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Summary

In this thesis, an exploration into the potential use of path-planning algorithms in modeling
cyclist behavior is made, and a novel model utilizing such algorithms, incorporating the com-
monly found overtaking behavior on bike paths, is developed and assessed.

The investigation started with a literature review on the existing behavioral interpretations and
findings of bicycle riding, where the cyclists’ interaction with the environment and other cyclists
is found to be at different task levels of the riding process. Based on the findings, further
analysis into how existing techniques replicate the different layers of behavior is made and
assessed. During the assessment, this research determined that path-planning algorithms
could best be used to replicate the physical steering behavior of cyclists. An investigation
into the inner workings of path-planning algorithms is also done, resulting in the final four-
layer conceptual framework based on the two-layer operational framework of bicycle riding,
adapting the process into mental (perception, goal orientation) and physical (path planning,
movement) layers.

With the adapted modeling framework, a model is developed, verified, and assessed with face-
validation against real-world trajectory data. The development and verification step provides
insights into the inner workings of the model, showcasing how the four layers of the framework
are realized, and how the changing of used parameters would affect the intermediate output
between the model layers. The face validation consists of two scenarios: a physical steering
and pedaling-focused scenario of chicanes, which is a series of bottlenecks, and an overtaking
scenario that focuses on the mental process of overtaking decisions. The results showcased
that the developed model can create plausible steering and pedaling behaviors in the chicane
scenario. However, the model showed lower accuracy and consistency in predicting the men-
tal overtaking maneuvers.

The assessment result of the developed model showcased the strength of path-planning al-
gorithms in augmenting the existing model with the physical steering capability of the cyclists.
The limited accuracy in the overtaking scenario highlights the importance of capturing the
mental process of bicycle riding. Future work could further refine the mental layers of the
framework, specifically the goal orientation process. The adapted modeling framework also
provides a new direction and foundation for further work on the path-planning additions and
improvement of bicycle behavioral modeling.
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1
Introduction

Bicycles have been an increasingly popular mode of transportation among the general public
and policymakers in recent years. The mode’s growth can be attributed to its well-established
benefits in personal and environmental well-being (Mueller et al., 2018; Chen et al., 2022), and
additionally, the mode’s affordability, reliability, and low to non-existent external costs (Gater-
sleben and Appleton, 2007). Additionally, with the mode’s continuous innovation, such as the
development of e-pedelecs and cargo bicycles, cycling is expected to grow as new types of
bicycles provide longer range and cargo transporting capabilities that substitute travel that was
only possible with public transportation and cars (Riggs, 2016; Kroesen, 2017). However, the
increased popularity of the mode come with increasing challenges in the planning, designing,
and operating of bicycle infrastructures, as the mode has drastically different dynamics than
automobiles.

Compared to automobile traffic, bicycle traffic is highly different in both physical and behavioral
characteristics, such as the mode’s vehicle size, need for balancing, self-propelled nature, and
operational flexibility, which leads to the mode’s more lateral and unrestricted utilization of the
infrastructure, such as overtaking within the same lane, and curb riding. Additionally, cycling
infrastructure often intersects and shares spaces with automobiles, pedestrians, and other
road users. Such a difference in the movement and the operational environment of the bicycle
riding creates challenges in the interpretation of the cyclists’ riding behavior, sparking interest
in the modeling of bicycle riders for two distinct disciplines of research: the field of traffic and
robotics. The traffic engineering and research aims to provide insight into the evaluation of the
efficiency and safety of bicycles, while the field of robotics aims to integrate intelligent systems
such as robots and intelligent vehicles into the human population. Due to the similar objective,
these two fields naturally exhibit similar parallels in the modeling techniques.

Early iterations in the modeling techniques include the discretizations of physical space and
human action. Creating the so-called Cellular Automata (CA) approach in the modeling and
predicting human behavior (Nagel and Schreckenberg, 1992; Meyer and Filliat, 2003). There
are also attempts at describing human motion using Newton’s laws of motion and vehicle
properties, yielding the velocity-based (Best and Norton, 1997) and the force-based approach
(Helbing and Molnar, 1995). Throughout the years, with more advancement in computational
and data collection techniques, this has led to more sophisticated techniques such as the
game theoretic approach found in Hoogendoorn et al. (2003), the discrete choice approach of
Antonini et al. (2006), and more recently the machine learning based approach (Alahi et al.,
2016). All these mentioned techniques have been found to be adapted and augmented for

1



1.1. Research questions 2

use in the modeling of bicycles, including CA (Li et al., 2013), Velocity-based (Brunner et al.,
2024), Force-based (Ni et al., 2023), discrete choice (Gavriilidou et al., 2019a), and game
theory-based (Hoogendoorn et al., 2021).

However, there still remains a modeling approach that has not yet been adapted for bicycle
use. The sampling path-planner approach Broz (2004), such an approach is said to be better
in long-term prediction and modeling when compared to physics-based approaches, and bet-
ter generalization capability when compared to data-driven methods (Rudenko et al., 2020).
Besides these alleged benefits, the research on sampling-based path planners is a relatively
mature field in the field of robotics, and the rapid development of the planning algorithm has
enabled the incorporation of vehicle kinematics, which is how the vehicles respond given the
handling input of acceleration and steer. Such additions could be of good use in the modeling
of bicycle riding behavior, considering the complex handling properties of the bicycle.

With these potential benefits, this research aims to explore the possibility of the incorporation
of sampling-based path planners in the use of bicycle behavior modeling. As an example,
this research will attempt to recreate the commonly found overtaking behavior, as it is a major
contributor affecting the lateral distribution on a bicycle path (Castro et al., 2025). An attempt
to model the microscopic riding behavior of the cyclists using a sampling-based path planner
could yield two major benefits. First, an attempt to model the microscopic riding behavior
of cyclists with the use of path-planning algorithms will be made, which will be a brand-new
modeling approach. Moreover, bridging the gap between the field of traffic modeling, sampling-
based path planning, and human motion trajectory prediction. Opening up more possibilities
for new modeling techniques and crossover research between the fields, which could poten-
tially accelerate the modeling development and yield new innovations.

1.1. Research questions
Based on the findings from the initial investigation. This research has identified a gap in the
use of planning-based approaches, which could be of good use in bicycle behavior modeling.
To fill in this gap, this research aims to develop a conceptual model incorporating sampling-
based path-planning algorithms that could replicate bicycle riding and the commonly found
overtaking behavior. Framing the research question of: To which extent can characteristics
of bicycle riding be accurately captured with a model that incorporates path-planning
algorithms? This main research question could be answered with the completion of the fol-
lowing sub-questions.

1. How can the process of bicycle riding and overtaking be interpreted using existing
frameworks?

2. Based on the explanations/frameworks, where could path-planning algorithms be
used?

3. What frameworkmodifications, components, and parameters are needed tomodel
the microscopic behavior of cyclists with the incorporation of path-planning algo-
rithms?

4. What are the observed strengths and weaknesses of the developed model?

1.2. Research methodology
With the aim of answering themain and sub-questions, this research will develop amicroscopic
bicyclist behavior model that incorporates path-planning algorithms. The development of the
model will follow the Microsimulation Model Development and Application Process (Dowling
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et al., 2004) from the Federal Highway Administration of the United States (FHWA), which is
considered a major traffic authority in the world. The scope of this research has been adjusted
to focus more on the subject of model development, reflecting the research questions. The
literature review step would cover the first research question regarding the observed charac-
teristics and interpretations of bicycle riding and overtaking, along with how the previously
mentioned existing modeling method fits those explanations. Based on the findings, the re-
search is also expected to find adjustments and placement for the path planning algorithms,
which covers the second research question, and part of the third research question. Then,
the modeling investigation would go into detail with the development step, where the model’s
different components and parameters will be determined, and their effects showcased in the
verification step, completing the third research question. This research exchanges the steps
of calibration and application of the model for a face validation step that better fits the fourth
research question, providing insights into how the developed model behaves, the observed
strengths and weaknesses, and potential future modifications needed for the model. The
adapted development process consists of the following steps, and it is illustrated in figure 1.1.

Figure 1.1: Model development process of this research

The literature review is presented in the following chapter 2, which contains further investiga-
tion into bicycle riding findings, existing modeling techniques, path planning algorithms, and
initial framework modifications. Chapter 3 would continue on the framework modifications, pro-
viding more concrete inner workings, as well as the process of verification and face validation
of the model. The result of the verification and face validation process will be showcased and
discussed in chapter 4, and a conclusion of the research at chapter 5.



2
Literature review

In this literature review, this research elaborate on the investigation of existing techniques in
modeling cyclist behavior that is briefly covered in the introduction. The investigation this time
will be related and compared with the use of an existing framework. After the comparison, this
research aims to explore the possible parameters and framework adaptation needed for the
incorporation of a path-planning algorithm into the existing modeling framework. This is done
by first investigating the properties of path-planning algorithms, then attempting to link such
findings to a cyclist modeling context, collecting the desired parameter values, and making
adjustments to the existing framework.

This literature review was first conducted with a database search on both Scopus and Google
Scholar. For the cyclist behavioral research, starting keywords include a combination of: Mi-
croscopic, Cyclist, Bicycle, Modeling, Behavior, Simulation. While for literature related to the
trajectory planning and predictions, starting keywords include a combination of: Path, Motion,
Planning, A*, Dijkstra, RRT. The search results are then examined, and if suitable literature is
found, such as Gavriilidou et al. (2019a) or Karaman and Frazzoli (2011), this research will use
the literature as a basis for forward and backward snowballing. The references and citations
of the literature are examined, and additional keywords found in the literature are also used
as a supplement for the database searches.

2.1. Microscopic bicycle behaviors
With this section, this researchwill first examine how the process of riding a bicycle is explained,
and how different part of the bicycle riding process is categorized. After the investigation, this
research will investigate the previously defined scope of overtaking behavior based on the
explanation and categorization, which could also be used for the later part of the modeling
process.

2.1.1. Cyclist behavioral framework
The actions of riding a bicycle, when categorized using the definition of car driver task levels
(Michon, 1985), span across tactical and operational behaviors, which consist of maneuvering
and automated split-second actions. However, the behavior of bicycle riding differs from other
wheeled traffic types because of the mode’s self-propelled nature and the need to balance
the vehicle upright. The need for these physical efforts put a different toll on the mental and
perception process of cyclists (Boele-Vos et al., 2017). This means the maneuvering process
while bicycle riding is closely related to the physical traits of the rider, so it should be more

4



2.1. Microscopic bicycle behaviors 5

closely linked together. Thus, a combination of the definition of pedestrian and automobile was
used to describe these behaviors, leading to the 2-layer operational framework of Gavriilidou
et al. (2019a). Consisting of 2 layers, the operational mental and the operational physical
layers. The mental layer focuses on the path choices within the routes, which would consist
of different behavior decisions, such as overtaking, yielding, stopping at the red light, turning
gap acceptance, and queuing, while the physical layer focuses on the process of steering and
pedaling of the bicycles. Based on this modeling framework, this research will then dive into
how bicycle behaviors for these two operational layers of behavior are explained and observed
from the previous research. The investigation will focus on the previously defined scope in the
introduction, which is the commonly found overtaking behavior.

2.1.2. Overtaking process
The mental layer of behavior is responsible for handling the path choice within the route/envi-
ronment. To make those path choices, the mental layer relies on the input of environmental
attributes, which include both physical objects and other road users.

The presence of such environmental objects can be explained using the field of safe travel
concept (Gibson and Crooks, 1938) or sometimes referred to as a comfort zone (Lee et al.,
2020). The field of safe travel makes assumptions that vehicle operators create a psychologi-
cal environment where they can safely move based on their assumption of the vehicle’s ability,
without hindering other scene objects and the population. Due to the different dimensions and
the need to balance bicycles, cyclists require a differently shaped boundary compared to au-
tomobiles. This has led to the proposal of a psychological boundary proposed in Twaddle
(2017) based on the existing diamond shape of the physical modeling of Falkenberg et al.
(2003), and the dimension of which is observed in the observation study of Meijer et al. (2019)
in Amsterdam, the Netherlands.

Another factor that is related to how cyclists process environmental attributes is the perceptual
properties of the cyclist, as this limits how far cyclists would interact with the given environ-
mental conditions. Stülpnagel (2020) conducted a real-world riding experiment in Freiburg im
Breisgau, Germany, where a cyclist’s gaze pattern while riding is collected. The results have
shown that at an average riding speed of 4.8 m/s, the gaze length across the riding environ-
ment is at a range of 22 meters, which is roughly equivalent to a time headway of 4.5 seconds.
Such values are also similar in range to the interaction range of 4 to 5 seconds headway with
other cyclists, which is estimated in the observation study of Hoogendoorn and Daamen (2016)
in Delft, the Netherlands, and the observation study Mohammed et al. (2019) in New York City,
USA.

The study of Mohammed et al. (2019) has also investigated the mechanism of overtaking
for cyclists. The study has confirmed the early assumption (Botma and Papendrecht, 1991)
of both a threshold value for both space and speed that dictated the overtaking behavior,
which ranges from 0.5 to 2.3 m/s across multiple observations throughout the world (Khan
and Raksuntorn, 2001; Falkenberg et al., 2003; Mohammed et al., 2019; Castro et al., 2025).
These mechanisms cover the mental layer of the behavior as it makes decisions on how the
cyclist will navigate the field of safe travel. The execution of the maneuver choices will rely on
the physical layer of behavior, which is steering and pedaling.

The steering process of the bicycle relies on the capabilities of both the bike and the human.
Early investigations for this topic focus more on the physical kinematics and the limitations of
an unmanned bicycle itself (such as the one found in Yavin, 2006), but the riding process is
also heavily influenced by both the rider’s perceived capability to balance and steer. It is not



2.2. Microscopic bicyclist behavior models 6

until later days that data related to the human control of the bike, such as the human input’s
turning angles, frequency, and leaning angles, have been investigated using real-world riding
measurements (Moore et al., 2010; Moore, 2012; Alizadehsaravi and Moore, 2022).

The pedaling motion of the cyclist is said to be following a similar behavioral description to that
of automobiles, where riders would adjust their behavior based on their frame of reference,
comparing the speed difference between themselves and their desired speeds, or the speed
of the selected leader, making adjustments to the final output. The major difference between
the behavior of the cyclists and automobiles is the self-propelled nature of the bicycles, so
it is said that the pedaling motion of the cyclist is best described using the assumption of
minimizing efforts, where the cyclist only decelerates to a necessary amount needed to avoid
collision, minimizing the need to re-accelerate to a suitable speed (Andresen et al., 2014). In
the same research, an experiment was conducted in Wuppertal, Germany, which derived a
model that follows the assumption, yielding a good representation of the pedaling behavior.

After the thorough investigation of bicycle behavior explanations and characteristic findings.
This research aims to review the various types of models that have been developed throughout
the year, and how they achieve the mentioned mental and physical layers of the behavior in
the next section.

2.2. Microscopic bicyclist behavior models
In this section, the various attempts at modeling bicyclist behavior will be reviewed, including
techniques that stem from the 2 different origins, automobiles and pedestrians. The catego-
rization of these models takes note of the categorization of Twaddle et al. (2014) with the
addition of utility-based models, which have not yet been developed at the time of the study.
The categorization is based on how the final movement, or the physical layer of movement, is
achieved. The review will include a comparison of how the various model types achieve the
previously mentioned mental and physical processes.

2.2.1. Cellular Automata (CA) model
Cellular Automata (CA) model, originally developed by Nagel and Schreckenberg (1992) for
highway automobile traffic, is a discrete-time and space model that provides a fast and simple
way of modeling car following behavior. Vehicles inside the model travel through a raster of
cells. Following the simple logic that a vehicle can only exist in one cell, the agents adjust
their speed and acceleration based on this rule. Gould and Karner (2009) then adapted this
modeling approach for bicycle infrastructures by reducing the cell size to 2.1 × 1.4 meters,
combined with lane changing and overtaking logic under wider or multi-lane situations. The
model has shown comparable results when compared to field data in heterogeneous speed
conditions. Attempts at modeling mixed traffic flows have also been made, utilizing smaller
cells and different occupation amounts at the cells based on the vehicle size (Yao et al., 2009).

Since the movement of the rider is determined by a series of decision logic of discretized cells,
this type of model is able to incorporate the mental decision process of making decisions,
such as the various attempts found in modeling overtaking behavior (Li et al., 2013; Zhao
et al., 2013). However, the models are still relatively limited since they can only simulate
homogeneous traffic conditions with bicycle-only traffic. Later models address the issue by
making the cells smaller, and each vehicle can occupy a set of cells at the same time based
on the vehicle size (Yao et al., 2009). However, due to the assumption of discrete longitudinal
and lane-based movement, the model is not able to reproduce an accurate representation of
the steering and pedaling behavior of the cyclist. Proposals on modeling the steering behavior,
with the use of trajectories shaped cells, have been found in literature (Vasic and Ruskin, 2011),
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but it remains at a conceptual phase.

Overall, it can be said that the CAmodels are a mental layer-driven approach that covers more
of the decision-making process of bicycle riding.

2.2.2. Longitudinally continuous models
Contrary to the Cellular Automata models. Longitudinally continuous models operate in a
non-discrete one-dimensional space. The bicycle variant of these models is derived from
well-established car-following models. It typically uses one of the three types of car-following
models: Gazis-Herman-Rothery models (Chandler et al., 1958), safety distance models such
as Newell’s car-following model (Newell, 1961), and psycho-physical models such as the one
following Wiedemann’s car-following principle (Wiedemann et al., 1974). These models are
developed through observation and various assumptions about vehicular traffic. When no
leading vehicle is present, the vehicle then tries tomaintain its desired speed. Later revisions of
the longitudinally continuous approach have taken bicyclists’ effort conservation into account,
such as the Necessary Deceleration Model (NDM) of Andresen et al. (2014).

However, these car/bicycle-following models all operate under the assumption of single-file
traffic, that no overtaking can occur within a lane. Thus, it is harder to model the larger-than-
normal lateral movement of a bicyclist. A separate lateral component is required to more
accurately simulate the riding behavior of bicyclists in these types of models. Common ap-
proaches include the discretization of lateral spaces within a lane into strips, combined with a
discrete choice model to select the strips and a continuous approach based on riders minimiz-
ing their time to collision (TTC) with other road users (Falkenberg et al., 2003). The lane-based
approach exhibits similar limitations to the CA models, while the conflict-driven approach does
not encode any mental decision process.

In recent years, more complex decision logic has been added to cover both the mental and
physical layer behavior of bicyclists, such as the model developed by Brunner et al. (2024).
Themodel consists of three layers: Maneuver planning, Movement planning, and the Accelera-
tion layer. In the Maneuver layer, the model observes and classifies the surrounding bicyclists
in a consideration range based on their desired speed and a set overtaking threshold. Based
on those classifications, a desired lateral position is obtained. After obtaining the desired lat-
eral position, the movement layer then determines the movement direction and the hypotheti-
cal desired lateral speed based on a set safety range for the surrounding bicyclists. Lastly, the
acceleration layer calculates the acceleration using a longitudinally continuous model. After
the computation of longitudinal acceleration, it can be combined with the desired lateral posi-
tion and acceleration to obtain the actual speed of the agent. Through these three layers, both
lateral and longitudinal movement and overtaking decisions are modeled. While this approach
does incorporate both layers of behavior of the cyclist, it does not offer a direct representation
of the steering behavior during bicycle riding, but only a lateral velocity-based constraint.

With these investigations, it can be said that the longitudinally continuousmodels are a physical
layer, pedaling-focused type of modeling approach that requires further augmentation in the
mental and steering behavior aspect of bicycle riding.

2.2.3. Force-based models
Force-basedmodels are a group of model that operates in discrete-time and continuous-space.
Agents’ movement inside these models is not bound to a certain axis, they are omnidirectional
under the influence of several attractive and repulsive forces, shown in figure 2.1.

The original force-based model, the Social Force Model, was first proposed by Helbing and
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Figure 2.1: Force vector and trajectory of a force-based model by Schönauer et al., 2012

Molnar (1995) to describe the dynamics of pedestrians based on their psychological tenden-
cies. The models adapted for use in modeling cyclists assume that the operational dynamics
of bicyclists are similar to those of pedestrians. With it having a stronger attractive and repul-
sive force to the destination and other in-scene objects, this type of approach is versatile and
could be easily modified to accompany heterogeneous traffic flow consisting of automobiles
and bicycles (Li et al., 2011), or bicycles and pedestrians (Yuan et al., 2019). Early adap-
tation of the force-based approach operates under a physics-based environment. Thus, no
decision-making process is implemented for the agents. Actions such as stopping for right-of-
way are not present, which is opposite to the usual behavior in real-world traffic (Schönauer
et al., 2012).

Thus, various attempts have been made to simulate the process of decision-making through
the addition of more force components or manipulating the intermediate position of attraction
forces with the help of a decision layer. Schönauer et al. (2012) uses game theory to determine
the maneuver with maximum utility from a set of intermediate points, effectively simulating the
yielding behavior for different modes of traffic. Liang et al. (2018) developed a purely physical
approach through the use of a psychological-physiological force. The model contains indi-
vidual force components that are responsible for the perception range and reaction range of
the bicyclists, the Collision Avoidance Force, and the Contact Force. The former force is re-
sponsible for the preemptive maneuver of objects within perception range, with the latter force
component responsible for close proximity movements under emergency or in high-density
flows. When vector components from these two force fields are aggregated, movements com-
parable to the mental decision logic and process of real-world bicyclists can be observed. Ni
et al. (2023) augmented a force model with environmental context cues. The agents could
perceive multiple interactive road users. Then, through the use of a Bayesian Network, the
agent could choose a suitable behavior from alternatives, building up an intermediate des-
tination that corresponds to the selected behavior. These behaviors are then executed by
a force-based component to complete the movement process. With these augmentations,
force-based models cover the mental layer of the bicycle riding process.

The physical layer behavior of pedaling has also been investigated, with different force com-
ponents used to change the state of movement, such as the one found in Liang et al. (2012).
The model has two operation modes in free-flow and congested states based on the bicycle-
following behavior of real-world bicyclists. The physical behavior of steering, however, remains
a less discussed topic, with the implementation using intermediate goals to imitate the riding
trajectories (Schönauer et al., 2012; Ni et al., 2023). It is not until Schmidt et al. (2024) that
a proposal to make the trajectory kinematically compliant is found, but it still remains in the
process of development.
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Overall, the forced model can be said to be similar to longitudinally continuous models, where
it requires an addition to model the mental layer of behavior, and the modeling of steering
behavior in the physical layer is not directly tackled.

2.2.4. Utility-based models
There are also models developed based on the decision-making nature of human behavior.
The so-called utility-based models operate on the premise of utility maximization or effort mini-
mization when making decisions. The interaction with the environment and other agents could
be modeled as a differential game, where a game is solved in a non-cooperative or cooper-
ative manner continuously. These type of game theory models originates from the realm of
pedestrian modeling (Hoogendoorn and HL Bovy, 2003), then later adapted for the use of bi-
cyclist modeling (Hoogendoorn et al., 2021). Another type of model that is similar in working
is the model that optimizes a set of reward policies or logic, which is often simply referred
to as the agent-based models. These types of models were also originally used to model
pedestrian interaction (Hussein and Sayed, 2017), which later on were developed for cyclist
use with the addition of a longer optimizing period, capturing interaction of cyclists and other
vehicles (Alsaleh and Sayed, 2021; Mohammed et al., 2022). These types of models often uti-
lize kinematic variables as an optimization constraint, modeling both the pedaling and steering
behavior of the cyclist.

There are also models that utilize a discrete choice approach, where it is assumed that the
agent would choose the best action or decision in a stepwise manner with the use of a dis-
cretized action cone. This approach is first found in Antonini et al. (2006) for pedestrians, then
later adapted to bicyclists by Gavriilidou et al. (2019a), which incorporates a second decision
layer for goal orientation. This layer allows the agents to perceive and select a queuing position
or decision, such as yielding or crossing. The action and goal orientation layers communicate
with each other, making adjustments to the decision. This cycle is executed until the agent
has reached their desired position. This modeling approach allows agents to make decisions
and changes to their desired queue position and routes.

2.2.5. Evaluation of current bicyclist modeling techniques
After the investigation of various microscopic bicycle modeling techniques and their recent
development, which are discussed in the previous subsections, this section will provide an
evaluation of how the models include the stated 2-layer behavior of the model, which is shown
in table 2.1.

Table 2.1: overview of how the reviewed model handled

Model
Types

Decision
(Mental)

Pedaling
(Physical)

Steering
(Physical)

CA Yes Discrete No*

Longitudinal
Continuous - (Hybrid apprach) Continuous No

Force - (Hybrid approach) Continuous No*

Discrete Choice Yes Discrete Limited
(From data)

Agent based
(Reward driven) Yes Continuous Yes

Game theory Yes Continuous Yes
* Proposed but not yet implemented
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Upon initial inspection, only the game-theoretic and the reward driven agent-based approach
offers all the desired mental and physical properties that are required for the modeling of
microscopic operational cyclist behavior, where the model not only able to handle the problem
of decision directly through different strategies of different utility maximization approaches, it
also tackles the problem of steering, pedaling directly using kinematic equations or variables.
While other models all contain some shortcomings that require different layers of augmentation
to achieve similar feature sets that the game theoretical approach has, such as the use of a
logic or decision layer to handle different decision processes, which is found in the force model
of Schönauer et al. (2012), and the longitudinal continuous model of Brunner et al. (2024).

Another major difference comes from the ability to capture the steering behavior of the phys-
ical layer, which again, is only currently handled in the game theoretic framework of Hoogen-
doorn et al. (2021) and the Markov Decision Process agent-based model of Alsaleh and Sayed
(2021). The steering behavior is also partially handled in the discrete choice approach of Gavri-
ilidou et al. (2019a), which could generate movement with respect to the vehicle kinematic
constraints based on the data used, but it does not tackle the kinematic properties directly.
Though it is still early to determine whether the incorporation of vehicle kinematics could yield
benefits in the realm of bicycle traffic modeling, a trend of modeling with considerations of
handling dynamics has started to emerge. Such as the use of a trajectory-shaped cell in the
CA models (Vasic and Ruskin, 2011) and the proposal of kinematic models additions to the
force model of Schmidt et al. (2024) that is currently in development.

The use of sampling-based path planning algorithms could, in theory, serve as an augmen-
tation to existing models that do not incorporate kinematically constrained steering behavior.
Such as the longitudinally continuous models, which currently utilize only lateral acceleration
constraints. The addition of which is expected to provide a more accurate trajectory output,
while also enabling the use of a longitudinally continuous model in a more complex environ-
ment that requires heavy navigation. In the next section, this research aims to offer an intro-
duction to sampling-based path planners and investigate how sampling-based path planners
could be used to model the physical layer behavior of bicycle steering.

2.3. Sampling-based path planners
The problem of path planning originated from the need to find a path or motion for a robot
to move from point A to point B. This problem was originally formulated as a search through
the known configuration space, which is called Search-based planning, with the use of path
finding algorithms like Dijkstra (Dijkstra, 1959) and A* (Hart et al., 1968) through an imposed
grid. However, the grid formation requires prior knowledge of the configuration of the search
space, which is not easily generalizable to new or dynamic environments. This led to the
development of sampling-based path planning algorithms.

The sampling-based path planning algorithms consisted of 2 major types of methods: the
graph-based and tree-based methods. The use of sampling, connection, and optimization
steps allows these types of algorithms to adapt to different spaces and tasks. Graph-based
methods, such as the Probabilistic Roadmap Planner (PRM, Kavraki et al., 2002), which sam-
ples the entire environment first, then connects a viable path through the environment, this
type of graph-based planner is also called the multi-query planners, as the planned graph is
based on the environment, and it could be used for different agents on the scene. Thus, it
is considered useful in more static and repetitive environments like factories or warehouses
(Orthey et al., 2023). Another major type of the model is Tree-based or single query methods,
which plan a path in reference to the position of the agents, most notably the rapidly exploring
random trees (RRT, LaValle, 1998). These types of planners are considered relatively efficient
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and could be suitable for more dynamic environments, as the path could be rapidly re-planned.
Later iteration of the model focused more on the optimality of the path, such as the optimal
RRT and PRM star(RRT*, PRM*, Karaman and Frazzoli, 2011), and also adaptation to fit an
unbounded solution space, such as the ST-RRT of Grothe et al. (2022), which uses a dynamic
goal and search region and could be used to simulate the visual range of intelligent vehicles
and human perception, shown in Figure 2.2.

Figure 2.2: Illustration of a unbounded search by Orthey et al. (2023)

Sampling-based path planners are also easily adaptable to incorporate various dynamics. The
sample then wire nature of the algorithms means various constraints and costs can be embed-
ded in the algorithm when wiring a path, such as turning constraints and action costs. This
makes for a simple point-based kinematic model, such as the one found in RG-RRT of Shkolnik
et al. (2009). Other, more sophisticated kinematic models, such as Dubin’s Car (Balluchi et al.,
1996), are also found in other implementations. The incorporation of a kinematic generates
a more feasible path while planning. Lastly, these planners provide solutions and optimality
guarantees when the goal is well-defined, which makes the quality of the given path stable
when there is sufficient computation time. The optimality guarantees also facilitate the incor-
poration of different planning strategies, such as effort minimization and utility maximization,
which could be of use for modeling cyclists. These characteristics, as well as the prevalence
of sampling-based planners in the field of robotics and intelligent vehicles, mean there are a
lot of potential tools and methods to explore when converting sampling-based planners for the
use of bicycle modeling. Besides these desirable characteristics, the research of tree-based
planners remains an active field (Muhsen et al., 2024), and any major advancement in speed
or planning techniques breakthrough could aid in a model that utilizes such algorithms.

2.4. Conclusion and Conceptual framework
In this chapter, the modeling framework of Gavriilidou et al. (2019a) is first investigated, which
offered explanation of bicycle riding behavior based on the difference in the task level between
cyclists and automobiles, which splits the operational behavior into 2 parts: a mental layer that
is responsible for handling the path choice within the route/environment, and a physical layer
that executes the path with steering and pedaling. The problem of path choices could be
related to many riding decisions, such as yielding, stopping, turning gap acceptance, queue
positions, and in the scope of this research, overtaking. Various aspect and explanations that
are present in the process of overtaking is also visited for use in the latter part of the modeling
in this research.

This research has also assessed the found attempts at modeling microscopic bicycle behav-
iors using the 2-layer operational framework of Gavriilidou et al. (2019a). During the investiga-
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tion, this research has found that the ability to incorporate realistic steering with respect to the
bicycle kinematics has long been proposed, but it is of rarity. The use of sampling-based plan-
ners could be a great augmentation to the existing models, especially longitudinally continuous
models, which focus mainly on the pedaling behavior of the physical layer.

In the latter section of this chapter, a brief introduction to the 2 major varieties of the sampling-
based path planner and how they are adjusted to fit the different needs is provided, and it
has been found that the tree-type path planners are more suitable for use in the modeling
of driving or riding behavior, as they offer the adaptation to solve unbounded and kinematic
problems. With this information, this research is now able to conclude on how the knowledge
gathered from the previous section could be used and adapted to enable the incorporation of
path planning algorithms in the modeling of cyclist operational behavior.

To initiate the path-planning algorithms, a bounded search region and the boundaries of ob-
stacles are required. The bounding of the search region can be related to the known limited
perceptual range and interaction, meaning that information outside the range can be negated,
and the boundaries of objects on the scene can be processed using the assumption of a field
of safe travel, where bicycle riders create an environment physiologically based on their as-
sumption and ability to traverse the environment safely. Using the theory, the psychological
boundary can be translated into an obstacle within a planning problem, where a planned path
should not interfere with the set limit.

With the set boundaries, which are the interaction of the cyclists, a dynamic goal is still required
to set up a planning problem. The problem of goal placement can be explained using the
observed overtaking behavior of the cyclist, where, based on a threshold for both the speed
and the available space, the cyclist would choose to follow or overtake to reach their long-
term goals. After the determination of the planning boundary and goal, the path planning
algorithm could start, and the path could be planned with the known human riding inputs as
a kinematic constraint, generating a path, which is a series of steering inputs. Lastly, since
the planned path only generates a steering output. The pedaling should ideally be modeled
using a longitudinal continuous model that best fits the effort conservation tendencies that are
commonly assumed because of the bicycle’s self-propelled nature.

Based on these findings, this research has also concluded on the following modeling require-
ments for the later development of the model:

• The developed model has to incorporate both the operational mental and physical layers
of behavior.

• The developed model has to navigate based on the field of safe travel, following personal
boundaries and vehicle kinematics.

• The developed model should incorporate the known overtaking and behavioral mecha-
nisms found in the literature review

• The developed model should follow the effort conservation tendencies commonly as-
sumed in bicycle riding.

With these derived requirements in mind, this research has also made an adaptation to the
2-layered operational framework of Gavriilidou et al. (2019a). The original mental layer, which
handles path choices within the route, will be made based on the given environment attributes.
The layer is adapted to be a two-step process, where a reachable planning domain is first
created based on the field of safe travel concept, and a step for goal placement for the initia-
tion of the planning algorithms. This approach transforms the process of bicycle riding into a
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dynamic planning problem of changing goals and bounds. This research calls these two pro-
cesses perception and goal orientation, as the process creates a perceived reachable space
and places a goal.

The physical layer, where the steering and pedaling are handled in the original model, is also
split into two. The planning algorithm is used to tackle the steering inputs. The planner could
search the reachable space and construct a feasible trajectory to the goal, given the current
speed, based on the physical characteristics or kinematics of the vehicle. Then, a separated
component is used to recreate the pedaling motion, adjusting the riding speed, and traveling
along the planned kinematically feasible and reachable paths. This research calls these two
actions path planning and movement, as indicated by their functions.

Based on these relations and function definitions, the final four model layers are formed.
Shown in figure 2.3, in conjunction with the original framework.

Figure 2.3: Modeling framework with respect to the two-layered framework of Gavriilidou et al. (2019a)



3
Methodology

In this chapter, information regarding the development, verification, and face validation is pro-
vided. The development of the model will build upon the framework, requirements, and knowl-
edge gathered from the literature review. Starting from a draft model structure, then dives
more deeply into the different layers of the developed model. In the latter part of the chapter,
the process from verification to face validation is provided, which contains information about
the simulation data, scenario, and the benchmarking procedure.

3.1. Model Development
Based on the requirement and adapted conceptual frameworks from the previous chapter, this
research will start the model development process. A draft of the model structure and workings
is first needed to ensure the model does not violate the framework and requirements. Besides
these requirements, this research aims to utilize asmany observable parameters and variables
as possible to increase interpretability and connection to the real world. The development of
the model is conducted in the programming language Python, with only external libraries that
aid in numerical and data processing.

3.1.1. Model Structure and Logic
Based on the adapted four-layer process and the defined modeling requirements, an initial of
how these layers of the model will work in sequence to reproduce the movement of individual
bicyclists is first conceptualized, with their purpose, relations, and the input and output of each
of the layers in the model, and how the layers interact with each other are first drafted which
is shown in table 3.1 and graphed in figure 3.1.

After the draft of the purpose, intermediate outputs, and information flow for the model. This
research further conceptualizes how the model’s layer would produce the intermediate outputs
and how the simulation will be conducted. The simulation is expected to be conducted in a
step-wise manner, with the simulated agents following the same logic process at each time
tick, where the updated speed and position of the modeled cyclists will be the initial condition
of the next time step/tick, and the full process on how the model will replicate the movement
of the cyclist is illustrated in the figure 3.2, and will be describe in the following:

1. The perception layer creates a search domain based on the visual interaction range, and
the expanded psychological boundary of the peripheral cyclists and obstacles, creating
a field of safe travel.

14
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Table 3.1: Purpose and the output of the model layers

Model layer
/ Modules Purpose Output

Perception
Acquire a list of cyclists and
process obstacle buffer
within the consideration region

List of other agents

Goal orientation Get potential leader and goal Goal(x, y) (For path-planning),
Leader info (For movement)

Path-planning Constructing a path from
the current position to the goal Path

Movement Adjust speed and travel along the path New speed and new position
for the timestep

Figure 3.1: Flow of intermediate outputs for the developed model

Figure 3.2: Logic of the developed model
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2. The goal orientation layer selects its goal based on the available lateral space and the
relative speed of the peripheral cyclists. (In the figure, the ego agent deemed the cyclist
in front of it too slow and decided to overtake and follow another faster cyclist.)

3. The path planning layer starts to sample the surroundings and expands the tree of paths
based on the set goal with respect to the turning capability of the cyclist.

4. the movement layer executes the movement along the generated path and travels the
distance based on the speed and calculated acceleration based on the bicycle following
behavior. The update to the new position completes a time step of the simulation, and
the process starts again for the next time tick.

Additional details that facilitate the completion of this modeling logic will be provided in the
following sections.

3.1.2. Perception layer
The perception layer is the first part of the model. This part of the model is responsible for
processing environmental attributes such as the presence of other agents and obstacles into
a bounded search space for the path planning algorithm. This action is similar to human
perception, where, during a limited range of interaction with other cyclists, and range of visual
focus for the environment is present.

Within the interaction range, the physical and psychological presence of other cyclists is pro-
cessed, following the shape of the diamond proposed in literature (Falkenberg et al., 2003),
which fits the dimensions of the real personal space found in the observation (Meijer et al.,
2019). The diamond-shaped boundary is added with an extra set of length and width, which
is the width of the ego agent transcribed onto the other cyclist. This ensures the true edge of
the cyclist would not collide when the center point of the cyclist is at the edge of the boundary.
A subset list of preceding cyclists is also collected during this step for later use in the goal ori-
entation step, as the cyclists in this dimension fit the interaction region found in the literature
(Hoogendoorn and Daamen, 2016). Parameters that are present in this layer of the model,
along with some of their description, are presented in the following table 3.2.

Figure 3.3: Implementation and dimensions of the perception process

After the definition of the search space and the presence of other simulated agents with the
perception component, a discrete and feasible goal is needed for the planning algorithms to
plan towards.

3.1.3. Goal orientation layer
The Goal orientation layer is responsible for setting a discrete goal in the search space, which
the path planning algorithm will be initiated with. A simple logic and threshold-based approach
is developed according to the literature finding of Mohammed et al. (2019). An illustration and
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Table 3.2: Parameter values of the perception layer

Parameters Unit Description

Cyclist Length m -

Cyclist Width m -

Longitudinal Buffer m Same as jam spacing (Standstill distance)

Lateral Buffer m -

Interaction Range Seconds Time headway, for both environment and other cyclist

flow chart for determining the planning goal and agent behavior is shown in figure 3.5 and
3.4, where a list of cyclist agents captured in the consideration region of the perception layer
is considered as leader candidates, the candidates’ respective position and speeds is then
checked to see if there exists any possibility of overtaking based on relative speed difference
and space needed beyond the lateral clearances, and a goal is placed with respect to the
decision. This check is done sequentially from the closest potential leader until there is no
potential leader inside the consideration range. This execution sequence ensures that no
actions will violate these constraints. If there exist no potential or viable leaders, the agents
would enter an unconstrained state, where they would have a goal based on their desired
lateral position. The use of a desired lateral position gives the simulated agent a long-term
goal to follow, which could also be used to imitate the skewed lateral position distribution of
the natural observation. The parameters that are present for this goal orientation process and
their descriptions are shown in the following table 3.3.

Table 3.3: Parameter values of the goal orientation layer

Parameters Unit Description

Speed difference threshold m/s Speed difference required to initiate overtake

Lateral clearance threshold m Lateral clearance required to initiate overtake

Desired lateral position [y] Long term desired lateral position of the cyclist

Figure 3.4: Flow chart of the goal orientation logic

3.1.4. Path planning layer
After defining the search space and goal, a path-planning algorithm can be initiated. For the
purpose of this research, an algorithm with a solution and optimality guarantees is needed for
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Figure 3.5: Illustration of the goal orientation process

the requirement of effort conservation. Additionally, the planning process should also contain
the ability to comply with the turning constraint. To fulfill both requirements, a combination
of techniques found in the algorithm RRT* (Karaman and Frazzoli, 2011), combined with the
reachability constraint of the Reachability Guided RRT (RG-RRT, Shkolnik et al., 2009) that
uses link sizes that represent the speed vector, combined with an angular constraint.

Figure 3.6: illustration of the RRT* algorithm

Figure 3.7: Constrained steering region (indicated in grey) of RG-RRT. From Elbanhawi and Simic (2014)

Showcased in figure 3.6, the algorithm first randomly places a new sample and finds the near-
est node to the random sample. The algorithm then creates a new node based on the reach-
ability constraint, which is bounded by the set path length and angle constraints (Illustrated
in figure 3.7 as the grey region). After the new node is created, the algorithm then checks if
the new node is within the radius and with respect to the reachability constraint of the path
length in the existing tree. If the connection is valid, the algorithm then checks if there is a
parent node of lower traversal cost compared to the current connection. If there is a better
connection, the node will rewire to the new parent. This process is repeated when a new node



3.1. Model Development 19

has reached a certain radius around the goal. The respective parameters that will be present
for the algorithm used for the implementation are shown in table 3.4.

Table 3.4: Parameter values of the path planning layer

Parameters Unit Description

Link size m Scales dynamically based on cyclists’ speed and simulation resolution
ensuring goal convergence and kinematic constraint

Rewire radius Linksize Larger radius creates more optimized path under the same iteration,
at the expense of computational time

Angle constraint Deg/s Angle limit per node connection

3.1.5. Movement layer
The movement layer governs the final execution of the path. Since the path generated through
path planning algorithms only encodes a static environment, there is a need for a separate
layer to control the speed of the agent to avoid collisions in the longitudinal axis. Since a
kinematically feasible path is already obtained during the planning process, a velocity-based
or longitudinally continuous model is used for this task.

The car following model, Necessary Deceleration Model (NDM, Andresen et al., 2014), is used
for this implementation. It operates under the assumption that bicyclists are effort minimizers,
which fits the modeling requirements. The original formulation of the NDM was developed for
use in single-file traffic. Thus, some adjustments and additions were made to the model for
use in a continuous lateral space. The NDM formulation used in the model is shown in equa-
tion 3.2 through 3.6. The NDM model activates different acceleration (acc), and deceleration
components(dec1, dec2), based on the spacing (s) and speed difference (∆v) of the leading
cyclist. The final output of the deceleration is contained by the physical ability to slow down
the bike (bmax). Respective parameters that are present are shown in the following table 3.5
along with their description.

d(v) = s0 + l (3.1)

acc =

{
v0−v
τ , if s > d(v)

0, if s ≤ d(v)
(3.2)

bnec =

{
(∆v)2

2(s−l−s0)
, if s− l − s0 > 0

bease, otherwise
(3.3)

dec1 = min(bnec, bmax) (3.4)

dec2 =

{
bmax

(l−d(v))2
· (s− d (v))2 , if s ≤ d(v);∆v ≤ ϵ

0, otherwise
(3.5)

dec = min(dec1 + dec2, bmax) (3.6)

Compared to the original implementation, this implementation employs a fixed safety distance
d(v) and adds a new component bease when the lower fraction of bnec becomes negative, which
will not happen when the traffic formation is in a single-file environment. The added bease
combined with a lower value of ϵ (also found in Brunner et al. (2024)) produces less sudden
brakes when switching between leaders and close-quarter following, such as when a faster or
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Table 3.5: Parameter values of the movement layer

Parameters Unit Description

Stand still distance (s0) m Component of safety distance d(v)

Relaxation time (τ ) sec Component of acceleration

Escape constant (ϵ) m/s Threshold value for fast leaving leader

Cycle length (l) m Component of safety distanced(v)

Max deceleration (bmax) m/s2 Maximum deceleration limit

Easing deceleration (bease) m/s2 Added during development,
a smaller deceleration similar to coasting

slower vehicle decides to merge into the front or the back of another vehicle, which could lead
to a sudden spike of a deceleration in the original implementation.

After acquiring the acceleration and deceleration with NDM, the final radius of possible move-
ment is derived using a simple displacement function based on Newton’s second law (3.8).

Final Acceleration a = acc+ (dec1 − dec2) (3.7)

∆x = v ·∆t+
1

2
· a ·∆t2 (3.8)

After deriving the movement radius(∆x), it can be used to solve the intersection of a given path,
where the intersection will be the next position of the bicycle agent, illustrated in figure 3.8.
This employment of a movement radius allows for the omnidirectional movement capability
as well as some smoothing benefit. Since the planned path from the path planning layer is
kinematically compliant, the output lateral movement will also be of reasonable velocity.

Figure 3.8: Illustration of movement radius

3.2. Verification approach
To conduct verification for the developed model, the governing inputs, which are the param-
eters or variables that have the greatest effect on the intermediate output of the model, are
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required. The intermediate output of the model is first described in the previous table 3.1of
subsection 3.1.1, and the determined governing input for each layer of the developed model,
along with their effects, is presented in the following table 3.6.

Table 3.6: Main governing inputs and their effect on the model

Model layer
/ Modules Governing inputs Effects

Perception Speed (m/s) Change of consideration range,
Change in the potential leader list

Goal orientation Speed threshold (m/s),
Space threshold (m)

Change in overtaking decision,
Change in placed goal

Path-planning Start[x, y], Goal[x, y]
Obstacle, Cyclist boundries Change in planned path

Movement Speed (Current, Desired),
Leader info (Speed, position) Change in acceleration, topspeed

The aim of the verification step is to examine these intermediate outputs across the four layers
of the model, as these intermediate results serve as the parameters and main inputs for the
layer’s following steps. Upon initial investigation, these intermediate outputs are considered to
be “Observable,” meaning that they have a real physical meaning, and can be directly related
to the physical world. Since these output values can be easily examined or graphed, this
research deems that an observation-based approach to check if these intermediate outputs
are consistent with the assumptions is sufficient.

Another goal of this verification is to provide information on how the model interacts with the
intermediate output and the input change. Thus, the verification will be done in a synthetic
scenario of a bicycle path that is 2 meters in width, with 2 other agents on scene, traveling at
a constant speed of 2 and 3 m/s, showcased in figure 3.9. This would provide a consistent
environment for the plotting and observation of the expected intermediate outputs, showcasing
the inner workings of the developed model.

Figure 3.9: Synthetic environment of verification

The modeled agent would start at the position of x = 0, while the agents traveling at 2 m/s
and 3 m/s will start at the position of x = 5 and x = 10, respectively. All agents will start at
the lateral position of y = −0.6, which makes the remaining available lateral space 1.1 meters
wide when the physical dimensions of the cyclists are accounted for. This is done to ensure
no rounding errors that could impact the consistency of the results, which is expected to occur
when the Lateral gap threshold is set to a value of 1.

Through the adjustment of the main inputs shown in table 3.6, the intermediate outputs of the
model should behave in accordance with the change. For this verification, a set of different
scenarios is designed to check if the intermediate outputs are consistent with the expectations.
The set parameters for the agents are showcased in the following table 3.7, which will remain
constant without specification, and their expected outputs and behavior are showcased in table
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3.8.
Table 3.7: Agent parameter values for the verification

Parameters Value Unit Description

Cyclist Length 1.95 m Design vehicle of CROW (2016)

Cyclist Width 0.5 m Design vehicle of CROW (2016)

Longitudinal Buffer 0.2 m From Andresen et al. (2014)

Lateral Buffer 0.25 m From Meijer et al. (2019)

Interaction Range 4 s From Hoogendoorn and Daamen (2016)

Speed difference threshold - m/s Main input of Goal orientation

Lateral gap threshold - m Main input of Goal orientation

Rewire radius 2 Linksize Set during development

Angle constraint 120 deg/s From Alizadehsaravi and Moore (2022)

Stand still distance (s0) 0.2 m From Andresen et al. (2014)

Relaxation time (τ ) 1.73 s From Andresen et al. (2014)

Escape constant (ϵ) 0.5 m/s From Brunner et al. (2024)

Cycle length (l) 1.95 m Design vehicle of CROW (2016)

Max deceleration (bmax) 5.5 m/s2 From Andresen et al. (2014)

Easing deceleration (bease) 0.3 m/s2 Set during development

Table 3.8: Verification inputs and expected results

Model layer
/ Modules Main input Unit Value Expected output

Perception Speed m/s 2 List of 1 cyclist

4 List of 2 cyclist

Goal Orientation
(Speed 4 m/s)

Speed threshold
Gap threshold

m/s
m

0.6
1 Overtake all cyclists

1.2
1 Overtake 1 cyclist

0.6
1.5 Overtake no cyclists

Path-Planning Goal [x, y] From
goal orientation

Smooth path to goal,
No boundary violation

Movement
(OT threshold 1.2 m/s)

Current Speed,
Desired Speed m/s 5 No speed adjustment

4 Decelerate and follows

For the perception layers, the consideration region is a multiplication of speeds and the set
parameter of headway values. By adjusting the input speed values, the size of the consider-
ation will change, which dictates the final output list of cyclists. A slower speed would result
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in a smaller consideration region, leading to a lower number of cyclists in the generated list,
while a higher speed value would result in the opposite.

After examining the output of the perception layer, the adjustment of the different overtaking
thresholds in the goal orientation step is investigated. A lower speed and lateral gap threshold
would enable the agent to overtake more. The returned goal and leading cyclist from this step
should change in response to these values. These returned goals will also be used for the
verification of the path-planning layer, where the planned path will be examined to see if the
algorithm could indeed find a path to the goal without violating any set constraints, such as
the boundary and turning rates.

The last layer of the model to examine is the movement step. For this step of the model, the
output speed should respond to the decisionsmade and the path planned in the previous steps.
If an overtaking decision is about to occur, the agent should remain uninterrupted, reaching or
maintaining its desired speed. If an overtake is deemed not viable, the agent should adjust its
speed and follow the front-running cyclist.

The intermediate outputs of the model will be recorded and graphed for visual observations.
If the model outputs are consistent with the previously mentioned expected changes, the ver-
ification step can be considered a success. Meaning that all parts of the developed model
behave in accordance with the modeling concepts, and it can be further tested in the face
validation phase.

3.3. Face validation approach
In the face validation step, attempts to utilize the developed model to recreate individual cy-
clists in real-world scenarios will be made, and the accuracy of the recreation will be assessed.
This is done by using real-world datasets (in the case of this research, the large-scale cyclist
experiments conducted in Rotterdam, the Netherlands, by Gavriilidou et al., 2019b). The data
from the real-world datasets will be extracted, with some serving as the inputs and parame-
ters for the developed model, and others serving as the ground truth. The true observations
from the datasets are then compared to the simulated/estimated outputs from the developed
models.

3.3.1. Face validation data
The real-world datasets used for this face validation procedure are the Large-scale cycling ex-
periment conducted by Gavriilidou et al. (2019b), which provides a variety of cyclist trajectories,
composed of different traffic compositions and different cycling situations, including scenarios
that contain only regular, manually propelled bikes, which is of interest in this study. The ex-
periment was conducted in an indoor venue in the city of Rotterdam, the Netherlands. During
the experiment, the position of the cyclist is recorded using overhead cameras at a time resolu-
tion of 25 frames per second. The trajectories of the cyclists are extracted by using a software
developed by Duives (2016), which automates the process described in Hoogendoorn et al.
(2003), that tracks the red cap worn by the experiment participants (Shown in figure 3.10).

With the extracted cyclist positions, combined with the timestamp of the video feed, the cy-
clist’s trajectory points are gathered. With these trajectory points and the timestamps from the
camera footage, the position of the cyclist could be interpolated to fit the time resolution scales
of the simulations. Showcased in the following figure 3.11

By using this approach of interpolating positions, this research is able to generate control
agents that replicate the cyclists of the real world inside the simulation, which move in a con-
sistent manner in accordance with the simulation’s time scale. This approach also negates
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Figure 3.10: Experimental snapshot of Gavriilidou et al. (2019b), showcasing the red cap for tracking participant
trajectories

Figure 3.11: Raw data points and the interpolated positions of the observation data

the sometimes inconsistent data time spacings shown in the figure, which is caused by the
overlap or measurement error, providing smoothing benefits. The speed of the cyclist is also
derived using the interpolated position and time scales, which results in a more consistent
estimate compared to this research’s attempts to derive speed directly from the raw trajectory
points and timestamps, which result in near or infinite speed estimation values, because of
the measurement errors and time stamp fluctuations.

3.3.2. Scenarios and simulation setup
For this face validation process, a total of two simulation scenarios are chosen with the aim
of examining the different layers of the model. The first scenario is the Chicanes scenario,
focusing on the steering and pedaling behavior, which is the result of the path and movement
part of the model. The second scenario is the overtaking scenario, where the decision-making
performance of the model and how it affects path and movement, and finally the steering and
pedaling output of the model is examined.

Simulation setup
To assess the performance of the developedmodel in amicroscopicmanner. This research will
simulate the modeled agent individually, along with the cyclist agents that are recreated from
the real-world observations. Shown in figure 3.12, the cyclists outlined in grey are the control
agents. All control agents present on the scene will be recreated using the observation data,
and they will travel in the same position and speed as the observations. While the one agent
outlined in the red dotted line will be simulated based on their respective starting positions and
initial inputs, it will be simulated by the developed model, shown in table 3.9.

With the simulation environment and input defined, the simulation is conducted in a time res-
olution of 10 time ticks per second. The positions and the decisions made by the model are
updated in this time resolution, which roughly equates to the lowest human response time
(Baars and Gage, 2013), meaning that the resolution of the actions and reactions of the sim-
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Figure 3.12: Simulation environment for a simulated agent

Table 3.9: Starting input of the simulated agents

Agent Inputs Unit Descriptions

Initial Position [x, y] Initial position of the agent

Initial Speed m/s Initial speed of the agent

Desired Speed m/s Mean speed of the agent

Desired Lateral position [y] Last recorded lateral position the agent

ulation agent should roughly equate to a human rider. This time tick resolution has also been
tested beforehand and found to be enough to avoid any collision that may occur during the
state change between the simulation ticks.

Chicanes
The Chicanes scenario (Sometimes referred to as aMeander, shown in figure 3.13) is a special
type of bottleneck that requires the cyclist to navigate two sets of narrow gaps that are placed
edge-to-edge to the riding path. The chicanes in the real-world experiment consist of two
0.75m gaps that are placed 2m apart from each other. For this scenario, a 15m section that
consists of the approach and the exit before and after the chicane is selected, which is when
the cyclists start to be found moving towards the chicane (shown in figure 3.14).

Figure 3.13: Photo of the chicane set up of Gavriilidou et al. (2019b)

The navigation-heavy and close to single-file nature of the chicane bottleneck leads to more
varied behavior of speed and steering adjustments that are related to the path-planning and
movement layer of the model, which makes this scenario a suitable choice for the face valida-
tion of the developed model’s physical layer.

This scenario consists of a total of 92 cyclists’ observations, which will all be simulated. The
parameters used in the simulation of this scenario are showcased in the following table 3.10.
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Figure 3.14: Dimension of the simulated environment

The used parameters are a mix of data from the observations and the behavioral findings
mentioned during the literature review.

Table 3.10: Agent parameter values for the simulation of chicanes scenario

Parameters Value Unit Description

Cyclist Length 1.8 m Mean value from Gavriilidou et al. (2019b)

Cyclist Width 0.6 m Mean value from Gavriilidou et al. (2019b)

Longitudinal Buffer 0.2 m From Andresen et al. (2014)

Lateral Buffer 0.25 m From Meijer et al. (2019)

Interaction Range 4 s From Hoogendoorn and Daamen (2016)

Speed difference threshold 0.5 m/s From Li et al. (2013)

Lateral gap threshold 1 m From Mohammed et al. (2019)

Rewire radius 2 Linksize Set during development

Angle constraint 120 Deg/s From Alizadehsaravi and Moore (2022)

Stand still distance (s0) 0.2 m From Andresen et al. (2014)

Relaxation time (τ ) 1.73 s From Andresen et al. (2014)

Escape constant (ϵ) 0.5 m/s From Brunner et al. (2024)

Cycle length (l) 1.8 m Mean value from Gavriilidou et al. (2019b)

Max deceleration (bmax) 5.5 m/s2 From Andresen et al. (2014)

Easing deceleration (bease) 0.3 m/s2 Set during development

One thing to take note of is the value of the speed difference threshold for overtaking. There
is no overtaking observed during the initial examination of the data from this scenario. Thus, a
value from the literature is selected, considering the average speed of the scenario, a relatively
high value that leads to a lower amount of lateral interactions.

Overtaking
The overtaking scenario is a scenario where the participants are given the opportunity to decide
if they want to overtake during the 30m straight running section of the experiment track. This
7-minute run consists of 226 observed trajectories, out of which a total of 23 overtakers and
27 overtakings are observed. An example of 1 overtaker with 1 recorded overtake is shown
in figure 4.6, where the overtake should satisfy the two conditions: an observed overtake
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where the cyclist exchanges position with another cyclist on the longitudinal axis, and at least
a bicycle width of lateral movement on the lateral axis.

Figure 3.15: Example of 1 labeled overtaking

In this scenario, an attempt will be made to recreate these overtakes, which will require the
tuning of parameter values for the goal orientation layer. A simple estimation is done by com-
paring the average speed of the overtakers and the one being overtaken. The final estimate
for this value is a difference of 0.31 m/s, which is lower than the lowest one found in literature
(0.5 m/s), but still plausible considering the context of the scenario and the lower and more
homogeneous conditions of the indoor experiments. The final parameters used in the simula-
tion are shown in the following table 3.11, where only the modified parameters are compared
to the previous scenario (Table 3.10). The used parameter mostly equate to the ones used in
the chicane scenario, with the exception of the overtaking thresholds.

Table 3.11: Modified parameter values for the overtaking scenario when compared to table 3.10

Parameters Value Unit Description

...
...

...
...

Speed difference threshold 0.31 m/s Estimated from observation
...

...
...

...

...
...

...
...

All of the 23 labeled overtakers will be simulated to examine if the psychological part of the
developed model could replicate real-world observations.

3.4. Performance and Goodness of fit measures
After the simulation, the capability of the developed model to replicate real-world observations
will need to be assessed.

For the chicane scenario, which focuses on the physical aspect of pedaling and steering of bi-
cycle riding, the performance of which is best done by examining the trajectory of the modeled
agent to the observations, in both time and space. The performance of the output trajectories
will be benchmarked using the average absolute error of displacement for the 2 simulated
spatial axes, the calculation for such measures is shown in the following equation 3.9 and
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3.10.

Displacement Error x axis =
1

T

T∑
t=1

|xsim,t − xobs,t| (3.9)

Displacement Error y axis =
1

T

T∑
t=1

|ysim,t − yobs,t| (3.10)

Where across the simulated time frame (T ) the absolute error for the observation at each time
tick (xsim,t, ysim,t) will be compared to the observed position (xobs,t, yobs,t) of the actual cyclist
at the given tick. This measure would provide an idea of how the generated trajectory deviates
from the observation.

Another benchmark used is that the outputs of the model will first be examined, as it is one of
the major components of the time trajectories. If a significant error exists in the speed outputs,
it can also be said that a large amount of error will also exist in the time trajectories. The error
across all the observations will be assessed using the goodness-of-fit measure of Root Mean
Squared Percentage Error (RMSPE), as it is a metric that is more sensitive to larger errors
across the observations, and such a measure is also commonly used in the literature, which
could be of reference to assess the model’s accuracy. The calculation of the RMSPE is shown
in the following equation 3.11.

RMSPE =

√√√√ 1

T

T∑
t=1

(
vsim,t − vobs,t

vobs,t

)2

× 100% (3.11)

Where the squared error of the speed measurement of the simulated agent at a time tick
(vsim,t) will be compared to the observed speed (vobs,t) at the given time, is averaged, and
then square-rooted across the simulation time frame. These two measures, supplemented
with visual observation of the turning position and rate of lateral movement of the simulated
trajectory, would give an idea of how accurate the model is at replicating the cyclists’ pedaling
and steering behavior.

The assessment of the overtaking scenario will also utilize the measures used in the previous
scenarios, with the addition of the inspection for the modeled overtaking outputs. This can be
done with a simple assessment using percentage errors.

Simulated OT
Observed OT

× 100% (3.12)

This error value can be benchmarked against the previous attempt in modeling overtaking
behaviors such as Zhao et al. (2013) and Ni et al. (2023). Noted that because of the lower
amount of overtaking observations (27) as a base, the fluctuation in the normalized output
would be large, thus it could only provide a relative idea of the model’s performance when
benchmarked against the others. After comparing the prediction accuracy, this research will
also supplement with a visual observation of the trajectories, combined with the previously
mentioned performance measures, investigating whether the modeled overtakes are similar
in position, and in the amount of lateral movements. Such an investigation would give an
idea whether the model could really replicate the real-world overtaking both for the mental
and physical layer of behaviors.
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Result

4.1. Verification results
The verification setup for each of the model layers and their respective results showcased in
the following table 4.1

Table 4.1: Verification inputs and expected results

Model layer
/ Modules Main input Value Expected output Result

Perception Speed 2 m/s List of 1 cyclist Passed

4 m/s List of 2 cyclist Passed

Goal Orientation Speed threshold
Gap threshold

0.6 m/s
1 m Overtake all cyclists Passed

1.2 m/s
1 m Overtake 1 cyclist Passed

0.6 m/s
1.5 m Overtake no cyclists Passed

Path-Planning Goal
(From goal orientation) [x, y] Smooth path to goal Passed

Movement
(OT threshold 1.2 m/s)

Current Speed,
Desired Speed 5 m/s No speed adjustment Passed

4 m/s Decelerate and follows Passed

A basic summary of the result will be provided in this section, while the full verification result,
including the illustrations, is showcased in Appendix A. Based on the input value change, the
perception layer has returned a different consideration range, which resulted in the change
of the returned potential leader lists. The goal orientation layer has also made respective
decisions that comply with the modeling logic. Based on the goal, the path-planning layer
has also returned a smooth and achievable path, and the movement layer is able to travel on
the path and make respective pedaling adjustments related to the movement of the selected
leader.

With these results, it can be determined that all model layers are showcasing well-expected
behaviors within all the set scenarios. Meaning that the model is now ready for use in the next

29
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step of face validation with real-world datasets.

4.2. Face validation results
In this section, the previously stated two simulation scenarios are constructed using the pro-
cessed real-world observation data as references. The first chicane scenario aims to focus
on the physical properties of the model, which is the replication of the steering and pedaling
behavior of the cyclists. As stated in the previous chapters, the simulation of the cyclist is
done on an individual basis, where in the environment, beside the simulated agents, all other
agents remain in accordance with their observed path and speed. The result of the simulation
will be shown in the following subsections.

4.2.1. Scenario Chicane
In the chicane scenario, when comparing the 92 simulated agents against their respective
observations, the recorded absolute displacement error for the generated trajectory is 0.84 m
and 0.23 m for the x and y axes. The resulting Root Mean Squared Percentage Error for the
speed output is 17.9%.

For further interpretation of the result, this research also plotted the time trajectory output
across the 2 spatial axes for a single simulated agent. The simulated agent is expected to
output a plausible result for both the x and y axes across the simulated time frame. Besides
the trajectory output across time, the output should also translate well onto the trajectory across
the simulated space. The time trajectory output is shown in the following figure 4.1, and the
space trajectory output is showcased in the following figure 4.2. To provide further evidence
for the model’s output, the space trajectory of 8 other randomly sampled agents is also plotted,
which is shown in figure 4.3.

Figure 4.1: Time trajectory of the x and y axes for a simulated agent in the chicane scenario

Figure 4.2: Space trajectory of the agent in figure 4.1



4.2. Face validation results 31

Figure 4.3: Space trajectory output of 8 other agents

For the result of the displacement output, the model is able to generate relatively accurate
estimate of the position of the individual cyclists across the simulation time frame. The resulting
absolute longitudinal and lateral displacement output is less than half of the set bicycle length
andwidth, meaning that the estimated position of the cyclist is well within the plausible personal
zone of the cyclist in the observation data.

The result for the simulated longitudinal and lateral displacement can also be confirmed by
the RMSPE value of the speed outputs, which is within the viable range of 5.2 to 22.4% for
a longitudinal continuous model found in literature (Zhu et al., 2018). Since speed is one of
the major contributors to the movement across time, such a result could indicate that there
are no major deviations in the time trajectory estimate, which is also evident in figure 4.1 and
4.2, where the slight desired speed change before and after the chicane, which the model
currently does not incorporate, does not lead to a huge deviation between the temporal and
spatial trajectories, showcasing similar turning rates, and positions across time and space.

The additional 8 spatial trajectories of figure 4.3 also further solidify the result, where the
model’s output trajectories can be said to be capturing most of the physical traits, such as
the amount of lateral movement, turning positions, and turning trajectories. However, there
are still some minor exceptions where the model deviates more from the observation, such
as the observation found in subplot (a) and (g), where the observation employs a different
strategy, which the cyclists align with the chicane earlier, and ride closer to the edge of the
chicane obstacle, which lead to larger deviations before and on the exit of the obstacles, such
difference in behaviors could be due to the heterogeneity in the mental perception of obstacles.
With the performance of these observations, it could be said that the model could generate a
plausible replication of the physical layer behavior of pedaling and steering, and with further
tuning and perhaps the incorporation of more heterogeneity, the model could yield even better
results.

4.2.2. Scenario Overtaking
After examining the physical capability of the developed model, the model’s performance in
capturing the mental layer of the process is investigated. A total of 23 labeled overtakers
is simulated. The simulation of these overtakers should result in a total of 27 overtakes. A
successful overtake is marked when the simulated agent is able to overtake the same cyclist
that the observation cyclist has overtaken. The model has been able to recreate 19 out of the
27 overtakes, which roughly equates to a prediction accuracy of 70.3%. For the performance
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measure of the physical layer, the model has reported an absolute displacement error of 1.54
m and 0.38 m for the x and y axes, and an RMSPE of 24% of speed across the simulation
time frame.

Both a successful and failed attempt of overtaking is showcased in the following figure 4.4
and 4.5, for the interpretation of the result. During the examination of the results, there also
exist instances where the model has created an overtaking maneuver that is not present in
the observation, which is also plotted in figure 4.6,

Figure 4.4: Example of 1 successfully modeled overtake

Figure 4.5: Example of a failed overtake modeling attempt

Figure 4.6: Model creating nonexistent overtaking maneuver

The model has reported a lower percentage in the prediction of overtakes compared to the
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other attempts found in the literature such as recorded 89.8% of the Zhao et al. (2013) and
the 91.7% of Ni et al. (2023), though could not be directly compared because of the different
environments and the the lower base number of observation of this research, the prediction
accuracy of this research’s model can still be deemed to be relatively low.

Besides the lower recorded accuracy, there also exist big inconsistencies in the successfully
modeled overtake, such as the difference in lateral trajectories that can be seen in figure 4.4,
where the model decided to merge in earlier than the observations. There are also inconsisten-
cies found in the longitudinal axis of the simulation, leading to the extra overtaking maneuver
in figure 4.6, where the simulated agent overtakes an additional cyclist, which is not present in
the observation. These inconsistencies are further solidified by the higher displacement and
speed error values. Due to both the lower accuracy and the inconsistent trajectory outputs, it
is not possible to say that the developed model recreates mental behaviors that are plausible
compared to the real-world observations.

Since the model utilizes 4 consecutive layers, and the performance of the physical layer has
been examined in the previous section, the investigation of the cause of these inconsistencies
starts from the first perception layer, which is responsible for the sensing and handling of
boundaries for other cyclists. Based on the output trajectories, the perception layer does
showcase results that are comparable to the reservation, such as the initial lateral movement
of figure 4.4, and the amount of lateral movement that is present in the figure 4.5. Thus, this
research attributes that the errors in the prediction may come from the goal orientation layer,
where a wrongly placed goal may cause the early merging, and an incorrect leader selection
could lead to the extra or no overtaking that is presented in the figure.

4.3. Discussion
Upon the inspection of these results, the developed model has generated relatively good re-
sults in the scenario of chicanes, which focuses on the physical layer behavior of steering
and chicanes. With the use of the path-planning algorithms as the steering component, the
simulated agent is able to generate a similar range and change of lateral motion when com-
pared to most of the observations, supported by the low lateral displacement error values.
The implemented NDM model, which is responsible for the pedaling behavior of the physical
layer, is also able to generate a good speed estimation based on the starting conditions of
the individual, meaning that the generated time trajectory estimation should also be of good
quality. However, there are also some situations in which the model deviates more from the
observation, where the trajectory (a) and (g) of 4.3. The model failed to replicate the larger
counter steer or steering during the first turn of the chicane and the closer to the boundary of
the subsequent turn, which violates the buffer constraint of the model. This research attributes
such a difference to the heterogeneity of turning strategies, balancing needs, as well as the
difference in acceptable buffer space when individuals encounter such obstacles. With the
addition of such heterogeneity, the model is expected to yield better results in the physical
layer of the behaviors.

The validation of the mental process of the model, however, exhibits different outcomes com-
pared to the previous scenario. The model not only exhibits lower accuracy in the prediction
of overtaking when compared to previous attempts found in the literature, but is also inconsis-
tent in the predictions, sometimes generating non-existent overtakes when compared to the
observation. The failure to predict overtaking also propagates down to the physical layer, as
the modeling processes are in sequence to each other, leading also to the large deviation of
displacement errors across both axes. Based on the trajectory outputs, this research attributes
such an error to the goal orientation layer, which handles goal placement and leader selec-
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tion in conjunction. Since the observed trajectories and decisions contain errors potentially in
both of these selections, which causes deviation in both the overtaking decision and trajec-
tory outputs, this research deems that a more sophisticated or decoupled approach should
be implemented to improve ht result, and this research does not expect further tuning of the
parameters used in the goal orientation layer could yield significant results. Therefore, the
face validity of the model remains at a physical level.



5
Conclusion

This research was started with the novel idea that a path planner often found in the field of
robotics and intelligent vehicles, which could be used to replicate human movements. After
the initial background search, the lack of models using such techniques is indeed true. Then, a
literature search was conducted on the existing modeling framework, and also on how existing
modeling techniques fit with respect to the different layers of the existing modeling framework.
After the literature review, the possibility of using path-planning algorithms as a steering com-
ponent in the physical layer is found. Following these findings, this research attempted tomake
framework adjustments that could model the commonly found overtaking behavior of cyclists
with the incorporation of path-planning algorithms. This research later developed a model that
fits the modified framework and examines the performance of the model through the attempt
to recreate real-world observations. The main finding of the research will be presented in the
following section of this chapter.

5.1. Conclusion
The main findings for this research are closely linked to the previously defined research ques-
tions. Through answering these questions, the main findings of this research are summarized
and concluded.

First, on the topic of the first research question: How can the process of bicycle riding
and overtaking be interpreted using existing frameworks? This research has conducted
reviews on the observed characteristics of bicycle riding and overtaking behavior using the
interpretations of a 2-layer operational framework. The framework consists of the physical
layer behavior of pedaling and steering, which have been investigated in multiple observation
studies. The physical layer is also governed by the mental layer of decisions, which, in the
case of overtaking, is found to be controlled by a lateral and speed threshold. These decision
variables or environmental attributes are, in turn, governed by the perpetual process of the
cyclists, which can be explained using the field of safe travel concept.

For the second research question of: Based on the explanations/frameworks, where could
path-planning algorithms be used? This research examines the previous attempt at model-
ing such behavior using the interpretation of the 2-layer operational framework of the previous
questions, and has found that models that incorporate steering kinematics have long been
proposed, but are still considered to be of rarity. Path-planning algorithms could potentially
be used as a dedicated way to model steering behavior in combination with the longitudinally
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continuous model that focuses on the pedaling part of the riding behavior.

With these findings, this research extends the answer to the third research question: What
framework modifications, components, and parameters are needed to model the micro-
scopic behavior of cyclists with the incorporation of path-planning algorithms? Contin-
ues on with the literature review process, how the algorithm is adapted to facilitate its use on
an unbounded problem, the incorporation of the turning dynamics of a vehicle, and the need
for placement of the dynamic goal is known. In combination with behavioral aspects found in
the previous questions, this research makes an adaptation to the existing two-layered frame-
work. The adapted framework consists of 4 sub-layers. The first perception layer creates a
bounded search using the field of safe travel concept in combination with the known bicycle
gaze and interaction range. The second goal orientation layer places a goal based on the
known overtaking mechanism of the cyclists. Then, the physical layer, which consists of the
planning layer and movement layer, initiates the path planning process, creating a path in ac-
cordance with the kinematic constraint and optimality criterion. Then the final movement is
executed with the incorporation of a well-known bike following dynamic. The model then gets
more concrete throughout the development, combining with the verification process, the full
inner workings of the model are shown.

After the development and verification, a face validation is conducted, which will answer the
fourth question of: What are the observed strengths and weaknesses of the developed
model? The face validation uses parameters from both the literature and observations from
the available dataset. The process consists of two scenarios, one that focuses more on the
physical layer behavior of steering and pedaling, and one that includes examining the mental
layer behavior of the model. The result of the face validation shows that the model is able to
generate plausible steering and pedaling behavior in the physical layer. However, such claims
could only hold when there exists less interaction that is governed by the mental layer, as the
mental layer lacks both accuracy and consistency in the prediction of the overtaking behavior
found in observation.

Thus, on the main topic of: To which characteristics of bicycle riding can be accurately
captured with a model that incorporates path-planning algorithms? The answer to which
will remain on the physical level of behavior. A combination of path-planning algorithms and
a longitudinally continuous model is, in fact, capable of capturing the physical capability of
steering and pedaling of the cyclist. However, such behavior of the physical layer is governed
by the mental decision process of the cyclist. The face validation result has highlighted that
the failure to model the intention of the cyclist would have a great impact on the final output of
the generated behavior. At its current form, the developed model would only work well in an
environment that contains only physical interaction with the environment.

With these findings, this research has made contributions in two aspects, as stated in the in-
troduction. This research has provided a new modeling approach in capturing the physical
steering part of the microscopic cyclist behavior using path planning algorithms, and provided
some initial performance analysis, and where the approach could be improved through face
validation. Another aspect of the contributions lies in the investigation made during the liter-
ature review, where necessary adaptations for the use of path planning algorithms in cyclist
modeling are explored, opening up the future possibility for more types of models and addi-
tions.
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5.2. Recommendation
Based on this research’s findings and some experiences during the research period, this re-
search determines that there are two main aspects that could yield significant benefits for the
enhancement of this modeling technique. The first of which, based on the face validation
findings, is the incorporation of more behavioral aspects. One of the major shortcomings of
this research comes from the inaccuracies in capturing overtaking behaviors. This research
suggests that it could be caused by the goal orientation layer of the model, rather than the
parameter values used. The developed goal orientation layer, while functional, proved to be
too simplistic to consistently predict the interactions. The goal orientation process is one of
the more important aspects for both cycling research and for models utilizing path planning
algorithms, as the algorithm requires the presence of a goal to initiate and optimize to. This
research suggested the use of a potentially discrete choice-based approach for the enhance-
ment of the model. Another accuracy enhancement could come from the use of different
optimizing strategies, such as the addition of lean or steering effort for the planning algorithms.
With the incorporation of these costs into the optimization step, previously outlining trajectories
found in the chicane scenario is expected to be more accurately captured.

Another aspect that is out of the scope for this research, but could yield significant improve-
ment, is the computational efficiency of the model. The model currently employs the use of
basic RRT* models combined with kinematic constraints found in the RG-RRT, which require
the use of higher iteration counts to gain convergence of a path. This makes the computa-
tion times objectively high. During the face validation step, the Python implementation of the
model recorded on average 33 milliseconds to process a time tick. While it is currently running
faster than real time under the smaller-scale face validation scenario of this research, more
complicated scenarios found in real-world engineering scenarios are expected to increase
the computation time drastically. With more complex scenarios, increasing the computational
speed of the model is a must, as it allows for rapid iterations during the calibration steps. The
field of path planning algorithms is constantly improving in terms of convergence speed. Thus,
future research could attempt to incorporate more efficient variants of the path-planning algo-
rithms, increasing computational efficiency. With both improvement in accuracy and speed,
the models utilizing path planning algorithms could gain more relevance in the field of traffic
modeling and engineering.
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A
Verification Results

In this appendix, the full result of the verification step is shown. The verification will be con-
ducted based on the steps in inputs showcased in section 3.2, where the intermediate output
of the developed model is compared against the assumptions and expected behaviors.

A.1. Perception
The verification of the perception layer consists of 2 scenarios, which are showcased in the fol-
lowing table A.1 with varying speed inputs. The output result should respond with the change.

Table A.1: Verification inputs and expected results

Model layer
/ Modules Main input Unit Value Expected output

Perception Speed m/s 2 List of 1 cyclist

4 List of 2 cyclist

Table A.2: Result output of the perception layer

Main input Unit Value Outputted consideration boundry
(xmin, xmax, ymin, ymax) Returned list length

Speed m/s 2 (0, 8, -1.35, 0.15) 1

4 (0, 16, -1.35, 0.15) 2

The output result is showcased in table A.2. For clearer illustration, the result of the outputs is
also graphed onto figure A.1 and A.2.

Figure A.1: Intermediate output when the speed is set at 2 m/s
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Figure A.2: Intermediate output when the speed is set at 4 m/s

The perception module have showcased expected behavior both in the table and figures, with
the change of speed, the length of the consideration region changes accordingly. Covering
a different amounts of other agents and changing the length of the returned list of potential
leaders.

A.2. Goal orientation
For the goal orientation layer, the returned leader and goal should adjust based on the set
overtaking conditions, which is showcased in table A.3.

Table A.3: Inputs and expected results for goal orientation

Model layer
/ Modules Main input Unit Value Expected output

Goal Orientation Speed threshold
Gap threshold

m/s
m

0.6
1 Overtake all cyclists

1.2
1 Overtake 1 cyclist

0.6
1.5 Overtake no cyclists

Table A.4: Inputs and expected results for goal orientation

Main input Unit Value Returned leader
(x, y, v)

Returned goal
(x, y)

Speed threshold
Gap threshold

m/s
m

0.6
1 (1000, 0, 10) (16, -0.6)

1.2
1 (10, -0.6, 10) (8.75, -0.6)

0.6
1.5 (5, -0.6, 2) (3.75, -0.6)

The goal orientation module has showcased expected return values. With the unconstrained
cyclists getting a leader position that is far enough not to hinder any speed adjustments. The
situations that the goal orientation module has chosen to follow have also returned the correct
leader and goal position, which will be the goal for the verification of the path-planning layer.

A.3. Path planning
For the verification of the path planning layer, the goal coordinates obtained in the previous
step will be used. The intermediate output for this step of the model should be a smooth,
continuous path that connects from the starting position to the goal region, while not violating
any set boundary and angle constraints. The path output is shown in the following figure A.3
through A.5 respectively.

All of the three goal inputs have returned a viable path that connects the start and the goal
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Figure A.3: Path output when the goal is at (16, -0.6)

Figure A.4: Path output when the goal is at (8.75, -0.6)

Figure A.5: Path output when the goal is at (3.75, -0.6)

with no obvious boundary or kinematic violation. Indicating that the path-planning part of the
model is working as intended.

A.4. Movement
With all other parts of the model verified, the movement layer can finally be tested, as it relies
on the leader and path inputs from the previous part of the model. The input and expected
result of the movement layer are shown in the following table A.5.

Table A.5: Verification inputs and expected results

Model layer
/ Modules Main input Unit Value Expected output

Movement
(OT threshold 1.2 m/s)

Current Speed,
Desired Speed m/s 5 No speed adjustment

4 Decelerate and follows

If all parts of the model are working well. Considering a riding speed of 5 m/s and an overtaking
speed threshold of 1.2 m/s, this would lead to a behavior that overtakes all other cyclists.
While a set speed of 4 m/s would lead to speed adjustment and following behavior. The final
movement output for the model is showcased in the following figures A.6 and A.7, where both
inputs have generated trajectories have showcase the expected behaviors.

From the initial perception inputs to the final movement outputs, the developed agents have
showcased well-expected behaviors that are in line with the modeling concepts. The devel-
oped agent should be well-equipped for the next face validation, where attempts to use the
model to replicate observations from the real-world datasets will be made.
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Figure A.6: Trajectory output when the agent’s desired speed is set to 5 m/s

Figure A.7: Trajectory output when the agent’s desired speed is set to 4 m/s
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