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Abstract

This thesis explores Markov chain Monte Carlo (MCMC) methods for a discrete linear Bayesian inverse

problem with non-Gaussian priors. The non-Gaussian priors are total variation and Besov space priors,

which are called edge-preserving due to their ability to model sparse features and discontinuities. Three

sampling algorithms are compared: random walk Metropolis-Hastings, preconditioned Crank–Nicholson

(pCN), and randomise-then-optimise (RTO). Prior transformations are developed to adapt RW, pCN

and RTO for edge-preserving priors. Results show a trade-off between computational efficiency and

accuracy. RTO with prior transformations yields more accurate reconstructions and credible intervals,

but at significant computational cost and with sensitivity to prior choice. pCN is faster, more robust

to discretisation, and provides more control over the sampling process but produces highly correlated

samples and less accurate estimates.
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Frequently-used notation

Random variables are denoted by uppercase letters. Random values taking values in function spaces are

denoted by italicised uppercase letters (e.g. U, Y ). Random variables taking values in Rn, with n ∈ N,
are denoted by boldface uppercase letters (e.g. U,Y). Realisations of function-valued random variables

are denoted by italicised lowercase letters (e.g. u, y). Realisations of Rn-valued random variables, and

Rn-valued vectors in general, are denoted by boldface lowercase letters (e.g. u,y). To refer to the j-th

element of a vector v, we write vj .

Matrices in Rm×n withm,n ∈ N are denoted by boldface uppercase letters (e.g. L,D). To avoid confusion

with Rn-valued random variables, we will always state that matrices are in Rm×n explicitly. Operators

on Banach spaces are denoted by calligraphic uppercase letters (e.g. A,F).

Unless otherwise specified, µ denotes a measure and π a density function. Subscripts are used to distin-

guish between different measures and different density functions. A sigma algebra over a set B is written

as σ(B).
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Chapter 1

Introduction

Image deconvolution, the process of denoising and sharpening images captured by imaging devices, such

as light microscopes or telescopes, is an important problem in imaging. In many application areas,

such as medicine [1], biology [2], astronomy [3], deconvolution is a necessary post-processing step to

reduce the distorting effects of noise and blur, which are unavoidable impacts of optics and electronics.

Mitigating the impact of noise and blur yields clearer images. Aside from images, deconvolution is also

used to process one-dimensional signals. In seismology, it is used to process seismic trace signals and

other seismic data [4], [5]. In astronomy, is it used to analyse the characteristics of stars from stellar

intensity and polarisation spectra [6]. In chemistry, one-dimensional chromatographic analysis makes

use of deconvolution to detect chemical components [7], [8]. Deconvolution is an example of an inverse

problem, which is a problem of finding an unknown quantity when we have a noisy measurement and

knowledge of process through which the measurements were obtained.

Inverse problems are difficult to solve because they are ill-posed [9], [10]. These problems fail to fulfill

at least one of Hadamard’s well-posedness conditions [11], [12]. These conditions check whether the

formulation of a problem leads to a solution that exists, is unique, and is continuously dependent on the

data. The ill-posedness of inverse problems is typically addressed through regularisation, which imposes

penalties on specific function characteristics, such as smoothness or sparsity with respect to a function

space basis. The standard approach to regularising inverse problems is Tikhonov regularisation [9], [13]–

[15], which stabilizes the solution by penalizing extreme or implausible parameter values. It balances

fidelity to the observed data with smoothness or simplicity in the solution.

Alternatively, the ill-posedness of an inverse problem can be addressed by viewing the problem as one

of Bayesian statistical inference. This follows the work of [10], where the Bayesian view was taken for

inverse problems with finite-dimensional components. The work of [16] takes the Bayesian view of inverse

problems in general Banach spaces, including function spaces. This approach leads to systematic quan-

tification of uncertainty about the unknown. Ill-posedness is addressed by modeling all the elements of

the inverse problem as quantities with statistical properties. The unknown is modeled as a random vari-

able with a prior probability density function. The prior is constructed based on our a priori knowledge

about the unknown. The data misfit is quantified following the distribution of the noise. The solution of

a Bayesian inverse problem is the posterior distribution which is the conditional probability measure of

the unknown given the observed data, obtained by combining the prior and the likelihood via Bayes’ rule.

Tikhonov regularisation can be interpreted as a Bayesian approach where the unknown parameters have

1



CHAPTER 1. INTRODUCTION 2

a Gaussian prior and the measurement noise is Gaussian. The quadratic regularization term corresponds

to the negative log of the likelihood (also known as the potential), and the solution is the maximum a

posteriori estimate of the posterior distribution.

Generally, the posterior distribution cannot be sampled directly. To approximate posterior statistics, in-

direct sampling techniques are often used. These techniques include Markov chain Monte Carlo (MCMC)

methods, which obtain samples by constructing a Markov chain whose stationary distribution is equal

to the target posterior. MCMC algorithms are commonly built in Metropolis-Hastings [17], [18] or

Gibbs [19] frameworks. Gibbs samplers have been applied to large-scale nonlinear inverse problems

[20]. Adaptive Metropolis methods have been applied to low- to moderate-dimensional settings [21],

[22]. Gradient-informed Metropolis-adjusted Langevin algorithms (MALA) [23] improve efficiency for

large-scale problems, and Hamiltonian Monte Carlo (HMC) [24] incorporates higher-order geometry into

sampling. These samplers were originally designed to draw samples from posterior distributions in which

the prior over the unknown is assumed to follow a Gaussian distribution.

While Gaussian priors are convenient and lead to tractable posterior structures, they may fail to capture

important characteristics of many real-world problems, such as sharp discontinuities or edges. These

characteristics are particularly significant in deconvolution, as sharp discontinuities usually mark the

boundaries between distinct objects in images. Capturing these discontinuities is key to obtaining clear,

deconvolved images. This thesis thus concentrates on non-Gaussian prior models, with a particular

emphasis on edge-preserving priors [25]–[27], which are specifically designed to maintain sharp transitions

in the reconstructed quantities while reducing the effects of noise.

In this thesis, we compare the results of modifications to Markov Chain Monte Carlo (MCMC) methods

that enable their use in solving Bayesian inverse problems with edge-preserving priors. Previous work has

introduced sampling strategies tailored for inverse problems [28], [29], which improve sampling efficiency

by exploiting the structure of the posterior distribution arising from Bayesian inversion with Gaussian

prior and Gaussian noise. The first of these, the preconditioned Crank–Nicholson (pCN) method, extends

the classical random walk Metropolis–Hastings algorithm to function spaces. In related studies [30], [31],

non-Gaussian priors were transformed into Gaussian random variables to facilitate this approach. The

second method, randomise-then-optimise (RTO), leverages optimisation techniques to efficiently generate

samples from high-dimensional probability distributions. For example, in [31], the total variation prior

was transformed into a Gaussian random variable to solve a one-dimensional deconvolution problem.

We test the transformed MCMC methods on one-dimensional deconvolution. In one-dimensional decon-

volution, we aim to retrieve a piecewise continuous function (or true signal) defined over an interval in R
from a convolved signal. The image deconvolution problem is a two-dimensional version of this problem.

As one-dimensional deconvolution is simpler, it is relatively straightforward to compare the true signal

to estimated point estimators and credible intervals by visual inspection. It is also a problem that allows

us to study the effect of dimension size, as we can refine the discretisation of the piecewise continuous

function to examine the effects on the sampling methods and the solutions obtained.

In this thesis, we aim to address two main questions. The questions are as follows.

1. What are the relative strengths and limitations of the preconditioned Crank–Nicholson method

and the randomize-then-optimize approach when applied to sampling from posterior distributions

arising in Bayesian inversion with edge-preserving priors?

2. How does the dimension of the discrete problem affect the performance of the sampling algorithm?
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This thesis is structured as follows. In Chapter 1, we provide a brief introduction to the problem of

sampling with non-Gaussian priors. In Chapter 2, preliminaries on inverse problems and the Bayesian

approach, including prior modeling, are introduced. One-dimensional deconvolution is given as a running

example in Chapter 2 to illustrate the concepts to the reader. A brief overview of basic concepts in

Markov chain Monte Carlo (MCMC) methods is provided in Chapter 3, followed by a presentation of

the MCMC methods used in this thesis. In Chapter 4, the Bayesian solution for the one-dimensional

deconvolution problem is derived. Prior transformations and algorithms for sampling from the posterior

distribution are also presented in Chapter 4. Sampling results are presented in Chapter 5. In Chapter 6,

conclusions are presented along with directions for further work and avenues of improvement.



Chapter 2

Preliminaries on Bayesian inverse

problems

This thesis explores sampling methods for a discrete linear Bayesian inverse problem. In this chapter,

we present a short introduction to inverse problems in Section 2.1 and highlight the classical notion of

a solution in Subsection 2.1.2. The Bayesian approach and solution is introduced in Section 2.2. A key

element in the Bayesian approach, which also affects the sampling methods studied in this thesis, is how

prior information about the problem is incorporated in the problem-solving process. In Section 2.3, three

ways to do this for the one-dimensional deconvolution problem are presented.

2.1 Inverse problems

A problem arises in situations where we would like to study an object or quantity that we cannot measure

directly. For example, we wish to recover a de-blurred, de-noised picture from the blurry, noisy picture

in Fig. 2.1.

Figure 2.1: A blurred and noisy picture.

To approach this problem mathematically, we first introduce notation for the linear measurement model

y = Au+ e, (2.1)

where y ∈ Rm is our measurement or observation, the linear operator A : Bu → Rm is our forward

operator, e ∈ Rm and u is a member of the Banach space Bu. The picture in Fig. 2.1 is our measurement

or observation. The de-blurred picture is our unknown. Suppose we have knowledge of the process that

4



CHAPTER 2. PRELIMINARIES ON BAYESIAN INVERSE PROBLEMS 5

generated this blurred image. The mathematical model of this process is the forward operator. Aside

from the blurriness of Fig. 2.1, we also have to consider the noise in the picture.

Measurement noise cannot be avoided in practical situations, and errors due to measurement noise are

modeled by the vector e. In the linear measurement model (2.1), this is a deterministic but unknown

quantity. This approach to noise does not rule out the possibility that e is a realisation of a random

process, which is an accurate model of noise in many types of measurements.

The reader may notice that u may be in any Banach space Bu, including spaces of functions, but

the observation y is discrete. This is because the quantities we cannot directly measure can often be

functions—for example, u may represent the initial temperature distribution of a metal rod or a piecewise

continuous function. Meanwhile, observations of physical quantities are taken using measurement devices,

which store vectors of numbers. This is why the observation y is a member of a finite-dimensional

vector space. Additionally, quantities in general Banach spaces must be mapped to quantities in finite-

dimensional spaces (or discretised) for computation purposes.

In terms of the linear measurement model (2.1), the direct problem is,

”Given u, find y.” (2.2)

Noise has to be considered when dealing with measurements, but are not necessarily present in direct

problems. Direct problems are usually well-posed, meaning that they are formulated in a way that leads

to a meaningful solution. In his study of partial differential equations, Hadamard [11], [12] proposed that

a problem is considered well-posed if it fulfills three conditions, which are stated below.

Definition 2.1.1: Well-posedness conditions

A problem is considered well-posed if it satisfies the following conditions.

(H1) There is at least one solution.(Existence) (2.3)

(H2) There is at most one solution. (Uniqueness) (2.4)

(H3) The solution depends continuously on the data. (Continuous dependence) (2.5)

The linear inverse problem that corresponds to the direct problem (2.2) is,

”Given a noisy measurement y = Au+ e, extract information about u.” (2.6)

In the case where the space Bu is Rn, we have a discrete linear inverse problem,

”Given a noisy measurement y = Au+ e, extract information about u.” (2.7)

Here, the forward operator is multiplication of the matrix A ∈ Rm×n with u ∈ Rn. Strictly speaking, the

observation y in (2.6) is not the same as the observation y in (2.7), as the two problems involve different

models. We denote both observations by y to streamline notation. The problems (2.6) and (2.7) are

ill-posed, meaning that they do not satisfy the well-posedness conditions.

For the discussions of ill-posedness, it is useful to introduce notation for the ideal (noiseless) measurement

corresponding to the problem (2.7), given by

y0 = Au. (2.8)
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The different formulations presented in (2.6) and (2.7) can represent different approaches to solving

an inverse problem where u is a function. The linear inverse problem formulation (2.6) is used when

discretisation of u is left for last and the discrete linear inverse problem (2.7) is used when the discretisation

of u occurs at the beginning of the problem-solving process. Choosing one formulation impacts how we

approach the inverse problem. In this thesis, we focus on the formulation (2.7) for a discrete one-

dimensional deconvolution problem.

2.1.1 Ill-posedness of discrete linear inverse problems

A problem that fails to fulfill one or more of the conditions in Definition 2.1.1 is ill-posed. Inverse

problems, which are characterised by their sensitivity to errors due to measurement noise and model

errors, are ill-posed.

The conditions in Definition 2.1.1 can be broken in several ways by a problem of the form (2.7). Consider a

situation where m > n; in other words, the dimensions of the measurement exceed those of the unknown.

Even if there is a u ∈ Rn such that Au = y0, the addition of noise leads to a system with no solutions,

as the system (2.8) is overdetermined. This breaks condition (2.3). If n > m, the linear system in (2.6) is

underdetermined, and several elements of Rn may be solutions of the system. Therefore, condition (2.4)

is broken.

To see how condition (2.5)can be broken, we consider the case where m = n. To measure ill-posedness,

the condition number of A can be computed. A definition of the condition number is given below [32].

Definition 2.1.2: Condition number

Let A be a matrix in Rn×n. The condition number of A is

cond(A) = ||A||||A−1||

with ||·|| denoting any matrix norm. In this thesis, we compute the condition number with the

2-norm, ||·||2.

A value of cond(A) that is much larger than 1 indicates that the problem of solving for u in Au = y is

highly sensitive to small measurement errors [32]. Attempting to solve the problem (2.7) by multiplying

both sides of the linear equation with A−1 would result in A−1e dominating the solution. The continuous

dependence condition (2.5) would then be broken. This is illustrated in Example 2.1.3 using naive

deconvolution.

Before discussing naive deconvolution, we first introduce continuous and discrete convolution. Discrete

convolution is the direct problem that corresponds to discrete deconvolution, and discrete convolution is

an approximation of continuous convolution.

Example 2.1.1 (Continuous convolution). In seismology, sensors often capture convolved signals due to

the Earth’s impulse response. The effect introduced by the sensors and the Earth’s impulse response is

modeled mathematically by convolution.

In this project, we discuss the convolution of piecewise continuous functions u which are compactly

supported on [0, 1). By restricting our scope to functions compactly supported on [0, 1), we can focus on
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the ill-posedness of the inverse problem over any difficulties we may encounter by having to extend u at

the boundary of its domain.

Blurring of a function u (sometimes also referred to as a signal) is modeled by taking the convolution of

the function with a point spread function. The point spread function (PSF) ρ is sometimes called the

convolution kernel, device function, impulse response, blurring kernel, or transfer function in other fields.

Definition 2.1.3: Point spread function

A point spread function ρ is a non-negative function that satisfies the following conditions:∫
R
x · ρ(x) dx = 0 and (2.9)∫
R
ρ(x) dx = 1. (2.10)

Condition (2.9) ensures the function is centered around zero. Condition (2.10) means that constant

functions are unchanged when they are convolved with ρ. Thus, the scale of any function u is preserved

when it is convolved with ρ. Additionally, we often want to work with even functions, or ρ(−x) = ρ(x).

We define three point spread functions that fulfill conditions (2.9) and (2.10): the triangle PSF ρT , the

quartic PSF ρQ, and the Gaussian PSF ρG. Each function can be parameterised by a > 0. They are

defined as

ρT (x) =
1

a2
(a− |x|) for x ∈ [−a, a], (2.11)

ρQ(x) =
15

16a5
(x− a2)2 for x ∈ [−a, a], and (2.12)

ρG(x) =
1√
2πa2

exp

(
− x2

2a2

)
for x ∈ R. (2.13)

We now define what it means to convolve a function u with a PSF.

Definition 2.1.4: Continuum model of 1D convolution

Let Cpc be the space of piecewise continuous functions compactly supported on [0, 1). We fix a

point spread function ρ as in Definition 2.1.3. For any u ∈ Cpc, the convolution of u and ρ is

(ρ ∗ u) (x) =
∫
R
ρ(τ)u(x− τ) dτ =

∫
R
ρ(x− τ)u(τ) dτ. (2.14)

The equality in (2.14) is due to the translation invariance of the integral over R.

Example 2.1.2 (Discrete convolution). We now want to define a discrete counterpart to the continuous

convolution defined in (2.14). To do so, we need to discretise the domain, the integral operator, and the

PSF.

To discretise the domain [0, 1), we define

∆x =
1

n
(2.15)

xj = j∆x ∀j ∈ 0, 1, . . . , n− 1 (2.16)
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and call xj our grid points. The discretisation of a piecewise continuous function u on our grid is

u =
(
u(x0) u(x1) · · · u(xn)

)⊺
.

We can approximate the integral of a piecewise continuous function u over an interval [b0, b1] by numerical

quadrature. Our discrete approximation of this integral is

∫ b1

b0

u(x)dx ≈ ∆x

n−1∑
j=0

u(xj) = ∆x

n−1∑
j=0

uj . (2.17)

Next, we define the support of our discrete PSF in the form of an interval [−aρ, aρ] with aρ > 0. The

triangle PSF (2.11) and quartic PSF (2.12) are zero outside [−a, a], so for these PSFs we can choose

aρ = a. For the Gaussian PSF, we can choose aρ = 6a, as the Gaussian PSF (2.13) is close to zero for

|x| > [−6a, 6a]. The support of the discrete PSF is an interval centered around zero, as we work with

PSFs that are symmetric and centered around zero.

Let ν be the largest integer such that ν ≤ aρ

∆x < ν + 1 and define our discrete PSF p̂ as

p̂ =
1(

∆x
∑ν

j=−ν ρ(j∆x)
)(ρ(−ν∆x) ρ((−ν + 1)∆x) · · · ρ((ν − 1)∆x) ρ(ν∆x)

)⊺
. (2.18)

This ensures

∆x

ν∑
j=−ν

p̂j = 1

which corresponds to the normalisation condition (2.10). The discrete PSF p̂ is thus also scale-preserving.

We first define our approximation of (ρ ∗ u) (xj). Substituting the convolution (2.14) into our quadrature

rule (2.17) yields the approximation∫ aρ

−aρ

ρ(y)u(xj − y) dy ≈ ∆x

ν∑
l=−ν

p̂l · u(xj − xl) = ∆x

ν∑
l=−ν

p̂l · uj−l. (2.19)

As u is compactly supported on [0, 1), we can extend the function by considering it to be periodic.

Hence uj−l = u(xj−l) = 0 whenever j − l < 0 and j − l > n − 1 for j ∈ {0, 1, . . . , n − 1} and l ∈
{−ν, ν + 1, . . . , ν − 1, ν}. By substituting values of extended u into (2.19), we can define a discrete

convolution operation.

Definition 2.1.5: Discrete convolution

Let p = ∆x · p̂ with p̂ as defined in (2.18). The discrete convolution of u and p at xj is

ν∑
l=−ν

pl · uj−l (2.20)

for j ∈ {0, 1, . . . , n− 1}.

Let ρ be the quartic PSF (2.12) with a = 0.04 and let our grid have n = 64 points. Then aρ = 0.04 and
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ν = ⌊0.04 · 64⌋ = 2. Let p be as in Definition 2.1.5 and define A64R64×64 as

A64 =



p0 p−1 p−2 0 · · · · · · · · · p2 p1

p1 p0 p−1 p−2 0 p2

p2 p1 p0 p−1 p−2 0
...

0
. . .

. . .
...

. . .

p−2 0 p2 p1 p0 p−1

p−1 p−2 · · · · · · · · · 0 p2 p1 p0


. (2.21)

If we compute g = A64u, each j-th element of gj will be the sum (2.20).

We perform discrete convolution on a piecewise continuous function and plot the results in Figure 2.2.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
true signal
convolved signal

Figure 2.2: A piecewise continuous function on the domain [0, 1] (in black) and the convolved function
(in red).

We now illustrate how ill-posedness manifests numerically in 1D deconvolution.

Example 2.1.3 (Naive deconvolution). Naive deconvolution entails multiplying the inverse of the discrete

convolution matrix (2.21) with the observation y. We perform naive deconvolution to try to recover the

true signal from a synthetic observation y of a noisy, convolved piecewise continuous function.
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(a) Observations and true signal for n = 32.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0
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0.6

0.8 true signal
naive deconvolution

(b) Naive deconvolution for n = 32

Figure 2.3: Naive deconvolution for n = 32, cond(A32) = 5.221
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(a) Observations and true signal for n = 64.
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(b) Naive deconvolution result for n = 64

Figure 2.4: Naive deconvolution for n = 64, cond(A64) = 2242.303
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(a) Observations and true signal for n = 128.
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(b) Naive deconvolution result for n = 128

Figure 2.5: Naive deconvolution for n = 128, cond(A128) = 34179.688
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(a) Observations and true signal for n = 256.
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(b) Naive deconvolution result for n = 256

Figure 2.6: Naive deconvolution for n = 256, cond(A256) = 1281190.0

As n increases, the condition number of An increases rapidly. The results of naive deconvolution bear

little resemblance to the true signal, marked in black lines.
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2.1.2 Tikhonov regularisation

One way to approach the ill-posedness discussed in Subsection 2.1.1 is through Tikhonov regularisa-

tion [14], [15]. Tikhonov regularisation is discussed in detail in [9]. In Tikhonov regularisation, the

ill-posedness in the inverse problem is mitigated by finding an approximate solution subject to some re-

quirements. To illustrate the concepts involved, we discuss Tikhonov regularisation for inverse problems

of the form (2.7). The Tikhonov functional [9] is given by

Tα(u) = ||Au− y||22 + α||Lu||22. (2.22)

The regularisation parameter α is a value that we choose and L is in Rn×n. The matrix L can be

constructed using prior knowledge of our solution. The Tikhonov regularised solution uα is

uα = argmin
u∈Rn

Tα(u). (2.23)

The parameter α is the called the regularisation parameter. The minimisation problem (2.23) can be

interpreted as a balance between two requirements. First, we would like our solution to fit our forward

model and observations, meaning that the residual ||Au− y||22 is small. Second, we would like our

solution to be stable, meaning we want α||Lu||22 to be small in norm.

Example 2.1.4 (Tikhonov solution of 1D deconvolution). We set

D =
1

∆x



1 0 0 · · · 0 0 1

−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
...

. . .
. . .

. . .
...

...
...

0 0 0 · · · 0 −1 1

 . (2.24)

This matrix will henceforth be referred to as the difference matrix. The vector u is a discrete approxi-

mation of a piecewise continuous function u, and the product Du is a discrete approximation of the first

derivative of u. For j = 1, . . . , n− 1 the j-th element of Du is

1

∆x
(uj − uj−1),

which is a finite difference approximation of u′(xj). We set the regularisation matrix in the functional

(2.22) as D, meaning L = D. Keeping the term α||Du||22 small in norm reflects an a priori belief that

the function u is continuous, and hence its first derivative will be small in norm. We present Tikhonov

solutions for the deconvolution problem with a few different values of α. A larger α value leads to a

smoother solution.
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(a) Tikhonov regularised solution
with matrix D and α = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 true signal
Tikhonov solution

(b) Tikhonov regularised solution
with matrix D and α = 0.5.
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(c) Tikhonov regularised solution
with matrix D and α = 1.0.

Figure 2.7: Tikhonov solutions for the 1D deconvolution problem with varying α values.

As seen in Figure 2.7, the Tikhonov regularisation approach can give us relatively accurate approximations

of the true signal. However, uncertainty about the true signal is not easy to quantify using this approach.

In linear inverse problems found in practice, such as image deconvolution, we will not be able to compare

our solution to the ground truth, which makes uncertainty quantification valuable. This leads us to the

approach taken in this thesis: the Bayesian approach to inverse problems.

2.2 The Bayesian approach to inverse problems

In the previous section, Tikhonov regularisation was applied to find a numerical solution for an ill-posed

inverse problem. The linear measurement model (2.1) is deterministic, meaning that statistical properties

are not modeled in the problem formulation. In this section, the inverse problem is restated as one of

statistical inference. When this approach is taken, the elements of our inverse problem—the observation,

noise, and unknown—are modeled as quantities with statistical properties. Uncertainty quantification of

the solution can be performed [10] once it is obtained. Important definitions in probability theory are

given in Appendix A and the reader may find these useful in the discussions that follow.

Consider a linear measurement model where the quantities are modeled as random variables. Let Ω1 and

Ω2 be sample spaces. Let Ω = Ω1 × Ω2. We consider the linear measurement model

Y = AU+E (2.25)

where U : Ω1 → Rn, E : Ω2 → Rm, and Y : Ω→ Rm.

The linear inverse problem corresponding to (2.25) is,

”Approximate U when an observation y is given.” (2.26)

In other words, we would like to condition U on a single realisation of Y. For brevity, we denote

conditioning a random variable on a realisation of another random variable using the | symbol (e.g. U |y
denotes U conditioned on a single realisation of Y.)

In this measurement model, U is a random variable, and we can choose its distribution to reflect what

we know about U before obtaining an observation. Larger probabilities are assigned to values in Rn that

we consider more likely based on our a priori information. The distribution constructed following this
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principle is the prior distribution of U. Using Bayes’ Theorem, the probability distribution of U can be

conditioned on a realisation of Y. The conditioned distribution is the posterior distribution of U given

an observation y. Bayes’ formula for inverse problems is stated below.

2.2.1 Bayes’ formula

Assume that U follows a prior µU with Lebesgue density πU(u). We assume that the noise E is in-

dependent of U and is distributed according to the measure µE with Lebesgue density πE(e). Then

the likelihood of Y |u is found by shifting µE by Au. This shifted measure is denoted by µu
Y with the

Lebesgue density πu
Y(y) = π(y|u) = πE(y −Au).

Theorem 2.2.1: Bayes’ Theorem

Suppose

Z(y) =

∫
Rn

πE(y −Au)πU(u) du > 0.

Then U |y is a random variable following the measure µy
U with Lebesgue density πy

U(u) given by

πy
U(u) = π(u |y) = πE(y −Au)πU(u)

Z(y)
. (2.27)

The term posterior distribution refers to the measure µy
U.

The likelihood πE(y −Au) summarises our information about the observation, noise, and forward op-

erator. It quantifies the data misfit. The prior density πU(u) is independent of the measurement and

assigns higher probabilities to values of U that we expect to see based on our a priori information. The

probability of our measurement is denoted by Z(y), which plays the role of a normalising constant. The

posterior density πy
U(u) is our solution, obtained by updating the prior density.

We define

ϕ(u) = − log(πE(y −Au)) (2.28)

and call this the potential.

Let µy
U and µU be measures on Rn with densities πy

U and πU, respectively. Then we can rewrite Theorem

2.2.1 as
dµy

U

dµU
(u) =

1

Z(y)
exp (−ϕ(u)) (2.29)

with

Z(y) =

∫
Rn

exp (−ϕ(u))µU(du).

The posterior (2.27) is absolutely continuous with respect to the prior and the Radon-Nikodym derivative

is proportional to the likelihood. To find a single value that represents the posterior distribution, a point

estimator can be taken.
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2.2.2 Estimators

The solution of a Bayesian inverse problem (2.26) is the posterior probability distribution with the density

(2.27). For discrete inverse problems where n = 1, 2, or 3, it can be straightforward to represent the

solution visually using plots. Discrete inverse problems in these spaces form a very limited subset of inverse

problems, and most inverse problems are in higher (or even infinite) dimensional spaces. Estimators are

needed to investigate the properties of the posterior distribution.

In many applications, it is useful to compute one value that can represent the distribution, or a point

estimator. A point estimator can be used to answer the questions we are interested in, depending on

the application. For example, in deblurring, we may want to recover one image out of our posterior

distribution; in 1D deconvolution, we want to recover one signal u over the domain.

The maximum a posteriori (MAP) estimator is a popular choice of estimator. For discrete inverse

problems, a definition is given below.

Definition 2.2.2: Maximum a posteriori estimator

Given the posterior probability density πy
U(u), the MAP estimator uMAP satisfies

uMAP = argmax
u∈Rn

πy
U(u) (2.30)

provided it exists.

The MAP estimator, if it exists, may not be unique. The MAP estimator may also be referred to as the

posterior mode.

Another possible estimator is the conditional mean.

Definition 2.2.3: Conditional mean

Given the posterior probability density πy
U(u), the conditional mean uCM satisfies

uCM =

∫
Rn

uπy
U(u) du. (2.31)

Finding the conditional mean requires the computation of high-dimensional integrals. This is rarely

feasible in practice. Instead of computing the conditional mean directly, the integral (2.31) can be

approximated with the empirical averange [33],

ūest =
1

M

M∑
k=1

uk, (2.32)

where uk with k = 1, 2, . . . ,M are samples following a distribution with the density πy
U. Computational

methods for this purpose are the subject of Chapter 3.
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2.3 Priors

2.3.1 Gaussian priors

Gaussian priors offer a number of practical advantages. They are easy to construct and often lead to

exact estimators. Additionally, computational methods for sampling from discrete Gaussian distributions

are available and implemented in many software libraries. They are also useful for suppressing the effects

of measurement noise, as Gaussian priors tend to encourage smoothness.

For the Rn-valued random variable U, a Gaussian prior can be constructed by setting the mean and

covariance, which charaterise the Gaussian prior. The definition of a multivariate Gaussian random

variable below.

Definition 2.3.1: Multivariate Gaussian random variable

Let m ∈ Rn and Γ ∈ Rn×n be a symmetric positive definite matrix. A Gaussian random variable

X with the mean m and covariance Γ has the probability density

π(x) ∝ exp

(
−1

2
(x−m)

⊺
Γ−1(x−m)

)
. (2.33)

We say that X ∼ N (m,Γ).

A Gaussian prior models the a priori belief that realisations of X are likely to be close to the mean m,

with some deviations described my the covariance matrix Γ. The values on the diagonal of Γ describe the

uncertainty of individual elements of X. The off-diagonals model a priori belief about how the different

elements of X are correlated to each other. A diagonal covariance matrix Γ models uncorrelated variables.

If the values of the diagonal elements of Γ are small, X is believed to take values close to the mean.

A formula for the posterior density when the prior is Gaussian, the noise is Gaussian, and the forward

operator is linear is derived in Theorem 3.10 in [10]. The formula is given below in Theorem 2.3.2.

Theorem 2.3.2

Let y ∈ Rm and A ∈ Rm×n. Suppose E ∼ N (0,ΓE). Let D be a matrix such that Ker(A) ∩
Ker(D) = {0}. The function

πy
U(u) ∝ exp

(
−1

2
(||Du||2 + (y −Au)

⊺
ΓE

−1(y −Au)

)
(2.34)

defines a Gaussian density function over Rn with the mean

(D⊺D+A⊺ΓE
−1A)−1A⊺ΓE

−1y (2.35)

and covariance matrix

(D⊺D+A⊺ΓE
−1A)

−1
.

Proof. Let M = D⊺D+A⊺ΓE
−1A and b = A⊺ΓE

−1y.
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Let x ∈ Ker(M). Then we have x⊺Mx = ||Dx||22+||ΓE
−1/2Ax||22 = 0 and so Ker(M) ⊆ Ker(A)∩Ker(D).

Since Ker(A) ∩Ker(D) = {0}, it follows that Ker(M) = {0} and M is invertible.

Next, we can expand ||Du||2 + (y −Au)
⊺
ΓE

−1(y −Au) to obtain

||Du||2 + (y −Au)
⊺
ΓE

−1(y −Au) = u⊺(D⊺D+A⊺ΓE
−1A)u− 2u⊺A⊺ΓE

−1y + y⊺ΓE
−1y.

Then

u⊺(D⊺D+A⊺ΓE
−1A)u− 2u⊺A⊺ΓE

−1y + y⊺ΓE
−1y = u⊺Mu− 2b⊺u+ y⊺ΓE

−1y

= (y −M−1b)
⊺
M(y −M−1b)− b⊺M−1b+ y⊺ΓE

−1y.

The last two terms are independent of u.

exp

(
−1

2
(||Du||2 + (y −Au)

⊺
ΓE

−1(y −Au)

)
∝ exp

(
−1

2

(
(u−M−1b)

⊺
M(u−M−1b)

))
which defines a Gaussian density with the mean M−1b and covariance M−1, as M is invertible.

For discrete linear inverse problems with Gaussian noise and a Gaussian prior, the mean (2.35) is also

the solution for the optimisation problem defined in (2.22) for ΓE =
√
αI with α being the Tikhonov

parameter. It is also the maximiser of the density function (2.34). In other words, the vector computed

using the formula (2.35) is both the conditional mean and the maximum a posteriori estimator.

Gaussian processes can be used to construct function-valued priors. A definition of the Gaussian process

from is given in [34] and presented below.

Definition 2.3.3: Gaussian process

A Gaussian process is a family {Ut}t∈T indexed by a parameter set T ⊂ R such that all its

finite-dimensional distributions are Gaussian. In other words, all random vectors of the form(
Ut0 Ut1 . . . Utn

)⊺
are Rn-valued Gaussian random vectors.

It is characterised by its positive definite covariance function

Cov(Ut, Us) = E[(Ut − E(Us))(Us − E(Ut))], t, s ∈ T.

To construct Gaussian process priors that lend themselves well to discretisation, we want to be able

to represent them as infinite series which can be truncated to n terms. One such representation is the

Karhunen-Loève expansion. It is briefly discussed in [35] for Gaussian processes taking values in general

Hilbert spaces. Here, we present the definition from [35] for Gaussian processes taking values in L2(R).
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Definition 2.3.4: Karhunen-Loève expansion of a Gaussian process

Let {bj}j≥0 be an orthonormal basis of L2(R), zj ∼ N (0, 1) be a sequence of independent R-valued

random variables, and aj be a sequence of real numbers such that
∑∞

j=0 a
2
j <∞. Then

U =

∞∑
j=0

ajzjbj (2.36)

is the Karhunen-Loève expansion of a Gaussian random process with mean 0 and the covariance

Cov(Ut, Us) =

∞∑
j=0

a2j · ⟨Ut, bj⟩L2(R) · ⟨Us, bj⟩L2(R) . (2.37)

The series representation is discussed in more depth in [36]. In particular, the covariance operator

is discussed in Remark 2, Section 2.4 in [36]. In the study of Bayesian inverse problems in general

Banach spaces, the Karhunen-Loève expansion [16] is used to construct Gaussian priors for function-

valued unknowns.

2.3.2 Total variation prior

The Gaussian priors described in the previous section lack one important quality: they are not edge-

preserving. An edge-preserving prior [25], [26], [37] is a prior that smooths out noise while maintaining

sharp transitions in the signal. Sharp transitions include steps, discontinuities, and steep gradients. In

the true function plotted in Figure 2.2, we have a steep drop after a linear increase and several steps. A

Gaussian prior may not recover these features effectively.

Images can be modeled as functions that are piecewise smooth with jump discontinuities which represent

edges [26]. These functions are in the set of functions of bounded variation. The definition of the total

variation [26] of a function is given below, together with the criterion a function must fulfill to be of

bounded variation.

Definition 2.3.5: Total variation

Let f : [0, 1) → R be a function in L1([0, 1)). We define the total variation of f , denoted by

TV (f), as

TV (f) = sup

{∫
[0,1)]

f∇ · g dx|g ∈ C1
0 ([0, 1),Rn), ∥g∥ ≤ 1

}
. (2.38)

Here, ∇· denotes the divergence operator and the space of test functions C1
0 ([0, 1),Rn) is the space

of compactly-supported differentiable functions. A function is said to have bounded variation if

TV (f) <∞.

To make sense of total variation in a discrete setting, the total variation of a vector f is given by a function

of f ∈ Rn.
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Definition 2.3.6: Discrete total variation

Let f ∈ Rn be a discretisation of a function in L1([0, 1)). We define the total variation of f ,

denoted by TV(f), as

TV(f) =

N∑
j=1

|(Df)j | (2.39)

where D is the difference matrix (2.24).

The total variation prior [10] is defined below.

Definition 2.3.7: Total variation prior

The total variation prior density of U : Ω1 → Rn is

πU(u) ∝ exp

−λ N∑
j=1

|(Du)j |

 (2.40)

where λ ∈ R is a hyperparameter.

This TV prior is for a one-dimensional function u, and it is edge-preserving for discrete inverse problems

with a fixed number of dimensions. There is no known continuous random variable with the density

(2.40) [25]. The next subsection covers priors that are defined for continuous random variables and have

the desired edge-preserving properties.

2.3.3 Besov priors

Besov priors were proposed as priors for linear inverse problems in [27] and studied for non-linear inverse

problems in [38]. They are capable of modeling large jumps between adjacent values that represent

sharp features in images while suppressing noise. They were also shown to be discretisation-invariant

for n-dimensional discretisations of u. This means that they model the same prior information about u,

independent of n.

They are named after Besov spaces, which generalise the Sobolev spaces. These spaces contain functions

with particular smoothness, regularity, and sparsity characteristics. When prior information of these

characteristics is available, this information can be encoded into a prior distribution by constructing the

appropriate Besov priors. A definition for Besov spaces is given below [39].
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Definition 2.3.8: Besov spaces

A Besov space Bs
pq(Rd), with 1 ≤ p, q < ∞ and s > 0, consists of functions f ∈ Lp(Rd) with s0

weak partial derivatives in Lp(Rd), where s0 is the smallest integer such that s0 ≤ s < s0+1, and

where the modulus of continuity ωk,p satisfies

{2sjωk,p(f, 2
−j)}j≥0 ∈ ℓq(N)

for any k > s. Here, ωk,p is defined as

ωk,p(f, u) = sup
||h||2≤u

||∆k
hf ||Lp(Rd)

with

∆k
hf(x) = ∆k−1

h (f(x)− f(x− h))

is the k-th order finite difference operator with the step size h.

Besov random variables can be constructed using functions with specific sparsity characteristics [38].

These functions form orthogonal bases for L2(Rd) with d ≤ 3. Before discussing the functions in question

and Besov random variables, preliminary definitions are presented below. Definitions 2.3.9-2.3.11 are

from [40].

Definition 2.3.9: Multiresolution approximation

A multiresolution approximation of L2(Rd) is an increasing sequence Vj , j ∈ Z, with the following

properties:

(1)
⋂∞

−∞ Vj = {0},
⋃∞

−∞ Vj is dense in L2(Rd),

(2) for all f ∈ L2(Rd) and j ∈ Z, f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1,

(3) for all f ∈ L2(Rd) and all k ∈ Zd, f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0, and
(4) there exists a function, g(x) ∈ V0 such that the sequence g(x− k), k ∈ Zd is a Riesz basis of

the space V0.

A sequence of elements {fj}j≥0 ∈ L2(Rd) is a Riesz basis of L2(Rd) if there exist constants

C ′ > C > 0 such that, for every sequence of scalars α0, α1, α2, . . . we have

C

( ∞∑
k=0

|αk|2
)1/2

≤ ||
∞∑
k=0

αkfk||L2(Rd) ≤ C ′

( ∞∑
k=0

|αk|2
)1/2

and the vector space of finite sums
∑K

k=0 αkfk, K ≥ 0 is dense in L2(Rd).

Definition 2.3.10: r-regular

A function f is r-regular if f ∈ Cr and

|∂af(x)| ≤ Cl(1 + ||x||1)−l (2.41)

for any l ∈ N and any multi-index |a| = a1 + a2 + . . .+ ad ≤ r, where Cl is a constant depending

on l.

The wavelet expansion of a function f ∈ L2(Rd) [41] is given below.
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Definition 2.3.11: Wavelet expansion

Suppose the function φ ∈ L2(Rd) generates a multiresolution approximation (Vj) with dilation

matrix 2Id. Let ψl ∈ L2(Rd), l ∈ {1, 2, . . . , 2d − 1} denote the associated family of wavelets [40].

Suppose φ and ψ are r-regular. The dilation and translation of the wavelets and the scaling

function are given by

ψl
j,k(x) = 2jd/2ψl(2jx− k),

φk(x) = φ(x− k)

with l ∈ {1, 2, . . . , 2d − 1}, j ≥ 0, k ∈ Zd. Then any function f ∈ L2(Rd) has a wavelet expansion

given by

f =
∑
k∈Zd

vkφk +

2d−1∑
l=1

∞∑
j=0

∑
k∈Zd

wl
j,kψ

l
j,k (2.42)

where vk = ⟨f, φk⟩L2(Rd) and w
l
j,k =

〈
f, ψl

j,k

〉
L2(Rd)

with unconditional convergence in the norm.

Background on wavelet representations can be found in [40], [42], [43]. Two examples of wavelet families

ψ, the Haar and Daubechies wavelets, are shown in Figure 2.8.

(a) The Haar wavelet
function ψ.

(b) Wavelet functions ψ in the Daubechies family of
wavelets.

Figure 2.8: Plots of wavelet functions [44].

Wavelet basis functions are used in multiscale analysis, as they can model behavior on coarse and fine

grids. Wavelet basis functions have localised supports [42], meaning that they can model sparse behavior,

such as sudden jumps or steep slopes.

The wavelet characterisation of Besov spaces from [45] is presented as Definition 2.3.12 below.
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Definition 2.3.12: Wavelet characterisation of Besov spaces

Let ψl, l ∈ {1, 2, . . . , 2d − 1} be the family of wavelets and φ be the scaling function of a multires-

olution analysis of L2(Rd) with a regularity r ≥ 1. Let 1 ≤ p, q < ∞ and s > 0 such that s < r.

The function f ∈ Lp(Rd) has the wavelet expansion (2.42), which satisfies {vk}k∈Zd ∈ ℓp(Zd) and2j(s+d/2−d/p)

2d−1∑
l=1

∑
k∈Zd

∣∣wl
j,k

∣∣p 1
q


j≥0

∈ ℓq(N), (2.43)

if and only if f ∈ Bs
pq(Rd). The norm induced on the Besov space is

||f ||Bs
pq(Rd) =

∑
k∈Zd

|vk|p
 1

p

+

 ∞∑
j=0

2j(s+d/2−d/p)

2d−1∑
l=1

∑
k∈Zd

∣∣wl
j,k

∣∣p
q
p


1
q

. (2.44)

Besov random variables [38], which are constructed using wavelet expansions restricted to functions on

the torus (Td) with p = q, are defined below. The scaling coefficients γl in Definition 2.3.13 are adapted

from [41] and correspond to the scaling of the wavelets in the PyWavelets package used in this thesis.

Definition 2.3.13: Besov random variables

Let ψl, l ∈ {1, 2, . . . , 2d− 1} be the family of wavelets of a multiresolution analysis in L2(Td) with

regularity r ≥ 1. Let 1 ≤ q <∞ and s > 0 such that s < r. Let Kj = {0, . . . , 2j − 1}d be an index

set and {ξlj,k}j≥0,k∈Kj
, ξ0 be i.i.d. real-valued random variables with density πΞ(ξ) ∝ exp

(
− 1

2 |ξ|
q
)
.

Let δ > 0. Let U be defined as

U(x) = ξ0 +

2d−1∑
l=1

∞∑
j=0

∑
k∈Kj

δ−
1
q γjξ

l
j,kψ

l
j(x− k2−j), (2.45)

for almost everywhere x ∈ Td, where

γj = 2−j(s+ d
2−

d
p ), and

ψl
j(x) = 2jd/2

∑
m∈Zd

ψl(2j(x−m)) (2.46)

is the 1-periodisation of ψl
j,k. We say that U is a Besov Bs

qq(Td) random variable if the series

(2.45) converges. The Besov norm of U is

||U ||Bs
qq(Td) =

|ξ0|q + 2d−1∑
l=1

∞∑
j=0

∑
k∈Kj

2j(s+
d
2−

d
q )
∣∣∣δ− 1

q γjξ
l
j,k

∣∣∣q
 1

q

. (2.47)

The Lebesgue density does not exist for infinite-dimensional spaces. Informally, the ’Lebesgue density’

of the random variable U in (2.45) is π(u) ∝ exp
(
− δ

2 ||u||
q
Bs

qq(Td)
.
)
We say that U in (2.45) is distributed

according to the (κ;Bs
qq) measure with

κ =
δ

2
. (2.48)

In the rest of this thesis, d = 1 as this thesis focuses on one-dimensional deconvolution. The parameter

s in (2.45) can be chosen to determine the decay of the wavelet coefficients and therefore control the

regularity of the random functions constructed in (2.45).
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The random variables presented so far are candidates for priors in the formula (2.26). The solution

discussed in Subsection 2.2.1 is a probability density function. While it is possible to explicitly compute

point estimators for posterior densities obtained using Gaussian priors (2.3.2), it is not possible to do

so for the total variation and Besov priors. In the next chapter, we discuss theoretical underpinnings of

the computational methods used to sample from posterior distributions obtained using the non-Gaussian

priors.



Chapter 3

Markov chain Monte Carlo methods

The solution of a Bayesian inverse problem is the posterior probability density (2.27). In order to find an

approximate value of the conditional mean (2.31) and perform uncertainty quantitification, we want to

generate a large amount of values in Rn following πy
U. This collection process is referred to as sampling.

Unfortunately, it is rarely possible to sample directly from our posterior distribution. To work around

this limitation, we can determine the transition properties of a discrete time process such that its indi-

vidual components are distributed according to the posterior distribution once enough samples have been

gathered. This is the main idea behind Markov chain Monte Carlo methods. We present background on

general (discrete time) Markov chains, then discuss Metropolis-Hastings algorithms for Bayesian inverse

problems.

3.1 Markov chains and their invariant measures

This section presents background on Markov chains. The definitions are adapted from [33], which the

reader may consult for more details. A Markov chain is a stochastic process characterised by a transition

kernel, defined below.

Definition 3.1.1: Transition kernel

Let SX be a space with a σ-algebra σ(SX). A transition kernel is a function K(·, ·) defined on

SX × σ(SX) such that:

(i) ∀x ∈ SX ,K(x, ·) is a probability measure;

(ii) ∀BX ∈ σ(SX),K(·, BX) is measurable.

The transition kernel specifies the transition properties of the Markov chain.

23
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Definition 3.1.2: Markov chain

Given a transition kernel K and a measurable space (SX , σ(SX)), a sequence of SX -valued

random variables X0, X1, . . . , Xn, . . . is a (discrete-time) Markov chain {Xn}n≥0 if, for any t,

P(Xt+1 ∈ BX |x0, . . . xt) = P(Xt+1 ∈ BX |xt) =
∫
BX

K(xt, dxt+1)∀BX ∈ σ(SX).

Given the k-th element of the chain, the probability of the next element being in any set BX is the

same as the probability of the next element being in BX conditioned on all k elements of the chain. In

other words, we only need to know Xk when generating Xk+1. The computational cost of generating one

sample is thus independent of the number of samples that have already been generated.

Now that we have defined a discrete time stochastic process that can be used to systematically produce

k samples, we want to define a relationship between a Markov chain and the posterior distribution such

that the distribution of elements in the chain eventually approaches the posterior distribution. This

relationship is called invariance.

Definition 3.1.3: Invariant measure

A σ-finite measure µ is invariant for the transition kernel K(·, ·) and the associated chain if

µ(BXk+1
) =

∫
SX

K(xk, BXk+1
)µ(dxk) ∀BXk+1

∈ σ(SX).

If Xk is distributed according to µ, Xk+1 is also distributed according to µ. Furthermore, for all k, if

X0 ∼ µ, Xk also has the distribution µ. Ideally, we would like this invariant measure to be the target

distribution. For a Markov chain {Xk}k≥0 with an invariant measure µ, the average

1

M

M∑
k=1

Xk

converges to Eµ(X) almost surely [33] as M → ∞. This average is thus an approximation of the

conditional mean (2.31).

It can be difficult to use Definition 3.1.3 to construct an appropriate Markov chain. Another property,

called reversibility, is a sufficient condition for a probability measure to be the invariant measure of a

Markov chain.

Definition 3.1.4: Reversibility

A Markov chain with transition kernel K is reversible if and only if there is a measure µ satisfying

the detailed balance relation

µ(A)K(x,B) = µ(B)K(y,A). (3.1)

∀(x, y) ∈ SX × SX and A,B ∈ σ(SX). The measure µ is the invariant measure of the Markov

chain.

If we have a Markov chain {Xk}k≥0 satisfying the balance equation and we build a reversed Markov

Chain Yk = Xk−l for l = 0, 1, . . . , k, the one-step transition probability from Xk to Xl+1 is the same as

the one-step transition probability from Yk to Yl+1 for all l = 0, 1, . . . , k − 1. The Markov chain is then

in a steady state, as the probability of returning to Xp from Xq for q > p is the same as the probability

of transitioning from Xp to Xq. We now prove that the balance condition (3.1) is a sufficient condition

for determining that a distribution is invariant for a Markov chain.
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Theorem 3.1.5

Suppose that a Markov chain with transition kernelK satisfies the balance condition (3.1) together

with µ, a probability measure. Then the measure µ is the invariant measure of the chain.

Proof. Let K and µ be a transition kernel and probability measure such that the balance condition (3.1)

is fulfilled. Let BX be any measurable set in σ(SX). Note that, for fixed x ∈ SX ,
∫
SX

K(x, dy) = 1 by

the definition of a transition kernel and∫
SX

K(y,BX)µ(dy) =

∫
SX

∫
BX

K(y, dx)µ(dy)

=

∫
BX

∫
SX

K(x, dy)µ(dx) =

∫
BX

µ(dx)

∫
SX

K(x, dy) =

∫
BX

µ(dx).

We thus want to devise a method to construct a Markov chain {Uk}k≥0 such that its invariant measure

has the density πy
U. We can do so using the Metropolis-Hastings algorithm, which provides us a way to

construct transition kernels that fulfill the balance condition (3.1) together with the posterior measure

with density πy
U.

3.2 Metropolis-Hastings algorithms

In this section, we will introduce the Metropolis-Hastings transition kernels and show how these transition

kernel can be used to construct a Markov chain with a specified invariant measure. One iteration of a

Metropolis-Hastings algorithm [33] is described below. A definition of the transition kernel of the Markov

chain generated using a Metropolis-Hastings algorithm is then given.

Definition 3.2.1: Metropolis-Hastings procedure

Let the draw uk ∈ Rn be the k-th element in the Markov chain. Let the Rn-valued random

variable V, the proposal, have a probability density function, πK . In most cases, the function

πK(uk,v) : Rn × Rn → R+ is the probability density function of V conditioned on uk. In the

case where the density of πK does not depend on uk, we will write πK(v) : Rn → R+. Let

α(uk,v) : Rn × Rn → [0, 1] be the acceptance probability.

1. Generate proposal. Draw a proposal v using the proposal generation kernel with the

proposal probability density πK(uk,v).

2. Find acceptance probability. Compute α(uk,v). Later in this section, we will discuss

how α is chosen in more depth.

3. Accept-or-reject step. Draw a ∼ Unif(0, 1). If α(uk,v) > a, accept proposal v as the

draw from this iteration. Otherwise, reject v and treat uk as the draw from this iteration.

The transition kernel of the Markov chain constructed using this procedure is given by [46]

KMH(uk, B) =

∫
B

fK(uk,v) dv + rK(uk)1B(uk) (3.2)
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where fK(uk,v) = πK(uk,v)α(uk,v) and rK(uk) = 1 −
∫
Rn πK(v,uk)α(v,uk) dv. The function fK

represents the probability of moving to v from uk and r represents the probability of remaining at v.

When we carry out steps 1-3, we carry out one iteration of the Metropolis-Hastings algorithm. We

repeat the procedure M times to collect M samples, and use M to denote the number of iterations

in our algorithm. The detailed balance condition (3.1) for Metropolis-Hastings algorithms in terms of

densities is stated below. This condition can be used to check that a Markov chain constructed using a

Metropolis-Hastings procedure has an invariant distribution with the posterior density πy
U.

Theorem 3.2.2: Balance condition for Metropolis-Hastings algorithms

Let πK be a probability density function, α : Rn×Rn → [0, 1], and Metropolis-Hastings procedure

be as described in Definition 3.2.1. Let πy
U be the posterior probability density function with

respect to ν as defined in (2.27). If there is a function α : Rn × Rn → [0, 1] such that

α(uk,v)
πy
U(uk)πK(uk,v)

πy
U(v)πK(v,uk)

= α(v,uk) (3.3)

for any (uk,v) ∈ {(uk,v) ∈ Rn × Rn : πy
U(v)πK(v,uk) > 0}, then the invariant measure of the

Markov chain characterised by the transition kernel (3.2) is the posterior probability distribution

with the density function πy
U [46].

Proof. We write

rK(v) = 1−
∫
Rn

πK(uk,v)α(uk,v) duk

and see that ∫
Rn

fK(v,uk) duk = 1− rK(v).

When the condition (3.3) is fulfilled, we have∫
Rn

fK(uk,v)π
y
U(uk) duk =

∫
Rn

πK(uk,v)α(uk,v)π
y
U(uk) duk

=

∫
Rn

πK(v,uk)α(v,uk)π
y
U(v) duk

= πy
U(v)

∫
Rn

fK(v,uk) duk. (3.4)

Then, ∫
Rn

fK(uk,v)π
y
U(uk) duk = πy

U(v)(1− rK(v)). (3.5)
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For any (u,v) ∈ Rn × Rn and B ∈ σ(Rn), we then have∫
Rn

KMH(u, B)πy
U(u) du =

∫
Rn

∫
B

fK(u,v) dv + rK(u)1B(u)π
y
U(u) du

=

∫
Rn

∫
B

fK(u,v) dv πy
U(u) dv +

∫
Rn

rK(u)1B(u)π
y
U(u) du

=

∫
B

∫
Rn

fK(u,v) du dv +

∫
B

rK(v)πy
U(v) dv

=

∫
B

πy
U(v)(1− rK(v)) + rK(v)πy

U(v) dv

=

∫
B

πy
U(v) dv. (3.6)

The transition kernel (3.2) thus characterises a Markov chain with an invariant measure whose Lebesgue

density is πy
U(u).

3.3 Random walk Metropolis-Hastings

The simplest Metropolis-Hastings variant is the random walk proposal. We first choose a random variable

W with the probability density function g(w). The random variable W is usually chosen so that it is

easy to sample from. Uniform and Gaussian random variables, for example, are popular choices for W.

We define the random walk proposal

V = uk + βW (3.7)

where β > 0 is a parameter also called the step size. Informally, it represents how far away from the

current draw uk we want to ’walk’ when we generate a proposal.

The proposal probability density function is then πK(uk,v) = g
(

v−uk

β

)
. We can then set the acceptance

probability function as

α(uk,v) = min

1,
πy
U(v)g

(
uk−v

β

)
πy
U(uk)g

(
v−uk

β

)
 (3.8)

to fulfill the balance condition (3.3). The accept-reject mechanism then selects for proposals in areas

with higher values of πy
U. In the special case where πK is symmetrical, meaning πK(uk,v) = πK(v,uk),

the acceptance probability is

α(uk,v) = min

{
1,

πy
U(v)

πy
U(uk)

}
. (3.9)

The step size β affects the effectiveness of the sampling method. If the step size β is too small, the

increments of the Markov chain will be small and it will take a large number of iterations to sample from

the invariant measure. If the step size β is too large, the Metropolis-Hastings algorithm will reject many

of the proposals.

When random walk Metropolis-Hastings is used to sample from the posterior measure of a Bayesian
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inverse problem, the step size β has to be of order O(1/n) [47]. Otherwise, the step size is too large and

very few proposals are accepted. The number of random walk Metropolis-Hastings iterations we need to

carry out to sample from the invariant measure is O(n).

This poses a problem when n is large, which is often the case in inverse problems. If we wish to deblur

a picture taken using an iPhone 15, we would need to work with a 1179 × 2556 pixel image. Then,

n > 3 000 000. We would need to run the random walk Metropolis-Hastings algorithm for at least O(106)
iterations, drawing a 3 000 000-dimensional sample at each iteration.

The method presented in the next section addresses this limitation.

3.4 Preconditioned Crank-Nicolson

The preconditioned Crank-Nicolson (pCN) Metropolis-Hastings algorithm [28] was designed for sampling

from invariant measures of the form (2.29) where the prior measure µU is a centered Gaussian probability

measure. The pCN proposal is derived from a Crank-Nicolson discretisation of the equation

dU

ds
= −(C−1U +∇ϕ(U)) +

√
2
dB

ds
(3.10)

where B is the standard Brownian motion on a Hilbert space Bu, C is the covariance operator of a

Gaussian prior measure, and ϕ is the potential defined in (2.28). The pCN algorithm was constructed

to build a Markov chain with function-valued elements by discretising (3.10). As the algorithm was

originally designed for function spaces with infinite dimensions, it is also suitable for high-dimensional

problems.

Suppose our invariant measure µy
U is absolutely continuous with respect to a prior measure µU with the

Lebesgue density

πU(u) ∝ exp

(
−1

2
⟨u,Lu⟩

)
(3.11)

for some L ∈ Rn×n, where ⟨·, ·⟩ is the standard inner product on Rn. By Bayes’ Theorem (2.26), the

Radon-Nikodym derivative of µy
U with respect to µU is

dµy
U

dµU
(u) = exp (−ϕ(u))

for a Bayesian inverse problem with Gaussian noise and the potential (2.28) ϕ. The pCN proposal V is

defined as

V =
√

1− β2uk + βW, (3.12)

where β ∈ [0, 1] and W has the density specified in (3.11). Then we can write the proposal density of V

as

πK(uk,v) = (β
√
2π)−n exp

(
− 1

2β2

〈
v −

√
1− β2uk,L(v −

√
1− β2uk)

〉)
. (3.13)
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Then

πy
U(uk)πK(uk,v)

πy
U(v)πK(v,uk)

= exp

(
− 1

2
⟨uk,Luk⟩ − ϕ(uk) +

1

2
⟨v,Lv⟩ + ϕ(v)

− 1

2β2

〈
v −

√
1− β2uk,L(v −

√
1− β2uk)

〉
+

1

2β2

〈
uk −

√
1− β2v,L(uk −

√
1− β2v)

〉 )

= exp

(〈
−1

2
uk +

√
1− β2

2β2
(v −

√
1− β2uk) +

1

2β2
(uk −

√
1− β2v),Luk

〉

−

〈
−1

2
v +

√
1− β2

2β2
(uk −

√
1− β2v) +

1

2β2
(v −

√
1− β2uk),Lv

〉
+ ϕ(v)− ϕ(uk)

)
= exp (ϕ(v)− ϕ(uk)) .

We then set the acceptance probability function

α(uk,v) = min {1, exp (ϕ(uk)− ϕ(v))} (3.14)

to fulfill the balance condition (3.3). The acceptance probability (3.14) is a special case of the acceptance

probability function for random variables taking values in general Hilbert spaces, which was derived in

[47]. The pCN algorithm can be considered a generalisation of the random walk discussed in Section 3.3

to function spaces.

The parameter β, the step size, needs to be tuned to ensure the algorithm performs efficiently. In [28],

the parameter β is tuned for individual test problems in order to achieve an average acceptance ratio

of 25%. Choosing an optimal step size for pCN is an open problem. We will discuss how β affects the

performance of the pCN algorithm for our 1D deconvolution problem in the next chapter.

3.5 Randomise-then-optimise

So far, we have focused on MCMC methods for inverse problems with linear forward operators. We

now consider an MCMC method for inverse problems with non-linear forward operators, as the prior

transformations introduced in Section 4.1 recast linear inverse problems with non-Gaussian priors as non-

linear inverse problems with Gaussian priors. We present randomise-then-optimise (RTO), a Metropolis-

Hastings algorithm formulated for inverse problems with non-linear forward operators [29], [48].

Consider the non-linear measurement model

Y = F(U) +E (3.15)

where U : Ω1 → Rn, E : Ω2 → Rm, Y : Ω → Rm, and F : Rn → Rm is a non-linear function. We want

to condition U on a single realisation of Y. Let the prior density function of U be an n-variate Gaussian

density function with mean U0 and the identity matrix as its covariance and let the noise E follow a

standard m-variate Gaussian distribution. The posterior density function of U given y is then

πy
U(u) ∝ exp

(
−1

2
||F̃(u)− ỹ||2

)
(3.16)
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where

F̃(u) =

(
u

F(u)

)
, ỹ =

(
u0

y

)
.

More generally, RTO is a method for sampling from densities of the form

π(u) ∝ exp

(
−1

2
||F̃(u)− ỹ||2

)
(3.17)

where F̃ : Rn → Rm+n, ỹ ∈ Rm+n with m > 0.

Before applying RTO, we first determine three components that are present in every iteration of the

algorithm. The first is a linearisation point ūMAP , which is fixed throughout the method. In [31], [48]

the MAP estimator is chosen as the linearisation point. The second component is the Jacobian of F,

denoted by JF(u). The third component is Q̄ ∈ R(m+n)×n, the matrix of orthonormal basis vectors

for the column space of JF(ūMAP ). The matrix Q̄ can be found by taking a thin-QR factorisation of

JF(ūMAP ).

We can now define the RTO proposal [48]

V = argmin
v∈Rn

||Q̄⊺(F̃(v)− (ỹ +W))||2 (3.18)

where W ∼ N (0, I).

We now derive the density of the proposal V. First, we assume that the MAP estimation problem

ūMAP = argmin
u∈Rn

1

2
||F̃(u)− ỹ||2 (3.19)

has a unique solution. Additionally, we assume that F̃ is continuously differentiable and the Jacobian

JF̃ (u) is rank n for all u in the domain of F̃ . The first order optimality condition is then given by

JF̃ (ūMAP )
⊺
(ỹ − F̃(ūMAP )) = 0. (3.20)

The QR-factorisation of JF̃ (ūMAP ) is

JF̃ (ūMAP ) =
(
Q̄ Q̃

)(R̄
0

)
.

The columns of Q̃ ∈ R(m+n)×n are orthonormal basis vectors for the orthogonal complement of the

column space of JF̃ (ūMAP ). The matrix R̄ ∈ Rn×n is upper triangular and 0 ∈ Rm×n is the zero

matrix. The thin QR-factorisation of JF̃ (ūMAP ) is then given as JF̃ (ūMAP ) = Q̄R̄. We make one more

assumption about F̃ , which will be important later. We assume that Q̄⊺JF̃ (u) is invertible for all u in

the domain of Q̄⊺F̃(u).

Since JF̃ (ūMAP ) is rank n, R̄ is invertible. Then, the condition (3.20) implies

Q̄⊺(ỹ − F̃(ūMAP )) = 0. (3.21)

Define

F̃ūMAP
(u) = Q̄⊺F̃(u).
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The range of F̃ūMAP
is denoted by BF̃ . Then (3.20) is equivalent to writing F̃ūMAP

(ūMAP ) = Q̄⊺ỹ. By

assumption, ūMAP is the unique solution of the problem (2.30), and so F̃ūMAP
has an inverse at Q̄⊺ỹ,

denoted by F̃−1
ūMAP

(Q̄⊺ỹ) = ūMAP .

Since F̃ is continuously differentiable with respect to u and F̃ūMAP
: Rn → Rn, the inverse function

theorem guarantees that F̃ūMAP
is invertible in a neighborhood of Q̄⊺ỹ. We can then define a random

variable using the inverse map F̃−1
ūMAP

. Let

V = F̃−1
ūMAP

(S), where S = Q̄⊺(ỹ +W) (3.22)

and W ∼ N (0, I). Then, S has the probability density function

πS(s) ∝ exp

(
−1

2
||s− Q̄⊺ỹ||2

)
.

To ensure that S is supported only in the range of F̃ūMAP
, we define another random variable, S′, with

the density function

πS′(s′) ∝ 1BF̃
(s′)πS(s

′).

We can thus replace (3.22) with

V = F̃−1
ūMAP

(S′), where S′ has the probability density function πS′(s′). (3.23)

Since Q̄⊺JF̃ (u) is invertible for all u in the domain of Q̄⊺F̃(u) by assumption, the inverse function

theorem guarantees that function F̃ūMAP
is one-to-one. Therefore, the mapping in (3.23) is well-defined.

We can now derive the probability density πK(v) of the random variable V defined by (3.23). Following

the theory of transformations of multivariate random variables, we have

πK(v) = |JF̃ūMAP
(v)|πS′(F̃ūMAP

(v))

∝ |Q̄⊺JF̃ (v)| exp
(
−1

2
||Q̄⊺(F̃(v)− ỹ)||2

)
= |Q̄⊺JF̃ (v)| exp

(
1

2
||Q̃⊺(F̃(v)− ỹ)||2 − 1

2
||F̃(v)− ỹ||2

)
= c(v)πy

U(v) (3.24)

with the posterior density πy
U as given in (3.16) and

c(v) = |Q̄⊺JF̃ (v)| exp
(
1

2
||Q̃⊺(F̃(v)− ỹ)||2

)
= |Q̄⊺JF̃ (v)| exp

(
1

2
||F̃(v)− ỹ||2 − 1

2
||Q̄⊺(F̃(v)− ỹ)||2

)
. (3.25)

The assumptions and above results are summarised in Theorem 3.5.1 (Theorem 3.1 in [48]).
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Theorem 3.5.1: Randomise-then-optimise validity conditions

Let V be the random variable defined by (3.18) and suppose the following conditions are fulfilled:

(1) the problem argmin
u∈Rn

1
2 ||F̃(u)− ỹ||2 has a unique solution ūMAP ,

(2) the function F̃ is continuously differentiable,

(3) the Jacobian JF̃ (u) is rank n for all u in the domain of F̃ ,
(4) and Q̄⊺JF̃ (u) is invertible for all u in the domain of Q̄⊺F̃(u).

Then V has the density (3.24).

We then set the acceptance probability function

α(uk,v) = min

{
1,
c(uk)

c(v)

}
(3.26)

to fulfill the balance condition (3.3).

The next chapter applies the concepts discussed in Chapters 2 and 3 to the one-dimensional deconvolution

problem to prepare for MCMC sampling.



Chapter 4

The posterior density

Section 4.1 covers the derivation of the posterior distribution using Bayes’ formula (2.26), Section 4.2

presents the algorithms used to sample from the posterior distribution.

4.1 Bayesian inversion

In this section, we obtain the solution of our 1D deconvolution problem. Three priors from the prior classes

described in Section 2.3 are constructed. The first prior is a Gaussian prior which encodes assumptions

about the smoothness of the true signal. The second prior is the total variation prior for one-dimensional

functions. The third prior is the Besov prior (2.45) truncated to n terms. We then derive the likelihood

of the 1D deconvolution problem and apply Bayes’ Theorem for inverse problems (Theorem 2.2.1) to

obtain three posterior density functions.

Together with the total variation and Besov priors, we present two non-linear transformations from the

non-Gaussian priors to standard Gaussian random variables. These transformations enable the applica-

tion of the methods presented in Chapter 3 to sample from linear inverse problems governed by TV and

Besov priors. The MCMC methods in Chapter 3 were originally formulated for Gaussian priors [28], [48].

By applying prior transformations, these MCMC methods can be modified for sampling from posterior

densities obtained with non-Gaussian priors.

4.1.1 Gaussian smoothness prior

In 1D deconvolution, we want to suppress measurement noise and deconvolve the function. This can

be done by modeling the smoothness properties of a continuous function. The first derivative of u is

discretised and each point of this discretised derivative is modeled as a normally-distributed random

variable. The expression for the smoothness model is given by

1

∆x
(Uj −Uj−1) = Zj (4.1)

33
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for j = 1, 2, . . . , n − 1, where {Zj}n−1
j=0 are i.i.d. N

(
0, σ2

u

)
, σu > 0. To apply the discretisation (4.1) to

the entire domain [0, 1), we set Un = U0 = 0 and define D as in (2.24).

The prior density function of U is then

πU(u) ∝ exp

(
− 1

2σ2
u

⟨u,D⊺Du⟩
)
. (4.2)

We henceforth refer to the random variable U with the density (4.2) as the Gaussian smoothness prior

with the standard deviation σu.

4.1.2 Total variation prior

We define the total variation prior on U as given in Definition 2.3.7

πU(u) ∝ exp

−λ n∑
j=1

|(Du)j |

 (4.3)

where λ > 0 and D is as defined in (2.24). We henceforth refer to the random variable U with the density

(4.3) as the TV smoothness prior.

The transformation from the TV prior to a standard Gaussian random variable is introduced in [31]. Let

Φ(z) denote the standard Gaussian cumulative distribution function, i.e. the c.d.f of Z ∼ N (0, 1). Define

gλ(z) = −
1

λ
sgn(z) log

(
1− 2

∣∣∣∣Φ(z)− 1

2

∣∣∣∣) ,
which transforms a standard one-dimensional Gaussian random variable Z to a Laplace-distributed ran-

dom variable. The TV prior is on the derivative. We thus write

Du = Gλ(z)

with D being the difference matrix (2.24) and Gλ =
(
gλ(z0) gλ(z1) . . . gλ(zn−2) gλ(zn−1)

)⊺
. The

TV prior transformation Tλ : Rn → Rn is then

Tλ(z) = D−1Gλ(z). (4.4)

The transformation (4.4) is the composition of a linear operator D−1 and a non-linear function Gλ. The

transformation Tλ is continuously differentiable and invertible (see Appendix B).

4.1.3 Besov priors

The 1D Besov prior (2.45) is a random process defined as the infinite sum of orthonormal basis functions

for L2(T) [27], [38], [41]. For practical purposes, the series (2.45) must be truncated to a finite number

of terms. We now derive the density of the discretised Besov prior used in 1D deconvolution.

Let J ∈ Z be such that n = 2J . Let Kj = {0, 1, . . . , 2j − 1} for all j = 0, 1, . . . , J . Let W ∈ Rn×n be

the matrix whose columns are the wavelet coefficients associated with the standard basis vectors for Rn.
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In this project, the fast discrete wavelet transform [43], [49] is done using the wavedec function from the

PyWavelets [50] package in Python. We set the mode as ’periodization’, as ψj(x) is the periodisation

of the wavelet basis function.

The Haar and Daubechies-8 wavalets are used in this project, following the choices of these wavelet

functions in [41]. The Haar wavelet function ψ is constructed from the composition of step functions (see

Figure 2.8a). As such, the Haar wavelet basis functions possess local discontinuities. The Daubechies-

8 wavelets are smooth, compact wavelets (see Figure 2.8b). As our true signal (Figure 2.2) contains

discontinuities and smooth regions, we wish to see whether one wavelet family can represent the features

of the true signal more accurately than the other.

Let the diagonal matrix S ∈ Rn×n of Besov weights be given by

S1,1 = 1,Sl,l = 2jk

for 2j ≤ l < 2j+1 and for j = 0, 1, . . . , J − 1.

The n-term truncation of the Besov random variable (2.45) is given by

SWU =



ξ0 +
∑J

j=0

∑
k∈Kj

δ−
1
q γjξj,kψj(x0 − k2−j)

ξ0 +
∑J

j=0

∑
k∈Kj

δ−
1
q γjξj,kψj(x1 − k2−j)

...

ξ0 +
∑J

j=0

∑
k∈Kj

δ−
1
q γjξj,kψj(xn−2 − k2−j)

ξ0 +
∑J

j=0

∑
k∈Kj

δ−
1
q γjξj,kψj(xn−1 − k2−j)


. (4.5)

Then, as in Appendix C of [31] and Section 2.2 of [41], the discrete approximation of the Besov norm

(2.47) is given by

||U ||Bs
qq(T) ≈ ||SWU||q

and we write the discrete Besov prior density

πU(u) ∝ exp
(
−κ||SWu||qq

)
, (4.6)

where κ = δ
2 as defined in (2.48). A transformation can now be defined to map a Besov prior to a

standard Gaussian prior.

The generalised Gaussian distribution [51] parametrised by τ and q is the distribution with the p.d.f.

πτ,q(x) =
q

2τΓ
(

1
q

) exp
(
−
∣∣∣x
τ

∣∣∣q) (4.7)

and the c.d.f.

Φτ,q(x) =


1
2Q
(

1
q ,
(
−x

τ

)q)
x ≤ 0

1− 1
2Q
(

1
q ,
(
x
τ

)q)
x > 0.

Here, Q(a, x) =
(

1
Γ(a)Γ(a, x)

)
denotes the normalised incomplete gamma function, with Γ(a, x) =∫∞

x
ta−1 exp (−t) dt. The generalised Gaussian distribution extends the Gaussian and Laplace distri-

butions; when q = 1, we obtain the Laplace distribution and when q = 2, we obtain the Gaussian
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distribution. Besov priors with q = 1 model similar behavior to the total variation prior, and so we use

q = 1 below unless otherwise specified. This value is chosen so that deconvolution results obtained using

the Besov prior can be compared to results obtained using the total variation prior.

Using an inverse cumulative distribution function method, we can define a function that transforms a

standard Gaussian random variable to a generalised Gaussian random variable. Let this function be

gτ,q(z) = Φ−1
τ,q(Φ(z))

= τsgn(z)

(
Q−1

(
1

q
, 1 + sgn(z)− 2sgn(z)Φ(z)

)) 1
q

(4.8)

where Φ(z) is the standard Gaussian c.d.f. and Q−1(a, y) is the inverse normalised incomplete gamma

function. By setting τ = κ−
1
q , we transform a standard Gaussian random variable z to a random variable

ξ = gτ,q(z) with

π(ξ) ∝ exp (−κ|ξ|q) .

We thus write

SWu = Gτ,q(z)

with Gτ,q =
(
gτ,q(z0) gτ,q(z1) . . . gτ,q(zn−2) gτ,q(zn−1)

)⊺
. The Besov prior transformation is then

Tτ,q(z) = (SW)
−1
Gτ,q(z). (4.9)

Note that W−1 is the matrix representation of the inverse wavelet transform and S is a diagonal matrix,

hence it is invertible. Therefore, (SW)
−1

exists. The transformation (4.9) is the composition of a linear

operator (SW)
−1

and a non-linear function Gτ,q. The transformation Tτ,q is invertible (see Appendix

B).

4.1.4 Likelihood density

Assuming the noise at each grid point xj is independent and normally distributed with mean 0 and

standard deviation σE, we can model the noise as an Rm-valued Gaussian random variable with mean 0

and covariance ΓE = σ2
EI. Our likelihood density function is then

πE(y −Au) ∝ exp

(
− 1

2σ2
E

||y −Au||2
)
.

4.1.5 Posterior densities

By applying Bayes’ formula (2.27), we obtain three posterior density functions of U when the priors

described in Sections 4.1.1-4.1.3 are used. The posterior densities obtained using the Gaussian smoothness

prior, the TV prior, and the discrete Besov prior are

πy
U(u) ∝ exp

(
− 1

2σ2
E

||y −Au||2 − 1

2σ2
u

u⊺D⊺Du

)
, (4.10)

πy
U(u) ∝ exp

− 1

2σ2
E

||y −Au||2 − λ
n∑

j=1

|(Du)j |

 , (4.11)
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and

πy
U(u) ∝ exp

(
− 1

2σ2
E

||y −Au||2 − κ||SWu||qq
)

(4.12)

respectively, with A being the discrete convolution matrix (2.21).

4.2 Algorithms

The sampling methods discussed in Section 3.2 are implemented in Python with the library JAX [52]. In

Subsection 4.2.1, we present Algorithm 1 for pCN sampling from a posterior density obtained using a

Gaussian prior and Algorithm 2 for pCN sampling from a posterior density obtained using a non-Gaussian

prior. In Subsection 4.2.2, we present Algorithm 3 for RTO sampling.

4.2.1 Preconditioned Crank-Nicolson

An expression of the potential function ϕ, as defined in (2.28), is needed for the implementation of the

preconditioned Crank-Nicolson sampling method. The potential in the posterior density (4.10) is

ϕ(u) =
1

2σ2
E

||y −Au||2. (4.13)

We present the pCN algorithm [28] for sampling from the posterior density (4.10) with the prior density

(4.2).

Algorithm 1 pCN algorithm (with Gaussian prior)

1: Choose initial draw u0, fix β ∈ (0, 1].

2: for k ∈ {0, 2, . . . ,M − 1} do
3: procedure Generate proposal(β, σ2

u(D
⊺D)

−1
,uk)

4: Draw a realisation w from W ∼ N
(
0, σ2

u(D
⊺D)

−1
)

5: Compute proposal v←
√
1− β2uk + βw

6: end procedure

7: procedure Accept-reject(uk,v, ϕ(·))
8: Compute acceptance probability α(uk,v)← min {1, exp (ϕ(uk)− ϕ(v))}
9: Draw a ∼ Unif(0, 1).

10: if α(uk,v) > a then

11: uk+1 ← v

12: else

13: uk+1 ← uk

14: end if

15: end procedure

16: end for

Algorithm 1 can be modified to sample from the densities (4.11) and (4.12) by a change in variables [30].

Let T = Tλ (4.4) or T = Tτ,q (4.9). By Proposition B.1, posterior probability density function as defined
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in (4.11) or (4.12) can be rewritten as a function of z,

πy
U(z) ∝ exp

(
−1

2
||A(T (z))− y||2 − 1

2
||z||2

)
= exp

(
−ϕ(T (z))− 1

2
||z||2

)
. (4.14)

Note πy
U(z) is the Lebesgue density of a measure µy

U with the Radon-Nikodym derivative

dµy
U

dµZ
(z) = exp (−ϕ(T (z))) ,

where µZ has the Lebesgue density πZ(z) ∝ exp
(
− 1

2 ||z||
2
)
. We can thus sample from πy

U(z) using

Algorithm 2, presented below.

Algorithm 2 Whitened pCN algorithm (with non-Gaussian prior)

1: Choose initial draw z0, fix β ∈ (0, 1].

2: for k ∈ {0, 2, . . . ,M − 1} do
3: procedure Generate proposal(β, zk)

4: Draw a realisation w from W ∼ N (0, I)

5: Compute proposal v←
√
1− β2zk + βw

6: end procedure

7: procedure Accept-reject(zk,v, ϕ(·), T (·))
8: Compute acceptance probability α(zk,v)← min {1, exp (ϕ(T (zk))− ϕ(T (v)))}
9: Draw a ∼ Unif(0, 1).

10: if α(zk,v) > a then

11: uk+1 ← v

12: else

13: uk+1 ← zk

14: end if

15: end procedure

16: end for

When Algorithm 2 is used, the samples {zk}Kk=1 have to be transformed to the non-Gaussian random

variables. The collection of samples is then {uk}Kk=1 = {T (zk)}Kk=1.

4.2.2 Randomise-then-optimise

Recall that, to implement RTO, we need the posterior density to be in the form (3.17). When the prior

is the Gaussian smoothness prior (4.2), this can be achieved by letting

F̃(u) =

(
1
σu

D⊺Du
1
σ2
E
Au

)
, ỹ =

(
0
1
σ2
E
y

)
.

To sample from the posterior distributions (4.11) and (4.12), we ensure the posterior density has the

RTO form by applying prior transformations [31]. Let T be a continuously differentiable and invertible

transformation of an n-variate standard Gaussian random variable Z to U, a Rn-valued random variable

with the density (4.3) or (4.6) (i.e. let T = Tλ (4.4) or T = Tτ,q (4.9).) By Proposition B.1, the posterior
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probability density function can be rewritten as a function of z,

πy
U(z) ∝ exp

(
−1

2
||A(T (z))− y||2 − 1

2
||z||2

)
= exp

(
1

2
||F̃(z)− ỹ||2

)
(4.15)

where

F̃(z) =

(
z

1
σ2
E
A(T (z))

)
and ỹ =

(
0
1
σ2
E
y

)
. (4.16)

The proof is included in Appendix B. The RTO validity conditions in Theorem 3.5.1 are checked for RTO

with a prior transformation in Appendix B.

The non-linear prior transformation is included in the objective function of the stochastic optimisation

problem (3.18). As such, only one randomise-then-optimise algorithm is needed to sample from the

posterior densities in Subsection 4.1.5. The approximate Jacobian is computed using the automatic

differentiation features in the library JAX.

Algorithm 3 RTO-MH algorithm

1: Choose initial draw u0, compute Q̄.

2: for k ∈ {0, 2, . . . ,K − 1} do
3: procedure Generate proposal(Q̄, F̃(·), ỹ)
4: Draw a realisation w from W ∼ N (0, I)

5: Compute proposal vk ← argmin
v∈Rn

||Q̄⊺(F̃(v)− (ỹ +W))||2

6: end procedure

7: end for

8: for k ∈ {0, 2, . . . ,M − 1} do
9: procedure Accept-reject(uk,v, c(·))

10: Compute acceptance probability α(uk,vk)← min
{
1, c(uk)

c(vk)

}
with c as defined in (3.25).

11: Draw a ∼ Unif(0, 1).

12: if α(uk,vk) > a then

13: uk+1 ← vk

14: else

15: uk+1 ← uk

16: end if

17: end procedure

18: end for

When Algorithm 3 is used with a prior transformation, the samples {zk}Kk=1 have to be transformed to

the non-Gaussian random variables. We return {T (uk)}Kk=1. In the next chapter, we present sampling

results from the posterior densities derived in Section 4.1. We sample using algorithms in Section 4.2,

implemented in the Python library JAX, with automatic differentiation used to compute approximate

Jacobians. Optimisation problems are solved using the Adam [53] optimiser implemented in optax [54]

with a tolerance level of 1 × 10−6. To find the MAP estimator (3.19), uMAP , the maximum number of

optimiser iterations is 1 × 105. To solve the RTO proposal optimisation problem (3.18), the maximum

number of optimiser iterations is 1× 103.



Chapter 5

Numerical results

In this chapter, we present results obtained using the sampling methods described Chapter 3 for the

one-dimensional deconvolution problem. The measurement y is given in Section 5.1. Parameter choices

for the priors and sampling methods are made in Section 5.2. Sampling results with total variation priors

are shown in Section 5.3. Sampling results with Besov priors are shown in Section 5.4. In Section 5.5,

summaries of error metrics and measures of computational efficiency are shown and discussed. The effect

of problem dimensions are briefly studied in Section 5.6.

5.1 True signal and measurement

In our 1D deconvolution problem, the linear forward operator is the discrete convolution matrix A (2.21)

constructed using the quartic PSF (2.12). The noise E is modeled as an n-variate centered Gaussian

distribution with the covariance matrix ΓE = σ2
EI with σE = 0.02.

When synthesising data, it is important to keep consider mind that it is unrealistic to assume we know

the exact PSF and PSF parameter a in real-life deconvolution problems. Overlooking these issues may

lead to committing an inverse crime. An inverse crime occurs when synthetic data is generated using

the same theoretical information we incorporate into our formulation of our inverse problem. When we

commit an inverse crime and apply a method to solve an inverse problem, we may obtain a very close

approximation to the true signal which do not reflect how well our method would perform on problems

where we do not have perfect knowledge of how the observations were generated.

To avoid committing an inverse crime, the observation y is generated as follows. We set n such that our

discretised function u will be in Rn. We then define n1 > n, where n1 is the largest integer such that

n1 ≤ 5.25n < n1 + 1 and discretise our true signal u on an n1-point grid. Then, we choose a = 0.05 > 0

and construct a discrete convolution matrix as in (2.21) using the quartic PSF (2.18) parametrised by

a1 = 1.05a. Discrete convolution is then performed on the fine n1-point grid and linear interpolation

is used to sample the result on the coarser n-point grid, yielding noiseless data y∗. Measurement noise

e is constructed by taking a realisation of an n-variate Gaussian random variable with mean zero and

40
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Figure 5.1: True signal and data. The relative error of the observation y is EL2 (y) = 0.20245.

convariance matrix σ2
E · I. The synthetic observation is

y = y∗ + e. (5.1)

The data points are plotted together with the true signal in Figure 5.1. We aim to recover the true signal,

marked in black, from the red data points plotted in Figure 5.1. The data and true signal are shown in

Figure 5.1.

The x-coordinates marked by circles in Figure 5.1 are locations at which we plot the samples and auto-

correlation functions (ACF). To obtain the sampling results in Sections 5.3 and 5.4, the initial draw u0

is
(
0.4 0.4 . . . 0.4 0.4

)⊺
is used. As in [41], 104 samples are generated.

5.2 Parameter choices

The standard deviation of the Gaussian smoothness prior σu (4.2), the total variation prior parameter λ

(4.3), and the Besov prior parameter κ (4.6) need to be chosen. In Subsection 5.2.1, we choose values

of the RW step size parameter β and the prior parameters σu, λ and κ. In Subsection 5.2.2, we choose

values of the pCN step size parameter β and the prior parameters σu, λ and κ. In Subsection 5.2.3, we

choose the prior parameters σu, λ and κ for RTO sampling.

We search for prior parameter values which minimise the L2 error of the estimated conditional mean ūest

relative to the true signal,

EL2 (ūest) =
||ūest − utrue||2
||utrue||2

(5.2)

where ||·||22 is the Euclidean 2-norm in Rn. This is not a realistic method for choosing the prior parameters

σu, λ, and κ, as the relative L2 error is not available practical settings, where the true signal is not known.

In this project, the choice to minimise the relative L2 error is motivated by our goal of comparing relatively

accurate estimators obtained using the different methods.

For random walk and preconditioned Crank-Nicolson, the step size parameter β needs to be chosen. This

value is chosen as to ensure that the average acceptance probability (average α) is not too small or too
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large. If the average α value is close to zero (≪ 0.1), this indicates that the sampling method does not

generate good proposals. A large average α value (> 0.9) may indicate that the sampling method is not

exploring the posterior distribution effectively, and only drawing proposals from a small subset of Rn.

5.2.1 Parameter choices for random walk

Prior parameters

To choose the standard deviation σu for the Gaussian smoothness prior (4.2), the total variation prior

parameter λ (4.3), and the Besov prior parameter κ (4.6) for RW, we perform grid searches over varying

prior parameter values and step size β values. For each prior parameter value and β pair, we run the RW

sampler for 104 iterations and compute the estimated conditional mean ūest using the last 8000 samples.

We show the heat maps obtained from our grid search in Figure 5.2 and summarise the chosen prior

parameter values in Table 5.1.

Parameter Parameter value β Average α EL2 (ūest)

σu 0.05 0.005 0.27791 0.18484

λ 16 0.01 0.19660 0.20314

κ, Haar 1.4 0.05 0.16475 0.27630

κ, db8 1.2 0.01 0.55279 0.21991

Table 5.1: Chosen prior parameter values for RW.
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(c) Heatmap of EL2 (ūest) with varying κ and β ob-
tained using RW sampling from the posterior (4.12)
with q = 1 and the Haar wavelet basis functions.
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(d) Heatmap of EL2 (ūest) with varying κ and β ob-
tained using RW sampling from the posterior (4.12)
with q = 1 and the Daubechies-8 wavelet basis func-
tions.

Figure 5.2: Heatmaps of EL2 (ūest) with varying prior parameters and β, obtained using RW.

Step size parameters

We continue tuning the step size parameter β. Following [28], we choose β such that the average accep-

tance probability is ≈ 0.234. This is a heuristic and not necessarily the optimal value of β.

We fix the prior parameter values in Table 5.1 and refine our grid search to tune the step size parameter

β. For each grid search, we run the RW algorithm for 104 iterations and compute the average value of α

over the iterations. The value of β minimising |αavg − 0.234| is then chosen. In Table 5.1, the average α

values ranged from 0.16475 to 0.55279. The finer grid search narrows down the average α values range

to 0.22533− 0.26311.
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(c) Average α vs. β, obtained using RW
sampling from the posterior (4.12) with
Haar wavelets and q = 1.
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Figure 5.3: Average acceptance probabilities vs. β.

Parameter Parameter value β Average α EL2 (ūest)

σu 0.05 0.0055 0.24083 0.18940

λ 16 0.0091 0.22533 0.19439

κ, Haar 1.4 0.0235 0.26311 0.22940

κ, db8 1.2 0.03425 0.23214 0.27246

Table 5.2: Values of β chosen for RW.

5.2.2 Parameter choices for preconditioned Crank-Nicolson

Prior parameters

To choose the standard deviation σu for the Gaussian smoothness prior (4.2), the total variation prior

parameter λ (4.3), and the Besov prior parameter κ (4.6) for pCN, we perform grid searches over varying

prior parameter values and step size β values. For each prior parameter value and β pair, we run the

pCN sampler for 104 iterations and compute the estimated conditional mean ūest using the last 8000

samples. We show the heat maps obtained from our grid search in Figure 5.4 and summarise the chosen

prior parameter values in Table 5.3.
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(a) Heatmap of EL2 (ūest) with varying σu and β ob-
tained using pCN sampling from the posterior (4.10).
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(b) Heatmap of EL2 (ūest) with varying λ and β ob-
tained using pCN sampling from the posterior (4.11).
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(c) Heatmap of EL2 (ūest) with varying κ and β ob-
tained using pCN sampling from the posterior (4.12)
with q = 1 and the Haar wavelet basis functions.
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(d) Heatmap of EL2 (ūest) with varying κ and β ob-
tained using pCN sampling from the posterior (4.12)
with q = 1 and the Daubechies-8 wavelet basis func-
tions.

Figure 5.4: Heatmaps of EL2 (ūest) with varying prior parameters and β, obtained using pCN.

Parameter Parameter value β Average α EL2 (ūest)

σu 0.01 0.05 0.21109 0.20895

λ 16 0.01 0.21714 0.19853

κ, Haar 1.3 0.05 0.10291 0.24154

κ, db8 1.5 0.05 0.23278 0.21248

Table 5.3: Chosen prior parameter values for pCN.

Step size parameters

We continue tuning the step size parameter β. Following [28], we choose β such that the average accep-

tance probability is ≈ 0.234. We fix the prior parameter values in Table 5.3 and refine our grid search

to tune the step size parameter β. For each grid search, we run the pCN algorithm for 104 iterations

and compute the average value of α over the iterations. The value of β minimising |αavg − 0.234| is then
chosen. In Table 5.1, the average α values ranged from 0.10291 to 0.23278. The finer grid search narrows

down the average α values range to 0.23412− 0.24154.
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(a) Average acceptance probability vs.
β, obtained using pCN sampling from
the posterior (4.10).
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(b) Average αvs. β, obtained using
pCN sampling from the posterior (4.11).
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(c) Average α vs. β, obtained using
pCN sampling from the posterior (4.12)
with Haar wavelets and q = 1.
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Plot of average acceptance probability vs. step size 
 for pCN-Besov with db8 basis, q=1

(d) Average α vs. β, obtained using
pCN sampling from the posterior (4.12)
with Daubechies-8 wavelets and q = 1

Figure 5.5: Average acceptance probabilities vs. β.

Parameter Parameter value β Average α EL2 (ūest)

σu 0.01 0.04700 0.23412 0.21148

λ 16 0.00950 0.23276 0.20395

κ, Haar 1.3 0.03000 0.24154 0.27343

κ, db8 1.5 0.04300 0.23579 0.20903

Table 5.4: Values of β chosen for pCN.

5.2.3 Parameter choices for Randomise-Then-Optimise

To choose the standard deviation σu for the Gaussian smoothness prior (4.2), the total variation prior

parameter λ (4.3), and the Besov prior parameter κ (4.6) for RTO, we perform grid searches which

minimise EL2 (ūest) after 100 iterations. The step size parameter β is not present in the randomise-then-

optimise sampling method. The magnitude of the stochastic perturbation in the optimisation problem

(3.18) depends on Q̄, which is determined by the function F̃ . The function F̃ is, in turn, parametrised

by the prior parameters σu, λ, and κ. We show the plots obtained from our grid search in Figure 5.6 and

summarise the chosen prior parameter values in Table 5.5.
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(b) EL2 (ūest) vs. λ, sampling from the
posterior (4.11).
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(c) EL2 (ūest) vs. κ, sampling from the
posterior (4.12) with Haar wavelets and
q = 1.
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the posterior (4.12) with Daubechies-8
wavelets and q = 1

Figure 5.6: Relative L2 error EL2 (ūest) vs. various prior parameters obtained using RTO sampling.

Parameter Parameter value EL2 (ūest)

σu 0.1 0.16386

λ 12 0.14449

κ, Haar 1.3 0.21121

κ, db8 0.6 0.16796

Table 5.5: Chosen prior parameter values for RTO.

5.3 Deconvolution with the total variation prior

The estimated conditional means and credible intervals obtained by sampling from the posterior distribu-

tion with the TV density (4.11) using RW, pCN, and RTO are presented in Figures 5.7a, 5.7b, and 5.7c.

Estimated conditional means and credible intervals obtained by sampling from the posterior distribution

with the density (4.10) using RW, pCN, and RTO are shown in Figures 5.7d, 5.7e, and 5.7f for comparison

purposes.
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(a) RW with a TV prior, λ =
16, β = 9.10 × 10−3, EL2 (ūest) =
0.19438.
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(b) pCN with a TV prior, λ =
16, β = 9.50 × 10−3, EL2 (ūest) =
0.20179.
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(c) RTO with a TV prior, λ =
12, EL2 (ūest) = 0.14405.
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(d) RW with a Gaussian smooth-
ness prior, σu = 0.05, β = 5.5 ×
10−3, EL2 (ūest) = 0.18940.
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(e) pCN with a Gaussian smooth-
ness prior, σu = 0.01, β = 4.7 ×
10−2, EL2 (ūest) = 0.20854.
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(f) RTO with Gaussian smooth-
ness prior, σu = 0.1, EL2 (ūest) =
0.15660.

Figure 5.7: Estimated posterior means computed from samples drawn using pCN and RTO with a TV
prior, plotted together with the true signal and 95% estimated credible intervals.

The estimated conditional means obtained using RTO with the Gaussian and TV priors (Figures 5.7c

and 5.7f, respectively) capture the features of the true signal more successfully than those in Figures 5.7a,

5.7b, 5.7d, and 5.7e.

Figure 5.7 indicates that the choices of β and σu for the TV and Gaussian priors in Section 5.2 are not

optimal. The estimated credible intervals in Figures 5.7f and 5.7c contain the true signal, which cannot

be said for the credible intervals in Figures 5.7a, 5.7b, 5.7d, and 5.7e. As β is small, the RW (3.7) and

pCN (3.12) proposals are close to each other, resulting in smaller estimated credible intervals. The chosen

prior standard deviation σu for pCN is also the smallest, affecting the size of the credible interval. The

estimated conditional mean obtained using pCN with a Gaussian prior has a larger relative L2 error than

the observation y. The relative L2 error of the observation y is EL2 (y) = 0.20245, whereas the relative

L2 error of the estimated conditional mean obtained using pCN with a Gaussian prior is 0.20854.

The MAP estimator uMAP in Figure 5.8 is the linearisation point (3.19) for the RTO algorithm. In

comparison to the TV ūest in Figure 5.7c from RTO, the MAP estimator uMAP of the posterior density

with the total variation prior and λ = 12 (shown in Figure 5.7f) is more successful at recovering the

discontinuities of the true. The estimated conditional mean ūest captures the true signal more accurately

at x = 0.4, where the linear portion of the true signal reaches its peak. The RTO-TV ūest is the

mean of 104 independent samples, which may lead it to appear similar to the Gaussian ūest in Figure

5.7f. Comparisons of the true conditional mean uCM (2.35), MAP estimators, and estimated conditional

means for the Gaussian and total variation priors with the parameters in Table 5.6 are found in Sections

C.1 and C.2 of Appendix C.
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Figure 5.8: MAP estimator uMAP of the TV posterior density (4.11) with λ = 12, corresponding to the
estimated 95% CI and ūest in Figure 5.7c.

The plots of pCN and RTO samples at selected locations, shown in Figure 5.9, indicate that values of the

accepted samples obtained using pCN are much closer to each other than those obtained using RTO. This

is expected, as the pCN proposal definition ensures that each proposal is correlated to the previous draw.

This behavior was also seen in [28], samples drawn using pCN for a geophysics problem remain correlated

after 106 iterations. The estimated conditional mean in Figure 5.7b is computed from correlated samples,

leading to a less smooth estimate of the conditional mean compared to the estimate obtained using RTO

(Figure 5.7c).
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(a) pCN samples with a TV prior,
λ = 16, β = 9.50 × 10−3, at x =
0.25.
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(b) pCN samples with a TV prior,
λ = 16, β = 9.50 × 10−3, at x =
0.5.
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(c) pCN samples with a TV prior,
λ = 16, β = 9.50 × 10−3, at x =
0.75.
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(d) RTO samples with a TV prior
and λ = 12 at x = 0.25.
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(e) RTO samples with a TV prior
and λ = 12 at x = 0.5.
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(f) RTO samples with a TV prior
and λ = 12 at x = 0.75.

Figure 5.9: Plots of samples at the locations marked in Figure 5.1, obtained by sampling with pCN and
RTO using a TV prior.

The behavior seen in the sample plots in Figure 5.9 correspond to the behavior in the ACF plots in Figure

5.10. The ACF plots of the RTO samples in Figures 5.10d, 5.10e, and 5.10f show that the trend of the

ACF for RTO tends towards zero, while the ACF plots for the pCN samples in Figures 5.10a, 5.10b, and

5.10c show large autocorrelation at short lags. From Figures 5.10a, 5.10b, and 5.10c, it would appear

that more than 104 iterations would be needed for pCN to sample for from the posterior density.
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(a) ACF of pCN samples with a
TV prior, λ = 16, β = 9.50×10−3,
at x = 0.25.
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(b) ACF of pCN samples with a
TV prior, λ = 16, β = 9.50×10−3,
at x = 0.5.
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(c) ACF of pCN samples with a
TV prior, λ = 16, β = 9.50×10−3,
at x = 0.75.
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(d) ACF of RTO samples with a
TV prior and λ = 12 at x = 0.25.
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(e) ACF of RTO samples with a
TV prior and λ = 12 at x = 0.5.
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(f) ACF of RTO samples with a
TV prior and λ = 12 at x = 0.75.

Figure 5.10: ACF of samples at the locations marked in Figure 5.1, obtained by sampling with pCN and
RTO using TV priors.

Prior Method
Prior

parameter
Step size Accepted samples (%) EL2 (ūMAP ) EL2 (ūest)

Gaussian RW 0.05 0.0055 24.08 0.16369 0.18940

Gaussian pCN 0.01 0.047 22.256 0.19539 0.20854

Gaussian RTO 0.1 N/A 99.976 0.15713 0.15660

TV RW 16 0.0091 22.552 0.11445 0.19438

TV pCN 16 0.0095 21.256 0.11445 0.20179

TV RTO 12 N/A 95.152 0.11476 0.14405

Table 5.6: Relative L2 errors of estimated conditional means obtained using the three sampling methods
with Gaussian and TV priors. The prior parameters are the standard deviation of the Gaussian prior,
σu, and the TV parameter, λ. The relative error of the observation y is EL2 (y) = 0.20245.

The relative L2 errors of the estimated conditional means, EL2 (ūest), percentages of accepted samples,

and L2 errors of the linearisation point, EL2 (ūMAP ) are shown in Table 5.6. The estimated condi-

tional means computed using samples generated with RTO have the smallest relative L2 errors, with

EL2 (ūest) = 0.15660 for RTO with a Gaussian prior and EL2 (ūest) = 0.14405 for RTO with a TV prior.

The estimators with the smallest relative L2 errors are the MAP estimators for the TV posterior density

(4.11), which are shown in Figures C.4b, C.5b, and C.6b of Appendix C. As with the MAP estimator for

the TV posterior density with λ = 12 shown in Figure 5.8, the MAP estimator for λ = 16 recovers the

discontinuities of the true signal. The estimated conditional means ūest are more successful at recovering

the peak of the linear portion of the true signal at x = 0.4, as seen in Figures 5.7c and 5.7f.
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The percentages of accepted samples for RW and pCN are close to the average α value used in the

parameter tuning process in Sections 5.2.1-5.2.3. Meanwhile, the RTO acceptance rates are > 90%.

When a Gaussian prior is used, the RTO sampler is an efficient method to directly sample from the

posterior density [29]. When a TV prior is used, all the assumptions in Theorem 3.5.1 are fulfilled, since

the transformation Tλ (4.4) is invertible and continuously differentiable (see Appendix B.2). RTO then

generates proposals around the linearisation point, in this case the MAP estimator ūest. As such, the

proposals are drawn from regions of high probability density.

5.4 Deconvolution with Besov priors

The estimated conditional means and credible intervals obtained by sampling from the posterior distribu-

tion with the posterior density obtained with a discretised Besov prior (4.12) using RW, pCN, and RTO

are presented in Figure 5.12. The Besov prior parameter κ is obtained in Section 5.2. To construct Besov

priors that behave similarly to TV priors, the parameters s, q from (2.45) are set as s = 1 and q = 1 to

obtain the results in Figure 5.12. The estimated conditional means computed using RW and pCN sam-

ples do not de-noise the data effectively, as seen in Figures 5.12a, 5.12b, 5.12d, and 5.12a. Figures 5.12g,

5.12h, and 5.12i are the same plots as shown in Figures 5.7d, 5.7e, and 5.7f, repeated for comparison.

The linearisation points for RTO, which are the MAP estimators of the posterior density (4.12) obtained

using Besov priors, are plotted in Figures 5.11. Comparisons to the estimated conditional mean obtained

from RW, pCN, and RTO are shown in Sections C.3 and C.4 of Appendix C.
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(a) MAP estimator uMAP of the Besov posterior
density (4.12) (Haar wavelets) with s = 1, q =
1, κ = 1.3, corresponding to the estimated 95% CI
and ūest in Figure 5.12c.
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(b) MAP estimator uMAP of the Besov posterior
density (4.12) (db8 wavelets) with s = 1, q = 1, κ =
0.6, corresponding to the estimated 95% CI and
ūest in Figure 5.12f

Figure 5.11: MAP estimators uMAP of the Besov posterior densities sampled from using RTO.
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(a) RW with a Besov prior (Haar
wavelets), κ = 1.4, β = 3.43 ×
10−2, EL2 (ūest) = 0.27246.
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(b) pCN with a Besov prior (Haar
wavelets), κ = 1.3, β = 3 ×
10−2, EL2 (ūest) = 0.27136.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8
est. CM
95% CI
true signal

(c) RTO with a Besov prior (Haar
wavelets), κ = 1.3, EL2 (ūest) =
0.24413.
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(d) RW with a Besov prior (db8
wavelets), κ = 1.2, β = 2.35 ×
10−2, EL2 (ūest) = 0.22941.
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(e) pCN with a Besov prior (db8
wavelets), κ = 1.5, β = 4.3 ×
10−2, EL2 (ūest) = 0.20765.
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(f) RTO with a Besov prior (db8
wavelets), κ − 0.6, EL2 (ūest) =
0.16263.
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(g) RW with a Gaussian smooth-
ness prior, σu = 0.05, β = 5.5 ×
10−3, EL2 (ūest) = 0.18940.
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(h) pCN with a Gaussian smooth-
ness prior, σu = 0.01, β = 4.7 ×
10−2, EL2 (ūest) = 0.20854.
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(i) RTO with Gaussian smooth-
ness prior, σu = 0.1, EL2 (ūest) =
0.15660.

Figure 5.12: Estimated posterior means computed from samples drawn using pCN and RTO with Besov
priors, plotted together with the true signal and 95% estimated credible intervals.

Figures 5.12c and 5.12f show that the choice of wavelet basis functions has a significant effect on the

estimated conditional mean. The estimated conditional mean obtained using RTO with a Haar basis

is considerably less smooth than the estimated conditional mean obtained using RTO with a db8 basis.

This was also found to be the case in [41], where Besov priors were constructed using the Haar and

db8 wavelets to solve the inpainting problem. Compared to the estimated conditional means obtained

using the Gaussian smoothness prior (4.2) in Figures 5.12d, 5.12e, 5.12f, the estimated conditional mean

obtained using the Besov prior constructed with Haar wavelets, shown in Figure 5.12c, is more successful

at capturing sudden jumps. The estimated conditional mean obtained using the Besov prior constructed

with db8 wavelets is more successful at capturing the smoother pieces of the function (Figure 5.12f).
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(a) pCN samples with a Besov
prior (Haar wavelets), κ =
1.3, β = 3× 10−2, at x = 0.25.
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(b) pCN samples with a Besov
prior (Haar wavelets), κ =
1.3, β = 3× 10−2, at x = 0.5.
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(c) pCN samples with a Besov
prior (Haar wavelets), κ =
1.3, β = 3× 10−2, at x = 0.75.
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(d) RTO samples with a Besov
prior (Haar wavelets), κ = 1.3, at
x = 0.25.
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(e) RTO samples with a Besov
prior (Haar wavelets), κ = 1.3, at
x = 0.5.
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(f) RTO samples with a Besov
prior (Haar wavelets), κ = 1.3, at
x = 0.75.

Figure 5.13: Plots of samples at the locations marked in Figure 5.1, obtained by sampling with pCN and
RTO using Besov priors (Haar wavelets).

When Haar wavelets are used to construct a Besov prior for the deconvolution problem, 0.880% of samples

were accepted by RTO. Figures 5.13d, 5.13e, and 5.13f show that the samples remained constant for at

least 4000 iterations. A local minimum may have been found when the optimisation problem (3.18) was

solved in one of the iterations. In this implementation of RTO, the low percentage of accepted samples

cannot be addressed by tuning a parameter that has a similar role to the step size β in RW and pCN.

Whether or not the RTO sampling method can explore the posterior distribution effectively is therefore

determined by the choice of prior. In contrast, the pCN sample plots in Figures 5.13a, 5.13b, and 5.13c

show that pCN continues to accept samples, with 20.528% of samples being accepted. As in Figure 5.9,

the samples appear correlated.

The ACF plots in Figures 5.14a, 5.14b, 5.14c, 5.15a, 5.15b, 5.15c show that there are autocorrelations

at short lags for pCN samples when Haar and db8 wavelets are used. Together with the estimated

conditional means shown in Figures 5.12b and 5.12e, this indicates the choices for the step size parameter

β in Subsection 5.2.2 are not optimal. Additionally, the algorithm may not have been run for enough

iterations.

The ACF plots in Figures 5.14d, 5.14e, 5.14f also show autocorrelations at short lags, which do not tend

to approach zero. In contrast, the ACF plots in Figures 5.15d, 5.15e, 5.15f show steadily decreasing

autocorrelations. Together with the sample plots in Figures 5.16d, 5.16e, 5.16f, which show samples

that appear independent, this indicates that RTO samples more effectively from a posterior distribution

obtained with a Besov (db8) prior than a posterior distribution obtained with a Besov (Haar) prior.
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(a) ACF of pCN samples with a
Besov prior (Haar wavelets), κ =
1.3, β = 3× 10−2, at x = 0.25.
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(b) ACF of pCN samples with a
Besov prior (Haar wavelets), κ =
1.3, β = 3× 10−2, at x = 0.5.
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(c) ACF of pCN samples with a
Besov prior (Haar wavelets), κ =
1.3, β = 3× 10−2, at x = 0.75.
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(d) ACF of RTO samples with a
Besov prior (Haar wavelets), κ =
1.3, at x = 0.25.
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(e) ACF of RTO samples with a
Besov prior (Haar wavelets), κ =
1.3, at x = 0.5.
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(f) ACF of RTO samples with a
Besov prior (Haar wavelets), κ =
1.3, at x = 0.75.

Figure 5.14: ACF of samples at the locations marked in Figure 5.1, obtained by sampling with pCN and
RTO using Besov priors (Haar wavelets).
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(a) ACF of pCN samples with a
Besov prior (db8 wavelets), κ =
1.5, β = 4.3× 10−2, at x = 0.25.

0 2000 4000 6000 8000 10000

0.2

0.1

0.0

0.1

0.2

Lag vs ACF, x = 0.50

(b) ACF of pCN samples with a
Besov prior (db8 wavelets), κ =
1.5, β = 4.3× 10−2, at x = 0.5.
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(c) ACF of pCN samples with a
Besov prior (db8 wavelets), κ =
1.5, β = 4.3× 10−2, at x = 0.75.
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(d) ACF of RTO samples with a
Besov prior (db8 wavelets), κ −
0.6, at x = 0.25.
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(e) ACF of RTO samples with a
Besov prior (db8 wavelets), κ −
0.6, at x = 0.5.
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Figure 5.15: ACF of samples at the locations marked in Figure 5.1, obtained by sampling with pCN and
RTO using Besov priors (db8 wavelets).
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(b) pCN samples with a Besov
prior (db8 wavelets), κ = 1.5, β =
4.3× 10−2, at x = 0.5.
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(c) pCN samples with a Besov
prior (db8 wavelets), κ = 1.5, β =
4.3× 10−2, at x = 0.75.
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(d) RTO samples with a Besov
prior (db8 wavelets), κ − 0.6, at
x = 0.25.
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(e) RTO samples with a Besov
prior (db8 wavelets), κ − 0.6, at
x = 0.5.
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prior (db8 wavelets), κ − 0.6, at
x = 0.75.

Figure 5.16: Plots of samples at the locations marked in Figure 5.1, obtained by sampling with pCN and
RTO using Besov priors (db8 wavelets).

Prior Method κ s q Step size
Accepted

samples (%)
EL2 (ūMAP ) EL2 (ūest)

Besov (Haar) RW 1.4 1.0 1 0.0343 18.184 0.24134 0.27246

Besov (Haar) pCN 1.3 1.0 1 0.03 20.528 0.24080 0.27136

Besov (Haar) RTO 1.3 1.0 1 N/A 0.880 0.24080 0.24413

Besov (db8) RW 1.2 1.0 1 0.0235 26.472 0.18105 0.22941

Besov (db8) pCN 1.5 1.0 1 0.043 14.424 0.18429 0.20765

Besov (db8) RTO 0.6 1.0 1 N/A 51.656 0.17597 0.16263

Table 5.7: Relative L2 errors of estimated conditional means obtained using the three sampling methods
with Besov priors. The relative error of the observation y is EL2 (y) = 0.20245.

The relative L2 errors of the estimated conditional means EL2 (ūest), percentages of accepted samples, and

relative L2 errors of the linearisation point, EL2 (ūMAP ) are shown in Table 5.7. For all three methods,

the relative L2 errors of the estimated conditional mean EL2 (ūest) are smaller when db8 wavelets are

used to construct Besov priors compared to when Haar wavelets are used. In this section, the smallest

EL2 (ūest) is obtained when RTO is used to sample from a posterior density (4.12) with a Besov prior

constructed using db8 wavelets. Note that, with the exception of the estimated conditional mean ūest

obtained using RTO with a Besov prior and db8 wavelets, all the estimated conditional means in Table

5.7 have larger relative L2 errors than the observation y. The MAP estimators uMAP obtained with the

Besov prior and db8 wavelets have smaller relative errors than the observation y. They are plotted in

Section C.4 of Appendix C.
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The percentage of accepted samples for RTO with Besov priors is 0.880% when Haar wavelets are used

and it is 51.656% when db8 wavelets are used. These are much lower values compared to the percentage

of accepted samples for RTO with a Gaussian smoothness prior (99.976%) and RTO with a TV prior

(95.152%). Note that, while the TV prior transformation Tλ is continuously differentiable and invertible,

the Besov prior transformation Tτ,q is only invertible, as the derivative of gτ,q is not continuous at zero

(see Appendix (B.3)). Therefore, Assumption (2) of Theorem 3.5.1 is not fulfilled on the entirety of Rn.

In practice, the Jacobian of F̃ is approximated using the Python library JAX, which handles discontinuous

gradients by perturbing the function F̃ slightly near the discontinuity and taking gradient values close to

the discontinuity. Then, the optimisation problem (3.18) can still be solved to generate RTO proposals,

although these samples may not be in high-density areas, leading to a smaller percentage being accepted.

5.4.1 Influence of s and q parameters

The s parameter of a Besov random function (2.45) affects the regularity properties of the function by

determining the decay of the deterministic coefficients. The parameter q characterises the generalised

Gaussian distribution [51] in (4.7) and the Besov space Bs
qq(Td). In Section 5.4, the values of these

parameters are set as s = 1 and q = 1 to construct Besov priors that behave similarly to total variation

priors. In this subsection, the effects of changing the s and q on parameters are investigated. The

estimated conditional means obtained by varying q and s are plotted. Plots of MAP estimators can be

found in Appendix C.

The q parameter

When q = 1, the generalised Gaussian density function (4.7) coincides with a Laplace density, and when

q = 2 the generalised Gaussian density function (4.7) coincides with a Gaussian density function [51].

In Besov spaces Bs
qq(Td), q is connected to the Lq(Td) spaces where the elements of Bs

qq(Td) reside (see

Definition 2.3.12). For the figures below, the parameter κ is set by minimising the relative L2 error of

the conditional mean EL2 (ūest) using a grid search, as in Section 5.2.

Estimated conditional means obtained by sampling with a Besov prior and Haar wavelets with q = 2, s = 1

are shown in Figures 5.17b and 5.17d. Estimated conditional means obtained by sampling with a Besov

prior constructed using db8 wavelets with q = 2, s = 1 are shown in Figures 5.17f and 5.17h. Comparing

Figures 5.17b, 5.17d, 5.17f, and 5.17h to Figures 5.18b, 5.18e, 5.19b, and 5.19e shows that sampling with

the parameter q = 2 and corresponding κ values has similar effects as increasing s, although s and q

parameters play different roles in the construction of the Besov priors. In [41], where the effects of q were

studied for the inpainting problem, it was also found that increasing the s and q parameters do not lead

to significantly different effects.
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(a) pCN with a Besov prior (Haar wavelets), s =
1, q = 1, κ = 1.3, EL2 (ūest) = 0.27136.
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(b) pCN with a Besov prior (Haar wavelets), s =
1, q = 2, κ = 0.15, EL2 (ūest) = 0.26912.
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(c) RTO with a Besov prior (Haar wavelets), s =
1, q = 1, κ = 1.3, EL2 (ūest) = 0.24413.
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(d) RTO with a Besov prior (Haar wavelets), s =
1, q = 2, κ = 0.05, EL2 (ūest) = 0.23562.
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(e) pCN with a Besov prior (db8 wavelets), s =
1, q = 1, κ = 1.5, EL2 (ūest) = 0.20765.
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(f) pCN with a Besov prior (db8 wavelets), s =
1, q = 2, κ = 0.05, EL2 (ūest) = 0.20907.
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(g) RTO with a Besov prior (db8 wavelets), s =
1, q = 1, κ = 0.6, EL2 (ūest) = 0.16263.
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(h) RTO with a Besov prior (db8 wavelets), s =
1, q = 2, κ = 0.1, EL2 (ūest) = 0.16838.

Figure 5.17: Deconvolution results obtained using pCN and RTO with Besov priors, s = 1 and different
q values.

The s parameter

In Figure 5.18, estimated conditional means obtained by sampling with a Besov prior and Haar wavelets

with s ∈ {1, 1.5, 2} and q = 1 are shown.
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(a) pCN with a Besov prior (Haar
wavelets), s = 1, q = 1, κ =
1.3, EL2 (ūest) = 0.27136.
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(b) pCN with a Besov prior (Haar
wavelets), s = 1.5, q = 1, κ =
1.3, EL2 (ūest) = 0.277037.
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(c) pCN with a Besov prior (Haar
wavelets), s = 2, q = 1, κ =
1.3, EL2 (ūest) = 0.35721.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8
est. CM
95% CI
true signal

(d) RTO with a Besov prior (Haar
wavelets), s = 1, q = 1, κ =
1.3, EL2 (ūest) = 0.24413.
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(e) RTO with a Besov prior (Haar
wavelets), s = 1.5, q = 1, κ =
0.5, EL2 (ūest) = 0.23629.
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(f) RTO with a Besov prior (Haar
wavelets), s = 2, q = 1, κ =
1.3, EL2 (ūest) = 0.41255.

Figure 5.18: Deconvolution results obtained using Besov priors (Haar wavelets) with q = 1 and varying
s.

In Figure 5.19, estimated conditional means obtained by sampling with a Besov prior and db8 wavelets

with s ∈ {1, 1.5, 2} and q = 1 are shown. Increasing s results in faster decay of deterministic coefficients

in (2.45), similar to the effect observed in [41] when s was varied for the inpainting problem. When the

Haar wavelets are used, the estimated conditional mean has a more step function-like appearance, as

seen in Figures 5.18c and 5.18f. The estimated conditional means obtained using db8 wavelets and s = 2

are not significantly deconvolved, as seen in 5.19c and 5.19f. This is because, when the deterministic

coefficients decay more rapidly, larger jumps between adjacent values are discouraged.
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(a) pCN with a Besov prior (db8
wavelets), s = 1, q = 1, κ =
1.5, EL2 (ūest) = 0.20765.
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(b) pCN with a Besov prior (db8
wavelets), s = 1.5, q = 1, κ =
1.5, EL2 (ūest) = 0.23115.
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(c) pCN with a Besov prior (db8
wavelets), s = 2, q = 1, κ =
1.5, EL2 (ūest) = 0.25717.
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(d) RTO with a Besov prior (db8
wavelets), s = 1, q = 1, κ =
0.6, EL2 (ūest) = 0.16263.
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(e) RTO with a Besov prior (db8
wavelets), s = 1.5, q = 1, κ =
0.6, EL2 (ūest) = 0.16893.
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(f) RTO with a Besov prior (db8
wavelets), s = 2, q = 1, κ =
0.6, EL2 (ūest) = 0.18705.

Figure 5.19: Deconvolution results obtained using Besov priors (db8 wavelets) with q = 1 and varying s.

Prior Method κ s q
Accepted

samples (%)
EL2 (ūMAP ) EL2 (ūest)

Besov (db8) RTO 0.1 1.0 2 98.64 0.16810 0.16838

Besov (db8) RTO 0.6 1.5 1 4.96 0.17937 0.16893

Besov (db8) RTO 0.6 2.0 1 0.80 0.18645 0.18705

Table 5.8: Summary of errors of estimated conditional means obtained using Besov priors with varying s
and q parameters with smaller EL2 (ūest) smaller than the relative error of the observation y, EL2 (y) =
0.20245.

Table 5.8 lists the parameter values for which the relative L2 errors of the estimated conditional means

EL2 (ūest) are smaller than the relative L2 errors of the observation EL2 (y) = 0.20245. The parameter

values with the smallest EL2 (ūest) value are s = 1.0, q = 2, κ = 0.1. The value of EL2 (ūest) with these

parameters is larger than the EL2 (ūest) value for RTO-Besov (db8) with s = 1.0, q = 1, κ = 0.6 and

EL2 (ūest) value for RTO-TV with λ = 12.
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5.5 Comparison of errors and computation times

The relative L2 errors of the estimated conditional means EL2 (ūest), relative L2 errors of the RTO

linearisation point (or posterior mode) EL2 (ūMAP ), and percentages of accepted samples are summarised

in Table 5.9.

Prior Method
Prior

parameter
Step size Accepted samples (%) EL2 (ūMAP ) EL2 (ūest)

Gaussian RW 0.05 0.0055 24.08 0.16369 0.18940

Gaussian pCN 0.01 0.047 22.256 0.19539 0.20854

Gaussian RTO 0.1 N/A 99.976 0.15713 0.15660

TV RW 16 0.0091 22.552 0.11445 0.194384

TV pCN 16 0.0095 21.256 0.11445 0.20179

TV RTO 12 N/A 95.152 0.11476 0.14405

Besov (Haar) RW 1.4 0.0343 18.184 0.24134 0.27246

Besov (Haar) pCN 1.3 0.03 20.528 0.24080 0.27136

Besov (Haar) RTO 1.3 N/A 0.880 0.86676 0.24413

Besov (db8) RW 1.2 0.0235 26.472 0.18105 0.22941

Besov (db8) pCN 1.5 0.043 14.424 0.18429 0.20765

Besov (db8) RTO 0.6 N/A 51.656 0.17597 0.16263

Table 5.9: Relative L2 errors of estimated conditional means obtained using the three sampling methods
with Gaussian, TV, and Besov priors.

The relative L2 error of the observation y is EL2 (y) = 0.20245. Not all the estimated conditional means

result in reduced relative L2 error values. The estimated conditional means with the smallest relative

L2 error values are RTO-TV, with EL2 (ūest) = 0.14405, RTO-Gaussian, with EL2 (ūest) = 0.15660,

and RTO-Besov (db8) EL2 (ūest) = 0.16263. Relative to EL2 (y) = 0.20245, the EL2 (ūest) values

for estimated conditional means computed using RTO-TV, RTO-Gaussian, and RTO-Besov (db8) are

reduced by 28.85%, 22.64%, and 19.67% respectively. The estimated credible intervals found using RTO-

TV and RTO-Besov (db8) mostly contain the true signal.

The faster mixing and higher acceptance probabilities of RTO compared to pCN is not entirely surprising,

as both the proposal (3.18) and acceptance probability (3.26) of RTO are formulated based on the

posterior density, whereas for whitened pCN only the acceptance probability (3.14) takes into account
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the posterior density. In [55], comparisons between RTO and pCN support the idea that RTO mixes more

rapidly than pCN, and pCN may fail to produce meaningful estimates of the posterior. While estimated

conditional means computed from samples obtained using RTO have been more accurate, as sho wn in

Tables 5.6 and 5.7, and RTO has resulted in better mixing (as shown in Figures 5.9, 5.13, and 5.16), pCN

affords an additional control over the sampling process in the form of the step size parameter β, which

can be tuned for a fixed prior.

Figures 5.7f, 5.7c, and 5.12f show that the estimated conditional means obtained using RTO-TV, RTO-

Gaussian, and RTO-Besov (db8) recover features of the true signal successfully, although the edge-

preserving priors (TV and Besov) do not capture the discontinuities in the signal. The results obtained

using the Besov priors, in particular, are heavily influenced by the wavelet basis functions. The Besov

(db8) estimated conditional mean computed using RTO samples is smooth, as the db8 wavelet is smooth.

In contrast, the estimated conditional mean computed using the Haar basis functions was able to cap-

ture sharp jumps, but did not successfully recover the continuous linear piece of the function. Similar

conclusions were drawn in [41] for one-dimensional deconvolution.

Computational efficiency is evaluated through CPU time required to generate 104 samples and effective

sample size (ESS), the number of samples used by an independent Monte Carlo estimator with the same

variance as the estimator computed by the correlated MCMC samples. The ESS is given [56] by

ESS =
M

1 +
∑∞

t=1 ρt

whereM is the number of draws and ρt is the autocorrelation function at t. Approximate ESS is computed

using the Python package arviz, which provides a built-in ESS function. The ess function in arviz

computes approximate ESS, ÊSS, using the formula [57]

ÊSS =
NC ·M

−1 +
∑Kρ

t=0 ρ̂2t + ρ̂2t+1

(5.3)

where NC is the number of chains, M is the number of samples, ρ̂t is the estimated autocorrelation

function at t, and Kρ is the last integer such that ρ̂2t + ρ̂2t+1 > 0.

We distinguish between the CPU time taken to run a sequential algorithm and the total CPU time taken

to generate the samples. This is done because the proposal generation phase of RTO is not necessarily

sequential and can be parallelised. We can directly compare the inherently sequential algorithms, which

are RW, pCN, and the accept-reject phase of RTO. Sequential CPU time per ESS is used in [55] to

compare RTO and pCN, as it normalises the effect of multiple chains. The values of these measures are

presented in Table 5.10.
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Prior Method
Sequential CPU

time (s)

Total CPU

time (s)
ÊSS

Seq. CPU time

per ÊSS (s/sample)

Gaussian RW 0.54656 0.54656 276 0.00198

Gaussian pCN 0.96877 0.96877 263 0.00368

Gaussian RTO 5.04121 8.67822 281 0.01793

TV RW 0.92411 0.92411 263 0.00351

TV pCN 1.20382 1.20382 262 0.00460

TV RTO 7.51210 365.36354 285 0.02631

Besov (Haar) RW 5.43124 5.43124 263 0.02064

Besov (Haar) pCN 9.27566 9.27566 263 0.03529

Besov (Haar) RTO 33.31040 1930.50193 277 0.12005

Besov (db8) RW 4.86251 4.86251 261 0.01863

Besov (db8) pCN 4.33015 4.33015 262 0.01656

Besov (db8) RTO 24.99918 1904.761905 310 0.08055

Table 5.10: Sequential CPU time, total CPU time, ESS, and sequential CPU time per ESS for the
different methods.

Table 5.10 shows that, terms of computational speed, pCN and RW outperform RTO, having smaller

CPU time per ESS values. RTO takes up more total CPU time, as the proposal generation phase requires

repeated solving of the optimisation problem (3.18). When only the sequential parts of the algorithms

are evaluated, RTO is still slower than pCN and RW, as the accept-reject phase requires the computation

of the determinant of Q̄⊺JF̃ (uk) in (3.26), which is O(n3). Although RTO is far more computationally

costly, it also yields conditional mean estimates that are closer to the true signal, with effective noise

suppression. This is not necessarily true for pCN, although it is possible that more samples have to be

collected for pCN to sample from the posterior distribution.

5.6 Influence of problem dimensions

In 1D deconvolution, the unknown u(x) is a piecewise continuous function, defined on a continuum.

Sampling methods are used on discretisations of the problem. We may want to use finer discretisations,

with larger n, to obtain closer approximations of the continuous u(x). For the classic random walk

Metropolis-Hastings algorithm presented in Section 3.3, the performance of the algorithm degrades as n
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increases and more samples are needed to obtain an independent sample [58]. Ideally, the pCN and RTO

algorithms would be robust to changes in n.

The percentages of accepted samples when n = 32, 64, . . . , 1024 are evaluated for RW, pCN, and RTO

with the Gaussian, TV, and Besov priors and shown in Figures 5.20, 5.21, and 5.22.
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(b) Percentages of accepted sam-
ples obtained using pCN with
a Gaussian smoothness prior for
n = 32, 64, . . . , 1024.
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(c) Percentages of accepted sam-
ples obtained using RTO with
a Gaussian smoothness prior for
n = 32, 64, . . . , 1024.

Figure 5.20: Plots of percentages of accepted samples vs. grid size for RW, pCN, and RTO with Gaussian
priors.
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(a) Percentage of accepted sam-
ples obtained using RW with a TV
prior for n = 32, 64, . . . , 1024.
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(b) Percentage of accepted sam-
ples obtained using pCN with a
TV prior for n = 32, 64, . . . , 1024.
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ples obtained using RTO with a
TV prior for n = 32, 64, . . . , 1024.

Figure 5.21: Plots of percentages of accepted samples vs. grid size for RW, pCN, and RTO with TV
priors.
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(a) Percentage of accepted sam-
ples obtained using RW with a
Besov prior (Haar wavelets) for
n = 32, 64, . . . , 1024.
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(b) Percentage of accepted sam-
ples obtained using pCN with a
Besov prior (Haar wavelets) for
n = 32, 64, . . . , 1024.
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(c) Percentage of accepted sam-
ples obtained using RTO with a
Besov prior (Haar wavelets) for
n = 32, 64, . . . , 1024.
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(d) Percentage of accepted sam-
ples obtained using RW with a
Besov prior (db8 wavelets) for n =
32, 64, . . . , 1024.
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(e) Percentage of accepted sam-
ples obtained using RW with a
Besov prior (db8 wavelets) for n =
32, 64, . . . , 1024.
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(f) Percentage of accepted sam-
ples obtained using RW with a
Besov prior (db8 wavelets) for n =
32, 64, . . . , 1024.

Figure 5.22: Plots of percentages of accepted samples vs. grid size for RW, pCN, and RTO with Besov
priors.

Figures 5.20a, 5.21a, 5.22a, and 5.22d show that, for all step size β values, random walk Metropolis-

Hastings accepts fewer samples as n increases. The deterioriation in performance is particularly severe

when the total variation prior is used, as seen in Figure 5.21a.

The percentage of accepted values decreases with increasing n for pCN, which can be seen in Figures

5.20b, 5.21b, 5.22b, and 5.22e. Compared to the random walk, the decreases are more gradual. Figures

5.21b and 5.22b show that, as n increases, the percentage of accepted samples curves grow closer to each

other. The probelms sizes shown here are relatively small. In [28], pCN acceptance probabilities plotted

against step size are found to be the same for n = 100, 400, . . . , 250000. The maximum n value of 1024

is not large enough to evaluate dimension independence.

For random walk and pCN, the percentages of accepted samples are plotted against the step size param-

eter β. In RTO, the step size parameter is not present. Instead, the percentages of accepted samples

for n = 32, 64, . . . , 1024 are plotted against the prior parameters σu, λ and κ. The ranges of values of

prior parameters are the same as those used in Chapter 4. In Figures 5.20c and 5.21c, RTO acceptance

probabilities are very high (> 50%) for certain prior parameter values and can drop drastically as param-

eter values change. This indicates that choosing suitable prior parameters are key for RTO performance

when the TV and Gaussian priors are used. The performance of RTO with Besov priors is more difficult

to parse. In Figures 5.22c and 5.22f, the percentages of accepted samples fluctuate between zero and

non-zero values. This behavior explains the sample plots shown in Figures 5.13d, 5.13e, and 5.13f, where

RTO often fails to accept proposals for a large proportion (≈ 40%) of the iterations iterations. The
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estimated posterior mode ūMAP serves as the RTO linearisation point and is computed before running

RTO. This initial point may be a local minimum of the functional minimised in (3.18), and RTO may

have difficulty generating proposals with higher acceptance probabilities.



Chapter 6

Conclusions and discussion

6.1 Conclusions

This thesis addresses the problem of sampling from posterior distributions obtained by solving one-

dimensional deconvolution using the Bayesian approach to inverse problems. The one-dimensional de-

convolution problem in this thesis is the problem of recovering a piecewise continuous function from

noisy measurements of a convolved function. As the true piecewise continuous function has discontinu-

ities, the thesis focuses on the construction of priors that promote sharp features in the solution, namely

total variation (TV) priors and Besov space priors. A Gaussian smoothness prior is used as a point of

comparison.

To address the computational challenge of sampling from the resulting posteriors, three Markov chain

Monte Carlo (MCMC) methods were implemented: the classical random walk Metropolis-Hastings algo-

rithm [18], the preconditioned Crank–Nicholson (pCN) algorithm [28] and the randomise-then-optimise

(RTO) [48] algorithm. The latter two methods were originally developed for Bayesian inverse problems

with Gaussian priors. Consequently, suitable prior transformations from the literature [31], [41] were used

to modify them for sampling with edge-preserving priors. The prior transformations are compositions

of invertible linear operators with non-linear multivariate functions. The invertible linear operator is

a matrix modeling structural information about the prior in the form of a difference matrix (2.24) or

wavelet transformation [43]. The non-linear multivariate functions are compositions of inverse cumulative

distribution functions of generalised Gaussian distributions [51] with the cumulative distribution func-

tion of the standard n-variate Gaussian distribution. These prior transformations allow total variation

and Besov space priors to be transformed to standard Gaussian random variables. The pCN and RTO

methods can then be implemented for the inverse problem, which has been restated as an inverse problem

with a non-linear forward operator. The non-linearity is introduced by the prior transformation.

Prior parameters were chosen with the aim of comparing the methods using parameters that would lead

to the most accurate estimated conditional mean. The most accurate point estimator found in this thesis

was the MAP estimator with the TV prior and λ = 16 with EL2 (uMAP ) = 0.11445. The most accurate

estimated conditional mean found in this thesis was ūest from RTO sampling with a TV prior and λ = 12

with EL2 (ūest) = 0.14405. The Gaussian prior, which was used as a point of comparison, was also

found to deconvolve the signal, though it does not recover discontinuities and flat regions with the same

66
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effectiveness as the TV prior. The Gaussian prior also yields estimated credible intervals that contain

some of the true signal for sufficiently large σu. The MAP estimators of the posterior densities found

using TV priors successfully captured the discontinuities of the true signal, with the exception of the

peak of a linear portion of the true signal. This feature was captured more successfully by the estimated

conditional means of the posterior densities found using Besov (db8) and TV priors. In this thesis, the

TV prior (with the MAP estimator) was found to be the most successful at edge preservation.

The main contribution of the thesis is the comparison of the sampling methods. The numerical results

highlight a trade-off between the computational efficiency of the sampling methods and the accuracy of

the estimators computed from the samples. When combined with prior transformations, RTO generated

independent samples. The means computed using these samples are approximations of the posterior

means corresponding to the densities (4.10), (4.11), and (4.12). The estimated conditional means are

able to recover the features of the true signal and most of the true signal can be found in estimated

95% credible intervals obtained from the RTO samples. As in the work of [41], the estimated conditional

means and credible intervals obtained by sampling with Besov priors are heavily influenced by the choice

of wavelet basis functions, with db8 wavelets producing more accurate estimates than Haar wavelets.

The effectiveness of RTO comes at a significant computational cost. Each proposal requires the solution

of a stochastic optimisation problem, and the acceptance step involves the evaluation of a Jacobian de-

terminant, both of which are expensive to compute. Moreover, the performance of RTO was observed to

be highly sensitive to the choice of prior. In the absence of a suitable prior, the algorithm can behave

unpredictably. In contrast, the pCN algorithm was found to be computationally efficient and straightfor-

ward to implement. It is more robust to changes in discretisation level compared with standard random

walk Metropolis-Hastings, which confirms some of its theoretical advantages. Due to the correlations

between the samples, it is difficult to determine when pCN has sampled from the posterior distribution.

The resulting conditional mean estimates were not close approximations of the true signal and the true

signal did not lie in the estimated 95% credible intervals found using pCN, which indicates that the prior

parameters were not optimally chosen. Overall, RTO with a prior transformation produces estimated

conditional means with smaller relative L2 errors and has better mixing properties than pCN.

Although it is theoretically dimension-independent, pCN performance is affected by the problem dimen-

sions in one-dimensional deconvolution for the problem dimensions tested in this thesis, which are small

(n ≤ 1024) and do not provide enough information about limiting behavior. For n = 32, 64, . . . , 1024,

pCN accepts fewer proposals as n increases. For RTO, the effect of the problem dimensions are not as

clear from the numerical results in this thesis. The results indicate that the performance of RTO depends

on the prior parameters, as RTO does not have a step size parameter that can be tuned for different

dimensions.

6.2 Discussion

There are aspects of this thesis that could be improved on to obtain more comprehensive answers to

the research questions. The first would be more focus on the factors related to the effectiveness of the

sampling methods. In particular, the number of samples needed for RTO and pCN to converge could

have been chosen with more attention, for example by choosing the step sizes β of RW and pCN to

maximise ESS or finding a number of iterations Mopt such that the estimated conditional mean ūest no

longer changes significantly after the algorithm has been run for Mopt iterations. The second would be

more thorough study of the Besov priors. A search for an optimal combination of s, q, and κ would
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have yielded more insight into the edge-preserving properties of the Besov priors. In this thesis and [41],

the choice of wavelet basis functions was found to have a significant effect on the point estimators of

the Besov posterior density (4.12). While the total variation prior was found to have more significant

edge-preserving properties than the Besov priors in this thesis, only the Haar and db8 wavelets were

tested. More wavelet basis functions, such as the biorthogonal or other Daubechies wavelets, could have

been tested. The third factor would be the number of problem numbers chosen to investigate the second

research question. The maximum number of dimensions in this thesis, n = 1024, was chosen due to

memory limitations. Larger problem dimensions, such as values of n up to 250 000 as in [28], may come

closer to showing limiting behavior.

In this thesis, RTO with a prior transformation produced more accurate point estimators of the true

signal and has better mixing properties than pCN. However, there are still factors that may make RTO a

suboptimal choice for other Bayesian inverse problems, and these factors can provide directions for future

work. It would be beneficial to address the effect of problem dimension on performance, as many Bayesian

inverse problems concern fine discretisations of parameters defined on a continuum. In [55], the RTO

method is extended to function space to establish theoretical dimension-independence and a new subspace

strategy is proposed for high-dimensional RTO. The second issue to address, which may be related to the

first, is a prior-independent modification to RTO that allows more control over the acceptance probability

of the method. The third direction is towards deeper theoretical understanding of the method. In this

thesis, the results of sampling with Besov space priors with db8 wavelets show that samples generated

using RTO are still useful for uncertainty quantification and point estimation when Assumption (1) in

Theorem 3.5.1 is not fulfilled everywhere on the domain of F̃ , as a Jacobian approximation is used when

the analytical Jacobian is not available. More investigation into how Jacobian approximations may be

used in combination with RTO to tackle inverse problems with more complex forward operators can also

make RTO applicable to an even wider class of problems. Additionally, the effects of using linearisation

points other than the MAP estimator (3.19) may be investigated. The MAP estimator is a natural choice

of linearisation point, as it leads to sampling from high-density areas. Though its existence and uniqueness

are key assumptions in the derivation of the RTO proposal density (3.24), the MAP estimator does not

always exist and may not be unique. A fourth direction is the potential to make RTO more efficient

through parallelisation, as the entire proposal-generation phase of Algorithm 3 can be parallelised.

For preconditioned Crank-Nicholson, an interesting direction of future work would be the study of sample

sizes needed to begin sampling from the posterior distribution, as the method has not produced samples

that are representative of the posterior distribution in this thesis. For example, a promising starting

point would be [59], where a terminating framework for multivariate MCMC is proposed. As pCN with

a prior transformation is computationally efficient, relatively simple to implement, derivative-free, and

theoretically dimension-independent, it would be a powerful method for sampling from non-Gaussian

priors when combined with a more reliable way to evaluate convergence to the posterior distribution.

The pCN method has also been extended to take advantage of the geometric properties of the posterior

[60]. This modification can be useful for sampling using the non-linear prior transformations used in this

thesis.
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Appendix A

Probability theory

For more details, the reader may with to consult [61] and [62].

Definition A.0.1: Probability measure

Let µ be a measure on a measurable space (E, σ(E)). It is called a probability measure if µ(E) = 1.

Definition A.0.2: Probability space

A probability space is a triplet (Ω, σ(Ω),P) where Ω is a set (called the sample space, consisting

of elements called outcomes), σ(Ω) is a σ-algebra over Ω (consisting of elements called events),

and P is a probability measure on (Ω, σ(Ω)).

Definition A.0.3: Random variable

Let (E, σ(E)) be a measurable space. A mapping X : Ω → E is called a random variable

taking values in (E, σ(E)) provided that it is measurable relative to σ(Ω) and σ(E), meaning that

X−1A = {ω ∈ Ω : X(ω) ∈ A} is an event in σ(Ω) for every A in σ(E). If the σ(E) is understood

from context, we can say that X takes values in E or is E-valued.

Definition A.0.4: Probability distribution

Let X be a random variable taking values in some measurable space (E, σ(E)) and let µ be a

mapping such that

µ(A) = P(X−1A) = P{X ∈ A} ∀A ∈ σ(E). (A.1)

Then µ is a probability measure on E and it is called the distribution of X.
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Definition A.0.5: Absolutely continuous measure

Let µ and ν be measures on a measurable space (E, σ(E)). Then, ν is said to be absolutely

continuous with respect to µ if, for every set A ∈ σ(E),

µ(A) = 0 =⇒ ν(A) = 0

Definition A.0.6: Density

Let (E, σ(E), µ) be a measure space. Let p be a positive σ(E)-measurable function. Define

ν(A) = µ(p(x)1A(x)) =

∫
A

p(x)µ(dx) A ∈ σ(E). (A.2)

The function p is the density of ν relative to µ.

Definition A.0.7: Radon-Nikodym derivative

Suppose that µ is σ-finite, and ν is absolutely continuous with respect to µ. Then, there exists a

positive σ(E)-measurable function p such that∫
E

f(x) ν(dx) =

∫
E

f(x)p(x)µ(dx) (A.3)

for every positive, σ(E)-measurable f . Moreover, p is unique up to equivalence: if (A.3) holds for

another positive, σ(E)-measurable p̃, then p̃(x) = p(x) for µ-almost every x in E. The function p

is the Radon-Nikodym derivative and can be denoted by dν
dµ .

Definition A.0.8: Conditional expectation

Let (Ω, σ(Ω),P) be a probability space and let S be a sub-σ-algebra of σ(Ω). The conditional

expectation E (X|S) of an integrable random variable X relative to a S is any S-measurable,

integrable random variable Z in the equivalence class of random variables, such that∫
Λ

Z P(dx) =
∫
Λ

X P(dx) (A.4)

for any Λ ∈ S.

Definition A.0.9: Conditional probability

Let (Ω, σ(Ω),P) be a probability space. Let F be a sub-σ-algebra of σ(Ω). For each event

A ∈ σ(Ω),
P(A|F) = E(1A(x)|F) (A.5)

is called the conditional probability of A given F .



Appendix B

Prior transformation properties

B.1 Transformed posterior

The following proposition is used in Section 4.2 to show that the pCN and RTO sampling methods can

be used to sample from posterior densities obtained using non-Gaussian priors. It follows from the theory

of transfomations of Rn-valued random variables.

Proposition B.1.1

Consider the discrete linear measurement model (2.25). Suppose the random variableU : Ω1 → Rn

has the prior density πU(u) and the posterior density

πy
U(u) ∝ exp

(
−1

2
||A(u)− y||2

)
· πU(u) (B.1)

given y, a realisation of Y : Ω→ Rm. Suppose T : Rn → Rn is an invertible transformation such

that T (Z) = U, with Z ∼ N (0, I). The posterior density (B.1) can be written as a function of z,

πy
U(u) ∝ exp

(
−1

2
||A(T (z))− y||2 − 1

2
||z||2

)
.

Proof. As T is invertible, the prior density can be written as

πU(u) ∝ exp

(
−1

2
||T−1(u)||2

)
|JT−1(u)| .
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Substituting this into the posterior density (B.1), we obtain

πy
U(z) ∝ exp

(
−1

2
||A(T (z))− y||2

)
πU(T (z)) |JT (z)|

∝ exp

(
−1

2
||A(T (z))− y||2

)
exp

(
−1

2
||z||2

)
|JT−1(u)| |JT (z)|

= exp

(
−1

2
||A(T (z))− y||2 − 1

2
||z||2

)
.

(B.2)

We now show that the assumptions in Proposition B.1 are satisfied by the transformations Tλ (4.4) and

Tτ,q (4.9).

B.2 Total variation prior transformation properties

The transformation Tλ (4.4) is invertible. Note that gλ(z) = L−1(Φ(z)), where L is the Laplace cumulative

distribution function. The inverse of gλ(z) thus exists and is written as g−1
λ (u) = Φ−1(L(u)). Let

G−1
λ (x) =

(
g−1
λ (x0) g−1

λ (x1) . . . g−1
λ (xn−2) g−1

λ (xn−1)
)⊺
. (B.3)

The inverse of Tλ is then

T−1
λ (u) = G−1

λ (Du).

This allows us to use Proposition B.1 to rewrite the posterior density (4.11) in the forms (4.14) and

(4.15).

The Jacobian of the transformation (4.4) is needed for RTO. The function gλ (4.1.2) is differentiable and

g′λ(z) =
Φ′(z)

λΦ(−|z|)
.

This function is continuous on R. The Jacobian of Tλ(z) is thus given by

JTλ
(z) = D−1



g′λ(z0) 0 · · · 0 0

0 g′λ(z1) · · · 0 0
...

...
. . .

...
...

0 0 · · · g′λ(zn−2) 0

0 0 · · · 0 g′λ(zn−1)

 .

The transformation Tλ is continously differentiable.
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B.3 Besov prior transformation properties

The transformation Tτ,q (4.9) is invertible. Note that gτ,q(z) = Φ−1
τ,q(Φ(z)). The inverse of gτ,q(z) thus

exists and is written as g−1
τ,q(u) = Φ−1(Φτ,q(u)). Let

G−1
τ,q(x) =

(
g−1
τ,q(x0) g−1

τ,q(x1) . . . g−1
τ,q(xn−2) g−1

τ,q(xn−1)
)⊺
. (B.4)

The inverse of Tτ,q is then

T−1
τ,q (u) = G−1

τ,q(SWu).

This allows us to use Proposition B.1 to rewrite the posterior density (4.12) in the forms (4.14) and

(4.15).

The Jacobian of the transformation (4.4) is needed for RTO. The function gτ,q (4.8) is differentiable and

its derivative is

g′τ,q(z) =
τ

q
Γ

(
1

q

)
exp

(
Q−1

(
1

q
, 1 + sgn(z)− 2sgn(z)Φ(z)

))
(2sgn(z)Φ′(z)− sgn(z)).

We note that the derivative g′τ,q(z) is not continuous at z = 0. The Jacobian of Tτ,q(z) is

JTτ,q (z) = (SW)
−1



g′τ,q(z0) 0 · · · 0 0

0 g′τ,q(z1) · · · 0 0
...

...
. . .

...
...

0 0 · · · g′τ,q(zn−2) 0

0 0 · · · 0 g′τ,q(zn−1)

 .

B.4 RTO conditions with a prior transformation

We check the RTO validity conditions 3.5.1 for sampling with prior transformations. This is Theorem

3.2 in [31]. It is stated for the posterior density (4.11) with the TV transformation (4.4).

Theorem B.4.1: RTO validity conditions with a prior transformation

Let (4.11) specify the posterior density of a Bayesian inference problem with pa- rameters U, and

let the forward model in (4.11) be linear and denoted by A. After the prior transformation (4.4),

the RTO algorithm described by Algorithm 3 generates proposal samples with probability density

given in (3.24) where F̃ is as written in (4.16), with T = Tλ.

Proof. We check that the assumptions in Theorem 3.5.1 are fulfilled. Since Tλ is continuously differen-

tiable, conditions (1) and (2) are fulfilled. Note that the Jacobian of F̃ is

JF̃ (z) =

(
I

1
σe
AJTλ

(z)

)
. (B.5)

The identity matrix in the first n rows of JF̃ (z) ensure that the columbs of JF̃ (z) are linearly independent
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regardless of JTλ
(z). Assumption (4) in Theorem 3.5.1 will now be checked. Let

JGλ
(z) =



g′λ(z0) 0 · · · 0 0

0 g′λ(z1) · · · 0 0
...

...
. . .

...
...

0 0 · · · g′λ(zn−2) 0

0 0 · · · 0 g′λ(zn−1)

 . (B.6)

For any v ∈ Rn,w ∈ Rn,

JF̃ (v)
⊺
JF̃ (w) = I+

1

σ2
e

JGλ
(v)D−⊺A⊺AD−1JGλ

(w)

= JGλ
(v)(JGλ

(v)
−1

JGλ
(w)

−1
+

1

σ2
e

D−⊺A⊺AD−1)JGλ
(w).

For any z ∈ Rn, the matrix JGλ
(z) is a positive diagonal matrix. The matrix 1

σ2
e
D−⊺A⊺AD−1 is

symmetric positive definite. The matrix

(JGλ
(v)

−1
JGλ

(w)
−1

+
1

σ2
e

D−⊺A⊺AD−1)

is then symmetric positive definite. Therefore, JF̃ (v)
⊺
JF̃ (w) is a product of three invertible matrices

and is also invertible. The matrix Q̄ is obtained from the thin-QR decomposition of JF̃ (ūMAP ) at the

posterior mode ūMAP . The matrix JF̃ (u)
⊺
Q̄ = JF̃ (u)

⊺
JF̃ (ūMAP )R̄

−1 is invertible for any u ∈ Rn,

showing that Assumption (4) holds. The assumptions of Theorem 3.5.1 are therefore fulfilled.



Appendix C

Additional point estimator plots

Plots of point estimators with the parameters in Table 5.9 are presented in this Appendix. In addition

to the L2 error relative to the true signal, another metric will be shown with some of the plots. This

is the L2 error of a relative to b, EL2 (a,b), which is used to compare different point estimators in this

Appendix. The formula for EL2 (a,b) is given by

EL2 (a,b) =
||a− b||2
||b||2

. (C.1)

Note that, for the Gaussian posterior density (4.10), the conditional mean uCM (2.35) is the same as

the MAP estimator uMAP . In this Appendix, they are treated as distinct only due to the methods used

to compute them; the true conditional mean uCM is calculated using the formula (2.35) and the MAP

estimator uMAP is found by using the Adam optimiser from the Python library optax to solve the MAP

estimation problem (2.30).

C.1 Point estimators from Gaussian priors
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(a) RW ūest and uMAP

with a Gaussian smooth-
ness prior, σu = 0.05, β =
5.5 × 10−3, EL2 (ūest,uMAP ) =
0.09668.
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(b) Gaussian smoothness prior
uMAP , σu = 0.05, EL2 (uMAP ) =
0.16369.
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x
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true CM
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(c) Comparison of RW ūest and
uCM with a Gaussian smooth-
ness prior, σu = 0.05, β = 5.5 ×
10−3, EL2 (ūest,uCM ) = 0.09668.

Figure C.1: Point estimators of the posterior density with a Gaussian prior (4.10), with ūest found using
RW samples.
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(a) pCN ūest and uMAP

with a Gaussian smooth-
ness prior, σu = 0.01, β =
7.7 × 10−2, EL2 (ūest,uMAP ) =
0.035770.
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(b) Gaussian smoothness prior
uMAP , σu = 0.01, EL2 (uMAP ) =
0.19539.
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(c) Comparison of pCN ūest and
uCM with a Gaussian smooth-
ness prior, σu = 0.01, β = 5.5 ×
10−3, EL2 (ūest,uCM ) = 0.035770

Figure C.2: Point estimators of the posterior density with a Gaussian prior (4.10), with ūest found using
pCN samples.
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(a) RTO ūest and uMAP with a
Gaussian smoothness prior, σu =
0.1, EL2 (ūest,uMAP ) = 0.00274
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(b) Gaussian smoothness prior
uMAP , σu = 0.1, EL2 (uMAP ) =
0.15713
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(c) Comparison of RTO ūest

and uCM with a Gaus-
sian smoothness prior, σu =
0.1, EL2 (ūest,uCM ) = 0.00274.

Figure C.3: Point estimators of the posterior density with a Gaussian prior (4.10), with ūest found using
RTO samples.

C.2 Point estimators from total variation priors
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(a) RW ūest and uMAP with a TV prior, λ =
16, β = 9.10× 10−3, EL2 (ūest,uMAP ) = 0.16833
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(b) TV uMAP , λ = 16, EL2 (uMAP ) = 0.11445.

Figure C.4: Point estimators of the posterior density with a TV prior (4.11), with ūest found using RW
samples.
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(a) pCN ūest and uMAP with a TV prior, λ =
16, β = 9.50× 10−3, EL2 (ūest,uMAP ) = 0.17137
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(b) TV uMAP , λ = 16, EL2 (uMAP ) = 0.11445.

Figure C.5: Point estimators of the posterior density with a TV prior (4.11), with ūest found using pCN
samples.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8
95% CI
est. CM
MAP estimator
true signal

(a) RTO ūest and uMAP with a TV prior, λ =
12, EL2 (ūest,uMAP ) = 0.11046.
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(b) TV uMAP , λ = 12, EL2 (uMAP ) = 0.11476.

Figure C.6: Point estimators of the posterior density with a TV prior (4.11), with ūest found using pCN
samples.

C.3 Point estimators from Besov (Haar) priors
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(a) RW ūest and uMAP with a Besov (Haar)
prior, s = 1, q = 1, κ = 1.4, β = 3.43 ×
10−3, EL2 (ūest,uMAP ) = 0.13596
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(b) Besov (Haar) uMAP , s = 1, q = 1, κ =
1.4, EL2 (uMAP ) = 0.24134.

Figure C.7: Point estimators of the posterior density with a Besov (Haar) prior (4.12), with ūest found
using RW samples.
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(a) pCN ūest and uMAP with a Besov (Haar)
prior, s = 1, q = 1, κ = 1.3, β = 3.0 ×
10−2, EL2 (ūest,uMAP ) = 0.13428.
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(b) Besov (Haar) uMAP , s = 1, q = 1, κ =
1.3, EL2 (uMAP ) = 0.24080.

Figure C.8: Point estimators of the posterior density with a Besov (Haar) prior (4.12), with ūest found
using pCN samples.
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(a) RTO ūest and uMAP with a Besov (Haar) prior,
s = 1, q = 1, κ = 1.3, EL2 (ūest,uMAP ) = 0.08087.
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(b) Besov (Haar) uMAP , s = 1, q = 1, κ =
1.3, EL2 (uMAP ) = 0.24080.

Figure C.9: Point estimators of the posterior density with a Besov (Haar) prior (4.12), with ūest found
using RTO samples.
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(a) pCN ūest and uMAP with a Besov (Haar)
prior, s = 1, q = 2, κ = 0.15, EL2 (ūest,uMAP ) =
0.11803, EL2 (ūest) = 0.24708.
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(b) RTO ūest and uMAP with a Besov (Haar)
prior, s = 1, q = 2, κ = 0.05, EL2 (ūest,uMAP ) =
0.23502, EL2 (uMAP ) = 0.00918.

Figure C.10: Point estimators of the posterior density with a Besov (Haar) prior (4.12), with q = 2.
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(a) pCN ūest and uMAP with a Besov (Haar)
prior, s = 1.5, q = 1, κ = 1.3, EL2 (ūest,uMAP ) =
0.16629, EL2 (uMAP ) = 0.24189.
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(b) RTO ūest and uMAP with a Besov (Haar)
prior, s = 1.5, q = 1, κ = 0.5, EL2 (ūest,uMAP ) =
0.24006, EL2 (uMAP ) = 0.04767.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8 95% CI
est. CM
MAP estimator
true signal

(c) pCN ūest and uMAP with a Besov (Haar)
prior, s = 2.0, q = 1, κ = 1.3, EL2 (ūest,uMAP ) =
0.27720, EL2 (ūest) = 0.24296.
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(d) RTO ūest and uMAP with a Besov (Haar)
prior, s = 2.0, q = 1, κ = 1.3, EL2 (ūest,uMAP ) =
0.24296, EL2 (uMAP ) = 0.38630.

Figure C.11: Point estimators of the posterior density with a Besov (Haar) prior (4.12), with q = 1 and
s ∈ {1.5, 2.0}.

C.4 Point estimators from Besov (db8) priors
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(a) RW ūest and uMAP with a Besov (db8)
prior, s = 1, q = 1, κ = 1.2, β = 2.35 ×
10−3, EL2 (ūest,uMAP ) = 0.14748.
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(b) Besov (db8) uMAP , s = 1, q = 1, κ =
1.2, EL2 (uMAP ) = 0.18105.

Figure C.12: Point estimators of the posterior density with a Besov (db8) prior (4.12), with ūest found
using RW samples.
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(a) RW ūest and uMAP with a Besov (db8)
prior, s = 1, q = 1, κ = 1.5, β = 4.30 ×
10−3, EL2 (ūest,uMAP ) = 0.10249.
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(b) Besov (db8) uMAP , s = 1, q = 1, κ =
1.5, EL2 (uMAP ) = 0.18429.

Figure C.13: Point estimators of the posterior density with a Besov (db8) prior (4.12), with ūest found
using pCN samples.
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(a) RW ūest and uMAP with a Besov (db8) prior,
s = 1, q = 1, κ = 0.6, EL2 (ūest,uMAP ) = 0.03667.
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(b) Besov (db8) uMAP , s = 1, q = 1, κ =
0.6, EL2 (uMAP ) = 0.17596.

Figure C.14: Point estimators of the posterior density with a Besov (db8) prior (4.12), with ūest found
using RTO samples.
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(a) pCN ūest and uMAP with a Besov (db8) prior,
s = 1, q = 2, κ = 0.05, EL2 (ūest,uMAP ) =
0.10333, EL2 (uMAP ) = 0.16450.
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(b) RTO ūest and uMAP with a Besov (Haar)
prior, s = 1, q = 2, κ = 0.1, EL2 (ūest,uMAP ) =
0.00276, EL2 (uMAP ) = 0.16810.

Figure C.15: Point estimators of the posterior density with a Besov (db8) prior (4.12), with q = 2.
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(a) pCN ūest and uMAP with a Besov (db8) prior,
s = 1.5, q = 1, κ = 1.5, EL2 (ūest,uMAP ) =
0.18673, EL2 (uMAP ) = 0.13159.
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(b) RTO ūest and uMAP with a Besov (db8) prior,
s = 1.5, q = 1, κ = 0.6, EL2 (ūest,uMAP ) =
0.04226, EL2 (uMAP ) = 0.17937.
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(c) pCN ūest and uMAP with a Besov (Haar)
prior, s = 2.0, q = 1, κ = 1.5, EL2 (ūest,uMAP ) =
0.15765, EL2 (uMAP ) = 0.19059.
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(d) RTO ūest and uMAP with a Besov (db8)
prior, s = 2.0, q = 1, κ = 0., EL2 (ūest,uMAP ) =
0.05855, EL2 (uMAP ) = 0.18645.

Figure C.16: Point estimators of the posterior density with a Besov (db8) prior (4.12), with q = 1 and
s ∈ {1.5, 2.0}.
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