
 
 

Delft University of Technology

Overcoming the cohesive zone limit in composites delamination
modeling with slender structural elements and higher-order adaptive integration
Russo, Raffaele; Chen, Boyang

DOI
10.1002/nme.6497
Publication date
2020
Document Version
Final published version
Published in
International Journal for Numerical Methods in Engineering

Citation (APA)
Russo, R., & Chen, B. (2020). Overcoming the cohesive zone limit in composites delamination: modeling
with slender structural elements and higher-order adaptive integration. International Journal for Numerical
Methods in Engineering, 121(24), 5511-5545. https://doi.org/10.1002/nme.6497

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/nme.6497
https://doi.org/10.1002/nme.6497


Received: 28 May 2019 Revised: 7 May 2020 Accepted: 24 June 2020

DOI: 10.1002/nme.6497

R E S E A R C H A R T I C L E

Overcoming the cohesive zone limit in composites
delamination: modeling with slender structural elements
and higher-order adaptive integration

Raffaele Russo Boyang Chen

Faculty of Aerospace Engineering, Delft
University of Technology, Delft, the
Netherlands

Correspondence
Boyang Chen, Faculty of Aerospace
Engineering, Delft University of
Technology, Kluyverweg 1, 2629 HS, Delft,
the Netherlands.
Email: b.chen-2@tudelft.nl

Summary
Cohesive element (CE) is a well-established finite element for fracture, widely
used for the modeling of delamination in composites. However, an extremely
fine mesh is usually needed to resolve the cohesive zone, making CE-based
delamination analysis computationally prohibitive for applications beyond the
scale of lab coupons. In this work, a new CE-based method of modeling delam-
ination in composites is proposed to overcome this cohesive zone limit on the
mesh density. The proposed method makes use of slender structural elements for
the plies, a compatible formulation with adaptive higher-order integration for
the CEs, and the corotational formulation for geometrically nonlinear analysis.
The proposed method is verified and validated on the classical benchmark prob-
lems of Mode I, II, mixed-mode delamination, a buckling-induced delamination
problem and a double-delamination problem. The results show that elements
much larger than the cohesive zone length can be used while retaining accuracy.
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1 INTRODUCTION

Delamination is a common failure mode in composites. It often leads to structural disintegration prior to fiber failure,
thereby compromising the overall load-carrying capability of composite structures. While different methods exist to model
delamination, arguably the most widely used ones are based on cohesive elements (CEs). The CE is an interface ele-
ment established based on the cohesive zone model.1,2 It can be either seeded along the potential crack paths before
analysis or inserted at new crack locations during analysis. The standard CE is formulated to be conforming to contin-
uum/continuum shell elements which are used to model the plies on top and bottom of the CE. Despite its versatility, the
main limitation of modeling composite delamination with standard CEs is the constraint on element size imposed by the
cohesive zone.3-13 Strong stress gradients are usually present within and ahead of the cohesive zone of delamination in
composites. If standard CEs are used to simulate delamination, the element size (of both the CEs and the neighboring ply
elements) must be several times smaller than the cohesive zone length to be able to capture the cohesive traction distribu-
tion. Otherwise, the simulation would significantly overpredict the peak load6 (c.f., Figure 1). Cohesive zone models have
also been applied to the study of crack growth in metals, yet the cohesive zone limit on element sizes does not appear to be
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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F I G U R E 1 Overpredictions of peak stress on coarse meshes of linear elements for a typical DCB simulation [Color figure can be
viewed at wileyonlinelibrary.com]

as pronounced as in the case of composites delamination. This is because the cohesive zone length decreases with smaller
substrate thickness, higher substrate stiffness, and lower fracture toughness.4 CFRP composite laminates possess all three,
making the cohesive zone limit particularly stringent for the modeling of composite delamination. Several authors have
given suggestions on the minimum number of linear CEs (ie, CEs conforming to first-order continuum/continuum shell
ply elements) required to span the cohesive zone in order to ensure the prediction accuracy. Harper and Hallett suggested
a number of 3,6 while Moes and Belytschko proposed a number of 10.3 Camanho and Davila used approximately three
elements within the cohesive zone.14 Similarly, Yang and Cox suggested to use from three to five elements.4 The cohesive
zone length for Mode I delamination in a composite laminate could be smaller than 1 mm, which means that the ele-
ments would be at most around 0.3 mm in size. This limitation often results in prohibitively high computational cost to
perform simulations of delamination in component-scale composite structures.

The above-mentioned problem of cohesive zone limit has drawn the attention of many researchers in the past. Turon
et al5 proposed an engineering solution to the problem by lowering the strengths of the CE, which enlarged the numeri-
cal cohesive zone length, thereby allowing larger CEs to be used. A possible consequence of this procedure, particularly
with excessively reduced interfacial strengths, is that the simulation would predict a numerical cohesive zone much
larger than the physical one, leading to overcompliant predictions of structural responses and underpredictions of the
peak loads.6,15 Dávila et al16 developed a shell CE which was compatible with Mindlin-Reissner shell elements for plies.
However, their method did not resolve the issue of cohesive zone limit. Yang et al7 proposed to use Gauss quadra-
ture coupled with level-set method and subdomain integration on linear CEs, which allowed the integration scheme to
adapt to the partially damaged elements. Do et al9 extended the previous study onto more types of integration improve-
ments. Their approaches managed to enlarge the linear CE to be comparable to the cohesive zone length. However, the
first-order shape functions were not well suited for modeling the curved geometry of the interface within the cohesive
zone, thereby compromising the effectiveness of the method in further enlarging the CE beyond the scale of the cohesive
zone. Samimi et al developed an adaptive CE where the linear CE was enriched with piecewise linear shape functions
with adaptive peaks. The adaptive peaks were updated with respect to crack growth so as to better model the evolving
cohesive zone within the CE domain.17,18 The enrichment helped obtain more accurate and smoother load-displacement
responses than those obtained from using standard linear CEs. However, the issue of the overprediction of the peak load
with large CE was not addressed. van der Meer et al19 employed the level-set method together the Hansbo’s method (or
otherwise known as the phantom node method)20 to represent the delamination front within elements. They adopted
a fracture mechanics-based approach and calculated the energy release rate for delamination based on the stress dis-
continuities across the interface under the assumption of classical lamination theory. Their approach effectively and
efficiently overcame the cohesive zone limit, allowing elements much larger than the cohesive zone to be used. How-
ever, the approach was limited to the modeling of single delamination in the laminate. Nevertheless, their work showed
that even coarse-mesh models could predict delamination accurately when equipped the right driving force. Guiamat-
sia et al21-23 employed the analytical displacement solutions of a beam on elastic foundation as enrichment functions
to simulate two-dimensional (2D) delamination, which enabled the use of CEs much larger than the cohesive zone.

http://wileyonlinelibrary.com
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However, the computational cost incurred by using enrichment could offset the benefit of using larger elements.23 In
addition, the extension of their method to three-dimensional (3D) were not evident and, to the authors’ knowledge, are
not yet available. Nevertheless, their work showed the importance of correctly reproducing beam theory solutions in
overcoming the cohesive zone limit in delamination. Alvarez et al11 used quadratic shape functions for the substrates and
CEs, and increased the number of integration points in the CEs to a maximum of 30. They showed that quadratic shape
functions modeled the kinematics of delamination much more efficiently than linear ones, and that increasing the integra-
tion points had a clear positive influence on the accuracy of the predicted load-displacement curves. The authors claimed
that using quadratic CE achieved mesh-independent modeling of Mode I cohesive fracture. However, the node-to-node
distance in the coarsest mesh was still comparable to the cohesive zone length. Latifi et al24 developed a new interface
element formulation based on the thick level-set method.25 The cohesive zone length was essentially replaced with a
user-defined length parameter, the so-called damage zone length, which defined the thickness of the level-set boundary.
This gave more room for the user to relax the mesh constraint. However, the full potential of this approach was not inves-
tigated, as the eventual element size used for the delamination simulation was still less than 1 mm, comparable to the
cohesive zone length. Cohesive cracks have also been modeled within the framework of Isogeometric Analysis to ben-
efit from its higher solution smoothness.26-31 However, the specific issue of overcoming the cohesive zone limit was not
resolved as the coarsest mesh used was still conforming to the cohesive zone limit. Främby et al32 developed an equiv-
alent single-layer shell approach which adaptively refined itself through the thickness to model delamination, thereby
reducing the DoFs needed in the thickness direction. However, the mesh in the plane of delamination still needed to
satisfy the cohesive zone limit. Lu et al33 employed the floating node method (FNM)34 to design adaptive substrate and
CEs to model delamination. Extra internal DoFs were used to adaptively refine and coarsen the elements containing the
cohesive zone. Since refined elements were only used where cohesive zones were present, their method allowed the use
of an overall coarse mesh and significantly reduced the CPU time needed to simulate delamination with CEs. However,
their approach would become much more complex in 3D, especially if both matrix cracks and delamination were to be
modeled as in the context of FNM.35,36

From the above review, one can see that there is still a need for a solution to the problem of the cohesive zone limit in
modeling delamination using CEs. We hereby propose a new method which overcomes the cohesive zone limit. In this
article, we demonstrate the method in 2D for modeling delamination between slender beams. However, the method can
be extended to model delamination between thin plates and shells. The article is organized as the following. Section 2
presents the idea and the method in detail. Section 3 demonstrates the effectiveness of the method on a series of appli-
cations. It investigates the influence of geometrical nonlinearity, makes a comparison of the computational costs against
those of the standard CE models, and shows some parametric studies on the order and type of integration schemes. In
the end, Section 4 concludes with the main findings of this work.

2 METHOD

2.1 Overall idea

Several of the reviewed methods in Section 1 share some recurring features which shed light on the potential enabling
techniques for overcoming the cohesive zone limit:

• The method of Guiamatsia et al21-23 enriched the CE’s shape functions with Euler-Bernouilli (EB) beam solutions,
while the method of van der Meer et al19 calculated the delamination driving force based on stresses obtained from
classical lamination theory. Although the two methods appear to be completely different, they share the same funda-
mental kinematic assumption, that is, the Kirchhoff-Love hypothesis. This kinematic assumption is not enforced in
delamination models made of continuum and CEs or Mindlin-Reissner shell and CEs.

• In terms of numerical integration of CEs, recent work have moved beyond standard Gauss or Newton-Cotes scheme.
They have employed more adaptive or more refined schemes, such as the adaptive subdomain integration schemes7,9,17

and the higher-order fixed Gauss scheme,11,18,21-23 respectively.

To reinforce the above two points, the problem of cohesive zone limit is revisited by simulating the DCB test fea-
tured in Turon et al.5 The choice of DCB is motivated by the fact that mode I delamination exhibits a smaller cohesive
zone length than the mode II and mode III cases.6 Therefore, it is the most relevant case to demonstrate the cohesive
zone limit. The geometry and boundary conditions of the DCB test are shown in Figure 2A,B, respectively. First-order
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F I G U R E 2 The DCB problem [Color figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Material properties for DCB5

Ply parameter Value

Young’s modulus along fiber direction, E11 150 GPa

Young’s modulus along transverse directions, E22=E33 11 GPa

Shear modulus along 1-2 and 1-3 directions, G12=G13 6 GPa

Shear modulus along 2-3 direction, G23 3.7 GPa

Poisson’s ratio along 1-2 and 1-3 directions, 𝜈12=𝜈13 0.45

Poisson’s ratio along 2-3 direction, 𝜈23 0.25

Interface parameter Value

Mode I fracture toughness, Gc
I 0.352 kJ/m2

Penalty stiffness, K 5.55× 105 N/mm3

Mode I strength, 𝜏0
I 60 MPa

plane-strain quadrilateral elements are used to model the two arms, connected by a layer of zero-thickness linear CEs for
delamination. Reference results of displacements and stresses are obtained using a fine mesh of ∼0.01 mm along the
expected delamination direction and five elements across the thickness of each arm. The CEs are assigned with the
classical bilinear cohesive law and the standard two-point Newton-Cotes integration scheme. The material properties
are listed in Table 1.

A zoomed view of the mesh near the crack tip region in the DCB model is shown in Figure 3A. The normal stress
(𝜎Y ) distribution around the crack tip is shown in Figure 3B. In Figure 3C, the normal opening and damage variable
distributions along the CEs at the interface are presented. Two observations are highlighted from these results:

• Figure 3B indicates that the normal stress distribution is not entirely smooth, as the peak is a kinking point which is
0 continuous only. If a CE spans across the cohesive zone, then the peak lies within the CE and the stress field will
be nonsmooth at the peak. When integrating the internal energy of this CE, the integrand, being the product of the
stress with the separation, will also be nonsmooth at the peak. Hence, the classical Gauss or Newton-Cotes schemes
for polynomials will not be sufficient as they would assume the integrand to be smooth up to a corresponding order,
which is not entirely the case here. Therefore, a more refined integration scheme should be used for CEs larger than
the cohesive zone.

• While the normal stress is not smooth at the peak, the corresponding displacement field, that is, the normal opening,
has no kink at the location of peak stress. It is in fact approximately the deflection solution of an slender (EB) beam
under distributed loading, which would be 1-continuous along the neutral axis. In 3D, this would correspond to the
Kirchhoff-Love plate/shell deflection solution. The classical Lagrangian continuum finite elements do not enforce the
Kirchhoff-Love hypothesis associated with slender structures and they are 0 continuous across element boundaries.
Hence they are not well suited to represent accurately the deflection of a slender composite ply near the cohesive zone.

The second highlight above contradicts the finding from the work of Alvarez et al,11 where using quadratic CE with
higher-order fixed integration achieved mesh-independent simulation of Mode I cohesive fracture. However, the cases
studied in Alvarez et al11 were not representative of delamination between slender structures and that the same technique
would still suffer from cohesive zone limit if it were to be applied on the DCB simulation in Figure 3. This argument is
supported with results in the appendix section A1.

http://wileyonlinelibrary.com
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F I G U R E 3 Zoomed view of normal stress, normal opening, and damage near the crack tip in the DCB simulation [Color figure can be
viewed at wileyonlinelibrary.com]

Based on the above observations and analysis, we propose a new method for modeling composite delamination which
is composed of the following main ingredients:

• slender structural elements formulated based on the Kirchhoff-Love hypothesis are used to model the plies;
• a compatible CE formulation is developed to model delamination between the ply elements; and
• a higher-order adaptive integration scheme is developed for integrating the CEs.

In the following sections, the above ingredients will be addressed in more details.

2.2 Slender ply element

Fiber-reinforced composite plies have a typical thickness of around 0.125 mm. They are thin compared with the sizes of
the structures that they are applied on, such as automobile and aerospace components. Therefore, the theories of slender
structures can be safely applied to the modeling of composite plies. Such slender structural elements already exist, such as
the EB beam element in 2D and the Kirchhoff-Love plate/shell element in 3D. They provide 1-continuous approximation
to the deflection solution of the slender composite plies along the neutral axis. In 2D, the EB beam element has been well

http://wileyonlinelibrary.com


6 RUSSO and CHEN

established and widely implemented in commercial FE packages. Hence, the full details of its formulation will not be
revisited here. Instead, only the DoFs and interpolation functions are presented for reference in the later sections. A 2D
EB beam element of initial length l has two nodes. Each node has three DoFs, that is, u,v, and 𝜃. They are the horizontal
displacement, vertical displacement and rotation, respectively. The horizontal displacement u is interpolated through
linear polynomials:

u(𝜉) = Nu
1 (𝜉) u1 + Nu

2 (𝜉) u2 = Nu(𝜉) u, (1)

where

Nu
1 (𝜉) =

1
2

(
1 − 2

l
𝜉
)
, Nu

2 (𝜉) =
1
2

(
1 + 2

l
𝜉
)
, Nu = [Nu

1 , Nu
2 ], 𝜉 ∈

[
− l

2
,

l
2

]
(2)

and
u = [u1, u2]T. (3)

The vertical displacement v is interpolated through cubic Hermite polynomials:

v(𝜉) = Nv
1(𝜉) v1 + Nv

2(𝜉) 𝜃1 + Nv
3(𝜉) v2 + Nv

4(𝜉) 𝜃2 = Nv(𝜉) a, (4)

where

Nv
1(𝜉) =

1
4

(
2 − 6𝜉

l
+ 8𝜉3

l3

)
, Nv

2(𝜉) =
l
8

(
1 − 2𝜉

l
− 4𝜉2

l2 + 8𝜉3

l3

)
,

Nv
3(𝜉) =

1
4

(
2 + 6𝜉

l
− 8𝜉3

l3

)
, Nv

4(𝜉) =
l
8

(
−1 − 2𝜉

l
+ 4𝜉2

l2 + 8𝜉3

l3

)
,

Nv = [Nv
1, Nv

2, Nv
3, Nv

4], (5)

and
a = [v1, 𝜃1, v2, 𝜃2]T. (6)

The rotation is interpolated through the derivatives of the above shape functions:

𝜃(𝜉) = 𝜕v
𝜕𝜉

= N𝜃
1 (𝜉) v1 + N𝜃

2 (𝜉) 𝜃1 + N𝜃
3 (𝜉) v2 + N𝜃

4 (𝜉) 𝜃2 = N𝜃(𝜉) a, (7)

where

N𝜃
1 (𝜉) = − 3

2l
+ 6𝜉2

l3 , N𝜃
2 (𝜉) = −1

4
− 𝜉

l
+ 3𝜉2

l2 ,

N𝜃
3 (𝜉) =

3
2l

− 6𝜉2

l3 , N𝜃
4 (𝜉) = −1

4
+ 𝜉

l
+ 3𝜉2

l2 ,

N𝜃 = [N𝜃
1 , N𝜃

2 , N𝜃
3 , N𝜃

4 ]. (8)

The above displacement interpolations will be used in the following section to compute the opening vector of the CE
between two EB beam elements. Although the EB beam theory itself is formulated for small-strain applications, the EB
beam element as a whole can undergo large rigid-body displacement and rotation while still having small strain in the
element’s local frame of reference, that is, the corotated frame of reference. Therefore, a mesh of EB beam elements could
model the class of geometrically nonlinear problems with large displacement but small-strain. This is usually the class
that composite delamination problems belong to.

2.3 Structural CE between slender plies

2.3.1 Opening vector

To model delamination between the plies, the CEs must be kinematically compatible with the ply elements, that is, they
need to share the same displacement interpolations along the interface (c.f., Figure 5). In order to achieve this, a 2D CE



RUSSO and CHEN 7

F I G U R E 4 Nodes and DoFs of the CE in its local frame of reference

F I G U R E 5 Compatible CE between two beam elements

is constructed as shown in Figure 4. Four nodes are used, where nodes 3 and 4 are shared with the upper ply element
and nodes 1 and 2 are shared with the lower ply element. Similarly as in the ply element, each node has three DoFs,
u,v, and 𝜃. The element has initially zero thickness. However, to ensure a better visualization of the CE geometry, it has
been depicted as having a finite thickness. Note that the displacement interpolations in Equations (1) and (4) are for the
neutral axis of the EB beam element. They need to be projected onto the outer surfaces to represent the displacements of
the CE surfaces (Figure 5).

The Mode I opening of the CE can be expressed as:

ΔI = vtopCE − vbotCE, (9)

where vtopCE and vbotCE are the vertical displacements of the top and bottom CE surfaces, respectively. They are not the
same as those of the neutral axis of the top and bottom EB beam elements. In fact, an additional term is required, which
includes the additional surface displacements of the CE induced by the rotations of the beams’ neutral axis and the
offsets of the beam surfaces from the neutral axis. Hence, using EB beam theory and Equations (4) and (7), they can be
expressed as:

vtopCE = Nvatop + htop

2
(1 − cos 𝜃top)

vbotCE = Nvabot − hbot

2
(1 − cos 𝜃bot), (10)

where h is the beam thickness. The Mode II opening of the CE can be expressed as:

ΔII = utopCE − ubotCE, (11)

where utop and ubot are the horizontal displacements of the top and bottom CE surfaces, respectively. Considering again
the rotations of beams’ neutral axis and the offset of beam surfaces from neutral axis, they can be written as:

utopCE = Nuutop + htop

2
sin 𝜃top,

ubotCE = Nuubot − hbot

2
sin 𝜃bot. (12)
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The DoF vector of the CE can be defined as:

qCE = [ubot, abot, utop, atop]T. (13)

Combining Equations (9) to (13), we have:

ΔI = Nv atop − Nv abot + htop

2
(1 − cos 𝜃top) + hbot

2
(1 − cos 𝜃bot) = [0, −Nv, 0, Nv] qCE + Δ̃I, (14)

ΔII = Nu utop − Nu ubot + htop

2
sin 𝜃top + hbot

2
sin 𝜃bot = [−Nu, 0, Nu, 0] qCE + Δ̃II, (15)

where Δ̃I and Δ̃II are the additional openings induced by the rotations of the neutral axis of the EB beams and the offsets
of the beam surfaces from the neutral axis. The opening vector of the CE, that is, 𝚫, can be expressed as:

𝚫 = [ΔI, ΔII]T = NCE qCE + �̃�, (16)

where

NCE =

[
0 −Nv 0 Nv

−Nu 0 Nu 0

]
(17)

and

�̃� =

[
Δ̃I

Δ̃II

]
=

[
htop

2
(1 − cos 𝜃top) + hbot

2
(1 − cos 𝜃bot)

htop

2
sin 𝜃top + hbot

2
sin 𝜃bot

]
. (18)

In the geometrically linear formulation, the opening vector in Equation (16) is described in the local coordinate
system of the initial interface. In a geometrically nonlinear formulation, the opening vector can be described in the
corotated coordinate system of the current interface. Figure 6 illustrates the differences between the two formulations
in the fracture mode decomposition of the opening vector. In this work, the corotational formulation is adopted to
accurately evaluate the fracture modes of the current interface. While in the corotational formulation, if the rotations
are assumed small, we could approximate the sin 𝜃top∕bot and cos 𝜃top∕bot terms by their first-order Taylor expansions
and linearize the expression of �̃� (and hence also 𝚫) with respect to qCE. As the small-rotation assumption should be
applied consistently across beams and their interfaces, the case of moderate rotations with nonlinear (eg, von Kármán)
strains for the beams can no longer be considered. To keep the method generic, we do not perform this linearization
at this stage.

The rest of the section details the steps to express the opening vector in the corotated coordinate system. First, as in
the case of the geometrically linear CE, the local coordinate system (𝜉, 𝜂) of the initial CE is used to express the vector
quantities in Section 2.3.1. Γ0 denotes the mid-surface of the initial CE domain and Γ denotes the mid-surface of the
current CE domain. It is a parametric curve of the coordinate 𝜉. Before deformation, the points on Γ0, represented by the
position vector 𝜸0 (in the local coordinates (𝜉, 𝜂)), can be expressed as:

𝜸0(𝜉) = [𝜉, 0]T, ∀𝜉 ∈ [−l∕2 , l∕2], (19)

where l is the initial length of the CE, which coincides with the ply beam element. After deformation, the displacement
vector of the mid-surface is the middle interpolation of the displacement vectors of the top and bottom surfaces of the CE.
Hence, after deformation, the points on Γ, denoted by the vector 𝜸, can be expressed as:

𝜸(𝜉) =

[
𝛾𝜉(𝜉)
𝛾𝜂(𝜉)

]
=

[
𝜉 + 1

2
(utopCE + ubotCE)

1
2
(vtopCE + vbotCE)

]
, ∀𝜉 ∈ [−l∕2 , l∕2]. (20)
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F I G U R E 6 The components of the opening vector in the geometrically linear formulation (blue) and the corotational formulation
(red) [Color figure can be viewed at wileyonlinelibrary.com]

The rotation of Γ with respect to its initial configuration is the angle that Γ forms with the 𝜉 axis (ie, 𝛼Γ
in Figure 6):

𝛼Γ = arctan
(
𝜕𝛾𝜂

𝜕𝜉
∕
𝜕𝛾𝜉

𝜕𝜉

)
. (21)

Here, the above expression is obtained by inspecting the geometry of the deformation. In a general case, the angle of
rotation of an interface can be obtained by using the Nanson’s formula, as shown in the appendix in Section B1. From
Equation (20), we have:

𝜕𝛾𝜉

𝜕𝜉
= 1 + 1

2

(
𝜕utopCE

𝜕𝜉
+ 𝜕ubotCE

𝜕𝜉

)
(22)

𝜕𝛾𝜂

𝜕𝜉
= 1

2

(
𝜕vtopCE

𝜕𝜉
+ 𝜕vbotCE

𝜕𝜉

)
. (23)

Using Equations (10) and (12), we obtain:

𝜕utopCE

𝜕𝜉
= 𝜕Nu

𝜕𝜉
utop + htop

2
cos 𝜃top 𝜕N𝜃

𝜕𝜉
atop =

[
0, 0, 𝜕Nu

𝜕𝜉
,

htop

2
cos 𝜃top 𝜕N𝜃

𝜕𝜉

]
qCE (24)

𝜕ubotCE

𝜕𝜉
= 𝜕Nu

𝜕𝜉
ubot − hbot

2
cos 𝜃bot 𝜕N𝜃

𝜕𝜉
abot =

[
𝜕Nu

𝜕𝜉
, −hbot

2
cos 𝜃bot 𝜕N𝜃

𝜕𝜉
, 0, 0

]
qCE (25)

𝜕vtopCE

𝜕𝜉
= 𝜕Nv

𝜕𝜉
atop + htop

2
sin 𝜃top 𝜕N𝜃

𝜕𝜉
atop =

[
0, 0, 0, 𝜕Nv

𝜕𝜉
+ htop

2
sin 𝜃top 𝜕N𝜃

𝜕𝜉

]
qCE (26)

𝜕vbotCE

𝜕𝜉
= 𝜕Nv

𝜕𝜉
abot − hbot

2
sin 𝜃bot 𝜕N𝜃

𝜕𝜉
abot =

[
0, 𝜕Nv

𝜕𝜉
− hbot

2
sin 𝜃bot 𝜕N𝜃

𝜕𝜉
, 0, 0

]
qCE. (27)

Substituting the above equations into Equations (22) and (23), we get:

𝜕𝛾𝜉

𝜕𝜉
= 1 + 1

2

[
𝜕Nu

𝜕𝜉
, −hbot

2
cos 𝜃bot 𝜕N𝜃

𝜕𝜉
,
𝜕Nu

𝜕𝜉
,

htop

2
cos 𝜃top 𝜕N𝜃

𝜕𝜉

]
qCE (28)

𝜕𝛾𝜂

𝜕𝜉
= 1

2

[
0, 𝜕Nv

𝜕𝜉
− hbot

2
sin 𝜃bot 𝜕N𝜃

𝜕𝜉
, 0, 𝜕Nv

𝜕𝜉
+ htop

2
sin 𝜃top 𝜕N𝜃

𝜕𝜉

]
qCE. (29)

http://wileyonlinelibrary.com
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F I G U R E 7 A cohesive interface under equilibrium [Color figure can be viewed at wileyonlinelibrary.com]

The differential dΓ (which will be used later for integration) can be evaluated as:

dΓ = J d𝜉, J =

√(
𝜕𝛾𝜉

𝜕𝜉

)2

+
(
𝜕𝛾𝜂

𝜕𝜉

)2

. (30)

The angle 𝛼Γ is used to perform the transformation of the opening vector 𝚫 to the corotated coordinate system (𝜉, �̂�)
to obtain �̂�. The transformation matrix, here referred to as 𝚽, is the following:

𝚽 =

[
cos 𝛼Γ sin 𝛼Γ

− sin 𝛼Γ cos 𝛼Γ

]
. (31)

The corotational opening vector in the current configuration can finally be obtained as:

�̂� = 𝚽 𝚫. (32)

2.3.2 Stiffness matrix

Figure 7 shows the equilibrium of a cohesive interface in a loaded body. The opening is exaggerated for plotting. It is
assumed that before the cohesive interface fails completely, the top and bottom surfaces practically coincide with Γ, that
is, the opening at final failure is small compared with the geometrical dimensions of the body. The strong form of the
equilibrium equation is:

�̂� = p̂ for all points on Γ, (33)

where �̂� is the internal Cauchy traction on the top CE surface, and p̂ is the external Cauchy traction on the top CE surface
applied by the neighboring material of the body. Both quantities are expressed in the corotated coordinate system:

�̂� = 𝚽 𝝉 , p̂ = 𝚽 p, (34)

where 𝝉 and p are the internal and external Cauchy traction vectors on the top CE surface, respectively, expressed in the
initial (reference) local coordinate system.

Based on the virtual work principle, the following weak form of the equilibrium equation can be written:

∫Γ
𝛿ûtop ⋅ �̂� dΓ + ∫Γ

𝛿ûbot ⋅ (−�̂�) dΓ = ∫Γ
𝛿ûtop ⋅ p̂ dΓ + ∫Γ

𝛿ûbot ⋅ (−p̂) dΓ, (35)

where the two terms on the LHS are the internal virtual work on the top and bottom CE surfaces, respectively; and
those on the RHS are the external virtual work, respectively. 𝛿ûtop and 𝛿ûbot are variations of utop and ubot in the

http://wileyonlinelibrary.com
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corotational coordinate system, respectively. The above weak form of the equilibrium equation of the CE surfaces can be
simplified as:

∫Γ
𝛿�̂�T

�̂� dΓ = ∫Γ
𝛿�̂�T

p̂ dΓ. (36)

Based on Equation (32), we have:

𝛿�̂� = 𝛿𝚽 𝚫 +𝚽 𝛿𝚫 = B𝚽 𝛿qCE 𝚫 +𝚽 B𝚫 𝛿qCE = [B𝚽𝚫 +𝚽 B𝚫] 𝛿qCE = B 𝛿qCE, (37)

where

B𝚽 = 𝜕𝚽
𝜕qCE , B𝚫 = 𝜕𝚫

𝜕qCE , B𝚽𝚫
ij = B𝚽

ikj Δk and B = B𝚽𝚫 +𝚽 B𝚫. (38)

Plugging Equation (37) into Equation (36) and using the arbitrariness of 𝛿qCE, Equation (36) can be simplified into:

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∫Γ

BT �̂� dΓ

fCE
int

=
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∫Γ

BT p̂ dΓ

fCE
ext

, (39)

where fCE
int and fCE

ext are the internal and external force vectors of the CE, respectively. In this work, we assume that the
cohesive law, which relates the cohesive traction with the opening, is defined on the corotational quantities �̂� and �̂�:

�̂� = �̂�(�̂�). (40)

The above relationship is often expressed through the constitutive matrix DCE:

�̂� = DCE �̂�, (41)

where

DCE = K
⎡⎢⎢⎣
(

1 − ⟨Δ̂I⟩+|Δ̂I| d
)

0

0 (1 − d)

⎤⎥⎥⎦ , ⟨Δ̂I⟩+ = max (0, Δ̂I). (42)

K and d are the penalty stiffness and the damage variable of the CE, respectively. The role of K is to approximate the
bonding of the interface before any damage onset and to prevent excessive interpenetration of the two CE surfaces under
compression. Note that the term ⟨ΔI⟩+|ΔI| ensures that d is not affecting the normal stress when the CE is under compression

as the crack would be closed. d is a function of �̂� through the cohesive law. In this work, the classical bilinear cohesive
law is adopted. The mixed-mode formula implemented is the one proposed by Turon et al.37

Plugging Equation (41) into Equation (39), we have:

fCE
int = ∫Γ

BT DCE �̂� dΓ = fCE
ext . (43)

Using Equation (30) to change the integration domain from Γ to Γ0, we obtain:

fCE
int = ∫Γ0

BT DCE �̂� J d𝜉 = fCE
ext . (44)

The above equation is a nonlinear equation of the DoF vector qCE through B, DCE, �̂� and J. It needs to be lin-
earized to allow Newton-Raphson solvers to find the solution through iterations. The consistent tangent stiffness matrix K
would be:

K =
𝜕fCE

int

𝜕qCE = ∫Γ0

𝜕BT

𝜕qCE DCE �̂� J d𝜉 + ∫Γ0
BT 𝜕DCE

𝜕qCE �̂� J d𝜉 + ∫Γ0
BT DCE B J d𝜉 + ∫Γ0

BT DCE �̂� 𝜕J
𝜕qCE d𝜉. (45)
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In the above equation, the second and third terms on the RHS form the material tangent stiffness matrix. With
cohesive laws having negative traction-separation slope (eg, the bilinear cohesive law), the true material tangent loses
positive-definiteness as damage grows. To aid numerical convergence with Newton-Raphson methods, only the secant
material tangent (ie, the third term on the RHS) is used in the element stiffness matrix. The geometric terms (ie, the
first and last terms on the RHS) are omitted. Including the geometric terms should in theory improve the convergence
rate. However, for the problems we have encountered so far, using the secant material stiffness in combination with the
Quasi-Newton solver is already providing satisfactorily fast convergence which will be demonstrated in Section 3. Hence,
the implemented stiffness matrix of the CE, KCE, is:

KCE = ∫Γ0
BT DCE B J d𝜉. (46)

The evaluation of fCE
int and KCE requires the calculation of B and J. While J has been adequately expressed in

Equation (30), B is, however, much more complicated to express. The following section will derive in detail the expression
of B used for the implementation.

2.3.3 B matrix

Now let us derive the more detailed expressions of B𝚽 and B𝚫 needed for the implementation of B in Equation (38). With
the expression of B𝚽 and Equation (31), we can use the chain rule to obtain:

B𝚽 = 𝜕𝚽
𝜕𝛼Γ

⊗
𝜕𝛼Γ

𝜕qCE =

[
− sin 𝛼Γ cos 𝛼Γ
− cos 𝛼Γ − sin 𝛼Γ

]
⊗

𝜕𝛼Γ

𝜕qCE , (47)

where ⊗ indicates the tensor product. Denoting 𝜁 = 𝜕𝛾𝜂

𝜕𝜉
∕ 𝜕𝛾𝜉

𝜕𝜉
and using the formula that arctan′(x) = 1∕(1 + x2), we can

write 𝜕𝛼Γ∕𝜕qCE as:

𝜕𝛼Γ

𝜕qCE = 1
1 + 𝜁2

𝜕𝜁

𝜕qCE = 1
1 + 𝜁2

1
(𝜕𝛾𝜉∕𝜕𝜉)2

[
𝜕2𝛾𝜂

𝜕𝜉𝜕qCE

𝜕𝛾𝜉

𝜕𝜉
−

𝜕𝛾𝜂

𝜕𝜉

𝜕2𝛾𝜉

𝜕𝜉𝜕qCE

]
. (48)

In the above expression, the only terms needing further derivations are 𝜕2𝛾𝜉∕𝜂∕𝜕𝜉𝜕qCE, the rest are straightforward
to calculate using earlier equations. With the expressions of 𝜕𝛾𝜉∕𝜂∕𝜕𝜉 in Equations (28) and (29), we can calculate their
second derivatives with respect to qCE:

𝜕2𝛾𝜉

𝜕𝜉𝜕qCE = 1
2

[
𝜕Nu

𝜕𝜉
, −hbot

2
cos 𝜃bot 𝜕N𝜃

𝜕𝜉
,
𝜕Nu

𝜕𝜉
,

htop

2
cos 𝜃top 𝜕N𝜃

𝜕𝜉

]
+ 1

2

[
0, hbot

2
sin 𝜃bot 𝜕𝜃bot

𝜕qCE ⊗
𝜕N𝜃

𝜕𝜉
, 0, −htop

2
sin 𝜃top 𝜕𝜃top

𝜕qCE ⊗
𝜕N𝜃

𝜕𝜉

]
qCE (49)

𝜕2𝛾𝜂

𝜕𝜉𝜕qCE = 1
2

[
0, 𝜕Nv

𝜕𝜉
− hbot

2
sin 𝜃bot 𝜕N𝜃

𝜕𝜉
, 0, 𝜕Nv

𝜕𝜉
+ htop

2
sin 𝜃top 𝜕N𝜃

𝜕𝜉

]
+ 1

2

[
0, −hbot

2
cos 𝜃bot 𝜕𝜃bot

𝜕qCE ⊗
𝜕N𝜃

𝜕𝜉
, 0, htop

2
cos 𝜃top 𝜕𝜃top

𝜕qCE ⊗
𝜕N𝜃

𝜕𝜉

]
qCE. (50)

In the above equations, the only terms needing further derivations are 𝜕𝜃bot∕𝜕qCE and 𝜕𝜃top∕𝜕qCE, the rest are
straightforward to calculate. Using Equation (7), we can write:

𝜃bot = N𝜃 abot = [0,N𝜃, 0, 0] qCE, (51)

𝜃top = N𝜃 atop = [0, 0, 0,N𝜃] qCE. (52)
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Hence, we arrive at the following expressions for 𝜕𝜃bot∕𝜕qCE and 𝜕𝜃top∕𝜕qCE:

𝜕𝜃bot

𝜕qCE = [0,N𝜃, 0, 0] (53)

𝜕𝜃top

𝜕qCE = [0, 0, 0,N𝜃]. (54)

The final form of Equations (49) and (50) would then be:

𝜕2𝛾𝜉

𝜕𝜉𝜕qCE = 1
2

[
𝜕Nu

𝜕𝜉
, −hbot

2
cos 𝜃bot 𝜕N𝜃

𝜕𝜉
,
𝜕Nu

𝜕𝜉
,

htop

2
cos 𝜃top 𝜕N𝜃

𝜕𝜉

]
+ 1

2

[
0, hbot

2
sin 𝜃bot 𝜕𝜃bot

𝜕𝜉
N𝜃, 0, −htop

2
sin 𝜃top 𝜕𝜃top

𝜕𝜉
N𝜃

]
(55)

𝜕2𝛾𝜂

𝜕𝜉𝜕qCE = 1
2

[
0, 𝜕Nv

𝜕𝜉
− hbot

2
sin 𝜃bot 𝜕N𝜃

𝜕𝜉
, 0, 𝜕Nv

𝜕𝜉
+ htop

2
sin 𝜃top 𝜕N𝜃

𝜕𝜉

]
+ 1

2

[
0, −hbot

2
cos 𝜃bot 𝜕𝜃bot

𝜕𝜉
N𝜃, 0, htop

2
cos 𝜃top 𝜕𝜃top

𝜕𝜉
N𝜃

]
(56)

With the above equations, the expression of B𝚽 in Equation (47) is fully defined. With the expression of 𝚫 in
Equations (16) and (18), B𝚫 in Equation (38) can be expanded as:

B𝚫 = 𝜕𝚫
𝜕qCE = NCE + 𝜕�̃�

𝜕qCE = NCE +
⎡⎢⎢⎣

htop

2
sin 𝜃top 𝜕𝜃top

𝜕qCE + hbot

2
sin 𝜃bot 𝜕𝜃bot

𝜕qCE

htop

2
cos 𝜃top 𝜕𝜃top

𝜕qCE + hbot

2
cos 𝜃bot 𝜕𝜃bot

𝜕qCE

⎤⎥⎥⎦ . (57)

All terms in the above equation are already derived in earlier equations. With both B𝚽 and B𝚫 well defined, the matrix
B𝚽𝚫 and the final matrix B in Equation (38) can be readily implemented. fCE

int and KCE can then be integrated according
to Equations (44) and (46), respectively. Because of the dependency of DCE on d which evolves according to a cohesive
law, special care must be taken when integrating the CE, especially when d at different locations of the CE domain are on
different phases of the cohesive law. Section 2.4 will explain the integration scheme proposed in this work to accurately
and efficiently integrate for fCE

int and KCE.

2.3.4 Linearized versions for the cohesive opening

For problems with small rotations, two linearized versions of the formulation can be derived: a corotational but small-𝜃
version where linearization is performed with respect to 𝜃top and 𝜃bot (ie, Small-𝜃 version), and a classical geometrically
linear version where the cohesive mid-surface is always the initial mid-surface without corotation. These two versions
are presented in this section. The different versions are summarized in Table 2.

In the small-𝜃 formulation, the displacements of the top and bottom surfaces become:

utopCE = Nuutop + htop

2
𝜃top

ubotCE = Nuubot − hbot

2
𝜃bot

vtopCE = Nvatop

vbotCE = Nvabot. (58)

T A B L E 2 A summary of the different formulations for comparison

Setting Formulation

Geo-Linear Geometrically linear formulation (𝛼=0 in Equation (21) and �̃� linearized on 𝜃).

Small-𝜃 Corotational formulation with �̃� linearized on 𝜃.

Nonlinear Corotational formulation with full expression of �̃�.
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The above equations return the following cohesive opening vector:

𝚫 = NCEqCE +

[
0

htop

2
𝜃top + hbot

2
𝜃bot

]
. (59)

The small-𝜃 assumption implies that 𝛼Γ is also small, as it is an angle in between 𝜃top and 𝜃bot. A consistent linearization
would reduce the transformation matrix 𝚽 to be the following:

𝚽 =

[
cos 𝛼Γ sin 𝛼Γ

− sin 𝛼Γ cos 𝛼Γ

]
≈

[
1 𝛼Γ

−𝛼Γ 1

]
. (60)

The matrix B𝚽 then becomes:

B𝚽 = 𝜕𝚽
𝜕𝛼Γ

⊗
𝜕𝛼Γ

𝜕qCE ≈

[
−𝛼Γ 1
−1 −𝛼Γ

]
⊗

𝜕𝛼Γ

𝜕qCE . (61)

Note that here we have retained the full expression of 𝚽 when taking its derivative with respect to 𝛼Γ. Had we fol-
lowed along the previous linearization and used the linearized expression of 𝚽 in Equation (61) for the derivation of
B𝚽, we would have obtained zeros on the diagonal blocks of B𝚽, which could lead to numerical instability based on our
experience. The calculation of 𝛼Γ still follows Equation (21) and that of 𝜕𝛼Γ∕𝜕qCE follows Equation (48). They require the
following derivatives of the interface 𝜸 with respect to the parametric coordinate:

𝜕𝛾𝜉

𝜕𝜉
= 1 + 1

2

[
𝜕Nu

𝜕𝜉
, −hbot

2
𝜕N𝜃

𝜕𝜉
,
𝜕Nu

𝜕𝜉
,

htop

2
𝜕N𝜃

𝜕𝜉

]
qCE

𝜕𝛾𝜂

𝜕𝜉
= 1

2

[
0, 𝜕Nv

𝜕𝜉
, 0, 𝜕Nv

𝜕𝜉

]
qCE

𝜕2𝛾𝜉

𝜕𝜉𝜕qCE = 1
2

[
𝜕Nu

𝜕𝜉
, −hbot

2
𝜕N𝜃

𝜕𝜉
,
𝜕Nu

𝜕𝜉
,

htop

2
𝜕N𝜃

𝜕𝜉

]
𝜕2𝛾𝜂

𝜕𝜉𝜕qCE = 1
2

[
0, 𝜕Nv

𝜕𝜉
, 0, 𝜕Nv

𝜕𝜉

]
. (62)

The B matrix B𝚫 is simply:

B𝚫 = NCE +

[
0, 0, 0, 0
0, − hbot

2
N𝜃, 0, htop

2
N𝜃

]
. (63)

In the Geo-Linear formulation, on top of the simplifications of the small-𝜃 version, no corotation is considered for the
cohesive mid-surface. Therefore, the integration is always performed in the initial domain Γ0. Consequently, the angle
𝛼Γ is no longer used, hence 𝛼Γ = 0 and B𝚽 = 0. The Jacobian is a constant as there is no change of integration domain
during analysis:

J =

√√√√√(
𝜕𝛾0

𝜉

𝜕𝜉

)2

+

(
𝜕𝛾0

𝜂

𝜕𝜉

)2

= 1. (64)

When taken with respect to the natural coordinate between -1 and+1 for numerical integration, the Jacobian is simply:

J = l∕2. (65)
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2.3.5 Material frame-indifference

The principle of material frame-indifference states that the constitutive law must be invariant under a change of frame.38

This principle is relevant to the observed space, that is, the physical space in which the body moves and deforms.39 Under
a change of frame, a spatial point x (ie, a point in the observed space) is mapped to another spatial point x* through the
following relationship:

x∗ = Q x + c, (66)

where Q and c are the rotation and translation of the observed space with respect to the new frame, respectively. The
symbol * marks quantities after the change of frame. A spatial vector g is objective (frame-indifferent) if it simply rotates
along: g* =Q g. A second-order spatial tensor G is objective if G* =Q G QT. Note that the change of frame does not affect
the reference configuration as it is a mathematical object (defined in some reference space) associated to the body (ie,
the so-called “body manifold”38,40) for the purpose of labeling material points only.38,39 Hence, the reference config-
uration does not need to exist physically, though it is often set to be the initial configuration of the body. Therefore,
quantities defined entirely in the reference space such as its frames, material points, and vectors, the Green-Lagrange
strain tensor and the second Piola-Kirchhoff stress tensor are invariant under a change of frame in the observed space.39

To ensure that the constitutive law is also invariant, a convenient choice is to define the constitutive law directly on
quantities in the reference configuration.41,42 Corotational quantities are similar in nature to reference quantities, in the
sense that they are both described in a frame of reference that is associated to the body rather than to an independent
observer. Hence, intuitively, corotational quantities should also be invariant under a change of frame. In the rest of this
section, we will derive that the corotational quantities in the constitutive law of this work Equation (40), that is, �̂� and �̂�,
are invariant.

In this work, the reference configuration is set to be the initial configuration of the body. The reference space effectively
coincides with the observed space at the initial instant of time, but they are still two different spaces in the sense that
the former is only mathematical and the latter is physical. Both of them are, however, in an underlying Euclidean space
and their global frames coincide when there is no change of frame in the observed space. The two global frames will be
referred to as “reference global frame” and “current global frame,” respectively. Looking back at Figure 6, the local frame
(𝜉, 𝜂) in the reference space may not coincide with the current global frame. We can define a matrix 𝚽0 which transforms
a vector from the observed space to the reference space and describes it under the coordinate system of the reference local
frame (hereafter referred to as the reference local coordinate system). Since the reference local frame is defined in the
reference configuration, it is invariant. If a vector is described in the reference local coordinate system, it is also invariant
as its components will not change under a change of frame in the observed space. Hence, for an arbitrary objective spacial
vector g (eg, a fiber in the current configuration), we can write:

𝚽0 g = 𝚽∗
0 g∗ = 𝚽∗

0 Q g ⇒ 𝚽∗
0 = 𝚽0 QT. (67)

In the case where the reference local frame coincides with the reference global frame (ie, beam initially lying along
x-axis),𝚽0 would be an identity matrix which transforms to QT when there is a change of frame in the observed space. The
transformation of a vector from the current global frame to the corotational frame would be the compound transformation
𝚽 𝚽0.𝚽 is entirely defined by the current normal vector of the interface described in the reference local coordinate system
(see section B1 of the appendix). As argued earlier, the components of the normal vector will be invariant, hence 𝚽 is
invariant. For an objective spacial vector g, we can derive:

ĝ = 𝚽 𝚽0 g (68)

ĝ∗ = 𝚽∗ 𝚽∗
0 g∗ = 𝚽 𝚽0 QT Q g = 𝚽 𝚽0 g = ĝ. (69)

The above equation shows that the corotational transformation of an objective spacial vector is invariant under a
change of frame in the observed space. With this result, we can show that �̂� and �̂� are invariant by showing that 𝝉 and 𝚫
are objective spacial vectors. The following existing result will be useful for the derivation:

• the Cauchy stress tensor 𝝈 is objective, that is, 𝝈∗ = Q 𝝈 QT.39
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Let n be the unit normal vector at a point on the cohesive mid-surface in the current configuration, with a starting
point xa and ending point xb. Under a change of frame, making use of Equation (66), we have:

n∗ = x∗
b − x∗

a = Q (xb − xa) = Q n. (70)

Therefore, n is an objective spacial vector. Based on the assumption that the upper, lower and middle cohesive surfaces
practically coincide with each other, we can equate the cohesive traction 𝝉 with the surface traction obtained from the
Cauchy’s theorem:

𝝉 = 𝝈 n. (71)

Since both 𝝈 and n are objective, it is straightforward to verify that 𝝉 is objective.
The opening vector𝚫 is a spacial vector between two material points in the current configuration. Using Equation (66),

it is easy to show that it is objective.
Finally, based on the above results, we arrive at the conclusion that both �̂� and �̂� are invariant. Hence, the constitutive

law of the form in Equation (40) is invariant, thereby satisfying the frame-indifference principle.

2.4 Higher-order adaptive integration scheme

As the stress field near the cohesive zone is not smooth, the standard Gauss or Newton-Cotes integration schemes would
not suffice to provide accurate evaluation of the integral and more refined schemes are needed. Compared with the adap-
tive subdomain integration schemes,7,9,17 a fixed higher-order scheme has the advantage of being easier to implement,
without having to worry about the update of integration point locations and the transfer of history variables all the time.18

However, as the number of integration points increases, so does the computational cost. In this work, we propose to estab-
lish an adaptive scheme which employs a higher-order quadrature rule only in the elements that have overlaps with the
cohesive zone. The CE will essentially switch between two Gauss quadrature rules: a lower-order one and a higher-order
one. The lower-order scheme is used for intact and completely failed elements. Note that with the beam shape func-
tions being cubic, the integrand within the expression of the internal force vector in Equation (39) could be of sixth
order even before damage onset. The 4-point Gauss scheme, accurate up to the seventh order, is the minimum to suffi-
ciently integrates the internal force vector when the element is intact. In practice, the 3-point Gauss scheme, obviously
more economic, seems to work well in many cases (c.f., Section 3.1.5). The 4-point scheme is, however, set as the default
lower-order scheme as its seventh-order accuracy ensures a wider range of numerical stability in adaptive situations (as
the change of integration schemes in neighbor elements could induce local variations of nodal forces) across all the cases
studied in this work. The choice of 30 Gauss points as the default for the high-order integration ensures sufficient cover-
age of the stress variation within the CE domain when a cohesive zone is passing through, particularly in large elements
of 5 mm in length. The new scheme, although being adaptive, does not have to transfer history variables when changing
the quadrature rule. This will be explained in the following paragraphs.

The flowchart in Figure 8 illustrates the whole integration process. Every CE is attributed with two status flags: an
iterating status which represents the CE status in the last iteration (which may or may not converge) and a converged
status which represents its last converged status, that is, its status at the end of the last converged iteration. They can be
either “Intact,” “Damaged,” or “Failed.” The status is decided based on the index of the damage initiation criterion and
the values of the damage variable d at the integration points of the CE. They will decide the order of quadrature rule that
the CE will use.

Initially, the default converged and iterating status of all CEs are “Intact.” During the analysis, the damage initiation
criterion is probed at 30 integration points. Note that only the initiation is probed at this stage, not the value of d. At this
step, two scenarios could occur:

1. If damage does not initiate in any of the 30 integration points, the CE remains intact and its subsequent integration
will be switched to a 4-point quadrature rule. Note that no transfer of history variable across the integration points is
needed here as the CE is still intact and the values of d would all be 0.

2. If damage initiates in any of the 30 integration points, the iterating CE status is updated to be “Damaged” and the
subsequent numerical integration will be switched to the 30-point rule where d at all the 30 integration points will be
calculated for the current iteration.
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F I G U R E 8 Flowchart of the adaptive integration scheme

Once the values of d at all the 30 integration points are obtained, a check is performed to see if all of them have reached
the value of 1. At this step, the two possible outcomes are:

1. If not all of the 30 values of d have reached 1, this indicates that some of the points are still going through the cohesive
damage process and are not yet fully failed. In this case, the iterating status of the CE remains to be “Damaged.”

2. If all of the 30 values of d have reached 1, this means that the entire CE has fully failed. In this case, the iterating status
of the CE will be updated to be “Failed.”

After the numerical integration of the element stiffness matrices and internal force vectors, the solver assembles them
into the system stiffness matrix and internal force vector, and decide if the current iteration converges. In case of conver-
gence, a new loading increment will be applied if the total loading is not yet finished; otherwise the analysis would be
completed. In case of no convergence, the solver estimates the new trial solution based on the residual and the stiffness
matrix and start the next iteration. Therefore, the integration in the current iteration of the CE will be affected by whether
the last iteration converges or not.
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F I G U R E 9 Integration points (marked with red dots) in the adaptive integration scheme [Color figure can be viewed at
wileyonlinelibrary.com]

Assuming that in the last iteration, the iterating CE status is updated to “Damaged,” that is, damage onset has been
detected within the 30 Gauss points. In the current iteration, the integration of this CE will then have multiple scenarios:

• if the last iteration is converged, then the converged CE status will be updated to be the iterating CE status, that is,
converged CE status = “Damaged.” The integration will directly go to the 30-point scheme;

• if the last iteration is not converged, then the converged CE status remains intact. But since the iterating CE status is
damaged, the integration will also go to the 30-point scheme according to the flowchart in Figure 8. The reason for this
construct is that even if the last iteration did not converge, the fact that the last probing action detected damage onset
means that damage onset is happening or close to happen in this CE, hence it should switch to the 30-point scheme
for higher accuracy.

Therefore, as soon as damage onset is detected in one iteration, the integration of the CE in the next iteration will go
directly to the 30-point rule and d at all the 30 integration points will be updated.

Once the converged status of the CE becomes “Failed,” the integration will be switched back to a 4-point rule, as the
cohesive zone has left the domain of the CE and the stress profile within the CE would be relatively simple. The only
nonzero stress would be the normal stress due to contact between the CE surfaces. Note that at this step no transfer of
history variable is needed in practice, as the values of d at the 4 quadrature points will obviously be 1.

The above adaptive integration scheme ensures that only a limited number of CEs need to be integrated on a high-order
quadrature rule. The intent here is to use a high number of quadrature points only in the regions near the cohesive zone.
This is shown in Figure 9, where a zoomed view of a crack-tip region in a DCB simulation is presented. With the adaptive
integration scheme, the higher-order quadrature points essentially follow the propagation of the cohesive zone.

3 RESULTS

The method in Section 2 is implemented in 2D within the commercial finite element software package, Abaqus. The
EB beam elements of Abaqus are directly used to model the plies. The structural CE in Section 2.3 is implemented
as an Abaqus user-defined element. The solution-dependent variables of the user-defined CE contain the status infor-
mation of the CE, which are used to determine the corresponding integration scheme according to the algorithm
presented in Section 2.4. The validity of the method will first be demonstrated on three classical test cases, namely, the
DCB, the ENF and the 50%-MMB cases. Aspects such as load-displacement curves, geometrical nonlinearity, CPU time
gains and parametric studies on integration will be covered. Second, applications on a buckling-induced delamination
problem and a multiple-delamination problem will be presented. Finally, cohesive traction profiles and a technique of
getting out-of-plane stresses for the EB beam plies will be demonstrated. All the simulations were performed with the
Quasi-Newton solver and no form of damping or viscosity was used.

3.1 The standard set: DCB, ENF, and MMB

The details of the DCB case has already been introduced in Section 2.1. The ENF and the 50%-MMB cases are drawn
from Turon et al.43 These two test specimens have the same geometry (c.f., Figure 10C) and are made of the same

http://wileyonlinelibrary.com
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(A) Loads and boundary conditions for ENF.

75 63.18

20

(B) Loads and boundary conditions for 50% MMB.
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35

20

(C) Geometry of the specimen

F I G U R E 10 The ENF and MMB problems (unit: mm) [Color figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Material properties for ENF and MMB43

Ply parameter Value

Young’s modulus along fiber direction, E11 120 GPa

Young’s modulus along transverse direction, E22=E33 10.5 GPa

Shear modulus along 1-2 and 1-3 directions, G12=G13 5.25 GPa

Shear modulus along 2-3 direction, G23 3.48 GPa

Poisson’s ratio along 1-2 and 1-3 directions, 𝜈12=𝜈13 0.5

Poisson’s ratio along 2-3 direction, 𝜈23 0.3

Interface parameter Value

Mode I fracture toughness, Gc
I 0.260 kJ/m2

Mode II fracture toughness, Gc
II 1.002 kJ/m2

Penalty stiffness, K 5.55× 105 N/mm3

Mode I strength, 𝜏0
I 30 MPa

Mode II strength, 𝜏0
II 58.9 MPa

Benzeggagh-Kenane mixed-mode coefficient 2

material (c.f., Table 3). The boundary conditions for ENF are shown in Figure 10A and those for MMB in Figure 10B.
The measured cohesive zone length in the benchmark tests are 0.84, 4.8, and 1.8 mm for DCB, ENF, and MMB,
respectively. The nonlinear formulation of the CE has been used to model the interface delamination. To investigate the
effect of bending-stretching coupling in the beams, both the linear beam elements and the nonlinear beam elements have
been used to model the plies.

3.1.1 Load-displacement curves

The load-displacement curves of the simulations with the linear beam elements are shown in Figure 11, along with the
analytical solutions based on modified beam theory43 and the predictions from the standard Abaqus models built with
continuum ply elements and linear CEs 1.

1The default CEs available in Abaqus often show no convergence without damping. A user-defined linear CE from the corresponding author’s earlier
work has been adopted to run the standard models without damping.

http://wileyonlinelibrary.com
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F I G U R E 11 Results of the DCB, ENF, and MMB tests. Comparison between standard and higher-order structural CEs [Color figure
can be viewed at wileyonlinelibrary.com]
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In the DCB case, the standard model requires an element size of 0.2 mm in order to reach a good agreement with
the analytical curve. With 1 mm and larger elements, the results of the standard model are far off from the theoretical
solution. The predicted peak load at which delamination initiates is ∼185% of the analytical or experimental value. With
the structural CE method proposed here, the prediction by 2.5 mm elements is significantly improved, with peak load
predicted at ∼104% of the analytical or experimental value. The slight overprediction of the initial stiffness is due to the
lack of transverse shear deformation in the EB beam elements, which is, however, accounted for in the analytical DCB
solution based on the modified beam theory.6 In the case of even larger CEs of 5 mm in length, the standard model pre-
dicts no delamination to occur within the duration of the simulation, while the structural CE method still delivers close
agreement with the experimental curve, with peak load predicted at 108% of the experimental value. After the peak load,
the proposed method’s predictions with 2.5 and 5 mm elements still oscillate closely around the analytical and experi-
mental curves. In the ENF case, the standard model with 2.5 mm linear CEs would predict accurately up to the peak load,
but would have a slight overprediction of the postpeak load-displacement curve of stable crack propagation. The standard
ENF simulation using 5 mm linear CEs would overpredict the initial stiffness and fail to capture the load-drop completely.
These results are consistent with the measured numerical cohesive zone length of 4.8 mm from the fine-mesh benchmark
simulation. The predictions of the structural CE method, with both 2.5 and 5 mm meshes, are in excellent agreement with
the analytical curve. The standard MMB simulation using 2.5 mm linear CEs does not capture the load-drop. With the
structural CE model, the prediction of the 2.5 mm mesh follows closely the analytical curve. The 5 mm mesh still predicts
well the peak load, but suffers some overprediction on the softening part of the curve. Overall, the results demonstrate the
capability of the proposed structural CE method in predicting accurately the load-displacement responses of the different
delamination tests with large elements of up to 5 mm in length.

3.1.2 Influence of using geometrically nonlinear beam formulation for the plies

In this section, the beam elements for the plies are switched between geometrically linear and nonlinear formulations
to investigate its effect on the standard set of DCB, ENF, and MMB results, while keeping the CE formulation fixed to
the nonlinear formulation. We found that the DCB and ENF results are practically unaffected by the switch. The MMB
results, however, show a small but clearly visible difference. The softening curves with nonlinear beam formulation shift
towards the bottom-left with respect to their linear counterparts, as shown in Figure 12A. We suspect that this shift,
which represents a lower mixed-mode fracture toughness than analytically predicted by linear elastic fracture mechanics,
is due to the bending-stretching coupling in the top beam. In MMB, the top beam bends more than the bottom beam,
particularly after the damage onset of the interface. If we consider the effect of bending-stretching coupling, then the top
beam would contract with respect to the bottom beam due to its relatively larger bending, and this contributes to lower
the percentage of Mode II opening with respect to the mid-surface of the CE, as shown in Figure 12B. With the material
parameters here, this effect is probably small, but MMB simulation is also known to be much more sensitive to parameter
variations than DCB and ENF.43 Further investigation is, however, needed to confirm this hypothesis.

3.1.3 Performance of linearized formulations

The performances of the two linearized CE formulations (Small-𝜃 and Geo-Linear formulations in Table 2) are also tested
on this set of problems with a 2.5 mm mesh and a 30-point Gauss integration scheme. As the two linearized versions
assume small rotations, they are used in combination with geometrically linear beam elements for the plies. It can be seen
in Figure 13 that the linearized formulations predict the correct load-displacement curves in all cases. Hence, for these
problems, the nonlinear formulation is not necessary and the two linearized versions are good enough. In a general case
where nonlinear beam elements are used for nonnegligible rotations, the small-𝜃 or geometrically linear simplifications
cannot be made and the nonlinear formulation should be used for the CEs.

3.1.4 Computational time gain

Although being able to enlarge the size of CE beyond the cohesive zone limit is important, the ultimate goal of the new
method is to reduce the computational time of delamination simulations using CEs. In order to test the time gain, the
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F I G U R E 12 Influence of the beam element formulation for the plies on the MMB simulation [Color figure can be viewed at
wileyonlinelibrary.com]

T A B L E 4 Comparison of problem sizes, solver iterations and CPU time between the standard CE models and the
structural CE models

DCB ENF MMB

Model Standard CE Structural CE Standard CE Structural CE Standard CE Structural CE
Element size 0.2 mm 2.5 mm 0.2 mm 2.5 mm 0.2 mm 2.5 mm

# Elements 7975 158 8425 194 8101 200

# D.o.F. 18 024 606 18 724 662 18 079 678

# Iterations 2356 831 991 591 2514 702

Time/D.o.F 50 ms 23 ms 22 ms 22 ms 61 ms 26 ms

CPU Time 905 s 14 s 427 s 15 s 1111 s 18 s

results of the proposed method on 2.5 mm meshes are compared against those of the standard model on 0.2 mm meshes,
on the basis that both sets of results are in close agreement with the analytical curves. The same solver settings 2 have
been used across the standard models and structural CE models. The comparisons, summarized in Table 4, show that
the structural CE method is faster in all three cases by at least one order of magnitude. If the curves of the structural CE
models on 5-mm meshes can be accepted, then the structural CE 5-mm models would achieve an additional 33% speed
up over their 2.5-mm counterparts, thereby reducing the simulation time of this set of problems to between 9 to 11 CPU
seconds.

3.1.5 Parametric studies on integration

In this section, the differences between different integration schemes with different numbers of integration points are
investigated. The 5 mm CE mesh is chosen in this investigation because the differences on a coarse mesh are more visible.
In Figure 14, the load-displacement curves are reported for 3, 4, and 10 integration points. Here, the number of integration
points is not made adaptive during analysis to keep the comparisons clear and focused. Overall speaking, using more
integration points lead to better agreement with the analytical solutions. With 3 and 4 integration points, Gauss scheme
gives much better predictions than the Newton-Cotes scheme. As the number of integration points increase to 10, the two

2Quasi-Newton solver with Abaqus automatic incrementation, without considering geometrically nonlinear effects, without any stabilization
techniques
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F I G U R E 13 Load-displacement predictions of the standard set by the linearized formulations listed in Table 2 [Color figure can be
viewed at wileyonlinelibrary.com]

schemes converge to similar curves. The ENF simulations are, however, practically unaffected by the change of integration
schemes, as shown in Figure 14C,D.

In order to obtain a more quantitative comparison between the different integration schemes, the following nor-
malized L2 error is used to quantify the differences between numerical load-displacement curve f *(x) and analytical
load-displacement solution f (x) in Figure 14:

e =

√
∫ b

a (f ∗ − f )2 dx√
∫ b

a f 2 dx
; (72)

Since the differences between the analytical and numerical curves are mostly happening after the load-drop point,
the location of the peak force in the analytical curve (the red dot on the x-axis in Figure 15) is set as the left limit of the
integral domain (a in Equation (72)). The right limits of integration are 12, 8, and 8 mm for the DCB, ENF, and MMB cases,
respectively. As the integrand in Equation (72) is quite complicated, the trapezoidal integration scheme is used to evaluate
Equation (72). The integration domain is equally subdivided into segments and on each segment a trapezoid is formed
to approximate the integral. The number of trapezoidal subdivisions is increased until the summed integral converges to
a fixed value. The results have been reported in Figure 16. In DCB and MMB, clear differences can be observed between
the two integration schemes and also between the different numbers of integration points. In ENF, with the used shear
strength of 58.9 MPa, very low error is obtained as compared with DCB and MMB in all cases. The choice of integration
scheme or number of integration points used does not seem to have an effect (c.f., Figure 16B). However, the value of
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(E) MMB using Newton-Cotes scheme.
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F I G U R E 14 Results of the DCB, ENF, and MMB tests. Comparison between Newton-Cotes and Gauss integration schemes [Color
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 15 Example of the integration domain on the load-displacement curve for the L2 error calculation [Color figure can be
viewed at wileyonlinelibrary.com]

3 IP 4 IP 5 IP 6 IP 7IP 10 IP
0

20

40

60

80

100

120

140

E
rr

or
[%

]

Gaussian
Newton-Cotes

(A) DCB.

3 IP 4 IP 5 IP 6 IP 7IP 10 IP
0

20

40

60

80

100

120

140

E
rr

or
[%

]
Gaussian
Newton-Cotes

(B) ENF with initial shear strength (58.9 MPa).
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F I G U R E 16 L2 errors on load-displacement curves: effect of number of integration points and integration schemes [Color figure can
be viewed at wileyonlinelibrary.com]

58.9 MPa for shear strength is a calculated one in the work of Turon et al43 for the purpose of accurately predicting the
MMB curve. If we increase the shear strength to 90 and 100 MPa, which are typical composite shear strength values, we
observe clear effects of integration on the error (c.f., Figure 16D). We believe that this is because the initial shear strength
used (ie, 58.9 MPa) is in the lower range of typical shear strength values of composites, resulting in a relatively larger
numerical cohesive zone which helps smooth the stress field there. Overall speaking, the results verify the difference
between Newton-Cotes and Gauss schemes at lower orders and their similarity at higher orders. Gauss scheme shows less
error than Newton-Cotes in general. Using odd numbers of Gauss integration points seems to give better performance
than using even numbers of them in the ENF and MMB cases.
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F I G U R E 17 The buckling-delamination test [Color figure can be viewed at wileyonlinelibrary.com]

T A B L E 5 Ply and CE material properties for the buckling test44

Parameter Value

Young’s modulus along fiber direction, E11 135 GPa

Shear modulus along 1-3 direction, G13 5.7 GPa

Penalty stiffness, K 5.55× 105 N/mm3

Mode I fracture toughness, Gc
I 0.2-1.6 kJ/m2

Mode I strength, 𝜏0
I 50 MPa

3.2 Buckling-induced delamination

The geometrically nonlinear formulation of the higher-order structural CE is assessed in a buckling-induced delamina-
tion test originally proposed by Allix and Corigliano.44 This same test has been used by different authors as benchmark for
their numerical models, such as de Borst45 and Zhi et al.46 The geometry and boundary conditions of the test are shown
in Figure 17 and the material properties are reported in Table 5. To induce buckling, a small (6× 10−4 mm) vertical per-
turbation was initially applied, and subsequently an horizontal displacement drove the buckling-induced delamination.
They are indicated in Figure 17 with 𝛿P and P, respectively.

In their original article, Allix and Corigliano used four different values of fracture toughness for the CE’s cohesive law,
ranging from 0.2 to 1.6 kJ/m2. The four tests have been simulated with the proposed method. The test with the smallest
value of fracture toughness (0.2 kJ/m2) has the smallest cohesive zone length, which was found to be 0.25 mm through
fine-mesh simulations (0.01 mm elements).

The main purpose of this test is to show that the proposed method is suitable for geometrically nonlinear analysis.
In addition, the attainable mesh size and CPU time are compared with the values reported in the literature. de Borst45

reported the use of 100 elements (0.2 mm) along the length for the Gc
I = 0.8 kJ/m2 case. Zhi et al46 reported that they used

a mesh of 0.05 mm elements, and that 0.3 CPU-hours were required to complete the simulation of the Gc
I = 1.6 kJ/m2

case. With the proposed method, using 0.75 mm CE for the Gc
I = 0.2 kJ/m2 case still gives a solution very close to the

asymptotic one, as shown in Figure 18. The Gc
I = 1.6 kJ/m2 case, performed with 0.25 mm CEs, requires 51 CPU-seconds

to be completed.

3.3 Double delamination

To demonstrate the capability of the proposed method in handling multiple delaminations, the problem with two initial
cracks developed by Robinson et al47 is modeled. The geometry and boundary conditions of the problem are depicted in
Figure 19. The thicknesses t1, t2, and t3 are 1.59, 0.265, and 1.325 mm, respectively. The problem has been previously mod-
eled by Alfano and Crisfield using CEs under geometrically linear assumptions,48 hence initially the same material proper-
ties are used here (HTA913), as shown in Table 6, and the geometrically linear formulation is used for the beam elements.

The result of the geometrically linear analysis (“Linear beam” curve in Figure 20B) is consistent with the result
of Alfano and Crisfield.48 In Figure 20A, the evolution of the deformation is illustrated. In Figure 20B, a compari-
son is made between the simulated load-displacement curve and the experimental load-displacement data extracted
from the work of Robinson et al.47 For the simulation, elements of 1 mm in length are used with a 10-point Gauss
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F I G U R E 18 Results of the buckling-delamination example [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 19 Geometry and boundary conditions for the double-delamination test case [Color figure can be viewed at
wileyonlinelibrary.com]

T A B L E 6 Material properties for the double-delamination problem47,48

Ply parameter Value

Young’s modulus along fiber direction, E11 115 GPa

Young’s modulus along transverse directions, E22=E33 8.5 GPa

Shear modulus along 1-2 and 1-3 directions, G12=G13 4.5 GPa

Shear modulus along 2-3 direction, G23 3.48 GPa

Poisson’s ratio along 1-2 and 1-3 directions, 𝜈12=𝜈13 0.29

Poisson’s ratio along 2-3 direction, 𝜈23 0.3

Interface parameter Value

Mode I fracture toughness, Gc
I 0.330 kJ/m2

Mode II fracture toughness, Gc
II 0.800 kJ/m2

Penalty stiffness, K 5.55× 105 N/mm3

Mode I strength, 𝜏0
I 3.3 MPa

Mode II strength, 𝜏0
II 7.0 MPa

Benzeggagh-Kenane mixed-mode coefficient 2

integration scheme. It can be seen that the predicted curve from the geometrically linear analysis follows accurately the
experimental data. As the interface uses the fully nonlinear formulation of the structure CE, in principle the correct result
should be reproducible when the geometrically nonlinear beam elements are used for the plies. However, it is observed
that once the geometrically nonlinear formulation is activated for the beam elements, the experimental data could no
longer be reproduced: the delamination always continued to propagate along the upper interface. The obtained curve
is labeled “Nonlinear beam” in Figure 20B. Davies and Ankerson49 reported in their study that this apparently incor-
rect curve was caused by using excessively reduced strengths for the interface for the sake of artificially increasing the
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F I G U R E 20 Results of the double-delamination example with initial strengths on 1-mm mesh [Color figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 21 Results of the double-delamination example with normal interfacial strengths [Color figure can be viewed at
wileyonlinelibrary.com]

numerical cohesive zone length, which is the approach taken in Alfano and Crisfield.48 We found no report of the strength
data in the original article of Robinson et al,47 but the strength values of 3.3 and 7.0 MPa for the interfacial normal and
shear strengths of HTA913 composites, respectively, are obviously artificially reduced by roughly one order of magnitude.
Hence, we performed a new set of simulations using 33 and 70 MPa for the normal and shear strengths, respectively,
and the results are shown in Figure 21. Now both curves (with or without geometrically nonlinear option for the beams)
predict correctly the experimental data on two different meshes. This shows the danger of using excessively reduced
strengths—the downside of this practice could be masked when used in combination with other modeling simplifications,
such as the case here with the geometrically linear beam formulation which ignores the bending-stretching coupling. As
the arms are loaded and the precrack on the top interface opens up, the very thin middle layer undergoes nonnegligible
rotation (c.f., Figure 20A). This middle layer is responsible for the propagation of the top delamination: as it is pulled, its
top-right-end peels off from the top arm to propagate the top delamination. If bending-stretching coupling is considered,
the end loadings on the middle layer would induce combined bending and axial tension, which gives a much stiffer reac-
tion than in the geometrically linear case. This stiffer middle layer behavior, coupled with excessively reduced interfacial
strengths, helps the top-right-end of the middle beam layer peel off from the top arm more easily, thereby favoring the
propagation of the delamination on the top interface and altering the whole solution.
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F I G U R E 22 Normal traction distribution along the CE domain for different mesh sizes [Color figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 23 Longitudinal and transverse shear stress distributions in the plies near the crack tip, extracted from the reference DCB
model. The X coordinate measures the distance from the crack tip, while Y measures the distance from the crack plane as in Figure 3 [Color
figure can be viewed at wileyonlinelibrary.com]

3.4 Cohesive traction and ply stresses

3.4.1 Cohesive traction

The traction values computed at the integration points of the CEs are stored for postprocessing. The normal traction
distributions near the cohesive zone are plotted for the DCB simulations. The results are shown in Figure 22 for 1, 2.5, and
5 mm CEs. The predicted traction distribution in the cohesive zone seems to be unaffected by the change of mesh. The
length of the cohesive zone is predicted to be around 2.7 mm, larger than that predicted by the reference linear CEs. The
traction profile in the intact region adjacent to the cohesive zone shows that the normal stress first quickly descends into
compression, then rises up again into tension. Compared with the reference traction solution obtained with the finely
meshed standard model, the compression magnitude is much higher. This compression-tension oscillation also grows
larger with coarser meshes. This could be due to the lack of transverse shear deformation in the EB beam elements.
Figure 23 shows the longitudinal and shear stresses in the plies near the crack tip. The stresses are extracted from the
integration points of the reference solid-element DCB model. It can be seen that although the transverse shear stress is
small compared with the longitudinal stress, it is in the same order of magnitude as that of the normal stress in Figure 3B.
Hence, neglecting the transverse shear strain in the plies (as done in the EB beam elements) will lead to overstiff behavior
of the plies and this could be the reason of this high compression-tension oscillation ahead of the cohesive zone.
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F I G U R E 24 Normal and shear stress predictions through the thickness at the crack tip location before damage onset. Comparison
between the reference solid model (using five solid elements through arm thickness) and the structural CE method (with three EB beam
elements through arm thickness) [Color figure can be viewed at wileyonlinelibrary.com]

3.4.2 Ply stresses

For the analysis which requires stresses in the plies (such as intralaminar damage analysis), the stress output of the
EB beam element is limited to the axial stress. However, the CEs on the interfaces have out-of-plane normal and shear
tractions which make up the other components of the stress tensor in 2D. A typical laminate would have multiple plies and
interfaces through the thickness, hence it is possible to interpolate the out-of-plane normal and shear stresses between
the CEs to approximate the intralaminar out-of-plane normal and shear stresses. To illustrate this idea, the DCB and
ENF simulations are modeled with three EB beam elements per arm with two CEs in between the EB elements. The
out-of-plane stresses are then linearly interpolated from the CEs across the thickness of each ply (for the surface plies the
stresses are interpolated to zero at the outer surface). In Figure 24, the interpolated stresses through the thickness at the
crack tip location before damage onset are compared with the integration-point stresses from the reference solid-element
models (meshed with 5 plane-strain elements across the thickness of each arm). It can be seen that the two curves differ
the most near the delamination plane: the reference curve shows a sharp drop of stress in the solid elements adjacent to
the delamination plane. This could be due to the limitation of the linear solid elements in capturing the stress concentra-
tion near the crack plane, resulting in an underprediction of stresses. The two solutions actually match reasonably closely
on the rest part of the curve in both cases. Hence, with the proposed method, the out-of-plane stresses in plies can be well
estimated through interpolation between CEs, making the method viable for intralaminar analysis. However, special care
must be taken when interpolating the stress ahead of the cohesive zone due to the presence of high compression-tension
oscillations as discussed in the previous paragraph. Further study is needed to come up with ways to regulate this high
compression-tension oscillation to allow for reliable stress interpolations from CEs to the plies in the region ahead of the
cohesive zone. In addition, it is difficult to judge if this technique would work well in a general case with an arbitrary
layup. This will be investigated in a follow-up study where the plate version of the method will be implemented. Alter-
natively, methods on the recovery of out-of-plane stresses from beams and shells have been well studied in the literature.
A stress-recovery method based on the a-posteriori integration of the equilibrium equations could be employed to equip
the proposed method with the full 3D stresses for intralaminar analysis.50-52

4 SUMMARY AND CONCLUSIONS

A new method of modeling delamination in composites is proposed in this work. It makes use of slender structural ele-
ments for the plies and compatible structural CEs for the interfaces. A corotational formulation is developed to allow for
geometrically nonlinear analysis. It is shown that a cohesive law defined on corotational traction and separation vectors
are invariant under a change of frame, hence satisfying the frame-indifference principle. A higher-order adaptive integra-
tion scheme is proposed which integrates accurately the internal force vector with the presence of the cohesive zone, and
at the same time preserves the computational efficiency of lower-order integration schemes when there is no cohesive
zone present. The proposed method has been implemented in 2D and validated on DCB, ENF, MMB, buckling-driven
delamination and double-delamination problems. Linearized versions of the method have also been developed and
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validated on the DCB, ENF, and MMB problems. They also show excellent agreement with the reference solutions.
Including the geometrical nonlinear effect (ie, bending-stretching coupling) in the plies is found to influence slightly the
result of MMB, where it appears to lower the mixed-mode fracture toughness possibly due to its influence on the mode
decomposition of the opening vector. The double-delamination problem is found to be sensitive to the cohesive strength
values when bending-stretching coupling is included in the simulation. Physically correct strength values should be used.

Compared with the reference method where the plies are modeled with continuum elements and the interfaces with
linear CEs, it has been shown that the proposed method does not suffer from the cohesive zone limit. It gives accurate
strength and postdamage predictions even with elements ten times larger than the limit size for standard CEs. As a result,
the new method has achieved a computational speed-up of at least one order of magnitude over the reference method.

The Gauss and Newton-Cotes integration schemes are compared on different orders of integration. It is observed that
Gauss scheme shows superior accuracy on lower orders, while both schemes show similar accuracy on higher orders.
Furthermore, the simulations of the proposed method do not require the use of any numerical damping or viscosity for
convergence. This showcases the superior numerical stability of this method in addition to its accuracy and efficiency.

While the EB beams only provide axial stress for the plies, interpolation can be used to obtain out-of-plane stresses
from the CEs. The interpolated stresses are comparable to stresses at the integration points of the reference models. This
opens up the possibility of the method to be applied on intralaminar problems. However, there is some mesh-dependent
stress oscillations ahead of the cohesive zone which is probably due to the lack of transverse shear deformation in the EB
beam elements. These stress oscillations need to be considered or regulated when interpolating for out-of-plane stresses
in the plies. Moreover, the effectiveness of the interpolation technique in a general laminate with arbitrary layups still
need to be assessed. Apart from using this interpolation technique, it is also possible to combine the proposed method
with an a posteriori stress recovery method to obtain the out-of-plane stresses. This could be investigated in a future work.

The future work will be naturally focused on the extension of the proposed method to the modeling of delamination
between thin plates and shells using Kirchhoff-Love plate and shell elements and the corresponding structural CEs. Once
established, it is expected to overcome the cohesive zone limit of element size for the modeling of delamination in general
thin-walled structures. This would bring along a step reduction in the computational cost associated with the current
CE-based models, thereby widening the possibility of performing direct delamination simulation on models of large-scale
thin-walled structures.
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APPENDIX A. QUADRATIC CE

In this section, the performance of quadratic CE11 is examined on the DCB example introduced in Section 2.1. The 2D
quadratic CE is a six nodes element. The top and bottom edges are spanned by 3 nodes each, as shown in Figure A2. It
is compatible with quadratic quadrilateral elements for plies. The details of its formulation follows those presented in
the work of Alvarez et al11 and are omitted here for brevity. As in Alvarez et al,11 the quadratic CE uses a fixed Gauss
integration scheme with 30 quadrature points.

The results of the quadratic CE on the DCB problem are shown in Figure A1. Compared with its linear counterpart,
the quadratic CE does show a clear improvement on the accuracy of its results. Less overpredictions of the peak load are
observed on coarse meshes. However, it is evident that only raising the order of interpolation from linear to quadratic,
even though equipped with a very high order of integration scheme, is not sufficient to overcome the cohesive zone limit
in this DCB case. These results contribute to motivate the eventual method adopted in this work.
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F I G U R E A1 Load-displacement results of the DCB problem obtained with quadratic CEs on several mesh sizes [Color figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E A2 Quadratic CE

APPENDIX B. DERIVING THE ROTATION ANGLE USING THE NANSON’S FORMULA

The Nanson’s formula relates a differential surface in the reference configuration, n0 dA0, to itself in the current
configuration, n dA, through the following equation:

n dA = det (F) F−T n0 dA0, (B1)

where n0 and n are the normal vectors of the surface in the reference and current configurations, respectively. F is the
deformation gradient. n contains the directional sins and cosines that can be used to extract the rotation angle and form
the rotation matrix. When applied to the mid-surface of the CE, we have:

F =
𝜕𝜸

𝜕𝝃
=

[
𝜕𝛾𝜉∕𝜕𝜉, 𝜕𝛾𝜉∕𝜕𝜂
𝜕𝛾𝜂∕𝜕𝜉, 𝜕𝛾𝜂∕𝜕𝜂

]
, det (F) F−T =

[
𝜕𝛾𝜂∕𝜕𝜂, −𝜕𝛾𝜂∕𝜕𝜉
−𝜕𝛾𝜉∕𝜕𝜂, 𝜕𝛾𝜉∕𝜕𝜉

]
, n0 =

[
0
1

]
. (B2)

Combining the above two equations, we obtain:

n = dA0

dA

[
−𝜕𝛾𝜂∕𝜕𝜉
𝜕𝛾𝜉∕𝜕𝜉

]
. (B3)

Since we also have:

n =

[
− sin 𝛼Γ

cos 𝛼Γ

]
(B4)

therefore, we obtain:

tan 𝛼Γ =
𝜕𝛾𝜂

𝜕𝜉
∕
𝜕𝛾𝜉

𝜕𝜉
⇒ 𝛼Γ = arctan

(
𝜕𝛾𝜂

𝜕𝜉
∕
𝜕𝛾𝜉

𝜕𝜉

)
. (B5)

APPENDIX C. ENF WITHOUT SNAP-THROUGH

In this section, an ENF test without snap-back is simulated with the proposed method to see if it captures the full
load-displacement curve. The boundary conditions are the same as the ones depicted in Figure 10A. However, the geome-
try and the material properties are slightly different. Compared with the ENF geometry in Figure 10C, this ENF specimen
is shorter overall (100.8 mm in length) and has a relatively longer precrack (30 mm in length) compared with the length
of the specimen. This geometry gives a stable crack propagation in ENF without snap-back. The material properties are
listed in Tables C1 and C2. The elements used in the simulations are 1 mm long with 30 Gauss integration points for the
CEs. The load-displacement curve of the simulation agrees closely with the analytical curve, as shown in Figure C1.
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T A B L E C1 Ply material properties for the shorter ENF test53

Parameter Value

Young’s modulus along fiber direction, E11 161 GPa

Young’s modulus along transverse direction, E22=E33 11.38 GPa

Shear modulus along 1-2 and 1-3 directions, G12=G13 5.17 GPa

Shear modulus along 2-3 direction, G23 3.98 GPa

Poisson’s ratio along 1-2 and 1-3 directions, 𝜈12=𝜈13 0.32

Poisson’s ratio along 2-3 direction, 𝜈23 0.44

T A B L E C2 Cohesive material properties for the shorter ENF test53

Parameter Value

Mode I fracture toughness, Gc
I 0.21 kJ/m2

Mode II/III fracture toughness, Gc
II 0.77 kJ/m2

Penalty stiffness, K 1× 106 N/mm3

Mode I strength, 𝜏0
I 60 MPa

Mode II/III strength, 𝜏0
II 90 MPa

Benzeggagh-Kenane mixed-mode coefficient 2
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F I G U R E C1 Load-displacement curve of the shorter ENF test [Color figure can be viewed at wileyonlinelibrary.com]
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