

Climate Change. Vulnerabilities.

Mumbai floods 2005. source: DNA

Climate Change. Vulnerabilities.

Climate Change. Vulnerabilities.

Climate Change. Vulnerabilities.

Mumbai floods in 2015. source: floodlist

Climate Change. Vulnerabilities.

Climate Change. Vulnerabilities.

Mumbai floods in 2019. source: mumbailive

Climate Change. Vulnerabilities.

Mumbai floods in 2020. source: indiatoday 11

The problem?

Operationalisation

Design & Planning Framework

Conclusion & Discussions

source: Safwan Patrawala 12

The problem?

Operationalisation

Conclusion & Discussions

→ Aim & Research Question —

→ Design & Planning framework

エマ

Mumbai Metropolitan region Population : 20,411,274

Economy

Fishing

Archipelago of 7 islands inhabited by a fishing community

Port City

British East India Company colonised this island and reclaimed land to build a strategic port- Gateway of India.

Textile Industry

In the nineteenth Century, Mumbai had a flourishing cotton textile industry

Financial Capital of the country

Later/ Now deinsutrialised and became a hub for finance, commerce, entertainment and others.

source: alamy; indiatoday 18

Infrastructure

Water Infrastructure

The water became a basic structure or facility to which society responded to.

Port & Water infrastructure

Port and water became a basis for development of Mumbai as a port city.

Railway Infrastructure

Th Rail infrastructure guided the development and also enabled the economy to be connected to its hinterland.

Technological Infrastructure

Deindustrialised due to technolohical advancements and outsourced its manufacturing and focussed on finance.

source: author 19

Morphology

Archipelago of 7 islands

Mumbai -7 islands with fishing community

Port City

British East India company had a port in Mumbai with few settlements

Development guided by Railways

With Indsutrialisation, textile mill began setting up and the settlement grew

Guiding the development

Eventually the urban area extended further

20

source: author

Natural Causes

Geographic sensitivity -High Precipitation Pattern

source: author based on IMD 22

Natural Causes

Geographic sensitivity- Elevation below sea level

source: author based on DEM 23

Focus on Global economic concentration

source: author based on MCGM

Infrastructure serving the global economic concentration

Development focussed on socio- economic system

source: author based on openstreetmap 25

Urban development oriented towards infrastructure

Development focussed on socio- economic system

source: author based on openstreetmap 26

Anthropogenic Causes Neglecting the ecological system

Encroaching Mangroves.

Image of development in Mangroves under Coastal regulation Zone

27 source: silentmaj

Mumbai's ecologically important salt pans may soon be opened up for real estate

By Nikhil S Dixit • October 16, 2019

Encroaching Saltpans.

act as natural barriers to prevent flooding in Mumbai, salt pans hold the seawater from entering the city and stop flooding. Hosts several species of birds and different types of insects

28

source: quartzindia

Conflict of space with Ecology & society

The government has introduced amendments to allow special economic zones (SEZs) to be set up in CRZ I areas. Rampant pollution of the coast has forced Koli fishers to travel up to 10 nautical miles off the coast, where they face competition from trawlers and seiners. In Cuffe Parade in South Mumbai, elite residential projects have expanded into fishing spaces of Koli settlements. Kolis are then denied access to fishing activities on grounds of "sanitation" and "aesthetics."

Coastal Regulations

Coastal regulation zones being changed to allow SEZ developments for economic benefits and affecting the fishing communities

source: engage 29

Anthropogenic Causes Storwater drainage network

____ roads with drains

Incapacitative human-made infrastructure -Short - term planning

hindustantimes

Monday Inc 12, 2020

discover india cities opinion world cricket entertainment election trending videos tech podcasts health auto •••

Home / Mumbal News / 14 years on, drainage system still unfinished.

2019

14 years on, drainage system still unfinished

Experts from the Mumbai Vikas Samiti, a group of retired engineers and experts say that the Brihanmumbai Municipal Corporation (BMC) must finish the project on a war footing to prevent the city from coming to a standstill annually.

MUMBA) Updated: (ut 03, 2019 07:14 IST

source: author based on MCGM 30

Impervious Urban built environment

flooding

Imperviousness of the socio-economic system

purce: author 31

Anthropogenic Causes Regional Planning framework

Inconsideration of climate change impact

Lack of planning framework

source: MMRDA 32

Anthropogenic Causes Development Pattern

Airport runway extension

BKC Complex reclaimation

Aarey colony- metrocar shed

Coastal road project

0 200

Anthropogenic Causes Development Pattern

Airport runway extension

BKC Complex reclaimation

Aarey colony- metrocar shed

Coastal road project

0 200

source: zoomearth 34

Flooding

source: author based on Climatecentraal; WRI; Agarwal, 2005

Socio-economic context Urban development

source: author based on MCGM 37

Socio-economic context Proposed plan for future growth

source: author based on MCGM 38

Socio-economic context Projected increase in urban population

POPULATION GROWTH IN MAJOR GLOBAL CITIES

■ 1960 ■ 1970 ■ 1980 ■ 1990 ■ 2000 ■ 2010 ■ 2020 ■ 2030 Projections for 2020 and 2030; Source: World Urbanisation Prospects 2018 by UN DESA

39 source: author based on MCGM; urbz; UN DESA

Socio-economic vulnerability

55% of the population in Mumbai are in Slums

Large proportion of this population is involved in informal economy

source: author based on MCGM; pkdas ; fieldtrip

Hypothesis

Infrastructure - Paradigm Shift

Port & Water infrastructure

Railway Infrastructure

TechnologicalInfrastructure

Ecological Infrastructure

Continuation of trajectory of development oriented around infrastructure with a shift of focus on ecological infrastructure and re-establishing the connection with ecology where society becomes a part of the nature rather than a separate entity.

| Research Question

To what extent could an alternate regional design and planning framework in Mumbai metropolitan region through **ecological infrastructure** provide a **climate resilient region** against **flooding**?

To what extent could an alternate regional design and planning framework in Mumbai metropolitan region through **ecological infrastructure** provide a **climate resilient region** against **flooding**?

| Sub- Research Questions

ecological infrastructure

- What are the current ecological infrastructures present in Mumbai Metropolitan Region that responds against flooding?
- What are the current ecological and social vulnerabilities in the MMR?

climate resilient region

- How to operationalise resilience through ecological infrastructure?
- What would be the critical strategies at a regional scale to provide the adaptive capacity for different types of flooding in the region?

flooding

- What are the other physical infrastructures (man-made) to provide capacity against flooding?
- What is the current planning framework to tackle climate change and flooding?

ECOLOGICAL CORRDIOR

- 1 Increased percolation or recharging ground water
- 2 Increased storm water capacity- storage
- ③ Increased drainage
- 4 Buffering capacity-Delineate ecological buffers & urban fringes
- (5) High integration of ecology with existing built area
- 6 Support biodiversity
- 7 Improve liveability

Absorptive capacity

+

Storage capacity

+

Drainage capacity

ECOLOGICAL CORRDIOR **(1)**

1 - Increased percolation or recharging ground water Absorptive capacity

2 - Increased storm water capacity- storage Storage capacity

3 -Increased drainage Drainage capacity

(4) - Buffering capacity-Delineate ecological buffers & urban fringes

5 - High integration of ecology with existing built area

6 - Support biodiversity

7 - Improve liveability

COASTAL PROTECTION

Coastal Protection Flooding - Pluvial/Storms, and Coastal

- Barrier to flood water
- 2 Absorbs and filters sea water for use
- 3 Support biodiversity

Absorptive capacity Storage capacity

COASTAL PROTECTION

1 - Barrier to flood water

2 - Absorbs and filters sea water for use

3 - Support biodiversity

COASTAL PROTECTION

CAPILLARIES

- 1. Introduce/ increase storage capacity
- 2. Capacity to use flood water
- 3. Capacity to drain / direct to ecological corridors
- 4. Improve liveability

Absorptive capacity

Storage capacity

Drainage capacity

CAPILLARIES

1 - Introduce/ increase storage capacity

2 - Increase percolation

3 - Capacity to use flood water

4 - Capacity to drain / direct to ecological corridors

5 - Improve liveability

CAPILLARIES

VISION

The 3 Principles :Ecological Corrdior, Capillaries & Coastal Protection

REGIONAL VISION

Extrapolating the 3 Principles on the Region

REGIONAL VISION

Extrapolating the 3 Principles on the Region

Coastal Protection : responds to Coastal flooding

Introduction to 3 cases

source: zoomearth 63

ource: zoomearth; author

64

source: zoomearth 6!

Source. Zoomearth

Airport - BKC Area
Exisitng Built & Natural system

source: zoomearth 67

Ecological Corrdior

Delineation

source: author; zoomearth 68

Ecological Corridor Design Interventions

Fish Ponds- Creating fish ponds for the local fishing community to continue seasonal fishing

Mangrove State Park - Develpment of a Mangove forest recreational park with mangroves and other species which would protect from floods and serve as a recreational park for locals & tourists

- **Urban forest** Introduction and intensification of forest areas in the city to provide a dense rich habitat to support
- biodiversity, increase rainfall percolation

Urban Farming - Combination of Urban farming in the built areas- integration of aqua culture or crop farming within the built structure through redevelopment/ reftrofitting

- Mangrove Habitat Preservation and intensification of Mangroves on the fringes of the banks of the river to provide natural flood barrier

Ecological Corridor Design Interventions

Phytoremediation- Preserving and regenerating to convert green areas/ vacant / unused plots into urban forest. Also this involves growing plants specifically for purifying

Green blue network - Combination of intervention with green or blue elements like green / blue roofs or green facades, addition of parks, permeable paving, increasing open green spaces or making room for water storage.

Water Network - Introduction of water or giving more space to water to be absorbed ,stored or drained. Creation of water channels, widening rivers , adding water square or reservoir.

Capillaries Design Interventions

Green Network - Possibilities of introducing green spaces on roofs and facades of buildings. It involves, permeable pavings, percentage reservation for green spaces, vacant plots to be turned into functional green spaces and

Water Network - Possibilities of increasing water storage capcity on roofs and facades of buildings. It requires collection of water ain large spaces like creation of lakes, raingardens or water squares.

Coastal protection Design Interventions

Sand dunes - Introducing sand dunes in parts of the coastline with recreational beaches and areas for fishing communities

Mangroves- Introducing mangroves for flood protection on the coastline areas where it doesn't obstruct fishing communities and could provide possibilities for variant fishing during high tides and provide flood protection

Looking at the micro scale

source: zoomearth 7

Looking at the micro scale

source: zoomearth; author

source: zoomearth; author 75

Looking at the micro scale

Capillaries

Capillaries

Ecological corridor

Ecological corridor

Urban metabolism Fishing

Urban metabolism Recreation & Tourism

Urban metabolism Construction

Spatial Experience

source: author based on image by urbz

Spatial Experience

Looking at macro-scale

Looking at macro-scale
Synergies

source: author; zoomearth 88

Looking at macro-scale
Synergies

source: author; zoomearth 89

Looking at macro-scale
Synergies

source: author; zoomearth 90

Saltpans & Creek area

Source: author, zoomeann

Urban Metabolism

Farming, fishing & Agro-/Eco-tourism

Fishing

Increased productivity due to preservation and regenration of mangroves which affects the biodiversity of the marine life

Mangroves provide protection from both floowding and sea level rise

Bike and pedestrian pathway

Pathway for biking and pedestrians for tourists and locals to connect with the rich ecological Mangroves and salt pans along the coast

Vocational Training & Research Centre

Centres to train local farmers to monitor soil productivity and grow appropriate crops conducive to the climate and productivity of the soil.

Local farmer's Market

Local market providing a platform for fishing ad agriculture farmers to sell their produce to the local community

Agriculture / Farmland

Preserving and extending agriculture area to improve productivity of land and provide flood protection

Fishing- employment generationFishing- service provision

--→ Tourism- service provision

--→ Farming- service provision

Tourism- employment generation

Farming- employment generation

Island City

Urban Metabolism

Urban Farming & rainwater harvesting

Planning framework

Municipal Corporation of Greater Mumbai Water Management Disaster Management Department Storm Water Drainage

Planning spatial strategies

TIMELINE

PLANNING INSTRUMENTS

Fiscal Instruments •

Informative Instruments •

Regulating Instruments •

Planning Approach

Governance structure

Planning of the Spatial strategies Steps involved

Timeline

Ecological Corridor

Timeline Coastal protection

Capillaries

Timeline Capillaries

PLANNING CAPILLARIES

Gradual transformation with community participation to match upto the ecological space index on the target decided by each ward / administrative unit for ESI

Adaptation is the key to a resilient MUMBAI

inrabbi Khandelwal 2020

eiusmod tempor incididunt ut labore et dolore magna alsqua. Quis ipsum suspendisse ultrices gravida. Risus commodo viverra maecenas accumsan lacus vel facilisis. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Quis iprum suspendisse ultrices gravida. Risus commodo viverra maecenas accumsan lacus vel facilisis. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do einsmod tempor incididunt ut labore et dolore magna aliqua. Quis ipsum suspendisse ultrices gravida. Risus commodo viverra maecenas accumsan lacus vel facilisis. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Quis ipsum suspendisse ultrices gravida. Risus commodo viverra maecenas accumsan lacus vel facilisis. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Quis ipsum suspendisse ultrices gravida. Risus commodo viverra maecenas accumsan lacus vel facilisis. Lorem ipsum

source: author; Mumbaimirror 103

PLANNING CORRIDORS

Planning approach Integrate Adaptation

Disaster Management Cycle

source: author based MCGM; Gudenrson & Holling, 2002

Governance structure -Adaptation Integrated approach

Municipal Corporation of Greater Mumbai

Governance structure -Adaptation

Governance structure -Adaptation

Governance structure Collaboration across Coastal Cities

Governance structure Global Collaboration

Conclusion & Discussion

- Confluence of Socio-economic system with ecology
- Transferability
- Ecological Space Index

- Adaptation and Collaboration is the key to tackle Climate Change
- Climate Literacy

Reflection

A Ray of Hope

Reflection

A Ray of Hope

Mitigation is not forgotten

Reflection

A Ray of Hope

Mitigation is not forgotten

Rethinking Scales

On a concluding note, the design and planning framework depicts the rethinking of scales necessary to tackle urban challenges in current times. Any action at one scale has a cascading effect on the others and the adaptive geographies would require an iterative process of spatio temporal rescaling to assess the impacts and implications of the strategies to deal with ClimateChange.

Fiscal Instruments

Regulating Instruments

Compulsory regulation

119

Codes and Standards

Bans

PUBLIC OPEN SPACE

Regulating Instruments

Limits

Other Mandatory Requirements

Monitoring & Auditing

Informative Instruments

Education

Information Campaigns

Performance Labelling

Labelling /Branding

Advisory Services & Capacity Building

Environmental Monitoring & Reporting

Access to Information/ Justice Rights

Stakeholders

Stakeholders

'The State'

Desired : promoters - support - collaborate

Why? Acceptance & sustainability

- effective implementation
- proper enforcement
- political acceptability
- ownership of decisions & outcomes

Increase recreational spaces

Budget of MCGM

334,410,000,000 INR

investment at RISK

Expenditure/ investment at risk

biodiversity

Improve image of

Mumbai city

Flood protection

'The Big Business'

Desired : support - collaborate - involve

Why? Economic efficiency

- cost saving
- broader benefits

Social cohesion & equity

• fostering corporate social responsibility

Economic investment at risk

Economic benefits

Economic benefits

Flood protection

FLOOD

Desired: inform - consult - aware - empower
Why? Capacity & Knowledge development

'The Citizens'

awareness raising

satisfaction

• information sharing

Social cohesion & equity

• building trust & confidence

Opportunity for economic growth

Improve liveability

Economic benefits

Social responsibility

Expenditure/ investment at risk

Flood protection

Improve biodiversity

source: author : SDG 124

Regional Vision in Development Adaptive Capacity

Socio-economic vulnerability

Figure 2: Map showing the Top 20 cities for exposed population under the future climate change and socioeconomic change scenario (Source: Nicholls et al (2007), OECD, Paris)

Rank	Country	Urban Agglomeration	Exposed Population Current	Exposed Population Future
1	INDIA	Kolkata (Calcutta)	1,929,000	14,014,000
2	INDIA	Mumbai (Bombay)	2,787,000	11,418,000
3	BANGLADESH	Dhaka	844,000	11,135,000
4	CHINA	Guangzhou	2,718,000	10,333,000
5	VIETNAM	Ho Chi Minh City	1,931,000	9,216,000
6	CHINA	Shanghai	2,353,000	5,451,000
7	THAILAND	Bangkok	907,000	5,138,000
8	MYANMAR	Rangoon	510,000	4,965,000
9	USA	Miami	2,003,000	4,795,000
10	VIETNAM	Hai Phòng	794,000	4,711,000
11	EGYPT	Alexandria	1,330,000	4,375,000
12	CHINA	Tianjin	956,000	3,790,000
13	BANGLADESH	Khulna	441,000	3,641,000
14	CHINA	Ningbo	299,000	3,305,000
15	NIGERIA	Lagos	357,000	3,229,000
16	CÔTE D'IVOIRE	Abidjan	519,000	3,110,000
17	USA	New York-Newark	1,540,000	2,931,000
18	BANGLADESH	Chittagong	255,000	2,866,000
19	JAPAN	Tokyo	1,110,000	2,521,000
20	INDONESIA	Jakarta	513,000	2,248,000

Table 1: Top 20 cities ranked in terms of population exposed to coastal flooding in the 2070s (including both climate change and socioeconomic change) and showing present-day exposure (Source: Nicholls et al (2007), OECD, Paris)

Figure 3: Map showing the Top 20 cities for exposed assets under the future climate change and socioeconomic change scenario (Source: Nicholls et al (2007), OECD, Paris)

Rank	Country	Urban Agglomeration	Exposed Assets Current (\$Billion)	Exposed Assets Future (\$Billion)
1	USA	Miami	416.29	3,513.04
2	CHINA	Guangzhou	84.17	3,357.72
3	USA	New York-Newark	320.20	2,147.35
4	INDIA	Kolkata (Calcutta)	31.99	1,961.44
5	CHINA	Shanghai	72.86	1,771.17
6	INDIA	Mumbai	46.20	1,598.05
7	CHINA	Tianjin	29.62	1,231.48
8	JAPAN	Tokyo	174.29	1,207.07
9	CHINA,	Hong Kong	35.94	1,163.89
10	THAILAND	Bangkok	38.72	1,117.54
11	CHINA	Ningbo	9.26	1,073.93
12	USA	New Orleans	233.69	1,013.45
13	JAPAN	Osaka-Kobe	215.62	968.96
14	NETHERLANDS	Amsterdam	128.33	843.70
15	NETHERLANDS	Rotterdam	114.89	825.68
16	VIETNAM	Ho Chi Minh City	26.86	652.82
17	JAPAN	Nagoya	109.22	623.42
18	CHINA	Qingdao	2.72	601.59
19	USA	Virginia Beach	84.64	581.69
20	EGYPT	Alexandria	28.46	563.28

Table 2: Top 20 cities ranked in terms of assets exposed to coastal flooding in the 2070s (including both climate change and socioeconomic change) and showing present-day exposure (Source: Nicholls et al (2007), OECD, Paris)

source: OECD 126