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SUMMARY

The Arctic presents a great opportunity for two major industries. First, since the region
is expected to contain a significant amount of hydrocarbon reserves, it is very attractive
for the oil and gas industry. Second, the receding extent of sea ice is making the region
more accessible for shipping and, therefore, an opportunity is emerging for the shipping
industry. In order to exploit both economic opportunities in a safe and sustainable man-
ner, a thorough understanding of the interaction between ice and floating structures is
needed. The most common method for studying ice-floater interaction (IFI) is via nu-
merical modeling, which the fluid is a major component of. As fluid-ice interaction is
challenging to model, a wide range of simplified and sophisticated models are employed
to meet the challenge.

A literature study was performed on the usage of fluid models employed in IFI and
it was found that they can be divided into four categories: hydrostatic models, models
based on potential flow, models based on Reynolds-averaged Navier–Stokes or a simi-
larly advanced method, and effective fluid models. The hydrostatic models are by far
the most prevalent despite only accounting for buoyancy. Most IFI models that account
for hydrodynamics make use of potential theory. These models account for fluid flow
and surface waves, which together alter the dynamic behavior of floating ice, resulting
in hydroelastic effects. The surface-wave-based coupling between ice and floater has
not been studied before and there are still open questions regarding the effects of hy-
droelasticity on the bending failure of ice. The advanced fluid models are a recent trend
in IFI and, consequently, most of those are still under development. These models are
very promising and may be the future of IFI modeling. Finally, the effective models avoid
the practical issues associated with hydrodynamic models in terms of development and
calculation time by capturing hydrodynamics in an effective manner, employing, for in-
stance, added mass and damping coefficients. While several studies investigated the
efficacy of these models, currently no satisfactory effective fluid model exists.

The main goal of this thesis is to further the understanding of how hydrodynamics
affects the interaction between ice and a sloping structure and to assess whether it is
possible to create an effective model that can replicate the observed effects. The full
scope encompasses three smaller studies. First, the surface-wave-based coupling be-
tween an elastic ice sheet and nearby floater structure is investigated. This interaction
has not been studied before and the solution method that is developed for this problem
is also used in the subsequent two studies. Second, a thorough study of the effects of
hydrodynamics on the interaction between a sloping structure and level ice is accom-
plished. This study resulted in the identification of the parameter range wherein hydro-
static models are valid, which is essential given that they constitute the majority of all
models. In addition, this study improved the understanding of the effects of hydrody-
namics by means of investigating the importance of various components such as the
rotational inertia of the ice, axial compression, and the nonlinear hydrodynamic pres-
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vi SUMMARY

sure. Furthermore, the relation was analyzed between the temporal development of the
contact force and the velocity dependence of the breaking length. Lastly, based on the
findings of the second study, an attempt was made to develop an effective fluid model
for ice-slope interaction. The efficacy of this model was studied in this thesis for a range
of parameters. The main findings of the three studies are summarized next.

Part one In the first part of this thesis, the interaction is investigated between an ice
floe and a floater through surface waves. This problem is considered first as the Green’s
functions that are derived for this problem are required for the subsequent studies on
ice-slope interaction. The floater is modeled in-plane as a thin rigid body that floats
on the surface of a fluid layer of finite depth. On one side of the floater, an ice floe is
present which is modeled as a semi-infinite Kirchhoff-Love plate. The floater is excited
by external loads and the resulting motions generate waves. Those waves hitting the ice
edge are partly transmitted into the ice floe and partly reflected back towards the floater.
The reflected waves exert pressure on the floater, altering its response. The resulting
motions of the floater were analyzed, revealing several interesting facts.

The study showed that below a certain onset frequency, the waves are almost fully
transmitted into the ice floe and, consequently, the response of the floater is unaffected
by the presence of the ice. The susceptibility of a floater to the waves reflected by a
nearby ice floe can thus be estimated by checking how much of its open water response
occurs above or below the onset frequency. The onset frequency is sensitive to changes
of the ice thickness and insensitive to changes of the Young’s modulus and water depth.

Above the onset frequency, the waves reflected by the ice have a pronounced effect
on the response of the floater. In certain frequency ranges, quasi-standing waves oc-
cur within the gap between ice floe and floater. Within these frequency ranges, the re-
sponse of the floater is significantly altered. Depending on the phasing between the
reflected waves and the floater’s motions, resonance or anti-resonance can occur which
can greatly amplify or reduce the floater’s motions when compared to the case when no
ice is present. Even when there is no gap between ice and floater, the amplitude of the
floater can still be amplified and its natural frequency somewhat increased.

Part two The second study of this thesis focuses on the effect of hydrodynamics on
the bending failure of an elastic ice floe due to the interaction with a downward-sloping
floater, i.e. the effects of hydrodynamics on ice-slope interaction (ISI). A novel, semi-
analytical in-plane ISI model is proposed that is based on potential theory in conjunc-
tion with the nonlinear Bernoulli equation to describe the fluid pressure. The ice is mod-
eled as a semi-infinite Kirchhoff-Love plate. The predictions of the hydrodynamic model
are compared with those of a hydrostatic ISI model, thereby obtaining a quantitative
measure of the effect of hydrodynamics on ISI. The comparison revealed several inter-
esting facts.

First, the importance of several components of the model was investigated to de-
termine which ones are essential for ISI. It was found that the contribution of the rota-
tional inertia of the ice, axial compression and the nonlinear hydrodynamic pressure is
insignificant. Being able to ignore the last two components greatly simplifies the mod-
eling of ISI as it removes all sources of spatial nonlinearity. The terms that were found to
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be essential for ISI, listed in the order of importance, are: bending of the ice floe, linear
hydrodynamic pressure, hydrostatic pressure and the inertia of the ice floe. The contri-
bution of the fluid’s inertia is on average four to ten times bigger than that of the inertia of
the ice. The study also demonstrated that the effect of wave radiation on ISI is minimal.

Second, the relation between the temporal development of the contact force and
the velocity-dependence of the breaking length was studied. The study showed that the
breaking length has two regimes which are separated by a transition velocity. When the
ice velocity is below the transition velocity, the ice fails during the initial impact. Alter-
natively, when the ice velocity is above the transition velocity, the ice floe survives the
impact and fails with a breaking length that is close to the static breaking length. The
transition velocity of the hydrodynamic model is much lower than the transition veloc-
ity of the hydrostatic model, 0.0725 m/s compared to 0.275 m/s. This major difference
in transition velocity is the primary reason for the limited applicability of the hydrostatic
model. The results show that the hydrostatic model should not be used when the ice
velocity is higher than 0.6 times the transition velocity of the hydrodynamic model as its
predictions will deviate significantly, with errors ranging from 30% to 100%. This upper
bound corresponds to values between 0.02 m/s and 0.1 m/s for the parameters consid-
ered.

Lastly, this study underlined the stochastic nature of the breaking length of the ice
floe. When the floe fails, a relatively large segment of the floe is, in fact, close to failure. A
defect in the ice can locally amplify the stresses, causing the ice to fail at the defect rather
than at the location predicted by a homogeneous model. This can cause the breaking
length to vary by 10% to 30%.

Part three The last part of this thesis builds on the knowledge gained in part two by
attempting to create a simple effective fluid model (EFM) that captures the effects of
hydrodynamics on ISI as observed in part two. Based on the observations, an EFM is
proposed that uses frequency-independent added mass and damping coefficients. This
EFM was added to the hydrostatic model, thereby obtaining an ISI model that contains
all four essential components of the ISI model. The resulting effective ISI model is very
simple and, consequently, its implementation is trivial compared to a true hydrody-
namic model such as the one proposed in part two. Its simplicity should help to improve
the adoption of hydrodynamics in ISI.

The performance of the effective ISI model is assessed. Investigated are the velocity-
dependent breaking length, the maximum contact force that occurred during the inter-
action, and the contact force as a function of time. The predictions of the effective model
are far more accurate than those of the hydrostatic model. The coefficients of the EFM
were found to be relatively insensitive to changes in the parameters, allowing the effec-
tive model to be used for a fairly broad range of parameters.
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Het noordpoolgebied biedt een grote kans voor twee belangrijke industrieën. Ten eerste,
omdat de regio naar verwachting een aanzienlijke hoeveelheid koolwaterstofreserves zal
bevatten, zeer aantrekkelijk voor de olie- en gasindustrie. Ten tweede wordt de regio toe-
gankelijker voor de scheepvaart door de afnemende hoeveelheid zee-ijs en biedt daarom
kansen voor de scheepvaartindustrie. Om beide economische kansen op een veilige en
duurzame manier te benutten, is een doortastend begrip van de interactie tussen ijs en
drijvende structuren nodig, vanuit het Engels vaak afgekort als floater. De meest gebrui-
kelijke methode voor het bestuderen van ijs-floater-interactie (IFI) is via numerieke mo-
dellering, waarvan water een belangrijk component is. Omdat de interactie tussen water
en ijs een uitdaging is om te modelleren, wordt een breed scala aan vereenvoudigde en
geavanceerde modellen gebruikt om deze uitdaging aan te gaan.

Als eerst is een literatuurstudie uitgevoerd naar het gebruik van vloeistofmodellen
die in IFI. De toegepaste modellen kunnen onderverdeeld worden in vier categorieën:
hydrostatische modellen, modellen op basis van potentiaalstroming, modellen op basis
van Reynolds-averaged Navier-Stokes of een eveneens geavanceerde methode, en effec-
tieve vloeistofmodellen. De hydrostatische modellen zijn verreweg de meest voorko-
mende, ondanks dat ze alleen rekening houden met het drijfvermogen van het ijs. De
meeste IFI-modellen die verantwoordelijk zijn voor hydrodynamica maken gebruik van
potentiaalstroming. Deze modellen bevatten vloeistofstroming en oppervlaktegolven,
die samen het dynamische gedrag van drijvend ijs veranderen wat resulteert in hydro-
elastische effecten. De koppeling tussen ijs en floater veroorzaakt door de oppervlakte-
golven is nog niet eerder bestudeerd en er zijn nog steeds open vragen over de effecten
van hydro-elasticiteit op het falen van ijs in buiging. De geavanceerde vloeistofmodellen
zijn een recente trend in IFI en bijgevolg zijn de meeste daarvan nog in ontwikkeling.
Deze modellen zijn veelbelovend en zijn mogelijk de toekomst van IFI-modellering. Ten
slotte zijn er de effectieve modellen welke de praktische problemen die hydrodynamic
met zich mee brengt, zoals in toename in programmeer en berekentijd van het model,
vermijden door het hydrodynamisch effect van het water op een effectieve manier mee
te nemen, bijvoorbeeld door het gebruik van toegevoegde massa en dempingscoëffici-
ënten. Hoewel verschillende onderzoeken de werkzaamheid van deze modellen hebben
onderzocht, bestaat er momenteel geen bevredigend effectief vloeistofmodel.

Het belangrijkste doel van dit proefschrift is om meer inzicht te krijgen in hoe hydro-
dynamica de interactie tussen ijs en een hellende structuur beïnvloedt en om te beoor-
delen of het mogelijk is om een effectief model te maken dat de waargenomen effecten
kan repliceren. Deze hoofdvraag is opgesplitst in drie studies. Eerst wordt de koppeling
op basis van oppervlaktegolven tussen een elastische ijskap en een nabije floater onder-
zocht. Deze interactie is nog niet eerder bestudeerd en de oplossingsmethode die voor
dit probleem is ontwikkeld, wordt ook in de daarop volgende twee studies gebruikt. In de
tweede studie is een grondige onderzoek naar van de effecten van hydrodynamica op de
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interactie tussen een hellende structuur en een ijslaag gedaan. Deze studie resulteerde
in de identificatie van het parameterbereik waarin hydrostatische modellen geldig zijn,
wat essentieel is omdat deze het merendeel van alle modellen vormen. Bovendien ver-
beterde deze studie het begrip van de effecten van hydrodynamica door middel van het
onderzoeken van het belang van verschillende componenten zoals de rotatietraagheid
van het ijs, axiale compressie en de niet-lineaire hydrodynamische druk. Verder werd
de relatie geanalyseerd tussen de temporele ontwikkeling van de contactkracht en de
snelheidsafhankelijkheid van de breeklengte van het ijs. Ten slotte werd, op basis van de
bevindingen van de tweede studie, een poging gedaan om een effectief vloeistof model
voor ijs-hellinginteractie te ontwikkelen. De werkzaamheid van dit model werd in dit
proefschrift bestudeerd voor een reeks parameters. De belangrijkste bevindingen van
de drie onderzoeken worden hierna samengevat.

Deel een In het eerste deel van dit proefschrift wordt de interactie onderzocht tussen
een ijsschots en een floater door middel van oppervlaktegolven. Dit probleem wordt als
eerste beschouwd omdat de Greense functies die voor dit probleem zijn afgeleid, nodig
zijn voor de onderzoeken naar interactie tussen ijs en hellingen in deel twee en drie van
dit proefschrift. De floater is 2D gemodelleerd als een dun, star lichaam dat op het opper-
vlak van een vloeistof laag van eindige diepte drijft. Aan de ene kant van de floater is een
ijsschots aanwezig die is gemodelleerd als een semi-oneindige Kirchhoff-Love-plaat. De
floater wordt geëxciteerd door externe belastingen en de resulterende bewegingen ge-
nereren golven. De golven die de ijsrand raken, worden gedeeltelijk doorgelaten in de
ijsschots en deels teruggekaatst naar de floater. De gereflecteerde golven oefenen druk
uit op de floater, waardoor de respons van de floater verandert. De resulterende be-
wegingen van de floater werden geanalyseerd, waarbij verschillende interessante feiten
werden onthuld.

De studie toonde aan dat beneden een bepaalde beginfrequentie de golven bijna vol-
ledig worden doorgelaten in de ijsschots waardoor de reactie van de floater niet wordt
beïnvloed door de aanwezigheid van het ijs. De gevoeligheid van een floater voor de gol-
ven die wordt weerkaatst door een nabijgelegen ijsschots kan dus worden geschat door
na te gaan hoeveel van zijn open waterreactie optreedt boven of onder deze beginfre-
quentie. De beginfrequentie is gevoelig voor veranderingen van de ijsdikte en ongevoelig
voor veranderingen van de Young’s modulus en waterdiepte.

Boven de beginfrequentie hebben de golven die door het ijs worden gereflecteerd
een merkbaar effect op de reactie van de floater. In bepaalde frequentiegebieden treden
quasi-staande golven op binnen de opening tussen de ijsschots en de floater. Binnen
deze frequentiegebieden is de respons van de floater aanzienlijk veranderd. Afhankelijk
van de fase tussen de gereflecteerde golven en de bewegingen van de floater kan reso-
nantie of antiresonantie optreden wat de bewegingen van de floater aanzienlijk kunnen
versterken of verminderen vergeleken met het situate wanneer er geen ijs aanwezig is.
Zelfs wanneer er geen opening is tussen ijs en floater, kan de amplitude van de response
van de floater nog steeds worden versterkt en de natuurlijke frequentie enigszins worden
verhoogd.
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Deel twee De tweede studie van dit proefschrift richt zich op het effect van hydrody-
namica op het falen in buiging van een elastische ijslaag als gevolg van de interactie
met een naar beneden hellende floater, d.w.z. de effecten van hydrodynamica op ijs-
slopeinteractie (ISI). Een nieuw, 2D semi-analytisch ISI-model wordt voorgesteld dat
gebaseerd is op een potentiaalstroming in combinatie met de niet-lineaire Bernoulli-
vergelijking om de vloeistofdruk te beschrijven. Het ijs is gemodelleerd als een semi-
oneindige Kirchhoff-Love-plaat. De voorspellingen van het hydrodynamisch model wor-
den vergeleken met die van een hydrostatisch ISI-model, waardoor een kwantitatieve
meting van het effect van hydrodynamica op ISI wordt verkregen. De vergelijking ont-
hulde een aantal interessante feiten.

Eerst werd het belang van verschillende componenten van het model onderzocht om
te bepalen welke essentieel zijn voor ISI. Er werd gevonden dat de bijdrage van de rota-
tietraagheid van het ijs, axiale compressie en de niet-lineaire hydrodynamische vloeistof
druk niet significant is. Het kunnen negeren van de laatste twee componenten vereen-
voudigt de modellering van ISI aanzienlijk, omdat het alle bronnen van ruimtelijke niet-
lineariteit verwijdert. De termen die essentieel bleken te zijn voor ISI, opgesomd in de
volgorde van belangrijkheid, zijn: buiging van het ijs, lineaire hydrodynamische druk,
hydrostatische druk en de massa van de ijsschots. De bijdrage van de traagheid van de
vloeistof is gemiddeld vier tot tien keer groter dan de bijdrage van de traagheid van het
ijs. De studie toonde ook aan dat het effect van golfstraling op ISI minimaal is.

Als tweede werd de relatie tussen de temporele ontwikkeling van de contactkracht en
de snelheidsafhankelijkheid van de breeklengte van het ijs bestudeerd. De studie toonde
aan dat de breeklengte twee regimes heeft die gescheiden zijn door een overgangssnel-
heid. Wanneer de snelheid van het ijs lager is dan de overgangssnelheid, faalt het ijs
tijdens de initiële botsing. Wanneer de snelheid van het ijs boven de overgangssnelheid
ligt, overleeft de ijsschot deze botsing en faalt met een breeklengte die dichtbij de sta-
tische breeklengte ligt. De overgangssnelheid van het hydrodynamische model is veel
lager dan de overgangssnelheid van het hydrostatische model, 0,0725 m / s vergeleken
met 0,275 m / s. Dit grote verschil in overgangssnelheid is de voornaamste reden voor
de beperkte toepasbaarheid van het hydrostatische model. De resultaten laten zien dat
het hydrostatische model niet moet worden gebruikt als de ijssnelheid hoger is dan 0,6
maal de overgangssnelheid van het hydrodynamisch model, omdat de voorspellingen
dan aanzienlijk zullen afwijken, met fouten van 30% tot 100%. Deze bovengrens komt
overeen met waarden tussen 0,02 m / s en 0,1 m / s voor de beschouwde parameters.

Ten slotte onderstreepte deze studie de stochastische aard van de breeklengte van
het ijs. Op het moment dat het ijs faalt staat een groot gedeelte van het ijs op het punt
om te falen. Een defect in het ijs kan de spanningen lokaal versterken, waardoor het ijs
faalt bij het defect in plaats van op de locatie die wordt voorspeld door een homogeen
model. Hierdoor kan de breeklengte met 10% tot 30% variëren.

Deel drie Het laatste deel van dit proefschrift bouwt voort op de kennis die is opge-
daan in deel twee door te proberen een eenvoudig effectief vloeibaar model (EFM) te
creëren dat de effecten van hydrodynamica op ISI kan repliceren, zoals waargenomen
in deel twee. Op basis van de waarnemingen wordt een EFM voorgesteld die frequentie-
onafhankelijke toegevoegde massa en dempingscoëfficiënten gebruikt. Dit EFM is toe-
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gevoegd aan het hydrostatische model, waardoor een ISI-model is verkregen dat alle vier
essentiële componenten van het ISI-model bevat. Het resulterende effectieve ISI-model
is zeer eenvoudig en bijgevolg is de implementatie ervan triviaal in vergelijking met een
echt hydrodynamisch model zoals het model dat in deel twee wordt voorgesteld. De
eenvoud ervan moet helpen de acceptatie van hydrodynamica in ISI te verbeteren.

De prestaties van het effectieve ISI-model werden beoordeeld. Onderzocht zijn de
snelheidsafhankelijke breeklengte, de maximale contactkracht die optrad tijdens de in-
teractie en de contactkracht als een functie van de tijd. De voorspellingen van het effec-
tieve model zijn veel nauwkeuriger dan die van het hydrostatische model. De coëfficiën-
ten van de EFM bleken relatief ongevoelig te zijn voor veranderingen in de parameters,
waardoor het effectieve model voor een redelijk breed bereik van parameters kan wor-
den gebruikt.
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1
INTRODUCTION

1.1. OPPORTUNITIES IN THE ARCTIC

The Arctic presents a major opportunity for two industries: the oil and gas industry, and
the maritime industry. The region is expected to contain 22% of the worlds unexplored
hydrocarbon reserves and of these reserves, 84% is expected to be located offshore [1–
3], see Fig. 1.1. For the extraction of offshore hydrocarbons, both bottom-founded and
floating production platforms are commonly used. Bottom-founded platforms are lim-
ited to shallow waters, making floating platforms essential in gaining access to the re-
serves located in deeper waters. When floating structures operate in ice-infested waters,
they are subject to ice loads that are far greater than the wave loads these structures nor-
mally encounter in ice-free waters. It is thus paramount to both understand and be able
to predict the interaction between ice and floating structures so that the Arctic offshore
hydrocarbons can be extracted in a safe and sustainable manner.

Second, a steady decline in sea ice cover [5, 6] is gradually making the region more
accessible to marine activity. The primary benefactor of this trend is the shipping indus-
try, with three new possible routes that cross the Arctic Ocean [7, 8], see Fig. 1.1. Routing
vessels through the Arctic region is advantageous as it decreases the sailing distance be-
tween many major ports [9], see the bottom right of Fig. 1.1. This results in not only
economic but also environmental gains as the shorter distances imply less fuel usage
and thus lower emissions (49-78% less, see [10]). Although currently only a handful of
vessels make use of these routes, this number is expected to increase, albeit slowly, as
the sea ice cover continues to decline [9, 11]. In addition to this increase in shipping, the
same trend is also making the Arctic region more accessible for cruise ships, leading to
an increase in tourism [12, 13]. In order to take advantage of both opportunities without
adversely affecting the region, a thorough understanding of the interaction between ice
and floating structures, in this case vessels, is again required.

1
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Figure 1.1: A map of the economic opportunities in the Arctic. The regions expected to contain hydrocarbons
are highlighted with the gray shading. Three shipping routes that pass through the region are indicated as well.
Copyright © 2014 CNA Corporation, www.cna.org. All Rights Reserved.

1.2. NUMERICAL MODELING OF ICE-FLOATER INTERACTION (IFI)
The most common approach for studying ice-floater interaction (IFI) is numerical mod-
eling. A numerical IFI model consists of three major components: the floating structure,
often referred to as floater for short, the ice and the fluid. When setting up a numerical
IFI model, assumptions have to be made for each of the three components. The assump-
tions regarding the floater and ice are discussed next. The fluid, which is the main focus
of this thesis, is treated separately in Sec. 1.3.

Floater In marine technology, it is common to model floaters as rigid bodies [14]. This
assumption is also valid for most IFI studies since the deformations of the hull are small
enough to only have a marginal effect on the interaction with the ice. This assumption
may become invalid though; for instance, when studying the plastic deformations of the
hull due to an impact with an iceberg [15].
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Figure 1.2: The HMS Protector of the Royal Navy sailing through pack ice, an ensemble of ice floes, while on
her mission to support the work of the Convention for the Conservation of Antarctic Marine Living Resources
(CCAMLR). © Crown copyright 2013.

Ice Sea ice can take on many different forms referred to as ice features [16]. The most
common features are ice floes (see Fig. 1.2), ice rubble (ice floes with a low length-to-
thickness ratio, visible in Fig. 1.2 close to the vessel and in its wake), level ice (an ice floe
with an “infinite” length-to-thickness ratio, see Fig. 1.3), ice ridges, icebergs, pack ice
(an ensemble of ice floes, see Fig. 1.2), and broken ice (similar to pack ice but created by
the interaction with a structure, generally due to an ice management operation). These
ice features naturally drift about under the action of wind, current, and waves and may
eventually be encountered by a floater. The ice feature and the floater can then interact
in two ways: through contact loads or through the fluid. The latter option is discussed
in the next section that covers the fluid. As floaters are generally not designed for the
contact-based interaction with icebergs or large ridges, interaction with these ice fea-
tures falls outside the scope of this thesis. Of the remaining ice features, ice floes, ice
rubble, and level ice can be viewed as an ice floe with a certain length-to-thickness ratio,
while pack ice and broken ice can be viewed as an ensemble of ice floes.

When an ice floe first impacts any structure, the ice at the contact will be crushed,
exerting pressure on both the floe and the structure. How the contact-based interaction
then continues depends primarily on the inclination of the structure at the interface with
the ice floe. When an ice floe interacts with a vertically sided structure, such as the side
of a ship or a wind turbine’s monopile, the contact pressure is primarily in-plane and,
consequently, bending failure will not occur and the interaction is limited to crushing.
However, when an ice floe interacts with a slope, such as the bow of a ship, the result-
ing contact pressure that acts on the edge of the floe has both an in- and out-of-plane
component. The latter component will progressively bend the ice as it slides along the
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Figure 1.3: Russian icebreaker Krasin leading an American supply ship through level ice during Operation
Deepfreeze in 2006. Image courtesy: NSF.

slope, ultimately causing the ice floe to fail in bending with a certain breaking length.
When an ice floe is able to fail in bending, the resulting contact loads on the structure
are, on average, much lower. Therefore, in order to minimize the ice loads, it is prefer-
able for structures to be sloping at the expected interface with the ice. For this reason,
ship-shaped floaters are generally designed to assure that the interaction predominantly
takes place at its sloping bow.

Three major processes contribute to the overall load exerted by the ice floe on the
floater when the floe interacts with its bow [17–19]. The first process, the bending of the
floe ultimately leading to its failure, was described in the previous paragraph. This pro-
cess results in the repeated bending failure of the ice floe, with each failure generating
new pieces of ice rubble. The remainder of the incoming ice floe then pushes the rubble
against the hull, causing the individual pieces to rotate and align with the hull. Any fluid
present on top of the ice sheet is ejected by the secondary impact [20, 21]. During this
process, it is possible for the rubble pieces to fail again in bending, further reducing their
size [22]. The rotation and possible secondary bending failure of the rubble is the sec-
ond major process that contributes to the overall ice load. After the alignment with the
hull, the remainder of the ice floe pushes the rubble pieces forward, forcing them to slide
along the hull until they end up beside the floater or in its wake. While sliding along the
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hull, the rubble exerts traction due to its own inertia and buoyancy and the fluid flowing
around the hull of the floater. This is the third and last major process that contributes
to the overall ice load experienced by the floater. Although all three processes play an
important role, approximately 60 to 80% of the load, is due to the processes at the water-
line [23]. The first process, which gradually bends the ice floe and ultimately causes it to
fail in bending, plays an important role in this thesis and will be referred to as ice-slope
interaction (ISI).

When modeling IFI, and ISI in particular, an ice model is required that can predict
bending deformations. Since ice floes have a relatively uniform ice thickness, they are
well described by plate models [24]. Larger floes and level ice are often modeled as in-
finite or semi-infinite plates while ice rubble is often modeled as a collection of rigid
bodies as their length-to-thickness ratio is low. Independently of their size, ice floes that
are located at some distance from the floater are generally modeled as rigid bodies as
these floes are predominantly subjected to contact loads caused by the collision with
other nearby floes, which are mainly in-plane.

1.3. FLUID MODELING IN IFI
The third major component of an IFI model is the fluid. In order to accurately predict
the motions of fluids, complex models such as the Navies-Strokes equations are often
required. However, the complex nature of these equations and other similarly advanced
fluid models result in a very long development and calculation time. In order to avoid
these practical issues, assumptions are often made regarding the properties of a fluid
that allow simpler fluid models to be used, such as potential theory. While these as-
sumptions do decrease the complexity of the resulting fluid model, they also reduce the
number of effects it can predict. As a result, the fluid models in use today range from
very simple to very complex.

The fluid models used in IFI can be split into three categorized based on their com-
plexity: models that only account for buoyancy and hydrostatic pressure, models based
on potential flow, and advanced models based on methods such as Smooth Particle Hy-
drodynamics (SPH), Lattice Boltzmann Method (LBM), Large Eddy Simulation (LES), or
Reynolds-averaged Navier–Stokes (RANS). Additionally, a fourth category of fluid mod-
els is used in IFI, namely effective fluid models. The usage of these four categories in IFI
is reviewed in Ch. 2. The findings of that review are summarized next.

Hydrostatic fluid models The first category of fluid models only accounts for buoy-
ancy and the resulting hydrostatic pressure and will be referred to as hydrostatic fluid
models. The literature study shows that both historically and in recent years, the ma-
jority of IFI studies have been done using a hydrostatic IFI model. Presumably, it is the
simplicity of hydrostatic fluid models which has led to their widespread use in IFI.

Fluid models based on potential theory The second category of fluid models em-
ployed in IFI use the Bernoulli equation to describe the fluid pressure and assume that
the fluid is inviscid and irrotational, i.e. potential flow is assumed. The resulting model
can predict three fluid effects that cannot be predicted by a hydrostatic model, namely
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fluid flow, surface waves, and hydroelasticity. Fluid flow and surface waves both couple
the motions of floating bodies. The former type of coupling has been studied previously
for IFI [25–27] while the latter form of coupling has not been studied as thoroughly. In
particular, the coupling between a floater and nearby level ice has not been studied.

Moreover, both fluid effects alter the bending behavior of ice floes. This so-called hy-
droelasticity has a strong effect on ISI, changing both the breaking length and the con-
tact force and their velocity dependence [23]. However, as only a very limited number
of studies have focused on the effects of hydrodynamics on ISI, many details are not
fully understood. For instance, the relationship between the temporal development of
the contact force and the dependence of the breaking length on the velocity has not
been studied and the relative importance of the linear and nonlinear component of the
Bernoulli equation has also not been studied. Moreover, no previous study has pre-
sented a direct comparison between a hydrostatic and a hydrodynamic model in the
context of ISI. It is, therefore, unknown in which ranges of parameters the hydrostatic
models are valid and how the addition of hydrodynamics influences the aforementioned
changes in the breaking length and contact force.

Advanced fluid models The third category of fluid models are those based on SPH,
LBM, LES, RANS, or other similarly advanced methods. These models give the most ac-
curate predictions and, consequently, are the most general but, at the same time, the
most complex. This category can account for additional fluid effects such as large dis-
placements, viscosity, and turbulence. The importance of these fluid effects has not been
studied extensively in the context of IFI. Only large displacements have been studied and
it has been shown that this leads to backfill and ventilation effects [28]. Overall, it can be
concluded that the adoption of advanced fluid models is a recent trend in IFI and most
models are still under development.

Effective fluid models When using a hydrodynamic fluid model, the resulting IFI model
becomes significantly more complex when compared to a hydrostatic model. In the au-
thor’s opinion, this is the main reason for the prevalence of hydrostatic IFI models. Ef-
fective fluid models can be used to overcome the practical issues associated with hydro-
dynamics. These models aim to capture the effects that hydrodynamics has on IFI while
remaining simple enough to only result in a marginal increase in complexity when com-
pared to a hydrostatic fluid model. Because of this, effective fluid models are a promising
approach to increase the adoption rate of hydrodynamics in IFI. However, while there
have been several studies that explored the possibility of using effective fluid models for
IFI [29–31], all studies concluded that their proposed effective model was not able to
give satisfactory predictions of the hydroelastic behavior of the ice over a large range of
parameters.

1.4. THESIS OBJECTIVES AND SCOPE
Research question In order to exploit the economic opportunities in the Arctic in a
safe and sustainable manner, a thorough understanding of IFI is needed. The main
method for studying IFI is numerical modeling and the fluid is a major component of



1.4. THESIS OBJECTIVES AND SCOPE

1

7

such a model. Fluids are difficult to model and consequently, a wide range of fluid mod-
els are used in IFI. Hydrostatic models are almost exclusively used, despite previous
studies showing that hydrodynamics is an essential component of IFI. Since practical
issues are likely to be the cause for the prevalence of hydrostatic models, effective flu-
ids models could help to improve the adoption of hydrodynamics in IFI. Based on this
reasoning, the following research question is formulated:

How does hydrodynamics affect the interaction between an elastic ice floe and
a sloping structure and can its effects be captured by an effective fluid model?

Because ISI is the main contributor to the overall load experienced by a sloping struc-
ture, this thesis will focus on ISI rather than on the whole interaction cycle in order to
simplify the model. The rotation of the ice rubble and the flow of the rubble pieces
around the hull of the vessel are, therefore, not addressed. All studies are carried out
in 2D, to keep the models simple. Based on the above-formulated research question, the
following three subquestions are defined.

Subquestion 1 This thesis will use potential theory to model the fluid as previous stud-
ies have shown that potential theory gives good predictions for ISI. However, while all
previous studies on ISI have used discretization techniques such as FEM to obtain the
time-domain response, in the thesis a novel approach is used based on integral trans-
forms. In order to assist in the development of this semi-analytical ISI model, a differ-
ent problem is considered first, which addressed the effect of the presence of a nearby
ice floe on the response of a floating body to a sinusoidal excitation. Only very little is
known about the surface-wave based coupling between these two bodies, in particular
when the ice floe is modeled as an elastic body. The Green’s functions that are derived
for this problem can then be used for the development of the ISI model. This leads to
the first subquestion of this thesis:

How does the surface-wave-based coupling between a floater and a nearby
elastic ice floe affect the floater’s response?

Subquestion 2 Since most models utilize a hydrostatic fluid model, it is important to
understand the limitations of these models. It is, therefore, essential to identify the ve-
locity range wherein hydrostatic models are valid and how this range depends on pa-
rameters such as the ice thickness. Next, outside this range, hydrodynamics has to be in-
cluded. However, since adding hydrodynamics to an existing model is a time-consuming
task, it would be desirable to replicate the effects of hydrodynamics by a simple effective
model that can be directly incorporated into existing models. For the development of
such an effective model, a detailed understanding of the effects of hydrodynamics on
ISI is required since the effective model will have to replicate these effects. Moreover,
the general understanding of the effects that hydrodynamics has on ISI can still be im-
proved. For instance, the relationship between the temporal development of the contact
force and the dependence of the breaking length on the velocity and the relative im-
portance of the linear and nonlinear component of the Bernoulli equation has not been
studied. As such, the second subquestion of this thesis reads:

What is the effect of hydrodynamics on ice-slope interaction?
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Subquestion 3 The model used to answer the second subquestion is based on poten-
tial theory. Nevertheless, the effort required to implement such a model is substantial,
again highlighting the difficulties associated with hydrodynamics. In order to facilitate
the adoption of hydrodynamics in IFI models, an attempt is made to create an effective
fluid model that captures the effects of hydrodynamics on ISI. This leads to the third and
last subquestion of this thesis:

Can the effect of hydrodynamics on ice-slope interaction be captured by an
effective fluid model that gives valid prediction over a wide range of parame-
ters?

1.5. THESIS OUTLINE
This thesis is composed of a literature review chapter and three chapters that present
the novel contributions of this thesis. Each of the latter chapters addresses one of the
research subquestions of this thesis.

In Ch. 2 a review is presented of numerical and experimental IFI studies. The review
covers each of the four categories of fluid models as listed previously in this introduc-
tion. The main findings of this review were used to define the scope of this thesis and to
identify available experimental data that can be used to validate the numerical ISI model
proposed in this thesis.

In the second chapter of this thesis, Ch. 3, the first research subquestion is addressed.
A semi-analytical model is proposed that can predict the frequency-domain response
of a floater while including the coupling with a nearby ice floe, modeled as an elastic
plate, due to surface waves. The model is used to assess the conditions under which the
presence of the ice affects the floater’s response and discover the underlying physical
processes that cause the ice to affect the floater’s response. The Green’s functions derived
for this problem can then be used for the development of the ISI model.

In Ch. 4 the second research subquestion is addressed. A semi-analytical model is
introduced that can predict the time-domain hydroelastic response of an ice floe inter-
acting with a downward-sloping structure. As part of this model, a convolution-based
time-integration scheme is introduced to solve the resulting set of coupled, nonlinear
integer-differential equations. Using this novel model, the importance of the various
components of the model, such as the rotational inertia of the ice and axial compres-
sion, is investigated. Following this, the balance of forces in the ice sheet is studied.
Thereafter, the relation between the temporal development of the contact force and the
dependence of the breaking length on the ice velocity is investigated. Lastly, as all three
studies are done using both hydrodynamic and hydrostatic ISI models, the comparison
between their predictions allows the limitation of the latter model to be identified.

Based on the understanding gained in Ch. 4, an attempt is made to develop an effec-
tive model that captures the effects of hydrodynamics on ISI. This is done in Ch 5. The
proposed effective models is based on frequency-independent added mass and added
damping coefficients. The optimal value of these unknown coefficients is found by min-
imizing the error of the predictions of the resulting effective ISI models with the predic-
tion of the hydrodynamic ISI model that was introduced in Ch. 4. The efficacy of the
effective ISI models is then assessed over a wide range of parameters.
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The main findings of this thesis are summarized in chapter 3. The appendices that
follow the conclusions contain detailed derivations that supplement the numerical mod-
els used in this thesis. Specifically, in App. A a set of Green’s functions are derived for
a semi-infinite Euler-Bernoulli beam floating on an infinitely wide fluid layer of finite
depth for various types of loading and in App. B the numerical scheme used to evaluate
the various inverse Fourier transform that arose in Ch. 4 is explained.
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2
REVIEW OF IFI STUDIES

In this chapter, a review of the state of the art in IFI studies is given. Four categories of
fluid models were introduced in Ch. 1: hydrostatic, potential-theory based, advanced,
and effective fluid models. Correspondingly, this chapter first gives an overview of nu-
merical IFI studies that fall into these four categories of fluid models. Thereafter, exper-
imental studies on IFI are reviewed.

First, an overview is given of studies that employ hydrostatic IFI models in Sec. 2.1.
Second, an overview of IFI models based on potential theory is given in Sec. 2.2. Third,
advanced IFI models are discussed in Sec. 2.3. As the number of studies that use effective
fluid models is very limited, they are addressed as part of the previous three sections.
Experimental studies on IFI are then covered in Sec. 2.4. The review is rounded off with
a summary in Sec. 2.5 and a conclusion in Sec. 2.6 that substantiates the scope of this
thesis as defined in Sec. 1.4.

Note that this review primarily aims to give an overview of the state-of-the-art of
the numerical modeling of ice-floater interaction and may, therefore, not be exhaustive.
The placement of studies into a certain category as well as the categories themselves are
a subjective process and, therefore, some studies may have inadvertently been placed in
a category that one or more of the authors of said studies would disagree with. Unless
stated otherwise, all cited models were validated against experimental data or against
predictions of other validated models and showed good agreement.

2.1. HYDROSTATIC MODELS
A large majority of IFI models make use of hydrostatic fluid models. These models only
account for buoyancy, resulting in a very simplistic description of the fluid reaction. De-
pending on the geometry of the floating body, the hydrostatic pressure is often modeled
using a set of linear springs for rigid bodies or a Winkler foundation for elastic bodies. In
rare cases, the hydrostatic pressure is accounted for by direct integration of the hydro-
static pressure over the wetted area, resulting in a nonlinear formulation. This approach
was used by, for instance, Jensen et al. [32] and Dalane et al. [33]. In general, however,
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most IFI models use a linear description of hydrostatics. As the total number of such
studies is rather large, they are split into several groups based on the complexity of the
ice model.

2.1.1. ANALYTICAL & EMPIRICAL MODELS

The number of analytical or empirical models used in IFI is relatively small compared to
the number of numerical models. Two seminal analytical models are those by Lindqvist
[34] and Croasdale et al. [35]. The former proposed a method to estimate the ice re-
sistance experienced by floaters while moving through level ice, whereas the latter pro-
posed a method to estimate the load exerted by level ice on a sloping structure. Both
models are still commonly used and Croasdale’s model is included in the ISO 19906 stan-
dard that covers the design of offshore structures in Arctic environments [36]. Other
models are by Keinonen et al. [37] who, according to Kulaots et al. [38], proposed a
method to study the performance and efficacy of icebreakers assistance for ships nav-
igating through various ice conditions and by Riska et al. [39] who proposed a method to
study the performance of icebreakers.

The main advantage of analytical models is their calculation speed and because of
this, new analytical models are still occasionally put forward. Aksnes [40] recently pro-
posed a simple analytical model for the interaction between ships and level ice and Lu
et al. [41] proposed a 2D analytical model for estimating the loading on a downward
sloping structure due to the interaction with level ice. This latter model also accounts
for a possible secondary bending failure of the ice floe. However, with the advent of
faster computers, analytical models have gradually fallen out of favor and nowadays nu-
merical models are the norm. These models can handle more complex geometries and
can account for a large variety of physical phenomena. Consequently, this section on
hydrostatic models is mainly devoted to numerical models.

2.1.2. EDGE-TRACKING MODELS

While most hydrostatic IFI models are numerical in nature, a great number of them make
use of analytical or empirical formulas for one or more of their components. An example
of such a hybrid model is the edge-tracking models.

Cusps Wedges

Ship Ice

Figure 2.1: As the vessel advances, it mainly interacts with the ice sheet through a series of cusps. Each cusp
fails in bending, generating wedges. This process results in an ice edge pattern that is typical for the edge
tracking models.
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Edge-tracking models were first introduced by Wang [42]. In essence, these models
only track the edge of an ice floe and any overlap between the ice edge and the floater
is assumed to generate a contact load, the magnitude of which is generally assumed
to be proportional to the area of the contact surface. In these models, the interaction
between floater and ice edge primarily takes place at a series of cusps, see Fig. 2.1. It
is then assumed that the load applied to each cusp causes the associated ice wedges to
fail in bending due to a radial crack, breaking off the wedge from the infinite ice sheet.
The radius of this crack, as well as the maximum load that can be applied at each cusp
before bending failure occurs, are generally calculated using empirical formulas that are
based on experimental or full-scale data. Commonly used empirical formulas are those
by Nevel [43], Kotras et al. [44], Varsta [45], and Lindqvist [34].

Edge-tracking models have been primarily used to estimate the load exerted by level
ice on floaters [46–55] and to study the station-keeping of floaters in level ice [56, 57].
Only two studies considered the interaction with broken ice, i.e. with multiple ice floes.
Huisman et al. [58] used such a model to estimate the ice load experienced by a ship
maneuvering through broken ice and Scibilia et al. [59] to study the efficacy of an ice
management operation. It is important to note that most of the aforementioned studies
only [49, 59] include the generated ice rubble as separate bodies, i.e. the clearing loads
due to interaction with the ice rubble is either disregarded altogether [47, 48, 58] or cap-
tured in an empirical manner [46, 50, 51, 53–57], with the majority using the empirical
model by Lindqvist [34].

2.1.3. RIGID MULTIBODY MODELS WITHOUT FAILURE
While most edge-tracking models only account for a single body, namely the floater,
multibody models also include the individual ice floes as rigid bodies, see Fig. 2.2. Rigid
multibody models that disallow failure of the ice floes are considered first while those
that incorporate failure are covered in the next subsection.

Figure 2.2: A simulation of pack ice flowing around a fixed, rectangular structure, modeled in 2D using rigid
bodies without any failure modes. Image Courtesy: Marnix van den Berg.

Rigid multibody models that disallow failure generally consider the interaction be-
tween a floater and pack or broken ice in the plane defined by the water surface and,
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consequently, the majority of these models are in 2D. One of the earliest of such models
was presented by Løset [60]. In this 2D model, the ice floes are assumed to be circular
and a smooth contact model is used to resolve the collisions. This model was used to
study the ice forces experienced by a boom being pulled through pack ice [61]. Such a
rigid, circular multibody model was also used by Dai and Peng [62] to study the station-
keeping performance of a vessel using dynamic positioning, by Sayed et al. [63] to study
the yield condition of an ensemble of ice floes, by Herman [64] to study the influence of
ice concentration and floe-size distribution on the formation of broken ice and, lastly,
by Daley et al. [65, 66] to study the ice loads experienced by a vessel or icebreaker in pack
ice.

This last scenario, the performance of a floater moving through or station-keeping
in pack ice, is typical for rigid multibody IFI models and was also studied using trian-
gular [67], rectangular [68, 69], parallelepiped [70] and irregular-shaped floes [71–73].
Some of these models make use of event-mechanics in order to solve the problem in
a parallel manner using GPUs which greatly improves the calculation time [65, 66, 73].
An extension of the circular shapes to 3D was done by Hopkins and Tuhkuri [74] using
disk-shaped elements and this model was used to study the compression of circular ice
floes. This approach was also used more recently by Ji [75] to study the performance of
an icebreaker in broken ice.

By disallowing failure of the floes, a multibody dynamics problem is obtained for
which dedicated software libraries exist, referred to as physics engines. A very thorough
overview of available physics engines is given in Janßen et al. [76]. Generally, these en-
gines use non-smooth contact models to improve the speed and, in recent times, a num-
ber of these engines have been used for IFI. The 2D engine Box2D was used by Yulmetov
et al. [77] and Yulmetov and Løset [78] to study the drift and towing of icebergs through
broken ice. Another numerical framework for floaters in broken ice was proposed by
Metrikin et al. [79]. It makes use of the Vortex engine that employs a non-smooth con-
tact model and can also handle polygon-shaped ice floes.

2.1.4. RIGID MULTIBODY MODELS WITH ANALYTICAL OR EMPIRICAL FAIL-
URE

The group of studies outlined in the previous sub-section did not account for any failure
mode. To enhance the capabilities of these models, one or more failure modes, such as
bending, buckling, and splitting, can be incorporated. Since the bodies are still rigid,
the stresses, which are required to assess whether and how the floe will fail, are obtained
using analytical or empirical formulas.

One of the earliest developments of such a model was by Lubbad and Løset [80].
Their model is able to perform real-time simulations of an icebreaker navigating through
broken ice and includes bending failure based on two analytical solutions. The initial
interaction between the ice floes and the vessel takes place through a smooth contact
model based on the PhysX engine. The resulting stresses in the ice floe are then es-
timated using the analytical solution for the static response of a semi-infinite plate to
a distributed load at its edge. Once failure is detected, a series of radial cracks are in-
stantiated from the contact point. This generates several wedges and the total number
of wedges is based on full-scale observations by Nevel [81]. Subsequently, the wedges

https://box2d.org/
https://www.cm-labs.com/vortex-studio/
https://www.geforce.com/hardware/technology/physx
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Wedges
Ship

Ice

Ship

Ice

Figure 2.3: An illustration of an analytical failure model that assumes that each interaction point ultimately
leads to bending failure, initiating both radial and circumferential cracks, thereby generating an assumed num-
ber of wedges. As the vessel advances, the previously generated wedges are pushed below the ship and the
failure process repeats itself.

themselves can fail in bending and their failure is based on the stresses estimated using
the analytical solution for a static, infinite wedge [82]. This process leads to the failure
pattern illustrated in Fig. 2.3. This model makes use of the PhysX engine to perform
the collision detection and time integration. A framework with similar functionality is
explained in Metrikin [83] and Metrikin et al. [84].

A proposal to improve the empirical multibody model by Lubbad and Løset [80] is de-
scribed in Metrikin et al. [85]. Planned improvements were to discretize floes subjected
to large forces with FEM, thereby avoiding the need for the empirical bending failure
model that was used previously and to include backfill and ventilation. However, this
model was never realized. More recently, an improved version of the model by Lubbad
and Løset [80] was proposed that also incorporates splitting failure, see Lubbad et al.
[86]. In this version, the splitting of ice floes is incorporated using analytical solutions
based on a geometrical idealization of the floe being considered, see Lu et al. [87, 88].
Depending on the estimated stresses, the floe can then fail in either bending or splitting.

Using analytical or empirical formulas to handle the failure of the ice floes has the ad-
vantage of improving the computational speed. However, the main disadvantage of this
approach is that each state that occurs during the calculation has to be mapped to one
of the analytical solutions that are embedded in the model. This mapping introduces
an error as the analytical or empirical formulas often have to obey strict assumptions
regarding, for instance, the geometry of the floe.

2.1.5. ELASTIC MULTIBODY MODELS WITH STRESS-BASED FAILURE

The only way to truly avoid the mapping issues described in the previous subsection is
to resolve failure without making use of analytical or empirical formulas, which can be
achieved by using elastic models. Not only does this allow for a more accurate assess-
ment of the stresses in the ice, but the effect of the ice’s deformations on the interaction
is then also included. Elastic models, therefore, have enhanced capabilities compared to
rigid models. However, this increase in accuracy comes with a major downside, namely
an increase in the computation time.

A 2D elastic IFI model that has been used for a variety of studies was proposed by

https://www.geforce.com/hardware/technology/physx
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Paavilainen et al. [89]. This model considers the interaction between level ice, modeled
as a geometrically nonlinear Timoshenko beam, and a rigid, immobile downward slop-
ing structure. The ice moves towards the structure with a constant, far-field velocity and
fails in bending or buckling. The resulting rubble pieces are modeled as discrete ele-
ments and buoyancy pushes the rubble upwards, affecting the interaction between the
incoming ice and the structure. The rubble formation process was studied in several
works by the same authors [90–93]. The statistics of this model’s predictions were stud-
ied by Ranta [94–97]. Lastly, the model was used to perform studies of ridge keel punch
through tests in 2D by Polojärvi and Tuhkuri [98] and in 3D [99, 100], after an extension
of the model to 3D [101].

The interaction between incoming level ice and a fixed, conical structure has been
studied by several authors using an elastic multibody model. Septseault et al. [102] pre-
sented a 3D model that aims to provide a tool for the optimization of a structure’s ge-
ometry in order to reduce the ice loads due to level ice. The same scenario was studied
by Ji et al. [103] using a discrete-element method (DEM) based on spherical elements.
The elements are connected to one another using viscoelastic connections that include
Mohr-Coulomb friction. The model was used to investigate the ice loading on a sloping
structure [103] and for the concept design of an icebreaker’s hull by studying its per-
formance in level ice [104]. Such a sphere-based model was also used by Sayed [105]
to study the interaction between a fixed structure and floating level ice in a 2D setting.
The interaction with a fixed cone was also studied by Lu et al. [106] using the cohesive
element method. A 3D IFI model was proposed by Jensen et al. [32]. While their re-
port lacks details about the numerical model, it is used in conjunction with ice basin
measurements for the design of moored floaters. Lau [107] used the commercial DEM
package DECICE to study the performance of a vessel moving through ice and van den
Berg et al. [108] introduced a general purpose 3D nonsmooth multibody model based on
Voronoi tessellation.

Lastly, Sayed et al. [109] proposed an IFI model based on the particle-in-cell method.
In this approach, discrete particles are used to model the advection of the ice. The mo-
mentum equations are solved on a Eulerian grid, allowing an implicit time domain solver
to be used. The details of this method can be found in [109–111]. This model was em-
ployed to study the load exerted by pack ice on the Kulluk vessel [110, 112, 113] and to
show the importance of confinement in this scenario [114].

2.2. MODELS BASED ON POTENTIAL THEORY
The next category of numerical IFI models incorporates hydrodynamics by using po-
tential theory to describe the fluid, generally assuming incompressible potential flow.
Whereas the hydrostatic models in the previous section only account for buoyancy, mod-
els based on incompressible potential flow allow three additional fluid effects to be pre-
dicted, namely fluid flow, surface waves, and hydroelasticity. These additional fluid ef-
fects influence IFI in several ways.

First, when a body moves through a fluid, for example when an ice floe is deflected
downward during ISI, the underlying fluid has to be displaced which generates a flow.
The inertia of the mobilized fluid, in turn, exerts a reactive pressure on the body, thereby
affecting its response. Moreover, the resulting flow generates a pressure field that can
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affect other nearby floating bodies, thereby coupling their motions. An example of when
this occurs is when an iceberg passes by a floater [115]. Note that, if the fluid is assumed
to be incompressible and the surface assumed to be flat, the fluid flow will instanta-
neously reach its steady-state velocity in the entire domain. For a compressible fluid,
the transient stage will take a finite amount of time. This means that the so-called fluid
memory effect is not present when modeling fluid flow under the assumption of incom-
pressible potential flow and a flat surface.

Second, surface waves are radiated when a (partly-)submerged body moves in a fluid
that has a free surface. The radiated waves are experienced by the radiating body as a
form of energy dissipation, i.e. damping. The excited surface waves propagate in a dis-
persive manner and can excite motions of other nearby bodies, coupling their motions.
However, while the coupling due to fluid flow can be instantaneous if the fluid is as-
sumed to be incompressible and the surface is assumed to be flat, the speed at which
surface waves travel is always finite, independently of the compressibility of the fluid.
Consequently, when surface waves are included, the effect of hydrodynamics becomes
dependent on time, meaning that the fluid memory effect has to be dealt with, which
implies that convolution integrals should be dealt with for the time-domain analysis.

Lastly, when ice floes are modeled as elastic bodies, such as a plate, their motions
displace the underlying fluid, thereby generating both a flow and waves. The resulting
hydroelastic response of the plate thus differs greatly from its hydrostatic response. This
has several consequences. First, the plate experiences an increased resistance since it
has to mobilize the fluid and, as a result, the combined plate-fluid system has differ-
ent bending modes than the plate by itself. Second, since surface waves are excited,
the combined plate-fluid system has one additional propagating mode compared to the
plate by itself. Moreover, if the fluid has a finite depth, countably infinitely many modes
are added in addition to the single propagating mode. Lastly, since the plate excites the
fluid, it effectively siphons energy from the plate, thereby acting as a source of dissipa-
tion from the perspective of the plate.

The overview of this category is split into two parts. First, studies that cover the
contact-based interaction between ice and floaters are discussed in Sec. 2.2.1 and, there-
after, studies covering the fluid-based interaction are discussed in Sec. 2.2.2. The, in or-
der to better understand why so few IFI models incorporate hydrodynamics, some of the
difficulties associated with incorporating hydrodynamics based on potential theory are
discussed in Sec. 2.2.3.

2.2.1. CONTACT-BASED INTERACTION

Contact-based hydrodynamic IFI models are a natural extension of the hydrostatic mod-
els discussed in Sec. 2.1. However, the sheer number of hydrostatic studies is in stark
contrast to the number of hydrodynamic studies. Moreover, many hydrodynamic stud-
ies do not include a floater and instead excite the ice-fluid system by an assumed exter-
nal force, thereby focusing on the hydroelastic response of the ice-fluid system. While
these studies are not IFI in the strict sense, they will be included in this overview.

One of the earliest studies that considered the hydroelastic response of ice is by
Kheisin [116]. While it was not possible to find this study, other authors citing this pa-
per [117–119] mention that it considered the vibration of a floating ice sheet, including



2

20 2. REVIEW OF IFI STUDIES

hydrodynamics, but did not evaluate the solution. The first study to present the time
domain response of a sheet of level ice, including hydrodynamics, was by Nevel [117].
The ice was modeled as an infinite Kirchhoff-Love plate while the fluid layer of finite
depth was modeled using incompressible potential flow. The ice was excited by an exter-
nal time-harmonic load applied over a circle and the response to the axially symmetric
problem was obtained using Hankel transforms. Both the free and forced vibrations of
the ice sheet are presented by Nevel [117]. The latter solution was used to study the am-
plification of the stresses in the ice sheet as a function of the excitation frequency. The
maximum dynamic amplification was found to be ten percent.

One of the first studies to address ice-slope interaction was accomplished by Sørensen
[120]. The presented model uses a semi-infinite Kirchhoff-Love plate that includes in-
plane deformations to represent the sheet of incoming level ice. The problem is ini-
tially formulated including incompressible potential flow. However, this description is
forfeited in favor of an effective model based on a frequency-independent added mass
coefficient under the assumption that "the major influence from the water on the de-
flection of the sheet is the inertia force associated with the acceleration of the water". Its
value is based on the added mass of a rotating plate that was obtained by Engelund [121].
The analytical time domain solutions are then obtained using integral transforms. This
model was used to study the interaction between level ice and three different structures,
namely an infinitely wide sloping structure, a sloping structure of finite width, and sev-
eral sloping structures at once. The model differentiates between crushing failure of the
entire cross-section and dynamic bending failure and presents the velocity-dependent
breaking length for the three scenarios considered. Lastly, experiments were performed
to validate the analytical model.

The majority of hydrodynamic IFI studies were done in the last two decades. These
studies can be split into three groups based on how they choose to excite the ice. One
group excited the ice kinematically, a second group assumed an external load and a third
group considered the interaction with a sloping structure.

First, the uplift of an ice sheet was studied by Dempsey and Zhao [118, 119, 122]. In
their 2D model, an infinite sheet of level ice that floats on a fluid layer of finite depth is
kinematically excited by a cylindrical indenter. The ice is modeled as a Kirchhoff-Love
plate and the fluid is modeled using incompressible potential flow. The time-domain
solution is obtained analytically using Hankel transforms and the resulting convolution
integral is evaluated numerically. The sensitivity of the uplift force to various parame-
ters is investigated. It is observed that the fluid underneath the ice increases the mass
and damping substantially and that hydrodynamics greatly increases the uplift load. A
similar, static problem was also studied by the same authors [123]. In [119, 122] the pos-
sibility of using an effective fluid model based on a frequency-independent added mass
coefficient is explored. However, both studies showed that the effective model was inca-
pable of capturing the effects of hydroelasticity over a wide range of parameters.

Second, a group of studies focused on the hydroelastic response of level ice excited
by an assumed load. The bending failure of a semi-infinite plate subjected to a point load
whose magnitude increases linearly in time was studied by Fox [124]. Unfortunately, it
was not possible to find the full transcript of this study. A similar study was done by
Sawamura et al. [125] using the Finite Element Method (FEM). In that paper, it is shown
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that the free water surface is important, i.e. that a semi-infinite ice sheet floating on an
infinitely wide water layer behaves differently from a semi-infinite ice sheet supported
by a semi-infinite water layer. Additionally, they studied the response of a wedge for
various wedge angles. The model shows good agreement with the analytical solutions of
Fox [124] and Zhao and Dempsey [122]. Fox and Chung [126, 127] presented the Green’s
function of an infinite, thin plate floating on a fluid layer of both finite and infinite depth
in a non-dimensional form and, subsequently, studied the behavior of these functions.
The validity of ignoring the mass of the ice sheet is investigated and it is concluded that,
while the response is qualitatively the same, quantitatively they are different enough to
warrant the inclusion of the ice mass. Kozin and Pogorelova [128] studied the effect of
bottom roughness on the response of an infinite ice plate excited by an impulse. The
same authors also studied the response to an explosion, i.e. instantaneous load acting
on the fluid rather than on the ice itself, see Kozin and Pogorelova [129].

Lastly, true hydrodynamics IFI models are discussed. The seminal works on this topic
are by Valanto who studied the loading experienced by icebreakers advancing through
level ice. Through a combination of numerical and experimental modeling, Valanto
identified hydrodynamics as one of the key components of the bending failure of level
ice against a downward-sloping structure.

Valanto created several numerical models. The first was a 2D model in which the
fluid is described using unsteady, incompressible potential flow and the ice is modeled
as a Euler-Bernoulli beam [130]. The model accounts for the constant forward veloc-
ity of the vessel by imposing a steady-state flow of the fluid around the hull of a vessel.
The model includes the first two stages of the icebreaking cycle, namely bending fail-
ure and rotation of the broken off ice feature. Both fluid and ice are discretized using
finite differences and a smooth contact model is employed for the interaction between
the advancing vessel and the ice sheet. The prediction of the model shows very good
agreement with the experimental results. Based on the prediction of this model, it was
found that hydrodynamics greatly affects both the contact load and the breaking length
and that it is a defining factor in their velocity dependence, confirming the experimental
observation also presented in [130]. In order to improve the computational efficiency of
the model, usage of a simplified surface boundary condition was investigated, namely
one that does not account for the inertia of the ice sheet. It was found that this simpli-
fication is acceptable for modeling the first stage of the icebreaking cycle, i.e. until the
ice fails in bending. A similar study was done in 2D by Wang and Poh [131] while also
accounting for the edge moment. The results of this study are in agreement with the
results by Valanto. Next, the 2D model of Valanto was extended to 3D, resulting in one
of the most advanced IFI models to date, named VENICE [132]. This extended model
was validated using the full-scale measurements of four different vessels and the model
showed good agreement for all four validation cases. VENICE was then used to predict
the spatial distribution of the ice loads acting on icebreakers advancing through level
ice, including their velocity and ice thickness dependence [133].

Dempsey et al. [134] the problem statement for a 2D hydrodynamic IFI model is
given. However, no numerical implementation of the model was reported and, con-
sequently, no predictions were presented. Lubbad et al. [135] studied ISI with the ice
modeled as several adjacent wedge-shaped beams, i.e. it was assumed that radial cracks
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have already split the ice sheet into a number of wedges. The model which is based
on FEM performed satisfactorily. They also investigated the applicability of an effective
fluid model based on a contact added mass coefficient in combination with a Winkler’s
foundation and a damping term to replicate the effects of hydrodynamics. However, the
accuracy of the effective model was lacking when compared to the FEM model.

2.2.2. FLUID-BASED INTERACTION

In addition to contact-based interaction, hydrodynamics opens a second path of inter-
action, namely coupling due to fluid flow and surface waves. The importance of both
fluid flow and surface waves for IFI is discussed next.

The interaction between a floater and nearby ice floes through fluid flow was stud-
ied by Tsarau et al. [115]. This work is based on incompressible potential flow under
the assumption of a flat surface, thereby eliminating surface waves and all fluid memory
effects. The proposed model was used to study the interaction between a floater and a
nearby piece of ice and was validated against model tests performed in a towing tank.
In a follow-up study, the model was extended using the vortex element method to ac-
count for the wake generated by the floater and how the wake affects the flow of ice floes
around the floater [136]. In a third study, the flow generated by the propellers of a floater
was added. The numerical model was calibrated using full-scale data [137]. Similarly,
the hydrodynamic interaction between an iceberg and a nearby floater was studies by
various authors [138–140].

The importance of surface-wave-based coupling is considered next. Problems that
deal with multiple floating bodies which are in close proximity are called multibody hy-
drodynamic problems and this class of problems has been studied extensively in the field
of marine technology under the assumption that all floating bodies are rigid. While this
assumption is generally valid for ships, it does not always hold for ice floes since their
wavelengths are often comparable to those of the surface waves. It is, therefore, impor-
tant to understand how the surface-wave-based coupling between a floater and nearby
elastic ice affects the response of the floater. However, this type of interaction has not
been studied to the best of the author’s knowledge.

2.2.3. DIFFICULTIES ASSOCIATED WITH INCORPORATING HYDRODYNAMICS

Looking at the aforementioned hydrodynamics IFI studies, three principal approaches
have been used to incorporate hydrodynamics: discretization of the entire fluid do-
main, analytical approaches based on integral transforms, and the boundary element
approach. All three approaches have their own set of challenges and these are discussed
next. Note that while other approaches are possible, this subsection merely aims to il-
lustrate the difficulties rather than give a complete overview of possible methods for in-
corporating hydrodynamics based on potential theory.

The first approach is to discretize the fluid using, for example, the FEM of Finite Dif-
ferences. This approach was used in [125, 130–133, 135]. The main advantage of this
approach is that the fluid equations are reduced to a set of ODEs when dealing with
compressible potential flow, or to a set of algebraic equations when dealing with incom-
pressible flow. This allows hydrodynamics to be added to an existing time domain model
that already includes the floater and ice as ODEs, which is done in the majority of the
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hydrostatic models covered in Sec. 2.1. The major drawback of this approach is that it
greatly increases the calculation time of the IFI model. Moreover, the studies that have
used this approach all assumed small displacement, eliminating the possibility of drift-
ing objects. Allowing large displacement will further increase the complexity and effort
required to utilize this approach.

The second approach is to idealize the geometry of the ice, thereby allowing the prob-
lem to be solved using integral methods. In general, this means that the ice is modeled
as a (semi-)infinite plate. This approach was used in most of the aforementioned stud-
ies [117–119, 122, 124, 126–129, 134]. However, since integral transforms are used, the
excitation was generally chosen such that it can be mapped to the frequency domain,
allowing the time-domain response to be obtained by evaluating the inverse integral
numerically or analytically. Alternatively, the response of the ice can be studied in the
frequency domain. However, this limits the study to harmonic excitation at various fre-
quencies. It is important to note that integral transform methods are not easily incorpo-
rated into existing ODE-based models and that they are limited to linear problems, again
necessitating small displacements.

The third and last approach for incorporating hydrodynamics is to use boundary el-
ements. This approach is commonly used in the field of marine technology to com-
pute the frequency-domain response of vessels. Ultimately, this approach reduces the
fluid to a dynamic (frequency dependent) stiffness matrix that acts on- and couples all
floating bodies. This approach is based on the Green’s function of the supporting fluid
layer. Depending on the assumptions used for the surface boundary condition when
deriving this Green’s function, the resulting dynamic stiffness matrix will capture differ-
ent phenomena. When the full linear Bernoulli equation is used, both hydrostatic and
linear inertial fluid pressure will be included and the resulting Green’s function can pre-
dict both fluid flow and surface waves. However, the resulting dynamic stiffness will be
frequency-dependent. Consequently, in order to obtain the time domain response of the
floating bodies, a set of integro-differential equations must be solved. This can be done
by directly solving the convolution integrals or by approximating the frequency domain
response of the floating bodies, including the frequency-dependent dynamic stiffness of
the fluid, with a state-space system, see Keijdener and Metrikine [141]. The former is
not easily integrated into an existing ODE-based IFI model and the latter, while it does
result in an ODE-based description of the overall problem, is limited to a small number
of bodies.

In addition to the issue of converting back to the time domain, another issue arises
when using boundary elements, namely, that the geometry of the floating bodies will be
embedded in the dynamic stiffness matrix and, therefore, in the frequency domain re-
sponse of the floating bodies. This means that, unless the floating bodies are limited to
small displacement, the frequency domain response function of each body has to be re-
computed at every time step, and, consequently, the conversion of each Green’s function
back to the time domain also has to be redone at every time step. This results in an im-
practically slow IFI model. This restriction severely limits the applicability of boundary
elements for IFI as the floating bodies tend to undergo large relative motions since the
ice flows towards and around the floater.

Both of these issues can be overcome by simplifying the surface boundary condition
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that the Green’s function satisfies by assuming that the surface is flat. The main dis-
advantage of this assumption is that the Green’s function can no longer predict surface
waves and is, therefore, limited to fluid flow. The upside of this assumption is that it
results in a frequency-independent stiffness matrix. Because of this, the interaction be-
tween the bodies is instantaneous and, consequently, results in a set of algebraic equa-
tions that must be solved at each time step. This approach was used by [115, 136, 137].
If small displacements are assumed then this set only has to be solved once. This as-
sumption, therefore, makes it easier to incorporate fluid flow into existing time domain
models of IFI which only include hydrostatics.

Independently of whether the entire fluid domain is discretized or whether the bound-
ary element method is employed, the calculation time of the IFI model will drastically
increase unless severe limitations are imposed, namely the omission of surface waves.
Moreover, the complexity and calculation time of the IFI model will increase signifi-
cantly and incorporating hydrodynamics can be a challenge all by itself, independently
of which approach is used. It can be surmised that these are the main reasons for the
limited number of hydrodynamic models and the prevalence of hydrostatic models.

2.3. ADVANCED FLUID MODELS

One approach to overcome the aforementioned limitations of hydrodynamic IFI models
is to use advanced fluid models based on Smooth Particle Hydrodynamics (SPH), Lattice
Boltzmann Method (LBM), Large Eddy Simulation (LES), Reynolds-averaged Navier–Stokes
(RANS), or a similar method that can model fluid effects such as turbulence, viscosity,
and large displacement. These approaches are becoming more and more accessible with
the advent of faster CPUs and GPUs. These methods are common in other fields but have
only been used a limited number of times in IFI.

Gagnon [142] studied the impact of an iceberg and a plate-like structure using the
Arbitrary Lagrangian–Eulerian (ALE) formulation that is offered by LS-Dyna. The pre-
dictions of the model agreed reasonably well with experimental data. In another study
by the same author, the impact between an iceberg and a loaded tanker is investigated
[143].

A Multi-Material Arbitrary Lagrangian Eulerian (MMALE) formulation was used to
model viscous, incompressible flow by Sang-gab and Tuo [144]. The model was used to
study the ice resistance experienced by a vessel advancing through level ice. Bihs et al.
[145] proposed a model wherein the Reynolds-Averaged Navier-Stokes (RANS) equations
are solved for the flow. Using this model, the roll motions of a barge are modeled. The
predictions show a good agreement with experimental data.

A free surface flow solver based on the Lattice Boltzmann method was proposed by
Mierke et al. [146] and was used to model a ship advancing through pack ice. The fluid
model is coupled to an ODE solver that resolves the time integration of the rigid bodies
(the vessel and the floes). The model appears to be under development as the details
regarding the interaction between the ice and floater are rather limited. An update on
the developments is presented in Janßen et al. [76]. This report shows preliminary results
of a vessel interacting with nearby ice floes. While this IFI model includes an advanced
fluid model, the assumption of rigid bodies for the ice floes limits its applicability.
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2.4. EXPERIMENTAL STUDIES
With all four types of numerical IFI models covered, experimental studies on IFI are re-
viewed next, with a focus on the interaction with sloping structures. The purpose of this
section is to identify datasets that can be used for the validation of the numerical ISI
models that are proposed in Chs. 4 and 5 and to give a brief overview of the relevant
experimental findings.

When looking at the contact-based interaction between ice floes and sloping struc-
tures, the geometry of the sloping floaters plays an important role. In 3D, the principle
structure types for floaters that are sloping are ship-shaped and conical structures while
in 2D most sloping structures can be idealized to an inclined line, i.e. a slope. As most
of the findings related to the interaction with slopes also apply to the interaction with
ship-shaped and conical structures, these will be reviewed first.

2.4.1. ICE-SLOPE INTERACTION
To the author’s knowledge, only very few studies have reported on experiments related to
a 2D interaction with a slope. As the numerical model that is proposed in Ch. 4 addresses
the interaction with a slope in 2D, the possibility of using these studies for the validation
of this model will be discussed next.

A series of experiments were performed by Valanto to investigate the icebreaking cy-
cle in 2D [130, 147, 148]. During these experiments, a downward sloping structure that
was shaped like an icebreaker was pushed into sheets of ice using a towing carriage. Two
slits were already cut into the ice, ensuring a true 2D experiment. Several observations
were made. First, the initial peak in the contact force that is related to the initial impact
was mainly caused by the inertia of the ice and the fluid. From this, it was concluded that
hydrodynamics plays an important role, even at low velocities. Second, after the ice and
fluid have reached their steady-state, the contact force decreased to the level needed to
keep the ice piece rotating. This stage is governed by buoyancy, ventilation and the dy-
namic fluid pressure field around the hull of the advancing vessel. During the third and
last stage, the rotating piece of ice impacts against the hull, ejecting any fluid that previ-
ously flowed on top of it. This results in a second peak in the contact force. Valanto [130]
presents two graphs that can be used for validation, namely the maximum contact force
as a function of velocity and the breaking length as a function of velocity. The former
shows that the maximum force increases with velocity and the latter that the breaking
length decreases with velocity.

Sørensen [120] performed experiments in 2D on the bending failure of level ice. Ex-
periments were done using both model ice and artificial ice. The latter set of tests is not
discussed. In this study, a sheet of level ice was pushed against an upward sloping struc-
ture. Since the ice sheet was wider than the structure, the interaction with the structure’s
sides resulted in two parallel slits being cut into the ice sheet and the resulting slab was
then pushed up the slope. Consequently, the failure process was slightly different than
a true 2D scenario, as was considered by, for instance, Valanto. It was observed that the
failure force increase with increasing velocity. The horizontal force was found to increase
with an increasing slope angle and friction coefficient while the vertical force was found
to be insensitive to these two parameters. The breaking length of the ice was found to
increase with an increase in slope angle and friction coefficient and decrease with an
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increase in velocity. As this set of experiments did not have precut slits, there may have
been 3D effects related to the shearing of the ice that have affected the measurements.
Consequently, the data set by Valanto is more suited for validation as it does not suffer
from this possible issue.

Aksnes [149] performed 2D measurements on a downward-sloping structure. The
structure was pushed into the ice using a towing carriage. The goal of the experiment
was to create a synthetic semi-empirical ice force formulations. Unfortunately, very little
measurement data is presented, making this set of experiments not usable for validation.

Experiments on the 2D interaction between level ice and a downward slope that tran-
sitions into a vertical wall were performed by Lu [41, 150]. It was found that the ice rubble
gives a large contribution to the mean vertical load experienced by the structure and that
the loading at the waterline gives the largest contribution to the maximum vertical load
on the structure. Second, it was found that the ice load decreases gradually after the
ice fails in bending, rather than abruptly, due to the rotation of the broken off piece of
ice and the submerged rubble. The rubble exerts a pressure on the incoming ice sheet
due to its buoyancy which can lead to secondary bending failure of the ice, resulting in
rubble with dimensions of about three to eight times its thickness. Another series of ex-
periments that highlight the importance of rubble formation was performed by Timco
[151]. Unfortunately, none of these three papers contain data sets that can be used for
validation.

2.4.2. INTERACTION WITH SHIP-SHAPED STRUCTURES

The bulk of the experiments with ship-shaped structures focus on the ice resistance ex-
perienced by vessels advancing through ice or by vessels performing station keeping in
drifting ice [152–154]. In general, the interaction process with ship-shaped structures
is similar to the interaction with a slope discussed before. However, the 3D nature of
the interaction causes ice failure to generate cusps rather than slabs. Due to this dif-
ference and other qualitative differences in the interaction process, experiments on the
interaction with ship-shaped structures cannot be used for the validation of the numer-
ical models proposed in this thesis. A very detailed description of ice-ship interaction is
given in Valanto [132].

In general, the ice forces increase with an increase in ice thickness, flexural strength,
floe size, floe concentration, and velocity [155–158]. However, this last trend was not
observed by Kjerstad et al. [157] while studying the efficacy of a dynamic positioning in
broken ice, nor by Løset et al. [159] while assessing the performance of the submerged
turret loading concept. They first observed an increase and then a reduction in loading
as the velocity increases.

Several studies presented full-scale measurements of vessels advancing through ice.
A common approach is to instrument a section of the vessel’s bow with strain gauges and
infer the ice load through an FE model. This approach was used by Frederking [160] to
perform measurements during an icebreaking escort operation in the Gulf of St-Laurent
and their data does not show a clear relationship between velocity and contact force.
The method was also used by Leira et al. [161] to estimate the ice loads on the coast-
guard vessel KV Svalbard during the winters of 2007 and 2008 and they concluded that
the maximum peak load depends on the ice thickness. However, due to the low mass
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of the vessel, it decelerated during the interaction, making it difficult to correlate the ice
thickness with the ice action. Another approach to infer the ice loads is to use an in-
ertial measurement unit. This approach was used to infer ice load data of two Swedish
icebreakers, Oden and Frej, during a 2013 expedition offshore North-East Greenland.
The collected data was used by Scibilia et al. [59] and Lubbad et al. [86] to validate their
numerical codes. Full-scale data was used by Spencer and Jones [162] to identify an in-
crease in ice resistance due to a deteriorating hull of the icebreaker Terry Fox, resulting
in an increased hull-ice friction coefficient. This trend was used to recommend main-
tenance to the hull to reduce the friction. The hull-ice friction coefficient of the same
vessel was also identified by Wang and Jones [163] using a non-dimensional method.
Lastly, Kim et al. [164] reported on the performance of the icebreaker ARAON, including
full-scale data.

The effect of different heading on the interaction between a vessel and level ice was
studied by Zhou et al. [165] and the data set was later on used by Hu and Zhou [52]. The
tests showed that for a heading of 0◦, there was no rubble accumulation. For a heading
of 45◦ accumulated on the upstream side of the vessel and for 90◦ severe accumulation
was observed at low speeds and much less accumulation at high speeds. Similar obser-
vations were made by Izumiyama et al. [166] and Kjerstad et al. [157]. Metrikin et al. [167]
showed that a zero degree drift angle causes instability of a vessel on DP and that DP is
feasible for high oblique angles.

Model tests on lateral pressure experienced by ships were performed by Hinse et al.
[168]. It was found that the velocity has a significant impact on the resistance, with faster
velocities lowering the resistance. Lastly, a number of papers reported on experiments
executed to validate a numerical model and did not draw qualitative conclusions regard-
ing the experiments themselves [51, 67, 71, 169, 170].

2.4.3. INTERACTION WITH CONICAL STRUCTURES

The interaction between ice and a conical structure has much in common with the in-
teraction with a slope. For small diameter structures, the interaction is similar to that of
ship-shaped structures, with the resulting fracture patterns often modeled using wedge
beam models. For large diameter structures, often circumferential cracks are initiated
first that result in breaking off crescent-shaped pieces of ice. Their size depends on the
ice thickness, with thicker ice generating cracks that wrap up to 135◦ around the struc-
ture while thinner ice results in cracks that wrap 15-45◦ [171]. This type of failure oc-
curs more frequently in the central region than at the sides where the effective slope is
smaller [172]. If the slope of the conical structure transition into a vertical wall, the ice
is deflected backward, which results in an accumulation of ice rubble [93, 172]. As there
are many qualitative differences compared to the interaction with a slope, experimen-
tal data on the interaction with conical structures cannot be used for validation in this
thesis.

For upwards sloping cones many trends are explained by Lau et al. [173]. Bending
failure dominates at low velocities, low cone angles (10◦ to 60◦), low friction coefficients,
and low ice thickness. However, with an increase in friction, thickness, or cone angle the
failure mode gradually changes to shear or crushing. An increase in velocity causes the
same transition in failure mode but the transition occurs more abruptly. While thin ice
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fails with a breaking length that is slightly greater than the characteristic length, thicker
ice reduces the breaking length.

Tests on downward sloping cones were performed by Frederking and Schwarz [172].
It was observed that the horizontal force increases with velocity. However, the vertical
force rapidly increases up to about 0.3 m/s at which point it starts to decrease again. The
effect of vibrations of the cone on the ice loads was studied in the same work. It was
found that the loads decrease by up to up to 33% when the structure oscillates vertically,
with higher frequency resulting in lower loads, at least up to 2 Hz. Circular vibrations in
the plane of the fluid surface are even more effective, reducing the loads by up to 66%. In
[173] it was noted that at high velocities, the ice loads are higher for downward-sloping
structures as the rubble is subjected to drag and added mass as it pushed into the water
rather than into the air.

Model-scale experiments on the Kulluk were done by Matsuishi and Ettema [174].
Experiments on a similarly shaped floater are documented in Keijdener [171]. In both
studies, it was found that the floater maintains a constant offset and had a slight trim
angle but did not undergo cyclic motions. The global loads increased monotonically as
the rubble develops in front of the vessel. After the rubble reached its equilibrium size,
the mean loads remained steady. Matsuishi and Ettema [174] found a linear dependence
on the ice thickness while Keijdener [171] found a quadratic relation. However, the later
model had a gradually increasing effective slope, which meant that as the trim of the ves-
sel or the ice thickness increased, crushing become more dominant as a larger portion
of the interaction took place with a part of the hull with a steeper slope. The global loads
were found to be independent of the velocity by Matsuishi and Ettema [174] while Kei-
jdener [171] found that the loads increase with velocity. An analysis of full-scale of the
Kulluk data was done by Wright [175, 176].

2.5. SUMMARY
The review on IFI is summarized by going over the main findings of each of the four
categories of fluid models and those of the experimental studies.

First, the review of hydrostatic IFI models showed that there is a large diversity in
these models solely based on the capabilities of the ice model. It is also clear that the
more advanced ice models, in particular the elastic models, require significantly more
programming time.

Second, the review showed that most contact-based hydrodynamic studies focused
on the hydroelastic response of the ice and that the number of studies that considered
the contact-based interaction between ice and floater is very limited. While it has been
shown that hydrodynamics is a key component of ISI, there are still open questions re-
garding the effects it has on IFI such as whether the nonlinear term in the Bernoulli equa-
tion is important and how the temporal development of the contact force relates to the
velocity dependence of the breaking length. The review of studies on the fluid-based
interaction between ice and floater showed that existing studies focused on the inter-
action through fluid flow and did not consider the interaction through surface waves.
Therefore, not much is known about this type of interaction. Lastly, an assessment of
the difficulties associated with implementing hydrodynamics based on potential theory
gave a plausible explanation as to why most models still use hydrostatic fluid modeling.
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Third, the usage of advanced fluid models for IFI appears to be a recent trend as
the majority of models are still under development. Most of the proposed IFI models
are adaptions of previously developed fluid libraries, meaning their ice model are still
relatively simple compared to the fluid model. However, this category of models is very
promising and may be the future of IFI models.

Fourth, while effective models based on frequency-independent added mass coeffi-
cients have been used in several previous studies, currently no satisfactory effective fluid
model exists. Nevertheless, they are a promising approach for improving the adaption of
hydrodynamics in IFI since effective models do not suffer from the practical issues that
plague fluid models based on potential theory or one of the advanced methods.

Lastly, regarding the contact-based interaction, it is concluded that all experimental
data on the interaction with ship-shaped and conical structures cannot be used for the
validation of the numerical models to be proposed in this thesis as, despite a strong re-
semblance in observed interaction phenomenon, there are many qualitative differences.
The data set most suited for validation is the one by Valanto. This data set will be used
throughout this thesis for the validation of the numerical model that is proposed in Ch.
4.

2.6. CONCLUSIONS
Based on the literature review of IFI models, several conclusions can be drawn. First, a
simple comparison between the number of studies based on hydrostatic IFI models with
those based on hydrodynamic IFI models makes it clear that the majority of IFI research
is still being done with hydrostatic models. However, it is not clear for which range of pa-
rameters hydrostatic IFI models give valid predictions. Moreover, while it is known that
hydrodynamics plays an important role in IFI, there are still open questions and these
are addressed in Ch. 4 of this thesis. Lastly, the adoption of hydrodynamics in IFI is, in
the author’s opinion, mainly held back by practical issues, mainly by an increase in pro-
gramming time. Effective models offer a promising solution to this issue, but currently,
no such model exists. The formulation of an effective model is explained in this thesis
in Ch. 5. These conclusions substantiate the scope of this thesis as it was defined in Sec.
1.4.
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3
ICE-FLOATER INTERACTION

THROUGH SURFACE WAVES

When IFI is studied with a hydrostatic model, ice and structure can only interact with
each other through contact forces. This path of interaction is studied in Chs. 4 and 5.
However, when hydrodynamics is included, it opens up the possibility for the ice and
structure to interact through fluid flow and surface waves. While the interaction through
fluid flow has been studied in a series of recent papers [178–180], little is known about
the effect of surface waves on ice-floater interaction. This chapter aims to improve the
understanding of this type of interaction by answering two fundamental questions.

1) how is the frequency domain response of the floater that is excited by a sinusoidal
load affected by the presence of a flexible ice floe located in close proximity of the floater?
and 2) under which circumstances can the ice-floater coupling be neglected?

Additionally, a set of Green’s functions is derived in this chapter which is also required
to construct the ISI model that is introduced in Ch. 4.

Although no previous studies have focused on the effect of surface waves on IFI, a se-
ries of related problems have been solved in the field of ocean waves and sea-ice. Studied
were the wave propagation in and wave reflection from ice in order to better understand
the break up of ice in the marginal ice zone. A review of the earlier studies until 1995 is
given by Squire [181] and the subsequent two decades are reviewed in [182]. There is a
strong overlap with this research field regarding solution methods and physical phenom-
ena. The main findings of this field relevant to this chapter are briefly discussed below.
First, when ocean waves are at normal incidence to an ice edge, at low frequencies most
of the energy is transmitted into the ice floe while at high frequencies most of the energy
is fully reflected back into the open water, see Fox and Squire [183]. Second, for oblique
waves, a critical angle exists beyond which no waves propagate into the ice floe, see Fox
and Squire [184]. In both these studies the reflection by the draft of the ice floe was ig-
nored, an assumption of minor consequences as shown in, for instance, by Williams and

Parts of this chapter have been published in Cold Region Science and Technology Keijdener et al. [177].
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Squire [185]. Lastly, Chung and Linton [186] studied the effect of a gap between two ad-
jacent semi-infinite ice sheets. In this case, the reflection coefficient becomes periodic,
having a series of resonance peaks at regular intervals.

In the next section, the mathematical model adopted in this thesis is defined. After
this, the solution method is explained in Sec. 3.2 and 3.3. The results are then discussed
in Sec. 3.4 and conclusions and recommendations are given in Sec. 3.5. Since the prob-
lem is studied in the frequency domain, all equations and figures presented in this chap-
ter have already been transformed into that domain, denoted by a tilde above the field
variables. The Fourier transform that is used to relate the time and frequency domains
is given by Eq. (A.3). As the problem is in-plane, all parameters are defined per meter.

3.1. MODEL DESCRIPTION
The problem to be solved is depicted in Fig. 3.1. The floater is modeled as a rigid body
of length L that floats on the surface of the fluid layer of depth H . The thickness of
the floater is assumed to be negligible compared to the water depth. The ice floe is
present for x ≤−l . The goal is to determine the floater’s vertical motion W̃ (ω) and rota-
tional motion ϕ̃(ω) caused by the time harmonic force Fext(t ) = F̃ext(ω)eiωt and moment
Mext(t ) = M̃ext(ω)eiωt acting on it, while accounting for the presence of the ice floe.

Floater

Water

Ice

H

Ll∞ ∞

z

x

W (ω), Fext

φ(ω) Mext

w(x,ω)

Figure 3.1: The waves generated by the floater’s motion reflect at the ice-open water interface indicated by the
dashed line. The reflected waves exert a pressure on the floater, altering its response.

The model is assumed to be 2D, which implies that the out-of-plane dimension of
the floater is much bigger than the distance l between the ice floe and the floater. This
scenario may be representative of the heave and roll motions of barges, tabular icebergs
or large ice floes. The extension to 3D would allow for more accurate analysis of other
motion types, like pitch and yaw, and would lift the restriction on the out-of-plane di-
mension of the floater. The extension to embedded bodies (i.e., without ignoring the
draft) would enable the analysis of horizontal motions, such as surge and sway, and al-
low a more complex geometry of the floater to be considered. Although the response
in the presence of an ice floe will be quantitatively different for each floater, it is postu-
lated that the phenomena observed and understanding gained from this simple model
are applicable to a broad range of floaters.
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The floater is excited by two external loads. These push it against the fluid, which in
turn offers resistance to its motions. This interaction generates waves at the floater-fluid
interface and these waves propagate away from the floater as can be seen in Fig. 3.2 at
the right. Waves that propagate to the right, find no heterogeneity and therefore do not

ϕ(p)(x,z,ω)

P

W (ω), Fext

φ(ω) Mext

ϕ(-)(x,z,ω) ϕ(+)(x,z,ω)

w(x,ω)

Figure 3.2: Excitation of the floater generates waves (right image) which are party reflected and transmitted by
the ice floe (left image)

return to the floater. On the contrary, waves propagating to the left will encounter the ice
floe and will be partially transmitted and partially reflected at its edge located at x =−l ,
see the left part of Fig. 3.2. The response of the floater is affected by the reflected wave
field. The influence of the reflected waves on the floater’s response is the main subject
of this chapter. In the ensuing, the mathematical problem is formulated and in the next
section, the solution method is discussed.

3.1.1. FLOATER’S GOVERNING EQUATIONS

The loads acting on the floater are the external force F̃ext and moment M̃ext, and the
contact pressure P̃ (x) that acts along the interface with the fluid. Therefore, the equation
of motion of the floater can be written as:

−ω2
[

m 0
0 J

][
W̃
ϕ̃

]
=−

∫ L

0

[
P̃ (x,ω)

(x −Cx)P̃ (x,ω)

]
dx +

[
F̃ext

M̃ext

]
(3.1)

where m is the floater’s mass per meter, J its mass moment of inertia and Cx the x-
coordinate of its center of gravity. The integral on the right-hand side converts the dis-
tributed fluid pressure into an equivalent force and moment with respect to the center
of gravity of the floater.

The unknowns of this system of equations are the displacement W̃ , rotation ϕ̃ and
the contact pressure P̃ . On its own, the system is undetermined and must be coupled to
the fluid to relate the floater’s displacements with the resulting contact pressure P̃ . The
set of equations governing the fluid are described next.
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3.1.2. FLUID’S GOVERNING EQUATIONS
The fluid is assumed to be incompressible, inviscid and irrotational allowing it to be
described by the Laplace equation:

∇2φ̃= 0 ∀ x ∈ (−∞,∞) ∩ z ∈ (−H ,0) (3.2)

where parentheses denote an open interval and square brackets, in formulas to follow, a
closed one. The displacement potential φ̃(x, z,ω) is defined by:

~u =∇φ (3.3)

where ~u contains the horizontal and vertical displacement of the fluid. A displacement
potential (see for instance Jensen et al. [187]) is used as it results in a clearer and more
standard notation from a structural dynamics point of view.

The governing equation of the fluid must be accompanied by proper boundary con-
ditions in order for the system to be determined. At the lower boundary, z = −H , the
condition prevents penetration of the fluid into the seabed:

∂φ(x,−H , t )

∂z
= 0 ∀ x ∈ (−∞,∞) (3.4)

At the upper boundary, z = 0, the fluid pressure p̃ must balance with the external pres-
sure. The fluid pressure is calculated according to the linearized Bernoulli equation for
unsteady potential flow [188]:

p̃(x, z,ω) =−ρw

(
−ω2φ̃+ g

(
∂φ̃

∂z
+ z

))
(3.5)

where ρw is the fluid density and g is the gravitational constant. The first term in Eq.
(3.5) introduces linear hydrodynamic effects, whereas the second term is responsible for
the hydrostatic effects. The nonlinear hydrodynamic pressure term was removed by the
linearization.

The external surface pressure acting on the fluid surface is x-dependent. Under the
ice floe the fluid pressure must be equal to the pressure imposed by the dynamically
flexible ice floe which is modeled as a Kirchhoff-Love plate. Under the rigid floater, the
pressure is equal to the contact pressure P̃ that was defined in the previous subsection.
Outside these regions the pressure is zero as the atmospheric pressure is ignored. In this
way, the fluid pressure p̃ at z = 0 is:

p̃(x,0,ω) =


−ω2ρi Aw̃(x,ω)+Diw̃ ′′′′(x,ω) ∀ x ∈ (−∞,−l ]

0 ∀ x ∈ (−l ,0]

P̃ (x,ω) ∀ x ∈ (0,L]

0 ∀ x ∈ (L,∞)

(3.6)

where ρi is the density of the ice, h its thickness, w̃(x,ω) its transverse displacements and
the prime denotes a spatial derivative. The plate’s bending stiffness is given by Di = E(1−
ν2)−1h3(12)−1 where E is the ice’s Young’s modules and ν its Poisson ratio. Furthermore,
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four boundary conditions are required to solve the boundary value problem for the ice
plate. Two of them are related to the appropriate behavior at infinity, which means that
no energy propagates from infinity and that the plate’s deflection is bounded at infinity.
The other two are related to the stress-free edge of the ice (free of moments and shear
forces):

Di
∂2w̃(−l ,ω)

∂x2 = 0 (3.7a)

Di
∂3w̃(−l ,ω)

∂x3 = 0 (3.7b)

To ensure a continuity of vertical displacements of ice and fluid, the following kinematic
interface condition applies:

w̃(x,ω) = ∂φ̃(x,0,ω)

∂z
∀ x ∈ (−∞,−l ] (3.8)

A similar kinematic interface condition applies between floater and fluid. However,
since the floater is rigid, its rotation contributes to the vertical displacements and as
such has to be accounted for in the continuity condition:

W̃ (ω)+ (x −Cx)ϕ̃(ω) = ∂φ̃(x,0,ω)

∂z
∀ x ∈ (0,L] (3.9)

For convenience, the fluid is divided into two regions: the ice-covered region, x ≤−l ,
and the open water region, x >−l , see Fig. 3.1. In the open water region, two potentials
are used: φ̃(p) to capture the waves radiated by the floater and φ̃(+) to capture the waves
that are reflected by the ice. In the ice-covered region, a single potential φ̃(i,-) is used to
capture those radiated waves that are transmitted into the ice-covered region; all waves
in this region either propagate towards negative infinity or, in case of evanescent modes,
decay exponentially with the distance from the ice edge. The displacement potential of
the fluid φ̃ is thus composed of three potentials and their spatial dependence is:

φ̃(x, z,ω) =
{
φ̃(-)(x, z,ω) ∀ x ∈ (∞,−l ] ∩ z ∈ [−H ,0]

φ̃(p)(x, z,ω)+ φ̃(+)(x, z,ω) ∀ x ∈ (−l ,∞) ∩ z ∈ [−H ,0]
(3.10)

Based on this definition, the contact pressure P̃ (x) in Eq. (3.6) is accounted for by φ̃(p).
Consequently, φ̃(+) has to satisfy the pressure release condition at its surface, i.e. for all
x >−l . However, while satisfying the kinematic interface condition between floater and
fluid, Eq. (3.8), the summation of both potentials has to be used because both contribute
to the vertical displacements at the water surface.

To ensure compatibility and continuity between the two regions, two extra interface
conditions need to be satisfied along the full extent of the vertical interface x =−l :

φ̃(-)∣∣
x=−l =

(
φ̃(p) + φ̃(+))∣∣

x=−l ∀ z ∈ [−H ,0] (3.11a)

∂φ̃(-)

∂x

∣∣∣∣
x=−l

=
(
∂φ̃(p)

∂x
+ ∂φ̃(+)

∂x

)∣∣∣∣
x=−l

∀ z ∈ [−H ,0] (3.11b)

The first one assures continuity of fluid pressure while the second one assures continuity
of horizontal displacement.

The methodology used for solving the formulated problem is discussed next.
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3.2. DISCRETIZATION
An analytical solution to the problem as defined above is difficult because of the integral
in the floater’s equation of motion, Eq. (3.1), and the unknown spatial dependence of the
interface condition between floater and fluid, Eq. (3.9). To overcome this difficulty, both
equations are discretized, starting with the contact pressure. The discretization strategy
used in this chapter is similar to the boundary element method.

3.2.1. DISCRETIZATION OF THE CONTACT PRESSURE

The integral in Eq. (3.1) cannot be evaluated directly because the contact pressure P̃ (x)
is unknown. The pressure is distributed continuously between (0,L] and so can be seen
as working on infinitely many points. This condition is relaxed by approximating the
continuous pressure with a summation of elements. To illustrate the discretization pro-
cedure, Fig. 3.3 shows a fictitious continuous pressure profile, depicted by the dashed
line. This continues profile is approximated by the summation of NBEM elements, anal-

x = 0

2Δx

Pα(ω)

x = Lxα xN

P(x,ω)

BEM

Figure 3.3: The interfacial pressure P̃ is discretized using NBEM = 8 elements. Within each element α the
pressure is constant and proportional to P̃α.

ogous to a Riemann sum. These elements are indexed with α. For convenience, the
pressure is assumed invariant within each element. Increasing the number of elements
lets the approximation converge to the exact solution.

H

∞

z
x

∞ l

2Δx

Pα
Ice

xα

ϕ(p)
α

ϕ(-)
α

ϕ(+)
α

Figure 3.4: The generation of a transmitted potential φ̃(−)
α and reflected potential φ̃(+)

α due to the presence of
the ice.
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Fig. 3.4 shows the pressure exerted by a single element on the fluid. The pressure,
with complex amplitude P̃α, is applied within the domain of the element (x−

α , x+
α ] where

x−
α = xα −∆x and x+

α = xα +∆x. The elements are centered around xα = 2∆x(α− 1/2)
and have a width 2∆x. The surface pressure of each element excites the fluid, thereby
generating waves which are captured by the potential φ̃α. Since each element generates
its own set of waves, the total fluid response excited by the interface pressure P̃ is given
by the combined effect of all NBEM elements:

φ̃(x, z,ω) =
NBEM∑
α=1

φ̃α(x, z,ω) (3.12)

After discretization, the integrals over the hull of the floater in Eq. (3.1) can be evalu-
ated as: ∫ L

0
P̃ (x,ω) dx = 2∆x

NBEM∑
α=1

P̃α (3.13a)

∫ L

0
(x −Cx)P̃ (x,ω) dx = 2∆x

NBEM∑
α=1

rαP̃α (3.13b)

where rα = xα−Cx.
Approximating the continuous profile with the Riemann sum has reduced the num-

ber of unknowns to the NBEM unknown complex amplitudes P̃α. The goal is now to ob-
tain these amplitudes, allowing the interaction problem to be solved. Doing this requires
the fluid response generated by each element: φ̃α. These potentials are introduced after
the discretization of the interface condition.

3.2.2. DISCRETIZATION OF THE KINEMATIC FLOATER-FLUID INTERFACE CON-
DITION

The second equation that has to be discretized is the interface condition between floater
and fluid, Eq. (3.9). Just like the contact pressure, the interface condition also applies
continuously in the interval (0,L]. Discretizing the interface condition will result in a
finite number of conditions that need to be satisfied.

The discretization of the contact pressure introduced NBEM unknowns. To make the
problem solvable, the floater-fluid interface condition is discretized into the same num-
ber of elements. This is done by enforcing an equivalent interface condition within the
domain of each element. There are multiple ways to do this. In this chapter, the average
vertical displacement (AVD) within each element is matched to the AVD of the floater
within the element’s domain. Using this strategy, the interface condition in Eq. (3.9) is
replaced by the following set of NBEM equations, indexed with β:

1

2∆x

∫ x+
β

x−
β

(
W̃ + (x −Cx)ϕ̃

)
dx = (3.14)

1

2∆x

∫ x+
β

x−
β

∂φ̃(x,0,ω)

∂z
dx = w̃β ∀ β= 1 . . NBEM (3.15)
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where x−
β
= xβ−∆x, x+

β
= xβ+∆x and the symbol w̃β is given to the fluid’s AVD within

element β. Due to the discretization of the pressure, the fluid response φ̃ is given by the
superimposed response of all elements (see Eq. (3.12)) and so the interface condition
becomes:

W̃ + rβϕ̃= 1

2∆x

NBEM∑
α=1

∫ x+
β

x−
β

∂φ̃α(x,0,ω)

∂z
dx =

NBEM∑
α=1

w̃α,β ∀ β= 1 . . NBEM (3.16)

where the integral on the left hand side in Eq. (3.14) resulted in the arm rβ = xβ−Cx and
the symbol w̃α,β designates the contribution of element α to the AVD within element β.

In the next section, the discretized problem is solved and the floater’s response is
obtained.

3.3. SOLVING THE PROBLEM
The discretization performed in the previous section resulted in NBEM discrete poten-
tials φ̃α, each one capturing the fluid response generated by the surface pressure of the
corresponding element α as depicted in Fig. 3.4. The next step in solving the problem is
to find an expression for each φ̃α.

3.3.1. FLUID RESPONSE DUE TO DIFFERENTIAL SURFACE PRESSURE
The reflection and transmission processes described before also occur when the waves
generated by each element arrive at the ice edge and so each φ̃α also consists of three
potentials:

φ̃α =
{
φ̃(-)
α ∀ x ∈ (∞,−l ] ∩ z ∈ [−H ,0]

φ̃
(p)
α + φ̃(+)

α ∀ x ∈ (−l ,∞) ∩ z ∈ [−H ,0]
(3.17)

Since φ̃(p)
α captures the waves radiated by the surface pressure of element α, φ̃(+)

α has to
satisfy the pressure release condition in the whole region x ∈ (−l ,∞). The three poten-
tials are depicted in Fig. 3.4. Finding φ̃α therefore implies finding its three constituents.

The final form of φ̃(p)
α and φ̃(+)

α is presented next. Their derivations can be found in App.
A. The expression for φ̃(-)

α is not presented here as it is not needed, but its derivation can
be found in the App. A.2.

The final expression for φ̃(p)
α is shown below. The full derivation can be found in App.

A.1 with the substitution P (+)
GF = P̃α.

φ̃
(p)
α (x, z,ω) =− P̃α

ρwg

Nk∑
n=0

γnQ−1
n Iα,n(x)Zn(z) ∀ x ∈ (−l ,∞) ∩ z ∈ [−H ,0] (3.18)

where γn is:

γn =
{

1/2, if n = 0

1, if n > 0
(3.19)

Qn is given by:

Qn = (
ω2/g −kn tanh(kn H)

)−kn
(
kn H sech2(kn H)+ tanh(kn H)

)
(3.20)
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The x-dependence is given by Iα,n(x):

Iα,n(x) = sgn
(
x −x+

α

)
eikn |x−x+

α |− sgn
(
x −x−

α

)
eikn |x−x−

α | (3.21)

The depth eigenfunction Zn(z) that assures that the solution satisfies the Laplace equa-
tion and the boundary condition at the seabed is given by:

Zn(z) = cosh(kn(z +H))

cosh(kn H)
(3.22)

The summation is taken over the kn wavenumbers that satisfy the dispersion relation of
the open water region:

ω2/g −k tanh(kH) = 0 (3.23)

kn is defined as:

• k0: 0

• k1: the negative real pole

• kn ∀ n ≥ 2: the positive imaginary poles in ascending order

It is important to note that the sum in Eq. (3.18) is taken over Nk modes. In actual fact,
there are infinitely many modes which satisfy the equations governing φ̃(p)

α but this infi-
nite set was truncated at Nk for practical reasons.

Next, the general solution for φ̃(+)
α is presented. Within the domain of definition of

this potential, x >−l , the surface boundary condition in Eq. (3.6) simplifies to the pres-
sure release condition, i.e. p̃(x,0,ω) = 0 (the external forcing from the pressure element

has already been accounted for by φ̃(p)
α ). The solution, based on Eq. A.43a, is:

φ̃(+)
α (x, z,ω) =

Nk∑
n=1

aα,neikn (x+l )Zn(z) ∀ x ∈ [−l ,∞) ∩ z ∈ [−H ,0] (3.24)

where all amplitudes aα,n are unknown. It is important to note that φ̃(+)
α sums over the

same modes as φ̃(p)
α , albeit with different amplitudes, as both potentials satisfy the same

surface boundary conditions and consequently the same dispersion relation.
The last step is to resolve the interface condition at x = −l . This is done using the

eigenfunction matching method [189] which is performed in A.3. During this process,
expressions are found for the unknown amplitudes aα,n and these amplitudes become
proportional to the unknown P̃α’s.

The response of the fluid due to each pressure element, including the effects of the
ice, has now been obtained in the form of φ̃α. The only remaining unknowns are the
P̃α’s and the floater’s response. The only remaining equations still to be satisfied are the
interface between floater and fluid, Eq. (3.9), and the floater’s equation of motion, Eq.
(3.1). The remaining unknowns are found in the next subsection.



3

50 3. ICE-FLOATER INTERACTION THROUGH SURFACE WAVES

3.3.2. RESOLVING THE FLOATER-FLUID INTERFACE

Now that an expression has been found for φ̃α, the floater-fluid interface condition can
be satisfied. This results in an expression for each P̃α. The last step is then to solve
the equation of motion of the floater, thereby obtaining the response of the floater and
concluding the derivation.

The floater-fluid interface condition was discretized in Eq. (3.14). This equation
states that the fluid’s averaged vertical displacement (AVD) within element β’s domain,
i.e. w̃β, should be equal to the floater’s AVD within the same domain. As the fluid re-
sponse is given by the combined effect of all elements, see Eq. (3.12), the contribution of
each element α to the AVD of each interfacial element β is needed, see Eq. (3.16):

w̃β =
NBEM∑
α=1

w̃α,β ∀ β= 1 . . NBEM (3.25)

To find an expression for w̃α,β, the integral in Eq. (3.16) has to be evaluated. Because
the floater is always located to the right of the ice floe, φ̃α in eq. 3.17 reduces to the

summation of φ̃(p)
α and φ̃(+)

α while satisfying the floater-fluid interface. Substituting this
into Eq. (3.16) gives:

w̃α,β = w̃ (p)
α,β+ w̃ (+)

α,β =
1

2∆x

∫ x+
β

x−
β

(
∂φ̃

(p)
α

∂z
+ ∂φ̃(+)

α

∂z

)∣∣∣∣∣
z=0

dx (3.26)

where x−
β
= xβ−∆x, x+

β
= xβ+∆x. w̃ (p)

α,β is given by (see Eq. (A.65)):

w̃ (p)
α,β =− P̃α

ρwg

1

2∆x

Nk∑
n=0

γnQ−1
n Iα,β,nλn (3.27)

where Iα,β,n = ∫ x+
β

x−
β

Iα,n(x)dx (see Eq. (A.63)) and λn = Z ′
n(0) = kn tanh(kn H). w̃ (+)

α,β is

given by (see Eq. (A.66)):

w̃ (+)
α,β =

1

∆x

Nk∑
n=1

an sinh(ikn∆x)eikn (xβ+l )λn (3.28)

As w̃α,β scales linearly with P̃α, P̃α can be factored out to give:

w̃β =
NBEM∑
α=1

w̃ (p)
α,β+ w̃ (+)

α,β =
NBEM∑
α=1

(
Λ̃

(p)
α,β+ Λ̃(+)

α,β

)
P̃α ∀ β= 1 . . NBEM (3.29)

All NBEM equations are now combined into a matrix equation:

w̃ = (
Λ̃(p) + Λ̃(+)) P̃ = Λ̃P̃ (3.30)

where w̃ and P̃ are NBEM ×1 vectors containing the AVD and pressure of each element
and Λ̃(p), Λ̃(+) and Λ̃ are NBEM ×NBEM matrices relating the two.

The interface condition given in Eq. (3.16) can be written in a matrix form:

1W̃ + rϕ̃= w̃ (3.31)
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where 1 and r are NBEM×1 vectors, the former filled with 1’s and the latter containing all
NBEM arms rβ. Combining this equation with Eq. (3.30) and solving for P̃ one obtains a
dependence between the contact pressure and the motions:

P̃ = Λ̃−1(1W̃ + rϕ̃) = κ̃W̃ + κ̃ϕϕ̃ (3.32)

where the NBEM×1 vectors κ̃ and κ̃ϕ represent the frequency dependent effective heave
and pitch stiffnesses of the fluid layer.

The last step in obtaining the coupled response is to solve Eq. (3.32) together with
the equation of motion of the floater. This is done in the next subsection.

3.3.3. FLOATER’S RESPONSE

Now that a relation between the amplitudes P̃α and the floater’s motions has been found,
the equations of motion of the floater can be solved. The integrals in the equation of
motion (Eq. (3.2)) were evaluated in Eqs. (3.13) which can be rewritten in matrix form:

2∆x

NBEM∑
α=1

P̃α = 2∆x(P̃ ·1) (3.33a)

2∆x

NBEM∑
α=1

P̃αrα = 2∆x(P̃ · r) (3.33b)

where · represent the dot product. Substituting these solutions into the equation of mo-
tion of the floater (Eq. (3.1)) yields:

−ω2
[

m 0
0 J

][
W̃
ϕ̃

]
= 2∆x

[
P̃ ·1
P̃ · r

]
+

[
F̃ext

M̃ext

]
(3.34)

Rewriting the interaction forces in terms of the effective stiffnesses introduced in Eq.
(3.32) gives:

−ω2
[

m 0
0 J

][
W̃
ϕ̃

]
= 2∆x

[
κ̃ ·1 κ̃ϕ ·1
κ̃ · r κ̃ϕ · r

][
W̃
ϕ̃

]
+

[
F̃ext

M̃ext

]
(3.35)

Solving this set of equations for the unknown amplitudes results in the frequency re-
sponse function of the heave and rotational motion:.

[
W̃
ϕ̃

]
=

(
−ω2

[
m 0
0 J

]
−2∆x

[
κ̃ ·1 κ̃ϕ ·1
κ̃ · r κ̃ϕ · r

])−1 [
F̃ext

M̃ext

]
(3.36)

The obtained frequency response function includes both the effect of the immediate
fluid response through Λ̃(p) and the effect of the waves reflected by the ice through Λ̃(+),
see Eq. (3.30). By replacing Λ̃ by Λ̃(p) in Eq (3.32), the ice effect can be removed and the
response of the floater in open water can be obtained. This allows for easy comparison
between the cases when ice is present and when it is not. In the next section, the effect
of the level ice on the floater’s response is studied by comparing these two cases.
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3.4. RESULTS
The goal of this chapter is to study the changes in the frequency domain response of the
floater due to the presence of the level ice. In this section, these changes are studied by
comparing the floater’s response in the presence of level ice with its response in open
water. The difference between the two scenarios will be referred to as the ice effect.

The frequency response matrix (given by Eq. (3.36)) is complex-valued and frequency
dependent. It contains information on both the amplitude of the floater’s vibration and
the phase lag of the floater’s response with respect to the harmonic loading. In this chap-
ter, only the amplitude of the response is studied.

As the ice is only present on one side of the floater, the problem is not symmetric
with respect to the floater. The reflected waves only come from the left side and therefore
exert an asymmetric pressure on the floater that integrates to a non-zero moment. This
implies that even if the floater is only excited in heave, after some time the reflected
waves will also cause a rotational motion. The ice thus couples the heave and rotational
motion of the floater.

The floater is acted upon by two loads: an external vertical force F̃ext and moment
M̃ext. These loads excite the heave motion W̃ and rotation ϕ̃. Consequently, there are
three items to discuss; 1) the heave response due to the external force, given the symbol
W̃F , 2) the rotation due to the external moment, ϕ̃M and 3) the coupling terms W̃M = ϕ̃F .

For convenience, the magnitude of the loads is chosen such that the resulting quasi-
static responses of W̃F and ϕ̃M are of unit amplitude:

F̃ext = ρwg L → lim
ω→0

|W̃F | = 1 [m] (3.37a)

M̃ext = ρwg L3

12
→ lim

ω→0
|ϕ̃M | = 1 [rad] (3.37b)

For computing the results, the following parameters are used unless specified other-
wise: g = 9.81 m/s2, h = 1 m, ν = 0.3, ρi = 925 kg/m3, E = 5 GPa, H = 100 m, ρw = 1025
kg/m3, l = 15 m, Cx = L/2, m = 1E5 kg/m and L = 30 m. The thickness of the floater is
assumed to be negligible and so J = m/12L2. The default values of the environmental
parameters (h, ρi, E and H) were set to the mean values observed in nature. For the re-
maining parameters it is more difficult to set a default value. For this reason, parametric
studies are done to investigate their influence over a range that was deemed realistic.

Lastly, based on the convergence of the results, Nk = 1000 modes and the number of
elements NBEM is set to NBEM = ∆LL where ∆L is set to 4 elements per meter. Based on
numerical tests, it was established that this is sufficiently dense to guarantee a converged
response of the floater for the cases addressed in this chapter. Because an element den-
sity is used rather than a fixed number, the error is independent of L and so the numer-
ical error remains of constant order of magnitude when performing sensitivity study on
L.

First, the floater’s response is studied to the force and then to the moment.

3.4.1. EXCITATION BY AN EXTERNAL FORCE

The amplitudes of the heave W̃F and rotational ϕ̃F motion induced by the harmonic
force F̃ext are shown in Fig. 3.5. The superscript i denotes the response of the floater
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Figure 3.5: The vertical lines are related to the recurrence rate of the peaks and is discussed later. ϕ̃o
F is zero as

the problem is symmetric when no ice is present.

in the presence of ice and the superscript o denotes its response in open water. The
difference between the two is due to the ice effect. The floater itself is symmetric and so
ϕ̃o

F is zero for all frequencies when no ice is present.
Two things stand out when looking at this figure: 1) below a certain frequency, the

ice has a negligible effect and 2) above this frequency, the ice has a significant effect and
results in a series of resonance peaks. These observations are explained sequentially.

No ice effect at low frequencies The reason for the floater to remain unaffected at low
frequencies lies in the reflection and transmission of the waves incident to the ice edge.
Fox and Squire [183] concluded that when waves are at normal incidence to the ice edge,
at low frequencies nearly all energy is transmitted into the sheet and almost fully re-
flected back into the sea at high frequencies.

A corresponding type of behavior can also be seen in Fig. 3.5. Below a frequency of
roughly 0.5 [rad/s] almost no waves are reflected and, consequently, the floater is not
affected by the ice. The frequency at which the ice effect becomes perceptible is defined
as the onset frequencyΩof. Ωof is defined as the frequency at which the reflection coeffi-
cient of the incoming propagating surface wave first exceeds 1%. The evanescent modes
decay very rapidly in space and so their effect on the response of the floater is assumed
to be negligible. Because of this, only the propagating surface wave is considered. This
is indeed the same definition of the reflection coefficient as given in [183].

Of all the environmental parameters in this model, only the ice thickness, its Young’s
modulus and the water depth have a large natural variance. Fig. 3.6 shows that of these
three, only the ice thickness has a significant influence on Ωof. This behavior is consis-
tent with that found in [183]. The following power functions give an accurate fit of the
dependence ofΩof on the ice thickness for the two cases where H = 200 m:

ωof =
{

0.46898h−0.3811 −0.0531 if E = 5 GPa

0.4183h−0.3882 −0.0391 if E = 10 GPa
(3.38)

with an RMS of 0.0026 and 0.0017 [rad/s] respectively.
Two conclusions can be drawn related to Ωof. Firstly, up to Ωof the floater is un-

affected by the ice as seen in Fig. 3.5. This implies that if a floater has a low natural
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Figure 3.6: Ωof for a range of ice parameters.

frequency, most of its response occurs at frequencies below Ωof and, consequently, the
ice effect will be minimal. This is further enhanced by thin ice as this greatly increases
Ωof. Second, the ice effect is proportional to the amplitude of the floater’s vibration in
open water, see Fig. 3.5. If the amplitude of the floater’s response is small at frequencies
higher thanΩof, the ice effect will be small as well. Fig. 3.6 can thus be used to estimate
whether a particular floater is susceptible to ice effects based on its open water response.

It is important to note that the 2D nature of the model in combination with the sim-
plistic geometry of the floater mean that the above-formulated results should only be
viewed as a first step towards understanding the hydrodynamic coupling between ice
and floater through surface waves. It should also be noted that when the gap between
ice and floater becomes very small, evanescent modes might affect the response of the
floater which will affectΩof.

To conclude, Ωof, in combination with a floater’s open water response, can be used
to estimate the susceptibility of that floater to the ice effect. Only the ice thickness has a
significant effect onΩof.

The ice effect above the onset frequency In the frequency band above Ωof, the ice ef-
fect starts to have a pronounced effect on the response of the floater. The most interest-
ing effect is the appearance of the resonance peaks, see Fig. 3.5, at a series of frequencies.
The periodicity of these peaks is characterized by the following equation:

2l =λ1(ω) j ∀ j = 1 . . ∞ (3.39)

where λ1(ω) = 2π/|k1(ω)| is the wavelength of the propagating surface wave. The fre-
quencies that satisfy Eq. (3.39) are shown in Figs. 3.5 and 3.7 with the dotted vertical
lines.

Fig. 3.5 shows that there are well-defined frequency bands wherein the response is
altered by the reflected waves. When the floater oscillates, it loses energy in the form of
radiated waves and some of this energy is trapped in the gap between the floater and
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ice in the form of a standing wave. Within these frequency bands, the amount of energy
trapped is significantly increased due to the gap resonance.

These quasi-standing waves, of which the nodes oscillate slightly about the positions
that can be devised based on Eq. (3.39), are visualized in Fig. 3.7. The frequencies at
which the amplitudes of the waves increase coincide with the frequencies at which the
resonance amplification of the response is seen in Fig. 3.5. Standing waves are character-
ized by the quasi-sinusoidal patterns seen in Fig. 3.7 at some frequencies. Propagating
waves are characterized by a constant color in the same figure.
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Figure 3.7: The surface amplitude within the gap for different frequencies. White represents a small amplitude,
while black represents a large one.

In addition to the standing waves, the phasing of the reflected waves is also impor-
tant. When the reflected waves are in-phase with the vertical motions of the floater,
resonance occurs and the floater’s response increases. If the reflected waves are in anti-
phase with the floater, anti-resonance occurs and its response lowers.

The combined effect of standing waves and (anti-)resonance results in the alterations
seen in Fig. 3.5. When standing waves occur, the rotational motions are greatly amplified
because the standing waves occur only on one side of the floater and are thus asymmet-
ric in space, exerting a moment and causing the floater to rock. For the heave motions,
(anti-)resonance can be seen when the standing waves occur.

Influence of the floater’s mass The influence of the floater’s mass per meter on the
ice effect is studied next and is shown in Fig. 3.8. Although the range of masses shown
in the figure goes into the unphysical regime, as they would cause the floater to sink, it
is interesting to check what effect these high masses have. To reduce the ice effect to
a single value, the root mean squared (RMS) over the frequency range of [0,3] rad/s is
used.

Fig. 3.8 clearly shows that increasing the mass lowers the ice effect. As the mass of the
floater increases while the fluid pressure exerted by the reflected waves remain the same,
their overall influence on the response of the floater lowers. Increasing the mass reduces
the magnitude of the peaks but the frequencies at which they occur remain unaltered.
This is supported by Eq. (3.39).
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Figure 3.8: The effect of the floater’s mass on the ice effect.

Influence of the gap length The last parameter whose effect will be investigated herein
is the gap length l . The range that will be checked is [0,L]. The larger the ratio l/L, the
more important 3D effects become, making the results of this 2D model less accurate.
For this reason, an upper bound of l = L is used. Special attention is given to the case
when ice and floater are almost in contact, i.e. l → 0. Fig. 3.9 shows the influence of l on
the ice effect.
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Figure 3.9: The effect of the gap length l on the response with nearby ice. White is a large amplitude and black
a small.

Two things stand out in the figure. First, increasing l reduces the spacing between
the peaks and introduces more of them. This is consistent with Eq. (3.39). Second, the
floater’s response is affected by the ice when l = 0 as shown in Fig. 3.10.

Although no standing waves can occur at this gap length, the phasing of the reflected
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Figure 3.10: The main peak of the FDR is amplified when l = 0.

wave still results in (anti-)resonance. The resulting peak is slightly higher than the one
in open water and is shifted to a higher frequency.

With this, the analysis of the floater’s response excited by the harmonic force is con-
cluded.

3.4.2. EXCITATION BY AN EXTERNAL MOMENT
Next the response caused by the external moment is studied. Because the coupling terms
are the same (ϕ̃F = W̃M ) and since W̃M was already discussed, see Fig. 3.5, ϕ̃F will not be
discussed in this subsection. The analysis in this subsection is, therefore, limited to ϕ̃M .
ϕ̃M is shown in Fig. 3.11 using the default set of parameters.
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Figure 3.11: ϕ̃M for the default parameters.

ϕ̃M looks qualitatively the same as W̃F studied before. TheΩof is independent of the
floater so it also applies to excitation by the moment. The peaks and troughs are again
caused by the standing waves in combination with (anti-)resonance. For very small gap
lengths, the same effects occur as seen in Fig. 3.10. The behavior of ϕ̃M is qualitatively
the same as W̃F so no further studies are done.
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3.4.3. DISCUSSION
As this study is theoretical, a comparison with relevant model tests is desired. In particu-
lar, a critical look must be given to the assumption of linearity as model tests have shown
that nonlinearities can play an important role in this type of interaction.

Toffoli et al. [190], Nelli et al. [191] studied the interaction between a floating elas-
tic plate and incoming monochromatic waves in a two-dimensional wave basin experi-
mental campaign. During these experiments, it was observed that for steep waves wa-
ter can wash on top of the ice floes, a process called overwash [192]. Overwash acts
as an amplitude-dependent wave energy dissipation mechanism. A comparison be-
tween their theoretical model, also based on linear theory, and their experimental re-
sults show that the linear model correctly predicts the transmitted amplitudes for low
incident steepness. As the steepness increases, overwash starts to play an increasingly
important role and, consequently, the transmitted amplitudes are overpredicted.

As the model presented in this chapter is also linear, overwash is not accounted for.
Estimating whether it would occur is not possible because the magnitude of the external
loads are not based on a physical process and so no quantitative statements can be made
about the steepness of the waves. Despite this, some reservations are in order based
on the findings of the previously cited papers. Particularly, the amplified response of
the fluid within the gap at the resonance frequencies will be especially susceptible to
overwash. As overwash acts as a limiting mechanism on the amplitudes of these waves,
they might not reach the amplitudes predicted by the linear model. This, in turn, implies
that the amplification of the floater’s response at these frequencies will be lower than
those predicted as overwash dissipates energy.

Additionally, when overwash occurs, energy can shift to higher harmonics in the re-
flected wave field and cause it to ultimately become irregular all together [191, 192]. This
effect also disrupts the resonance build-ups observed in this chapter. The qualitative
results presented in this chapter are thus only valid for waves with a low steepness and,
consequently, for relatively small motions of the floater.

Lastly, [191] shows that significant drift of the ice plate can occur. Drift forces are not
included in the linear model presented in this chapter. As the body in this model repre-
sents a floater, it would normally have a station-keeping system that would counteract
these forces. In any case, the second order wave drift forces act additive to the first order
forces studied in this chapter and, consequently, the qualitative results on the effect of
the first order forces remain valid.

3.5. CONCLUSIONS
In this chapter, the effects of a nearby ice floe on the frequency domain response of a
floater was investigated. Once subjected to an external sinusoidal excitation, the floater
starts to generate waves that propagate away from it. Those waves falling on ice edge
are partly transmitted into the ice floe and partly reflected back towards the floater. The
reflected waves interact with the floater, altering its response. How the presence of the
ice floe affects the floater’s response, i.e. the ice effect, was studied in this chapter using
a 2D model. Based on the numerical results presented, the following conclusions can be
drawn.

Below a certain onset frequency the waves reflected by the ice floe are negligible and,
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consequently, the floater does not feel the presence of the ice floe. Above the onset fre-
quency, the ice effect is proportional to the response of the floater in open water. The
susceptibility of a floater to the ice effect can thus be estimated by checking how much
of its open water response occurs above or below the onset frequency.

Above the onset frequency, the waves reflected by the ice have a pronounced effect
on the response of the floater. In certain frequency ranges, quasi-standing waves can oc-
cur within the gap between ice floe and floater. Within these frequency ranges, of which
there are infinitely many, half the wavelength of the propagating surface wave of the wa-
ter layer is approximately an integer multiple of the gap length, causing the amplitude of
these standing waves to be greatly amplified. Increasing the gap length reduces the spac-
ing (in frequency) of these ranges, i.e. the spectral density of the resonance frequencies
increases

Within these ranges, the response of the floater is significantly altered. Depending
on the phasing between the reflected waves and the floater’s motions, resonance or anti-
resonance can occur. Even when there is no gap between ice and floater, the amplitude
of the floater can still be amplified and its natural frequency somewhat increased.

Ice thickness has a significant influence on the onset frequency, while the Young’s
modulus of the ice and the water depth do not. Lower thicknesses correspond to a higher
onset frequency. Increasing the mass of the floater reduces the ice effect.

Lastly, a set of Green’s functions were derived as part of this chapter. These functions
give the response of a semi-infinite sheet of ice floating on a fluid layer of finite depth.
The response of this system to three types of loading was considered, namely a point load
and moment acting on the edge of the ice sheet and a distributed vertical load acting
on either the surface of the ice or the fluid. This set of Green’s function is used in the
subsequent chapter to study the effects of hydrodynamics on ISI.
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4
THE EFFECT OF HYDRODYNAMICS

ON ICE-SLOPE INTERACTION

In this chapter, the effects of hydrodynamics on the bending failure of an ice floe due to
the interaction with a downward-sloping structure, i.e. the effects on ice-slope interac-
tion (ISI), is studied. This chapter has two goals. The first goal is to improve the under-
standing of the effects that hydrodynamics has on ISI and the second goal is to identify
the parameter ranges wherein the assumption of ignoring hydrodynamics is valid.

In order to achieve the first goal, three research question are specified that are ad-
dressed in this chapter. Firstly, the pressure of an ideal, incompressible fluid is given by
the Bernoulli equation. This nonlinear equation contains three terms but it is still un-
clear whether the nonlinear term that captures the dynamic pressure is important for
ISI. Likewise, the importance of various other factors, such as rotational inertia and axial
compression, has not been studied before. Therefore, the first goal is to determine the
factors of influence for ISI. Second, it is unclear how the various factors form a balance
and how hydrodynamics affects this balance. Studying the balance is the second goal.
Third, no detailed study has been done in the past on the relation between the contact
load and the breaking length and how hydrodynamics affects this relation. Elucidating
this relation is the last goal.

Answering these three questions requires two ISI models: a hydrodynamic ISI model
and a hydrostatic ISI model. The limitations of the hydrostatic IFI model are then readily
identified by assessing when the predictions of the hydrostatic model start to deviate
significantly from those of the hydrodynamic model. Based on this analysis, the second
goal of this chapter can be achieved.

This chapter is structured as follows. First, the two ISI models are introduced in Sec.
4.1 and validated in Sec. 4.2. Following this, the factors of influence for ISI are deter-
mined in Sec. 4.3.1. Thereafter, these factors are studied to determine how they form
a balance of forces in the ice in Sec. 4.3.2. Next, the influence of hydrodynamics on

Parts of this chapter have been published in Cold Region Science and Technology Keijdener et al. [193].
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the relation between contact load and breaking length is studied in Sec. 4.3.3. In order
to compare the predictions of the hydrodynamic model with those of the hydrostatic
model, all computations are done using both models. Results from the comparison are
used to identify the limitations of hydrostatic models in Sec. 4.3.4. The sensitivity of the
results to the choice of model parameters is assessed in Sec. 4.4. A discussion follows in
Sec. 4.5 and conclusions are given in Sec. 4.6.

4.1. MODEL DESCRIPTION
The studies to be done in this chapter require two ISI models. The hydrodynamic IFI
models will be referred to as MHD and the hydrostatic model as MHS. A sketch of MHD

is given in Fig. 4.1. MHS can be obtained from MHD by setting certain parameters, to be
specified later, to zero. The ice, located at x ≤ 0, is modeled as a semi-infinite Kirchhoff-

Water

Ice
H

∞ ∞

z

x

Structure

θ

V ice

Ice-covered Region Open water Region

Figure 4.1: A sketch of the 2D semi-analytical ISI model MHD that includes hydrodynamics. The region x ≤ 0
is referred to as the ice-covered region and the region x > 0 as the open water region.

Love plate that includes rotational inertia and axial compression. A semi-infinite plate
is used as this eliminates far field boundary effects and simplifies the model. The ice
floats on a fluid layer with depth H . As the ice is not present for x > 0, the fluid has a free
surface in this region.

It is assumed that the ice moves towards the structure with a constant horizontal ve-
locity Vice. The structure is assumed to be rigid (as the deformations of the floater are
negligible) and immovable to limit the dependency of the results on the parameters of
the floater. For the interaction with the fluid, the geometry of the structure is ignored.
Therefore, the structure does not affect the model of the fluid. The validity of this as-
sumption is assessed in Sec. 4.4.2. As the ice moves forward, it interacts with the struc-
ture, see Fig. 4.1. This interaction generates loads on the edge of the ice floe that cause it
to slide down along the structure until it fails in bending. For the interaction with the ice
floe, the structure is reduced to a sloping line passing through x = z = 0 with a hull angle
θ with respect to the x-axis.

In the next subsection, the mathematical model is described. Following this, the
solution method is explained.
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4.1.1. MATHEMATICAL MODEL
Fluid The fluid is assumed to be incompressible, inviscid and irrotational, i.e. incom-
pressible potential flow is adopted, and is therefore governed by the Laplace equation:

∆φ̇(x, z, t ) = 0 ∀ x ∈ (−∞,∞)∩ z ∈ (−H ,0) (4.1)

where φ(x, z, t ) is the displacement potential of the fluid [194], the dot denotes deriva-
tives with respect to time, round brackets denote an open interval while square brack-
ets, in the equations to follow, denote a closed interval. The boundary condition at the
seabed prevents penetration of the fluid into the seabed:

∂φ(x,−H , t )

∂z
= 0 ∀ x ∈ (−∞,∞) (4.2)

The fluid pressure is calculated according to the Bernoulli equation for unsteady, im-
compressible potential flow [195]:

p(x, z, t ) =−ρw

(
φ̈+ 1

2
v2 + g

∂φ

∂z

)
(4.3)

where p(x, z, t ) is the fluid pressure, ρw is the fluid density, g is the gravitational constant

and the squared fluid speed is given by v2 = (
∂φ̇/∂x

)2 + (
∂φ̇/∂z

)2
. The fluid pressure is

thus composed of three terms. From left to right these three terms will be referred to as
the linear hydrodynamic, nonlinear hydrodynamic, and hydrostatic pressure, abbrevi-
ated as pHD, pNLHD, and pHS respectively. The first two terms together comprise the hy-
drodynamic effect and, by disabling them, MHS is obtained. For x > 0, no ice is present
and therefore the pressure release condition is imposed. For x ≤ 0, the ice floe is present
at the surface of the fluid and so its surface boundary condition in this region contains
equation of motion of the plate. As the draft of the ice floe can be ignored, as was shown
by Williams and Squire [196], the boundary condition of the fluid can be formulated at
z = 0:

p(x,0, t ) =
{
ρihẅ +ρi

h3

12 ẅ ′′+Diw ′′′′+Fct,x(t , w, w ′, ẇ , ẇ ′)w ′′ ∀ x ∈ (−∞,0)

0 ∀ x ∈ (0,∞)
(4.4)

where ρi is the density of the ice floe, h its thickness, w(x, t ) its vertical displacement
and the prime denotes a spatial derivative. Di = E(1−ν2)−1h3(12)−1 is the floe’s bend-
ing stiffness, where E is the ice’s Young’s modulus and ν its Poisson ratio. Note that Di

aims to capture the bending behavior of the ice floe, including any variation of tem-
perature, stiffness or other property across its thickness, in an effective manner, similar
to what is done for functionally graded materials, see Kerr and Palmer [197]. This ap-
proach is assumed to be valid given that only very long wavelengths are excited in the
ice floe. Moreover, the ice is assumed to be linearly elastic with brittle failure since the
strain rate during ISI is sufficiently high [198]. The axial compression in the ice floe is
assumed to be constant in space and equal to the horizontal component of the contact
force Fct,x(t , w, w ′, ẇ , ẇ ′), see Fig. 4.2. These contact loads are calculated with the con-
tact model described in Keijdener and Metrikine [199]. This contact model is piecewise
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linear as it switches between two linear modes of interaction. As the moment of tran-
sition between the two modes is not known in advance, the contact model is nonlinear
in time. A qualitative description of the contact model is given in Sec. 4.3.3. Lastly, it is
assumed that water does not flood the submerged plate, i.e. that it remains ventilated
[200].

Water

Ice

Structure

Fct,x

Fct,z

Mct

Figure 4.2: The decomposition of the contact force Fct.

Ice As cavitation is not accounted for, continuity between ice and fluid dictates that
their vertical displacements must be the same along their interface:

w(x, t ) = ∂φ(x,0, t )

∂z
∀ x ∈ (∞,0] (4.5)

To complete the description of the ice floe, two boundary conditions are needed at x = 0.
The contact pressure generated by the interaction with the structure acts on the edge
of the plate. This pressure is integrated and translated to the neutral axis of the plate,
resulting in a horizontal force Fct,x, vertical force Fct,z and moment Mct, see Fig. 4.2.
These three loads are assumed to act on the edge of the plate and, therefore, enter its
boundary conditions located at x = 0. These boundary conditions enforce a balance of
forces and moments at the edge of the plate:

Di
∂3w(0, t )

∂x3 + (
Fct,x(t , w, w ′, ẇ , ẇ ′)w ′)∣∣

x=0 =
(
Fct,z(t , w, w ′, ẇ , ẇ ′)

)∣∣
x=0 (4.6a)

Di
∂2w(0, t )

∂x2 + (
Fct,x(t , w, w ′, ẇ , ẇ ′)w

)∣∣
x=0 =

(
Mct(t , w, w ′, ẇ , ẇ ′)

)∣∣
x=0 (4.6b)

where the first term in both equations is due to the bending stiffness of the plate and the
second term is due to axial compression. As the loads act on the edge of the plate, they
are per unit meter. The dependencies of the contact loads on the state of the edge of the
plate will be omitted in the remainder of this chapter for brevity.

The ice continues to slide down the structure until it fails in bending. Failure takes
place at the moment in time tfail when the maximum axial stresses in the ice first ex-
ceed the ice’s flexural strength σfl. Although axial deformations are not included in this
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model, the contribution of the axial force to the axial compression is included in the
failure criterion:

σmax(x, t ) =
∣∣∣∣ Eh

2(1−ν2)
w ′′(x, t )

∣∣∣∣− Fct,x

h
≤σfl (4.7)

where the max-subscript implies the maximum stress within the cross-section of the ice
floe.

4.1.2. SOLUTION METHOD
The approach used to solve the above-formulated dynamical problem is discussed next.
The problem is nonlinear due to (i) the nonlinear dynamic pressure in Eq. (4.3), (ii) the
state-dependent axial compression in the plate, Eq. (4.4), and (iii) the state-dependent
contact force and moment, Eqs. (4.6). The problem is solved using the framework of the
pseudo-force approach [201]. In accordance with this approach, the solution procedure
is based on the solution of the linear part of the problem, which is expressed in terms of
Green’s functions. The steps of the procedure are as follows. At each time step, the system
is assumed to be linear and the nonlinear components of MHD are accounted for by
means of pseudo forces. Basically, the nonlinear terms are moved to the right-hand side
of the equations of motion and the resulting implicit equations are solved in an iterative
manner. In order to deal with the distributed nonlinear loads (the dynamic pressure and
the axial compression), these are approximated by piecewise constant functions of the
spatial coordinate. The steps of the procedure are presented in detail below.

Green’s functions Three frequency domain Green’s functions are presented first, ne-
glecting all nonlinearities in the problem statement. These Green’s functions, computed
for the system and loads shown in Fig. 4.3, represent the response of the system to (i)
the force FGFδ(t ) applied at the edge of the plate, (ii) the moment MGFδ(t ) applied at the
edge of the plate, (iii) a uniformly distributed vertical force PGFδ(t ) applied to a segment
of the plate. The segment has a width of 2∆x and is centered around xα:

xα = 2∆x(α+1/2) (4.8)

where α identifies the location of the segment. The frequency domain response of the
system to all three loads is captured in a single fluid potential φ̃α(x, z,ω). The final form
of the potential was derived in Ch. 3 and is shown below. The complete derivation can
be found in App. A. Starting from Eq. (A.42), substituting l = 0 and using the fact that
α≤−1, the expression for φ̃α simplifies to:

φ̃α(x, z,ω) =
{
φ̃

(p)
α (x, z,ω)+ φ̃(-)

α (x, z,ω) ∀ x ∈ (−∞,0] ∩ z ∈ [−H ,0]

φ̃(+)
α (x, z,ω) ∀ x ∈ (0,∞) ∩ z ∈ [−H ,0]

(4.9)

where the superscripts have been renamed for clarity. The waves excited by the dis-

tributed force P (−)
GF δ(t ) are captured in φ̃

(p)
α . These waves are transmitted and reflected

by the inhomogeneity at x = 0, resulting in a second set of waves that propagate hori-
zontally away from x = 0. In addition, a third set of waves are generated by the contact
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H

∞

z

x

∞

P(-)
GFδ(t)

Ice

2Δx

xα

MGFδ(t)

Fluid

FGFδ(t)

Figure 4.3: The problem definition for φ̃α(x, z,ω) on which the three Green’s functions of the system are based.

loads FGFδ(t ) and MGFδ(t ) that also propagate away from x = 0. The waves of the second
and third set that propagate towards −∞ are captured in φ̃(-)

α while those propagating to-
wards +∞ are captured in φ̃(+)

α . As the response in the open-water region, x ∈ (0,∞), is
not needed for the analyses performed in this chapter, the expression of φ̃(+)

α is not pre-
sented here but can be found in App. A, see Eq. (A.43a).

The expressions for the two remaining potentials are given next, starting with φ̃
(p)
α .

The final form is presented below. For the complete derivation, see the equations leading
to Eq. (A.40).

φ̃
(p)
α (x, z,ω) =−P (−)

GF

ρwg

Nk+2∑
n=0

γnQ̄−1
n Īα,n(x)Z̄n(z) (4.10)

where the minus superscript of P (−)
GF = PGF indicates that the distributed vertical force

acts on the ice-covered region, the overbar differentiates terms related to the ice-covered
region from those related to the open water region and the infinite summation was trun-
cated at Nk +2. The solution is a superposition of the modes of the ice-covered region.
The shape of these modes is defined by the vertical wavenumbers k̄n of the system. The
wavenumbers are given by the roots of kD̄(k) = 0, where D̄(k) = 0 is the dispersion rela-
tion of the ice-covered region:

D̄(k) = δk4 +1−a(γ+λ−1(k)) (4.11)

where k is the wavenumber, a = ω2/g , ω is frequency, γ = hρi/ρw, δ = Di/(ρwg ) and
λ(k) = k tanh(kH). The roots are collected in the set k̄n which is defined as follows:

• k̄0 = 0,

• k̄1: the complex root in the first quadrant of D̄(k) = 0,

• k̄2: the complex root in the second quadrant of D̄(k) = 0,
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• k̄3: the negative real root of D̄(k) = 0,

• k̄n ∀ n ≥ 4: the positive imaginary roots of D̄(k) = 0 in ascending order.

Q̄n and γn in Eq. (4.10) are given by:

γn =
{

1/2, if n = 0

1, if n > 0
(4.12)

Q̄n = D̄n
(
2λ̄n +H(k̄2

n − λ̄2
n)

)+4δk̄4
nλ̄n +a

(
1+ H(k̄2

n − λ̄2
n)

λ̄n

)
(4.13)

where D̄n = D̄(k̄n) and λ̄n = λ(k̄n) = Z ′(k̄n ,0) = k̄n tanh(k̄n H). The depth eigenfunction
Z (k, z) is given by:

Z (k, z) = cosh(k(z +H))

cosh(kH)
(4.14)

The x-dependency of φ̃α is captured in Īα,n(x):

Īα,n(x) = sgn
(
x −x+

α

)
eik̄n |x−x+

α |− sgn
(
x −x−

α

)
eik̄n |x−x−

α | (4.15)

where x+
α = xα+∆x, x−

α = xα−∆x and i =p−1.
Continuing with the second potential, the final form of φ̃(-)

α (x, z,ω) is presented be-
low. For the full derivation, see the equations leading to Eq. (A.43b).

φ̃(-)
α (x, z,ω) =

Nk+2∑
n=1

āα,ne−ik̄n x Z̄n(z) (4.16)

The amplitudes āα,n are obtained by solving a set of Nk+2 equations defined below. The
set was established through the eigenfunction matching procedure performed in App.
A.3. The first two equations assure that the linearized version of the boundary conditions
for the plate in Eq. (4.6) are satisfied. The remaining set of Nk equations assure that the
fluid’s pressure and displacements are continuous for x = 0 ∩ z ∈ (−H ,0):

Nk+2∑
n=1

āα,n k̄2
nλ̄n =−MGF

Di
+ P (−)

GF

ρwg

Nk+2∑
n=1

Q̄−1
n k̄2

n Ī
′′
α,n(0)λ̄n (4.17a)

Nk+2∑
n=1

āα,nk3
nλ̄n = FGF

iDi
− P (−)

GF

ρwg

Nk+2∑
n=1

Q̄−1
n k̄3

n Ī
′′′
α,n(0)λ̄n (4.17b)

Nk+2∑
n=1

āα,n
λ̄n −λ j

k̄n −k j
=−P (−)

GF

ρwg

Nk+2∑
n=1

Q̄−1
n

(
k̄n Ī

′
α,n(0)−k j Iα,n(0)

) λ̄n −λ j

k̄2
n −k2

j

∀ j = 1 . . Nk (4.17c)

where the summations start at n = 1 because k̄0 does not contribute to the response at
x = 0, which also means that γn = 1. λ j =λ(k j ) and k j is the set of roots of the dispersion
relation of the open water region:

D(k) = a −λ(k) = 0 (4.18)

which is defined as:
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• k1: the negative real pole of D(k) = 0,

• k j ∀ j ≥ 2: the positive imaginary roots of D(k) = 0 in ascending order.

Discretization of the distributed nonlinear forces Two distributed nonlinear forces
act on the ice, see Eq. (4.4), namely the axial compression and the dynamic pressure
pNLHD (the second term on the right-hand side of Eq. (4.3)). The axial compression is
present ∀ x ∈ (−∞,0] while pNLHD is present ∀ x ∈ (−∞,∞). It is assumed that pNLHD

can be ignored in the open water region and, consequently, the distributed nonlinear
forces are only present in x ∈ (−∞,0]. This assumption is validated in Sec. 4.4.2. These
loads are discretized as sketched in Fig. 4.4. The magnitude of these nonlinear loads de-
creases with the distance from the contact point (x = 0). Therefore, only a finite length
segment of the ice adjacent to the contact is discretized. The truncation is done at

z

x
2Δx

LBEM

xα

Pα(t)

α = -NBEM
α = -1

Figure 4.4: The distributed nonlinear loads, depicted with the solid curve, are approximated using a piecewise
constant function. Note that ∀ x > 0 the dynamic pressure is not accounted for.

LBEM = c1lbr,s | c1 ≥ 1, where lbr,s is the static breaking length of the plate that corre-
sponds to the used contact model. lbr,s is derived in App. C and is given by:

lbr,s =
p

2l atan

( p
2lp

2l −h tan(α)

)
(4.19)

where l = 4
√

Di/(ρwg ). The resulting line segment of length LBEM is discretized into NBEM

elements, each with a width of 2∆x = LBEM/NBEM, see Fig. 4.4. Within each element
a constant, time-dependent distributed force Pα(t ) applies. The elements are indexed
with α = −NBEM . . −1 and are centered around xα, defined in Eq. (4.8). This discretiza-
tion assures that each element α corresponds with the excitation of the Green’s function
φ̃α by the vertical distributed force PGFδ(t ). How each element’s Pα(t ) is calculated is
explained after the time-integration scheme has been introduced.

Time-integration In order to perform the time-integration numerically, time is dis-
cretized using a constant time step ∆t. Within each time step, the loads acting on the
system, i.e. the pseudo-forces, are assumed to vary linearly with time. All the nonlinear
loads are thus approximated as piecewise linear functions of time, see Fig. 4.5. A state-
dependent load F (t , q(t )) that depends on the state q(t ) (displacement, velocity, etc.) is
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thus approximated as:

F (t , q(t )) ≈
Ntime∑
n̂=1

F̂n̂(t , qn̂)

=
Ntime∑
n̂=1

(
H(t − tn̂−1)−H(t − tn̂)

)(Fn̂(qn̂)−Fn̂−1(qn̂−1)

∆t
(t − tn̂−1)+Fn̂−1(qn̂−1)

)
(4.20)

where H(t ) is the Heaviside function, Ntime = Tsim/∆t is the total number of time steps
with Tsim being the simulation time, tn̂ = ∆tn̂ and all n̂-subscripts indicate evaluations
at tn̂ . The loading applied within time step n̂, F̂n̂(t , qn̂), is now decomposed into two

time [s]

Δt

Fo
rc

e 
[N

]

tn-1 tn

Fn-1

Fn

Figure 4.5: All loads are approximated as piecewise linear functions of time. The loading applied within time
step n̂, F̂n̂ , is highlighted.

t [s]

F
[N ]

Δt

Fn
Fn-1

FnFn-1

= +Δt
Δt

tntn tn

Figure 4.6: The loading applied within a single time-step F̂n̂ (t , qn̂ ) is decomposed into two parts: one propor-
tional to Fn̂−1 and the other proportional to Fn̂ .

parts, one proportional to Fn̂−1(qn̂−1) and one proportional to Fn̂(qn̂), see Fig. 4.6:

F̂n̂(t , qn̂) = Fn̂−1(qn̂−1)L̂n̂(t )+Fn̂(qn̂)R̂n̂(t ) (4.21)

where L̂n̂(t ) and R̂n̂(t ) are given by:

L̂n̂(t ) =(
H(t − tn̂−1)−H(t − tn̂)

)
Fn̂−1

(
1− t − tn̂−1

∆t

)
(4.22a)

R̂n̂(t ) =(
H(t − tn̂−1)−H(t − tn̂)

)
Fn̂

t − tn̂−1

∆t
(4.22b)
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The state q(t ) at t = tn̂ due to the loading applied within a single time step F̂n̂(t , qn̂) is
thus computed as:

qn̂ = Fn̂−1(qn̂−1)Ln̂ |n̂=0 +Fn̂(qn̂)Rn̂ |n̂=0 (4.23)

where Ln̂ and Rn̂ are given by the following inverse Fourier transforms (IFT):

Ln = 1

2π

∫ ∞

−∞
G̃(ω)L̃(ω)eiω∆tn dω (4.24a)

Rn = 1

2π

∫ ∞

−∞
G̃(ω)R̃(ω)eiω∆tn dω (4.24b)

and where G̃(ω) is the frequency domain Green’s function corresponding to the state q(t )
and the load F (t , q(t )), and L̃n̂(ω) and R̃n̂(ω) are given by:

L̃(ω) = 1

ω2∆t

(
eiω∆t (1− iω∆t)−1

)
(4.25a)

R̃(ω) = 1

ω2∆t

(
1+ iω∆t −eiω∆t

)
(4.25b)

The inverse Fourier transforms in Eqs. (4.24) are evaluated numerically using a quadratic,
nested, adaptive integration scheme. The scheme observes a global error criterion that
assures the time domain error of Ln and Rn is below a specified tolerances for all t ∈
[0,Tsim]. A detailed description of the scheme can be found in App. B.

Eq. (4.23) only accounts for the response to the loading that was applied during
the current time step. The state qn that is the response at t = tn = ∆tn due to the load
F (t , q(t )) that has acted on the system for all t ∈ [0, tn] is then approximated as:

qn ≈
n∑

n̂=1
Fn̂−1(qn̂−1)Ln−n̂ +Fn̂(qn̂)Rn−n̂ (4.26)

This implicit equation is solved at each time step and can be viewed as a discretized
convolution integral. The iterative scheme used will be explained next, but first Eq. (4.26)
is optimized to improve the computational speed and then generalized so it can account
for more state components and more pseudo forces.

Eq. (4.26) sums over two terms due to the decomposition visualized in Fig. 4.6. This
sum can be rewritten to improve the computation speed. Consider the response at the
second time step, n = 2:

q2 ≈
(
Fn̂−1(qn̂−1)Ln−n̂ +Fn̂(qn̂)Rn−n̂

)∣∣
n̂=1 +

(
Fn̂−1(qn̂−1)Ln−n̂ +Fn̂(qn̂)Rn−n̂

)∣∣
n̂=2

= (
F0(q0)L1 +F1(q1)R1

)+ (
F1(q1)L0 +F2(q2)R0

)
(4.27)

Collecting all the loading proportional to F0, F1 and F2 gives:

q2 ≈ F0(q0)L1 +F1(q1) (R1 +L0)+F2(q2)R0 (4.28)

Since causality dictates that the response comes after the load, L−1 = 0. By adding this
term to Eq. (4.28):

q2 ≈ F0(q0)L1 +F1(q1) (R1 +L0)+F2(q2)(R0 +L−1) (4.29)
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it can be rewritten into the following generalized form:

qn ≈ F0(q0)Ln−1 +
n∑

n̂=1
Fn̂(qn̂)Tn−n̂ (4.30)

where Tn is defined as (using Eqs. (4.24)):

Tn =Rn +Ln−1 = 1

2π

∫ ∞

−∞
G̃(ω)T̃ (ω)eiω∆tn dω (4.31)

and with T̃ defined as:

T̃ = 2

ω2∆t
(1− isin(ω∆t)) (4.32)

The advantage of Eq. (4.30) over Eq. (4.26) is that the addition has been removed, thereby
improving the computational speed. Moreover, if no loading is present at t = 0, the IFT
related to L does not have to be computed, which further improves the speed.

Eq. (4.30) only accounts for a single pseudo-force and, therefore, only a single non-
linear load F (t , q(t )), while the scheme has to be able to account for multiple nonlinear
loads. Likewise, only a single state-component q(t ) was considered while multiple are
needed. Now, let q(t ) be the state-vector of length Nq that contains all the required state-
components, the value of each state-component is then obtained by superimposing the
contributions of all pseudo-forces:

qn ≈
NF∑
i=1

F (i )
0 (q0)L(i )

n−1 +
n∑

n̂=1

NF∑
i=1

F (i )
n̂ (qn̂)T (i )

n−n̂ (4.33)

where i is the identifier of the pseudo-forces, NF is the total number of pseudo-forces,
L(i )

n and T (i )
n are based on Eq. (4.24) and Eq. (4.31) but now using the set of Nq Green’s

functions G̃i (ω) that contain the frequency domain response of each state-component
in qn excited by the i th pseudo-force.

In order to advance to the next time step, Eq. (4.33) is solved for qn . In agreement
with the pseudo-force approach, this is done using an iterative scheme. The scheme is
defined by the following recursive relation that starts at j = 0:

q[ j+1]
n ≈ q[0]

n +
NF∑
i=1

F (i )
n (q[ j ]

n )T (i )
0 (4.34)

where the state-vector q[0]
n contains the response at tn due to the loading at all previous

time steps:

q[0]
n =

NF∑
i=1

F (i )
0 (q0)L(i )

n−1 +
n−1∑
n̂=1

NF∑
i=1

F (i )
n̂ (qn̂)T (i )

n−n̂ (4.35)

The rate of convergence of this iterative scheme is T (i )
0 , see App. D. Iterations continue

until the specified tolerances are met for all entries of the state-vector qn . The scheme
converges in two to five iterations depending on the tolerances used. No convergence
problems were encountered while computing the results of this thesis.



4

72 4. THE EFFECT OF HYDRODYNAMICS ON ICE-SLOPE INTERACTION

Applying the time-integration scheme The time-integration scheme is now used to
calculate the time domain response of MHD as defined in Sec. 4.1.1.

ForMHD the set of pseudo-forces F (i )(t ,q(t )) contains a total of NF = NBEM+2 forces:

F (i )(t ) = Pα(t ) =− ρw

2

((
∂φ̇(−i )

∂x

)2

+
(
∂φ̇(−i )

∂z

)2)
+Fct,x

∂2w (−i )

∂x2

∀ i = 1 . . NBEM (4.36a)

F (NBEM+1)(t ) = Fct,z
∣∣

x=0 −
(
Fct,xw ′)∣∣

x=0 (4.36b)

F (NBEM+2)(t ) = Mct|x=0 −
(
Fct,xw

)∣∣
x=0 (4.36c)

where the superposition of the first NBEM pseudo-forces results in the piecewise approx-
imation of the nonlinear distributed forces, see Fig. 4.4, and the last two pseudo-forces
account for the state-dependent loading at the contact, see Eq. (4.6). Because the dis-
tributed forces vary within each element, a representative force must be used for each
element. This is computed using the average response within the i th element, indicated
with the superscript (i ).

The state-dependent pseudo-forces F (α)(t ,q(t )) depend on several state-component.
These are collected in the state-vector q(t ) of length Nq = 4+3NBEM:

q(t ) =
[

w, w ′, ẇ , ẇ ′,
∂φ̇(−NBEM)

∂x
. .
∂φ̇(−1)

∂x
, (4.37)

∂φ̇(−NBEM)

∂z
. .
∂φ̇(−1)

∂z
,
∂2w (−NBEM)

∂x2 . .
∂2w (−1)

∂x2

]T

where w , w ′, ẇ , and ẇ ′ are used to evaluate the pseudo-forces related to the contact

loads, see Eqs. (4.36b) and (4.36c), and the average responses ∂φ̇(β)

∂x , ∂φ̇(β)

∂z and ∂2w (β)

∂x2

are needed to evaluate the NBEM pseudo-forces related to the discretized nonlinear dis-
tributed forces, Eq. (4.36a).

All derivatives in q(t ) are computed using finite differences of the corresponding (av-
eraged) displacements. This is done because the IFT of the displacements converges
significantly faster than the IFT of the derivatives. In particular, for the velocities a back-
ward finite difference scheme is used. The order of the scheme starts at one and in-
creases up to four as tn increases. For the slope w ′ and for the curvature w ′′ a sec-
ond order central difference scheme is used. Using finite differences to compute the
derivatives increases the errors present in the displacements. Therefore, L(i )

n and T (i )
n

need to be computed using strict tolerances and ∆t and ∆x need to be sufficiently small.
Since all derivatives are computed using finite differences, these state-components no
longer have to be computed using the convolution that is embedded in Eq. (4.34). Con-
sequently, the following reduced state-vector of length N̂β is introduced that excludes
these state-components:

q̂(t ) =
[

w,
∂φ(−NBEM)

∂x
. .
∂φ(−1)

∂x
,
∂φ(−NBEM)

∂z
. .
∂φ(−1)

∂z

]T

(4.38)
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The full state-vector qn can then be computed from q̂n using the relevant finite differ-
ence relations. Eq. (4.34) is updated accordingly:

Starting at j = 0:

1. q[ j ]
n ≈D(q̂[ j ]

n , q̂[ j ]
n−1 . . q̂[ j ]

n−d ) (4.39a)

2. q̂[ j+1]
n ≈ q̂[0]

n +
NF∑
i=1

F (i )
n (q[ j ]

n )T (i )
0 (4.39b)

where the finite difference operator D computes q[ j ]
n based on the current as well as the

last d reduced state-vectors. d starts at 0 for n = 1 and increases up to 4 in order to
have enough data points to evaluate the fourth order finite difference scheme used for
computing the velocities.

For each state-component q(t ), the contribution of all pseudo-forces must be su-
perimposed. This means that a total of N̂β×NF frequency domain Green’s functions are
needed to relate all pseudo-forces in F (i )(t ,q(t )) with all state-components in q̂(t ). These
Green’s functions are based on φ̃α, given by Eq. (4.9):

G̃i (ω) =
[
φ̃−i (0,0,ω),

∂φ̃
(−NBEM)
−i (0,ω)

∂x
. .
∂φ̃(−1)

−i (0,ω)

∂x
,

∂φ̃
(−NBEM)
−i (0,ω)

∂z
. .
∂φ̃(−1)

−i (0,ω)

∂z

]T
∀ i = 1 . . NF (4.40)

φ̃α(x, z,ω) is a superposition of the response to three generalized forces: PGF, FGF and
MGF. For each specific value of i , only one of these three forces is activated, according to
the following definition:

for i = 1 . . NBEM, P (−)
GF = 1,FGF = 0, MGF = 0

for i = NBEM +1, P (−)
GF = 0,FGF = 1, MGF = 0 (4.41)

for i = NBEM +2, P (−)
GF = 0,FGF = 0, MGF = 1

and the Green’s function of the mean horizontal displacement of the fluid’s surface within
element β=−∞ . . 0 is computed using (see Eq. (A.55)):

∂φ̃
(β)
α (0,ω)

∂x
= 1

2∆x

∫ x+
β

x−
β

∂φ̃α(x,0,ω)

∂x
dx (4.42)

=− P (−)
GF

ρwg

1

2∆x

Nk+2∑
n=0

γnQ̄−1
n Ī ′α,β,n Z̄n(0)− i

∆x

Nk+2∑
n=1

āα,n sin(k̄n∆x)e−ik̄n xβ Z̄n(0)

where x−
β
= xβ−∆x, x+

β
= xβ+∆x and Ī ′

α,β,n is given by (see Eq. (A.57)):

Ī ′α,β,n =
∫ x+

β

x−
β

∂Ī ′α,n(x)

∂x
dx =

{
2sgn(β−α)(1−cos(2k̄n∆x))eik̄n |xβ−xα|, if β 6=α
0, if β=α (4.43)
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The Green’s function of the mean vertical displacement of both the ice and the fluid’s
surface within element β is computed using (see Eq. (A.62)):

∂φ̃
(β)
α (0,ω)

∂z
= 1

2∆x

∫ x+
β

x−
β

∂φ̃α(0,ω)

∂z
dx (4.44)

=− P (−)
GF

ρwg

1

2∆x

Nk+2∑
n=0

γnQ̄−1
n Īα,β,n Z̄

′
n(0)+ 1

∆x

Nk+2∑
n=1

āα,n
sin(k̄n∆x)

k̄n∆x
e−ik̄n xβ Z̄

′
n(0)

where Īα,β,n is given by (see Eq. (A.63)):

Īα,β,n =
∫ x+

β

x−
β

Iα,n(x)dx = −4

k̄n∆x

{
sin(∆xk̄n)ei∆xk̄n , if α=β
isin2(∆xk̄n)e2i∆xk̄n |α−β|, if α 6=β (4.45)

Employing the above-described procedure, the breaking length of the ice floe, which
is a key output the chapter focuses upon, is computed using cubic spline interpolation
of the axial stress of each element.

4.2. VALIDATION
The validation of the time-integration scheme is addressed first, followed by a validation
of MHD, the proposed hydrodynamic ISI model.

4.2.1. VALIDATION OF THE TIME-INTEGRATION SCHEME
In order to validate the time-integration scheme, the analytical time-domain solution of
a floating plate obtained by Zhao and Dempsey [202] is chosen as a benchmark. They
considered, in a 2D context, the response of an infinite ice floe floating on a finite depth
fluid layer to the load F (t ) = δ(x)H(t ). The ice floe is modeled as a Kirchhoff-Love plate,
the fluid is described by the Laplace equation and its pressure on the ice by the linearized
Bernoulli equation.

The approach presented in the current chapter was applied to the same model. The
following set of parameters was used for this validation case: h = 1 m, ρi = 925 kg/m3,
E = (10h)4ρwg /(h3/12) Pa, ν = 0.3, ρw = 1025 kg/m3, g = 9.81 m/s2, H = 4l where l =
4p
δ = 4

√
D/(ρwg ), NBEM = 40, 2∆x = 4l /NBEM, ∆t = 10−3 s and Nk = 500. The value of all

numerical parameters are based on extensive convergence studies.
Application of the procedure introduced in this chapter results in a single state-inde-

pendent pseudo-force: F (1)(t ) =H(t ). The state-vector q(t ) contains the response of the
plate as a function of x̄ = x/l with l defined in Eq. (4.19), at the values shown in Fig. 4.7.

The corresponding Green functions are approximated by taking φ̃(p)
α , given by Eq. (4.10),

letting ∆x approach zero and evaluating this function at the relevant values of x̄:

G̃(x̄,ω) = lim
∆x→0

φ̃
(p)
−1/2(x̄,0,ω) (4.46)

where the evaluation at α=−1/2 assures that the load is applied at x̄ = 0.
Fig. 2.a of Zhao and Dempsey [202] has been reproduced in Fig. 4.7. This figure

shows the time domain response of the plate at several locations and moments in time.
The figure shows that the results of both approaches agree very well.
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Figure 4.7: The normalized, transient, vertical response of the ice floe. The solid lines show the response of
the proposed model and the dashed lines are the results from Zhao and Dempsey [202]. The lines, from top to
bottom at x̄ = 0, are evaluations at τ = t

√
g /l = {0.25,1,2,8,6,4} respectively. The dotted line shows the static

response.

4.2.2. VALIDATION OF THE ISI MODEL
In order to validateMHD, its predictions are compared with the experimental work done
by Valanto [203]. In Valanto’s experimental campaign, the 2D interaction between level
ice and a downward-sloping plate was studied for a range of ice velocities. The mea-
surements of interest are the maximum horizontal contact force as a function of the ice
velocity Fmax(Vice) and the breaking length as a function of the ice velocity lbr(Vice).

In correspondence with the experiments, the following parameters were used in the
numerical procedure (see also [204]): h = 1/33.33 m, ρi = 916 kg/m3, ρw = 1025 kg/m3,
g = 9.81 m/s2, H = 1 m, E = 140× 106 Pa, ν = 0.3, σc = 11× 103 Pa, σfl = 25× 103 Pa,
ice-steel friction coefficient ξ= 0.1 [–], width b = 0.340 m, θ = 15◦ and Vice = [0,0.5] m/s.
NBEM = 60, c1 = 1.25, ∆t = 5×10−4 s and Nk = 250.

In the experimental setup of Valanto, the geometry of the icebreaker was accounted
for while in the proposed model it is not. To mimic the structure’s presence, a semi-
infinite problem is considered, see Fig. 4.8. This approach was also adopted by other
researchers who used this case for validation [203, 204]. All equations presented in Sec.
4.1 remain valid with one exception. The set of Nk equations Eq. (4.17c) that assures
the continuity of the fluid’s displacement and pressure at x = 0 has to be replaced by the
following set of equations:

Nk+2∑
n=1

−aα,nkn
λn − λ̄ j

kn − k̄ j
= PGF

ρwg

Nk+2∑
n=1

Q−1
n kn I

′
α,n(0)

λn − λ̄ j

k2
n − k̄2

j

∀ j = 1 . . Nk (4.47)

This set assures that the horizontal displacement of the fluid is zero at x = 0 ∩ z ∈ (−H ,0).

Breaking length In Fig. 4.9, the breaking length as a function of ice velocity lbr(Vice) as
predicted by the semi-infinite version of the proposed ISI model is compared with the
measurements by Valanto [203].
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Figure 4.8: For validation a semi-infinite model is considered.

Overall, the predictions of MHD agree well with the experimental data. At high ve-
locities, MHD predicts slightly smaller breaking lengths. A possible explanation for this
discrepancy could be that during the experiments the ice slab, which was 334 to 340
mm wide, had two slits running alongside it, each with a width of 5-8 mm. As fluid can
flow into these slits, their presence alleviates the build-up of fluid pressure under the ice.
This phenomenon is discussed in Valanto [203]. Reducing the hydrodynamic pressure
means that the ice experiences less resistance as it deflects downwards, thereby reduc-
ing the bending stresses generated. This, in turn, causes the ice to fail later during the
interaction process, thereby increasing the breaking length.
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Figure 4.9: The breaking length as a function of the ice velocity lbr(Vice). The crosses represent the experimen-
tal data. The curve shows the values predicted by the proposed model. The dotted line is the static breaking
length.

At low velocities, MHD predicts a velocity range wherein the ice fails statically. No
experiments were done in this range and so this phenomenon cannot be validated. The
transition from quasi-static to dynamic failure around 0.07 m/s in Fig. 4.9 is studied in
detail in the next section.
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Maximum horizontal contact force The maximum horizontal contact force Fmax(Vice)
as a function of ice velocity predicted by the proposed model is compared against the
experimental data by Valanto [203] in Fig. 4.10. At lower velocities, the Fmax predicted by
the proposed model agrees well with the measured ones but as the ice velocity increases,
the model increasingly underpredicts Fmax. A possible explanation for this could be that
the horizontal component of the fluid pressure due to the stationary flow around the hull
is not accounted for in the proposed model.
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Figure 4.10: Fmax for a range of ice velocities. The crosses show the experimental data. The values predicted
by the proposed model are shown by the curve. The dotted line is the static Fmax.

4.3. RESULTS
In this section, the results based on the predictions ofMHS andMHD are presented. The
focus is first placed on assessing the relative importance of the various forces that act
on the ice. Thereafter, the interdependence of the temporal development of the contact
force and the dependence of the breaking length on the ice velocity lbr is studied. Finally,
the limitations of MHS are addressed.

The results presented in this section have been computed using the following set
of full-scale parameters [205]: h = 1 m, ρi = 925 kg/m3, ρw = 1025 kg/m3, g = 9.81 m/s2,
H = 100 m, E = 5 GPa, ν= 0.3,σc = 600 kPa,σfl = 500 kPa, ice-steel friction coefficient ξ=
0.1 [–], hull angle θ = 45◦ and Vice = [0,0.5] m/s. The value of all numerical parameters
are based on extensive convergence studies and are: NBEM = 60, c1 = 1.25, ∆t = 10−3 s,
Nk = 250.

4.3.1. DETERMINING THE FACTORS OF INFLUENCE FOR ISI
In this model, there are a total of seven forces that affect the dynamic equilibrium of the
ice floe. The terms representing these forces together form the equation of motion of the
ice floe, Eq. (4.4), and are related to: the inertia of the ice floe, the rotational inertia of
the ice floe, bending of the ice floe, axial compression, hydrostatic pressure pHS, linear
hydrodynamic pressure pHD and nonlinear hydrodynamic pressure pNLHD.

In order to determine the relative importance of the above-mentioned forces, the
contribution of each of the seven terms to the balance of forces is studied. This is done
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by using the following measure:

R j =
∫ tfail

0

∫ 0
−LBEM

|p j (x,0, t )|dx dt∑7
i=1

∫ tfail
0

∫ 0
−LBEM

|pi (x,0, t )|dx dt
(4.48)

where i and j imply indexing over the seven terms listed before. The absolute magnitude
of each term is averaged in both space, for x ∈ [−LBEM,0], and in time, starting from t = 0
until the ice fails in bending at t = tfail. This average contribution is then normalized,
thereby characterizing the significance of each term relative to all the other terms. The
left graph in Fig. 4.11 shows the relative importance R j of each of the seven terms.
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Figure 4.11: The relative importance R j of all seven terms. Left: MHD. Right: MHS. The vertical dotted
lines indicate the transition velocity Vs→d that separates the quasi-static and dynamic interactions. Vs→d is
discussed in detail in Sec. 4.3.3.

The pressure that the fluid exerts on the ice floe is described by three terms forming
the right-hand side of Eq. (4.3). The hydrodynamic component of this pressure is given
by two of these terms: pHD = −ρwφ̈ and pNLHD = −ρw

1
2 v2. The left graph in Fig. 4.11

shows that the relative importance of pNLHD is about thousand times smaller than the
relative importance of pHD. All of the hydrodynamic effects can thus be attributed to
pHD. From this, it can be concluded that pNLHD is not a factor of influence for ISI. Since
pNLHD incurs a significant calculation cost, it is ignored in the remainder of this thesis.

Of the four terms related to the internal forces in the ice floe, two have a marginal
contribution, namely; the rotational inertia of the ice floe and the axial compression.
The insignificance of rotational inertia was also found previously by Fox and Squire [206]
when studying the transmission of surface waves into a semi-infinite ice sheet. These
two terms are also ignored in the remainder of this chapter.

Based on these findings, it can be concluded that of the seven terms studied, only
four terms are important for ISI. Listed in the order of importance, the factors of influ-
ence for ISI are thus: bending of the ice floe, the linear hydrodynamic pressure pHD, the
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hydrostatic pressure pHS and the inertia of the ice floe. This confirms the qualitative
findings by Valanto [203].

4.3.2. BALANCE OF FORCES IN THE ICE FLOE

Four factors of significant influence were identified in the previous subsection. It is still
to understand, however, how these four terms form a balance of forces in the ice floe
and how hydrodynamics affects the balance. The balance of forces is first studied by
reexamining the relative importance in Fig. 4.11. Thereafter, the variation of the balance
in space and time is studied.

Balance of forces: averages. The left graph in Fig. 4.11 was computed with MHD while
the graph on the right was computed with MHS that was obtained by disabling pHD and
pNLHD. The dotted vertical lines indicate the transition velocity Vs→d. Interactions with
an ice velocity Vice < Vs→d are classified as quasi-static while those with Vice > Vs→d are
classified as dynamic. The transition velocity Vs→d is studied in Sec. 4.3.3.

First, consider MHD shown in the left graph. At the ice velocity Vice = 0, the balance
is mainly between bending and pHS. As Vice increases, the importance of pHS quickly
reduces while the importance of pHD, i.e. the inertia of the fluid, increases. In the dy-
namic regime, the balance is mainly between pHD and bending. Together they account
for nearly the complete force balance. The inertia of the ice plays only a minor role,
contributing 10% or less with its maximum contribution at high velocities.

Next, consider the predictions of MHS shown on the right. Although the graph ap-
pears different, the trends are in fact similar. At low velocities, bending is again balanced
by pHS and at high velocities, it is again balanced by inertia. However, as the inertia of the
fluid is not accounted for, bending is now balanced by the inertia of the ice floe. In ad-
dition, the transition from quasi-static to dynamic interaction occurs at a much higher
velocity, V HD

s→d = 0.275 m/s while V HS
s→d = 0.07 m/s. From this, it can be concluded that

pHD adds a significant amount of inertia to the ice.

Balance of forces: temporal and spatial variation. The balance of pressure is studied
again but now as a function of space and time. In the previous subsection, two nonlinear
terms, namely pNLHD and axial compression, were found to be insignificant. The only re-
maining nonlinearity is the contact model, which is piecewise linear in time. Despite the
presence of the latter nonlinearity, all four significant forces show to be almost perfectly
proportional to the ice velocity. This property was also taken advantage of by Wang and
Poh [204] with their Rapid Analysis Strategy.

The proportionality of the four significant forces to the ice velocity allows them to be
visualized for a range of ice velocities in a single figure. This is done in Fig. 4.12, which
shows the dependence of the normalized by the ice velocity forces on time. For each ice
velocity, the graphs are valid until the time tfail at which failure of the ice occurs. The
relation between tfail and the ice velocity is shown in Fig. 4.13.

The response of MHD is shown in Fig. 4.12 on the left. Initially, the balance is be-
tween bending and inertia. The inertia of the fluid contributes significantly more, up to
ten times as much as the inertia of the ice. This minor contribution of the ice’s inertia was
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Figure 4.12: The four important factors that act on the ice floe at three locations, normalized by the ice velocity.
A zero-line and the static bending pressure are included for reference with the dotted sloped lines. The vertical
loosely dotted lines indicate the failure time tfail at the following ice velocities (from left to right): 0.5, 0.2, 0.1,
0.08, 0.07 and 0.06 m/s.

also observed by other authors [203, 207, 208]. pHS does not contribute during the tran-
sient phase of the interaction and is only relevant in the steady-state regime, in which the
normalized forces increase quasi-linearly in time. It is interesting to note that the bend-
ing stresses have a local maximum in the transient interaction phase. The maximum
is followed by a local minimum as the system transitions into the steady-state regime.
Similarly, pHD also peaks during the transient interaction phase and then slowly decays
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Figure 4.13: The failure time tfail of both models. The vertical dotted lines indicate the transition velocity Vs→d.

back to zero, indicating that the action pHD is of the added damping type. This was also
observed by Zhao and Dempsey [202]. This effective damping is due to the energy being
radiated in the form of flexural-gravity waves.

Comparing the graphs of MHS (the right part of Fig. 4.12) and MHD one can observe
markedly different behavior. Although the graphs of MHS contain some noise intro-
duced at the transient phase of the interaction, the trends are very clear. The transient
phase of MHD lasts significantly longer and the bending stresses experienced during
this phase are also much larger. Both effects imply that pHD adds a significant amount
of inertia to the ice. The drop in the bending stress after the peak is also more abrupt for
MHS.

Lastly, two observations can be made from the times of failure tfail of both models
shown in Fig. 4.13. Firstly, as Vice increases, the duration of the interaction decreases,
meaning that the role of the transient interaction phase becomes more and more sig-
nificant as the ice velocity increases. This is in agreement with the trends seen in Fig.
4.11. Second, as the bending stresses generated during the transient interaction phase
are much lower for MHS, even at high ice velocities the ice fails statically.

4.3.3. THE RELATION BETWEEN CONTACT FORCE AND BREAKING LENGTH

Understanding the relation between the temporal development of the contact force Fct(t )
and velocity-dependence of the breaking length lbr(Vice) requires a thorough understand-
ing of the evolution of the contact force and the interaction process. Because of this,
a detailed study on the temporal development of the contact force is carried out first.
Following this, the effect of hydrodynamics on the contact force Fct is studied. Lastly,
lbr(Vice) is studied as well as how it is related to the contact force and how it is affected
by hydrodynamics.

The temporal development of the contact force. A typical profile of the contact force
Fct(t ) is shown in Fig. 4.14. This figure shows two transitions, depicted by the dashed
vertical lines. At these transitions, the contact model switches between its two modes.
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In the crushing mode Mcr the ice crushes at the contact with the floater and in the sliding
mode Msl the ice slides along the hull of the floater without crushing:

Fct(t ) =
{
σc Act(t ) when crushing (Mcr)

σct(t )A∗
ct when sliding (Msl)

(4.49)

where Fct(t ) =
√

(Fct,x(t ))2 + (Fct,z(t ))2, σc is the representative crushing strength of the
ice, Act(t ) is the variable contact area between ice and floater in the crushing mode,
σct(t ) is the variable contact stress while sliding and A∗

ct is the fixed contact area in slid-
ing.

tc→s ts→c tss tfail

Mcr Msl Mcr

Time

F
ct

&
W

o
rk

Fct

Work

Figure 4.14: An illustration of how the contact force Fct, depicted with the solid curve, develops during a typical
interaction. The work done by the contact force is shown by the dashed curve. Both signals are normalized.
The contact force based on a static equilibrium is depicted with the dotted diagonal line. The dashed vertical
lines delimit the two modes of the contact model.

tc→s ts→c tss tfail

0

V⊥(∞)

V⊥(0)
Mcr Msl Mcr

Time

Figure 4.15: The speed at which the ice penetrates into the structure Vpen(t ) during a typical interaction. The
steady-state penetration speed Vpen(∞) and a zero line are included for reference. The dashed vertical lines
delimit the two modes of the contact model.

At the start of the interaction, the contact area is very small which means that even a
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relatively small contact force causes crushing of the ice. During the transient interaction
phase t ∈ [0, tc→s], a large amount of work has to be performed to align the ice’s tip-
velocity with the structure’s hull. This work is performed by the contact force during this
transient phase and results in a peak in the force prior to tc→s (see Fig. 4.14). Therefore,
most of this work transfers to the kinetic energy in both ice floe and fluid. Starting from
tc→s, the floe’s edge velocity has aligned itself with the structure and the required work
drops. Consequently, the contact force drops as well. After this moment in time, most of
the work done by the contact force is used to increase the potential energy of the ice and
fluid, namely by increasing the curvature of the ice floe (bending) and by increasing the
hydrostatic draft of the ice floe.

The alignment of the floe’s edge velocity with the structure is illustrated in Fig. 4.15.
This figure shows the normal to the structure component V⊥(t ) of the velocity of the edge
of the ice floe. The interaction begins with V⊥(t ) that is dictated by the initial conditions:
V⊥(0) = Vice sin(θ). Immediately after, V⊥(t ) experiences a rapid drop and reaches zero
at tc→s as can be seen in Fig. 4.14. At this moment, the contact force starts to decrease
and, consequently, the contact model experiences transition into the sliding mode Msl.
While in this mode, the contact area remains constant at A∗

ct = Act(tc→s) and the con-
tact stress σct(t ) becomes variable: σct(t ) ∈ [0,σc). σct(t ) is ideally computed using La-
grangian Multipliers but this approach gave numerical issues. To avoid these, a very stiff
contact spring was used to approximate a rigid contact. This finite stiffness results in
V⊥(t ) becoming slightly negative just after tc→s.

The contact model remains in Msl until σct(t ) =σc. This happens at ts→c and results
in a second transient stage. After this, the ice transitions into the steady-state regime. It
is important to note that V⊥(t ) converges to a constant value rather than to zero. This is
because the contact force has to continue to grow in order to balance with the increasing
bending and hydrostatic forces, as shown in Fig. 4.14.

Hydrodynamic influence on the contact force. Fig. 4.16 shows a comparison between
the contact force Fct predicted by MHS and MHD. On the left, Fct(t ) of both models is
shown and on the right V⊥(t ).

Both graphs show that hydrodynamics greatly increases the resistance provided by
the water against the bending of the ice floe. Analyzing the contact force shown in Fig.
4.16 on the left, this is apparent in two ways. Firstly, the force peak during the transient
interaction phase is greatly increased by hydrodynamics, which is indicative of increased
inertia. Second, the ensuing transition to the steady-state equilibrium is much slower
for MHD, which is indicative of increased damping. Both effects can also be observed in
Figs. 4.11 and 4.12.

Looking at V⊥(t ) on the right in the same figure, similar conclusions can be drawn.
V⊥ of MHS overshoots the static equilibrium and predicts sliding (Msl regime) for t ∈
[0.18,0.57] s. V⊥ of MHD changes much slower, again indicative of increased inertia and
never enters Msl. Within MHD, V⊥ does overshoot V⊥(∞) but does so only a little. This
is similar to a system with significant, but less than critical, damping. This is in stark
contrast to MHS that exhibits a lightly damped response.

To conclude, hydrodynamics adds a significant amount of resistance to the ice floe
in the form of added mass and damping. This increases the contact force during the
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Figure 4.16: Fct(t ) (left) and V⊥(t ) (right) forMHS (dashed) andMHD (solid). The dotted line on the left shows
the static contact force. On the right a zero line and V⊥(∞) are included for reference. Vice was set to 0.05 m/s
for this figure.

transient interaction phase and results in a highly damped behavior of the ice floe.

The relation between breaking length and contact force. Next, the breaking length
as a function of ice velocity lbr(Vice) is analyzed in order to understand its relationship
with the temporal development of the contact force Fct(t ) studied previously. Special
attention is again given to the effect of hydrodynamics on this relation. lbr(Vice) is shown
in Fig. 4.17 for both MHD and MHS.
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Figure 4.17: lbr(Vice) as predicted by both models. lbr,s = lbr(0) was computed using Eq. (4.19). The dotted
vertical lines indicate Vs→d of each model.

Fig. 4.17 reveals three interesting features. Firstly, it is clear that for both models
lbr(Vice) behaves distinctly different at lower and higher ice velocities. The transition
between the two regimes occurs at the transition velocity Vs→d, indicated in Fig. 4.17
for each model with the vertical dotted line. Second, the figure shows that V HD

s→d is much

smaller than V HS
s→d. Lastly, the breaking length of both models changes very abruptly at

velocities close to the transition velocity Vs→d. These three features are explained next.
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Firstly, in order to understand the existence of the two regimes, consider that the
initial peaks in the contact forces of both models, as seen in Fig. 4.16 on the left, are
caused by the initial impact between ice and structure. The magnitude of both peaks
scales with the ice velocity Vice. Therefore, it makes sense for a certain ice velocity Vs→d

to exist, above which the impact is so strong that the ice fails during the transient inter-
action phase, i.e. for tfail < tc→s. These interactions, for which Vice > Vs→d, are classified
as dynamic. The magnitude of the peak in the contact force continues to grow as Vice

increases, which causes the ice to fail earlier and closer to the contact point. This can be
observed in Figs. 4.13 and 4.17 for both models.

Alternatively, if the impact is not strong enough, the ice will survive the peak force
that occurs during the transient stage of the interaction (t < tc→s in Fig. 4.14). This
occurs if Vice <Vs→d. In this regime, the ice will fail with a breaking length that is approx-
imately equal to the static breaking length lbr,s.

Second, it is important to note that V HD
s→d is much lower than V HS

s→d. The left graph in
Fig. 4.16 shows that the initial peak in the contact force of MHD is significantly larger
than the same peak of MHS for any given ice velocity due to the inertia of the fluid.
Consequently, MHD predicts dynamic failure of the ice at much lower ice velocities.
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Figure 4.18: The axial stress due to bending of MHS normalized by the flexural yield stress σfl as a function of
time at four locations. For this figure Vice = 0.06 m/s. The vertical loosely dotted lines indicate the failure time
tfail at the following ice velocities (from left to right): 0.5, 0.2, 0.1, 0.08, 0.07 and 0.06 m/s.

Lastly, the breaking length of both models changes abruptly at ice velocities close to
the transition velocity Vs→d, i.e. while transitioning from the quasi-static to the dynamic
regime. This behavior will first be explained for MHS. Fig. 4.14, which corresponds to
MHS, and the left graph of Fig. 4.16 both show that, for t ∈ [tc→s, ts→c], the contact force
is lower than during the transient interaction phase (t ∈ [0, tc→s]). The reduction of the
contact force during this relaxation period results in a similar drop in the axial stress due
to bending (the contribution of the axial compression in Eq. (4.7) is negligible), see Fig.
4.18. During the relaxation period, the ice cannot fail as the maximum bending moment
in the ice is lower than experienced previously. Consequently, if the ice survives the tran-
sient interaction phase, the duration of the interaction will increase by approximately
the duration of the relaxation period. This behavior can be observed in Fig. 4.13 as a
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jump in the failure time tfail around V HS
s→d. Fig. 4.18 shows that after the relaxation period

the stresses in the ice are very close to their steady-state values. Because of this, the ice
will fail with a breaking length that is very close to the static one. Therefore, whether the
ice survives the transient interaction phase has a drastic effect on the breaking length
of MHS. This behavior is also reflected in Fig. 4.17 as the breaking length decreases
abruptly by about four meters at V HS

s→d.
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Figure 4.19: The axial stress of MHD normalized by the flexural yield stress σfl as a function of time at four
locations. For this figure Vice = 0.05 m/s. The vertical dotted lines indicate the failure time tfail at the following
ice velocities (from left to right): 0.5, 0.2, 0.1, 0.08, 0.07, 0.06 and 0.05 m/s.

The abrupt behavior of the breaking length at ice velocities close to V HD
s→d is analyzed

next. Fig. 4.19 shows that the stresses predicted by MHD always increase in time. How-
ever, between approximately 0.5 and 1.5 seconds, the stresses grow at a very slow pace.
This corresponds to the period wherein 0 < V⊥(t ) < V⊥(∞) in Fig. 4.16 on the right. The
reduced growth rate of the contact force makes it easier for the ice to survive this quasi-
relaxation period. This is reflected in Fig. 4.13 by the rapid reduction failure time around
Vs→d and in Fig. 4.17 by the rapid decrease of the breaking length after Vs→d. Note that,
since the axial stress is always increasing, there is no jump in the failure time of MHD,
i.e. it is a smooth function.

4.3.4. LIMITATION OF THE HYDROSTATIC MODEL
Based on the above discussion, it is clear that the results of MHD and MHS start to differ,
both qualitatively and quantitatively, when Vice ≈ V HD

s→d. The difference remains signif-
icant for all higher ice velocities. The two main characteristics of ice-slope interaction,
namely lbr(Vice) and Fmax(Vice), as predicted by both models, are compared in order to
assess the validity range of MHS.

First, MHS starts to predict the breaking lengths wrongly at Vice ≈ 0.6V HD
s→d, see Fig.

4.17. With the parameter set used, V HD
s→d is approximately 0.0725 m/s and so MHS cor-

rectly predicts the breaking length up to approximately 0.05 m/s. For interactions with
a higher ice velocity, the relative error in the predicted breaking length can be as much
as 100%. Second, Fmax(Vice) of both models is compared in Fig. 4.20. The predictions of
both models again start to deviate around 0.6V HD

s→d with the relative error increasing up
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to 40%.
From these two comparisons it can be concluded that if MHS is used to predict lbr

or Fmax, the range of ice velocities wherein the predictions are valid is very limited. An
approximate upper bound for the maximum ice velocity of MHS is 0.6V HD

s→d.
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Figure 4.20: Fmax(Vice) of both models. The static force is included for reference as is depicted with the dotted
horizontal line.

4.4. SENSITIVITY STUDY
The sensitivity of the results to changes in the parameter set is studied next. The focus is
mainly on how the transition velocity Vs→d is affected by these changes as the applica-
bility of MHS is directly linked to Vs→d. The parameters that have a large variance are the
ice thickness h, Young’s modulus E , flexural strength σfl, crushing strength, σc the water
depth H and the hull angle θ. The effect of the semi-infinite model in Fig. 4.8 is also
studied. Lastly, the sensitivity of the model to the number of modes Nmodes is studied.

The default values for the transition velocity Vs→d are: V HD
s→d = 0.0725 m/s and V HS

s→d =
0.275 m/s.

4.4.1. VARIATIONS IN PHYSICAL PARAMETERS
Ice thickness. Halving h to 0.5 m causes MHS to be in the sliding mode Msl for a total
of 0.2 s (compared to 0.45 s for MHS) and reduces V HD

s→d to 0.065 m/s. Doubling h to 2 m

increases V HD
s→d to 0.08 m/s.

Young’s modulus. Vs→d is relatively sensitive to changes in E . Halving E to 2.5×109 Pa
increases V HD

s→d to 0.11 m/s and V HS
s→d to 0.38 m/s. When E is doubled to 1010 Pa, Vs→d

decreases considerably for both models, to 0.045 m/s and 0.19 m/s respectively.

Flexural strength. σfl has a strong effect on Vs→d. When halved to 2.5×105 Pa, V HD
s→d

lowers to roughly 0.03 m/s and V HS
s→d to 0.135 m/s. Doublingσfl to 106 Pa has the opposite

effect, increasing the V HD
s→d to about 0.145 m/s and V HS

s→d to more than 0.5 m/s.
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Crushing strength. When σc is doubled to 1.2× 106 Pa, MHS is in the sliding mode
Msl for a total of 0.45 s, compared to 0.55 s for MHS. The overall contact force increases
while the overall interaction quickens. Halvingσc has the opposite effect. It appears that
both effects cancel each other out as neither the breaking length nor Vs→d is significantly
affected by changes in σc.

Water depth. The influence of H is negligible. Values as low as 30 m and as high as 200
m were tested but these did not affect the breaking length, nor V HD

s→d.

Hull angle. θ affects V⊥(0) =Vice sin(θ) as well as the ratio between the horizontal and
vertical contact forces. Increasing θ to 60◦ lowers V HD

s→d to 0.045 m/s and V HS
s→d to 0.16

m/s. The contribution of the axial compression to the dynamic equilibrium of the ice
sheet studied in Sec. 4.3.1 is not significantly affected by the steeper hull angle. Lowering
θ to 30◦ increases V HD

s→d to 0.12 m/s and V HS
s→d to 0.46 m/s and causes MHD to enter the

sliding mode Msl for a total of 0.3 s compared to 0.55 s for MHS.

4.4.2. VARIATIONS IN NUMERICAL PARAMETERS AND IN MODELING ASSUMP-
TIONS

Number of modes. The Green’s functions in Sec. 4.1.2 used to describe the response of
MHD in the ice-covered region are a superposition of the infinite modes of the system.
The infinite number of modes was truncated at Nk. The truncation introduces an error
that manifests itself at x = 0 as a discontinuity in the displacements and pressure of the
fluid along the entire water column. The discontinuity is largest just below the surface.
The two regions merge as the number of modes increases.

Nk is gradually lowered to study how it affects the ISI. While values of Nk as low as
ten have only minor effects on the lbr(Vice) and Fmax(Vice), such a low number of modes
causes very large discontinuities in the displacements and pressure of the fluid along the
interface at x = 0.

Modeling the structure. Next, the effect of reducing the infinite problem shown in Fig.
4.1 to the semi-infinite problem shown in Fig. 4.8 is studied. This change has only a
minor effect, reducing V HD

s→d from 0.0725 m/s to 0.05 m/s. The average breaking length
is lowered by approximately 7%. The effect on the maximum horizontal contact force
is just as minor. This result is somewhat different from the findings of Sawamura et al.
[209] who found that semi- versus infinite does have a fairly significant effect. However,
their model was based on FEM.

4.5. DISCUSSION

4.5.1. STOCHASTIC NATURE OF THE BREAKING LENGTH
When analyzing the breaking length it is common to present it as a deterministic value,
similar to Fig. 4.17. However, even the deterministic models used in this chapter under-
line the stochastic nature of the breaking length.

Thus far in this chapter, the breaking length has been defined as the x-coordinate
at which the axial stress in the cross-section of the ice plate first exceeds the flexural
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strength σfl of the ice. However, this definition does not account for the fact that at tfail,
which is the moment the ice fails, a large segment of the ice is very close to failure. This
was also noted by Valanto [203]. If in this segment a local defect is present, for instance,
a lower ice thickness, the resulting stress-peak could cause the ice to fail at the location
of the defect rather than at the location predicted by a homogeneous model. The sen-
sitivity of the breaking length to such defects is shown in Fig. 4.21. The sensitivity is
quantified using the axial stress, see Eq. (4.7), at tfail normalized by the flexural yield
stress: σnorm(x) = |σmax(x, tfail)/σfl|.
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Figure 4.21: The sensitivity of lbr(Vice) to defects for both models. The solid and dashed line indicate the
location of the deterministic breaking lengths as previously shown in Fig. 4.17. Therefore, on these lines
σnorm(lbr(Vice)) = 1. The dark grey shading indicates the segment of the ice wherein σnorm(x) ≥ 0.99 and
light gray σnorm(x) ≥ 0.90 for both models. The horizontal dotted line indicates the static breaking length lbr,s
computed with Eq. (4.19).

Given that ice is very inhomogeneous material [205], spatial variations in the ice
thickness h, Young’s modulus E or flexural yield stressσfl of several percentages are more
than realistic. Fig. 4.21 shows that even such small variations can have a large effect on
the breaking length. A spatial variation of 1% can change the breaking length by as much
as 10% while a 10% variation can change the breaking length by as much as 30%. Fig.
4.21 thus shows that even a deterministic model underlines the stochastic nature of the
breaking length. Therefore, presenting the breaking length as a deterministic property
does not seem to be desirable.

4.5.2. SINGLE- VERSUS DUAL-MODE CONTACT MODEL
The contact model used in this chapter has two modes: a crushing mode Mcr and a
sliding mode Msl. The sliding mode is triggered when V⊥ becomes zero (see Fig. 4.15) at
tc→s (see Fig. 4.14) and assures that the ice slides along the structure without crushing.

However, it is not uncommon for ice-structure interaction models to use a single-
mode contact model that only accounts for crushing. Such a model will work fine as
long as V⊥ > 0. However, in this work, this assumption would not have been valid. Fig.
4.16 shows that MHS enters the sliding mode and certain parameters choices also cause
MHD to enter the sliding mode, see Sec. 4.4.1. Therefore, a single-mode contact model
would not suffice for the studies done in this chapter. If such a contact model were used,
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it would affect lbr(Vice) around Vs→d and the contact force just after tc→s. In general,
when a single-mode contact model is used in an ISI model, the underlying assumption
that V⊥ is assumed to be larger than zero should be more explicitly mentioned and the
validity of this assumption should be asserted throughout the study.

4.5.3. EFFECT OF THE SOLUTION METHOD
To the author’s knowledge, only two other works have studied ISI in 2D using a numerical
model that includes hydrodynamics: Valanto [203] and Wang and Poh [204]. The lbr(Vice)
as predicted by all three models is shown in Fig. 4.22. At high velocities, all three models
predict comparable breaking lengths. At low velocities, the model introduced in this
chapter predicts a quasi-static regime. The lbr(Vice) predicted by Valanto [203] does not
predict a quasi-static regime and Wang and Poh [204] did not do any calculations in this
regime.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6
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r

[m
]

MHD
Valanto
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Figure 4.22: lbr(Vice) as predicted by all three models. The horizontal dotted line is the static breaking length
computed with Eq. (4.19).

It can be shown that by introducing a large amount of damping to MHS, a lbr(Vice)
that is similar to the one predicted by Valanto [203] can be obtained (see Ch. 5.3). For
such a model, V⊥(t ) > V⊥(∞) ∀ t ∈ [0, tfail] and, consequently, in the course of ISI, V⊥(t )
decreases monotonically to its steady-state value. This kind of behavior of V⊥ can also
be seen in Wang and Poh [204]. Therefore, it is likely that both other models predict a
stronger hydrodynamic effect than the model introduced in this chapter.

This difference is likely caused by the different assumptions and solution method
adopted by the models. Valanto [203] uses finite difference for the discretization of both
the fluid and the ice and considers the steady-state velocity of the fluid around the struc-
ture. Wang and Poh [204] use FEM for the discretization, adopt a single-stage contact
model, and do not include the steady-state velocity.

MHD thus differs in three ways from the two other two models. Firstly, the effect of
a single stage contact model versus a two-stage contact model only affects the behavior
near the transition velocity Vs→d, as explained in Sec. 4.5.2, and therefore cannot explain
the different results. Second, the effect of the steady-state velocity of the fluid around
the structure can be inferred by comparing Wang and Poh [204] and Valanto [203]. As
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there is still a discrepancy between MHD and Wang and Poh [204], this can only explain
part of the difference in the results. The adopted solution method thus appears to be the
most likely source of the discrepancy. However, as the available data is lacking and both
models are not publicly available, a detailed study on the effect of the solution method
is not possible.

4.6. CONCLUSIONS
In this chapter, the effects of hydrodynamics on ISI was studied. This study was done by
comparing the results of a model that includes both hydrostatics and hydrodynamics,
MHD, with one that includes only hydrostatics, MHS. The conclusions of this study are
presented next.

The factors of influence for ISI Seven forces were accounted for in the dynamic equi-
librium of the ice. The contribution of the rotational inertia, the axial compression and
the nonlinear hydrodynamic pressure pNLHD to the dynamic equilibrium were found to
be less than 1%. These three terms can thus be ignored without significantly affecting
the results of an ISI model. Being able to ignore the axial compression and pNLHD greatly
simplifies the modeling of ISI as it removes all sources of spatial nonlinearity. Note that
only the nonlinear contribution of the axial compression to the dynamic equilibrium of
the ice can be ignored. Its linear contribution to the axial stresses was not studied and
so no conclusion can be drawn regarding this.

The remaining four terms are essential for an accurate description of ISI. These terms,
listed in the order of importance, are: bending of the ice floe, the linear hydrodynamic
pressure pHD, hydrostatic pressure pHS and the inertia of the ice floe.

The effect of hydrodynamics on ISI is given by the combined effect of pHD and pNLHD.
The relative importance of these two terms had not been studied before. However, from
this work, it can be concluded that the entirety of the hydrodynamic effect can be at-
tributed to the linear hydrodynamic pressure pHD.

The relation between the contact force and the breaking length. A detailed study on
the relation between the velocity-dependency of the breaking length lbr(Vice) and the
temporal development of the contact force revealed two interesting features.

Firstly, lbr(Vice) has two regimes that are separated by the transition velocity Vs→d: a
quasi-static regime when the ice velocity Vice <Vs→d and a dynamic regime when Vice >
Vs→d. In the dynamic regime, the ice fails during the transient interaction phase. The
breaking length is significantly smaller than the static breaking length and decreases as
the ice velocity increases. Alternatively, if the ice does not fail in the transient regime, it
often reaches the steady-state regime and will fail with a breaking length that is close to
the static breaking length.

Second, the transition velocity ofMHD, V HD
s→d is much lower than the transition veloc-

ity of MHS, 0.0725 m/s compared to 0.275 m/s. V HD
s→d decreases as the Young’s modulus

or hull angle is increased and increases as the flexural strength of the ice is increased.
Other parameters such as the ice thickness, crushing strength and water depth have a
negligible effect on the transition velocity.
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The balance of forces. For interactions with Vice <Vs→d, bending is balanced by hydro-
statics. For interactions with Vice > Vs→d bending is balanced by the two inertia terms.
The contribution of the inertia of the fluid is on average four to ten times bigger than
that of the inertia of the ice.

The limitations of a hydrostatic model. The contact force and breaking length pre-
dicted by MHS start to diverge rapidly from those predicted by MHD for Vice > 0.6Vs→d.
The error ranges from 30% to 100%. As such it is not recommended to use hydrostatic
models for interactions with ice velocities above approximately 0.02 to 0.1 m/s, depend-
ing on the parameter being used.

The importance of wave radiation. Truncating the computation domain from infinite
to semi-infinite had only minor effects on the breaking length and the contact force. This
shows that the energy loss due to the radiation of surface waves in the open water region
has only minor effects on ISI.

The stochastic nature of the breaking length. Lastly, when the ice fails, a relatively
large segment of the ice is close to failure. Defects in the ice can amplify the stresses
in this segment and can cause the ice to fail at the defect rather than at the expected
location. This can easily cause the breaking length to vary by 10% to 30%.

The results of this chapter are used to create an effective fluid model for ISI in the
next chapter.
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5
AN EFFECTIVE FLUID MODEL FOR

ICE-SLOPE INTERACTION

In the previous chapter, it was shown that the predictions of the hydrostatic ice-slope
interaction (ISI) model MHS start to deviate significantly from the predictions of the hy-
drodynamic ISI model MHD when the ice velocity Vice > 0.6V HD

s→d (see Sec. 4.3.4), which
evaluates to approximately 0.02 – 0.1 m/s depending on the parameters used (see Sec.
4.4.1). Moreover, implementing a hydrodynamic model is no trivial task (see, for exam-
ple, Sec. 4.1.2)) which, in the author’s opinion, is the main reason for the prevalence
of hydrostatic ISI models. These two observations are the motivation for this chapter in
which an attempt is made to create a simple effective fluid model (EFM) that can capture
the effects that hydrodynamics has on ISI as observed in Sec. 4.3.

The EFM is introduced in the next section and the optimization of its coefficients is
done in section 5.2. Thereafter, the results are presented in Sec. 5.3, including a sensitiv-
ity study in Sec. 5.3.3. A dicussion follows in Sec. 5.4 and lastly, the conclusion is given
in Sec. 5.5.

5.1. DESCRIPTION OF THE EFFECTIVE FLUID MODEL

The results in Sec. 4.3, as well as findings of [210, 211], show that the effect of hydro-
dynamics on ISI is of the added mass and added damping type. For this reason, the
EFM proposed in this chapter is based on a frequency-independent added mass and
a frequency-independent added damping coefficient. By constructing the EFM in this
manner, it is trivial to add it to an existing ice-slope interaction model that only accounts
for hydrostatics. In this chapter, the EFM is added to MHS. By augmenting MHS with
this EFM, an ice-slope interaction model is obtained that includes all four essential com-
ponents as identified in Sec. 4.3.1, namely bending, hydrodynamics, the inertia of the
ice, and hydrostatics. The resulting effective ice-slope interaction model will be referred
to as MeHD. Based on its definition, the equation of motion of MeHD can be expressed

95
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as:
ρih(1+Cm)ẅ +2ξdCcritẇ +Diw

′′′′+ρwg w = 0 (5.1)

where ρi is the density of the ice, h its thickness, w(x, t ) its vertical displacement, Di =
E/(1−ν2)h3/12 its bending stiffness, Ccrit =

√
ρihρwg , ρw the density of the fluid and g

the gravitational constant. Cm and ξd are the unknown dimensionless added mass and
added damping coefficients, where the latter is expressed in terms of critical damping,
analogous to a damped harmonic oscillator. The optimal value of both coefficients is
determined in the next section.

MeHD has two unknown coefficients, namely Cm and ξd. To further improve the ef-
ficacy of the EFM, a dashpot is added at the boundary of the ice that is located at x = 0.
This dashpot could capture the radiation of energy into the open-water region through
surface waves. However, the importance of wave radiation on the ice-slope interaction
is unclear as in Sec. 4.4.2 it is concluded that radiation damping does not have a signifi-
cant impact on the interaction while Sawamura et al. [212] found a 40% reduction in the
displacements of the ice when disabling wave radiation. Despite lacking a clear physical
substantiation for this dashpot, its addition does not significantly affect the computa-
tional efficiency of the EFM and is, therefore, an efficient way to improve its efficacy.
Eqs. (5.2) are updated accordingly:

Di
∂3w(0, t )

∂x3 +CbcCcritẇ(0, t ) = (
Fct,z(t , w, w ′, ẇ , ẇ ′)

)∣∣
x=0 (5.2a)

Di
∂2w(0, t )

∂x2 = (
Mct(t , w, w ′, ẇ , ẇ ′)

)∣∣
x=0 (5.2b)

where Cbc is the damping coefficient of the dashpot with dimensions m2. As the addition
of the dashpot may not be desirable from a physical point of view, the optimization of
the EFM’s coefficients will be done twice, once with Cbc = 0 and once with Cbc 6= 0.

5.2. OPTIMIZATION
The optimal value of the coefficients of the EFM, Cm, ξd and Cbc, are found through an
optimization process. The goal of this process is to find the set of coefficients that results
in the smallest discrepancy between the predictions of MeHD and the predictions of
the hydrodynamic model MHD that was introduced in Sec. 4.1. The predictions that
will be considered are the breaking length as a function of ice velocity lbr(Vice) and the
maximum contact force that occurred during the interaction as a function of ice velocity
Fmax(Vice) as these are important aspects of ice-slope interaction. Based on these two
predictions, the discrepancy is quantified using the error ε that is defined as:

ε= rms

(
lbr(Vice)− l HD

br (Vice)

l HD
br (Vice)

)
+ rms

(
Fmax(Vice)−F HD

max(Vice)

F HD
max(Vice)

)
(5.3)

where the four terms with the HD superscript are the predictions of MHD and the re-
maining two terms are the predictions of MeHD.

The following bounds are used for the parametric space wherein the optimal values
are being sought: 0 ≤ Cm ≤ 12, 0 ≤ ξd ≤ 4.5 and 0 ≤ Cbc ≤ 12×10−6 m2. These bounds
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were chosen to assure that the optimal set of coefficients falls within the search space.
The volume is discretized using a step size of 2, 0.5 and 2×10−6 m2 respectively, result-
ing in 420 grid points. Spline interpolation is then used to interpolate between the grid
points to find the set of two (or three) coefficients that leads to the smallest error ε.

5.3. RESULTS
The results are presented next. First, the effect of each coefficient on the predictions of
MeHD is studied. Thereafter, the optimization is done for the set of default parameters
of the system that is listed below. Noting that the optimal value of the coefficients will
change depending on the physical parameter of the system used, the sensitivity of the
coefficients to changes in these physical parameters is studied.

The results presented in this chapter have been computed using the same set of pa-
rameters as used in the previous chapter. This parameter set will be referred to as the
default set of parameters. The set is repeated here for convenience: h = 1 m, ρi = 925
kg/m3, ρw = 1025 kg/m3, g = 9.81 m/s2, H = 100 m, E = 5 GPa, ν = 0.3, σc = 600 kPa,
σfl = 500 kPa, ice-steel friction coefficient 0.1 [–], hull angle θ = 45◦, Vice = [0,0.5] m/s,
NBEM = 60, c1 = 1.25, ∆t = 10−3 s and Nk = 250. The numerical parameters were adap-
tively refined to assure convergence for all cases considered in this chapter.

5.3.1. THE EFFECT OF EACH COEFFICIENT ON THE PREDICTIONS
The effective fluid model has three coefficients. The effect of each coefficient on the
predictions of MeHD is presented next.

Effect of Cm The effect of Cm on the predictions of MeHD is shown in Fig. 5.1. The
additional mass increases the magnitude of the peak in the contact force that occurs
during the initial impact, as can be seen in the bottom graph. This increase in peak force
is also reflected in the middle graph by an increase in Fmax(Vice) and causes the ice floe
to fail dynamically at lower ice velocities, thereby reducing the transition velocity Vs→d

that marks the transition from static to dynamic failure. This trend can be observed in
the top graph which shows that as Cm increases, Vs→d of MeHD, V eHD

s→d , decreases and

approaches that of the reference model V HD
s→d.

Effect of ξd The effect of ξd on the predictions of MeHD is shown in Fig. 5.2. First,
the bottom graph shows that increasing ξd smoothens Fct(t ), leading to a reduction in
the duration and intensity of the relaxation period. This, in turn, has a smoothening
effect on Fmax(Vice) and lbr(Vice) when Vice ≈V eHD

s→d , as is evident from the top and middle
graph. Second, the added damping results in a slight increase in Fct(t ), resulting in a
slight increase in Fmax(Vice) and a shorter lbr(Vice). These trends were also observed in
Sec. 4.3.3.

Effect of Cbc The effect of Cbc on the predictions of MeHD is shown in Fig. 5.3. The
bottom graph shows that increasing Cbc has a smoothing effect on Fct(t ), similar to ξd.
However, as the dashpot is only present at x = 0 whereas ξd is present ∀ x ≤ 0, it has a
strong effect on Fmax(Vice) and only a weak effect on lbr(Vice). Its effects on lbr(Vice) are
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limited as the breakage of the ice is more driven by the distributed terms, i.e. Cm and ξd,
as shown previously.
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Figure 5.1: The effect of Cm on the predictions of MeHD. The bold curve is MHD. The dashed curve shows
MeHD(ξd = Cbc = Cm = 0) =MHS. All subsequent solid curves are evaluations at Cm = {2,4,6,8,10} respec-
tively. For the bottom graph Vice = 0.04 m/s.
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Figure 5.2: The effect of ξd on the predictions of MeHD. The bold curve is MHD. The dashed curve shows
MeHD({Cm = 6.26,ξd =Cbc = 0}) 6=MHS. All subsequent solid curves are evaluations at ξd = {1,2,3,4} respec-
tively. For the bottom graph Vice = 0.04 m/s.
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Figure 5.3: The effect of Cbc on the predictions of MeHD. The bold curve is MHD. The dashed curve shows
MeHD({Cm = 6.26,ξd = 1.06,Cbc = 0}) 6=MHS. All subsequent solid curves are evaluations at Cbc = {4,8}×
10−6 m2 respectively. For the bottom graph Vice = 0.04 m/s.
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5.3.2. OPTIMAL SET OF COEFFICIENTS
Based on the optimization process described above the optimal sets of coefficients were
determined. The optimal set with Cbc = 0 will be referred to as P while the optimal one
with Cbc 6= 0 will be referred to asP∗. The optimization was done for the default set of pa-
rameters, leading to the following optimal sets: Pdef = {Cm = 2.83, ξd = 1.46, Cbc = 0 m2}
and P∗

def = {Cm = 6.26, ξd = 1.06, Cbc = 4.85×10−6 m2}. The performance of MeHD(Pdef)
andMeHD(P∗

def) is shown in Fig. 5.4. The figure shows that the prediction ofMeHD(Pdef)
are significantly better than those of MHS and that the predictions of MeHD(P∗

def) are
slightly better still.
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Figure 5.4: The performance of MeHD(Pdef) and MeHD(P∗
def). For the right graph Vice = 0.04 m/s.

5.3.3. SENSITIVITY ANALYSIS
As the predictions of the reference model MHD depend on the physical parameters of
the system, the optimal set of coefficients will be different depending on the set of phys-
ical parameters used. However, as having parameter-dependent coefficients is imprac-
tical, the option of using MeHD(Pdef) and MeHD(P∗

def) independently of changes to the
physical parameter is explored. Since these two sets become suboptimal when the phys-
ical parameters of the system are changed, the error ε of both models will increase. This
increase in error is shown in Table 5.1. All parameters were set to their default values
except for the parameter listed in the left column, which was set to the specified value.

Table 5.1 shows that the performance ofMeHD(Pdef) is insensitive to change in Young’s
modulus E , flexural strength σfl and water depth H . Changes in the ice thickness h,
crushing strengthσcr and hull angle θ result in a medium increase in error. Overall it can
be concluded that MeHD(Pdef) is fairly insensitive to changes in the parameter set and
is, therefore, quite robust.

Next, the performance of MeHD(P∗
def) is also insensitive to changes in the water

depth H , mildly sensitive to changes in ice thickness h, Young’s modulus E , hull angle θ,
and very sensitive to changes in flexural strength σfl, crushing strength σcr. It is also im-
portant to note that despite the larger relative increase in error, the error of MeHD(P∗

def)
is smaller than the error of MeHD(Pdef) for all cases considered.

In order to visualize what the increase in error mean in terms of deterioration of the
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Increase in error when using Pdef and P∗
def

P P∗

ε Incr. ε Incr.
Default 0.24 +0% 0.12 +0%
h = 0.5 m 0.29 +21% 0.16 +33%
h = 2.0 m 0.22 -9% 0.11 -9%
E = 2.5 GPa 0.25 +4% 0.14 +17%
E = 10 GPa 0.24 +0% 0.13 +8%
σfl = 250 kPa 0.25 +4% 0.22 +83%
σfl = 1 MPa 0.25 +4% 0.16 +33%
σcr = 300 kPa 0.22 -9% 0.12 +0%
σcr = 1.2 MPa 0.29 +21% 0.21 +75%
H = 50 m 0.24 +0% 0.12 +0%
H = 200 m 0.25 +4% 0.12 +0%
θ = 30◦ 0.29 +21% 0.17 +42%
θ = 60◦ 0.25 +4% 0.13 +8%

Table 5.1: The increase in the error ε when using Pdef and P∗
def independently of changes in the physical

parameters of the system. The column with header ‘ε’ lists the error for the listed change in parameter. The
column with header ‘Incr.’ lists the increase in error relative to the error for the default set of parameters which
is 0.24 and 0.12, respectively.

prediction of both models, their predictions for one the worst cases, namely when σfl

is set to 250 kPa, are shown in Fig. 5.5. Despite this increase in error, both models still
perform significantly better than MHS.
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Figure 5.5: The performance of MeHD(Pdef) and M∗
eHD(Pdef)∗ when σfl is changed to 250 kPa. For the right

graph Vice = 0.04 m/s.

Even though MeHD is a fairly robust model as shown by Table 5.1, there might be
situations in which changing the parameters is desirable in order to minimize the error.
As such, the optimization process was redone for each change in parameter, resulting in
the sets of coefficients listed in Table 5.2. The table shows that when the optimization
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Optimal sets of coefficients
P P∗

Cm ξd ε Cm ξd Cbc ε

[-] [-] [-] [-] [-] 10−6 [-]
[m2]

Default 2.83 1.46 0.24 6.26 1.06 4.85 0.12
h = 0.5 m 2.73 2.19 0.27 6.16 1.56 4.36 0.15
h = 2.0 m 2.83 0.96 0.21 6.16 0.56 4.36 0.09
E = 2.5 GPa 3.03 1.33 0.25 6.46 0.92 6.18 0.12
E = 10 GPa 2.73 1.60 0.24 6.16 1.19 4.00 0.11
σfl = 250 kPa 2.83 1.65 0.24 3.84 1.51 2.06 0.11
σfl = 1 MPa 4.55 1.10 0.24 9.19 0.69 9.82 0.10
σcr = 300 kPa 3.03 1.06 0.21 6.57 0.69 6.55 0.09
σcr = 1.2 Mpa 2.53 2.10 0.28 6.26 1.37 3.64 0.15
H = 50 m 2.83 1.46 0.24 6.16 1.06 4.73 0.12
H = 200 m 2.73 1.46 0.25 6.26 1.10 5.09 0.12
θ = 30◦ 3.33 1.87 0.27 8.69 0.01 7.27 0.14
θ = 60◦ 2.42 1.01 0.23 6.26 0.78 3.88 0.10

Table 5.2: The sets of optimal coefficients for a range of system parameters and the resulting error.

is redone when the physical parameters are changed, the error of both MeHD(Pdef) and
MeHD(P∗

def) remains of the same order of magnitude.

5.4. DISCUSSION
Two other studies have investigated using EFM in the context of the hydrodynamic re-
sponse of elastic ice as mentioned in the introduction. It is interesting to compare those
models with the EFM proposed in this paper.

First, the possibility of using a frequency-independent added mass coefficient for
the dynamical uplift of level ice was investigated by Dempsey and Zhao [211, 213, 214].
All three studies concluded that this approach cannot reproduce the effects of hydro-
dynamics because the wave motion is fundamentally different when hydrodynamics is
included. Although these studies do not consider ice-slope interaction, it is interesting
to assess how the proposed EFM performs when only an added mass coefficient is used,
i.e. when ξd = Cbc = 0. The optimal value of Cm for the default set of parameters is 4.44
[-]. In the papers by Dempsey and Zhao papers, the main prediction that was studied
was Fct(t ). Fig. 5.6 shows that Fct(t ) is also poorly predicted by the proposed EFM when
ξd = Cbc =. From this, it can be concluded that added damping is an essential compo-
nent of the EFM, a finding that is supported by the observations regarding the effects of
hydrodynamics on ice-slope interaction.

Second, Lubbad et al. [215] studied using a frequency-independent added mass and
damping coefficient for ice-slope interaction. However, the difference with the proposed
EFM is that the added damping term was multiplied with the squared fluid velocity. They
found that this damping term had a marginal influence on the response of the ice. There-
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Figure 5.6: The performance of MeHD({Cm = 4.44,ξd = Cbc = 0}) for the default set of parameters. For the
right graph Vice = 0.04 m/s.

fore, this model also only considered added mass and it is, therefore, likely that this is the
reasons for the unsatisfactory agreement with their hydrodynamic reference model.

Applicability of the proposed effective fluid models Although the proposed effective
fluid models greatly improve the predictions of MHS, some reservations are in order.
Firstly, in this study, only the interaction with a sloping structure was considered. The
applicability of the EFM to other cases, like the uplift scenarios considered in Dempsey
and Zhao [211], Zhao and Dempsey [214] or interaction between individual ice floes,
has to be investigated. Moreover, as the current models are 2D, their applicability for
ice-slope interaction in 3D is unknown.

5.5. CONCLUSIONS
In this chapter, an effective fluid model was presented that can reproduce the effects that
hydrodynamics has on ice-slope interaction. This fluid model can be added to existing
ice-sloping interaction model that only includes hydrostatics with minimal effort. The
resulting effective ice-slope interaction model is very simple but its predictions are sig-
nificantly better than a hydrostatic model. The model is also fairly robust in that its pre-
diction remain accurate even when the physical parameters of the system are changed.
While the applicability of the proposed fluid model to a wider range of IFI problems re-
mains to be investigated, the proposed approach is very promising.
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6
CONCLUSIONS

The goal of this thesis is to define how hydrodynamics affects the interaction between an
elastic ice floe and a sloping structure. A literature review on ice-floater interaction (Ch.
2) has shown that the majority of numerical studies on this topic are performed with
a hydrostatic model. Furthermore, the effects of hydrodynamics on ice-floater interac-
tion are not fully understood and the adoption of hydrodynamics in numerical stud-
ies of ice-floater interaction is mainly held back by the challenges associated with im-
plementation. An effective fluid model offers a solution to overcome such challenges.
The secondary goal of this thesis is, therefore, to develop an effective fluid model which
can capture the hydrodynamic effects during the interaction between ice and a sloping
structure.

To achieve these goals three research questions were defined, each addressed in one
of the chapters of this thesis. In Ch. 3, the question of how the surface-wave-based
coupling between a floater and a nearby elastic ice floe affects the floater’s response has
been addressed. In Ch. 4, the effect of hydrodynamics on ice-slope interaction has been
investigated. Lastly, in Ch. 5, the development of an effective fluid model that can cap-
ture the effect of hydrodynamics on ice-slope interaction has been presented. The main
conclusions related to each question are as follows.

The interaction between an ice floe and a floater through surface waves has been in-
vestigated in Ch. 3. The floater was modeled in 2D as a thin rigid body that floats on
the surface of a fluid layer of finite depth. On one side of the floater, an ice floe was as-
sumed, modeled as a semi-infinite Kirchhoff-Love plate. The floater in the presence of
the ice floe was excited by a time-harmonic force and moment and the resulting motions
of the floater were analyzed.

It has been found that below a specific onset frequency the propagating waves are
almost fully transmitted into the ice floe and, consequently, the response of the floater
remains unaffected by the presence of the ice. The onset frequency has been defined
as the frequency at which the amplitude of the reflected propagating wave divided by
the amplitude of the incoming propagating wave is less than one percent. This onset
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frequency, which is independent of the properties of the floater, has a power-law depen-
dence on the ice thickness. For one-meter thick ice, the onset frequency is about 0.4
rad/s and for two-meter-thick ice, it is about 0.3 rad/s. The onset frequency is insensi-
tive to changes of the Young’s modulus in the range of 5 to 10 GPa and to changes in the
water depth in the range of 50 to 1000 meters.

Above the onset frequency, it has been found that the waves reflected by the ice
have a significant effect on the response of the floater. Frequency ranges exist wherein
the length of the gap between the floater and the ice floe is divisible by the frequency-
dependent wavelength of the propagating surface wave. When the vessel is excited with
a load whose frequency falls in one of those frequency ranges, quasi-standing waves oc-
cur within the gap between ice floe and floater. Depending on the phasing between
the reflected waves and the floater’s motions, resonance or anti-resonance can occur
which can significantly amplify or reduce the floater’s motions when compared to the
case when no ice is present, with changes in the amplitude of up to 20%. For the limit
case where there is no gap between ice and floater, the amplitude of the floater can be
amplified by 10% and its natural frequency increased by 20%.

In Ch. 4, the effect of hydrodynamics on the bending failure of an elastic ice floe due
to the interaction with a downward-sloping floater has been addressed. A novel, semi-
analytical 2D ice-slope interaction model has been proposed that is based on the po-
tential theory in conjunction with the nonlinear Bernoulli equation to describe the fluid
pressure. The ice has been modeled as a semi-infinite Kirchhoff-Love plate. The pre-
dictions of the hydrodynamic model have been compared with those of a hydrostatic
ice-slope interaction model, thereby obtaining a quantitative measure of the effect of
hydrodynamics on the interaction.

It has been found that the contribution of the rotational inertia of the ice, axial com-
pression and the nonlinear hydrodynamic pressure to the balance of forces within the
ice is insignificant, with all three components contributing less than 1%. As the last two
components are the source of spatial nonlinearity in the model, being able to ignore
those in modeling the interaction is advantageous for numerical analysis. Bending of
the ice floe (44 to 47%), linear hydrodynamic pressure (12 to 41%), hydrostatic pressure
(42% to less than 1%) and the inertia of the ice floe (1 to 11%), are identified to be es-
sential in modeling ice-slope interaction. The contribution of the fluid’s inertia was on
average four to ten times that of the inertia of the ice. The study also has revealed that
the effect of wave radiation on ice-slope interaction is minimal.

The relation between the temporal development of the contact force and the velocity-
dependence of the breaking length has been studied. The study has revealed that the
breaking length can fall into two regimes which are separated by a transition velocity.
When the ice drift velocity is below the transition velocity, the ice fails during the initial
impact with the sloping structure. Alternatively, when the ice velocity is above the transi-
tion velocity, the ice floe survives the impact and fails with a breaking length that is close
to the static breaking length. The transition velocity of the hydrodynamic model em-
ployed in this thesis is much lower than the transition velocity of the hydrostatic model,
0.0725 m/s compared to 0.275 m/s, confirming that hydrostatic models have a limited
range of applicability and should not be used for ice velocities exceeding 0.6 times the
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transition velocity obtained with the hydrodynamic model. Outside this range, differ-
ences up to 100% exist for the predicted breaking length and maximum contact force.

The study in Ch. 4 has underlined the stochastic nature of the breaking length of
the ice floe. When the floe fails, a relatively large segment of the floe is, in fact, close
to failure. A defect in the ice can locally amplify the stresses, causing the ice to fail at
the defect rather than at the location predicted by a model including homogeneous ice
properties. As a consequence, the breaking length varies by 10% to 30% when defects are
included.

The last chapter of this thesis, Ch. 5, has built on the knowledge gained in Ch. 4 by
attempting to create a simple effective fluid model that captures the observed effects of
hydrodynamics on ice-slope interaction. An effective fluid model has been proposed
based on frequency-independent added mass and damping coefficients. When com-
bined with a hydrostatic ice-slope interaction model, a complete ice-slope interaction
model is obtained that contains all four essential components of the interaction as iden-
tified in Ch. 4. Two effective fluid models were considered, one with and one without an
effective damper at the contact with the vessel.

The optimal value of the unknown added mass and damping coefficients have been
found by minimizing the error of the predictions of the effective model compared to the
predictions of the full hydrodynamic model that was used in Ch. 4. The error is defined
as the root-mean-squared of the difference between the predictions of both models, nor-
malized by the predictions of the hydrodynamic model. Here, the predicted velocity-
dependent breaking length and the maximum contact force that occurred during the in-
teraction have been considered. The error of the effective model including the damper
is found to be 0.12 and the error of the model without the damper 0.24, compared to
0.91 for the hydrostatic model. The predictions of both models are, therefore, far more
accurate than those of a hydrostatic model, when compared to the full hydrodynamic
model.

The sensitivity of the two models’ predictions to changes in ice thickness, Young’s
modulus, flexural yield strength, crushing strength, water depth, and hull angle has been
studied. It has been found that the error for the model without the damper ranges be-
tween 0.22 and 0.29, whereas the error for the model with the damper ranges between
0.11 and 0.22. Overall, the model with the damper is the preferred model as it always
performs better than the model without a damper.

The resulting effective ice-slope interaction model is trivial to implement when com-
pared to a full hydrodynamic model while containing the important contributions of
hydrodynamics to the interaction between ice and sloping structure. The model will al-
low for an increase in the adoption of hydrodynamics in numerical studies of ice-slope
interaction.





A
DERIVATION OF GREEN’S

FUNCTIONS

In this appendix, a set of Green’s functions φ̃α is derived that gives the response of a
semi-infinite floating Kirchhoff-Love plate, located at x ≤−l , to the three types of loading
shown in Fig. A.1: 1) the force FGFδ(t ) applied at the edge of the plate (where δ(t ) is the
Dirac delta function), 2) the moment MGFδ(t ) applied at the edge of the plate and 3)
a uniformly distributed vertical force PGFδ(t ) of width 2∆x that is centered around xα,
which is defined as:

xα =
{

2∆x(α−1/2), if α> 0

2∆x(α+1/2)− l , if α< 0
(A.1)

PGFδ(t ) therefore acts on the surface of the ice-covered region ifα< 0 and on the surface
of the open-water region ifα> 0. There is a gap of width l that separates the two regions.

The inhomogeneous (not invariant in x) problem is solved in two steps. First, the two
complimentary homogeneous (invariant in x) problems shown in Fig. A.2 are solved.
These problems do not account for the edge force and edge moment and have a homo-
geneous surface: the problem on the left in Fig. A.2 is completely covered with ice and
the problem on the right does not have any ice cover, i.e. open water. Solving these

problems results in the Green’s function for the ice-covered water φ̃(i,p)
α and the open

water Green’s function φ̃
(o,p)
α , where the subscript “α” is related to the location of the

distributed vertical force, the superscript “i” refers to the ice-covered region, the super-
script “o” to the open water region and the superscript “p” indicates that these functions
give the response to the distributed vertical force PGFδ(t ). P (−)

GF and P (+)
GF , shown in Fig.

A.2, are introduced to assures that PGFδ(t ) excites the correct region depending on the
value of α: {

P (−)
GF = PGF, P (+)

GF = 0, if α< 0

P (−)
GF = 0, P (+)

GF = PGF, if α> 0
(A.2)
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Figure A.1: The problem definition for φ̃α. The location of the vertical distributed force PGFδ(t ) depends onα.
If α> 0 it acts on the fluid and if α< 0 it acts on the ice.

During the second step the inhomogeneous problem shown in Fig. A.1 is solved.

φ̃
(i,p)
α is used to describe x ≤−l and φ̃(o,p)

α is used for x >−l . This assumed solution satis-
fies all equations except those governing the interface between the two regions located at
x =−l . Eigenfunction Matching is then used to obtain the final solution φ̃α that satisfies
the appropriate interface conditions.

φ̃
(o,p)
α is derived first in section A.1, followed by φ̃(i,p)

α in section A.2. Eigenfunction
Matching is then used in section A.3 to obtain φ̃α. Certain responses of φ̃α that are used
in the main body of the thesis are derived in section A.4. Lastly, in section A.5 the nu-
merical root finding schemes used in the first and second section are explained.

The following Fourier transform F and its inverse F−1 are used in this thesis. Trans-
forming a time-dependent function f (t ) as an example:

f̃ (ω) =F
(

f (t
)= ∫ ∞

−∞
f (t )e−iωt dt (A.3a)

f (t ) =F−1 (
f̃ (ω)

)= 1

2π

∫ ∞

−∞
f̃ (ω)eiωt dt (A.3b)

where ω is frequency, t is time and i is the imaginary unit. An equivalent transform is
used for the transformation from the x-domain to the wavenumber- or k-domain. As
all solutions are sought for in the frequency domain, all equations have already been
transformed to this domain for brevity.

A.1. GREEN’S FUNCTION FOR OPEN WATER

The open water Green’s function φ̃
(o,p)
α (x, z,ω) is derived first. This function gives the

response of a fluid layer with depth H to the distributed vertical force P (+)
GF δ(t ), see Fig.

A.2 on the right.



A.1. GREEN’S FUNCTION FOR OPEN WATER

A

113

H

z

x

∞∞

2Δx

xα

P(-)
GFδ(t)

H

z

x

∞∞

2Δx

xα

P(+)
GFδ(t)

Figure A.2: The problem definition of the two complementary homogeneous infinite problems. Solving the left

problem results in the ice-covered Green’s function φ̃
(o,p)
α and the right one results in the open water Green’s

function φ̃
(o,p)
α .

The fluid is assumed to be incompressible, inviscid and irrotational, i.e. incompress-
ible potential flow is assumed. This allows it to be described by the Laplace equation:

∇2φ̃
(o,p)
α (x, z,ω) = 0 ∀ x ∈ (−∞,∞) ∩ z ∈ (−H ,0) (A.4)

where parentheses denote an open interval and brackets, in formulas to follow, a closed
one. The displacement potential φ̃(o,p)

α (x, z,ω) is defined by:

~u =∇φ (A.5)

where ~u contains the horizontal and vertical displacements of the fluid. A displacement
potential (see for instance [139]) is used as it results in a clearer and more standard no-
tation from a structural dynamics point of view.

The governing equation of the fluid must be accompanied by proper boundary con-
ditions. At the lower boundary, z = −H , the condition prevents penetration of the fluid
into the seabed:

∂φ̃
(o,p)
α (x,−H ,ω)

∂z
= 0 ∀ x ∈ (−∞,∞) (A.6)

At the upper boundary, z = 0, the fluid pressure p̃(x, z,ω) must balance with the external
pressure:

p̃(x,0,ω) =
{

P (+)
GF , ∀ x ∈ (x−

α , x+
α ]

0, otherwise
(A.7)

where x−
α = xα −∆x, x+

α = xα +∆x, and transforming the uniformly distributed vertical

force resulted in F
(
P (+)

GF δ(t )
)
= P (+)

GF . The fluid pressure is calculated according to the

linearized Bernoulli equation for unsteady potential flow [140]:

p̃(x, z,ω) =−ρw

(
−ω2φ̃

(o,p)
α + g

(
∂φ̃

(o,p)
α

∂z
+ z

))
(A.8)
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where ρw is the fluid density and g is the gravitational constant. The first term in Eq.
(A.8) introduces linear hydrodynamic effects due to the inertia of the fluid and the sec-
ond term is responsible for hydrostatic effects. The nonlinear term that accounts for the
dynamic pressure was removed by the linearization.

A.1.1. SOLUTION IN THE (k, z,ω)-DOMAIN
The Laplace equation in Eq. (A.4) is transformed to the k-domain:

−k2 ˜̃φ(o,p)
α + ∂2 ˜̃φ(o,p)

α

∂z2 = 0 ∀ z ∈ (−H ,0) (A.9)

Solving this ordinary differential equation for ˜̃φ(o,p)
α gives:

˜̃φ(o,p)
α (k, z,ω) = c1 cosh(kz)+ c2isinh(kz) ∀ z ∈ (−H ,0) (A.10)

Substituting this expression into the boundary condition at the seabed, Eq. (A.6), gives:

c2 = c1 tanh(kH) (A.11)

Substituting this relation back into the expression of ˜̃φ(o,p)
α , Eq. (A.10), and rewriting one

can obtain:

˜̃φ(o,p)
α (k, z,ω) = c1

cosh(k(z +H))

cosh(kH)
= c1Z (k, z) (A.12)

To avoid numerical issues, the depth Eigenfunction Z (k, z) is rewritten as:

Z (k, z) = exp(k(z +H))+exp(−k(z +H))

exp(kH)+exp(−kH)
(A.13)

Substituting the expression for the fluid pressure, Eq. (A.8), into the surface boundary
condition, Eq. (A.7), and transforming to the (k, z,ω)-domain gives:

−ρw

(
−ω2 ˜̃φ(o,p)

α (k,0,ω)+ g
∂ ˜̃φ(o,p)

α (k,0,ω)

∂z

)
= P (+)

GF

e−ikx+
α −e−ikx−

α

−ik
(A.14)

Substituting the previously found expression for ˜̃φα, Eq. (A.12), and solving for the un-
known amplitude c1 gives:

c1 =
P (+)

GF

ρw g

i

k

e−ikx+
α −e−ikx−

α

a −λ(k)
(A.15)

where a = ω2/g and λ(k) = Z ′(k,0) = k tanh(kH). Therefore, the final expression for
˜̃φ(o,p)
α in the (k, z,ω)-domain is:

˜̃φ(o,p)
α (k, z,ω) = P (+)

GF

ρw g

i

k

e−ikx+
α −e−ikx−

α

D(k)
Z (k, z) (A.16)

where D(k) = 0 is the dispersion relation of the open water region with D(k) defined as:

D(k) = a −λ(k) (A.17)
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A.1.2. SOLUTION IN THE (x, z,ω)-DOMAIN
Next, the expression in the (k, z,ω)-domain, Eq. (A.16) is transformed back to the (x, z,ω)-
domain:

φ̃
(o,p)
α (x, z,ω) = iP (+)

GF

ρw g

1

2π

∫ ∞

−∞
1

k

eik(x−x+
α ) −eik(x−x−

α )

D(k)
Z (k, z) dk (A.18)

This integral is split into two integrals of the following generalized form:

Φ̃(x̂, z,ω) = iP (+)
GF

ρw g

1

2π

∫ ∞

−∞
1

k

eikx̂ Z (k, z)

D(k)
dk (A.19)

The solution to the original problem can then be obtained as:

φ̃
(o,p)
α (x, z,ω) = Φ̃(x −x+

α , z,ω)− Φ̃(x −x−
α , z,ω) (A.20)

In order to evaluate the general integral in Eq. (A.19), it is converted into a contour
integral. The original integration range is a line (in the complex k-plane) ranging from
−∞ to ∞ along the real axis. In order to obtain a closed contour C , a complex semi-
circle with infinite radius is added to the original integration range. Using the residue
theorem, the counter integral can then be represented as a summation over the residues
of the integrand evaluated at the poles enclosed in the contour. Before starting with this
procedure, the following definitions are made:

Φ̃(x̂, z,ω) =
∫ ∞

−∞
I (k) dk =

∫ ∞

−∞
Inum(k)

Idenom(k)
dk (A.21)

The conversion to a contour integral can only be done if the integral evaluates to
zero along the added semi-circle. This requires the integrand I (k) to converge to zero
in the limit of |k| →∞ along the semi-circle. Analyzing I (k) shows that the convergence
depends only on the exponential term eikx̂ . The sign of x̂ therefore dictates which half-
plane has to be used:

lim
k→∞

I (k) = 0 →
{

C closes over UHP if x̂ > 0

C closes over LHP if x̂ < 0
(A.22)

where LHP and UHP mean the lower and upper half-plane. Even for the special case
when x̂ = 0, the integrand still converges to zero since it is proportional to k−2 in the
limit of |k|→∞. This means that the integrand converges unconditionally as long as the
correct half-plane is used.

Since the integral converges to zero along the added segment, it can be added to the
original integration range without changing the result of the integral. The resulting con-
tour integral can then be evaluated using Cauchy’s integral formula (taking into account
that all poles are simple):∮

C
I (k) dk =

{
2πi

∑
poles in UHP Res I (kn), if x̂ ≥ 0

−2πi
∑

poles in LHP Res I (k−
n ), if x̂ < 0

=


2πi

∑∞
n=0γn

Inum(k)
I ′denom(k)

∣∣∣
k=kn

, if x̂ ≥ 0

−2πi
∑∞

n=0γn
Inum(k)

I ′denom(k)

∣∣∣
k=k−

n

, if x̂ < 0
(A.23)
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where k−
n are the roots of Idenom(k) located in the LHP, kn those in the UHP and I ′denom(k)

is given by:

Q(k) = I ′denom(k) = ∂(kD(k))

∂k
=D(k)− (

k2H sech2(kH)+λ(k)
)

(A.24)

Since the dispersion relation D(k) is an even function in k, see Eq. (A.17), its poles are
mirrored in the real and imaginary axis. This implies that its poles in the LHP are minus
the poles in the UHP and so k−

n =−kn . The set of roots kn is defined as follows:

• k0: 0,

• k1: the negative real pole of D(k) = 0,

• k j | j ≥ 2: the positive imaginary roots of D(k) = 0 in ascending order.

The numerical scheme used to find these roots is explained in section A.5. k0 falls on the
integration path and so had to be circumvented. The Cauchy principal value of this root
contributes only half as much as the other roots that are all located inside the contour
and γn in Eq. A.23 accounts for this difference:

γn =
{

1/2, if n = 0

1, if n > 0
(A.25)

Combining all these results, the general integral in Eq. (A.19) evaluates to:

Φ̃(x̂, z,ω) =− P (+)
GF

ρw g

{∑∞
n=0γnQ−1(kn)eikn x̂ Z (kn , z), if x̂ ≥ 0

−∑∞
n=0γnQ−1(−kn)e−ikn x̂ Z (−kn , z), if x̂ < 0

(A.26)

where k−
n was replaced by −kn . Since both Q(k) (Eq. (A.24)) and Z (k, z) (Eq. (A.12)) are

even functions in k, this equation can be simplified to:

Φ̃(x̂, z,ω) =− P (+)
GF

ρw g
sgn(x̂)

Nk∑
n=0

γnQ−1
n eikn |x̂|Zn(z) (A.27)

whereλn =λ(kn), Qn =Q(kn) and the infinite summation was truncated at Nk for practi-
cal reasons. Using this general result, the solution to the original inverse Fourier integral
φ̃α(x, z) can be obtained using Eq. (A.20). This results in:

φ̃
(o,p)
α (x, z,ω) =− P (+)

GF

ρw g

Nk∑
n=0

γnQ−1
n Iα,n(x)Zn(z) (A.28)

where the x-dependency is captured by Iα,n(x) = Iα(kn , x) with Iα(k, x) defined as:

Iα(k, x) = sgn
(
x −x+

α

)
eik|x−x+

α |− sgn
(
x −x−

α

)
eik|x−x−

α | (A.29)

Its derivatives with respect to x are given by:

∂q Iα(k, x)

∂xq = (ik)q
(
sgn

(
x −x+

α

)q−1 e ik|x−x+
α |− sgn

(
x −x−

α

)q−1 e ik|x−x−
α |

)
(A.30)
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The Green’s function φ̃
(i,p)
α (x, z,ω) of the ice-covered water is derived in a very similar

manner as φ̃(o,p)
α (x, z,ω). Its problem definition is given in Fig. A.2 on the left.

Since the fluid is again described by the Laplace equation and the boundary condi-
tion at z =−H again prevents penetration of the fluid into the seabed, the derivation of

φ̃
(i,p)
α (x, z,ω) can start from Eq. (A.12) that satisfies both of these conditions:

˜̃φ(i,p)
α (k, z,ω) = c1

cosh(k(z +H))

cosh(kH)
= c1Z (k, z) (A.31)

At this point the derivation diverges as the ice-covered region has a different surface
boundary condition. Because of the presence of the ice, the fluid pressure p̃(x,0,ω) has
to balance with the internal stresses in the ice, as well as the distributed vertical force
P (−)

GF δ(t ). As the ice is modeled as a Kirchhoff-Love plate the surface boundary condition
of the fluid becomes:

−ω2ρihw̃(x,ω)+Diw̃
′′′′(x,ω) = p̃(x,0,ω)+

{
P (−)

GF ∀ x ∈ [xα−∆x, xα+∆x)

0 otherwise
(A.32)

where ρi is the density of the ice, h its thickness, w(x, t ) its transverse displacements
and the dash denotes a spatial derivative. The plate’s bending stiffness is given by Di =
Eh3(12(1−ν2))−1 where E is the ice’s Young’s modules and ν its Poisson ratio.

To assure a continuity of vertical displacements between ice and fluid, the following
interface condition has to be satisfied at z = 0:

w̃(x,ω) = ∂φ̃
(i,p)
α (x,0,ω)

∂z
∀ x ∈ (−∞,∞) (A.33)

Substituting this relation into the surface boundary condition, Eq. (A.32), using Eq. (A.8)
for the fluid pressure p̃ and then transforming to the (k, z,ω)-domain gives:

(−ω2ρih +Dik
4)∂ ˜̃φ(i,p)

α (k,0,ω)

∂z
=

−ρw

(
−ω2 ˜̃φ(i,p)

α (k,0,ω)+ g
∂ ˜̃φ(i,p)

α (k,0,ω)

∂z

)
+P (−)

GF

e−ik(xα+∆x) −e−ik(xα−∆x)

−ik

(A.34)

The expression for the fluid potential, Eq. (A.31), is now substituted into this equation.
Using the fact that Z (k,0) = 1 and assigning Z ′(k,0) = k tanh(kH) = λ(k), Eq. (A.34)
simplifies to:

(−ω2ρihλ(k)+Dik
4λ(k)+ρw gλ(k)−ρwω

2)c1 = P (−)
GF

e−ikx+
α −e−ikx−

α

−ik
(A.35)

Solving for c1 gives:

c1 =
P (−)

GF

−ik

1

λ(k)

e−ikx+
α −e−ikx−

α

−ω2ρih +Dik4 +ρw g −ρwω2λ−1(k)
(A.36)
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Substituting this expression into the potential, Eq. (A.31), and transforming back to the
(x, z,ω)-domain gives:

φ̃
(i,p)
α (x, z,ω) = i

2π
P (−)

GF

∫ ∞

−∞
1

k

1

λ(k)

e ik(x−x+
α ) −e ik(x−x−

α )

−ω2ρih +Dik4 +ρw g −ρwω2λ−1(k)
Z (k, z)dk

(A.37)
This integral can be rewritten as:

φ̃
(i,p)
α (x, z,ω) = i

2π

P (−)
GF

ρw g

∫ ∞

−∞
1

k

1

λ(k)

e ik(x−x+
α ) −e ik(x−x−

α )

D̄(k)
Z (k, z)dk (A.38)

where D̄(k) = 0 is the dispersion relation of the ice-covered region, with D̄(k) defined as:

D̄(k) = δk4 +1−a(γ+λ−1(k)) (A.39)

where a =ω2/g , γ= hρi/ρw , δ= Di/(ρw g ) and the overbar is used to differentiate terms
related to the ice-covered region from those related to the open water. Note that λ(k) in
the denominator does not generate any poles.

The integral in Eq. (A.36) is evaluated using the same procedure as used in the previ-

ous section. This results in the following final expression for φ̃(i,p)
α (x, z,ω):

φ̃
(i,p)
α (x, z,ω) =− P (−)

GF

ρw g

Nk+2∑
n=0

γnQ̄−1
n Īα,n(x)Z̄n(z) (A.40)

where γn is defined in Eq. (A.25), the x-dependency is captured by Īα,n(x) = Iα(k̄n , x), see
Eq. (A.29) and the infinite summation was truncated for practical reasons. The trunca-
tion was done at Nk +2 to facilitate the Eigenfunction Matching procedure that is applied
in the next section. The set of roots of the ice-covered region k̄n are defined as:

• k̄0 = 0,

• k̄1: the complex root in the first quadrant of D̄(k) = 0,

• k̄2: the complex root in the second quadrant of D̄(k) = 0,

• k̄3: the negative real root of D̄(k) = 0,

• k̄n | n ≥ 4: the positive imaginary roots of D̄(k) = 0 in ascending order.

The numerical scheme used to find these roots is explained in section A.5. Q̄n in Eq.
(A.40) is the derivative of the denominator of Eq. (A.38) with respect to the wavenumber
k:

Q̄n = ∂
(
kλ(k)D̄(k)

)
∂k

= D̄n
(
2λ̄n +H

(
k̄2

n − λ̄2
n

))+4δk̄4
nλ̄n +a

(
1+ H

(
k̄2

n − λ̄2
n

)
λ̄n

)
, (A.41)

where λ̄n =λ(k̄n) and D̄n = D̄(k̄n).
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A.3. GREEN’S FUNCTIONS FOR A SEMI-INFINITE ICE COVER
In the third section of this appendix, the final set of Green’s functions φ̃α is derived.
These Green’s functions are a solution to the original inhomogeneous problem shown
in Fig. A.1 and are derived using the Eigenfunction Matching procedure. A solution is
sought for in the following form:

φ̃α(x, z,ω) =
{
φ̃

(i,p)
α (x, z,ω)+ φ̃(i,EM)

α (x + l , z,ω), ∀ x ∈ (∞,−l ] ∩ z ∈ [−H ,0]

φ̃
(o,p)
α (x, z,ω)+ φ̃(o,EM)

α (x + l , z,ω), ∀ x ∈ (−l ,∞) ∩ z ∈ [−H ,0]
(A.42)

where φ̃(i,p)
α and φ̃(o,p)

α , which were derived in the previous two sections, account for the
distributed vertical force PGFδ(t ). The two new potentials, φ̃(i,EM)

α in the ice-covered re-
gion and φ̃(o,EM)

α in the open water region, are defined as:

φ̃(o,EM)
α (x + l , z,ω) =

Nk∑
n=1

aα,neikn (x+l )Zn(z) ∀ x ∈ (−∞,∞) ∩ z ∈ [−H ,0] (A.43a)

φ̃(i,EM)
α (x + l , z,ω) =

Nk+2∑
n=1

āα,ne−ik̄n (x+l ) Z̄n(z) ∀ x ∈ (−∞,∞) ∩ z ∈ [−H ,0] (A.43b)

These potentials are offset by l to assure the numerical stability of the evanescent modes.
These two potentials sum over the modes of open water and ice-covered region and,
therefore, satisfy all equations presented in sections A.1 and A.2 respectively. As their
modal amplitudes aα,n and āα,n are unknown, these potentials do not account for any
loading. Consequently, k0 and k̄0 are excluded as these were introduced by the dis-
tributed vertical force. The reason why φ̃(i,EM)

α (x, z,ω) contains two extra modes is ex-
plained at the end of this section.

The assumed solution in Eq. (A.42) satisfies all the governing equations except those
related to the interface between the two region, located at x = −l . The conditions that
have to be satisfied at this interface are z-dependent. At the ice edge, located at z = 0,
the two boundary conditions of the Kirchhoff-Love plate have to be satisfied while along
the water column, z ∈ (−H ,0), the interface conditions of the fluid have to be satisfied.

The two boundary conditions of the plate account for the force FGFδ(t ) and moment
MGFδ(t ) that act on its edge located at x =−l :

Di
∂2w̃(−l ,ω)

∂x2 = MGF (A.44a)

Di
∂3w̃(−l ,ω)

∂x3 = FGF (A.44b)

Substituting the interface condition between ice and fluid, Eq. (A.33), and substituting
the assumed form of the solution, Eq. (A.42), gives:

Di

(
∂3φ̃

(i,p)
α (−l ,0,ω)

∂zx2 + ∂3φ̃(i,EM)
α (−l ,0,ω)

∂zx2

)
= MGF (A.45a)

Di

(
∂4φ̃

(i,p)
α (−l ,0,ω)

∂zx3 + ∂4φ̃(i,EM)
α (−l ,0,ω)

∂zx3

)
= FGF (A.45b)
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Substituting the expression of the two potentials, Eqs. (A.28) and (A.43b), into this equa-
tion results in:

Di

(
P (−)

GF

ρw g

Nk+2∑
n=0

γnQ̄−1
n k̄2

n Ī
′′
α,n(−l )λ̄n −

Nk+2∑
n=1

ān k̄2
nλ̄n

)
= MGF (A.46a)

iDi

(
P (−)

GF

ρw g

Nk+2∑
n=0

γnQ̄−1
n k̄3

n Ī
′′′
α,n(−l )λ̄n +

Nk+2∑
n=1

ān k̄3
nλ̄n

)
= FGF (A.46b)

It is important to note that the contribution of k0 and k̄0 is zero outside the domain of the
distributed vertical force that these roots relate to. Since x = 0 falls outside the domain
of the distributed vertical force, see Eqs. (A.7) and (A.32), these wavenumbers should
be excluded and so the summations of φ̃(i,p)

α and φ̃
(o,p)
α start at n = 1. Consequently, γn ,

given by Eq. (A.25), simplifies to 1. After applying these simplifications, the unknown
amplitudes āα,n in Eqs. (A.46) are isolated, thereby obtaining the final form of the two
boundary conditions of the plate:

Nk+2∑
n=1

āα,n k̄2
nλ̄n =−MGF

Di
+ P (−)

GF

ρw g

Nk+2∑
n=1

Q̄−1
n k̄2

n Ī
′′
α,n(−l )λ̄n (A.47a)

Nk+2∑
n=1

āα,n k̄3
nλ̄n = FGF

iDi
− P (−)

GF

ρw g

Nk+2∑
n=1

Q̄−1
n k̄3

n Ī
′′′
α,n(−l )λ̄n (A.47b)

Next, the two interface conditions of the fluid assure a continuity of the fluid pres-
sure, Eq. (A.48a), and displacement, Eq. (A.48b), across the interface:(

φ̃
(i,p)
α + φ̃(i,EM)

α

)∣∣∣
x=−l

=
(
φ̃

(o,p)
α + φ̃(o,EM)

α

)∣∣∣
x=−l

∀ z ∈ [−H ,0] (A.48a)(
∂φ̃

(i,p)
α

∂x
+ ∂φ̃(i,EM)

α

∂x

)∣∣∣∣∣
x=−l

=
(
∂φ̃

(o,p)
α

∂x
+ ∂φ̃(o,EM)

α

∂x

)∣∣∣∣∣
x=−l

∀ z ∈ [−H ,0] (A.48b)

In order to handle the z-dependence of these two conditions, the orthogonality property
of the depth Eigenfunction Zn(z) is used. Both sides of Eqs. (A.48a) and (A.48b) are
multiplied by Z j (z) and then integrated along z from −H to 0, where k j = kn | j = 1 . . Nk.
This procedure is first applied to Eq. (A.48a):

− P (−)
GF

ρw g

Nk+2∑
n=1

Q̄−1
n Īα,n(−l )

λ̄n −λ j

k̄2
n −k2

j

+
Nk+2∑
n=1

āα,n
λ̄n −λ j

k̄2
n −k2

j

=

− P (+)
GF

ρw g

Nk∑
n=1

Q−1
n Iα,n(−l )

λn −λ j

k2
n −k2

j

+
Nk∑

n=1
aα,n

λn −λ j

k2
n −k2

j

∀ j = 1 . . Nk (A.49)

where the resulting integrals over z were substituted with:∫ 0

−H
Zn(z)Z j (z)dz = λn −λ j

k2
n −k2

j

(A.50a)

∫ 0

−H
Z̄n(z)Z j (z)dz = λ̄n −λ j

k̄2
n −k2

j

(A.50b)



A.4. AVERAGED RESPONSES

A

121

Since k0 can be ignored, all remaining Nk modes of φ̃(o,p)
α satisfy the open water disper-

sion relation D(k) = 0. This implies that λn = λ j = a. Using this relation, the right hand
side of Eq. (A.50a) simplifies to:

λn −λ j

k2
n −k2

j

=
0, n 6= j(

k2
n H sech2(kn H)+λn

)(
2k2

j

)−1 =−Q j

(
2k2

j

)−1
, n = j

(A.51)

where Q j = Q(k j ). k2
n H sech2(kn H)+λn is indeed equal to −Q j since k0 is excluded,

implying that D(k) in Eq. (A.24) is equal to zero since all k j satisfy the open-water dis-
persion relation. Based on this result, Eq. (A.49) can be simplified to:

Nk+2∑
n=1

āα,n
λ̄n −λ j

k̄2
n −k2

j

= 1

2k2
j

(
P (+)

GF

ρw g
Iα, j (−l )−aα, j Q j

)
+

P (−)
GF

ρw g

Nk+2∑
n=1

Q̄−1
n Īα,n(−l )

λ̄n −λ j

k̄2
n −k2

j

∀ j = 1 . . Nk (A.52)

The same procedure is now applied to the second interface condition that assures a
continuity of displacements, Eq. (A.48b), resulting in:

−
Nk+2∑
n=1

āα,n k̄n
λ̄n −λ j

k̄2
n −k2

j

= 1

2k2
j

(
P (+)

GF

ρw g
k j I

′
α, j (−l )−aα, j k j Q j

)
+

P (−)
GF

ρw g

Nk+2∑
n=1

Q̄−1
n k̄n Ī

′
α,n(−l )

λ̄n −λ j

k̄2
n −k2

j

∀ j = 1 . . Nk (A.53)

Eq. (A.52) is now multiplied by −k j and added to Eq. (A.53) to get the final expression
that assures continuity of the fluid:

Nk+2∑
n=1

āα,n
λ̄n −λ j

k̄n −k j
=− P (+)

GF

ρw g

I
′
α, j (−l )− Iα, j (−l )

2k j

− P (−)
GF

ρw g

Nk+2∑
n=1

Q̄−1
n

(
k̄n Ī

′
α,n(−l )−k j Īα,n(−l )

) λ̄n −λ j

k̄2
n −k2

j

∀ j = 1 . . Nk (A.54)

This equation has to be satisfied for each j , resulting in Nk equations to be satisfied.
Together with the two equations from the boundary conditions of the plate, Eqs. (A.44),
a total of Nk + 2 equations need to be satisfied. Using these equations, values can be
computed for the Nk+2 unknown amplitudes of the ice-covered region āα,n . Afterwards
the Nk unknown amplitudes of the open-water region aα,n are readily computed using

Eq. (A.52). The two boundary conditions of the plate are therefore the reason why φ̃(i,p)
α

and φ̃(i,EM)
α in Eq. (A.43b) sum over two more modes than φ̃(o,p)

α and φ̃(o,EM)
α .

A.4. AVERAGED RESPONSES
In the main body of this thesis the Boundary Element Method (BEM) is employed to
discretize the spatially varying nonlinear dynamic pressure and axial compression. In
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order to improve the accuracy of this method, the average response within an element is
used rather than point-wise evaluations. The elements wherein the averaged response
is computed are indexed with β, have a width of 2∆x, and are centered around xβ, which
has the same definition as xα in Eq. (A.1). In this section, the analytical expressions for
the averaged horizontal and vertical displacements within these elements are derived.
These expressions have been validated against averages computed numerically.

Average horizontal response The averaged horizontal displacement in elementβ, ũα,β,
is given by:

ũα,β =
1

2∆x

∫ x+
β

x−
β

∂φ̃(x, z)

∂x
dx

= 1

2∆x

∫ x+
β

x−
β


∂φ̃

(i,p)
α (x,z,ω)
∂x + ∂φ̃(i,EM)

α (x+l ,z,ω)
∂x ∀ β< 0

∂φ̃
(o,p)
α (x,z,ω)
∂x + ∂φ̃(o,EM)

α (x+l ,z,ω)
∂x ∀ β> 0

dx (A.55)

where x−
β
= xβ−∆x and x+

β
= xβ+∆x. The integral of I ′α(k, x) can be evaluated as follows:

I ′α,β(k) =
∫ x+

β

x−
β

∂Iα(k, x)

∂x
dx

=
∫ x+

β

x−
β

ik
(
eik|x−(xα+∆x)|−eik|x−(xα−∆x)|

)
dx

=
∫ x+

β

x−
β

ik

{
eik(x−(xα+∆x)), ∀ x ≥ xα+∆x

e−ik(x−(xα+∆x)), ∀ x < xα+∆x
dx

−
∫ x+

β

x−
β

ik

{
eik(x−(xα−∆x)), ∀ x ≥ xα−∆x

e−ik(x−(xα−∆x)), ∀ x < xα−∆x
dx

= ik


1
ik

(
eik(xβ+∆x−(xα+∆x)) −eik(xβ−∆x−(xα+∆x))

)
, ∀ x ≥ xα+∆x

1
−ik

(
e−ik(xβ+∆x−(xα+∆x)) −e−ik(xβ−∆x−(xα+∆x))

)
, ∀ x < xα+∆x

− ik


1
ik

(
eik(xβ+∆x−(xα−∆x)) −eik(xβ−∆x−(xα−∆x))

)
, ∀ x ≥ xα−∆x

1
−ik

(
e−ik(xβ+∆x−(xα−∆x)) −e−ik(xβ−∆x−(xα−∆x))

)
, ∀ x < xα−∆x

=
{

eik(xβ−xα) (1−e−2ik∆x
)

, ∀ β>α
e−ik(xβ−xα) (e2ik∆x −1

)
, ∀ β≤α

−
{

eik(xβ−xα) (e2ik∆x −1
)

, ∀ β≥α
e−ik(xβ−xα) (1−e−2ik∆x

)
, ∀ β<α

=


eik(xβ−xα) ((1−e−2ik∆x

)− (
e2ik∆x −1

))
, ∀ β>α

e−ik(xβ−xα) (e2ik∆x −1
)−eik(xβ−xα) (e2ik∆x −1

)
, ∀ β=α

e−ik(xβ−xα) ((e2ik∆x −1
)− (

1−e−2ik∆x
))

, ∀ β<α
(A.56)
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=


2eik(xβ−xα) (1−cos(2k∆x)) , ∀ β>α
e−ik(xβ−xα) (e2ik∆x −1

)−eik(xβ−xα) (e2ik∆x −1
)

, ∀ β=α
−2e−ik(xβ−xα) (1−cos(2k∆x)) , ∀ β<α

=
{

2sgn(β−α) eik|xβ−xα| (1−cos(2k∆x)) , ∀ β 6=α
0, ∀ β=α (A.57)

Using this result, the four integrals in Eq. (A.55) can be evaluated as:

1

2∆x

∫ x+
β

x−
β

∂φ̃
(i,p)
α (x, z)

∂x
dx =− P (−)

GF

ρw g

1

2∆x

Nk+2∑
n=0

γnQ̄−1
n Ī ′α,β,n Z̄n(z) (A.58)

1

2∆x

∫ x+
β

x−
β

∂φ̃
(o,p)
α (x, z,ω)

∂x
dx =− P (+)

GF

ρw g

1

2∆x

Nk∑
n=0

γnQ−1
n I ′α,β,n Zn(z) (A.59)

1

2∆x

∫ x+
β

x−
β

∂φ̃(o,EM)
α (x + l , z,ω)

∂x
dx = 1

2∆x

∫ x+
β

x−
β

Nk∑
n=1

an(ikn)eikn (x+l )Zn(z)dx

= 1

2∆x

Nk∑
n=1

an(ikn)
1

ikn

(
e

ikn (x+
β
+l ) −e

ikn (x−
β
+l )

)
Zn(z)

= 1

2∆x

Nk∑
n=1

an

(
eikn∆x −e−ikn∆x

)
eikn (xβ+l )Zn(z)

= 1

∆x

Nk∑
n=1

an sinh(ikn∆x)eikn (xβ+l )Zn(z)

= i

∆x

Nk∑
n=1

an sin(kn∆x)eikn (xβ+l )Zn(z) (A.60)

1

2∆x

∫ x+
β

x−
β

∂φ̃(i,EM)
α (x + l , z,ω)

∂x
dx = 1

2∆x

∫ x+
β

x−
β

Nk+2∑
n=1

ān(−ik̄n)e−ik̄n (x+l ) Z̄n(z)dx

= 1

2∆x

Nk+2∑
n=1

ān

(
e
−ik̄n (x+

β
+l ) −e

−ik̄n (x−
β
+l )

)
Z̄n(z)

= 1

2∆x

Nk+2∑
n=1

ān

(
e−ik̄n∆x −e−ik̄n (−∆x)

)
e−ik̄n (xβ+l ) Z̄n(z)

=− 1

∆x

Nk+2∑
n=1

ān sinh(ik̄n∆x)e−ik̄n (xβ+l ) Z̄n(z)

=− i

∆x

Nk+2∑
n=1

ān sin(k̄n∆x)e−ik̄n (xβ+l ) Z̄n(z) (A.61)
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Average vertical response The averaged vertical displacement within elementβ, w̃α,β,
is given by:

w̃α,β =
1

2∆x

∫ x+
β

x−
β

∂φ̃α(x, z,ω)

∂z
dx

= 1

2∆x

∫ x+
β

x−
β


∂φ̃

(i,p)
α (x,z,ω)
∂z + ∂φ̃(i,EM)

α (x+l ,z,ω)
∂z ∀ β< 0

∂φ̃
(o,p)
α (x,z,ω)
∂z + ∂φ̃(o,EM)

α (x+l ,z,ω)
∂z ∀ β> 0

dx (A.62)

The integral over Iα(k, x), given by Eq. (A.29), can be evaluated to give:

Iα,β(k) =
∫ x+

β

x−
β

Iα(k, x)dx

=−4

{
sinc(∆xk)ei∆xk , if α=β
i∆xk sinc2(∆xk)e2i∆xk|α−β|, if α 6=β

=−4

∆x sinc
(
∆xk
π

)
ei∆xk , if α=β

i∆2
xk sinc2

(
∆xk
π

)
e2i∆xk|α−β|, if α 6=β (Matlab) (A.63)

Using this result, the integrals in Eq. (A.62) are evaluated to:

1

2∆x

∫ x+
β

x−
β

∂φ̃
(i,p)
α (x, z,ω)

∂z
dx =− P (−)

GF

ρw g

1

2∆x

Nk+2∑
n=0

γnQ̄−1
n Īα,β,n Z̄

′
n(z) (A.64)

1

2∆x

∫ x+
β

x−
β

∂φ̃
(o,p)
α (x, z,ω)

∂z
dx =− P (+)

GF

ρw g

1

2∆x

Nk∑
n=0

γnQ−1
n Iα,β,n Z

′
n(z) (A.65)

where Iα,β,n = Iα,β(kn) and Īα,β,n = Iα,β(k̄n). Continuing with the remaining two inte-
grals:

1

2∆x

∫ x+
β

x−
β

∂φ̃(o,EM)
α (x + l , z,ω)

∂z
dx = 1

2∆x

∫ x+
β

x−
β

Nk∑
n=1

aneikn (x+l )Z
′
n(z)dx

= 1

2∆x

Nk∑
n=1

an
1

ikn

(
e

ikn (x+
β
+l ) −e

ikn (x−
β
+l )

)
Z

′
n(z)

=−i
1

2∆x

Nk∑
n=1

ank−1
n

(
eikn∆x −e−ikn∆x

)
eikn (xβ+l )Z

′
n(z)

=−i
1

∆x

Nk∑
n=1

ank−1
n sinh(ikn∆x)eikn (xβ+l )Z

′
n(z)

= 1

∆x

Nk∑
n=1

an sinc(kn∆x)eikn (xβ+l )Z
′
n(z)

=
Nk∑

n=1
an sinc

(
kn∆x

π

)
eikn (xβ+l )Z

′
n(z) (Matlab) (A.66)
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1

2∆x

∫ x+
β

x−
β

∂φ̃(i,EM)
α (x + l , z,ω)

∂z
dx = 1

2∆x

∫ x+
β

x−
β

Nk+2∑
n=1

āne−i k̄n (x+l ) Z̄
′
n(z)dx

= 1

2∆x

Nk+2∑
n=1

ān
1

−ik̄n

(
e
−i k̄n (x+

β
+l ) −e

−i k̄n (x−
β
+l )

)
Z̄

′
n(z)

= i
1

2∆x

Nk+2∑
n=1

ān k̄−1
n

(
e−i k̄n∆x −e−i k̄n (−∆x)

)
e−i k̄n (xβ+l ) Z̄

′
n(z)

=−i
1

∆x

Nk+2∑
n=1

ān k̄−1
n sinh(i k̄n∆x)e−i k̄n (xβ+l ) Z̄

′
n(z)

= 1

∆x

Nk+2∑
n=1

ān sinc(k̄n∆x)e−i k̄n (xβ+l ) Z̄
′
n(z)

=
Nk+2∑
n=1

ān sinc

(
k̄n∆x

π

)
e−i k̄n (xβ+l ) Z̄

′
n(z) (Matlab)

(A.67)

A.5. ROOT-FINDING ALGORITHMS
In the last section of this appendix, the numerical schemes are explained that were used
to find the set of roots kn that satisfies the open water dispersion equation D(k) = 0 and
the set k̄n that satisfies the ice-covered dispersion equation D̄(k) = 0. The numerical
schemes are based on a set of recursive formulas that differ for each type of root. The
formulas for each type are listed below. The scheme evaluates the recursive formulas and
should converge to the root k j . The scheme has converged successfully if |k(i+1)

j −k(i )
j | <

εabs where i is the iteration counter that starts at i = 0. Even with very strict tolerances,
for example εabs = 10−12 as used in this thesis, the scheme converges in only several
iterations (less than 10).

A.5.1. ROOTS FOR THE OPEN WATER REGION
The dispersion equation for open water is given in Eq. (A.17) and is repeated here for
convenience:

D(k) = a −λ(k) = ω2

g
−k tanh(kH) = 0 (A.68)

Solving this equation for k results in the set of roots kn . As explained in section A.1, kn

starts with k0 = 0, followed by k1 which is the negative real root of D(k) = 0. All subse-
quent entries contain the imaginary roots of D(k) = 0 located in the UHP, in ascending
order.

Negative real root The negative real root k1 is found using the following recursive for-
mula that starts with k(0) = a:

k(i+1) = a

tanh(k(i )H)
(A.69)

Imaginary roots in the UHP For finding the imaginary roots located in the UHP, kn ∀n ≥
2, the dispersion relation is mapped to the imaginary axis. This allows the computation
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to be done using real numbers which improves the computational speed:

D(ik) = a +k tan(kH) = 0 (A.70)

The roots of this equation are found using the following recursive formula:

k(i+1) = 1

H

(
atan

(
a

k(i )

)
+π

⌈∣∣∣∣k(i ) H

π

∣∣∣∣−1/2

⌉)
(A.71)

where d. .e is the ceiling function that maps a real number to the smallest following in-
teger. The first term is the direct solution of D(ik) = 0 and the second term accounts
for the multivalued nature of the arctangent. Once a root has been found, it should
be multiplied with i to account for the substitution of ik done in Eq. (A.70). Since
{tan(kH) | k ∈ [π( j −1/2), π( j +1/2)] ∩ j ∈ N0} 7→ [−∞,∞] and a/k is a finite number,
D(ik) = 0 will have a root between each pair of consecutive poles of tan(kH). Therefore,
the initial guesses are set half-way between each pair of poles:

k(0)
j = jπ

H
∀ j ∈N0 (A.72)

Note that j = 0 is not guaranteed to return a root since {tan(kH) | k ∈ [0, π/2]} 7→ [0,∞].

A.5.2. ROOTS FOR THE ICE-COVERED REGION
The dispersion equation of the ice-covered region is given in Eq. (A.39) and is repeated
here for convenience:

D̄(k) = δk4 +1−a(γ+λ−1(k)) = 0 (A.73)

Solving this equation for k results in the set of roots k̄n . As explained in section A.2, k̄n

starts with k̄0 = 0, followed by k̄1 and k̄2 which are the complex poles of D̄(k) = 0 located
in the UHP. k̄3 is the negative real root of D̄(k) = 0 and all subsequent entries contain the
imaginary roots of D̄(k) = 0 located in the UHP, in ascending order.

Complex roots in the UHP The complex conjugated roots k̄1 and k̄2 located in the
UHP are found using the following recursive formula:

k(i+1) = 4
√
−δ−1

(
1−a

(
γ+λ−1(k(i ))

))
(A.74)

The initial guess is set to the solution of the plate without hydrodynamic effects: k(0) =
4
√
δ−1

(
aγ−1

)
.

Negative real root The negative real root k̄3 is found using the following recursive for-
mula that starts at i = 0:

k(i+1) = 1

tanh(k(i )H)

a

aγ−δ(k(i ))4 −1
(A.75)

with the initial guess k(0) = k1.
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Imaginary roots in the UHP The imaginary roots of D̄(k) = 0 are found using the fol-
lowing recursive formula that starts at i = 0:

k(i+1) = 1

H

(
atan

(
a

k(i )

1

δ(k(i ))4 +1−aγ

)
+π

⌈∣∣∣∣k(i ) H

π

∣∣∣∣−1/2

⌉)
(A.76)

The roots are again located between pairs of consecutive poles of tan(kH). The initial
guesses for Eq. (A.76) are located half-way between each pair of poles:

k(0)
j = jπ

H
∀ j ∈N0 (A.77)

where j = 0 is again not guaranteed to return a root.





B
NUMERICAL SCHEME FOR

EVALUATING IFTS

In this section, a numerical scheme is introduced for evaluating the Inverse Fourier
Transforms (IFTs) that arose in Ch. 4. In order to obtain a scheme that can effectively
and efficiently evaluate these IFTs, the problem in Ch. 4 is analyzed, thereby establish-
ing the design specifications for the numerical IFT scheme. This is done in section B.1.
Next, the analytical form of the IFTs is optimized in section B.2. The numerical aspects
of the scheme are then discussed in section B.3. Lastly, the scheme is validated in section
B.4.

B.1. REQUIREMENTS FOR THE IFT SCHEME
Analysis. The numerical scheme will be optimized for the IFTs that arose in Ch. 4. The
IFTs to be solved, based on Eq. (4.24) and (4.31), are of the following form:

L(i )
n = 1

2π

∫ ∞

−∞
G̃i (ω)L̃(ω)eiω∆tn dω (B.1a)

T (i )
n = 1

2π

∫ ∞

−∞
G̃i (ω)T̃ (ω)eiω∆tn dω (B.1b)

where ∆t is the time step, n is the index for time (t = n∆t), G̃i (ω) is the set of N̂q Green’s
functions that contains the frequency-domain response of each state-component in the
reduced state-vector q̂n (a vector of length N̂q , see Eq. (4.39)) excited by the i th pseudo-
force and L̃(ω) and T̃ (ω) were introduced by the linearization of the loading within each
time step. In total, NF pseudo-forces act on the system and therefore the total number of
Green’s functions is N̂q×NF. For each input-output pair, both IFTs have to be evaluated.

The total number of IFTs is thus 2N̂q×NF. If all pseudo-forces are zero at t = 0, L(i )
n is not

needed and the total number of IFTs reduces to N̂q ×NF. Eqs. (B.1) are further analyzed
in order to assess their implications on the design of the integration scheme.
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First, both equations show that adding new integration points requires evaluation
of the Green’s functions G̃i (ω) of the system. This is computationally expensive as for
each frequency the set of roots k̄n needs to be computed (see App. A.1 and A.2 for the
details). Moreover, for each frequency, as well as for every pseudo-force, the eigenfunc-
tion matching procedure in App. A.3 has to be performed in order to find the modal
amplitudes of the system, which involves solving a (Nk +2)× (Nk +2) linear problem. As
both of these steps are computationally expensive, the numerical scheme should strive
to minimize the number of evaluations of the system’s Green’s functions.

Second, each Green’s function sums over the modes of the system and each mode is
based on a wavenumber. These wavenumbers are found using a numerical root-finding
scheme (see App. A.5) and therefore all Green’s functions in G̃i (ω) are discrete functions.
Because of this, the IFTs in Eqs. (B.1) cannot be evaluated exactly and will contain a time-
domain error. As the response of the system is obtained by superimposing the response
excited by all pseudo-forces, see Eq. (4.33), it is imperative that all IFTs are evaluated
with a time-domain error of a similar order of magnitude.

Based on these two properties, the following two specifications are set for the design
of the numerical IFT scheme:

1. The scheme should minimize the number of evaluations of the Green’s functions,
i.e. it should minimize the number of integration points.

2. The scheme should evaluate each IFT with a time-domain error that is of a similar
order of magnitude.

These two specifications are the primary drivers for the design of the integration scheme.
The remaining design space is used to make the scheme as general as possible and to
maximize its computational speed.

Implications. In order to guarantee the second specification, the integration scheme
has to be adaptive. This implies that the scheme will be iterative, gradually refining the
frequency-domain mesh until the resulting time-domain error meets the specified tol-
erances. In order to minimize the number of evaluations of the Green’s functions, the
scheme should reuse all previously computed integration points at each iteration, i.e.
the scheme should nest. Therefore, an adaptive, nesting integration scheme is required.

Scope. The scope is limited to discrete Green’s functions of real-valued, causal systems
that are bounded for all real frequencies, i.e. damped systems.

B.2. SELECTION OF THE ANALYTICAL FORM
To start, Eqs. (B.1) are rewritten into the following general form for clarity:

f (t ) = 1

2π

∫ ∞

−∞
f̃ (ω)eiωt dω (B.2)

Since the time-domain response f (t ) is real, f̃ (ω) is an Hermitian function, which means
that its real part is symmetric and imaginary part is anti-symmetric. Consequently, the
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integral over the imaginary part of f̃ (ω)eiωt evaluates to zero and this equation simplifies
to:

f (t ) = 1

2π
ℜ

(∫ ∞

−∞
f̃ (ω)eiωt

)
dω+ i

2π
ℑ

(∫ ∞

−∞
f̃ (ω)eiωt

)
dω

= 1

π
ℜ

(∫ ∞

0
f̃ (ω)eiωt dω

)
= 1

π

∫ ∞

0
ℜ(

f̃ (ω)
)ℜ(

eiωt )−ℑ(
f̃ (ω)

)ℑ(
eiωt )dω (B.3)

where ℜ and ℑ imply taking the real and imaginary parts respectively. These forms are
preferred over the form in Eq. (B.2) as the integration range has been reduced. Next,
since the system is assumed to be causal ℜ(

f̃ (ω)
)ℜ(

eiωt
)−ℑ(

f̃ (ω)
)ℑ(

eiωt
) = 0 ∀ t < 0

and, consequently, ℜ(
f̃ (ω)

)ℜ(
eiωt

)=−ℑ(
f̃ (ω)

)ℑ(
eiωt

)
. This relation allows the equation

to be further simplified to:

f (t ) = 2

π

∫ ∞

0
ℜ(

f̃ (ω)
)

cos(ωt )dω (B.4a)

=− 2

π

∫ ∞

0
ℑ(

f̃ (ω)
)

sin(ωt )dω (B.4b)

These two forms are analytically equivalent but numerically different. The cosine-based
form is more susceptible to catastrophic cancellation for small t which can result in a
loss of significant digits, causing large errors in f (t ) at small values of t . Minimizing this
error is important as the iterative set of equations being solved at each time step, Eq.
(4.34), depends on T (i )

0 which, effectively, is the evaluation after only a single time step,
i.e. at t = 1∆t. As such the sin-based form is chosen.

B.3. NUMERICAL ASPECTS
The numerical aspects of the scheme are explained next. First, the integration range will
be truncated in order to obtain a definite integral. Since f̃ (ω) is assumed to be a dis-
crete function in ω, an interpolation scheme is then introduced to interpolate between
these discrete points, thereby obtaining a continuous approximation of f̃ (ω). Next, the
inverse transform is evaluated, thereby obtaining an approximation to f (t ). Since f (t )
contains an error due to the truncation and interpolation, the adaptive component of
the scheme is then introduced to assure that this error ε(t ) meets the user-specified tol-
erances. These steps are explained in detail next.

Integration range truncation. First, the integration range in Eq. (B.4b) is truncated in
order to obtain a definite integral:

f (t ) ≈− 2

π

∫ Ω

0
ℑ(

f̃ (ω)
)

sin(ωt )dω (B.5)

This truncation introduces an error εΩ(t ) which contributes to the overall error of the
scheme ε(t ). εΩ(t ) is defined as:

εΩ(t ) =− 2

π

∫ ∞

Ω
ℑ(

f̃ (ω)
)

sin(ωt )dω (B.6)
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For now, it is assumed that εΩ(t ) can be ignored ifΩ is sufficiently large. The exact value
ofΩ is specified later in this appendix.

Interpolation. Next, since f̃ (ω) is assumed to be a discrete function in ω, an interpo-
lation scheme is needed to interpolate between the discrete points. The resulting con-
tinuous interpolation function can then be used to approximate f̃ (ω). Using this inter-
polation function, the IFT can then be evaluated, thereby obtaining an approximation of
f (t ).

First, a decision has to be made on whether or not to discretize sin(ωt ) in Eq. (B.5).
Discretizing this term will increase the time-domain discretization error. Moreover, this
additional error will dependent on t . Since f (t ) has to meet the same tolerances for
all values of t , the adaptive component that assures that f (t ) meets the specified toler-
ances would have to be repeated for each value of t . As this would greatly slow down the
scheme, sin(ωt ) will not be discretized.

ω

ℑ( f̃(
ω

))

P (2)
1 P (2)

3 P (2)
i

E1 E2

ω1 ω2 ω3 ω4 ω5 ωi ωi+1 ωi+2

∆1 ∆2 ∆3 ∆4 ∆i ∆i+1

p1
p2

p3

p4 p5

pi
pi+1 pi+2

Figure B.1: ℑ(
f̃ (ω)

)
is approximated using NP second order polynomials P (2)

i that are indexed with i . Each

polynomials is constructed using the elements Ei and Ei+1 that depend on the set of points
{

pi , pi+1, pi+2
}
.

Next, the interpolation scheme for f̃ (ω) is introduced. To facilitate the explanation of
the interpolation, it is assumed that ℑ(

f̃ (ω)
)

has already been evaluated 2Np+1 times (in
actual fact, the integration points are added by the adaptive component of the scheme
that is explained later). This results in 2Np + 1 integration points or 2Np elements be-
tween these points. The scheme is illustrated in Fig. B.1.

Between each pair of adjacent elements, a second order polynomial is constructed,
see Fig. B.1. The i th polynomial P (2)

i is constructed using the set of integration points

{pi , pi+1, pi+2} which are the evaluations of ℑ(
f̃ (ω)

)
at the frequencies {ωi , ωi+1 = ωi +

∆i , ωi+2 = ωi+1 +∆i+1}. The (2) indicates that this is a second order polynomial. The
compact support of P (2)

i is, therefore, [ωi ,ωi+2] = [ωi ,ωi +∆i +∆i+1]. The resulting set
of Np polynomials is indexed with i ∈ i , with i = {1,3,5, . .,2NP −1}. Together, these poly-
nomials form the interpolation function P (2)(ω) that approximates the discrete function
ℑ(

f̃ (ω)
)
:

P (2)(ω) =∑
i∈i

P (2)
i (ω) (B.7)
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The compact support of P (2)(ω) is [0,Ω] = [0,ω2Np ]. Based on this definition of P (2)(ω),
Eq. (B.5) becomes:

f (t ) ≈− 2

π

∫ Ω

0
P (2)(ω)sin(ωt )dω=− 2

π

∫ Ω

0

∑
i∈i

P (2)
i (ω)sin(ωt )dω

=− 2

π

∑
i∈i

∫ ωi+2

ωi

P (2)
i (ω)sin(ωt )dω (B.8)

All NP integrals are now evaluated analytically:

f (t ) ≈− 2

π

∑
i∈i

((
pi+2 cos(ωi+2t )−pi cos(ωi t )

)
t−1

+
(
s(2)

i sin(ωi+2t )− s(1)
i sin(ωi t )

)
t−2

+ ci (cos(ωi+2t )−cos(ωi t )) t−3
)

(B.9)

where the amplitudes are given by:

ci =−4(ai +bi ) (B.10a)

s(1)
i = ai∆i +bi

(
∆(+)

i +∆i

)
(B.10b)

s(2)
i = ai

(
∆(+)

i +∆i+1

)
+bi∆i+1 (B.10c)

with ∆(+)
i =∆i +∆i+1 =ωi+2 −ωi and ai and bi defined as:

ai = pi+2 −pi+1

∆(+)
i ∆i+1

(B.11a)

bi = pi −pi+1

∆(+)
i ∆i

(B.11b)

Now, consider the summation of the two terms ∝ t−1. Since the contribution of adjacent
polynomials cancels out, the summation of these two terms evaluates to:

f (t ) ≈− 2

π

(
p1 cos(0t )+p2NP+1 cos(ω2NP t )

)
t−1

− 2

π

∑
i∈i

((
s(2)

i sin(ωi+2t )− s(1)
i sin(ωi t )

)
t−2

+ ci (cos(ωi+2t )−cos(ωi t )) t−3
)

(B.12)

Since f̃ (ω) is an Hermitian function p1 =ℑ(
f̃ (0)

)= 0 and the term ∝ p0 is always equal
to zero. The term∝ p2NP+1 is adjacent to the upper boundΩ of the truncated integration
range and it is, therefore, assumed to be negligible. Consequently, all terms ∝ t−1 can
be removed. Next, the two terms ∝ t−3 can be rewritten as:

f (t ) ≈− 2

π

NP∑
i=1

((
s(2)

i sin(ωi+2t )− s(1)
i sin(ωi t )

)
t−2

+ ci

(
sin

(
∆(+)

i

2
t

)
sin

(ωi+2 +ωi

2
t
))

t−3
)

(B.13)
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This form is preferred as it is solely based on sine functions, which again alleviates pre-
cision issues at small t .

Error estimation. The second order polynomials used for the interpolation introduce
a time-domain error εp(t ):

εp(t ) =− 2

π

∫ Ω

0

(
P (2)(ω)−ℑ(

f̃ (ω)
))

sin(ωt )dω (B.14)

Estimating εp(t ) is computationally expensive as it depends on time. To avoid this issue,
an upper bound can be obtained by considering that, since εp(t ) is a superposition of
sine functions, its maximum possible value occurs when all sine functions synchronize
and all evaluate to either 1 or -1. This results in the upper bound ε∗p:

|εp(t )| ≤ ε∗p = 2

π

∫ Ω

0

∣∣P (2)(ω)−ℑ(
f̃ (ω)

)∣∣ dω= 2

π

∑
i∈i

∫ ωi+2

ωi

∣∣P (2)(ω)−ℑ(
f̃ (ω)

)∣∣ dω (B.15)

The absolute value is now moved outside the integral:

ε∗p ≈ 2

π

NP∑
i∈i

∣∣∣∣∫ ωi+2

ωi

P (2)(ω)− P̂ (q)(ω)dω

∣∣∣∣ (B.16)

This equation gives the same results as Eq. (B.15), except at zero-crossings of ℑ(
f̃ (ω)

)
.

The error of the polynomial wherein the zero-crossing falls will be estimated wrongly as
the contributions from its positive and negative domains will be subtracted from one
another, rather than added. However, this additional error is accepted in lieu of pro-
gramming an exception.

Next, since ℑ(
f̃ (ω)

)
is assumed to be discrete, it again has to be approximated by a

continuous interpolation function P̂ (q)(ω) that consists of a superposition of compactly
supported q th-order polynomials:

εp(t ) ≈− 2

π

∫ Ω

0

(
P (2)(ω)− P̂ (q)(ω)

)
sin(ωt )dω (B.17)

where the hat is used to differentiate it from P (2)(ω). Ideally, q is as large as possible
to assure that ε∗p reflects the discretization error introduced by P (2)(ω) and not the er-

ror introduced by P̂ (q)(ω). However, already when q = 3 the analytical expressions of ε∗p
consists of a very large number of terms, which would make evaluating ε∗p too expensive.
For this reason q = 2 has to be used and, consequently, the accuracy of εp(t ) as an esti-
mator of the time-domain error introduced by P (2)(ω) is reduced. Despite this, εp(t ) will
still be of the correct order of magnitude, allowing it to be used as a measure by which
convergence of the adaptive scheme can be assessed.

Since q = 2, P̂ (2)(ω) cannot use the exact same definition as P (q)(ω) as otherwise
εp(t ) would always be equal to zero. As such, it is constructed using the same integration
points as P (2)(ω) but all its polynomials are shifted one element to the right, i.e. its first
polynomial starts at ω2 rather than ω1. The contribution of element i to ε∗p, εi , is then
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ω

ℑ( f̃(
ω

)) P (2)
i−1

P̂ (2)
i

εi

ωi−1 ωi ωi+1 ωi+2

∆i−1 ∆i ∆i+1

pi−1

pi

pi+1

pi+2Ei

Figure B.2: The error within element i , εi , is estimated as the gray area between P (2)
i−1(ω), depicted by the solid

line, and P̂ (2)
i (ω), depicted by the dashed line.

computed as the absolute difference in area between P̂ (2)(ω) and P (2)(ω) within element
i , as visualized in Fig. B.2. This results in the following expression for εi :

εi =
∆2

i

6

∣∣∣∣∣∆(±)
i

(
pi

∆i−1∆
(+)
i

− pi+1

∆i+1∆
(−)
i

)

+∆i

(
pi+2

∆i+1∆
(+)
i

− pi−1

∆i−1∆
(−)
i

)∣∣∣∣∣ ∀ i = 2 . . 2NP −1 (B.18)

where ∆(−)
i =∆i−1+∆i , ∆(±)

i =∆i−1+∆i +∆i+1 and ∆(+)
i =∆i +∆i+1. This approach is not

possible for the first and last element, i.e. for i = 1 and i = 2NP. For these two elements,
the error will be estimated using q = 1. This results in the following definitions for ε1 and
ε2NP :

ε1 =
∆2

1

6

∣∣∣∣∣p1
1

∆(+)
1

−p2
1

∆2
+p3

∆1

∆(+)
1 ∆2

∣∣∣∣∣ (B.19a)

ε2NP =
∆2

2NP

6

∣∣∣∣∣p2NP−1
∆2NP

∆(−)
2NP

∆2NP+1

−p2NP

1

∆2NP+1
+p2NP+1

1

∆(−)
2NP

∣∣∣∣∣ (B.19b)

These lower order estimators are acceptable as the magnitude of f̃ (ω) is small in these
frequency ranges since p1 =ℑ(

f̃ (0)
) = 0 and p2Np =ℑ(

f̃ (Ω)
) << 1. Moreover, the adap-

tive nature of the scheme assures that the natural frequencies of f̃ (ω) will not be near
either of these bounds, meaning that the curvature of f̃ (ω) close to the bounds is very
small and, therefore, even linear polynomials will give good a approximation. Finally,
the estimate of ε∗p can be obtained by summing the contributions of all 2NP elements:

ε∗p =
2NP∑
j=1

ε j (B.20)
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Adaptive nesting quadrature. The adaptive component of the integration scheme is
introduced next. This component assures that all IFTs are evaluated with a time-domain
error of a same order of magnitude, independently of the particular Green’s functions
being evaluated. To achieve this, the scheme will iterate, adding integration points in
the frequency-domain until ε∗p satisfies the specified tolerances. Moreover, the scheme
should nest, meaning that each iteration should reuse all previously computed integra-
tion points. In this manner, the number of integration points can be minimized.

The scheme starts with the following set of three frequencies: ω= {0, Ω/2, Ω}. There-
fore, the scheme starts with two elements between which a single second order polyno-
mial is constructed. The contribution of both elements to ε∗p is then computed using Eqs.
(B.19). These contributions are then summed according to Eq. (B.20), thereby obtaining
ε∗p. ε∗p has to meet the following tolerance criterion:

ε∗p ≤ max
({
εabs,εrel f ∗})

(B.21)

where f ∗ is the maximum possible response which is estimated as follows, again except-
ing any additional errors due to zero-crossings:

f ∗ ≈ 2

π

NP∑
i=1

∣∣∣∣∫ ω2i

ω2i−2

P (2)
i (ω)dω

∣∣∣∣ (B.22)

As long as this criterion is not met, the scheme will keep iterating. During each iteration,
the element with the largest contribution to ε∗p, i.e. the largest ε j , is split in half by placing
a new integration point in the middle of the element, see Fig. B.3. This new frequency
is added toω. The two integration points of the original element can be reused after the
split, implying that the scheme nests. After splitting, the error estimates of the affected
elements, see Fig. B.3 on the right, are recomputed using Eq. (B.18) and Eqs. (B.19).
Thereafter, ε∗p is updated and the tolerance criterion in Eq. (B.21) is reevaluated. This
process continues until Eq. (B.21) is satisfied.

ω

ε j ε1
ε2

ε3

ε4

ε5

ω0 ω1 ω2 ω3 ω4 ω5

ω

ε j ε1
ε2

ε3 ε4

ε5

ε6

ω0 ω1 ω2 ω3 ω4 ω5 ω6

Figure B.3: An illustration of the element placement and how it affects the error contributed by element being
split. The element with the largest contribution, ε3, is split by placing a new integration point half-way the
element. This results in the new situation shown on the right. The error estimates ε j of the four hatched
elements are affected by the split and have to be (re)computed.

Since new points are always placed in the middle of each element and since the ini-
tial frequency range is the same for all IFTs being evaluated, it is very likely that there is
a large overlap in the frequency set used when evaluating multiple IFTs of the same sys-
tem. This systematic placement of integration points allows certain frequency-dependent
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terms, such as wavenumbers and modal amplitudes, to be stored and reused. This
greatly reduces the computation time.

The facilitate the repeated halving of the elements, the upper bound frequency Ω is
rounded to the next power of two:

Ω= 2dlog2 (2π/∆t)e+ε2 (B.23)

where ε2 was set to +2 in this thesis. This definition minimizes the loss of significant
digits due to floating-point arithmetics while repeatedly splitting elements in two, im-
proving the accuracy of terms such as ∆(−)

i , ∆(±)
i and ∆(+)

i , which, in turn, improves the
accuracy of ε∗p. By relatingΩ to the time step∆t, all the relevant natural frequencies of the
system will be included as long as the time step is chosen correctly by the user. While this
approach for setting Ω is not very robust, increasing ε2 by 1 or 2 only increases the total
number of integration points by several percents and, therefore, does not have a signif-
icant impact on the performance of the solver. For this reason, alternative approaches,
like estimating εΩ(t ) or adaptively increasingΩ, were not implemented.

The adaptive scheme performs as expected under most conditions. However, when
a low accuracy is required, implying that both εabs and εrel are set to relatively lenient
values, andΩ is much larger than the natural frequencies of the system, the scheme can
converge with a mesh that is too coarse and, therefore, does not capture the fidelity of
ℑ(

f̃ (ω)
)
, meaning the peaks at its natural frequencies will not be properly discretized.

This results in a time-domain response f (t ) that has no physical meaning. To avoid this
issue, a minimum refinement level is enforced:

min(ω′) ≤ 2π

Tsim
(B.24)

where the prime denotes taking the difference between adjacent entries of the setω that
contains all used frequencies in ascending order. This minimum refinement level forces
the scheme to continue until at the very least a coarse outline of ℑ(

f̃ (ω)
)

is achieved.
Once this coarse outline has been established, the criterion in Eq. (B.21) takes over and
will assure that P (2)(ω) is further refined until it captures the fidelity of ℑ(

f̃ (ω)
)

up to the
specified tolerance. The check of this criterion can be disabled once it has been met.

Lastly, two notes are in order. Firstly, while performing the convolution, L(i )
n and

T (i )
n are scaled by the loads acting on the system, see Eq. (4.39). This scaling has to be

taking into account by the user when specifying the absolute tolerance εabs. Second,
when multiple loads act on the system, the time-domain error generated by each load
will be superimposed when computing the state-components. This increase in error is
not taken into account.

B.4. VALIDATION
The scheme was used to solve the following ODE for x(t ) ∀ t ∈ [0,100] s:

ẍ + 1

2
ẋ +x = 1, x(0) = ẋ(0) = 0 (B.25)

Since the load is constant in time, the convolution scheme does not introduce any errors
as it is exact up to the first order. This means that any error in x(t ) is introduced by the
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IFT scheme. The predictions of the proposed scheme are compared against the analyti-
cal solution. The absolute and relative errors of the displacement x(t ) are shown in Fig.
B.4 for three tolerances. The frequency range was [0,214] = [0,16384] rad/s for all three
tolerances shown. In order to meet the three specified tolerances, a total of 47, 208 and
1134 integration points were used respectively. The figure shows that the solver is able
to achieve errors of the desired order of magnitude for all t .
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Figure B.4: The displacement x(t ) for three sets of tolerances: {εrel = 10−2,εabs = 10−4} solid line, {εrel =
10−4,εabs = 10−6} dashed line, {εrel = 10−6,εabs = 10−8} dash-dot line.





C
DERIVATION OF THE STATIC

BREAKING LENGTH

The contact model used in Chapter 4 accounts for the tip moment and this has a minor
effect on the static breaking length. In this appendix, an analytical expression for the
static breaking length lbr,s is derived that accounts for this tip moment.

In the static limit the equation of motion of the ice given by Eq. (4.4) reduces to:

Dw ′′′′(x)+ρw g w(x) = 0 ∀x ∈ (−∞,0] (C.1)

The general solution to this ODE that account for the proper behavior at x →−∞ is:

w(x) = c1 exp(r1x)+ c2 exp(r2x) (C.2)

where D = E(1−ν2)−1h3/12−1, c1 and c2 are unknown integration constants, r1 = (−1−
i)
p

2l /2 and r2 = (−1+i)
p

2l /2 with l = 4p
δ, where δ= D/(ρw g ) is defined in Eq. (4.11). To

complete the problem statement, two boundary conditions are needed. The boundary
conditions account for the contact force and moments that act on the edge of the plate:

Dw ′′′(0) =σcr (Vicet tan(θ)−w(0))cos(θ) (C.3)

Dw
′′

(0) =−h/2σcr (Vicet tan(θ)−w(0))sin(θ) (C.4)

The contact force is assumed to act at the top of the cross-section of the ice. The arm of
the horizontal component of the contact force with respect to the neutral axis is assumed
to be constant and equal to h/2.

These two boundary conditions can be used to find expressions for the unknown
constants c1 and c2. The breaking length can be found by determining the location
where the bending stress, given by the first term in Eq. (4.7), is maximum. This results in
the following expression for the static breaking length:

lbr,s =
p

2l atan

( p
2lp

2l −h tan(θ)

)
(C.5)
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D
CONVERGENCE OF THE ITERATIVE

SCHEME

In Chapter 4, an iterative scheme is used to solve the implicit equation, Eq. (4.34), that
allows the time-integration scheme to advance to the next time step. In this appendix,
the convergence rate of that recursive scheme is derived. To this end, Eq. (4.34) is rewrit-
ten in a simpler form under the assumption that there is only a single pseudo-force F (q),
noting again that the iteration counter j starts at 0:

q [ j+1] ≈ q [0] + cF (q [ j ]) (D.1)

where c = T0 << 1 with T0 being the factor of proportionality between a load that acts
on the system during the current time step and the response this load has excited by the
end of the time step. First, the pseudo-force F (q) is expanded in a Taylor series around
the state q [0] that contains the response excited by the load during all previous time step:

F (q) = F
(
q [0])+ (

q −q [0])F ′ (q [0])+ (
q −q [0]

)2

2
F ′′ (q [0])+O

((
q −q [0])3

)
(D.2)

Evaluations of F and its derivatives at q [0] will be indicated with the subscript 0 for
brevity:

F (q) = F0 + (q −q [0])F ′
0 +

(q −q [0])2

2
F ′′

0 +O
(
(q −q [0])3) (D.3)

Substituting the expansion into Eq. (D.1) and evaluating the first iteration ( j = 0) one
obtains:

q [1] = q [0] + cF (q [0]) = q [0] + cF0 (D.4)
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Since q [1] −q [0] = cF0, the second iteration ( j = 1) gives:

q [2] = q [0] + c
(
F

(
q [1]))

= q [0] + c

(
F0 +

(
q [1] −q [0])F ′

0 +
(
q [1] −q [0]

)2

2
F ′′

0 +O
((

q [1] −q [0])3
))

= q [0] + c

(
F0 + (cF0)F ′

0 +
(cF0)2

2
F ′′

0 +O(c3)

)
= (

q [0] + cF0
)+(

c2F0F ′
0 +

c3

2
F 2

0 F ′′
0 +O(c4)

)
= q [1] +

(
c2F0F ′

0 +
c3

2
F 2

0 F ′′
0 +O(c4)

)
(D.5)

Since q [2] −q [0] = c
(
F (q [1])

)
, the third iteration ( j = 2) gives:

q [3] = q [0] + c
(
F

(
q [2]))

= q [0] + c

(
F0 +

(
q [2] −q [0])F ′

0 +
(
q [2] −q [0]

)2

2
F ′′

0 +O
((

q [2] −q [0])3
))

= q [1] + c
(
q [2] −q [0])F ′

0 +
c

2

(
q [2] −q [0])2

F ′′
0 + c O

((
q [2] −q [0])3

)
= q [1] + c2F

(
q [1])F ′

0 +
c3

2
F

(
q [1])2

F ′′
0 +O

(
c4)

= q [1] + c2
(
F0 + cF0F ′

0 +
c2

2
F 2

0 F ′′
0 +O

(
c3))F ′

0

+ c3

2

(
F0 + cF0F ′

0 +
c2

2
F 2

0 F ′′
0 +O

(
c3))2

F ′′
0 +O

(
c4)

= q [1] + (
c2F0F ′

0 + c3F0(F ′
0)2 +O

(
c4))+(

c3

2
F 2

0 F ′′
0 +O

(
c4))+O

(
c4)

= q [2] + c3F0(F ′
0)2 +O

(
c4) (D.6)

This derivation shows that q [1] −q [0] =O(c), q [2] −q [1] =O(c2) and q [3] −q [2] =O(c3). So,
the error after j iterations is O(c [ j+1]), meaning the recursive scheme thus converges at
a rate of c = T0.
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