value in self.policy.iteritems(): 
            case[key] = value 
        super(SIMPAT_Opt, self).run_model(case) 
 
def perform_robust_optimization(): 
    def obj_func(outcomes): 
        average = np.average(outcomes["fraction renewables"][:, -1]) 
        stdev = np.std(outcomes["fraction renewables"][:,-1])                             
        score_1 = (average+1) / (stdev+1) 
       average = np.average(outcomes["carbon emissions reduction fraction"][:,-1]) 
       stdev = np.std(outcomes["carbon emissions reduction fraction"][:,-1])                             
       score_2 = (average+1) / (stdev+1) 
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        average = np.average(outcomes["average total costs"][:,-1]) 
        stdev = np.std(outcomes["average total costs"][:,-1])                             
        score_3 = (average+1) * (stdev+1) 
     
        return score_1, score_2, score_3  
     
    ema_logging.log_to_stderr(ema_logging.INFO) 
     
    model = SIMPAT_Opt(r'..\models', "SIMPAT_Opt") 
    ensemble = ModelEnsemble() 
    ensemble.set_model_structure(model) 
    ensemble.parallel = True 
 
    policy_levers = {'Desired Fraction': {'type':'range', 'values':[0.5,1.0]}, 
                     'AddComm': {'type':'range', 'values':[0.0,0.75]}, 
                     'subsidy factor': {'type':'range', 'values':[0.0,0.5]}, 
                     'subsidy duration': {'type':'range', 'values':[0,20]}, 
                     'Proximity': {'type':'range', 'values':[1.0,2.0]}, 
                     "trigger": {'type':'range', 'values':[0.0,1.0]}, 
                     "decommission factor": {'type':'range', 'values':[0.0,0.5]}, 
                     "TimeAhead": {'type':'range', 'values':[10,40]} } 
    samples = ensemble._generate_samples(500, UNION)[0] 
    ensemble.add_policy({"name":None}) 
    experiments = [entry for entry in ensemble._generate_experiments(samples)] 
    for entry in experiments: 
        entry.pop("model") 
        entry.pop("policy") 
    cases = experiments 
    
stats_callback, pop = ensemble.perform_robust_optimization(cases=cases, 
  reporting_interval=1000, obj_function=obj_func, weights = (MAXIMIZE, MAXIMIZE,    
  MINIMIZE), nr_of_generations=50, pop_size=200, crossover_rate=0.8, 
  mutation_rate=0.05, policy_levers=policy_levers ) 
     
save_results((stats_callback, pop, cases), 
r'..\cPickles\MultiObjRobOpt\SIMPAT_50gen_200pop_500cases.cPickle') 
 
def test_model(): 
    workdir = "..\models" 
    ema_logging.log_to_stderr(ema_logging.INFO) 
    random.seed(100)  
    def generate_random_policies(nr_of_policies): 
        policies = [{'name': 'RB no ETS 1', 
         'file': r'\RB_V25_no_ets_1_extended_outcomes.vpm'}, 
         {'name': 'RB ETS 1', 
         'file': r'\RB_V25_ets_1_extended_outcomes.vpm'}, 
         {'name': 'RB Basic Policy ETS 1', 
         'file': r'\RB_V25_ets_1_policy_modified_extended_outcomes.vpm'}, 
         {'name': 'RB Adaptive Policy ETS 1', 
         'file': r'\RB_V25_ets_1_policy_modified_adaptive_extended_outcomes.vpm'}] 
 
        for i in range(nr_of_policies): 
            name = 'Random Policy ' + str(i) 
            policy = {"name": name,  
                   "Desired Fraction": float(random.randrange(5,10))/10, 
                   "AddComm": float(random.randrange(0,75)/100), 
                   "subsidy factor": float(random.randrange(0,5)/10), 
                   "subsidy duration": random.randrange(0,50), 
                   "Proximity": float(random.randrange(10,20)/10), 
                   "trigger": random.random(), 
                   "decommission factor": random.random(), 
                   'file': r'\RB_V25_ets_1_policy_modified_extended_outcomes.vpm'} 
            policies.append(policy) 
        return policies 
    policies= generate_random_policies(10) 
    model = SIMPAT_Opt(workdir, "SIMPAT_Opt") 
    model.step_size = 16 
    ensemble = ModelEnsemble(MonteCarloSampler()) 
    ensemble.set_model_structure(model) 
    ensemble.add_policies(policies)     
    results = ensemble.perform_experiments(1000, reporting_interval=100) 
save_results(results, r'..\cPickles\MultiObjRobOpt\RobustnessCheck1000.cPickle') 
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if __name__ == '__main__': 
    perform_robust_optimization() 

Changes to the Pareto front over the generations 

weights = (MAXIMIZE, MAXIMIZE, MINIMIZE) 
creator.create("Fitness", base.Fitness, weights=weights) 
creator.create("Individual", dict, fitness=creator.Fitness)  
data, pop, cases = 
load_optimization_results(r'..\cPickles\MultiObjRobOpt\SIMPAT_80gen_200pop_500cases.cPickle', weights) 
 
data = data.change 
data1 = [] 
data2 = [] 
data3 = [] 
 
for entry in data: 
    data1.append(entry[0] + entry[1]) 
    data2.append(entry[0]) 
    data3.append(entry[1]) 
 
change = data.change 
change = np.asarray(change) 
 
fig = plt.figure() 
ax = fig.add_subplot(111) 
ax.plot(data1) 
ax.plot(data2) 
ax.plot(data3) 
 
ax.set_xlabel("generations") 
ax.set_ylabel("nr. of changes to pareto front") 
 
ax.plot(change[:, 0], label='added') 
ax.plot(change[:, 1], label='removed') 
ax.legend(loc='best') 
ax.set_xlabel("# of generations") 
ax.set_ylabel("# of changes") 
 
fig = set_fig_to_bw(fig) 
plt.show() 

 

Non-Pareto solutions and Pareto solution in 3D  

weights = (MAXIMIZE, MAXIMIZE, MINIMIZE) 
creator.create("Fitness", base.Fitness, weights=weights) 
creator.create("Individual", dict, fitness=creator.Fitness)  
 
stats_callback, pop, cases = 
load_results(r'..\cPickles\MultiObjRobOpt\SIMPAT_80gen_200pop_500cases.cPickle') 
 
hof = stats_callback.hall_of_fame 
entries = set() 
for entry in hof: 
    entries.add(entry['name']) 
    print entry 
 
from analysis.pairs_plotting import pairs_scatter, pairs_density 
data = np.zeros((len(hof), 3)) 
 
for i, entry in enumerate(hof): 
    data[i,:] = entry.fitness.values 
 
nonpareto = stats_callback.stats 
non_pareto_solutions = np.zeros((len(nonpareto), 3)) 
for i, entry in enumerate(nonpareto): 
    non_pareto_solutions[i] = entry 
 
to = {"Renewable Fraction robustness": data[:, 0], 
      "CO2 Reduction robustness": data[:, 1], 
      "Average Costs robustness": data[:, 2]} 
te = np.zeros(len(hof,), dtype=[('a', np.float)]) 
tr = (te, to) 
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fig1, axes = pairs_scatter(tr, filter_scalar=False) 
fig1.set_figheight(10) 
fig1.set_figwidth(10) 
 
fig2, axes = pairs_density(tr, filter_scalar=False) 
fig2.set_figheight(10) 
fig2.set_figwidth(10) 
 
pareto = data 
nonpareto = non_pareto_solutions 
 
max1= np.max(pareto[:,0]) 
max2= np.max(pareto[:,1]) 
max3= np.max(pareto[:,2]) 
 
min1= np.min(pareto[:,0]) 
min2= np.min(pareto[:,1]) 
min3= np.min(pareto[:,2]) 
 
max11= np.max(nonpareto[:,0]) 
max12= np.max(nonpareto[:,1]) 
max13= np.max(nonpareto[:,2]) 
 
min11= np.min(nonpareto[:,0]) 
min12= np.min(nonpareto[:,1]) 
min13= np.min(nonpareto[:,2]) 
 
max1 = max(max1,max11) 
max2 = max(max2,max12) 
max3 = max(max3,max13) 
  
min1 = min(min1,min11) 
min2 = min(min2,min12) 
min3 = min(min3,min13) 
 
fig = plt.figure() 
ax = fig.add_subplot(111, projection='3d') 
 
ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) 
ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) 
ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) 
ax.scatter(pareto[:,0], pareto[:,1], pareto[:,2], c='k') 
 
 
x1 = ((nonpareto[:,0]-min1)/(max1-min1)) 
x2 = ((pareto[:,0]-min1)/(max1-min1)) 
y1 = ((nonpareto[:,1]-min2)/(max2-min2)) 
y2 = ((pareto[:,1]-min2)/(max2-min2)) 
z1 = ((nonpareto[:,2]-min3)/(max3-min3)) 
z2 = ((pareto[:,2]-min3)/(max3-min3)) 
 
ax.set_xlabel('Renewable Fraction robustness') 
ax.set_ylabel('CO2 Reduction robustness') 
ax.set_zlabel('Average Costs robustness') 
ax.set_xbound(lower=0, upper=1) 
ax.set_ybound(lower=0, upper=1) 
ax.set_zbound(lower=0, upper=1) 
 
pareto_solutions = [] 
for entry in hof: 
    pareto_solutions.append(entry.fitness.values) 
pareto_solutions = np.array(pareto_solutions) 
non_pareto_solutions = [] 
for entry in stats_callback.stats: 
    non_pareto_solutions.append(entry) 
non_pareto_solutions = np.array(non_pareto_solutions) 
  
imagine1 = np.zeros(len(pareto_solutions[:, 0])) 
non_imagine1 = np.zeros(len(non_pareto_solutions[:, 0])) 
imagine2 = np.zeros(len(pareto_solutions[:, 0])) 
non_imagine2 = np.zeros(len(non_pareto_solutions[:, 0])) 
imagine2 = imagine2 + 1 
non_imagine2 = non_imagine2 + 1 
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cset = ax.scatter(x2, y2, imagine1, color='0.75',s=4, alpha=0.1) 
cset = ax.scatter(x2, imagine2, z2, color='0.75',s=4, alpha=0.1) 
cset = ax.scatter(imagine1, y2, z2, color='0.75',s=4, alpha=0.1) 
  
cset = ax.scatter(x1, y1, non_imagine1, color='0.75',s=4, alpha=0.1) 
cset = ax.scatter(x1, non_imagine2, z1, color='0.75',s=4, alpha=0.1) 
cset = ax.scatter(non_imagine1, y1, z1, color='0.75',s=4, alpha=0.1) 
 
fig.set_figwidth(10) 
fig.set_figheight(10) 
plt.show() 

Comparison of Adaptive and three optimized policies 

class SIMPAT_Opt(VensimModelStructureInterface):  
    #outcomes 
    outcomes = [Outcome('cumulative carbon emissions', time=True), 
                Outcome('carbon emissions reduction fraction', time=True), 
                Outcome('fraction renewables', time=True), 
                Outcome('average total costs', time=True), 
                Outcome('total costs of electricity', time=True),] 
    #Plain Parametric Uncertainties  
uncertainties=[ParameterUncertainty((0.9,1.1),"year"),#1                     
ParameterUncertainty((0,0.5),"demand fuel price elasticity factor"),#0.25                                
ParameterUncertainty((30,50),"economic lifetime biomass"),#40 
ParameterUncertainty((30,50),"economic lifetime coal"),#40 
ParameterUncertainty((25,40),"economic lifetime gas"),#30 
ParameterUncertainty((30,50),"economic lifetime igcc"),#40 
ParameterUncertainty((25,40),"economic lifetime ngcc"),#30 
ParameterUncertainty((50,70),"economic lifetime nuclear"),#60 
ParameterUncertainty((20,30),"economic lifetime pv"),#25 
ParameterUncertainty((20,30),"economic lifetime wind"),#25 
ParameterUncertainty((50,70),"economic lifetime hydro"),#60                               
ParameterUncertainty((0.5,1.5),"uncertainty initial gross fuel costs"),#1                  
ParameterUncertainty((0.5,4),"investment proportionality constant"),#1 
ParameterUncertainty((0.2,2),"investors desired excess capacity investment"),#0.5                     
ParameterUncertainty((-0.07,-0.001),"price demand elasticity factor"),#-0.05                
ParameterUncertainty((0.1,0.2),"price volatility global resource markets"),#0.2                       
ParameterUncertainty((0.85,1),"progress ratio biomass"),#0.915 
ParameterUncertainty((0.9,1.05),"progress ratio coal"),#0.95 
ParameterUncertainty((0.85,1),"progress ratio gas"),#0.915 
ParameterUncertainty((0.9,1.05),"progress ratio igcc"),#0.95 
ParameterUncertainty((0.85,1),"progress ratio ngcc"),#0.915 
ParameterUncertainty((0.9,1.05),"progress ratio nuclear"),#0.95 
ParameterUncertainty((0.75,0.9),"progress ratio pv"),#0.80 
ParameterUncertainty((0.85,1),"progress ratio wind"),#0.915 
ParameterUncertainty((0.9,1.05),"progress ratio hydro"),#0.9                                                     
ParameterUncertainty((0.1,3),"starting construction time"),#1                     
ParameterUncertainty((2013,2100),"time of nuclear power plant ban"),#2060 
ParameterUncertainty((1,10),"weight factor carbon abatement"),#5 
ParameterUncertainty((1,10),"weight factor marginal investment costs"),#5     
ParameterUncertainty((1,10),"weight factor technological familiarity"),#5     
ParameterUncertainty((1,10),"weight factor technological growth potential"),#5                    
ParameterUncertainty((0.2,3),"maximum battery storage uncertainty constant"),#1  
ParameterUncertainty((0.2,0.6),"maximum no storage penetration rate wind"),#0.22  
ParameterUncertainty((0.1,0.4),"maximum no storage penetration rate pv"),#0.15  
#### "Categorical Uncertainty" 
CategoricalUncertainty((1,2,3,4),"SWITCH lookup curve TGC", default=1), 
CategoricalUncertainty((1,2),"SWTICH preference carbon curve", default=1), 
CategoricalUncertainty((1,2,3,4,5,6),"SWITCH economic growth", default=2),  
CategoricalUncertainty((1,2,3,4,5,6),"SWITCH electrification rate", default=2),                
CategoricalUncertainty((1,2),"SWITCH Market price determination", default=1), 
CategoricalUncertainty((1,2),"SWITCH physical limits", default=1),  
CategoricalUncertainty((1,2,3,4),"SWITCH low reserve margin price markup"),  
CategoricalUncertainty((1,2,3,4),"SWITCH interconnection capacity expansion"),  
CategoricalUncertainty((1,2,3,4,5,6,7),"SWITCH storage for intermittent supply"),  
CategoricalUncertainty((1,2,3),"SWITCH carbon cap", default=2),   
CategoricalUncertainty((1,2,3),"SWITCH TGC obligation curve", default=2),                    
CategoricalUncertainty((1,2,3),"SWITCH carbon price determination", default=2),]    
 
model_file = r'\SIMPAT_Adaptive.vpm' 
    def model_init(self, policy, kwargs): 
        '''initializes the model''' 
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        super(SIMPAT_Opt, self).model_init(policy, kwargs) 
        try: 
            self.model_file = policy['file'] 
        except KeyError: 
            ema_logging.warning("key 'file' not found in policy") 
            policy = copy.copy(policy) 
            policy.pop('name') 
            for key, value in policy.items(): 
                vensim.set_value(key, value) 
            self.model_file = r'\SIMPAT_Adaptive.vpm' 
if __name__ == "__main__": 
    ema_logging.log_to_stderr(ema_logging.INFO) 
    model = SIMPAT_Opt(r'..\models\SIMPAT', "SIMPAT_Opt") 
    ensemble =  ModelEnsemble() 
    ensemble.set_model_structure(model) 
    policies = [{'name': 'Adaptive Policy', 
                 'file': r'\SIMPAT_Adaptive.vpm'}, 
                {'name': 'Optimized Policy 0', 
                 'file': r'\SIMPAT_Optimized_0.vpm'}, 
                {'name': 'Optimized Policy 1', 
                 'file': r'\SIMPAT_Optimized_1.vpm'}, 
                {'name': 'Optimized Policy 2', 
                 'file': r'\SIMPAT_Optimized_2.vpm'}, 
                {'name': 'Optimized Policy 3', 
                 'file': r'\SIMPAT_Optimized_3.vpm'}] 
    ensemble.add_policies(policies) 
    ensemble.parallel = True #turn on parallel processing 
    results = load_results(r'..\cPickles\SIMPAT_OPTIMIZED_POLICIES_10000.cPickle') 
    outcomes = ['carbon emissions reduction fraction','fraction renewables', 
                'average total costs']   
    titles = {'carbon emissions reduction fraction': 'CO2 reduction fraction', 
              'fraction renewables': 'Renewables fraction', 
              'average total costs':'Average costs'} 
    ylabels = {'carbon emissions reduction fraction': 'CO2 reduction fraction', 
              'fraction renewables': 'Renewables fraction', 
              'average total costs':'Average costs'} 
    fig, axes = envelopes(results, density=KDE, group_by= 'policy', 
                          outcomes_to_show=outcomes, fill=True, 
                          titles=titles, ylabels=ylabels, 
 grouping_specifiers=['Adaptive Policy','Optimized Policy 1' 
    ,'Optimized Policy 2', 'Optimized Policy 3'] )  
        
    minima = {} 
    maxima = {} 
    for key, value in results[1].items(): 
        minima[key] = np.min(value) 
        maxima[key] = np.max(value) 
    log=True 
    colormap = 'gray' 
    fig, axes = simple_kde(results, outcomes, colormap, 
                           log, minima, maxima) 
    plt.show() 
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Executive Summary 

Policymaking often involves different parties such as policymakers, stakeholders, and analysts each 

with distinct roles in the process. To assist policymakers, policy analysts help in structuring the 

problem, designing, and evaluating policy alternatives. Analysts face many challenges, like 

complexity and uncertainty in a system of interest, while supporting the policymaking process. 

Frequently, analysts rely on mathematical models that represent the key features of the system. 

Models aim to represent the real world as a mathematical explanation, and inevitably possess many 

pre-analytic and analytic assumptions like parameter estimates, model structures, and worldviews. 

These assumptions made during modelling introduce a significant level of uncertainty in the 

models, and forecasting based on models is therefore always bound by this uncertainty. Therefore, 

instead of focusing on limited best-estimate predictions under uncertainty, exploring a plethora of 

plausible futures by using mathematical models can be a better approach to support decision-

making. 

In current practice, uncertainty analysis for decision-making is mostly limited to technical and 

shallow uncertainties about model parameters, input data, or initial states. However, there are 

deeper uncertainties involved in decision-making where information and awareness about such 

uncertainties are scarce. Deep uncertainty prevails ‘where analysts do not know, or the parties to a 

decision cannot agree on, (1) the appropriate conceptual models that describe the relationships 

among the key driving forces that will shape the long-term future, (2) the probability distributions 

used to represent uncertainty about key variables and parameters in the mathematical 

representations of these conceptual models, and/or (3) how to value the desirability of alternative 

outcomes’ (Lempert et al., 2003). Deep uncertainty confronts decision-making processes and 

makes them more complex and difficult. There is an urgent and crucial need to develop and 

improve methods and techniques to handle deep uncertainty, both for analysts and decision 

makers. This thesis contributes to a solution for enhanced handling of deep uncertainty to support 

policymaking. We have developed a new methodological approach for improving analytical 

support for policymaking under deep uncertainty, and demonstrated each analytical advancement 

stage with case studies. The methodology aims to assist development of adaptive and robust 

policies. 

Especially in the presence of deep uncertainty, where reliable assumptions about the future cannot 

be made, the use of models as predictive tools is very prone to result in misleading results under 

deep uncertainty. However, the use of models for decision support in an exploratory manner- 

exploring a collection of plausible futures- instead of focusing on a limited set of futures offers a 

strong answer. Exploratory Modeling and Analysis (EMA) uses mathematical models for analyzing 

dynamically complex issues under uncertainty. EMA utilizes computational experiments to provide 

insights and understanding about system’s functioning and about the effectiveness/robustness of 

policies under a wide set of different assumptions. In contrast to predictive modelling, where a 

single best estimate model is used as a surrogate for the actual system, EMA explores the 

uncertainty space, analyzing the output extensively for better guidance to develop adaptive policies. 
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Grasping useful insights from the resulting immense input and output spaces can strongly benefit 

from analytical techniques like pattern analysis, and data mining. Despite the difficulty of such 

techniques, they can assist and improve model-based policymaking using EMA.  

Using a System Dynamics model about the competition of four different energy technologies, we 

evaluate three analytical techniques for improving EMA. Feature scoring shows which uncertainties 

have more importance in terms of the impact on the outcome(s) of interest. Classification and 

Regression Trees (CART) is a machine-learning method to create subsets of the uncertainty space 

in terms of decision trees. The Patient Rule Induction Method (PRIM) is a data-mining algorithm 

to find also subset(s) in the input space that results in the desired output space. We use such data 

analysis algorithms/techniques in combination with EMA as an approach to explore the energy 

transitions model. The resulting analysis of different policies reveals that, for this case, a dynamic 

policy performs better than a static policy for stimulating a future development of new sustainable 

energy technologies. This provides an indication that dynamic policymaking may be better than 

static policies under deep uncertainty more in general.  

How to embed these analytical techniques within a step-wise approach for supporting policy 

design? We present an iterative model-based approach for designing adaptive policies that are 

robust under deep uncertainty. In essence, the Adaptive Robust Design (ARD) approach, as we 

call it, operationalizes Adaptive Policymaking in terms of EMA using the three analytical 

techniques. ARD therefore utilizes EMA in the context of adaptive policymaking in a stepwise 

manner to identify and address both vulnerabilities and opportunities resulting in an adaptive 

robust policy. We illustrate the approach by means of a long-term policymaking case related to the 

transition of the energy system toward sustainability. The dynamic, complex, and deeply uncertain 

nature of energy systems make them a challenging case for adaptive policymaking. Our analysis 

illustrates that the ARD approach can be used to develop long-term, adaptive and robust policies 

for grand societal transformations.  

Besides dealing with dynamic complexity and deep uncertainty, policymaking for most complex 

adaptive systems requires handling a multi-actor process. In reality, policymaking has to deal with 

multiple and possibly conflicting objectives. We therefore develop an approach to use multi-

objective robust optimization in the context of adaptive policymaking. We use multi-objective 

robust optimization to address the question when, i.e. for what trigger values, to adapt a policy. 

Robust optimization addresses the uncertainty, while multi-objective optimization aids the 

consideration of multiple conflicting objectives. We demonstrate this approach by further 

improving the policy developed earlier by fine tuning the conditions under which to adapt the 

policy.   

To conclude, this thesis proposes to improve analytical support for policymaking to better handle 

deep uncertainty. Building upon the existing pragmatic practice, a systematic approach for 

designing adaptive policies under uncertainty is developed. Research questions addressed in all 

chapters build up to the main statement of this thesis: The Adaptive Robust Design approach in 

combination with multi-objective robust optimization will improve the support for policymaking 
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under deep uncertainty. The effectiveness of ARD for developing adaptive robust policies under 

deep uncertainty is shown by illustrative case studies. The key focus and contribution of this study 

is methodological, and the presented approach can be applied to any system of interest where 

mathematical models are available. The field of policymaking under uncertainty will face numerous 

new and exciting challenges, one of which will definitely be about exploring deep structural 

uncertainty on models of the system of interest. The multi-disciplinary nature of policymaking 

under uncertainty makes communication and collaboration the keywords for the future of this 

field; researchers will only reach new horizons by sharing their ideas and expertise within and 

among scientific societies. The exploration of new analytical techniques and the collaboration with 

multi-disciplinary researchers will help develop new analytical methods and techniques for 

supporting policymaking. In addition to the variety of existing approaches, this list of new methods 

and techniques should be categorized according to which method or technique is more suitable for 

the problem of interest. Such a categorization can be used as a guidebook for policy analysts to 

help select methods and techniques when faced with different policy problems. Furthermore, this 

guidebook categorization can provide advanced assistance for policy analysts and avoid potential 

miscommunication between analysts and policymakers by creating transparency on methods used 

by policy analysts.   
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Samenvatting 

Tijdens beleidsontwikkeling zijn in de regel verschillende partijen betrokken met elk een unieke rol: 

beleidsmakers, stakeholders, en beleidsanalisten. Beleidsanalisten ondersteunen beleidsmakers met 

de probleemstructurering en het ontwerpen en beoordelen van beleidsopties. De analisten moeten 

hierbij omgaan met diverse uitdagingen, waaronder de complexiteit en onzekerheid van het 

bestudeerde beleidssysteem. Wiskundige modellen van het gedrag van de belangrijkste aspecten 

van het systeem zijn hierbij een veel gebruikt hulpmiddel. Deze modellen zijn onvermijdelijk 

gestoeld op allerlei aannames met betrekking tot onder andere parameterwaardes, specifieke 

wiskundige vergelijkingen, modelstructuur en wereldbeelden. Al deze aannames dragen bij aan de 

onzekerheid in het model. Verwachtingen op basis van dit soort modellen zijn daardoor intrinsiek 

onzeker. In plaats van te proberen deze onzekerheid te reduceren, kan deze expliciet geaccepteerd 

en meegenomen worden in de beleidsanalyse door het modelmatig verkennen van vele mogelijke 

toekomsten. 

Onzekerheidsanalyse is in de gangbare praktijk meestal beperkt tot slechts het analyseren van 

relatief technische onzekerheden rondom modelparameters, inputdata en initiële waarden. Er zijn 

echter allerlei diepere onzekerheden die mogelijk veel relevanter zouden kunnen zijn voor de 

besluitvorming waar betrokkenen zich niet van bewust zijn. Er is sprake van diepe onzekerheid als 

de analist en/of de partijen betrokken bij de besluitvorming het niet eens kunnen worden over (1) 

de juiste conceptualisatie van de relaties van essentiële drijvende factoren die de toekomst bepalen; 

(2) de kansverdelingen die gebruikt worden om de onzekerheid in variabelen en model parameters 

te representeren; en/of (3) de wenselijkheid van verschillende uitkomsten (Lempert, Popper, & 

Bankes, 2003). Diepe onzekerheid bemoeilijkt besluitvormingsprocessen. Zowel beleidsanalisten 

als beleidsmakers hebben veel baat bij de ontwikkeling van methoden en technieken die om kunnen 

gaan met diepe onzekerheid. Dit proefschrift levert op dit vlak een bijdrage. Ik beschrijf hier de 

ontwikkeling van een nieuwe, methodische aanpak voor het verbeteren van de analytische 

ondersteuning van beleidsontwikkeling onder diepe onzekerheid, geïllustreerd aan de hand van een 

aantal casestudies. Het doel van de ontwikkelde methodische aanpak is het ondersteunen van de 

ontwikkeling van adaptief en robuust beleid. 

Diepe onzekerheid maakt het doen van betrouwbare aannames over de toekomst en daarmee 

voorspellend gebruik van wiskundige modellen zeer riskant. Het gebruik van dit soort modellen op 

een verkennende manier daarentegen, waarbij een grote verzameling van mogelijke toekomsten 

wordt onderzocht, is buitengewoon nuttig. In Hoofdstuk 2 illustreer ik het gebruik van verkennend 

modelleren voor het analyseren van dynamische, complexe vraagstukken onder diepe onzekerheid. 

Verkennend modelleren gebruikt computer experimenten om inzicht te krijgen in hoe het systeem 

functioneert onder verschillende aannamen en wat de effectiviteit en robuustheid is van 

beleidsopties. In tegenstelling tot voorspellend modelleren, waar een één beste schatting gebruikt 

wordt, wordt bij verkennend modelleren systematisch de gehele onzekerheidsruimte verkend. De 

resultaten van deze verkenning worden uitgebreid geanalyseerd ter ondersteuning van de 

ontwikkeling van adaptief beleid. Om nuttige inzichten te kunnen opdoen uit deze enorme ruimtes 

van modelinput en -output kunnen analytische technieken zoals patroonherkenning en data mining 

gebruikt worden, ook al  is de toepassing van deze technieken verre van triviaal.  
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Met behulp van een casestudie over de ontwikkeling van  vier concurrerende energietechnologieën 

heb ik drie analytische technieken voor het verbeteren van verkennend modelleren toegepast. De 

eerste techniek, Feature scoring, laat zien welke onzekerheden meer of juist minder invloed hebben 

op de modeluitkomsten. De tweede techniek, Classification and Regression Trees (CART), is een 

methode van machinaal leren voor het maken van deelruimtes in de onzekerheidsruimte met 

behulp van beslisbomen. De derde techniek, de Patient Rule Induction Method (PRIM), is een 

data-minings algoritme om deelruimtes in de onzekerheidsruimte te vinden die resulteren in 

uitkomsten waarin de analist geïnteresseerd is. Ik heb deze drie technieken in een casestudy gebruikt 

om adaptief beleid te ontwikkelen voor de energietransitie. Het adaptieve beleid werkt aantoonbaar 

beter dan statisch beleid in het realiseren van een duurzame toekomst. Dit geeft aanleiding tot de 

verwachting dat onder diepe onzekerheid adaptief beleid in zijn algemeenheid beter zou kunnen 

functioneren dan statisch beleid. 

Een volgende stap is het inpassen van de drie onderzochte analytische technieken in een 

stapsgewijze aanpak voor het ondersteunen van beleidsontwerp. In hoofdstuk 3 presenteer ik een 

iteratieve, modelgebaseerde aanpak voor het ontwerpen van adaptief beleid dat tevens robuust is. 

In de basis is Adaptive Robust Design, zoals ik het noem, een uitwerking van het ontwerpproces 

van adaptief beleid met behulp van verkennend modelleren met gebruik van de drie analytische 

technieken. Adaptive Robust Design gebruikt op een stapsgewijze manier verkennend modelleren 

om kwetsbaarheden en kansen te identificeren om deze vervolgens te vertalen naar acties die 

onderdeel zijn van adaptief, robuust beleid. Ik illustreer deze aanpak met een case van 

beleidsontwikkeling op de lange termijn voor de transitie van het energiesysteem naar 

duurzaamheid. Mijn analyse laat zien dat Adaptive Robust Design bruikbaar is voor het 

ontwikkelen, van adaptief en robuust beleid voor grootschalige sociale transformaties met oog op 

de lange termijn.  

Een belangrijke dimensie van beleidsontwikkeling, naast het omgaan met dynamische complexiteit 

en diepe onzekerheid, is het zogenaamde multi-actorproces. Tijdens de ontwikkeling van beleid 

dient rekening gehouden te worden met verschillende, dikwijls conflicterende doelen en belangen. 

In Hoofdstuk 4 presenteer ik hoe Multi-Objective Robust Optimalisation gebruikt kan worden ter 

ondersteuning van adaptief beleidsontwerp. Ik gebruik Multi-Objective Robust Optimalisation als 

hulpmiddel om te bepalen onder welke condities adaptief beleid aangepast moet worden. Robuuste 

optimalisatie is een manier om rekening te houden met de diepe onzekerheid, terwijl multi-

objective optimalisatie rekening houdt met de verschillende belangen en doelen. Ik demonstreer 

dit door voort te bouwen op de case uit hoofdstuk 3. 

Samenvattend: De ambitie van dit proefschrift is om bij een bijdrage te leveren aan het verbeteren 

van de analytische ondersteuning voor beleidsontwikkeling in het omgaan met diepe onzekerheid. 

Ik heb hiervoor een systematische aanpak ontwikkeld voor het ontwerpen van adaptief beleid 

onder diepe onzekerheid die voortbouwt op de huidige, pragmatische aanpak. De centrale stelling 

is hierbij dat Adaptive Robust Design in combinatie met multi-objective robust optimalisation zal 

bijdragen aan beleidsontwikkeling onder diepe onzekerheid. De effectiviteit van deze benadering 

is gedemonstreerd in illustratieve casestudies. De focus en bijdrage van deze dissertatie is expliciet 

methodisch van aard. De gepresenteerde aanpak is dan ook in principe van toepassing op elk 

beleidsprobleem waar mathematische modellen gebruikt worden in de beleidsontwikkeling.  
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Onderzoek naar de ondersteuning van beleidsontwerp onder diepe onzekerheid bevat echter nog 

een aantal grote uitdagingen. Een hele belangrijke uitdaging is hoe omgegaan kan worden met diepe 

onzekerheid over de structuur van een model. Voorts zullen, vanwege het multidisciplinaire 

karakter van het onderzoeksveld communicatie en samenwerking essentieel zijn. Nieuwe 

doorbraken kunnen alleen gerealiseerd worden door ideeën te delen met en tussen bestaande 

wetenschappelijke gemeenschappen. Een andere onderzoeksrichting is inzicht te krijgen in welke 

analytische technieken voor verkennend modelleren het beste passen bij welk type probleem. Een 

dergelijk overzicht kan beleidsanalisten helpen in het kiezen van de juiste technieken gegeven de 

aard van het beleidsprobleem waar ze aan werken. Daarnaast zal het bijdragen aan het verminderen 

van miscommunicatie tussen analisten en beleidsmakers, en de transparantie van de gevolgde 

aanpak verhogen.  
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The Adaptive Robust Design Approach
Improving Analytical Support under Deep Uncertainty

Policymaking often involves different parties such as policymakers, stakeholders, and analysts 
each with distinct roles in the process. To assist policymakers, policy analysts help in structuring the 
problem, designing, and evaluating policy alternatives. Analysts face many challenges, like complexity 
and uncertainty in a system of interest, while supporting the policymaking process. Frequently, analysts 
rely on mathematical models that represent the key features of the system. Assumptions made during 
modelling introduce a significant level of uncertainty in the models, and forecasting based on models 
is therefore always bound by this uncertainty. Instead of focusing on limited best-estimate predictions 
under uncertainty, exploring a plethora of plausible futures by using mathematical models can help 
supporting decision-making.

In current practice, uncertainty analysis for decision-making is mostly limited to technical and shallow 
uncertainties but not focused on deep uncertainty. This thesis contributes to a solution for enhanced 
handling of deep uncertainty to support policymaking. We have developed a new methodological 
approach for improving analytical support for policymaking under deep uncertainty, and demonstrated 
each analytical advancement stage with case studies. 

This thesis proposes to improve analytical support for policymaking to better handle deep uncertainty. 
Building upon the existing pragmatic practice, a systematic approach for designing adaptive policies 
under uncertainty is developed. The Adaptive Robust Design (ARD) approach in combination with 
multi-objective robust optimization will improve the support for policymaking under deep uncertainty. 
The effectiveness of ARD for developing adaptive robust policies under deep uncertainty is shown by 
illustrative case studies. 
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