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ABSTRACT 

Scour is a natural phenomenon caused by the flow of water in rivers and streams and 
occurs as a part of the morphological changes caused by rivers or as a result of man-made 
structures. For the Dutch Delta Works hydraulic structures were often constructed on fines 
with loose packing. To guarantee the geotechnical stability of these structures the bed in their 
immediate vicinity had to be protected. Though several types of bed protection can be 
distinguished, for example concrete blocks, asphalt, and granular filters (with or without 
geotextiles) the scope of this paper is limited to granular filters. In the Netherlands 
geometrically sand-tight filters are usually used. The stability of these filters is mainly 
determined by the geometrical properties of the materials. Consequently, these classical filters 
with numerous layers are very expensive. In this study a model relation for sizing a 
geometrically open granular filter is discussed. Our goal is to promote discussion than rather to 
try to solve the many problems in the complex field of filtration in geotechnical engineering. 

INTRODUCTION 

Non-geometrical granular filters have a hydraulic mode of operation; i.e. the reduction of 
the hydraulic shear stresses on the base material is such that erosion is prevented. Available 
knowledge of the hydrodynamic forces, lift and drag, acting on particles in granular filters is 
mainly based on experience and laboratory and field measurements which has proven inadequate 
for the purpose of developing a highly accurate design criterion. This is due to the numerous 
factors that influence the stability, and to the definite probabilistic nature of the acting forces 
which may at times be significantly in excess of mean values and consequently cause movement. 
Verheij and Den Adel (1998) calibrated and validated model relations for granular filters that are 
based on the Navier Stokes equation for uniform flow, the so-called Forchheimer relation and 
the hypothesis of Boussinesq. 

Figure 1 shows a horizontal one-layer filter with a thickness d above the base material. 
Considering uniform flow the shear stress distribution in the open flow is linear. Usually the 
mean flow velocity in the downstream direction can be approximated by a logarithmic function. 
The velocities and shear stresses in the filter layer will be briefly discussed by applying the three 
aforementioned equations. 

In a granular filter and with uniform flow conditions the balance of forces acting on a control 
volume can be given by (Shimizu et al., 1990) 
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Figure 1 Overview of definitions for a one-layer filter 

in which '[ is the shear stress, z is the vertical co-ordinate, F is the seepage resistance, p is the 
fluid density, g is the acceleration of gravity and i is the energy gradient. The first term 
represents the momentum transfer from the free surface flow to the filter bed. To solve equation 
(1) the seepage resistance and the shear stress have to be related to parameters that express the 
loading in granular filters. The Forcheimer relation reads: 

F = -pg(au + bu 2
) (2) 

where u is the (mean) filter velocity and a and b are constants (with a dimension). The first term 
in (2) represents the Darcy's law and is applicable in laminar flow conditions, whereas the 
second term characterises the resistance in turbulent flow conditions. The hypothesis of 
Boussinesq can be given by: 

au 
T = f1 with f1 = pV t (3) az 
where VI is the eddy viscosity. It should be remembered that the shear stress in granular layers is 
not a shear stress following the definition of the shear stress in open channel flow. The shear 
stress in this study must be considered as a loading parameter. 

Most of the turbulence-model-development and application work was carried out in the area of 
mechanical and aeronautical engineering. In the early eighties Rodi (1984) assessed the 
applicability of turbulence models to hydraulic flow problems. However, these models have not 
been extensively validated for flow in porous mediums such as granular filters. Therefore in this 
study some assumptions have been made about the eddy viscosity. In general, the eddy viscosity 
is related to a representative length scale and to a representative flow velocity. The length scale 
has been determined by the open space or by the magnitude of the particle sizes. Here the eddy 
viscosity is approximated by: 

V t = auDj ,15 (4) 



where a (= 0,9) is a constant and Df,lS is the diameter of the filter material (exceeded by 8S% 
of the weight percentage). Combining equations (1), (2) and (3) and assuming turbulent 
conditions (a = 0) the distribution of the shear stress in a one-layered filter can be modelled by 
(Verheij et at., 2000): 

c;= ~ and 
~ aDo5 

(S) 

where ~bf is the shear stress at the interface of the filter layer and the base layer, ~o is the bed 
shear stress (or shear stress at the interface of the flow and the filter layers), d is the thickness of 
the filter material and n (= 0.4) is the porosity. For turbulent flow conditions the damping 
parameter is approximately equal to ~ = S.S/Df,1s. Since the damping parameter ~ is smaller than 
the characteristic length scale in the filter material, the continuum assumption in Forcheimer's 
equation is violated. Therefore the applicability of equation (S) is limited. Nevertheless the 
relation between I' and z will hold. Though the relation between c; and Df,1s may be quantitatively 
invalid, there is experimental evidence that c; is inversely proportional to Df,1s. The filter velocity 
as function of the vertical co-ordinate can be written as: 
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The parameters C j and C2 can be expressed by the velocities as well: ubfand Us (with Ubf = u(z 
= 0) and Us = u(z = d)) 
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When the influence of the permeability ratio of the filter and base material is included, the 
boundary condition for the filter velocities at z = 0 and at z = d can respectively be given by: 

u(z=O)= u(z=d)= 2To +u~ 
apDf ,15C; . (8) 

For uniform and laminar flow conditions (b = 0) Verheij et al. (2000) derived similar relations 
for both the filter velocities and shear stresses. The damping parameter for laminar flow is 
approximately 6 times larger than for turbulent flow (~ 30/Df,lS). For a two-layer filter also an 
analytical solution can be derived. 

CONCEPT OF GRASS 

Particle transport occurs when there is no balance between load (shear stress) and 
strength (inter particle friction). When the load is less than some critical value, the bed material 
remains motionless. Then the bed can be considered as fully stable. But when the load over the 
bed attains or exceeds its critical value, particle motion begins. The beginning of motion is 
difficult to define and this can be ascribed to phenomena that are random in time and space. In 
1936, Shields published his experimental results for the initiation of movement of uniform 
granular material on a flat bed, later knOWfl as the Shields-criterion although Rouse proposed the 
well-knoWfl curve. 

In the Shields diagram, the influence of fluctuating shear stresses on bed particles is not directly 
specified. Though the distribution of the instantaneous bed shear stress is unknown, there are 
indications that this distribution has to be asymmetrical owing to sweeps and ejection (Lu and 
Willmarth, 1973). When dealing with the concept of Grass, the exact shape of the distribution is 
irrelevant because a characteristic bed shear stress can be defined, this being a time-averaged 



value and a fluctuating tenn that originates from the turbulence near the bed. The characteristic 
value is a value that is higher or lower than the time-averaged value. Usually characteristic 
values are expressed as a mean value and a fraction or manifold of the standard deviation. In 
fact, the problem of bed stability will now be transferred to the magnitude of this fluctuation. In 
addition to the random nature of the load, another random variable in the process of initial 
instability is detennined by the strength of the particles close to the bed. 

To make an adaptation to non-unifonn flow it is useful to analyse the influence ofthe turbulence 
in the vicinity of the bed for unifonn flow. For this exercise the concept of Grass (1970) can be 
applied, this being based on statistical assumptions for both the loading and strength parameters 
(Figure 2). The characteristic bed shear stress ('ZO,k) and the characteristic strength, which is the 
critical bed shear stress ( 'Ze,k) can be respectively written as: 

TO,k = TO + ro-o and Tc,k = To-ro-c (9) 

where 'i is detennined by an allowable transport of the bed material, 00 is the standard deviation 
of the instantaneous bed shear stress and 'Zo is the time-averaged bed shear stress, Oe is the 
standard deviation of the instantaneous critical bed shear stress and 'ZG is the time-averaged 
critical bed shear stress according to Grass. A specific transport will occur if 'ZO,k = 'Ze,k which will 
be elucidated later. 
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Figure 2. Probability functions of the loading and strength parameters (Grass, 1970) 

If the characteristic loading near the bed is equal to the characteristic strength (thus 'ZO,k = 'Ze,k) 

and if Oe = aeJlG with 'ZG = \f'e,GJ I1jPgDf,50 (analogous to the Shields concept) and assuming 
Ystrength = noad = r, a general relation for the filter layer follows: 

A D __ To + r 0-0 

ti f (,50 Hl (1 ) (10) 
. T c,G,fpg -ac,fr 

where aeJ is a coefficient representing the variation of the material characteristics of the filter 
layer. For unifonn flow Grass found that a bed of nearly unifonn sand (ae = 0.3) was completely 
stable for 'i = 1 and for 'i = 0 a significant transport of sediment particles was observed. Based on 
his experiments, he reported that for 'i = 0.625 the criterion of Shields was met for the initial 
movement of sands up to a size of 250 flm. In his opinion the 'i = 0.625 criterion was also in 



agreement with observations of Vanoni and Tison when using the Rouse curve as a basis for the 
critical shear stress prediction. 

The critical bed shear stress 7G is approximately 1.5 times higher than the time-averaged bed 
shear stress and thus 1.5 times higher than the mean critical value according to Rouse. 

FILTER MODEL RELATIONS 

In a similar way model relations can be derived for filters at the interface of the filter and 
the base layer (Figure 3). Using equation (5) the mean load parameter at the interface is (z 0): 

( 0) -~ T Z= =Tbr +Toe (11) 

Assuming lbf= lJ10 and applying the concept of Grass, the characteristic load can be given by: 

Tk (z = 0) = (To + rao XlJ + e-I;d) (12) 

The characteristic strength of the base material is: 

Tc,k(Z=O)=TG -rac,b =\f'c,(j,b fl bpgDb,5o(1-ra c,b) (13) 

By combining equations (10), (11) and (13), the following model relation for open granular 
filters will be obtained: 

D r ,50 1 1- flb 
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Figure 3 Distribution of the mean and characteristic load 
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Although characteristic values for both loading and strength are included, the resulting ratio of 
DJ Db is independent of the fluctuations in the loading. There are two reasons for this rather 
unexpected result: First it is assumed that both filter and base material will display initial 
movement under the same loading conditions. Second, fluctuations in the load exert a load on 
the filter material similar to that on the base material. The effects of non-uniform flow have been 
taken into account by applying equation (10) and can be represented by the standard deviation of 
the instantaneous bed shear stress (Hoffinans, 1992,1996). 

With equation (14) the influence of particle gradation on the stability of the base material can be 
explained in a qualitative way. For example, when the base material is more graded than the 
filter material, ac,b is greater than acj. Consequently, the required ratio DJDb is less when this 



value is compared to situations where base and filter materials do have the same gradation. If 
only the filter material is broadly graded, acJis greater than ac,b, so the maximum value of DJ Db 
is higher than for similarly graded materials. These predictions correspond with observations in 
flume experiments. A broadly graded base material has more fines than a more uniform material. 
The material in the filter layer has to prevent the erosion of the fines. This can only be achieved 
by reducing the filter velocities or by putting more fines into the filter layers. A broadly graded 
material in the filter layer has relatively more fines, which reduce the pore velocity in the filter 
and so also the loading on the base material. Hence, the broadly graded filter material is allowed 
to have an average grain size that is larger than for uniform material. 

Using the assumptions ac,b = acJand multiplying both sides by Df,lSIDf,so, equation (14) reduces 
for high values of ~d into: 

D /,15 D /,15 1 \}fe,G,b I'1b 
=------ (15) 

Db,50 D r,50 lJ \}fc,G,t 1'1 ( 

The value of 17 has been calibrated by using experimental results obtained by Van Huijstee et 
al. (1991). In these 9 flume experiments the instability of the filter layer and the base layer 
was simultaneously observed. The mean value of 17 is about 0.01 with the boundaries 0.005 < 
17 < 0.025. Hoffmans (1996) also found a value of 0.01 on the basis of the Japanese tests of 
Shimizu et ai. (1990). Remark that the calibration and validation of 17 was based on uniform­
flow experiments. 

The resemblance to traditional relations derived by Terzaghi is 
between filter and base layer for geometrically sand-tight filters is: 

D r,15 < 5 v D r ,5o < 10 
Dh,s5 Db,50 

which means 17 == 0.1. 

surpnsmg. The stability 

(16) 

The differences between equations (15) and (16) can be ascribed to a safety factor that varies 
from 4 to 20. This analysis shows that for uniform flow the relations for geometrical sand­
tight materials are strongly oversized. When the turbulence intensities are much higher, for 
example downstream of sills, the value of 17 (17 == 0.01) might be questionable. Under these 
conditions the ratio DJ Db probably tends to the geometrical value of about 17 == 0.1. It should be 
remarked that in this study, equation (15) has not been validated for non-uniform flow 
conditions. 
Bakker et al. (1995) and Stephenson (1979) discussed filter model relations, which predict 
similar ratios between particle sizes of filter and base material. Although the prediction 
potential of these relations is reasonable for the experiments investigated, they depend on the 
ratio RlDj, which is not realistic for uniform flow conditions. 

DAMPING PARAMETER 

The damping parameter (~) is related to material properties both for laminar and 
turbulent flow. For laminar flow ~ is approximately 301Df,lS' Following Ikeya (1991) the 
damping parameter varies from 141Df,sO to 30lDf,so. In both cases the length scale of the damping 
is much smaller than the particle diameter of the grains in the filter layer. Consequently, the 
influence of the boundary layer is practically negligible in the case of laminar flow. 



For turbulent flow conditions Verheij et al. (2000) found ~ == 5,5/Djl5 whereas Ikeya (1991) 
arrived at the following: I/Df,5o < ~ < 6/Df,50. Ikeya discussed a suggestion made by Stephenson 
(1979) that the turbulent boundary layer in the filter layer is approximately, 1.5Df,50 which was 
later independently confirmed by the measurements of Suzuki (1992). Summarising equation 
(15) is valid for both laminar and turbulent flow. 

The difference between results of the Dutch and Japanese researchers can be attributed to a 
different way of modelling the eddy viscosity and to different values for the coefficients in the 
so-called Forcheimer relation. The Japanese assumed a constant eddy viscosity in the filter layer. 
In this study the eddy viscosity is related to the varying filter velocity (see equation 4). Note that 
the eddy viscosity is not a physical parameter, but a parameter that helps us to relate velocities to 
shear stresses. Since no measurements of filter velocities in relation to loading parameters are 
available no conclusions can be drawn at present. 

CONCLUSIONS 

In this study model relations for both the filter velocity and the shear stress at the 
interface filter-base material are presented. Although the exact relation between the damping 
parameter in a filter material and its material properties is disputable, the type of relation 
between characteristic length scale and particle size will hold, in spite of the fact that the 
assumptions for a continuum approach are violated. 

It should be noted that the term shear stress is somewhat misleading. In fact the distribution of 
the shear stress in filter layers has to be considered as a distribution of a loading parameter. A 
model relation has been discussed for geometrically open filters, which can be used for both 
uniform and non-uniform flow. This relation is based on simultaneous instability of filter and 
base material. The influence of the grading effects of the filter and base materials has been 
shown qualitatively. This relation corresponds closely to the traditional stability relation of 
Terzaghi for geometrical filter design and represents the range of the magnitude of the safety 
factor. 

To increase the accuracy of the model presented here more detailed information is needed, in 
particular the value of 1], which may be found by carrying out experiments with non-uniform 
flow conditions. It is necessary to use sophisticated equipment to measure filter velocities and 
loading parameters. 
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