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Summary

In this thesis we study the Riesz transform and Hodge-Dirac operator on a complete Riemannian
manifold with Ricci curvature bounded from below. The motivation for this is the paper ‘Étude
des transformation de Riesz dans les variétés riemanniennes à courbure de Ricci minorée’ by
D. Bakry ([6]). In this paper, Bakry proves the boundedness of the Riesz transform acting on
k-forms under the assumption that the Ricci-curvature, as well as related quadratic forms, are
bounded from below. The analysis of this paper is one of two main goals in this thesis. In the
second part we extend the operators defined by Bakry beyond L2 to Lp-spaces for arbitrary
1 ≤ p <∞ and analyse the Hodge-Dirac operator Π = d + δ on Lp. For this, we will follow the
lines of the paper ‘Quadratic estimates and functional calculi of perturbed Dirac operators’ by A.
Axelsson, S. Keith and A. McIntosh ([4]) and also of the paper ‘Boundedness of Riesz transforms
for elliptic operators on abstract Wiener spaces’ by J.Maas and J.M.A.M van Neerven ([25]).

Before we turn to the analysis of the paper however, we first need to introduce some basic
theory of differential geometry and strongly continuous semigroups. We collect the necessary
definitions and results in these areas to create a basic understanding of these subjects. For a
more detailed discussion of these subjects one should look in the references made in chapters 2
and 3.

After the basic theory is discussed, we thoroughly discuss the paper of Bakry up to and
including the section on the Riesz transform on k-forms. We first start out by introducing the
Witten-Laplacian on smooth functions and 1-forms. These turn out to be self-adjoint on L2,
and via the spectral theory one can define the strongly continuous semigroups they generate.
The lower bound for the Ricci-curvature is used to get useful estimates for these semigroups.
Next, we define subordinated semigroups, the generators of which turn out to be useful in the
proof of the boundedness of the Riesz transform. The final tools needed are two estimates, one
of which is proved in a probabilistic manner, while the other is purely analytic. These tools
are then combined to prove the boundedness of the Riesz transform on functions. In the final
section we show that under minor adjustments, one can follow a similar approach in proving the
boundedness of the Riesz transform on k-forms. It is this result that is most important for the
remainder of the thesis.

We then present a general discussion of the theory of sectorial and bisectorial operators.
We give the definitions of such operators, and also introduce the concept of R-(bi)sectoriality.
We furthermore construct the H∞-functional calculus for sectorial and bisectorial operators,
which is based on the Dunford functional calculus. We will introduce the concept of a bounded
H∞-functional calculus and collect some results that we wish to use.

Finally, we extend the operators defined by Bakry only for smooth functions and k-forms to
Lp for 1 ≤ p <∞ and introduce the Hodge-Dirac operator Π = d + δ on Lp. We then show that
the Riesz transform on k-forms is also bounded on Lp for 1 < p < ∞. From this, we deduce
gradient bounds, which in turn imply the R-bisectoriality of the Hodge-Dirac operator. From
the R-bisectoriality we deduce that Π has a bounded H∞-functional calculus. We finish our
results by showing that this again implies the boundedness of the Riesz-transform.
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Chapter 1

Introduction

In this thesis we study the Riesz transform and Hodge-Dirac operator on a complete Riemannian
manifold M with Ricci curvature bounded from below. This gives us a natural way to divide the
thesis into two parts. In the first part we discuss the boundedness of the Riesz transform acting
on so called differential forms. For this, we analyse the paper ‘Étude des transformation de Riesz
dans les variétés riemanniennes à courbure de Ricci minorée’ by D. Bakry ([6]) in which this is
ultimately proved. In the second part we turn to the analysis of the Hodge-Dirac operator on
Lp(ΛTM) for 1 < p < ∞. We prove various properties such as the R-sectoriality and the fact
that it has a bounded H∞-functional calculus. These ideas are in light of the paper ‘Quadratic
estimates and functional calculi of perturbed Dirac operators’ by A. Axelsson, S. Keith and A.
McIntosh ([4]) and can also be found in the paper ‘Boundedness of Riesz transforms for elliptic
operators on abstract Wiener spaces’ by J.Maas and J.M.A.M van Neerven ([25]).

1.1 The Riesz transform

On Rn we can consider the Laplacian ∆ =
∑n

i=1
∂2

∂x2i
a priori defined on C∞0 (Rn). It can be

shown that ∆ is essentially self-adjoint on L2(Rn), from which it follows that its closure, again
denoted by ∆, is a self-adjoint operator on L2(Rn). One can also show that ∆ is a negative
operator, and consequently, we can define the operator (−∆)1/2 via the spectral theorem. The
Riesz transforms can now be defined as the operators Rif = ∂

∂xi
(−∆)−1/2f which map (−∆)1/2f

to ∂f
∂xi

. The boundedness of the Riesz transforms on Lp(Rn) then entails that these operators
are well-defined and bounded on Lp(Rn). This is equivalent to stating that there exist constants
c, C > 0 independent of f such that

c||
∆
f ||p ≤ ||(−∆)1/2f ||p ≤ C||

∆
f ||p.

In particular, this estimate implies that for 1 < p < ∞ the Riesz transforms are bounded on
Lp(Rn).

However, on an arbitrary complete Riemannian manifold M , this need not hold. As shown
in [6] it turns out that under the assumption that the Ricci curvature is bounded from below
the claim remains true. The Riesz transform on a complete Riemannian manifold has been the
subject of various other studies. In [3] Hardy spaces of differential forms are constructed to
study the Riesz transform on such forms. This is done in such a way that the Riesz transform is
automatically bounded on them. These constructions are made under the additional assumption
that the manifold satisfies the doubling property: If V (x, r) denotes the measure of the geodesic
ball B(x, r) with centre x and radius r, then there must exist a C > 0 such that for all x ∈ M

1



2 CHAPTER 1. INTRODUCTION

and all r > 0
V (x, 2r) ≤ CV (x, r).

This assumption simply means that if we double the radius of a ball, its volume increases at
most by some uniformly fixed factor.

In the process, the authors define the Hodge-Dirac operator d + d∗ on L2(ΛTM). Here,
ΛTM is the space of differential forms of any order and L2(ΛTM) denotes all square integrable
sections. In that case the Hodge-de Rham Laplacian is given as ∆ = (d + d∗)2 = dd∗ + d∗d.
The following result confirms the relation to the Riesz transform (d + d∗)∆−1/2 as mentioned
above. This is corollary 1.3 in [3].

Corollary 1.1.1. Assume that M has the doubling property. Then for all 1 ≤ p ≤ ∞, (d +
d∗)∆−1/2 is Hp(ΛTM) bounded. Consequently, it is H1(ΛTM)− L1(ΛTM) bounded.

However, in the same paper it is left open whether Hp(ΛTM) can be described in terms of
Lp(ΛTM) for some or all p ∈ (1,∞) \ {2}. The relation between Hp(ΛTM) and Lp(ΛTM) is
only given in the form of two inclusions, which can be found in corollary 1.2 in [3].

The topic of Hardy spaces is further studied in [2], which also fills a gap in [3]. Although in
this thesis we are not directly interested in Hardy spaces, it is closely related to our study and
it shows in which direction current research is heading.

1.2 Hodge-Dirac operator

We are also interested in the Hodge-Dirac operator d + d∗, which was already briefly mentioned
in the previous section. In [4] a study is caried out of Dirac type operators on a Hilbert space
H, of which the Hodge-Dirac operator on L2(ΛTM) is a special case. It is shown that one has
the orthogonal decomposition

L2(ΛTM) = N(d + d∗)⊕R(d)⊕R(d∗).

In this paper it is furthermore shown that d + d∗ is bisectorial in the sense that its spectrum is
contained in a double sector Σω and that it satisfies the resolvent bounds

||(I + τ(d + d∗))−1|| . |τ |
dist(τ,Σω)

.

for all τ ∈ C \ Σω. Here Σω = Σ+
ω ∪ (−Σ+

ω ), where Σ+
ω = {z ∈ C : z 6= 0, | arg z| < ω}.

Additionally, it is shown in theorem 2.10 that d + d∗ has a bounded holomorphic functional
calculus in L2(ΛTM). We aim to extend this study to the Hodge-Dirac operator on Lp(ΛTM)
for 1 < p <∞.

The idea to achieve this is inspired by [25] in which the boundedness of the Riesz transform
is proved in an arbitrary UMD space, where one considers the Malliavin derivative D rather
than the exterior derivative d. In this paper the Hodge-Dirac operator is considered in matrix
form on Lp ⊕Rp(D), where 1 < p <∞, defined as(

0 D∗

D 0

)
.

It is shown that the boundedness of the Riesz transform implies R-gradient bounds, which are
essentially off-diagonal estimates. These are then used to show that the Hodge-Dirac operator
is R-bisectorial. Under assumptions on the operator L = DD∗ it is shown that the Hodge-Dirac
operator has a bounded H∞-functional calculus, which in turn implies the boundedness of the
Riesz transform. This will be the path that we follow in chapter 6.
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1.3 Relating our work

In the papers that are discussed in this introduction, the Hodge-Dirac operator d + d∗ is only
defined for the Hilbert space L2(ΛTM). In [3] the Riesz transform is then extended to the space
Hp(ΛTM) for all 1 ≤ p ≤ ∞ as stated in theorem 5.11 of the paper. Instead of considering the
spaces Hp(ΛTM), we consider the spaces Lp(ΛTM) for 1 < p < ∞. Furthermore, we not only
consider the Riesz transform on Lp(ΛTM) for p ∈ (1,∞), but we also define the Hodge-Dirac
operator as a closed operator on Lp(ΛTM). This can be found in section 6.1.

Additionally, theorem 6.3.12 is a special case of the work done in [4] in the case where p = 2.
Although we restrict ourselves to a specific operator, we show that the results found for this
operator in [4] may be extended beyond the Hilbert space L2(ΛTM) to the spaces Lp(ΛTM)
for 1 < p <∞.

Finally, we consider the Witten Laplacian instead of the usual Hodge Laplacian, the differ-
ence being that we also consider a potential. We thus obtain results for the Hodge Laplacian as
a special case of the theorems presented in chapter 6.

This thesis is structured as follows: In chapter 2, we give an overview of the most important
objects concerning differential geometry. We introduce smooth manifolds and tangent vectors.
We then turn to differential forms and the exterior derivative d. We also define the Riemannian
metric and consequently also Riemannian manifolds. Following this, we discuss the covari-
ant derivative and curvature of a Riemannian manifold. We finish the chapter by introducing
the volume measure on a Riemannian manifold, from which we can define the divergence and
Laplace-Beltrami operator. Chapter 3 is devoted to strongly continuous semigroups of linear
operators. We give the standard definitions, and collect various results that we need in later
chapters.

In chapter 4 we analyse the paper [6] of Bakry. We go through the first five sections, working
out the various details which are typically left to reader. We finally end up with the boundedness
of the Riesz transforms on differential k-forms.

With this at hand, we can move on to the second part. Before we present our results, we
first introduce the concepts of sectorial and bisectorial operators in chapter 5. We go over R-
sectoriality and the H∞-functional calculus based on the Dunford functional calculus. In chapter
6 we then turn to the analysis of the Hodge-Dirac operator on Lp(ΛTM) for 1 < p < ∞. We
first extend the operators defined on L2 in chapter 4 to Lp and show that these turn out to
be consistent. We also show that the boundedness of the Riesz transform remains true. From
hereon we follow the lines of [25] as discussed above.
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Chapter 2

Differential geometry

In this chapter we will introduce the most important aspects of differential geometry. Our aim
is to give an intuitive understanding of the objects used wherever possible. We will also collect
various results which are either important for the general overview of the theory, or are of use to
us in later chapters. The first three sections follow the lines of [32]. The material in the fourth
section can be found in [21]. For the last section we used [14] and [30]. For a more intuitive
introduction to manifolds, we refer to [5].

We will start out by defining smooth manifolds and tangent vectors. Afterwards we will
concern ourselves with differential forms. Once we have these basic concepts, we will move
on to Riemannian metrics. Following this, we will have a look at the covariant derivative and
curvature of a manifold. We finish the discussion by introducing a volume measure, together
with the Laplace-Beltrami operator.

2.1 Manifolds and tangent vectors

Before we can make any progress, we will first need to define what we mean by a manifold. The
most simple definition is as follows:

Definition 2.1.1 (Manifold). Let (M,d) be a metric space. We call M a manifold if for all
x ∈ M there exists an open neighbourhood U of x and some integer n ≥ 0 such that U is
homeomorphic to Rn. Here we consider Rn with its usual Eucledian metric.

However, we will restrict our attention to those manifolds for which there exists a countable
base for the topology introduced by the metric. This definition corresponds to the one in [14].
This technical detail will be of importance if we are going to consider a volume measure on a
Riemannian manifold.

It turns out that the integer n ≥ 0 required in the definition is uniquely determined by the
point x ∈M . This follows from the fact that if n 6= m, then Rn and Rm are not homeomorphic.
If we can use the same n for the entire manifold, we will say that the manifold is n-dimensional.

Intuitively speaking, a manifold is nothing more than a metric space which looks locally like
Rn. A homeomorphism between a neighbourhood U of x ∈ M and Rn can be used to define
coordinates on the patch U ⊂M . We will now give some examples of manifolds.

Example 2.1.2. 1. The easiest example of a manifold is Rn itself with a metric which is
equivalent to the Eucledian metric. The equivalence of the metrics implies that the identity
is a homeomorphism on the whole space, thus for any x ∈ Rn we may take U = Rn together
with the identity as homeomorphism.

5



6 CHAPTER 2. DIFFERENTIAL GEOMETRY

2. Any open subset O of Rn with the induced metric is also a manifold. Indeed, for x ∈ O
we can find an open ball x ∈ B ⊂ O. As any open ball in Rn is homeomorphic to Rn the
claim now follows.

3. The unit circle S1 is a 1-dimensional manifold. For simplicity, we will consider S1 as a
subset in R2. First take x ∈ S1, x 6= (0, 1). Take U = S1 \{(0, 1)}. One can now construct
a homeomorphism from U to R×{−1} by mapping a point y ∈ U to the point on R×{−1}
where the line through y and (0, 1) intersects the line R × {−1}. This idea is sketched
in figure 2.1. From this construction we deduce the homeomorphism f : U → R given
by f(x, y) = 2x

1−y . If x = (0, 1), one can make a similar homeomorphism, now defined on

U = S1 \ {(0,−1)}. Note that this idea may also be applied to the sphere Sn for general
n ∈ N, where one should replace the line by a hyperplane.

Figure 2.1: Construction of a homeomorphism to show that S1 is a manifold.

2.1.1 Smooth manifolds

As a manifold M is a metric space, it is perfectly sensible to talk about continuous functions
f : M → R. However, unlike for functions on Rn, we cannot yet speak about the differentiability
of a function. A naive attempt to define what we mean by a function f on a manifold to be
differentiable, is to take a homeomorphism φ : U ⊂ M → Rn and say that f is differentiable
if f ◦ φ−1 : Rn → R is differentiable. However, we could also pick another homeomorphism
ψ : V ⊂M → Rn with U ∩ V 6= ∅. It is then not necessarily true that also f ◦ ψ−1 : Rn → R is
differentiable. The point is that on U ∩ V we may write

f ◦ ψ−1 = f ◦ φ−1 ◦ (φ ◦ ψ−1).

The differentiability thus carries over if we know that φ ◦ψ−1 is differentiable. This observation
lies at the heart of the definition of a smooth manifold, where smooth is understood to be C∞.
In the remainder of the discussion, unless otherwise stated, by differentiable we mean infinitely
differentiable.

Definition 2.1.3. Let U, V ⊂M and suppose that x : U → x(U) ⊂ Rn and y : V → y(V ) ⊂ Rn
are two homeomorphisms. We say that these maps are C∞-related if the maps

y ◦ x−1 : x(U ∩ V )→ y(U ∩ V )



2.1. MANIFOLDS AND TANGENT VECTORS 7

x ◦ y−1 : y(U ∩ V )→ x(U ∩ V )

are smooth maps.

A collection of mutually C∞-related homeomorphisms whose domains cover all of M is called
an atlas for M . An element (x, U) of an atlas is referred to as a chart or coordinate system.
The reason for this is that the map x, or better x−1, induces coordinate lines on the set U . We
call an atlas maximal if no further charts can be added which are C∞-related to all other charts
in the atlas. It is possible to show that any atlas for M is contained in a unique maximal atlas
for M . We are now able to define what we mean by a smooth manifold.

Definition 2.1.4 (Smooth manifold). A pair (M,A) is called a smooth manifold if A is a
maximal atlas for the manifold M .

Example 2.1.5. The sphere Sn with the maximal atlas generated by the homeomorphisms as
discussed in example 2.1.2 is smooth. Note that it suffices to check only for the charts discussed
that they are C∞-related. We show this for S1. Let U = S1 \ {(0, 1)} and V = S1 \ {(0,−1)}
with homeomorphism f : U → R and g : V → R given by f(x, y) = 2x

1−y and g(x, y) = 2x
1+y .

Then g−1(t) = ( 8t
2t2+8

, −2t2+8
2t2+8

). It follows that f ◦g−1(t) = 16t3

(t2+4)2
which is smooth on g(U∩V ) =

R \ {0}. The case g ◦ f−1 can be treated similarly.

We are now able to define differentiability of a function between two manifolds M and N .
We call a function f : M → N differentiable if for any pair of charts (x, U) for M and (y, V )
for N the map y ◦ f ◦ x−1 : Rn → Rm is differentiable. As all charts used are C∞-related,
this definition does not depend on the choice of chart. If f : M → R we can also identify the
derivative in a chart. Indeed, we may define

∂f

∂xi
(p) = Di(f ◦ x−1)(x(p)).

It turns out that in a chart one can (almost) forget that we are working on a manifold instead
of on Rn. Indeed, rules like the chain rule and product rule are still valid in a chart.

2.1.2 Tangent vectors

In this section we will introduce the concept of tangent vectors to a smooth manifold M . We
will follow an intuitive explanantion, but we warn the reader that this is not an easy concept
when following the precise treatment (see for example [32]). When we think of a manifold as
living in some higher dimensional Eucledian space, tangent vectors are indeed precisely what
they should be: tangent vectors to the surface formed by our manifold. Generally, these tan-
gent vectors point in the various directions that one could travel when ’walking’ on the manifold.

To be just a little more precise, there are two ways to define tangent vectors which are
intuitively understandable. First of all, we wish to attach to every point p ∈ M a so called
tangent space TpM , which contains all possible tangent vectors at the point p, and is a space of
the same dimension as the manifold at the point p. This means that tangent vectors at different
points come from different spaces, hence we cannot in general try to compare them, and do
arithmetic with them!

A first way now to define tangent vectors at a point p ∈ M , is to consider smooth curves
c : (−ε, ε) → M with c(0) = p. For a chart (x, U) we then call two curves c1 and c2 equivalent
if the maps x ◦ c1 and x ◦ c2 have the same derivative in 0. This defines an equivalence relation,
independent of the chart. We then define the tangent space at p to consist of all equivalence
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classes. The interpretation of this approach is that a tangent vector defined via a chart (x, U)
around p is the derivative of x ◦ c in the point 0. Tangent vectors thus become the ’speed’ of
curves in the manifold through the point p.

A second way, and also the most commonly used method for computations, is to think of
tangent vectors as directions in which we want to differentiate functions. For this, we say that a
linear operator l acting on the smooth functions is a derivation at p if l(fg) = f(p)l(g)+g(p)l(f).
We now define the tangent space at p to be the set of all linear derivations at the point p. It
turns out that this space has dimension equal to the manifold M at the point p, and is spanned
in a coordinate chart (x, U) by the operators ∂

∂x1
|p, . . . , ∂

∂xn |p.

In an abstract way we can put all tangent spaces together to form the tangent bundle
TM =

⊔
p∈M TpM , which can itself be made in a smooth manifold again. This means that we

can talk about smooth functions on TM , which we will refer to as sections. Such a smooth
section is called a vector field. We thus get a vector field by attaching to each point in M
a tangent vector from the corresponding tangent space, so that the tangent vectors vary in a
smooth way.

2.2 Differential k-forms

In this section we introduce differential k-forms, and the exterior derivative operator d acting
on such forms.

2.2.1 Differential of a function

The construction of the tangent bundle by pasting tangent spaces together can also be done with
different spaces. Instead of the tangent spaces, we could consider their duals (TpM)∗. These
can also be put together to form a bundle T ∗M . For a smooth function f : M → R, we define
the smooth section df of T ∗M by

df(p)(X) = X(f)

for all X ∈ TpM . We call df the differential of f . It is easy to see that in a coordinate chart
(x, U), the differentials dx1, . . . ,dxn form a basis for (TpM)∗. Consequently every section ω can
be uniquely represented in a chart as

ω(p) =

n∑
i=1

ωi(p)dx
i(p)

which we will write as

ω =

n∑
i=1

ωidx
i.

It holds that a section ω is smooth precisely when its coordinate functions ωi are smooth. For
the differential of a smooth function f we get the classical formula.

Theorem 2.2.1. If (x, U) is a chart for M and f : M → R is smooth, then on U

df =

n∑
i=1

∂f

∂xi
dxi.

The proof of such theorems often simply amount to applying both sides to an arbitrary
tangent vector and concluding that the result is the same. The above theorem is no exception!
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2.2.2 Alternating tensors and the wedge product

The differentials of functions defined above are examples of what we call 1-forms. Before we
define exactly what these, and k-forms in general, are, we first make a construction based on
an arbitrary vector space V of dimension n. We will then later apply this to the case where
V is a tangent space. Denote by T k(V ) the set of all multilinear maps from V k to R. Here
multilinear means that it is linear in each of its entries. Let Λk(V ) ⊂ T k(V ) be the subspace
consisting of all alternating elements of T k(V ). Note that we call such a map T alternating
if T (v1, . . . , vi, . . . , vj , . . . , vk) = 0 whenever vi = vj for some 1 ≤ i, j ≤ k. It holds that an
alternating map is also skew-symmetric, i.e.,

T (v1, . . . , vi, . . . , vj , . . . , vk) = −T (v1, . . . , vj , . . . , vi, . . . , vk).

For elements T ∈ T k(V ) and S ∈ T l(V ), we can define the tensor product T ⊗S ∈ T k+l(V )
by

T ⊗ S(v1, . . . , vk, vk+1, . . . , vk+l) = T (v1, . . . , vk)S(vk+1, . . . , vk+l).

However, for Λk(V ), this tensor product is not suitable, as the product is not necessarily al-
ternating again. We therefore need to find an alternative, which we will call the ’wedge product’.

In order to do this, denote by Sk the set of all permutations of the set {1, . . . , k}. For a
k-tuple (v1, . . . , vk) and σ ∈ Sk we denote

σ · (v1, . . . , vk) = (vσ(1), . . . , vσ(k)).

For an element T ∈ T k(V ) we can now define its alternation by

Alt T =
1

k!

∑
σ∈Sk

sgnσ · T ◦ σ

i.e., applied to a k-tuple (v1, . . . , vk) we get that

Alt T (v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgnσ · T (vσ(1), . . . , vσ(k)).

The alternation satisfies the following expected properties:

Proposition 2.2.2. 1. If T ∈ T k(V ), then Alt(T ) ∈ Λk(V ).

2. If ω ∈ Λk(V ), then Alt ω = ω.

3. If T ∈ T k(V ), then Alt(Alt(T )) = Alt(T ).

For an element ω ∈ Λk(V ) and η ∈ Λl(V ) we now define the wedge product ω ∧ η ∈ Λk+l(V )
by

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η).

Note that the wedge product satisfies the following properties:

Proposition 2.2.3. 1. ∧ is bilinear.

2. ∧ is anti-commutative, i.e., for ω ∈ Λk(V ) and η ∈ Λl(V ) we have that ω∧η = (−1)klη∧ω.

3. If ω ∈ Λk(V ), η ∈ Λl(V ) and θ ∈ Λm(V ) then

(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ).
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We will now try to find a basis for Λk(V ). Let v1, . . . , vn be a basis for V and denote by
φ1, . . . , φn the corresponding dual basis. It turns out that the following theorem holds:

Theorem 2.2.4. The set

{φi1 ∧ · · · ∧ φik : 1 ≤ i1 < · · · < ik ≤ n}

is a basis for Λk(V ), and consequently Λk(V ) has dimension

(
n
k

)
. Note that in particular

Λk(V ) = {0} for k > n.

Based on the above theorem, we often write I for a multi-index (i1, . . . , ik) where 1 ≤ i1 <
· · · < ik ≤ n and write φI for φi1 ∧ · · · ∧ φik . In that case any element ω ∈ Λk(V ) may be
uniquely expressed as ∑

I

ωIφI .

Finally, we call ΛV :=
⊕n

k=0 ΛkV the exterior algebra over V .

2.2.3 Differential k-forms

We will now apply the construction in the previous section to V = TpM . To each point of
the manifold we attach the space Λk(TpM). These can again be made in a bundle, similar to
the tangent bundle. We will denote this bundle by Λk(TM). A section of Λk(TM) is called a
k-form.

Note that in a coordinate chart (x, U) the 1-forms dx1 . . . ,dxn form the dual basis to
∂
∂x1

, . . . , ∂
∂xn . A k-form ω can thus be uniquely written as

ω =
∑

1≤i1<···<ik≤n
ωi1...ikdxi1 ∧ · · · ∧ dxik

which, using the convection that dxI stands for dxi1 ∧ · · · ∧ dxik , can be written as

ω =
∑
I

ωIdx
I .

For convenience we will set Λ0(TpM) = R, in which case the 0-forms are precisely the
C∞ functions on M . The wedge product with a function is then understood to simply mean
multiplication.

Remember that we defined the differential of a function f by df(X) = X(f). This is a
1-form, given in a chart (x, U) by

df =

n∑
j=1

∂f

∂xj
dxj .

If ω is a k-form, say

ω =
∑
I

ωIdx
I

we can define a (k + 1)-form dω, the differential of ω, as

dω =
∑
I

dωI ∧ dxI =
∑
I

n∑
j=1

∂ωI
∂xj

dxj ∧ dxI .

It turns out that this definition does not depend on the chosen chart, and that this operator d,
called the exterior derivative, is the unique extension of the differential on functions with the
following properties:
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Proposition 2.2.5. 1. d(ω1 + ω2) = dω1 + dω2.

2. If ω1 is a k-form, then

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2.

3. d(dω) = 0, i.e., d2 = 0.

We conclude the introduction of k-forms by defining the class C∞0 of smooth, compactly
supported k-forms. The k-forms as defined above are smooth by definition, as we assume them
to be smooth sections of Λk(TM). Note that this is equivalent to stating that its coefficients in
any given chart are smooth.

By the support of a k-form we mean the closure of the set of points on the manifold M where
ω is not identically 0, i.e.,

supp(ω) = {p ∈M : ω(p) 6≡ 0}.

We call ω compactly supported if its support is a compact set in M .

2.3 Riemannian manifolds

We will now turn to Riemannian manifolds, which essentially are smooth manifolds on which we
can speak about length. In order to do this, we need to have an inner product. In our case, by
an inner product we mean a symmetric, positive definite bilinear form (sesquilinear if we work
over C instead of R.) Note that an innerproduct on a vector space V is an element of T 2(V ).
For now, we will denote the inner product by 〈 , 〉.

Suppose that v1, . . . , vn is a basis for V , and denote by φ1, . . . , φn its dual basis. If we define
gij = 〈vi, vj〉 for all 1 ≤ i, j ≤ n, we can write

〈 , 〉 =

n∑
i,j=1

gijφi ⊗ φj .

Given an inner product, we define a norm in the usual way by setting ||v|| =
√
〈v, v〉.

Apart from speaking about length, an inner product also allows us to identify V with V ∗.
Indeed, by the Riesz-representation theorem, for any ω ∈ V ∗ there exists a unique w ∈ V such
that for all v ∈ V it holds that ω(v) = 〈w, v〉. Consequently, we can also define the inner product
of two elements of V ∗. In order to find an expression for this inner product, we first observe
that as G := (gij) is positive definite, it is in particular invertible, as all eigenvalues are greater
than 0. Hence we may write gij for the components of G−1, in which case we can write the
corresponding inner product on V ∗ as

〈 , 〉∗ =

n∑
i,j=1

gijvi ⊗ vj

where v1, . . . , vn is again the basis for V as before.

Observe that we can apply the above construction to V = TpM for any point p ∈ M . A
smooth selection of inner products at each point p ∈ M is called a Riemannian metric on M .
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A smooth manifold together with a Riemannian metric is called a Riemannian manifold. In a
coordinate chart (x, U) on M we can represent the Riemannian metric as

〈 , 〉 =
n∑

i,j=1

gijdx
i ⊗ dxj

where the gij are smooth functions, satisfy gij = gji by the symmetry of the inner product, and
det(gij) > 0 as the inner product is positive definite. As in the case before we can define the
inner product of two 1-forms by

〈 , 〉∗ =
n∑

i,j=1

gij
∂

∂xi
⊗ ∂

∂xj
.

We can also define the inner product between arbitrary k-forms. By linearity of the inner
product, it is sufficient to define the inner product between k-forms which are the wedge product
of 1-forms. Say ω = ω1 ∧ · · · ∧ ωk and η = η1 ∧ · · · ∧ ηk are such k-forms. We then define their
inner product as

〈ω, η〉 = det[(〈ωi, ηj〉∗)]

Using this innerproduct, we define the length of a k-form ω as |ω| =
√
〈ω, ω〉.

We finish the section by defining completeness for a Riemannian manifold. Although there
are various ways to characterise this, we will only give the one that we use in the future, and
that we can give without the need to introduce other objects. Proposition C.4.1 in [8] assures
that we can do this.

Definition 2.3.1 (Completeness). A smooth Riemannian manifold M is called complete if there
exists a sequence (hn)n of smooth compactly supported functions on M such that |dhn| ≤ 1

n for
all n ∈ N and limn→∞ hn = 1 pointwise.

2.4 Covariant derivative and curvature

In this section we will introduce the concept of covariant derivative, which is a way to differentiate
a vector field in the direction of some other vector field. Along with this, we will also define
the total covariant derivative. These objects can be defined for arbitrary smooth manifolds. In
the specific case of a Riemannian manifold, more can be said. Finally, we will give a concise
description of curvature of a Riemannian manifold.

2.4.1 Covariant derivative

The question of how one should define the derivative of a vector field is far from trivial. Indeed, as
we stressed earlier, comparing tangent vectors attached to different points is a priori impossible,
as they come from different spaces. It turns out that in general, there is no unique way to define
the derivative of a vector field in the direction of some other vector field such that it satisfies
the ’usual’ properties. Therefore, we have the following definition, where Γ(TM) stands for the
space of smooth sections in TM , i.e., the space of vector fields.

Definition 2.4.1 (Linear connection). A linear connection is a map

∆
: Γ(TM)× Γ(TM)→ Γ(TM)

written as (X,Y ) 7→
∆
XY , which satisfies the following properties:
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1.
∆
XY is linear over C∞ in X, i.e., for all f, g ∈ C∞

∆
fX1+gX2Y = f

∆
X1Y + g

∆
X2Y.

2.
∆
XY is linear over R in Y , i.e., for all a, b ∈ R

∆
X(aY1 + bY2) = a

∆
XY1 + b

∆
XY2.

3. For all f ∈ C∞,
∆

satisfies the following Leibniz rule

∆
X(fY ) = f

∆
XY + (Xf)Y.

∆
XY is called the covariant derivative of Y in the direction of X.

The following property of the covariant derivative is good to keep in mind:

Proposition 2.4.2. Suppose that
∆

is a linear connection on a manifold M , and that X,Y ∈
Γ(TM). Then

∆
XY |p depends only on values of Y in a neighbourhood of p and the value of X

at p.

When working with manifolds, we often restrict ourselves to a chart (x, U). Remember that
∂
∂x1

, . . . , ∂
∂xn forms a basis for the tangent space. Consequently,

∆
∂

∂xi

∂
∂xj

has a unique expression

in terms of this basis, which we will write as

∆
∂

∂xi

∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
.

This defines functions Γkij which are called the Christoffel symbols of
∆

in the given coordinate
chart.

In order to assure the existence of connections, let us give an example.

Example 2.4.3 (Euclidean connection). Consider Rn with its usual Eucledian metric, which is
obviously a manifold. Define a connection by

∆
X

 n∑
j=1

Y j ∂

∂xj

 =

n∑
j=1

(XY j)
∂

∂xj
.

What this connection does, is simply differentiating the coefficient functions in the direction of
X. For completeness, we will verify that this indeed defines a connection. First suppose that
f, g ∈ C∞. Then

∆
fX1+gX2Y =

n∑
j=1

fX1(Y j)
∂

∂xj
+ gX2(Y j)

∂

∂xj
= f

∆
X1Y + g

∆
X2Y.

In the same way we find for a, b ∈ R that

∆
X(aY1 + bY2) =

n∑
j=1

aX(Y j
1 )

∂

∂xj
+ bX(Y j

2 )
∂

∂xj
= a

∆
XY1 + b

∆
XY2

where we used the linearity of X. Finally, as X is a derivation we find for a function f ∈ C∞
that

∆
X(fY ) =

n∑
j=1

X(fY j)
∂

∂xj
=

n∑
j=1

fX(Y j)
∂

∂xj
+ Y jX(f)

∂

∂xj
= f

∆
XY + Y X(f).
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Finally, let us compute the Christoffel symbols for a coordinate chart (x, U). In that case
we find

∆
∂

∂xi

∂

∂xj
=

n∑
k=1

∂δjk
∂xi

∂

∂xk
= 0

where δjk denotes the Dirac-delta interpreted as a constant function on the chart (x, U). We
conclude that all Christoffel symbols are 0.

It turns out that having a linear connection is not a propery of special manifolds, as the
following proposition holds:

Proposition 2.4.4. Every smooth manifold admits a linear connection.

One can prove this by first showing that in a chart one can always find a linear connection,
and then paste those together in a suitable way using a partition of unity.

A linear connection on vector fields automatically induces a linear connection on all tensor
bundles under some assumptions as stated in lemma 4.6 in [21]. In particular, for the covariant
derivative of a function f in the direction of a vector field X we require that

∆
Xf = Xf.

Our main interest for this extended connection is that we can compute the covariant derivative
of k-forms. If ω is a k-form and X is a vector field, we have for vector fields Y1, . . . , Yk that

(
∆
Xω)(Y1, . . . , Yk) = X(ω(Y1, . . . , Yk))−

k∑
j=1

ω(Y1, . . . ,
∆
XYj , . . . , Yk).

This is formula (4.7) on page 54 of [21].

We will finish this section by defining the total covariant derivative. Although one can do this
for arbitrary tensor fields, we will restrict ourselves to k-forms, as these form the only instance
in which we will use it. Suppose that ω is a k-form. We define its total covariant derivative as
the map

∆
ω : Γ(TM)× (Γ(TM))k → C∞ by

∆
ω(X,Y1, . . . , Yk) =

∆
X(Y1, . . . , Yk).

Note that here we follow the convention as in [6] by using the first entry as the direction in
which we differentiate, while in [21] the last entry is used for this.

An important example of the use of the total covariant derivative is the Hessian of a function
f ∈ C∞0 (M), which is defined as

∆∆
f . Note that this definition makes sense as we can consider

a function as a 0-form. In proposition A.1.3 in the appendix it is shown that for vector fields
X,Y it holds that

∆∆
f(X,Y ) = X(Y f)− (

∆
XY )f.

2.4.2 Levi-Civita connection and normal coordinates

It may be clear from the definition of a connection as above that it is not uniquely defined for a
manifold. In the case of a Riemannian manifold, we can choose a unique connection with certain
properties, which we will call the Levi-Civita connection.
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First of all, we want our connection to be compatible with the Riemannian metric g. By this
we mean that for any vector fields X,Y, Z it must hold that

∆
X〈X,Y 〉 = 〈

∆
XY, Z〉+ 〈Y,

∆
XZ〉.

The other requirement is that the connection is symmetric, by which we mean that for vector
fields X and Y it must hold that

∆
XY −

∆
YX ≡ [X,Y ].

Here [X,Y ] = XY − Y X is the commutator of X and Y .
With these notions at hand, we get the following theorem.

Theorem 2.4.5 (Fundamental Lemma of Riemannian Geometry). Let (M, g) be a Rieman-
nian manifold. There exists a unique linear connection

∆
on M that is compatible with g and

symmetric.

This connection is referred to as the Levi-Civita connection. Unless otherwise stated, we will
always assume that a Riemannian manifold is equipped with this connection.

As a by-product of the proof of the above theorem, we also get a nice expression for the
Christoffel symbols of the Levi-Civita connection in a chart. It holds that

Γkij =
1

2

n∑
l=1

gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)

where (gij) is the matrix of the metric in the chart, and (gij) denotes its inverse.

We will finish this section by briefly mentioning so called normal coordinates, as we will use
them to derive certain identities. Normal coordinates are a special type of chart which can be
defined around any point p, which is called its centre. We will not go into any detail on these,
but simply state the most important properties.

Proposition 2.4.6 (Normal coordinates). For all p ∈ M there exists a chart (x, U) around p
with the following properties:

1. The coordinates of p are (0, . . . , 0).

2. The components of the metric at p are gij = δij.

3. The first partial derivatives of gij and the Christoffel symbols vanish at p.

Such a chart is referred to as normal coordinates around p.

2.4.3 Curvature

We can now finally consider the idea of curvature of a Riemannian manifold. Before we define
any quantities, let us first given an idea of how one can visualize curvature. For this, let M = S2,
which is a manifold as discussed in example 2.1.2(3). We can visualize M as the unit sphere in
R3. In that case we can see a tangent vector in TM as a vector in R3 which is attached to a
point in S2 ‘along tangent lines’.

Using the above visualization we will explain how one can see that the sphere is curved.
Suppose we start with the tangent vector (0, 0, 1) at the point (0, 1, 0). Suppose we ’carry’ this
tangent vector to the north pole (the point (0, 0, 1)) along the circle in the (y, z)-plane, so that
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it keeps pointing in the same direction on the manifold. We can do this by keeping the angle
between the tangent vector and the direction in which we travel constant. At the north pole,
this tangent vector has then become (0,−1, 0). If we now carry it in the same way to the point
(1, 0, 0) along the circle in the (x, z)-plane, we end up with the tangent vector (0,−1, 0) but now
at (1, 0, 0). Carrying it back to the point (0, 1, 0) along the circle in the (x, y) plane, we end up
with the tangent vector (1, 0, 0), which is different than the one we started with. This process
is sketched in figure 2.2 on page 16. We thus see that, although we assured that the tangent
vector kept pointing in the same direction with respect to the manifold, it still turned around
overall. The reason for this, is that the sphere is curved.

Figure 2.2: Visualization of curvature. We start on the right-hand side with a red tangent
vector point up and move it along the specified route, while keeping its angle with the direction
in which we travel constant. The fact that we end up with a different tangent vector when we
are back at the starting point is the result of the curvature of the sphere. (Source: https:

//en.wikipedia.org/wiki/Connection_(mathematics))

Let us now define some objects which help us identify curvature. It turns out that the
situation sketched above occurs because the second order covariant derivatives do not commute
in a satisfying way. On Rn the following commutativity relation holds

∆
X

∆
Y Z −

∆
Y

∆
XZ =

∆
[X,Y ]Z.

The above relation is referred to as the flatness criterion. This motivates the following definition.

Definition 2.4.7 (Riemann curvature endomorphism). We call the map R : Γ(TM)×Γ(TM)×
Γ(TM)→ Γ(TM) given by

R(X,Y )Z =
∆
X

∆
Y Z −

∆
Y

∆
XZ −

∆
[X,Y ]Z

the Riemann curvature endomorphism.

By repeatedly applying properties (1) and (3) of the linear connection as in definition 2.4.1
one can show that R is linear over C∞(M) in any of its variables.

Based on this curvature endomorphism, we can also define the Riemann curvature tensor
Rm : Γ(TM)× Γ(TM)× Γ(TM)× Γ(TM)→ C∞(TM) by

Rm(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉
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for vector fields X,Y, Z,W . As R is multilinear over C∞(M), it is easy to see that this also
holds for Rm. By theorem 2 in chapter 4 of [32] we then find that Rm is indeed a 4-tensor. By

duality we can deduce from this that R is in fact a

(
3
1

)
-tensor field. In a coordinate system

(x, U) we will write it as

R = R l
ijk dxi ⊗ dxj ⊗ dxk ⊗ ∂

∂xl

where the coefficients are defined by

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=

n∑
l=1

R l
ijk

∂

∂xl
.

In the same way we can also express Rm in coordinates giving that

Rm = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl

where Rijkl =
∑n

m=1 glmR
m

ijk by the duality via the metric g.

The whole point in defining this Riemann curvature tensor is the following theorem. We call
a Riemannian manifold flat if it is locally isometric to Eucledian space.

Theorem 2.4.8. A Riemannian manifold is flat if and only if its curvature tensor vanishes
identically.

We finish this section by defining one more object, the Ricci-curvature, which can be derived
from the Riemann curvature tensor. We will denote the Ricci curvature by Ric and it is a
2-tensor. If the components of the Riemann curvature tensor are given by Rijkl, then the
components of the Ricci curvature are given by

Ricij =

n∑
k=1

n∑
m=1

gkmRkijm.

A geometrical interpration of the Ricci-curvature can be found in [24]. In this paper it is
explained that one can interpret the Ricci curvature as an indication of how the a small volume
changes if we move it along a geodesic. What this actually gives us is that the Ricci curvature
somehow governs how a geodesic ball1 differs from a usual Eucledian ball of the same radius.

2.5 Volume measure and the Laplace-Beltrami operator

We finish the chapter by introducing some analysis on Riemannian manifolds. We will introduce
the volume measure, which then allows us to define the divergence of k-forms. This puts us
into the position to define the Laplace-Beltrami operator, which is the manifold version of the
standard Laplacian in Rn. On k-forms it is known as the Laplace-de Rham operator. Our
discussion follows the lines of chapter 3 in [14].

1A geodesic ball of radius r > 0 around p ∈ M is obtained by travelling along geodesics starting in p for a
distance r. Doing this in every direction gives us a geodesic ball. For a more detailed explanation, see p.76 in
[21].
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2.5.1 Volume measure

Let M be a smooth manifold and denote by B(M) the smallest σ-algebra generated by the open
sets in M . In a chart, we can use the identification with Rn and the Lebesgue measure there to
define a measure and speak about measurability. Indeed, let E ∈ B(M) be a Borel set and (x, U)
a chart. As U is open in M we find that E ∩ U is a Borel set in U . As x is a homeomorphism,
we find that x(U) is a Borel set in Rn and is thus Lebesgue measurable. This shows that we
can indeed use the Lebesgue measure on Rn to construct a measure on B(M), which is stated
in the following theorem, which is theorem 3.11 in [14].

Theorem 2.5.1 (Volume measure). Let (M, g) be a Riemannian manifold. There exists a
unique measure ν on M such that in any chart U it holds that

dν =
√

det gdλ

where g is the matrix belonging to the Riemannian metric and λ is the Lebesgue measure in U .

Furthermore, the measure ν is complete, ν(K) <∞ for any compact set K ⊂ M , ν(Ω) > 0
for any non-empty open set Ω ⊂M and ν is regular in the following sense: for any set A ∈M,

ν(A) = sup{ν(K) : K ⊂ A,K compact}

and

ν(A) = sup{ν(ω) : A ⊂ Ω,Ω open}.

The measure ν is called the (Riemannian) volume measure. In the future, we will often write
dx instead of ν, copying the convention in the case of the Lebesgue measure.

The above theorem is one of the reasons why we assumed a manifold to have a countable
base for the topology induced by the (topological) metric. Indeed, to prove the above theorem,
one uses the following lemma, which makes use of this countable base.

Lemma 2.5.2. For any manifold M there is a countable family of relatively compact charts
{Ui}i∈N such that M ⊂

⋃∞
i=1 Ui and every closure U i is contained in some other chart.

Remark 2.5.3. Note that this lemma also implies that the volume measure ν is σ-finite. Indeed,
each compact set has finite measure, and by the lemma we know that M is contained in a
countable union of compact sets.

2.5.2 Divergence and the Laplace-Beltrami operator

We will now consider the adjoint d∗ of the exterior derivative d with respect to the L2(dx) inner
product, which is given as ∫

M
〈ω, η〉 dx

for smooth, compactly supported k-forms ω and η. Here dx is as defined in the previous section.
Note that the divergence is given as div = −d∗. Before we can prove an existence result, we
will first need to define the Hodge-star operator. We will follow te lines of [30]. Remember that
in a chart (x, U), our volume form is written as

√
det gdλ, where λ denotes Lebesgue measure.

With the idea in mind that the Lebesgue measure should correspond to the top-order form
dx1 ∧ · · · ∧ dxn, we define the coefficients

e1...n =
√

det g.
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From this, we define the other coefficients as

ei1...in = sgn(σ)e1...n

where σ is the permutation given by σ(j) = ij for 1 ≤ j ≤ n, and sgn(σ) denotes its sign. We
will now define the Hodge dual, denoted by ∗.

Definition 2.5.4. Let ω be a k-form given in a chart (x, U) by

ω =
∑

1≤i1<···<ik≤n
ωi1...ikdxi1 ∧ · · · ∧ dxik .

We define its Hodge dual ∗ω as the (n− k)-form given by

∗ω =
∑

1≤j1<···<jn−k≤n
(∗ω)j1...jn−kdxj1 ∧ · · · ∧ dxjn−k

where
(∗ω)j1...jn−k =

∑
1≤i1<···<ik≤n

ei1...ikj1...jn−kω
i1...ik .

Here,

ωi1...ik =
∑

1≤r1,...,rk≤n
gi1r1 · · · gikrkωr1...rk .

It turns out that the Hodge dual allows us to write a useful expression for d∗, which we will
state as a lemma.

Lemma 2.5.5. Suppose that ω is a k-form such that ∗ω ∈ D(d). Then ω ∈ D(d∗) and

d∗ω = (−1)n(k+1)+1 ∗ d ∗ ω.

Note that in [30], d∗ is called the metric transpose, and is denoted by δ.

The above lemma is used in the existence part of the following theorem.

Theorem 2.5.6 (Divergence theorem). Let (M, g) be a Riemannian manifold and denote by dx
the Riemannian volume measure. For a smooth, compactly supported (k+1)-form ω, there exists
a unique compactly supported k-form η such that for all smooth, compactly supported k-forms φ
it holds that ∫

M
〈η, φ〉dx =

∫
M
〈ω,dφ〉dx.

We write η = d∗ω and call η the divergence of ω.

Proof. The uniqueness follows by the fact that if η′ is another candidate, then∫
M
〈η, φ〉dx =

∫
M
〈η′, φ〉dx

for all φ ∈ C∞0 (ΛkTM), from which it follows that η = η′.2

We will now prove existence. For this, let ω be a smooth compactly supported (k+ 1)-form.
Note that in a chart, ∗ only adds signs to the coefficients, and multiplies with coefficients of the
metric g, which are smooth. Hence, the coefficients of ∗ω are again smooth. Furthermore, it is

2One can think of this in the L2 sense, in which case the density of C∞0 gives us the result.
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obvious that the support of ∗ω is contained in the support of ω. Consequently, ∗ω is a smooth,
compactly supported (n − k − 1)-form, from which it follows that ∗ω ∈ D(d). Consequently,
by the previous lemma d∗ω exists and is given by d∗ω = ∗d∗ω. As d simply differentiates the
coefficients, we see that d∗ω also has smooth coefficients, and has support contained in that of
ω. Finally, applying ∗ again, we see that d∗ω = ∗d∗ω has compact support, and has smooth
coefficients in any chart. This gives us that d∗ω ∈ C∞0 (ΛkTM) as desired.

We will conclude this section by defining the Laplace-Beltrami operator as well as the
Laplace-de Rham operator. With the divergence at hand, we are ready to define the Laplace-
Beltrami operator. For a function f ∈ C∞0 (M) we define

∆f = div ◦ df = −d∗df

We wish to extend this definition to a C∞0 k-form ω. However, we cannot simply copy the
definition for functions. The reason for this is that d∗f = 0 for any f ∈ C∞0 . However, this is
not the case for our k-form ω. Keeping this in mind, we define

∆ω = −(d∗dω + dd∗ω) = −(d + d∗)2ω

This operator ∆ acting on k-forms is referred to as the Laplace-de Rham operator. Note that
in the above the second equality holds true because d2 = (d∗)2 = 0.



Chapter 3

Semigroups of linear operators

In this chapter we will discuss the theory of strongly continuous semigroups of linear operators.
Along with various definitions, we will also include some basic results which we will be using
later. Our discussion will follow the lines of chapter 7 in [26]. The results we collect will be
without proofs. Unless otherwise stated, the proofs (or references therefor) may be found in
[26].

3.1 Strongly continuous semigroups

Strongly continuous semigroups arise when we try to find a solution for the abstract Cauchy
problem given by {

u′(t) = Au(t) t ∈ [0, T ]

u(0) = u0 u0 ∈ X
(3.1)

where A is some linear operator defined on a domain D(A) contained in a Banach space X.
Here A need not be a bounded operator.

In order to give an idea of how we arrive at such problems, we consider the heat equation
on some open domain D ⊂ Rd given by

∂u
∂t (t, x) = ∆u(t, x) t ∈ [0, T ], x ∈ D
u(t, x) = 0 t ∈ [0, T ], x ∈ ∂D
u(0, x) = u0(x) x ∈ D

One way of trying to solve such a problem is using sepration of variables, in which we assume
that there exists a solution of the form u(t, x) = g(t)f(x). However, instead of trying to find a
function in t and x that satisfies the partial differential equation, we could also try to reduce
the problem to finding a certain function of t. However, such a function cannot simply take
real values, but should take values in for example Lp(D) in order to take into account the space
variable, where 1 ≤ p <∞. In this case we need to assume that u0 ∈ Lp(D).

In order to follow the above approach, we first need to define the (unbounded) operator ∆
on X = Lp(D) with domain D(∆) = W 2,p(D) ∩W 1,p

0 (D). Here W k,p(D) denotes the Sobolev
space of functions in Lp(D) of which the weak partial derivatives of order up to and including

k exist and are again in Lp(D). W k,p
0 (D) is then the closure of C∞0 (D) in W k,p(D). As the

boundary conditions are included in the defintion of the domain of ∆, the problem reduces to{
u′(t) = ∆u(t) t ∈ [0, T ]

u(0) = u0 u0 ∈ Lp(D)

21
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When looking at ordinary differential equations of such a form, one would naively suggest that
the solution is given by u(t) = et∆u0. However, the question is whether we can define et∆ in
a sensible way so that this indeed works. For operators on a finite dimensional linear space we
know that we can represent the operator as a matrix, for which we can define the exponential
via the Taylor expansion. In more general situation we need what we call strongly continuous
semigroups.

Definition 3.1.1. A family S = (S(t))t≥0 of bounded linear operators acting on a Banach space
X is called a strongly continuous semigroup if the following properties are satisfied:

1. S(0) = I.

2. S(t)S(s) = S(t+ s) for all t, s ≥ 0.

3. limt↓0 ||S(t)x− x|| = 0 for all x ∈ X.

The infinitesimal generator, or simply the generator, of S is the linear operator A with domain
D(A) defined by

D(A) = {x ∈ X : lim
t↓0

1

t
(S(t)x− x) exists in X}

Ax = lim
t↓0

1

t
(S(t)x− x), x ∈ D(A)

where the limit is considered to be in the norm of X.

If we consider the domain D(A), we always assume that it carries the graph norm. Observe
that it is again a Banach space. We furthermore note that if A generates the strongly continuous
semigroup (S(t))t≥0, then A − µ generates the strongly continuous semigroup (e−µtS(t))t≥0.
Indeed, properties (1) and (2) of the definition are clear. Part (3) follows from the estimate

||e−µtS(t)x− x|| ≤ e−µt||S(t)x− x||+ (e−µt − 1)||x||.

The fact that A− µ is the generator, with D(A− µ) = D(A) follows from∣∣∣∣∣∣∣∣1t (e−µtS(t)x− x)−Ax+ µx

∣∣∣∣∣∣∣∣
≤ e−µt

∣∣∣∣∣∣∣∣1t (S(t)x− x)−Ax
∣∣∣∣∣∣∣∣+ (e−µt − 1)||Ax||+

(
1

t
(e−µt − 1) + µ

)
||x||.

Here the last term indeed also goes to zero as −µ is the derivative of e−µt in t = 0.

Before we collect some basic properties, we first discuss some examples of strongly continuous
semigroups.

Example 3.1.2 (Translation semigroup). Let 1 ≤ p < ∞ and consider the translation group
on Lp(R) defined by

S(t)f(x) := f(x+ t), x ∈ R, t ≥ 0.

It is clear that S(t) is linear and that ||S(t)f ||p = ||f ||p. It is also obvious that S(0)f = f .
Furthermore, for t, s ≥ 0 we have that S(t)S(s)f(x) = S(t)f(x+s) = f(x+s+t) = S(t+s)f(x).
Finally, we will prove strong continuity. For this, first suppose that f ∈ C0(R). As f has
compact support, it is obvious that we can find a compact set E such that the support of S(t)f
is contained in E for all 0 ≤ t ≤ 1. As f is bounded and S(t)f → f almost everywhere, we find
by the dominated convergence theorem (E has finite measure) that limt↓0 S(t)f = f in Lp(R).
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Now pick g ∈ Lp(R) arbitrary and let ε > 0. Choose f ∈ C0(R) such that ||f − g||p ≤ ε. Finally,
pick δ > 0 such that ||S(t)f − f ||p ≤ ε for t ∈ [0, δ). For such t we have that

||S(t)g − g||p ≤ ||S(t)g − S(t)f ||p + ||S(t)f − f ||p + ||f − g||p
≤ 2||f − g||p + ||S(t)f − f ||p
≤ 3ε.

As ε > 0 is arbitrary, this shows that limt↓0 S(t)g = g in Lp(R), finishing the proof of the strong
continuity.

Now let A denote the generator of the translation semigroup. We will show that C1
0 (R) ⊂

D(A) and that Af = f ′ for f ∈ C1
0 (R). First note that as f ∈ C1

0 (R), f ′ ∈ C0(R), where the
support of f ′ is contained in that of f . Consequently, f ′ is bounded, say by some constant K.
Now take again the compact set E as above. By using the mean value theorem we get that∣∣∣∣1t (f(x+ t)− f(x))

∣∣∣∣ = |f ′(ξ)| ≤ K

where ξ ∈ (x, x+ t). Consequently, we may use the dominated convergence theorem to conclude
that

lim
t↓0

1

t
(f(x+ t)− f(x)) = f ′(x)

in Lp(R) as the convergence clearly is pointwise almost everywhere. This now proves the claim.

The following example can be found in [8].

Example 3.1.3 (Gaussian kernels). Define for t > 0 and x ∈ R the Gaussian kernel

pt(x) =
1

(4πt)1/2
e−x

2/4t

and set p0 = δ0, the dirac mass at 0. Let 1 < p < ∞. Define on Lp(Rn) the operators P0 = I
and for t > 0

Ptf(x) = f ∗ pt(x) =

∫
R
f(y)pt(x− y) dy.

Note that these operators are clearly linear. By Young’s inequality we find that ||Ptf ||p ≤
||f ||p||pt||1 = ||f ||p, as pt is the density of a normal distribution with mean 0 and variance 2t.
Hence the operators are bounded. Furthermore, we have by definition that P0 = I. Now note
that pt is a Schwarz function and that its Fourier transform is given by p̂t(ξ) = e−4tπ2ξ2 . As the
Fourier transform is invertible on Schwarz functions we find for all t, s ≥ 0 that

pt ∗ ps = F−1(e−4tπ2ξ2e−4sπ2ξ2) = F−1(e−4(t+s)π2ξ2) = pt+s.

From this we deduce that

PtPsf = pt ∗ ps ∗ f = pt+s ∗ f = Pt+sf.

Finally, we prove strong continuity. For this, first suppose that f is a Schwarz function. Observe
that for any t ≥ 0

S(t)f − f = F−1[(e−4tπ2ξ2 − 1)F(f)].

Consequently, by the dominated convergence theorem (if f is Schwarz, then so is F(f))

lim
t↓0

S(t)f − f = F−1[lim
t↓0

(e−4tπ2ξ2 − 1)F(f)] = 0



24 CHAPTER 3. SEMIGROUPS OF LINEAR OPERATORS

where the convergence is in Lp(R). A similar denisty argument as in the previous example gives
the strong continuity for all f ∈ Lp(R).

Now denote the generator of the semigroup on L2(R) by A. We will show that C2
0 (R) is

contained in the domain of the generator, and that for such f we have Af = ∆f . By the
boundedness of the Fourier transform on L2(R) we find that

lim
t↓0

1

t
(S(t)f − f) = F−1

((
lim
t↓0

e−4tπ2ξ2 − 1

t

)
F(f)

)
= F−1

(
−ξ2F(f)

)
= ∆f.

Here the right-hand side limit in the first line can be seen to holds in L2(R) by using the
mean-value theorem and dominated convergence.

It is now routine to show that C2
0 (R) is also contained in the domain of the generator if we

consider the semigroup on Lp(R) for general 1 < p < ∞. We go over this in detail for a more
difficult setting in section 6.2.1.

We now collect some basic properties of strongly continuous semigroups. The proofs can be
found in [26].

Proposition 3.1.4. Let S be a strongly continuous semigroup on a Banach space X. There
exist constants M ≥ 1 and ω ∈ R such that ||S(t)|| ≤Meωt for all t ≥ 0.

Proposition 3.1.5. Let S be a strongly continuous semigroup on a Banach space X with gen-
erator A. The following properties hold:

1. For all x ∈ X the orbit t 7→ S(t)x is continuous for t ≥ 0.

2. For all x ∈ D(A) and t ≥ 0 we have S(t)x ∈ D(A) and AS(t)x = S(t)Ax.

3. For all x ∈ X we have
∫ t

0 S(s)xds ∈ D(A) and

A

∫ t

0
S(s)xds = S(t)x− x

If x ∈ D(A), then both sides are equal to
∫ t

0 S(s)Axds.

4. The generator A is a closed and densely defined operator.

5. For all x ∈ D(A) the orbit t 7→ S(t)x is continuously differentiable for t ≥ 0 and

d

dt
S(t)x = AS(t)x = S(t)Ax, t ≥ 0

The above properties suggest that the strongly continuous semigroup generated by the op-
erator A is indeed the object to construct a solution of problem (3.1). The following will make
this precise.

Definition 3.1.6. A classical solution of problem (3.1) is a continuous function u : [0, T ]→ X
which belongs to C1((0, T ];X)∩C((0, T ];D(A)) and satisfies u(0) = x and u′(t) = Au(t) for all
t ∈ [0, T ].

Corollary 3.1.7. For initial values x ∈ D(A) the problem (3.1) has a unique classical solution
which is given by u(t) = S(t)x.

This corollary tells us that we can think of a semigroup as evolving the initial value over
time guided by the differential equation.
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3.1.1 Strong equals weak

The continuity of a semigroup is considered in the strong sense. It turns out that this is in fact
equivalent to weak continuity. The following is proposition 1.23 from [9].

Proposition 3.1.8. If S is a semigroup on a Banach space X, i.e., S satisfies (1) and (2) in
definition 3.1.1, then it also satisfies (3) if and only if

w − lim
t↓0

S(t)x = x

for all x ∈ X. Here w − lim stands for the weak limit.

The same also holds for the generator A of a semigroup S. The following result is theorem
1.3 in [27]

Theorem 3.1.9. Let S be a strongly continuous semigroup on a Banach space X with generator
A. Define the operator Ā by

D(Ā) = {x ∈ X : w − lim
t↓0

1

t
(S(t)x− x) exists in X}

Āx = w − lim
t↓0

1

t
(S(t)x− x)

for x ∈ D(Ā). Then A = Ā.

3.1.2 Analytic semigroups

We will finish this section by introducing analytic semigroups on a Banach space X. Denote by
Σω a sector of angle ω in the complex plane, i.e.,

Σω = {z ∈ C : z 6= 0, | arg(z)| < ω}.

We call a strongly continuous semigroup S(t) on X analytic if there exists a ω ∈ (0, π2 ) such
that the following properties hold:

1. The mapping t 7→ S(t) can be extended to Σω such that for all z, w ∈ Σω it holds that
S(z)S(w) = S(z + w) and the mapping z 7→ S(z)x is continuous for all x ∈ X.

2. For all z ∈ Σω \ {0} the mapping z 7→ S(z) is analytic in the operator norm.

Later, in chapter 6 we will see sufficient conditions for an operator to generate a strongly
continuous analytic semigroup.

3.2 Resolvents and the Hille-Yosida theorem

In this section we will introduce the resolvent set of an operator, and collect a useful expression
for resolvent operators in terms of a Laplace transform. We will finish the section by stating the
Hille-Yosida theorem, which we will need in the future.

Definition 3.2.1. Let T be a linear operator with domain D(T ) on a complex Banach space X.
The resolvent set of T is the set ρ(T ) consisting of all λ ∈ C for which there exists a (necessarily
unique) bounded linear operator R(λ, T ) on X such that
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1. R(λ, T )(λ− T )x = x for all x ∈ D(T ).

2. R(λ, T )x ∈ D(T ) and (λ− T )R(λ, T )x = x for all x ∈ X.

The spectrum of T is the complement σ(T ) := C \ ρ(T ).

We call R(λ, T ) the resolvent of T at λ, which we may also write as (λ−T )−1. The following
proposition allows us to express the resolvent of the generator of a semigroup in terms of the
semigroup. The proof can again be found in [26].

Proposition 3.2.2. Let A be the generator of a strongly continuous semigroup on a Banach
space X. Let M ≥ 1 and ω ∈ R be such that ||S(t)|| ≤Meωt for all t ≥ 0. Then {λ ∈ C : Reλ >
ω} ⊂ ρ(A) and on this set the resolvent of A is given by

R(λ,A)x =

∫ ∞
0

e−λtS(t)x dt, x ∈ X.

Consequently, for Reλ > ω we have that

||R(λ,A)|| ≤ M

Reλ− ω
.

We will now state the Hille-Yosida theorem for contraction semigroups. An operator T on a
Banach X space is called a contraction if ||Tx|| ≤ ||x|| for all x ∈ X.

Theorem 3.2.3 (Hille-Yosida). Let A be a closed and densely defined linear operator on a
Banach space X. The following assertions are equivalent:

1. A generates a strongly continuous semigroup of contractions on X.

2. {λ ∈ C : Reλ > 0} ⊂ ρ(A) and

||R(λ,A)|| ≤ 1

Reλ
, Reλ > 0.

3.3 Markovian semigroups

We finish this chapter with a short discussion of Markovian semigroups. The definitions and
results are taken from [8].

Markovian semigroups cannot be defined on arbitrary Banach spaces. Instead, we assume
that we have a measurable space (Ω,F), which can be thought of as the state space. Before we
can define Markovian semigroups, we first need the notion of invariant measure.

Definition 3.3.1 (Invariant measure). Let P = (Pt)t≥0 be a family of operators acting on the
measurable functions of some measure space (Ω,F). A σ-finite measure µ is said to be invariant
for P if for every bounded positive measurable function f and for all t ≥ 0 it holds that∫

Ω
Ptf dµ =

∫
Ω
f dµ.

where we allow both sides to be infinite.

We are now able to define a Markovian semigroup as follows:

Definition 3.3.2 (Markovian semigroup). A family P = (Pt)t≥0 defined on the measurable
functions on a state space (Ω,F) with invariant σ-finite measure µ is called a Markovian semi-
group if it satisfies the following properties:



3.3. MARKOVIAN SEMIGROUPS 27

1. P is a strongly continuous semigroup on L2(dµ).

2. For all t ≥ 0, Pt maps bounded measurable functions on (Ω,F) to bounded measurable
functions.

3. Pt1 = 1, where 1 is understood to be the constant function.

4. If f ≥ 0, then Ptf ≥ 0.

Property 5 is referred to as mass conservation, whereas propery 6 says that the semigroup
is positivity preserving. It are these two properties that make the semigroup into a Markovian
semigroup. It turns out that a Markovian semigroup defines a semigroup of contractions on
L2(µ).

One can associate to a Markovian semigroup (Pt)t≥0 a Markov process Xt. For x ∈ Ω, we
will denote by Px the law of Xx

t , which is the process that starts almost surely in x. If we write
Ex for the expectation under Px, we have for any f ∈ L2(dµ) that

Ptf(x) = Ex(f(Xt)).

Notice that this defines a Markovian semigroup. Indeed, P0f(x) = Ex(f(X0)) = f(x) as
X0 = x almost surely. Furthermore, for t, s ≥ 0

Pt+sf(x) = Ex(f(Xt+s)) = Ex(Ex(f(Xt+s)|Ft))
= Ex(Ex(f(Xt+s)|Xt))

= Ex(Psf(Xt))

= PtPsf(x)

where we used the Markov property in the second line. The third line follows from the fact
that by the Markov property Ex(f(Xt+s)|Xt) = E(f(Xt+s|Xt) and the fact that Xt+s|Xt = y
and Xs|X0 = y have the same distribution for any y ∈M as (Xt)t is a Markov process. Strong
continuity now follows from the fact that f(Xx

t ) goes to f(x) almost surely and the dominated
convergence theorem. This last theorem may be applied as ||Ptf ||2 ≤ ||f ||2, as conditional ex-
pectation is contractive by Jensen’s inequality. Now suppose that f is bounded, say |f | ≤ M
almost surely, then Ex(f(Xt)) ≤ Ex(M) = M . Similarly, it is easy to see that Ex(1) = 1, and
Ex(f(Xt)) ≥ 0 when f ≥ 0.

To conclude this section, we finish example 3.1.3 in the sense that we will show that the
semigroup is mass conserving and positivity preserving.

Example 3.3.3 (Addition to the Gaussian kernels). Let (Pt)t be the semigroup as in example
3.1.3. We will first show that it conserves mass. Indeed,

Pt1(x) =

∫
R
pt(x− y) dy = 1

as pt is a probability distribution on R.
Furthermore, if f ≥ 0, then f(·)pt(y − ·) ≥ 0 for any y ∈ R. Consequently, we find that

Ptf = pt ∗ f ≥ 0, which shows that the semigroup is positivity preserving. All in all, we find
that (Pt)t is Markovian.

This should not be much of a surprise. We already observed that pt is the probability density
of a normal distribution with mean 0 and variance 2t. This indicates that the underlying Markov
process is nothing other than a multiple of standard Brownian Motion, which is well known to
indeed be generated by the Laplace operator.
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Chapter 4

Study of the paper of Bakry

In this chapter we analyse the paper ‘Étude des transformations de Riesz dans les variétés rie-
manniennes à de Ricci minorée’ by D. Bakry.” We will study sections 1 through 5, each of
which we discuss in a seperate section. We will go through the proofs in detail, verifying all
claims made. We are mainly interested in the results concerning the boundedness of the Riesz
transform, which are theorems 4.1 and 5.1 in [6]. It is nevertheless worthwile to have a detailed
look into how these theorems are proved as plenty of useful techniques and theories are used.

Before we get to the theory, let us first set the scene and introduce the notation which we
will use. For consistency, we will follow the notation in [6] as much as possible.

First of all, let M be a smooth complete Riemannian manifold of dimension n with a metric
g. We will represent the Riemannian metric on either forms or tangent vectors by ·, i.e., if ε, ω
are two 1-forms for example, we write their inner product as ε · ω. The length of an element ω
is denoted by |ω| and is defined in the usual way by |ω| = (ω · ω)1/2. We furthermore assume
that M is equipped with the Levi-Civita connection.

Let us now pick a function ρ ∈ C∞(M), ρ > 0 and let dx denote the Riemannian volume
measure on M . We can then define the measure dm(x) = ρ(x)dx. If ρ ∈ L1(dx), we will always
assume that m(M) = 1. Furthermore, we will denote Lp(m) by Lp and consequently also write

|| · ||p for || · ||Lp(m). Also, we define
−→
L p to be the closure of the space of all 1-forms in C∞0 (M)

with respect to the norm ||ω||p := |||ω|||p.
For simplicity we will define 〈f〉 :=

∫
M fdm, in which case the inner product on L2 is given

by 〈f, g〉 = 〈fg〉, and on
−→
L 2 it is given by 〈ω, ε〉 = 〈ω · ε〉.

We now define an operator L acting on C∞, given by

Lf = ∆f + df · d log ρ.

Here ∆ is the Laplace-Beltrami operator as discussed in section 2.5. Finally, we let R be the
tensor Ric −

∆∆
log ρ, where Ric is the Ricci-curvature tensor and

∆∆
log ρ is the Hessian of

log ρ as discussed on page 14. The main assumption in the paper is that this tensor is bounded
from below in the sense that there exists a constant r0 such that R(X,X) ≥ r0|X|2 for all
tangent vectors X.

Throughout this chapter, the operators are all considered on C∞0 functions or forms re-
spectively. In chapter 6 we will discuss how the operators can be extended to Lp for general
p ∈ (1,∞). We will then also show that these operators are all consistent at least on C∞0 . This
also means that whenever we talk about forms in this chapter, we mean them to be C∞0 , unless
otherwise stated.

29
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4.1 Generalities

In this section we take a look at the first section of [6]. This section is mainly concerned with

the analysis of the operato L on L2 as well as the related operator
−→
L on

−→
L 2 which we will

defined shortly. We will prove that these operators are essentially self-adjoint when defined on
C∞0 , allowing us to define the strongly continuous semigroups generated by their closures in L2

and
−→
L 2 respectively via the spectral theorem.

Before we can prove essential self-adjointness of either of the operators, let us first recall our
definition of completeness of a Riemannian manifold.

Definition 4.1.1. A smooth Riemannian manifold is complete if and only if there exists an
increasing sequence (hn)n of smooth compactly supported functions on M such that |

∆
hn| ≤ 1

n
for all n and limn→∞ hn = 1 pointwise.

Intermezzo: Second order elliptic operators on a manifold

Additionally, we need to know a little bit more about second order elliptic operators. Background
for the upcoming discussion can be found in [37].

Definition 4.1.2 (Second order differential operator). Let T be an operator acting on the
measurable functions on M . We say that T is a second order differential operator if for any
chart (x, U) there exist measurable functions aij , bi and c such that

Tf =

n∑
i,j=1

aij
∂2f

∂xi∂xj
+

n∑
i=1

∂f

∂xi
+ cf

Note that the definition really comes down to saying that (x−1)∗Tx∗ is a second order
differential operator on measurable functions on x(U) ⊂ Rn.1 Note that it in fact suffices to
check the above condition for a set of charts which cover M . Indeed, a coordinate transformation
is a diffeomorphism φ : U → V between open sets U, V ⊂ Rn. One can show by using the
chain rule that if S is a second order differential operator on measurable functions on U , then
(φ−1)∗Sφ∗ is a second order differential operator on measurable functions on V .

We can now define what we mean by an elliptic second order differential operator.

Definition 4.1.3 (Elliptic operator). Let T be a second order differential operator. We call T
elliptic if for any chart (x, U) the following holds: Writing

Tf =
2∑

i,j=1

aij
∂2f

∂xi∂xj
+

2∑
i=1

∂f

∂xi
+ cf

it must hold for all p ∈M and all ξ ∈ Rn that

n∑
i,j=1

aij(p)ξ
iξj ≥ 0.

We want to relate this property to a property what we will call hypo-ellipticity, which we
will define next.

1For a function ξ : M → N we denote by ξ∗ the pullback via ξ in that if g : N → R is a function on N , then
ξ∗g = g ◦ ξ.



4.1. GENERALITIES 31

Definition 4.1.4 (Hypo-ellipticity). A linear differential operator T acting on distributions on
some open subset U ⊂ Rn is called hypo-elliptic if for all distributions u with Tu ∈ C∞(U) it
holds that u ∈ C∞(U).

If T acts on distributions on a manifold M , we call T hypo-elliptic if for any chart (x, U) it
holds that (x−1)∗Tx∗ is hypo-elliptic on x(U).

Note in the case of a manifold, if T is hypo-elliptic and Tu is smooth, then u restricted to
any chart is smooth, and consequently, u ∈ C∞(M).

We wish to use the following theorem, which is theorem 2.1 on page 77 of [31].

Theorem 4.1.5 (Regularity). Let T be an elliptic second order differential operator with smooth
coefficients. Then T is hypo-elliptic.

The fact that the above also holds on a manifold follows from the fact that one can show
using the result in Rn

We will finish this intermezzo by showing that L is hypo-elliptic by using this theorem.

Lemma 4.1.6 (Hypo-ellipticity of L). The operator L is hypo-elliptic.

Proof. Let (x, U) be a chart. By the previous theorem it suffices to show that L is elliptic and
has smooth coefficients in U . In (x, U) L is given by

L =
n∑

i,j=1

gij
∂2

∂xi∂xj
+

n∑
i,j=1

(
1

ρ
gij

∂ρ

∂xi
+
∂gij

∂xi

)
∂

∂xj
.

As both ρ and the coefficients of the metric are smooth, we see that L has smooth coefficients.
Furthermore, as G = (gij) is positive definite, so is G−1, which concludes the proof that L
hypo-elliptic.

We are now ready to prove the following.

Proposition 4.1.7. The operator L, defined on C∞0 is essentially self-adjoint on L2. Further-
more, for all f, g ∈ C∞0 we have that

〈f, Lg〉 = 〈g, Lf〉 = −〈df,dg〉. (4.1)

Proof. We will start by showing that the given identity holds true. By the definition of L we
have that

〈Lf, g〉 =

∫
M
ρg∆f dx+

∫
M
ρgd(log ρ) · df dx

= −
∫
M

d(gρ) · df dx+

∫
M
gdρ · df dx.

Here we used that ρd(log ρ) = dρ and the fact that ∆ = −d∗d, where d∗ denotes the adjoint of
d. For this we also used that f, g ∈ C∞0 . As g, ρ are functions, we have that d(gρ) = gdρ+ ρdg.
Plugging this into the above shows that 〈Lf, g〉 = −〈df,dg〉. Interchanging the roles of f and g
shows that also 〈f, Lg〉 = −〈df, dg〉.

We will now show that L is essentially self-adjoint on L2. Note first that we can indeed
consider the adjoint L∗ of L, as C∞0 (the domain on which we consider L) is dense in L2.
Equation (4.1) shows us that 〈Lf, f〉 ≤ 0 for all f ∈ C∞0 . Under these conditions it holds that L
is essentially self-adjoint precisely when there exists a positive a > 0 which is not an eigenvalue
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of L∗ (see for example [29], p.136-137). We will in fact show that every a > 0 is not an eigenvalue
of L∗. So suppose that a > 0. Observe that (4.1) shows us that the adjoint of L coincides with
L on C∞0 functions. Hence, L∗ is an extension of L and as L is hypo-elliptic by lemma 4.1.6, we
find that if f satisties L∗f = af , it holds that f ∈ C∞. If g ∈ C∞0 we get that

0 ≤ a〈f2, g2〉 = 〈af, g2f〉 = 〈L∗f, g2f〉 = 〈f, L(g2f)〉 = −〈df, d(g2f)〉.

Here we used that f satisies L∗f = af , the fact that L∗ is the adjoint of L and (4.1). Now we
compute d(g2f) = g2df + fdg2 = g2df + 2fgdg. Inserting this in the above expression gives us
that

0 ≤ −〈df, g2df〉 − 2〈df, fgdg〉 = −〈g2, |df |2〉 − 2〈fg, df · dg〉.

This gives us that

〈g2, |df |2〉 ≤ −2〈fg, df · dg〉

≤ 2

∫
M
|fgdf · dg| m(dx)

≤ 2

∫
M
|fgdf ||dg| m(dx)

≤ 2||dg||∞
∫
M
|fgdf | m(dx)

≤ 2||dg||∞||f ||2||gdf ||2
= 2||dg||∞||f ||2〈g2, |df |2〉1/2.

Here the third and last inequality are simply Cauch-Schwarz (although for different inner prod-
ucts). We conclude that 〈g2, |df |2〉1/2 ≤ 2||dg||∞||f ||2.

Now, let (hn)n be a sequence as in definition 4.1.1. If we take g = hn in the above estimate,
we find that 〈h2

n, |df |2〉1/2 ≤ 2
n ||f ||2. Taking the limit n → ∞, the right hand side goes to

0, while the left hand side becomes |df |2. Hence we find that df = 0 and consequently, f is
constant on each component of M . However, it holds that 0 = Lf = L∗f = af and as a > 0, it
must be that f ≡ 0. (Although we only have that f ∈ C∞, we see that the proof of (4.1) still
holds when only one of the two function f and g has compact support.) This shows that a is
not an eigenvalue, hence L∗ has no positive eigenvalues, from which it follows that L defined on
C∞0 is essentialy self-adjoint in L2.

This proposition implies that L is closable in L2 and that its closure is given by L∗. We will
denote the closure of L by the same symbol, so that L is self-adjoint. Hence, we may write D(L)
for the domain of either L or the adjoint L∗. The proposition also implies that C∞0 is dense in
D(L∗) = D(L) in the graph norm given by ||f ||D(L) = ||f ||2 + ||Lf ||2 = ||f ||2 + ||L∗f ||2.

We will now show that formula (4.1) also holds when f, g ∈ C∞ ∩D(L). In order to do this,
we first prove a lemma.

Lemma 4.1.8. Let f ∈ C∞ ∩ D(L) and suppose that (fn)n is a sequence of C∞0 functions
converging to f in D(L).2 We have that

1. For all g ∈ C∞0 it holds that gf ∈ D(L) and (gfn)n converges to gf in D(L).

2. (dfn) converges to df in
−→
L 2.

2Such a sequence exists as C∞0 is dense in D(L).
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Proof. We first prove (1). As fn → f in D(L), we have that fn → f and Lfn → Lf in L2. As g
is bounded, it follows that gfn → gf in L2. It remains to prove that L(gfn)→ L(gf) in L2. We
show that (L(gfn))n is Cauchy in L2. We can compute that ∆(gfn) = g∆fn + 2dg · dfn + fn∆g
and d(gfn) = gdfn+fndg. Putting these together we get that L(gfn) = gLfn+2dg ·dfn+fnLg.
Again, as both g and Lg are bounded, we find that gLfn → gLf and fnLg → fLg both in L2,
and are thus in particular Cauchy. For the middle part, observe that

||dfn · dg − dfm · dg||2 ≤ ||dg||∞||d(fn − fm)||2

and also

||d(fn − fm)||22 = −〈fn − fm, L(fn − fm)〉 ≤ ||fn − fm||2||L(fn − fm)||2.

Here, the equality follows from formula (4.1), the estimate is simply Cauchy-Schwarz. As
(fn)n and (Lfn)n converge in L2, they are Cauchy. Putting the estimates together shows
that (dfn · dg)n is Cauchy. We conclude that L(gfn)n is Cauchy in L2. As L is closed, and
(gfn, L(gfn)) is a Cauchy sequence in the graph, we find that gf ∈ D(L) and gfn → gf in D(L).

We will now prove (2). The above estimate shows us that for f ∈ C∞0 we have that

||dfn − df ||22 ≤ ||fn − f ||2 · ||Lfn − Lf ||2 → 0

as fn → f in D(L). Now if f is only in C∞, we saw above that (dfn)n is Cauchy in
−→
L 2 and by

completeness it converges, say to some 1-form ω. Now pick g ∈ C∞0 . Then gfn ∈ C∞0 , and thus

d(gfn) → d(gf) = gdf + fdg in
−→
L 2 as gfn → gf in D(L) by (1). On the other hand, we find

that d(gfn) = gdfn + fndg → gω + fdg. As limits are unique, it must thus be that gω = gdf .
As this holds for all g ∈ C∞0 , we conclude that ω = df as desired.

With this lemma at hand, the following proposition is almost immediate.

Proposition 4.1.9. Let f, g ∈ C∞∩D(L). Then Lf = L∗f ∈ L2, df,dg ∈
−→
L 2 and (4.1) holds.

Proof. As L can also be defined on C∞ functions, the fact that L is essentially self-adjoint
implies that Lf = L∗f . As f ∈ D(L), we have by definition of the adjoint that L∗f ∈ L2, as it
is retrieved via the Riesz representation theorem. This proves the first claim.

Now let (fn)n be a sequence in C∞0 converging to f in D(L), and let (gn)n be a similar

sequence for g. By (2) of the previous lemma, we have that dfn → df and dgn → dg in
−→
L 2,

from which it follows that df,dg ∈
−→
L 2 by completeness.

Finally, observe that limn→∞〈fn, Lgn〉 = 〈f, Lg〉. Indeed

|〈f, Lg〉 − 〈fn, Lgn〉| ≤ |〈f − fn, Lg〉|+ |〈fn, Lg − Lgn〉|
≤ ||f − fn||2||Lg||2 + ||fn||2||Lg − Lgn||2

As Lg, fn ∈ L2 and fn → f, gn → g both in D(L), we see that the upper bound goes to 0. Using
this we find that

〈f, Lg〉 = lim
n→∞

〈fn, Lgn〉 = − lim
n→∞

〈dfn, dgn〉 = 〈df, dg〉

where we used (4.1) in the second equality.
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4.1.1 Heat semigroup Pt corresponding to L

As discussed above, we can consider L as a self-adjoint operator with domain D(L). By the
spectral theorem we may write L = −

∫∞
0 λdEλ, where (Eλ)λ is the spectral family belonging to

L. The integral starts at 0 as we know that L has no positive spectrum as L satisfies 〈Lf, f〉 ≤ 0
for all f ∈ D(L).

We now define the heat semi-group by Pt =
∫∞

0 e−tλdEλ with generator L. The correspond-
ing bilinear form given by Γ : (f, g) 7→ −〈f, Lg〉 satisfies Γ(f, f) ≥ 0 by (4.1). The extensive
discussion of generators of a semigroup in connection with such a bilinear form as done in [8]
gives us that Pt is a sub-Markovian semigroup in the sense that 0 ≤ Ptf ≤ 1 whenever 0 ≤ f ≤ 1.
However, as the curvature is bounded from below, we in fact get that the semigroup is Marko-
vian, meaning that in this case it actually holds that Pt1 = 1.

Furthermore, L is an elliptic operator, and for all f ∈ L2, the function f̄(x, t) = Ptf(x) solves
the parabolic equation ( d

dt − L)Ptf = 0 in the sense of distributions. By the general theory of
elliptic equations we then find that Ptf ∈ C∞(M × (0,∞)).

Probalistic interpretation of Pt

There is also a probabilistic interpretation of the semigroup Pt. As the semigroup is Markovian,
we can associate a Markov process Xt. For x ∈ M we denote by Px the law of Xx

t , i.e., the
process starting almost surely in x. In that case we can write Ptf(x) = Ex(f(Xt)), where Ex
denotes the expectation under Px.

Using this process, we can also form the Dynkin martingale

Mt = f(Xt)− f(X0)−
∫ t

0
Lf(Xs)ds

for f ∈ C∞0 . We will show that this is indeed a martingale. Let us denote by (Fs)s the natural
filtration of the process (Xt)t. We have that

E(Mt −Ms|Fs) = E
(
f(Xt)− f(Xs)−

∫ t

s
Lf(Xr)dr

∣∣Fs)
= Pt−sf(Xs)− f(Xs)−

∫ t

s
Pr−sLf(Xr)dr

= Pt−sf(Xs)− f(Xs)−
∫ t

s

d

dr
Pr−sf(Xr)dr

= Pt−sf(Xs)− f(Xs)− [Pr−sf(Xr)]
t
r=s

= 0.

Here we used in the first step that (Xt)t is Markov, hence the conditioning may be done only
on Xs and the process can be considered starting at time s. By definition of the semigroup Pt,
we then have that E(f(Xt)|Xs) = Pt−sf(Xs). The second part follows similarly after applying
Fubini’s theorem. Furthermore, f(Xs) is Fs measurable, so we can take it out of the conditional
expectation. The next step simply follows from the fact that L generates the semigroup (Pt)t.

Finally, we will show that m is a stationary distribution of the Markov process, as this will
be used later on. In fact, from proposition 4.1.7 we find for f ∈ C∞ and g ∈ C∞0 that∫

M
gLf dm(x) =

∫
M
fLg dm(x).
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If we take f = 1 in this expression, we find for all g ∈ C∞0 that∫
M
Lg dm(x) =

∫
M
gL(1) dm(x) = 0

which shows that m is stationary for L. Now note that as Pt is generated by L, we also have
the symmetry property for Pt. If we then again take f = 1 and remember that Pt1 = 1 we see
that the stationarity of m translates to∫

M
Ptg dm(x) =

∫
M
gPt1 dm(x) =

∫
M
g dm(x)

which is the form in which we will use it.

4.1.2 The case for 1-forms

We will now define and analyze the analogue of the operator L acting on 1-forms. We will
write d∗ for the the adjoint of the exterior derivative with respect to the inner product given by
〈ω, η〉 =

∫
M ω ·η dx. We define δ in the same way, only now with respect to the measure m(dx).

We will relate these two notions in the following proposition. Before we can state it however,
we first need to introduce what we mean by contraction on the first entry.

Definition 4.1.10 (Contraction on the first entry). Let ω be a k-form and suppose that X is
a tangent vector. We define ι(X)ω as the (k − 1)-form given by

ι(X)ω(Y1, . . . , Yk−1) = ω(X,Y1, . . . , Yk−1)

for tangent vectors Y1, . . . , Yk−1. We refer to ι as contraction on the first entry.

Proposition 4.1.11. If ω is a k-form, then

δω = d∗ω − ι((d log ρ)∗)ω

where d(log ρ)∗ is the tangent vector dual to the 1-form d(log ρ) and ι denotes contraction on
the first entry as defined above.

Proof. Suppose that ω is a k-form. We have for any (k − 1)-form ε that∫
M

(d∗ω − ι((d log ρ)∗)ω) · ερ dx =

∫
M

(ρε) · d∗ω − ι((d log ρ)∗)ω · (ρε) dx

=

∫
M

d(ρε) · ω − ι((d log ρ)∗)ω · (ρε) dx

=

∫
M

d(ρε) · ω − ι(ρ(d log ρ)∗)ω · ε dx

=

∫
M
ω · (ρdε+ dρ ∧ ε)− ι((dρ)∗)ω · ε dx

=

∫
M

(ω · dε)ρ dx

where we used that k-forms are linear over C∞ functions to arrive at the third line. The last
inequality follows from proposition A.1.10 in the appendix. From the uniqueness of δ the claim
now follows.
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Remark 4.1.12. In the case where ω is a 1-form, the identity derived in the previous proposition
reduces to

δω = d∗ω − ω · d(log ρ).

Indeed, by duality we find that

ι((d log ρ)∗)ω = ω((d log ρ)∗) = ω · (d log ρ).

Note that from proposition 2.5.6 it follows that d∗ω is a C∞0 (k−1)-form whenever ω is a C∞0
k-form. Consequently, by the above proposition this also holds for δ. Indeed, as ρ is smooth, it
follows that (dρ)∗ is a smooth vector field. The smoothness of ω now implies that ι((dρ)∗)ω is
a smooth (k − 1)-form.

Now that we have the divergence relative to the measure m(dx), we can define the operator
−→
L acting on C∞0 1-forms.

Definition 4.1.13. We define the operator
−→
L acting on C∞0 1-forms by

−→
Lω = −(dδ + δd)ω.

Remark 4.1.14. The operators L and
−→
L are related by dLf =

−→
Ldf for f ∈ C∞0 . Indeed, a

simple calculation shows us that

−→
Ldf = −(dδ + δd)df = −dδdf

= −d(d∗df − df · d log ρ)

= d(−d∗df + df · d log ρ)

= dLf.

In the next proposition, we will relate the operator
−→
L to the operators ∆ = −d∗d and−→

∆ = −(dd∗+ d∗d). Before stating the proposition, we introduce the following notation: for ω, ε
1-forms, we write

−→ω (ε) := d(ω · ε) + dε(ω∗, ·) and ωH(ε) =
∆
ε(ω∗, ·).3

For bilinear forms T on TM , we write
−→
T (ω) = T (ω∗, ·). Finally, for any p ∈ M we can

find an orthonormal frame e1, . . . , ed on some neighbourhood of p in which case we write that
|
∆
ω|2 =

∑d
i=1〈

∆
eiω,

∆
eiω〉.

Proposition 4.1.15. The following relations hold:

1.
−→
L =

−→
∆ +

−→
d (log ρ) = ∆ + d(log ρ)H −

−→
R .

2. For all 1-forms ω, L|ω|2 = 2ω ·
−→
Lω + 2|

∆
ω|2 + 2R(ω∗, ω∗).

Proof. We will first prove (1). For this, let ω be a 1-form. We have that

−→
Lω = −(dδ + δd)ω

= −(d(d∗ω − ωd(log ρ)))− (d∗dω − dω(d(log ρ)∗, ·))
= −(dd∗ + d∗d)ω + d(ω · d(log ρ)) + dω(d(log ρ)∗, ·)
=
−→
∆ω +

−→
d (log ρ)(ω).

3The H in this notation has to do with the horizontal lift as discussed briefly on page 39.
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For the second equality in (1), we use the Bochner-Lichnérowicz-Weitzenböck formula (see for

example [28]), which states that
−→
∆ = ∆ −

−→
Ric. By definition of R, we have that

−→
Ric =

−→
R +

−−→∆∆
(log ρ). Using the previous result, this gives us that

−→
L = ∆−

−→
R −

−−→∆∆
(log ρ) +

−→
d (log ρ).

Now for any function h ∈ C∞ we have that

d(dh · ω) =
∆
ω(·, dh∗) +

∆∆
h(·, ω∗) =

−−→∆∆
h(ω) +

∆
ω(dh∗, ·)− dω(dh∗, ·).

Here we used corollary A.1.2 and propositions A.1.4 and A.1.5 from the appendix. Using this
expression we get that

−→
dh(ω) = d(dh · ω) + dω(dh∗, ·) =

−−→∆∆
h(ω) +

∆
ω(dh∗, ·) = dhH(ω) +

−−→∆∆
h(ω).

If we now take h = log ρ, we get that

−→
L = ∆−

−→
R + d(log ρ)H

as desired.
For (2), observe that for a 1-form ω it holds by lemma A.1.9 that

∆|ω|2 = 2ω ·∆ω + 2|
∆
ω|2.

This gives us that

L|ω|2 = ∆|ω|2 + d|ω|2 · d(log ρ) = 2ω ·∆ω + 2|
∆
ω|2 + d|ω|2(d(log ρ)∗).

Now, for any 1-form ε,

d|ω|2(ε∗) = ε∗(|ω|2) = 2
∆
ω(ε∗, ω∗) = 2ω ·

∆
ω(ε∗, ·) = 2ω · εH(ω).

Here, the first equality is lemma A.1.1 from the appendix, and the second is the duality via the
metric. Applying this with ε = d(log ρ) and plugging this into the expression for L|ω|2 gives us
that

L|ω|2 = 2ω ·∆ω + 2|
∆
ω|2 + 2ω · d(log ρ)H(ω).

Applying the second identity from (1) now gives us that

L|ω|2 = 2ω ·
−→
Lω + 2|

∆
ω|2 + 2ω ·

−→
R (ω) = 2ω ·

−→
Lω + 2|

∆
ω|2 + 2R(ω∗, ω∗)

where the last equality holds again by the duality via the metrc.

We will now show that
−→
L is essentially self-adjoint on

−→
L 2. For this, we will first argue that−→

L is symmetric on C∞0 1-forms. Let ω, ε be smooth 1-forms with compact support. By the

definition of
−→
L and δ we find that

〈ω,
−→
Lε〉 = −〈ω, dδε〉 − 〈ω, δdε〉 = −〈δω, δε〉 − 〈dω,dε〉. (4.2)

Interchanging the roles of ω and ε gives us that 〈ω,
−→
Lε〉 = 〈

−→
Lω, ε〉. We are now ready to prove

that
−→
L defined on C∞0 is essentially self-adjoint on

−→
L 2. The prove is very similar to that of

proposition 4.1.7.

Proposition 4.1.16.
−→
L is essentially self-adjoint on

−→
L 2.
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Proof. For this proof, we will follow [34], p. 51-52. By equation (4.2) we find that 〈
−→
Lω, ω〉 ≤ 0

for any 1-form ω. Hence it again suffices to show that the adjoint
−→
L ∗ has no positive eigenvalues.

So let λ > 0 and suppose that ω ∈ C∞0 satisfies
−→
L ∗ω = λω. We will show that ω = 0. Pick

the sequence of functions (hn)n as in the proof of proposition 4.1.7. As
−→
Lω =

−→
L ∗ω, by formula

(4.2) we find

0 ≤ λ〈h2
n, ω

2〉 = 〈h2
nω, λω〉 = 〈h2

nω,
−→
Lω〉 = −〈d(h2

nω),dω〉 − 〈δ(h2
nω), δω〉.

Now we compute that d(h2
nω) = h2

ndω + 2hndhn ∧ ω. For the other term, we find by lemma
A.1.6 from the appendix that 〈δ(h2

nω), δω〉 = 〈h2
nδω, δω〉−2〈hndhn∧δω, ω〉. Plugging these into

the above expression gives us that

0 ≤ −〈h2
ndω,dω〉 − 〈h2

nδω, δω〉 − 2〈hndhn ∧ ω,dω〉+ 2〈hndhn ∧ δω, ω〉
= −〈h2

ndω,dω〉 − 〈h2
nδω, δω〉 − 2〈hndhn ∧ ω,dω〉+ 2〈ω, hnδωdhn〉

where in the second line we used that δω is a function.
But then we find that

〈h2
ndω,dω〉+ 〈h2

nδω, δω〉 ≤ −2〈hndhn ∧ ω,dω〉+ 2〈ω, hnδωdhn〉
≤ 2|〈hndhn ∧ ω,dω〉|+ 2|〈ω, hnδωdhn〉|
≤ 2〈|hn||dhn ∧ ω|, |dω|〉+ 2〈|ω|, |hn||δω||dhn|〉

where the last line is again simply the Cauchy-Schwarz inequality. Now observe that for general
1-forms ε and η it holds that |ε ∧ η| ≤ |ε||η|. Indeed, by definition of the inner product on
2-forms, |ε ∧ η|2 = |ε|2|η|2 − (ε · η)2 ≤ |ε|2|η|2, from which the claim follows.

Applying this to the above estimate, we get that

〈h2
ndω,dω〉+ 〈h2

nδω, δω〉 ≤ 2〈|hn||dhn||ω|, |dω|〉+ 2〈|ω|, |hn||δω||dhn|〉

≤ 2||dhn||∞
∫
M
|hn||ω|(|dω|+ |δω|) dx

≤ 2||dhn||∞||ω||2(||hndω||2 + ||hnδω||2)

where the last inequality again follows by Cauchy-Schwarz. We conclude that

||hndω||22 + ||hnδω||22 ≤ 2||dhn||∞||ω||2(||hndω||2 + ||hnδω||2)

from which it follows that4

||hndω||2 + ||hnδω||2 ≤ 4||dhn||∞||ω||2 =
4

n
||ω||2

as |dhn| ≤ 1
n . Taking the limit n → ∞ and recalling that hn ↑ 1, we can take the limit inside

the norm by the montone convergence theorem to find that ||dω||2 + ||δω||2 = 0. But then

dω = δω = 0, from which it follows that λω =
−→
Lω = −(δd + dδ)ω = 0, from which it follows

that ω = 0. We conclude that λ > 0 is not an eigenvalue of
−→
L ∗, from which it follows by an

earlier remark that
−→
L is essentially self-adjoint.

As
−→
L is essentially self-adjoint, we can find a spectral family

−→
E λ such that

−→
L = −

∫∞
0 λd

−→
E λ,

where the spectrum of
−→
L is again contained in (−∞, 0] by formula (4.2). We can thus again

define the heat semigroup
−→
P t =

∫∞
0 e−tλd

−→
E λ.

4Using the general fact that whenever x2 + y2 ≤ c(|x|+ |y|) , then |x|+ |y| ≤ 2c.
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Probabilistic interpretation of heat semigroup on 1-forms

In his paper, Bakry discusses the semigroup
−→
P t in a purely probabilistic manner. We will in-

clude this discussion here, and fill in details where possible, although we were not able to verify
all details due to lack of time.

As in the case for the heat semigroup Pt, we can also find a probabilistic interpretation for−→
P t. This interpretation will be used to prove some useful estimates. As 1-forms act on tangent
vectors, we need to make a more advanced construction than in the case of functions. For
explanations about the (orthonormal) frame bundle and horizontal lift, we refer to [16].

Let π : O(M)→M denote the orthonormal frame bundle, and let Hu : Tπ(u)M → TuO(M)
be the horizontal lift.5 A frame u = (u1, . . . , un) can be thought of as n tangent vectors form-
ing a basis for Tπ(u)M . If e1, . . . , en is the standard basis of Rn, we will take uj = u(ej).
From this, we can define vector fields on O(M) by setting Xi(u) = Hu(ui). If we define
U(u) = Hu((d log ρ)∗(π(u))) as the horizontal lift of the vector field (d log ρ)∗, we can con-
sider the ’horizontal’ operator LH =

∑n
i=1X

2
i + U . Observe that LH maps O(M) into O(M).

Let Ut be the Markov process generated by LH . Denote the law of Ut starting from u ∈ O(M)
by Pu. From the construction it follows that the process (π(Ut)) has law Pπ(u). Finally, we
remark that we can in general use the horizontal lift to define parallel transport. This allows us
to see Ut as an isometry from Tπ(U0)M to Tπ(Ut).

Let us now define
−→
R ∗ acting on the tangent bundle by

−→
R ∗(X) = R(X, ·)∗. We define the

process Vt taking values in the tangent bundle by

d

dt
U−1
t (Vt) = −U−1

t (
−→
R ∗(Vt))

with intial value V0 = V ∈ Tπ(U0)M . Using Îto’s formula, proposition 4.1.15(1) and integrate,
we get that

|Vt|2 = |V0|2 − 2

∫ t

0
R(Vs, Vs)ds

Using that R is bounded from below, we obtain the estimate

|Vt|2 ≤ |V0|2 − 2r0

∫ t

0
|Vs|2ds.

By a special instance of Grönwell’s theorem we get that

|Vt| ≤ e−r0t|V0|.

If we write Pv for the law of (Vt) under the condition that V0 = V almost surely, we can
define P̄t(ω)(v) = Ev(ω(Vt)) for any 1-form ω ∈ C∞0 . We can write

|P̄t(ω)(v)| ≤ Ev(|ω(Vt)|) ≤ Ev(|ω|(π(Vt))|Vt|)

≤ e−r0t|V |Eπ(v)(|ω|(π(Ut)) = e−r0t|V |Pt|ω|.

Here, the first estimate is getting the absolute value inside the expectation. The second is
Cauchy-Schwarz (after identification between ω and ω∗). Afterwards we applied the estimate

5In the book of Hsu, this map is defined in the other direction, but we will follow the notation as in Bakry.
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derived above. It follows that |P̄tω| ≤ e−r0tPt|ω|. Finally, note that we constructed P̄t so that
for all 1-forms ω with compact support it holds that

P̄tω = ω +

∫ t

0
P̄s
−→
Lωds

which shows that P̄t is precisely
−→
P t.

We finish this section with a proposition collecting the most important properties of
−→
P t

Proposition 4.1.17.
−→
P t satisfies the following properties:

1. |
−→
P tω| ≤ e−r0tPt|ω|.

2. ||
−→
P tω||p ≤ e−r0|1−2/p|t||ω||p, 1 ≤ p ≤ ∞.

3.
−→
P tdf = dPtf for f ∈ C∞0 .

4. If ω ∈ C∞0 , we have that
−→
P tω ∈ C∞(M × [0,∞)) and it holds that

d

dt

−→
P tω =

−→
L
−→
P tω =

−→
P t
−→
Lω.

Proof. The first part follows in the same way as above for P̄t. For the second part, observe that

part (1) gives us that ||
−→
P tω||1 ≤ e−r0t||ω||1 and ||

−→
P tω||∞ ≤ e−r0t||ω||∞. Furthermore, for p = 2

we already know that ||
−→
P tω||2 ≤ ||ω||2 (this follows from the probabilistic interpretation). Using

interpolation between p = 1 and p = 2, and also between p = 2 and p = ∞, we get the desired
estimate for the other p.

For part (3), first remember that
−→
Ldf = dLf . Now for all ω ∈ C∞0 we have

〈dPtf, ω〉 = 〈Ptf, δω〉 =

∫ ∞
0

e−λtd〈Eλf, δω〉.

On the other hand, we have that

〈
−→
P tdf, ω〉 = 〈df,

−→
P tω〉 =

∫ ∞
0

e−λtd〈
−→
E λω,df〉.

Finally, we observe that

〈Eλf, δω〉 = 〈dEλf, ω〉 = 〈
−→
E λdf, ω〉 = 〈df,

−→
E λω〉.

Here, we used that dEλf =
−→
E λdf as it also holds for L and

−→
L .

The last part follows from general theory of (Markov) semigroups and the fact that
−→
L is

elliptic.

Final remark. As the smooth functions and 1-forms with compact support are dense in

Lp respectively
−→
L p, estimates for Pt and

−→
P t may be extended to holds on Lp and

−→
L p instead

of only holding for C∞0 . It can even be shown that Pt and
−→
P t extend to strongly continuous

semigroups on Lp and
−→
L p respectively. These ideas are discussed in more detail in section 6.2,

especially in proposition 6.2.1.
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4.2 Subordinated semigroups and harmonic extensions

We will now focus our attention on harmonic extensions of functions defined on M . If f is a
function on M , we will look at its extension to M × R+, defined by equations of the form[(

∂

∂t
− (s− d)I

)(
∂

∂t
− (s+ d)I

)
+ L

]
f(x, t) = 0.

where s ∈ R and d ≥ 0. The reason why we do it slightly differently than in the case of M = Rn
is that we wish to take into account the curvature of the manifold. We will show that given
an initial distribution at time t = 0, say f0(x), the solutions of the above equations are given

by f(x, t) = Qs,dt f0(x) for some semigroup Qs,dt depending on Pt. Its analogue for 1-forms is

denoted conform other notation by
−→
Qs,d
t . The semigroups that arise in this way turn out to

be particularly useful since their generators are operators that we wish to study for the Riesz
transforms.

Before we continue, we introduce some notation. On R+ we denote ∂
∂t by D0 and define Ls,d0

by
Ls,d0 = (D0 − (s− d)I)(D0 − (s+ d)I) = D2

0 − 2sD0 + (s2 − d2)I

where we consider s ∈ R and d ≥ 0. Furthermore, we denote by Mb the multiplication operator
by ebt. One can show that

MbL
s,d
0 M−b = Ls+b,d0

Indeed, using the product rule and collecting terms, we find that

Ls,d0 M−bf = e−btD2
0f − 2e−bt(s+ b)D0f + e−bt(b2 + 2sb+ s2 − d2)f

and hence

MbL
s,d
0 M−bf = D2

0f − 2(s+ b)D0f + (b2 + 2sb+ s2 − d2)f = Ls+b,d0 f

as b2 + 2sb+ s2 = (s+ b)2.

Furthermore, on M × R+ we write Ls,d for the operator Ls,d0 + L and
−→
L s,d = Ls,d0 +

−→
L . If

s = d we simply write Ld0, L
d and

−→
L d.

Finally, we define |df |2 := |df |2 + (D0f)2 and for a family of 1-forms ω(x, t), indexed by t,
we write |dω|2 := |dω|2 + (D0ω)2 and |

∆
ω|2 := |

∆
ω|2 + (D0ω)2.

4.2.1 Subordinated semigroups

We now introduce measures mt(du) for all t ∈ R+ given by

mt(du) =
1

2
√
π
tu−3/2e−t

2/(4u) du

Remember that the probability density of the hitting time of Brownian motion of a point t is
given on R+ by 1√

2π
tu−3/2e−t

2/(2u). This thus integrates to 1, giving us that∫ ∞
0

mt(du) = 1

after making the substitution u = 1
2x. Furthermore, we have for any c ∈ R that6∫ ∞

0
e−c

2umt(du) = e−|c|t (4.3)

6To prove this identity one could make use of the so called Modified Bessel functions. It turns out that the
integral we wish to compute is the integral representation of such a function for a given parameter, and for this
parameter, there also exists an explicit formula.
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which is an expression that we will use multiple times in the upcoming proofs.

Armed with these measures we can now define the subordinated semigroups Qs,dt and
−→
Qs,d
t

which we talked about earlier.

Definition 4.2.1. For all s ∈ R and d ≥ 0 we define for f ∈ L2 and ω ∈
−→
L 2 the operators Qs,dt

and
−→
Qs,d
t by

Qs,dt f =

∫ ∞
0

(Puf)est−d
2umt(du)

−→
Qs,d
t ω =

∫ ∞
0

(
−→
P uω)est−d

2umt(du)

where Pu,
−→
P u are as in the previous section.

The following two propositions sum up various properties of these operators.

Proposition 4.2.2. The operators Qs,dt satisfy the following properties:

1. Qs,dt is a positive, symmetric semigroup on L2 with generator Cs,d = sI − (d2I − L)1/2.

2. MbQ
s,d
t = Qs+b,dt .

3. For all 1 ≤ p ≤ ∞ we have the estimate ||Qs,dt f ||p ≤ et(s−d)||f ||p.

4. Qs,dt 1 = et(s−d) and in particular, Qd,dt = Qdt is Markovian.

5. There exist constants c(s, d) depending only on s, d such that for all 1 ≤ p ≤ ∞ and all
f ∈ C∞0 we have f ∈ D(Cs,d) and

||Cs,df ||p ≤ c(s, d)(||f ||p + ||Lf ||p).

6. For all f ∈ C∞0 , the function f̄(x, t) = Qs,dt f(x) is in C∞(M × (0,∞)) ∩ C(M × [0,∞))
and satisfies Ls,df̄ = 0.

Proposition 4.2.3. The operators
−→
Qs,d
t satisfy the following properties:

1.
−→
Qs,d
t is a symmetric semigroup on L2 with generator given by

−→
C s,d = sI − (d2I −

−→
L )1/2.

2. Mb
−→
Qs,d
t =

−→
Qs+b,d
t .

3. If d2 ≥ −r0, then for all C∞0 1-forms ω we have that

|
−→
Qs,d
t ω| ≤ Qs,(d

2+r0)1/2

t |ω|

4. If d2 ≥ −r0|1− 2/p|, then (
−→
Qs,d
t ) is a semigroups of bounded operators on

−→
L p, where the

norms are bounded by et(s−(d2+r0|1−2/p|)1/2.

5. If d2 ≥ −r0|1− 2/p|, then there exist constants c(s, d) depending only on s, d such that for
all 1 ≤ p ≤ ∞ and all ω ∈ C∞0

||
−→
C s,dω||p ≤ c(s, d)(||ω||p + ||

−→
Lωf ||p)
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6. For all ω ∈ C∞0 , the function ω̄(x, t) =
−→
Qs,d
t ω(x) is in C∞(M × (0,∞)) ∩ C(M × [0,∞))

and satisfies
−→
L s,dω̄ = 0.

Before we turn to the proofs of these propositions, we first need a lemma, which is used in
the proof of part (5) of the propositions.

Lemma 4.2.4. The following functions, defined on [0,∞) are Laplace transforms of bounded
measures:

f1(x) =
(1 + x)1/2

1 + x1/2
, f2(x) =

1 + x1/2

(1 + x)1/2
, f3(x) =

1

(1 + x)1/2
, f4(x) =

x1/2

1 + x
.

Proof. By formula (4.3) the Laplace transform of mt(du) is given by e−tx
1/2

. But then we find
for nt(du)et−umt(du) that

L(nt(du)) = etL(e−umt(du)) = ete−(x+1)1/2t.

If we now define n(du) =
∫∞

0 e−tnt(du) then

L(n(du)) =

∫ ∞
0

∫ ∞
0

e−xue−tnt(du)dt

=

∫ ∞
0

e−tete−(x+1)1/2tdt

=

∫ ∞
0

e−(x+1)1/2tdt

=

[
− 1

(x+ 1)1/2
e−(x+1)1/2t

]∞
t=0

=
1

(x+ 1)1/2
.

Now n(du) is a bounded measure as mt(du) and so also nt(du) is. Hence we found a bounded
measure which admits f3 as Laplace transform.

Now observe that

f2(x)− f3(x) =
x1/2

(1 + x)1/2
=

(
x

1 + x

)1/2

=

(
1− 1

1 + x

)1/2

= (1− f3(x)2)1/2.

But then we find that

f2(x)− f3(x) = 1−
∞∑
k=1

ckf
2k
3

with ck ≥ 0,
∑∞

k=1 ck = 1.7 Now observe that multiplication in the Laplace domain correspond
to convolution in the usual domain, which gives us that L(n∗2k) = f2k

3 , where the ∗ in the
exponent indicates powers of convolution. Noting that 1 = L(δ0), the linearity of the Laplace
transform gives us that n′(du) = δ0 −

∑∞
k=1 ckn

∗2k has Laplace transform equal to f2 − f3. But
then n′(du) + n(du) has Laplace transform f2.

Noting that f4 = f3(f2 − f3), we see that f4 is the Laplace transform of n ∗ n′.
It remains to show that f1 is the Laplace transform of some bounded measure. We first

note that8
∫∞

0 t−3/2(1 − e−tx)dt = 2
√
πx, which shows that 1√

2π
t−3/2(1 − e−t)dt is a bounded

measure. Calculating the Laplace transform, we find that

1√
2π

∫
e−xtt−3/2(1− e−t)dt =

1√
2π

∫
t−3/2e−xtdt− 1√

2π

∫
t−3/2e−(x+1)tdt

7This comes from the Taylor expansion of the function g(x) =
√

1 + x.
8First make the substitution u = 1√

t
, then integrate by parts and then make the substitution y = 1

u
.
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= −x1/2 + (x+ 1)1/2.

On the other hand, we find that
∫∞

0 mt(du)e−tdt has Laplace transform 1
1+x1/2

, which can be
proved similar to the Laplace transform of n. Finally, we can write

f1(x) = ((1 + x)1/2 − x1/2)
1

1 + x1/2
+

x1/2

1 + x1/2

from which we conclude that f1 is nothing more than the multiplication and addition of Laplace
transforms of bounded measures, which is again the Laplace transform of a bounded measure,
as we have already used before.

We will now turn to the proof of proposition 4.2.2.

Proof of proposition 4.2.2. We will first prove (1). Remember that Pu =
∫∞

0 e−λudEλ. Plugging

this into the definition of Qs,dt gives us for some functions f, g ∈ C∞0 that

〈Qs,dt f, g〉 =

〈∫ ∞
0

(Puf)est−d
2umt(du), g

〉
=

∫ ∞
0
〈Puf, g〉est−d

2umt(du)

=

∫ ∞
0

(∫ ∞
0

e−λtd〈Eλf, g〉
)
est−d

2umt(du)

=

∫ ∞
0

∫ ∞
0

e−λtest−d
2umt(du)d〈Eλf, g〉

=

∫ ∞
0

est
∫ ∞

0
e−(d2+λ)tmt(du)d〈Eλf, g〉

=

∫ ∞
0

este−(d2+λ)1/2td〈Eλf, g〉

=

∫ ∞
0

e(s−(d2+λ)1/2)td〈Eλf, g〉

= 〈etCs,d , g〉.

Here we used Fubini in the second line, which we may do as all function are smooth and g
has compact support, so that the integral of the absolute value is finite. In the fourth line we
again use Fubini, which is justified as the functions are nonnegative. In the fifth line we used
formula (4.3). As the above holds for all g ∈ C∞0 , by density we may conclude that Qs,dt = etC

s,d

which shows that Qs,dt is a semigroup with generator Cs,d = sI − (d2−L)1/2. The fact that this
semigroup is symmetric and positive follows immediately from the fact that the semigroup (Pt)
is.

For (2), pick a function f and compute that

MbQ
s,d
t f = ebt

∫ ∞
0

(Puf)est−d
2umt(du)

=

∫ ∞
0

(Puf)e(s+b)t−d2umt(du)

= Qs+b,dt f

showing that MbQ
s,d
t = Qs+b,dt .
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For (3), using that Pu is a contraction on Lp, we find for a function f that

||Qs,dt f ||p ≤
∫ ∞

0
est−d

2u||Puf ||pmt(du)

≤ ||f ||pest
∫ ∞

0
e−d

2umt(du)

= ||f ||peste−dt

= e(s−d)t||f ||p

where we again used formula (4.3).
For (4), note that Pu1 = 1 for all u. Hence

Qs,dt 1 =

∫ ∞
0

est−d
2umt(du) = et(s−d)

as above. Especially, when s = d, this gives us that Qdt 1 = 1. Futhermore, as Puf ≥ 0 whenever
f ≥ 0, we find that if f ≥ 0, then Qs,dt f ≥ 0, as the integrand is nonnegative. These two remarks
show that Qdt is in fact Markovian.

For (5) we observe that by lemma 4.2.4 there exists a bounded measure α with Laplace

transform given by x1/2

1+x . By the rules for the Laplace transform, we then find that αd(du) =

e−d
2uα(du) has Laplace transform (d2+x)1/2

1+d2+x
. Similar to the computation in the proof of part

(1), we get that

(d2 − L)1/2(1 + d2 − L)−1 =

∫ ∞
0

Pu αd(du).

This is bounded operator, of which the norm is bounded by
∫∞

0 αd(du) ≤
∫∞

0 αd(du) =: |α| as
Pu is a contraction. But then we find for a function f ∈ C∞0 that

||(d2 − L)1/2f ||p =

∣∣∣∣∣∣∣∣∫ ∞
0

Pu((1 + d2)f − Lf)αd(du)

∣∣∣∣∣∣∣∣
p

≤ |α|||(1 + d2)f − Lf)||p

where we used that
∫∞

0 Pu αd(du) is bounded with norm bounded by |α|. But then we find that

||(d2 − L)1/2f ||p ≤ |α|[(1 + d2)||f ||p + ||Lf ||p].

Observing that the operator on the left hand side is simply C0,d, we conclude that there exists
a constant c only depending on d such that

||C0,df ||p ≤ c(||f ||p + ||Lf ||p).

But then we find that

||Cs,df ||p ≤ s||f ||p + ||C0,d||p ≤ s||f ||p + c(||f ||p + ||Lf ||p)

which proves the claim.
Finally, for (6), if f ∈ C∞0 , then the function f̄(x, t) = Qs,dt f(x) satisfies D0f̄ = Cs,df̄ in the

L2 sense, as Cs,d is the generator of Qs,dt . Also note that on the domain of Cs,d the operators Cs,d

and Qs,dt commute. Let us now argue that for f ∈ C∞0 the expression (Cs,d)kf is well-defined.
For this, first note that as Cs,d = sI − (d2 − L)1/2 we have that f ∈ D(L) precisely when

f, Cs,df ∈ D(Cs,d). As C∞0 ⊂ D(L), we have for f ∈ C∞0 that f, Cs,df ∈ D(Cs,d). We also
have that (Cs,d)2f = Lf ∈ C∞0 as both d and δ map C∞0 to C∞0 . But then we can repeat
the argument to show that arbitrary powers of Cs,d are well-defined at least on C∞0 . By the
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commutativity of Qs,dt and Cs,d on the domain of Cs,d we conclude that Dk
0 f̄ = (Cs,d)kf̄ for any

k ≥ 1. Now using the expression for Cs,d from part (a) we find that

(Cs,d)2 − 2sCs,d + (s2 − d2)I = −L.

But then
Ls,df̄ = Ls,d0 f̄ + Lf̄ = −Lf̄ + Lf̄ = 0

which holds in the L2 sense. It then also holds in the sense of distributions on M × (0,∞).
However, as Ls,d is an elliptic operator, we in fact find that it must be that f̄ ∈ C∞, and
consequently, it is a solution of Ls,df̄ = 0 in the ordinary sense.

It remains to show the continuity at 0. For this, observe that for semigroups we have by
proposition 3.1.5 that

||Qs,dt f − f ||∞ =

∣∣∣∣∣∣∣∣∫ t

0
Qs,du Cs,dfdu

∣∣∣∣∣∣∣∣
≤

∫ t

0
||Qs,du Cs,df ||∞du

≤
∫ t

0
e(s−d)u||Cs,df ||∞du

where we used part (c). Letting t→ 0, we see that the upper bound goes to 0 (as ||Cs,df ||∞ <∞
by (e)), proving the continuity of Qs,dt f(x) = f̄(x, t) at t = 0.

Proof of proposition 4.2.3. Parts (1), (2) and (6) are proved in the same way as done in the
proof of proposition 4.2.2.

For part (3) we use proposition 4.1.17, giving us that |
−→
P tω| ≤ e−r0tPt|ω| for a 1-form ω.

Applying this estimate, we find for a 1-form ω that

|
−→
Qs,d
t ω| =

∣∣∣∣∫ ∞
0

(
−→
P uω)est−d

2umt(du)

∣∣∣∣
≤

∫ ∞
0
|
−→
P uω|est−d

2umt(du)

≤
∫ ∞

0
e−r0uPu|ω||est−d

2umt(du)

=

∫ ∞
0

Pu|ω||est−(d2+r0)umt(du)

= Q
s,(d2+r0)1/2

t |ω|

as desired. Here we assumed that d2 ≥ −r0, because we need that d2 + r0 ≥ 0, as we only define
the semigroups Qs,dt for d ≥ 0.9

For part (4), we observe that proposition 4.1.17 gives us that for any 1-form ω ∈ C∞0 we

have the estimate ||
−→
P tω||p ≤ e−r0|1−p/2|t||ω||p. We find that

||
−→
Qs,d
t ω||p ≤

∫ ∞
0
||Puω||pest−d

2umt(du)

≤
∫ ∞

0
e−r0|1−p/2|u||ω||pest−d

2umt(du)

9This is done for the convergence of the integral.



4.2. SUBORDINATED SEMIGROUPS AND HARMONIC EXTENSIONS 47

= ||ω||pest
∫ ∞

0
e−(r0|1−2/p|+d2)umt(du)

= e(s−(r0|1−2/p|+d2)1/2)t||ω||p

where in the last line we again used formula (4.3). This shows that
−→
Qs,d
t is bounded on

−→
L p with

norm bounded by e(s−(r0|1−2/p|+d2)1/2)t. That this again gives a semigroup on all of
−→
L p can be

proven similarly as done in proposition 6.2.1 in section 6.2.

For part (5) we only remark that this goes similarly as in the proof of part (5) of proposition

4.2.2. However, instead of using that ||Puf ||p ≤ ||f ||p, we now use the estimate ||
−→
P uω||p ≤

e−r0|1−p/2|u||ω||p. The assumption d2 ≥ −r0|1−2/p| is then necessary to assure that bounds are
finite.

4.2.2 Harmonic extensions

We finish the chapter by proving some relevant equalities and inequalities concerning harmonic
extensions. The proofs in the section are not particularly difficult, but are rather some ex-
tensive computations and rewritings. The results are nevertheless important when proving the
boundedness of the Riesz transform later on.

Proposition 4.2.5. Let f ∈ C∞(M × (0,∞)) be such that Ls1,d1f = 0. Then

1. For s2 ∈ R, d2 ≥ 0 we have that

Ls2,d2f2 = 2|df |2 + 2(D0f + (s1 − s2)f)2 + (2d2
1 − d2

2 − (s2 − 2s1)2)f2.

2. If d2
1 ≥ d2

2 ≥ s2
1, we have for all ε > 0 that Ls1,d2((f2 + ε2)1/2 − ε) ≥ 0.

Furthermore, let ω(x, t) be a family of 1-forms on M , smooth in (x, t) and suppose that
−→
L s1,d1ω =

0. Then

1. For s2 ∈ R, d2 ≥ 0 we have

Ls2,d2 |ω|2 ≥ 2|
∆
ω|2 + 2|D0ω + (s1 − s2)ω|2 + (2d2

1 − d2
2 − (s2 − 2s1)2 + 2r0)|ω|2.

2. If r0 + d2
1 ≥ d2

2 ≥ s2
1, then for all ε > 0 it holds that Ls1,d2((|ω|2 + ε2)1/2 − ε) ≥ 0.

Proof. We will start by proving the statemensts concerning a function f ∈ C∞(M × (0,∞)).
First observe that

Ls2,d2 − Ls1,d1 = Ls2,d20 − Ls1,d20 = 2(s1 − s2)D0 + (s2
2 − s2

1 + d2
1 − d2

2)I. (4.4)

By the chain rule we find for a function φ : R→ R, that D0φ(f) = φ′(f)D0f and

D2
0φ(f) = φ′(f)D2

0f + φ′′(f)D0fD0f = φ′(f)D2
0f + φ′′(f)(D0f)2.

Similarly, dφ(f) = φ′(f)df and ∆φ(f) = φ′(f)∆f + φ′′(f)|df |2, which gives us that

Lφ(f) = ∆φ(f) + dφ(f) · d(log ρ)

= φ′(f)∆f + φ′(f)df · d(log ρ) + φ′′(f)|df |2

= φ′(f)Lf + φ′′(f)|df |2.
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Putting everything together, we find that (already collecting terms)

Ls,dφ(f) = φ′(f)(D2
0f − 2sD0f + Lf) + φ′′(f)((D0f)2 + |df |2) + (s2 − d2)φ(f)

= φ′(f)Ls,df − φ′(f)(s2 − d2)f + φ′′(f)|d̄f |2 + (s2 − d2)φ(f)

= φ′(f)Ls,df + φ′′(f)|d̄f |2 + (s2 − d2)(φ(f)− fφ′(f)).

Applying this identity with (s, d) = (s1, d1) and φ(x) = x2, we get

Ls1,d1f2 = 2|d̄f |2 − f2(s2
1 − d2

1) = 2|d̄f |2 + f2(d2
1 − s2

1)

where we used that Ls1,d1f = 0 and φ(x)− xφ′(x) = x2 − 2x2 = −x2. Plugging this into (4.4),
we find that

Ls2,d2f2 = Ls1,d1f2 + 2(s1 − s2)D0f
2 + (s2

2 − s2
1 + d2

1 − d2
2)f2

= 2|d̄f |2 + 4(s1 − s2)fD0f + (s2
2 − 2s2

1 + 2d2
1 − d2

2)f2

where we also used that D0f
2 = 2fD0f . Remembering that |d̄f |2 = |df |2 + (D0f)2, we may

write
2|d̄f |2 + 4(s1 − s2)fD0f = 2|df |2 + 2(D0f + (s1 − s2)f)2 − 2(s1 − s2)2f2.

Observing that s2
2 − 2s2

1 − 2(s1 − s2)2 = −(s2 − 2s1)2, we find that

Ls2,d2f2 = 2|df |2 + 2(D0f + (s1 − s2)f)2 + (2d2
1 − d2

2 − (s2 − 2s1)2)f2

which is the first identity.
For the second part, let ε > 0 and suppose that d2

1 ≥ d2
2 ≥ s2

1. We will use the same formulas
as above, only now with s1 = s2 and φ(x) = (x2 + ε2)1/2− ε. Then φ(x) ≥ 0, as (x2 + ε2)1/2 ≥ ε.
Furthermore, φ′(x) = x

(x2+ε2)1/2
and φ′′(x) = x2

(x2+ε2)3/2
+ 1

(x2+ε2)1/2
= ε2

(x2+ε2)3/2
≥ 0. We also

have that

φ(x)− xφ′(x) = (x2 + ε2)1/2 − ε− x2

(x2 + ε2)1/2
=

ε2

(x2 + ε2)1/2
− ε =

= ε

(
ε

(x2 + ε2)1/2
− 1

)
≤ 0

as the fraction is less than 1.
Using the formulas above, we then find that (with s2 = s1)

Ls1,d2φ(f) = Ls1,d1φ(f) + (d2
1 − d2

2)φ(f)

= φ′′(f)|d̄f |2 + (s2
1 − d2

1)(φ(f)− fφ′(f)) + (d2
1 − d2

2)φ(f).

Now noticing that the assumption d2
1 ≥ d2

2 ≥ s2
1 implies that s2

1 − d2
1 ≤ 0 and d2

1 − d2
2 ≥ 0, we

find from φ(x), φ′′(x) ≥ 0 and φ(x)− xφ′(x) ≤ 0 that

Ls1,d2((f2 + ε2)1/2 − ε) = Ls1,d2φ(f) ≥ 0

as desired.

Now suppose that ω(x, t) is a family of 1-forms, C∞ in (x, t) and satisfying
−→
L s1,d1ω = 0.

From proposition 4.1.15(2) we find that

L|ω|2 = 2ω ·
−→
Lω + 2|

∆
ω|2 + 2R(ω∗, ω∗).
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We also have that

−→
L s,dω = Ls,d0 ω +

−→
Lω = D2

0ω − 2sD0ω + (s2 − d2)ω +
−→
Lω.

Combining the two, we find that

L|ω|2 = 2ω · (
−→
L s,dω −D2

0ω + 2sD0ω − (s2 − d2)ω) + 2|
∆
ω|2 + 2R(ω∗, ω∗)

= 2ω ·
−→
L s,dω + 2ω · (2sD0ω −D2

0ω) + 2(d2 − s2)|ω|2 + 2|
∆
ω|2 + 2R(ω∗, ω∗).

Now observe that D0|ω|2 = D0(ω · ω) = 2ω ·D0ω and

D2
0|ω|2 = D0(2ω ·D0ω) = 2D0ω ·D0ω + 2ω ·D2

0ω = 2|D0ω|2 + 2ω ·D2
0ω.

But then

Ls,d|ω|2 = Ls,d0 |ω|
2 + L|ω|2

= 2ω ·
−→
L s,dω + 2|

∆̄
ω|2 + 2R(ω∗, ω∗) + (d2 − s2)|ω|2.

Using that R(ω∗, ω∗) ≥ r0|ω|2 now gives us that

Ls,d|ω|2 ≥ 2ω ·
−→
L s,dω + 2|

∆̄
ω|2 + (d2 − s2 + 2r0)|ω|2.

Using the identity

−→
L s2,d2 −

−→
L s1,d1 = Ls2,d20 − Ls1,d20 = 2(s1 − s2)D0 + (s2

2 − s2
1 + d2

1 − d2
2)I

and the fact that Ls1,d1ω = 0, a similar rewriting as done in part (1) above (where we remember
that D0|ω|2 = 2ω ·D0ω) gives

Ls2,d2 |ω|2 ≥ 2|
∆
ω|2 + 2|D0ω + (s1 − s2)ω|2 + (2dd1 − d2

2 − (s2 − 2s1)2 + 2r0)|ω|2

as desired.
For the second part, pick ε > 0 and suppose that r0+d2

1 ≥ d2
2 ≥ s2

1. Write |ω|ε = (|ω|2+ε2)1/2

and take φ(x) = (x+ ε2)1/2 − ε defined for x ≥ 0. Then φ′(x) = 1
2(x+ ε2)−1/2, giving us that

ψ(x) := φ(x)− xφ′(x) = (x+ ε2)1/2 − ε− x

2(x+ ε2)1/2
=

x/2 + ε2

(x+ ε2)1/2
− ε.

Now

ψ(x) =
1

2

x+ ε2

(x+ ε2)1/2
+

1

2

ε2

(x+ ε2)1/2
− ε

≤ 1

2
(x+ ε2)1/2 +

1

2
ε− ε

=
1

2
φ(x).

Furthermore, φ′′(x) = −1
4(x + ε2)−3/2. We now apply the formula for Ls,dφ(f) we found in

the very beginning with the given φ and f = |ω|2. By the definition of |ω|ε we easily see that
φ′(|ω|2) = 1

2|ω|ε and φ′′(|ω|2) = − 1
4|ω|3ε

. This gives us that

Ls1,d2φ(|ω|2) =
1

2|ω|ε
Ls1,d2 |ω|2 − 1

4|ω|3ε
|
∆̄
|ω|2|2 + (s2

1 − d2
2)ψ(|ω|2).
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Using that d2
2 ≥ s2

1, and ψ ≤ 1
2φ, and thus (s2

1 − d2
2)ψ ≥ s21−d22

2 φ, we get that

Ls1,d2φ(|ω|2) ≥ 1

|ω|3ε

(
|ω|2ε

2
Ls1,d2 |ω|2 − 1

4
|
∆̄
|ω|2|2

)
+

(s2
1 − d2

2)

2
φ(|ω|2)

=
1

|ω|3ε

(
|ω|2ε

2
Ls1,d2 |ω|2 − 1

4
|
∆̄
|ω|2|2

)
+

(s2
1 − d2

2)

2
(|ω|ε − ε).

If we now apply the first part with s2 = s1, we get that

Ls1,d2 |ω|2 ≥ 2|
∆̄
ω|2 + |ω|2(2d2

1 − d2
2 − s2

1 + 2r0).

Furthermore, by the fact that D0|ω|2 = 2ω ·D0ω and
∆
|ω|2 = 2ω ·

∆
ω we find

|
∆̄
|ω|2|2 = |

∆
|ω|2|2 + |D0|ω|2|2

= 4|
∆
ω(ω∗, ·)|2 + 4|ω ·D0ω|2

≤ 4|ω|2|
∆
ω|2 + 4|ω|2|D0ω|2

= 4|ω|2|
∆̄
ω|2

≤ 4|ω|2ε |
∆̄
ω|2

where the first inequality is simply Cauchy-Schwarts and the second is obvious from the defition
of |ω|ε. Putting everything together we deduce

Ls1,d2φ(|ω|2) ≥ 1

|ω|3ε

(
|ω|2ε

2
Ls1,d2 |ω|2 − 1

4
|
∆̄
|ω|2|2

)
+

(s2
1 − d2

2)

2
(|ω|ε − ε)

≥ |ω|2

2|ω|ε
(2d2

1 − d2
2 − s2

1 + 2r0) +
ε

2
(d2

2 − s2
1) +

1

2
(s2

1 − d2
2)|ω|ε

=
|ω|ε
2

(2d2
1 − 2d2

2 + 2r0)− ε2

2|ω|ε
(2d2

1 − d2
2 − s2

1 + 2r0) +
ε

2
(d2

2 − s2
1)

≥ |ω|ε(d2
1 − d2

2 + r0)− ε(d2
1 + r0 − d2

2)

= (|ω|ε − ε)(d2
1 − d2

2 + r0).

Here we used that |ω|2 = |ω|2ε − ε2 and that |ω|ε ≥ ε and d2
2 ≥ s2

1. We thus find that

Ls1,d2((|ω|2 + ε2)1/2 − ε) = Ls1,d2φ(|ω|2) ≥ (|ω|ε − ε)(d2
1 − d2

2 + r0) ≥ 0

as d2
1 + r0 ≥ d2

2 ≥ d2
1 and |ω|ε ≥ ε.

4.3 Inequalities of the type of Littlewood-Paley-Stein

In this section we will be concerned with sub-harmonic functions f on M × R+, i.e., functions
which satisfy Ldf ≥ 0. Here Ld is the operator Ld0 + L as defined in the previous section. Our
goal is to prove that under certain assumption the estimate∣∣∣∣∣∣∣∣∫ ∞

0
Qdu(Ldf)Vd(u)du

∣∣∣∣∣∣∣∣
p

≤ C(p)||f(·, 0)||p

holds, where Qdu is the subordinated semigroup as in the previous section, and Vd is some
potential which will be given explicitly. The second estimate we wish to prove holds only for
1 < p ≤ 2, and is given by∣∣∣∣∣

∣∣∣∣∣
(∫ ∞

0
Ld(f2)Vd(u)du

)1/2
∣∣∣∣∣
∣∣∣∣∣
p

≤ C(p)||f(·, 0)||p.
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Before we continue, we fix some notation. Let x ∈M be a point on the manifold. We denote
by Px the distribution with respect to the canonical path space of the process with generator
L, starting almost surely in x. We will denote this process by Xx

t . Furthermore, let Ba
t be

an arbitrary one-dimensional Brownian motion starting from a > 0. We assume that Xx
t and

Ba
t are independent and denote the distribution of the couple (Xx

t , B
a
t ) by Px,a and write the

expectation under this law as Ex,a.
We also construct the measure Pa =

∫
M Px,adm(x), which is a probability measure whenever

m is. We will write (suggestively if m is not a probability measure) Ea(Z) =
∫
M×R+

ZdPa. Even
if m is not a probability measure, this will not cause any problems in the way we use it. Indeed,
by remark 2.5.3 we have that (M, dx) is σ-finite. As ρ ∈ C∞, ρ > 0 we find that m(dx) = ρ(x)dx
is also a σ-finite measure. Our only probabilistic use of the measure m and expectation Ea is
in the sense of conditional expectations, which do not pose any problems when working with a
σ-finite measure.

4.3.1 Stopping time and martingales

We now introduce a stopping time

T a,d = inf{s|Ba
s − 2ds = 0}.

Observe that we indeed only need to know the values of Ba
u up to time s to conclude whether

T a,d ≤ s, showing that it is in fact a stopping time. Remembering that one-dimensional Brow-
nian motion is recurrent, we even get that T a,d is almost surely finite.

Let us now consider the process

Zx,a,dt = (Xx
t∧Ta,d , B

a
t∧Ta,d − 2d(t ∧ T a,d))

defined on M × R+ and denote by (Ft)t its natural filtration. We claim that this process has
generator Ld = (D2

0 − 2dD0 + L).

Proposition 4.3.1. Let f ∈ C∞(M × (0,∞)). Then the process

f(Zx,a,dt )− f(x, a)−
∫ t

0
(Ldf)(Zx,a,ds )ds

is a local martingale on [0, T a,d).

Proof. By stopping the process, we assure that Zx,a,dt remains in a bounded subset of the man-
ifold. Hence it suffices to consider the case when f has compact support, as it suffices to show
that we get a local martingale up to stopping times. Now observe that we can approximate f
uniformly by functions fn which are linear combinations of functions of the form gn(x)hn(t). In
that case, Ldf is the uniform limit of Ldfn. As the convergence is uniform, we may interchange
limit and expectation, hence it suffices to consider functions of the form g(x)h(t).

As L is the generator of Xx
t , we have that g(Xx

t ) = g(x) + tLg +O(t2). We also have that
Ba
t has generator D2

0. Furthermore, as the process Y x
t = t+x is deterministic, we can easily see

that D0 is the generator of the process Yt. But then we find that D2
0 − 2dD0 is the generator

of the process Ba
t − 2dt. This gives us that h(Ba

t − 2dt) = h(a) + t(D2
0h − 2dD0h) + O(t2).

Combining expressions, we find that

g(Xx
t )h(Ba

t − 2dt) = g(x)h(a) + t(h(a)Lg + g(x)(D2
0h− 2dD0h)) +O(t2)
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= g(x)h(a) + t(Ld(hg)(x, a)) +O(t2).

This shows that Ld is indeed the generator of Zx,a,dt at least for functions of the form f(x, t) =
g(x)h(t) as the processes Xx

t and Ba
t − 2dt are independent. But then

f(Zx,a,dt )− f(x, a)−
∫ t

0
(Ldf)(Zx,a,ds )ds

is a local martingale as required. By the previous remark, this proves the claim.

We now take f ∈ C∞0 (M) and define f̄d(x, t) = Qdt f(x), which satisfies Ld(f̄d) = 0 by
proposition 4.2.2(f). The proposition also tells us that f̄d is C∞. Hence, by proposition 4.3.1,

we find that f̄d(Zx,a,dt ) is a local martingale on [0, T a,d), as the integral vanishes, and constants
are not important. In fact, as f̄d is bounded and continuous at t = 0, it turns out to be a
martingale.10 Observing that Zx,a,d

Ta,d
= (Xx

Ta,d
, 0), we find that

f̄d(Zx,a,d
Ta,d

) = Qd0f(Xx
Ta,d) = f(Xx

Ta,d).

But then

Ex,a(f(Xx
Ta,d)|Fs) = Ex,a(f̄d(Zx,a,d

Ta,d
)|Fs)

= lim
t→∞

Ex,a(f̄d(Zx,a,d
t∧Ta,d)|Fs)

= lim
t→∞

f̄d(Zx,a,d
s∧Ta,d)

= f̄d(Zx,a,ds ).

Here we made use of the martingale stopping theorem, and the fact that s ∈ [0, T a,d). Also note
that the interchanging of limit and integral is allowed as f̄d is bounded.

Now suppose that f ∈ C∞(M×(0,∞)) is bounded, continuous in t = 0 and satisfies Ldf ≥ 0.
By Fatou’s lemma (which we may apply by the boundedness of f), we find that

Ex,a(f(Xx
Ta,d , 0)|Fs)

≥ lim sup
t→∞

Ex,a(f(Zx,a,d
t∧Ta,d)|Fs)

≥ lim sup
t→∞

Ex,a
(
f(Zx,a,d

t∧Ta,d)−
∫ t∧Ta,d

0
(Ldf)(Zx,a,dr )dr +

∫ s∧Ta,d

0
(Ldf)(Zx,a,dr )dr|Fs

)

= lim sup
t→∞

f(Zx,a,d
s∧Ta,d)−

∫ s∧Ta,d

0
(Ldf)(Zx,a,dr )dr +

∫ s∧Ta,d

0
(Ldf)(Zx,a,dr )dr

= f(Zx,a,ds ).

Here we assume t > s in the third line, and used the martingale stopping theorem in the fourth
line. We also used that the second integral is Fs-measurable, as Zx,a,dr is Fs-measurable for
r ≤ s and 1s∧Ta,d is also Fs-measurable, as {T a,d ≤ r} ∈ Fs for all r ≤ s.

From these two results, we can deduce the following proposition.

Proposition 4.3.2. Let f ∈ C∞(M × R+) and suppose that f is bounded, continuous in t = 0
and satisfies Ldf ≥ 0. Then for all t, u ∈ R+ is holds that

Qdt f(·, u) ≥ f(·, t+ u).

10As in general a bounded local martingale is a martingale.
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Proof. By changing t to t+ u in f , it suffices to consider u = 0. If we now use the two previous
identities with s = 0 and a = t, we obtain

Qdt f(x, 0) = Ex,t(f(XT t,d , 0)|F0)

≥ f(Zx,t,d0 )

= f(x, t)

as desired.

We will now introduce a function Vd on R2
+ given by

Vd(t, s) =
1

d
e−d(s∨(2s−t)) sinh(d(t ∧ s))

=
1− e−2ds

2d
1s<t + e−2ds e

2dt − 1

2d
1s≥t

for d > 0, where the equality can be found by writing out the hyperbolic sine and observing
that if s < t then 2s− t < 2s− s = s and if s ≥ t then 2s− t ≥ 2s− s = s. If d = 0, we define
V0(t, s) = t ∧ s.

The following proposition illustrates the usefulness of this function.

Proposition 4.3.3. Let f be a positive Borel function on M × R+. Then

Ea

(∫ Ta,d

0
f(Za,ds ) ds

)
=

∫
M

∫ ∞
0

f(x, u)Vd(a, u) du dm(x).

Here Za,ds is the process (Xs∧Ta,d , B
a
s∧Ta,d − 2d(s ∧ T a,d)) with distribution Pa.11

Proof. First consider a positive C∞ function h(t) with compact support in (0,∞). We will show
that

Ea

(∫ Ta,d

0
h(Ba

s − 2ds) ds

)
=

∫ ∞
0

h(u)Vd(a, u) du.

To this extend, define the function G(a) =
∫∞

0 h(u)Vd(a, u)du. As

Vd(0, u) = e−2du 1− 1

2d
= 0

we find that G(0) = 0. Also G is bounded. Indeed, suppose that the support of h is contained
in [c, d] with 0 < c < d <∞. For a > d we find that

G(a) =

∫ d

c
h(u)

1− e−2du

2d
du ≤

∫ d

c
h(u)

1

2d
du =: M.

As h is continuous on a compact support, it is bounded, hence M is finite. In the case that
a ≤ d, we find that

G(a) =

∫ a

c
h(u)

1− e−2du

2d
du+

∫ d

a
h(u)e−2du e

2da − 1

2d
du

11We see it like this, because the starting point x ∈ M is now considered to be random, and picked from M
according to the law m(dx).
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≤ M +

∫ d

a
h(u)

e2d(a−u) − e−2du

2d
du

≤ M +

∫ d

a
h(u)

1− e−2du

2d
du

≤ 2M

where we made use of the fact that h is positive.

Finally, G satisfies Ld0G = −h. Indeed, thinking in terms of distributions, we find by the
product rule that

D0Vd(t, s) =
1− e−2ds

2d
δt + e−2dse2dt1s≥t − δte−2ds e

2dt − 1

2d
.

Hence

D0G(a) =

∫ ∞
0

h(u)D0Vd(a, u)du

=
1− e−2da

2d
h(a)− e−2da e

2da − 1

2d
h(a) +

∫ ∞
0

h(u)e2d(a−u)1u≥adu

=

∫ ∞
0

h(u)e2d(a−u)1u≥adu.

Similar as above, we find that

D0(e2d(a−u)1u≥a) = 2de2d(a−u) − e2d(a−u)δa

giving us

D2
0G(a) = −h(a)e2d(a−a) + 2d

∫ ∞
0

h(u)e2d(a−u)1u≥adu = −h(a) + 2dD0G(a).

We conclude that

Ld0G = D2
0G− 2dD0G = −h+ 2dD0G− 2dD0G = −h

as desired.

From the above we may now conclude that

G(Ba
s − 2ds)−

∫ s

0
Ld0G(Ba

u − 2du)du = G(Ba
s − 2ds) +

∫ s

0
h(Ba

u − 2du)du

is a martingale, which is bounded on [0, s ∧ T a,d] as both G and h are. As it is a martingale,
taking expectations gives us that

Ea

(
G(Ba

s∧Ta,d − 2d(s ∧ T a,d)) +

∫ s∧Ta,d

0
h(Ba

u − 2du)du

)

= Ea
(
G(Ba

0 − 2d · 0) +

∫ 0

0
h(Ba

u − 2du)du

)
= G(a)

=

∫ ∞
0

h(u)Vd(a, u)du.
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As the martingale is bounded, we can take the limit s→∞ to find that

Ea

(∫ Ta,d

0
h(Ba

u − 2du)du

)

= lim
s→∞

Ea

(
G(Ba

s∧Ta,d − 2d(s ∧ T a,d)) +

∫ s∧Ta,d

0
h(Ba

u − 2du)du

)

=

∫ ∞
0

h(u)Vd(a, u)du

where we used that G(0) = 0.
By the monotone class theorem, we can now extend this result to the case where h is a Borel

function.
To finish the proof, as in the proof of proposition 4.3.1, we only need to focus on f(x, t) =

g(x)h(t). By using Fubini and applying the independence of Xt and Bt, we get that

Ea

(∫ Ta,d

0
f(Za,ds )ds

)
=

∫ ∞
0

Ea(h(Ba
s − 2ds)1s<Ta,d)Ea(g(Xs))ds.

By definition Ex(g(Xs)) = (Psg)(x), which gives that

Ea(g(Xs)) =

∫
M
g(Xs)dPx,adm(x) =

∫
M

Ex(g(Xs))dm(x) =

∫
M
Psg(x)dm(x).

Now as Ps1 = 1, we find from the self-adjointness that∫
M
Psg(x)dm(x) =

∫
M
g(x)Ps1dm(x) =

∫
M
g(x)dm(x) (= 〈g〉).

We conclude that Ea(g(Xs)) =
∫
M g(x)dm(x). Using this, and applying Fubini again, we find

that

Ea

(∫ Ta,d

0
f(Za,ds )ds

)
= 〈g〉Ea

(∫ Ta,d

0
h(Ba

s − 2ds)ds

)

= 〈g〉
∫ ∞

0
h(u)Vd(a, u)du

=

∫
M

∫ ∞
0

g(x)h(u)Vd(a, u) du dm(x)

which is the desired equality.

This proposition admits the following corollary.

Corollary 4.3.4. Under the same assumptions as in the previous proposition, we have that

Ea

(∫ Ta,d

0
f(Za,ds )ds

∣∣XTa,d = x

)
=

∫ ∞
0

Qdsf(x, s)Vd(a, s) ds

Proof. By definition of conditional expectation, it suffices to prove for all g ∈ C∞0 (M) that

Ea

(∫ Ta,d

0
f(Za,ds )dsg(XTa,d)

)
=

∫ ∞
0
〈Qdsf(x, s)g(x)〉Vd(a, s) ds
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because the distribution of XTa,d is m(dx). Indeed, for any Borel function f

E(f(XTa,d)) =

∫ ∞
0

E(f(XTa,d)|T a,d = t) PTa,d(dt)

=

∫ ∞
0

∫
M

Ex(f(Xt)) m(dx) PTa,d(dt)

=

∫
M
f(x) m(dx)

∫ ∞
0

PTa,d(dt)

=

∫
M
f(x) m(dx)

where we used the invariance of m in the third line, along with the fact that Xt and T a,d are
independent as T a,d solely depends on Ba

t .

By the symmetry of Qdt , rembering that ḡd(x, t) = Qdt g(x), the right hand side above is equal
to ∫

M

∫ ∞
0

f(x, s)ḡd(x, s)Vd(a, s) dsdm(x).

For the left hand side we can write

Ea

(∫ Ta,d

0
f(Za,ds )dsg(XTa,d)

)
=

∫ ∞
0

Ea(f(Za,ds )1{s≤Ta,d}g(XTa,d))ds

=

∫ ∞
0

Ea(Ea[f(Za,ds )1{s≤Ta,d}g(XTa,d)|Fs])ds

=

∫ ∞
0

Ea(f(Za,ds )1{s≤Ta,d}Ea[g(XTa,d)|Fs])ds

= Ea

(∫ Ta,d

0
f(Za,ds )Ea[g(XTa,d)|Fs]ds

)
.

Here we used Fubini in the first and last line, the tower property for conditional expectation and
the fact that Za,ds and hence also f(Za,ds ) are Fs-measurable. We also used the Fs-measurability
of 1{s≤Ta,d}, which follows from the fact that T a,d is a stopping time.

But

Ea(g(XTa,d)|Fs) = Ex,a(g(XTa,d)|Fs) = ḡd(Za,ds ).

Indeed, the second equality follows from the discussion after proposition 4.3.1, while the first
equality follows from the observation that for any F ∈ Fs we have∫

F
Ex,a(g(XTa,d)|Fs)dPa =

∫
F
Ea(g(XTa,d)|Fs))dm(x) =

∫
F
g(XTa,d)dm(x).

Here the first equality follows from the definition of Pa and the second follows from the fact that
the distribution of XTa,d is dm(x).

If we now apply the previous proposition, we find that

Ea

(∫ Ta,d

0
f(Za,ds )dsg(XTa,d)

)
=

∫
M

∫ ∞
0

f(x, s)ḡd(x, s)Vd(a, s) ds dm(x)

as desired.
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4.3.2 Main estimates

We now arrive at the main results of this section. We define

Vd(u) = lim
t→∞

Vd(t, u) =
1− e−2du

2d

for d > 0 and similarly V0(u) = u. The constants C(p) in the remainder of this chapter solely
depend on p, where 1 < p <∞. In particular, they do not depend on f, d and the manifold M .

Theorem 4.3.5. Let f ∈ C∞(M × (0,∞)) ∪C(M × [0,∞]) be positive and bounded, such that
Ldf ≥ 0. Then for all 1 < p <∞ we have∣∣∣∣∣∣∣∣∫ ∞

0
Qdu(Ldf)Vd(u)du

∣∣∣∣∣∣∣∣
p

≤ C(p)||f(·, 0)||p

for some constant C(p) only depending on p.

Proof. From proposition 4.3.1 we know that

f(Zx,a,dt )− f(x, a)−
∫ t

0
(Ldf)(Zx,a,ds )ds

is a local martingale. As in the remarks after that proposition, we find that

Yt = f(Zx,a,dt )− f(x, a)

is a sub-martingale. Because f is bounded, it is in fact a bounded sub-martingale, with

Y0 = f(Zx,a,d0 )− f(x, a) = f(x, a)− f(x, a) = 0.

The associated increasing process12 is given by

At =

∫ t∧Ta,d

0
(Ldf)(Zx,a,ds )ds.

By theorem 3.2 from [22] we have for all 1 < p <∞ that

Ex,a((ATa,d)p) ≤ C(p)Ex,a(|YTa,d |p).

Integrating over M with respect to dm(x), we get that

Ea((ATa,d)p) ≤ C(p)Ea(|YTa,d |p).

By Jensen’s inequality and the tower property for conditional expectation, we find that

Ea(Ea(ATa,d |XTa,d = ·)p) ≤ Ea(Ea(ApTa,d |XTa,d = ·))
= Ea(ApTa,d)
≤ C(p)Ea(|YTa,d |p).

But YTa,d = f(XTa,d , 0) − f(x, a), hence we find that its Lp norm is bounded by ||f(·, 0)||p +
||f(·, a)||p. However, as Ldf ≥ 0, we know from proposition 4.3.2 that f(·, a) ≤ Qdaf(·, 0).
By propisition 4.2.2, Qda is a contraction. But then we find that ||f(·, a)||p ≤ ||Qdaf(·, 0)||p ≤

12The deficit to a proper martingale.
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||f(·, 0)||p. Hence we can bound the Lp norm of YTa,d by ||f(·, 0)||p + ||f(·, a)||p ≤ 2||f(·, 0)||p.
Putting things together, we find that

Ea((ATa,d)p) ≤ C(p)Ea(|YTa,d |p) ≤ C(p)||f(·, 0)||pp.

By corollary 4.3.4 we have that

Ea(Ea(ATa,d |XTa,d = ·)p) = Ea

(
Ea

(∫ t∧Ta,d

0
(Ldf)(Zx,a,ds )ds|XTa,d = ·

)p)

= Ea
(([∫ ∞

0
Qdu(Ldf(·, u))Vd(a, u)du

]
(XTa,d)

)p)
=

∣∣∣∣∣∣∣∣∫ ∞
0

Qdu(Ldf(·, u))Vd(a, u)du

∣∣∣∣∣∣∣∣p
p

where the last equality holds because m(dx) is the distribution of XTa,d . We thus find that∣∣∣∣∣∣∣∣∫ ∞
0

Qdu(Ldf(·, u))Vd(a, u)du

∣∣∣∣∣∣∣∣
p

≤ C(p)||f(·, 0)||p.

Taking the limit a→∞, by Fatou’s lemma we obtain∣∣∣∣∣∣∣∣∫ ∞
0

Qdu(Ldf(·, u))Vd(u)du

∣∣∣∣∣∣∣∣
p

≤ C(p)||f(·, 0)||p

as desired.

Theorem 4.3.6. Let f ∈ C∞(M × (0,∞)) be a bounded and positive function. Assume that
f,D0f are continuous at t = 0 and satisfy Ldf ≥ 0. Suppose furthermore that∫

M

∫ ∞
0

(|Ld0f2|+ |Lf2|+ |D0f |2 + |
∆
f |2)Vd(u)du dm(x) <∞.

Then for all 1 < p ≤ 2∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
Ld(f2)(·, u))Vd(u)du

)1/2
∣∣∣∣∣
∣∣∣∣∣
p

≤ C(p)||f(·, 0)||p.

Before proving the theorem, we first prove a lemma.

Lemma 4.3.7. Let f ∈ C∞(M × (0,∞)), denoted as f(x, s) = fs(x), be a positive function
such that f,D0f converge for t→ 0. Suppose furthermore that the following are satisfied

1.
∫
M

∫∞
0 (|L0fs|+ |Lfs|)Vd(s)ds dm(x) <∞.

2. For almost all x ∈M ,
∫∞

0 |D0f |Vd(s)ds <∞.

3. For almost all s ∈ R+,
∫
M |

∆
fs|dm(x) <∞.

Then ∫
M
f(x, 0)dm(x) ≥

∫
M

∫ ∞
0

LdfsVd(s)ds dm(x).
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Proof. Fix s and take the sequence hn of function as in definition 4.1.1, so that hnfs approximates
fs pointwise. We claim that 〈L(hnfs)〉 = 0. Indeed, L(hnfs) = hnLfs + fsLhn + 2dhn · dfs. By
proposition 4.1.7, we then have that

〈L(hnfs)〉 = 〈hn, Lfs〉+ 〈fs, Lhn〉+ 2〈dhn, dfs〉 = 2〈hn, Lfs〉+ 2〈dhn,dfs〉 = 0

as 〈hn, Lfs〉 = −〈dhn, dfs〉. By property (3) we can take n → ∞ to obtain 〈Lfs〉 = 0. Using
Fubini’s theorem, we get that 〈

∫∞
0 LfsVd(s)ds〉 = 0.

As Ld = Ld0 + L, it now remains to show that 〈f0〉 ≥ 〈
∫∞

0 Ld0fsVd(s)ds〉. For this, we will
find a pointwise estimate. First note that D0Vd(t) = e−2dt = −2dVd(t) + 1. Using this, we find
by the product rule that

D0(−ft + Vd(t)D0ft) = −D0ft +D0Vd(t)D0ft + Vd(t)D
2
0ft

= −2dVd(t)D0ft + Vd(t)D
2
0ft

= Ld0(ft)Vd(t).

This gives us that ∫ t

0
Ld0(fs)Vd(s)ds = f0 − ft + Vd(t)D0ft

as Vd(0) = 0. By condition (2) we find that limt→∞ Vd(t)D0ft = 0 for almost all x ∈ M . As
ft ≥ 0, we get in the limit t→∞ that∫ ∞

0
Ld0(fs)Vd(s)ds ≤ f0

as desired.

Proof of theorem 4.3.6. Let q = p
2 and define for ε > 0 the function fε,q = (f2 + ε)q − εq. Using

the product rule for the Laplace-Beltrami operator (see corollary A.1.7 in the appendix) we find
that13

L(fε,q) = q(f2 + ε)q−1L(f2) + q(q − 1)(f2 + ε)q−2|
∆
f2|2

or
1

q
L(fε,q) = (f2 + ε)q−1L(f2) + (q − 1)(f2 + ε)q−2|

∆
f2|2.

Similarly, we get that

1

q
Ld0(fε,q) = (f2 + ε)q−1Ld0(f2) + (q − 1)(f2 + ε)q−2(D0f

2)2.

By the assumptions we make, we may apply the previous lemma to fε,q to obtain

1

q
〈fε,q(·, 0)〉 ≥

〈∫ ∞
0

(f2 + ε)q−1(Ldf2 + (q − 1)(f2 + ε)−1|∇̄f2|2)Vd(s)ds

〉
.

Again by the product rule, we find that

Ldf2 = 2fLdf + 2|
∆̄
f |2 ≥ 2|

∆̄
f |2 =

1

2
f−2|

∆̄
f2|2

13Remember that for functions we have that df =
∆
f , where

∆
denotes the total covariant derivative as usual.



60 CHAPTER 4. STUDY OF THE PAPER OF BAKRY

where we used that f, Ldf ≥ 0. Here, the last equality simply follows by writing out the right
hand side. As f2 ≤ f2 + ε, we even get that Ldf2 ≥ 1

2(f2 + ε)−1|
∆̄
f2|2. As Vd(s) ≤ 0, combining

the estimates gives us that

1

q
〈fε,q(·, 0)〉 ≥

〈∫ ∞
0

(f2 + ε)q−1(Ldf2 + 2(q − 1)Ldf2)Vd(s)ds

〉
= (2q − 1)

〈∫ ∞
0

(f2 + ε)q−1Ldf2Vd(s)ds

〉
.

By the monotone convergence theorem we can take ε→ 0 to obtain (after dividing by (2q−1) > 0,
as p > 1)

1

q(2q − 1)
〈f(·, 0)p〉 ≥

〈∫ ∞
0

fp−2Ldf2Vd(s)ds

〉
where the exponent of f arises as (f2)q = f2q = fp and (f2)q−1 = f2q−2 = fp−2.

If we now define f∗ = sups |fs|, and noting that fp−2f2−p = f0 = 1, we get that(∫ ∞
0

Ldf2Vd(s)ds

)p/2
≤

(∫ ∞
0

(f∗)2−pfp−2Ldf2Vd(s)ds

)p/2
= (f∗)

p
2

(2−p)
(∫ ∞

0
fp−2Ldf2Vd(s)ds

)p/2
.

If we now apply Hölder’s inequality with exponents 2
2−p and 2

p we find that〈(∫ ∞
0

Ldf2Vd(s)ds

)p/2〉
≤ ||f∗||

p
2

(2−p)
p

〈∫ ∞
0

fp−2Ldf2Vd(s)ds

〉p/2
.

By proposition 4.3.2 f(x, s) ≤ Qdsf(x, 0) and hence f∗(x) ≤ supsQ
d
sf(x, 0). But as Qds is a

symmetric Markovian semigroup, || sups |Qdsf(·, 0)|||p ≤ C(p)||f(·, 0)||p for 1 < p < ∞. On the
other hand, we already deduced an upper bound for the second factor on the right hand side.
Putting everything together, we get that(∫ ∞

0
Ldf2Vd(s)ds

)p/2
≤ C(p)||f(·, 0)||

p
2

(2−p)
p ||f(·, 0)||p2/2p

which rewrites to (after raising to the power 1
p)∣∣∣∣∣

∣∣∣∣∣
(∫ ∞

0
Ld(f2)(·, u))Vd(u)du

)1/2
∣∣∣∣∣
∣∣∣∣∣
p

≤ C(p)||f(·, 0)||p

as desired.

Remark 4.3.8. From the proof of theorem 4.3.6 we see that it actually suffices to assume that
f2 ∈ C∞(M × R+) and that for all ε > 0, Ld(f2 + ε)1/2 ≥ 0. Indeed, in the part where we
use that Ldf ≥ 0, we may also consider the function (f2 + ε)1/2 instead of f . As furthermore
Ld(f2 + ε) = Ld(f2) the proof still holds. Note that this observation will important for the
proof of the boundedness of the Riesz transform, as we are going to apply this to f = |ω|, where
ω(x, t) is a family of 1-forms.
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4.4 Riesz transform on functions

We are now ready to have a look at Riesz transform on functions. Let us remember that r0

denoted the lower bound of the curvature tensor R in the sense that R(X,X) ≥ r0|X|2 for any
vector field X. We can assume that r0 ≤ 0, so that we may write r0 = −a2 for some a ≥ 0.

The square roots of operators occurring in this section are constructed via de spectral the-
ory. Later, in section 6.3, we will show how to define these square roots on Lp for arbitrary
1 ≤ p <∞. It is also shown that for p = 2 this construction coincides with the one given by the
spectral theory, and that these square roots acting on the different Lp are consistent on C∞0 .
This means that the results in this section, which are only considered for functions in C∞0 , make
sense in any Lp.

Before we get to the main result of this section, we first prove a lemma.

Lemma 4.4.1. There exist constants c1, c2 such that for all 1 ≤ p ≤ ∞ and all generators L of
a Markovian, symmetric semigroup on L2 and for all a ≥ 0 we have that

c1(a||f ||p + ||(−L)1/2f ||p) ≤ ||(a2I − L)1/2f ||p ≤ c2(a||f ||p + ||(−L)1/2f ||p)

for all f ∈ C∞0 .

Proof. First suppose that a = 1. As L generates a symmetric Markovian semigroup on L2, we
know from [8] that L is self-adjoint, and the semigroup is in fact a semigroup of contractions.
The self-adjointness implies that the spectrum of L is contained in the real axis. By the Hille-
Yosida theorem, we then find that the spectrum is in fact contained in [0,∞). Writing Eλ for
the spectral family of L, we have that −L =

∫∞
0 λdEλ. Consequently, the semigroup generated

by L on L2 is given by Pt =
∫∞

0 e−λtdEλ.

By lemma 4.2.4 the function (1+x)1/2(1+x1/2)−1 is the Laplace transform of some bounded
measure n1. We compute∫ ∞

0
Psn1(ds) =

∫ ∞
0

∫ ∞
0

e−λsn1(ds)dEλ

=

∫ ∞
0

(1 + λ)1/2(1 + λ1/2)−1dEλ

= (I − L)1/2(I + (−L)1/2)−1.

We furthermore have that∣∣∣∣∣∣∣∣∫ ∞
0

Psfn1(ds)

∣∣∣∣∣∣∣∣
p

≤
∫ ∞

0
||Psf ||pn1(ds) ≤ ||f ||p

∫ ∞
0

n1(ds) =: |n1|||f ||p

where |n1| < ∞ as n1 is a bounded measure. We thus see that
∫∞

0 Psn1(ds) is a bounded
operator on Lp 14, giving us that

||(I − L)1/2f ||p =

∣∣∣∣∣∣∣∣∫ ∞
0

Ps(f + (−L)1/2f)n1(ds)

∣∣∣∣∣∣∣∣
p

≤ |n1|||f + (−L)1/2f ||p

from which we deduce that

||(I − L)1/2f ||p ≤ c2(||f ||p + ||(−L)1/2f ||p)
14Technically, it is only defined on C∞0 , but by density, and the boundedness we can uniquely extend it to a

bounded operator on Lp.
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which is the second inequality for a = 1.
From lemma 4.2.4 we also find that the functions (1 + x1/2)(1 + x)−1/2 and (1 + x)−1/2 are

the Laplace transforms of some bounded measures n2 and n3. Following the same argument as
above gives us that

||f + (−L)1/2f ||p ≤ |n2|||(I − L)1/2f ||p
and

||f ||p ≤ |n3|||(I − L)1/2||p.

Putting these together, we find that

||f ||p + ||(−L)1/2||p ≤ 2||f ||p + ||f + (−L)1/2f ||p ≤ c||(I − L)1/2||p

giving us that there is some constant c1 such that

c1(||f ||p + ||(−L)1/2||p) ≤ ||(I − L)1/2||p

which is the first inequality in the case that a = 1.

Now suppose that a ≥ 0 is arbitrary. Observe that the case a = 0 is trivial, hence we may
suppose that a > 0. Using the above with the operator 1

a2
L we get that

c1(||f ||p +
1

a
||(−L)1/2f ||p) ≤

1

a
||(a2 − L)1/2||p ≤ c2(||f ||p +

1

a
||(−L)1/2f ||p)

or, after multiplying by a > 0

c1(a||f ||p + ||(−L)1/2f ||p) ≤ ||(a2I − L)1/2||p ≤ c2(a||f ||p + ||(−L)1/2f ||p)

as desired.

We are now ready to prove the main result of this section, namely the boundedness of the
Riesz transform on functions.

Theorem 4.4.2. For all p ∈ (1,∞) there exists a constant C(p) solely depending on p such that
for all f ∈ C∞0

||df ||p ≤ C(p)||(−L)1/2f ||p + a||f ||p
where a ≥ 0 is such that r0 = −a2.

Proof. Let f ∈ C∞0 be arbitrary. It suffices to show that for all d > a it holds that ||df ||p ≤
C(p)||C0,df ||p for some constant C(p), where C0,df = (d2I − L)1/2. Indeed, by the previous
lemma we then find for all d > a that15

||df ||p ≤ C(p)||C0,df ||p ≤ C(p)(d||f ||p + ||(−L)1/2f ||p)

By taking the limit d ↓ a, we obtain

||df ||p ≤ C(p)(a||f ||p + ||(−L)1/2f ||p)

as desired.

Now denote by q the conjugate exponent of p. We start by showing that for all 1-forms
ω ∈ C∞0

〈df, ω〉 ≤ C(p)||C0,df ||p||ω||q.
15We use the convention to use the same symbol for a constant, even if it slightly changes.
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In order to simplify notation, we will write Q0,d
t = Qt,

−→
Q0,d
t =

−→
Q t, C

0,d = C, and so on. We
furthermore write b2 = d2−a2 > 0, as d > a ≥ 0. Finally, we will write f̄(x, t) = f̄t(x) = Qtf(x)

and ω̄(x, t) = ω̄t(x) =
−→
Q tω(x).

From propositions 4.2.2(3) and 4.2.3(3) we find for all 1 ≤ r ≤ ∞ that

||f̄t||r ≤ e−dt||f ||r

and
||ω̄t||r ≤ e−(d2+r0)1/2t||ω||r = e−(d2−a2)1/2t||ω||r = e−bt||ω||r.

Note furthermore that

df̄t = dQtf

=

∫ ∞
0

d(Puf)est−d
2umt(du)

=

∫ ∞
0

−→
P u(df)est−d

2umt(du)

=
−→
Q tdf

where we used proposition 4.1.17(3). We deduce the estimate

||df̄t||r ≤ e−bt||df ||r.

Now by the same considerations as in the proof of proposition 4.2.2(6) we have that

Ckf̄t = CkQtf = QtC
kf = (Ckf)t

and consequently
||Dk

0 f̄t||r = ||Ckf̄t||r = ||(Ckf)t||r ≤ e−dt||Ckf ||r.

By proposition 4.2.2(e) and the commutativity of C and L (as C =
√
d2 − L) we find that

||Ckf ||r ≤ K
k∑
i=0

||Lif ||r.

As proposition 4.2.3 is the analogue of proposition 4.2.2 for 1-forms, we get similar estimates
for Dk

0df̄t and Dk
0 ω̄t, where we need to replace d by b.

As b, d > 0, we thus find exponentially decreasing bounds in t, which allow the following
computation

f = Q0f = f̄0 =

∫ ∞
0

D2
0(f̄s)sds = 4

∫ ∞
0

(D2
0f̄)2ssds.

Here we used that Q0 = I, lemma A.2.1 from the appendix and a transformation s 7→ 2s. From
the above it now follows that

df = 4

∫ ∞
0

(D2
0df̄)2ssds

from which we find by Fubini (ω has compact support)

〈df, ω〉 = 4

∫ ∞
0
〈(D2

0df̄)2s, ω〉sds.

Now note that

(D2
0df̄)2s = d(D2

0f̄)2s = d(C2Q2sf) = d(CQsCQsf) =
−→
C
−→
Qsd(CQsf)
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Plugging this in, we obtain

〈(D2
0df̄)2s, ω〉 = 〈

−→
C
−→
Qsd(CQsf), ω〉 = 〈d(CQsf),

−→
C
−→
Qsω〉 = 〈dCf̄s, D0ω̄s〉

where we used the symmetry of
−→
C and

−→
Qs and the fact that

−→
C generates

−→
Qs.

Let us now define ḡs = CQsf = QsCf and ḡ0 = g = Cf . Applying first Cauchy-Schwarz
and then Hölder’s inequality, we find that

〈df, ω〉 = 4

〈∫ ∞
0

(dḡs ·D0ω̄s)sds

〉
≤ 4

〈(∫ ∞
0
|dḡs|2sds

)1/2

,

(∫ ∞
0
|D0ω̄s|2sds

)1/2
〉

≤ 4

∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
|dḡs|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
p

∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
|D0ω̄s|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
q

.

From propositions 4.2.2(6) and 4.2.3(6) we know that L0,dḡ = 0 and
−→
L 0,dω̄ = 0, where in

the first case we apply the proposition to Cf . From proposition 4.2.5 with s1 = s2 = 0, d1 = d
and d2 = 0, we find that

L0(ḡ2) = 2|dḡ|2 + 2(D0ḡ)2 = 2d2ḡ2 ≥ 2|dḡ|2 (4.5)

and similarly
L0|ω̄|2 ≥ 2|D0ω̄|2. (4.6)

Furthermore, we find for all ε > 0 (we apply the proposition to
√
ε) that

L0((|ḡ|2 + ε)1/2 −
√
ε) ≥ 0

and as d > a, also
L0((|ω̄|2 + ε)1/2 −

√
ε) ≥ 0.

However, as L0(
√
ε) = 0, we in fact get that

L0((|ḡ|2 + ε)1/2) ≥ 0 (4.7)

and
L0((|ω̄|2 + ε)1/2) ≥ 0. (4.8)

We are now in a position to make the final estimates. We need to distinguish between three
cases: p > 2, p = 2 and 1 < p < 2.

First suppose that p > 2. By (4.6) we have that 2
∫∞

0 |D0ω̄|2sds ≤
∫∞

0 L0|ω̄|2sds. We now
wish to apply theorem 4.3.6 to the function |ω|. Following remark 4.3.8, we already satisfy
L0(|ω̄|2 + ε) ≥ 0. Furthermore, as ω is smooth, so is |ω|2. By the exponential bounds we found
above and the fact that ωt has compact support, we have that∫

M

∫ ∞
0

(|Ld0|ω̄u|2|+ |L|ω̄u|2|+ |D0|ω̄u||2 + |
∆
|ω̄u||2)u du dm(x) <∞

where we filled in V0(u) = u. Consequently, we may apply theorem 4.3.6 for q ∈ (1, 2] (as p > 2)
to find that∣∣∣∣∣

∣∣∣∣∣
(∫ ∞

0
|D0ω̄s|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
q

≤

∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
L0|ω̄s|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
q

≤ C(q)||ω̄0||q = C(q)||ω||q.
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On the other hand, observe that

0 = dL0,dḡs =
−→
L 0,ddḡs.

Again using proposition 4.2.5 we find

L0|dḡs|2 ≥ 2|
∆

dḡs|2 + 2|D0dḡs|2 + (2d2 + 2r0)|dḡs|2 ≥ 0

as d2 > a2 = −r0. But then by proposition 4.3.2

Q0
s|dḡs|2 ≥ |dḡ2s|2.

By a change of variables, the above estimate and estimate (4.5) now give us that∫ ∞
0
|dḡs|2sds = 4

∫ ∞
0
|dḡ2s|2sds

≤ 4

∫ ∞
0

Q0
s|dḡs|2ds

≤ 2

∫ ∞
0

Q0
s(L

0ḡ2
s)sds.

Here in the last line we also made use of the fact that Q0
sh ≥ 0 whenever h ≥ 0.

If we now apply theorem 4.3.5 to the function ḡ2 with exponent p
2 > 1, we obtain∣∣∣∣∣

∣∣∣∣∣
(∫ ∞

0
|dḡs|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
p

=

∣∣∣∣∣∣∣∣∫ ∞
0
|dḡs|2sds

∣∣∣∣∣∣∣∣ 12
p/2

≤
√

2

∣∣∣∣∣∣∣∣∫ ∞
0

Q0
s(L

0ḡ2
s)sds

∣∣∣∣∣∣∣∣ 12
p/2

≤
√

2C(p)||ḡ2
0||

1
2

p/2

= C(p)||ḡ0||p
= C(p)||g||p.

If we now combine all inequalities, we find that

〈df, ω〉 ≤ 4

∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
|dḡs|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
p

∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
|D0ω̄s|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
q

≤ 4C(p)||g||pC(q)||ω||q
:= C(q)||g||p||ω||q
= C(q)||C0,df ||p||ω||q

which is the desired estimate. In this case, theorem 4.3.5 also holds for p = 1, hence the above
goes through for p = 2 as well.

We now consider 1 < p < 2. The argument is analogous to the one given for the case p > 2.
Indeed, we only need to interchange the roles of dḡ and ω̄, as in fact the values of p and q are
interchanged. First observe that from (4.6) it follows that L0|ω̄|2 ≥ 0. From proposition 4.3.2
and the fact that Q0

uh ≥ 0 whenever h ≥ 0, we then find that

|D0ω̄2u|2 ≤ Q0
u|D0ω̄u|2 ≤ Q0

u(L0|ω̄u|2).
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In the same way as above, we obtain that∫ ∞
0
|D0ω̄s|2sds ≤ 2

∫ ∞
0

Q0
s(L

0|ω̄|2)sds

and again applying theorem 4.3.5, but now to the function |ω̄|2 (which is allowed for the same
reasons as above), we find with exponent q

2 > 1 that∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
|D0ω̄s|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
q

≤ C(p)||g||q.

On the other hand, (4.5) and (4.7) allow us to apply theorem 4.3.6 in the same way as
discussed in the case p > 2 but now to the function |dḡs| and with exponent p. We obtain∣∣∣∣∣

∣∣∣∣∣
(∫ ∞

0
|dḡs|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
p

≤ C(p)||g||p.

Putting these together, we again find that

〈df, ω〉 ≤ C(q)||C0,df ||p||ω||q.

We are now ready to finish the proof. We found that there exists a constant C(p) such
that for all ω ∈ C∞0 it holds that 〈df, ω〉 ≤ C(p)||C0,df ||p||ω||q. This shows that the functional

ω 7→ 〈df, ω〉 is bounded on
−→
L q, with norm bounded by C(p)||C0,df ||p. However, from the

−→
L p/
−→
L q-duality we know that the norm is given by ||df ||p. But then we find that

||df ||p ≤ C(p)||C0,df ||p

for any d > a, which is sufficient as shown at the beginning of the proof.

We will now prove a corollary, which gives the reverse inequality of the one in the theorem
above.

Corollary 4.4.3. Under the same assumption as in theorem 4.4.2 there exist a constant C(p)
only depending on p, such that for all f ∈ C∞0

||(a2 − L)1/2f ||p ≤ C(p)(a||f ||p + ||df ||p).

Proof. First observe that by lemma 4.4.1 it suffices to consider a > 0. Indeed, by the lemma we
have for any a > 0 that

||(−L)1/2f ||p ≤ C(p)||(a2I − L)1/2f ||p
Now, if we have the result for all a > 0, we thus find that

||(−L)1/2f ||p ≤ C(p)(a||f ||p + ||df ||p)

But then it is obviously also true for a = 0 by taking the limit a ↓ 0.

So assume that a > 0. Remember that (a2 − L)1/2 = −C0,a. We claim that C0,a(C∞0 ) is
dense in Lp for any 1 ≤ p < ∞. For this, let q be the conjugate exponent of p and suppose
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that f ∈ Lq is orthogonal to C0,a(C∞0 ). By proposition 3.1.5 we have for all g ∈ C∞0 that∫ t
0 Q

0,a
s gds ∈ D(C0,a). As C0,a is the generator of Q0,a

s , by the same proposition

C0,a

(∫ t

0
Q0,a
s gds

)
= Q0,a

t g − g.

Now observe that the operators Pt acting on different Lp spaces are consistent (see section
6.2 for details) and that the operators Q0,a

t are defined as integrals in Lp of the Pt. However,
as the integrands are consistent, the integrals must be as well. This can be seen by switching
to a subsequence which converges almost everywhere. Hence, for g ∈ C∞0 we may interpret
Q0,a
t g both in L2 and Lp. By a similar argument this also holds for

∫ t
0 Q

0,a
s g ds. Furthermore,

as L is essentially selfadjoint as operator on C∞0 in L2, we find that C∞0 is a core for L in L2.
Consequently, by proposition 3.8.2 in [1] it is also a core for C0,a in L2. We can thus find a
sequence (gn) ⊂ C∞0 which converges to

∫ t
0 Q

0,a
s gds in D2(C0,a). But then 〈f, C0,agn〉 = 0 for

all n and by taking the limit n→∞ we find that

0 = 〈f,Q0,a
t g − g〉 = −〈f, g〉+ 〈f,Q0,a

t g〉.

Now let (fn)n be a sequence of C∞0 functions such that fn → f in Lq. By the consistency of
Q0,a
t on C∞0 we may use the symmetry of Q0,a

t (proposition 4.2.2) to obtain that

〈f,Q0,a
t g〉 = lim

n→∞
〈fn, Q0,a

t g〉 = lim
n→∞

〈Q0,a
t fn, g〉

Again using consistency, we may interpret Q0,a
t fn in Lq and the boundedness of Q0,a

t on Lq

(proposition 4.2.2(3)) then implies that

lim
n→∞

〈Q0,a
t fn, g〉 = 〈Q0,a

t f, g〉.

Putting everything together, we find that

〈Q0,a
t f, g〉 − 〈f, g〉 = 0.

As this holds for all g ∈ C∞0 , by density it must be that Qa,0t f = f . From proposition 4.2.2 we
have that ||Qa,0t f ||q ≤ e−at||f ||q. As f ∈ Lq and a > 0, we see that limt→0 ||Qa,0t f ||q = 0, from
which it follows that ||f ||q = 0, i.e., f = 0. We conclude that 0 is the only element orthogonal
to C0,a(C∞0 ) as subset of Lp, from which it follows that it is dense in Lp.

The above, together with duality now gives us that

||C0,af ||p = sup
{g∈C∞0 |||C0,ag||q≤1}

〈C0,af, C0,ag〉.

Using the symmetry of C0,a and proposition 4.1.7 we get that

〈C0,af, C0,ag〉 = 〈f, a2g − Lg〉 = a2〈f, g〉+ 〈df, dg〉.

By Hölder’s inequality we now find that

〈C0,af, C0,ag〉 ≤ a2||f ||p||g||q + ||df ||p||dg||q
≤ (a2||f ||2p + ||df ||2p)1/2(a2||g||2q + ||dg||2q)1/2.

The last inequality holds in general, see lemma A.2.2 in the appendix. By lemma 4.4.1 and
theorem 4.4.2 we obtain

(a2||g||2q + ||dg||2q)1/2 ≤ a||g||q + ||dg||q
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≤ C(q)(a||g||q + ||(−L)1/2g||q
≤ C(q)||C0,ag||q.

If we now combine everything, we find that

||C0,af ||p ≤ sup
{g∈C∞0 |||C0,ag||q≤1}

(a2||f ||2p + ||df ||2p)1/2(a2||g||2q + ||dg||2q)1/2

≤ sup
{g∈C∞0 |||C0,ag||q≤1}

C(q)||C0,ag||q(a2||f ||2p + ||df ||2p)1/2

≤ C(q)(a2||f ||2p + ||df ||2p)1/2

which is the desired estimate, as we may well write C(p) instead of C(q).

4.5 Riesz transform for k-forms

In the previous section we have seen that theorem 4.4.2 relies on the formula for L|ω|2 as
presented in proposition 4.1.15, where ω is a 1-form. If we have such a formula for forms of any
order, we can extend the results from the previous section to k-forms.

We will write Lp,k for the closure of the space of C∞0 k-forms with respect to ||ω||p = |||ω|||p.
In this notation

−→
L p = Lp,1. As in section 4.1, we denote by δ the divergence, acting on forms

of any order. From the definition of divergence we see that it takes k-forms to (k − 1)-forms.
The Laplace operator acting on k-forms is given by Lk = −(dδ+ δd), which is commonly known
as the Witten-Laplacian. As d sends k-forms to (k + 1)-forms, we see that Lk sends k-forms to
k-forms. In the case where ρ ≡ 1 we simply write ∆k for Lk.

Proposition 4.5.1. Lk defined on C∞0 is essentially self-adjoint on L2,k and for all ω ∈ C∞0
we have

〈Lkω, ω〉 = −〈dω,dω〉 − 〈δω, δω〉.

Proof. The proof is identical to that of proposition 4.1.16, as everything used there also applies
to arbitrary k-forms. It can again also be found in [34].

We will now write down some usefull identities. First of all, remembering that d2 = δ2 = 0
we immediately see that Lkd = dLk−1 and Lkδ = δLk+1. This follows by simply writing out
both sides of the equality. Observe that in each of the equalities, both sides do in fact act on
the same type of forms, and return the same type as well.

It is furthermore known that Lk satisfies a Bochner-Lichnérowicz-Weitzenbock formula (see
for example [23]). In the case where ρ ≡ 1, this formula is given by

1

2
∆|ω|2 = ω ·∆kω +

1

k!
|
∆
ω|2 + Q̃k(ω, ω) (4.9)

where Q̃k is a quadratic form acting on k-forms which involves the curvature tensors, which we
can represent in local coordinates. We write r k

ij l for the coefficients of the curvature tensor,

and Rab =
∑n

i=1 r
i

ia b for the coefficients of the Ricci curvature tensor. Writing ωi1i2...ik for the
coefficients of the k-form ω, and writing upper indices if we have used the duality, we get that

Q̃k(ω, ω) =
1

(k − 1)!
Rabω

ai2...ikωbi2...ik +
1

2(k − 2)!
rpqrsω

pqi3...ikωrsi3...ik

where we use Einstein’s summation convention.
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For arbitrary ρ > 0 we find using proposition 4.1.11 that

Lkω = ∆kω + d(ι(d log ρ∗)ω) + ι(d log ρ∗)dω.

Remembering that L|ω|2 = ∆|ω|2 + d|ω|2 · d log ρ we deduce that

1

2
L|ω|2 = ω · Lkω +

1

k!
|
∆
ω|2 +Qk(ω, ω) (4.10)

where Qk is given by

Qk(ω, ω) = Q̃k(ω, ω) +
1

2
d(ω · ω) · d log ρ− ω · d(ι(d log ρ∗)ω)− ω · ι(d log ρ∗)dω

This formula for L|ω|2 is what we are looking for as discussed in the beginning of the sec-
tion. In analogy to the assumption that the Ricci curvature is bounded from below, we will now
assume that the quadratic forms Qk are bounded from below, i.e., we assume that there exist
constants ak ≥ 0 such that Qk(ω, ω) ≥ −a2

k|ω|2 for all k-forms ω

We can now start repeating what we have done in the previous sections. By proposition 4.5.1
we have that the closure Lk in L2,k (denoted again by Lk) is self-adjoint and negative. Hence
its spectrum is contained in (−∞, 0]. By the spectral theorem we may write −Lk =

∫∞
0 λdEkλ,

where (Ekλ)λ is the spectral family belonging to Lk. We can then also define the heat semigroup
P kt := etLk =

∫∞
0 e−λtdEkλ.

We collect some properties of P kt in the following theorem. These properties are analogues
of those in proposition 4.1.17 and may be proved similarly.

Proposition 4.5.2. The operators P kt satisfy the following properties:

1. |P kt ω| ≤ ea
2
ktPt|ω|.

2. ||P kt ω||p ≤ ea
2
k|1−2/p|t||ω||p, 1 ≤ p ≤ ∞.

3. For all k-forms ω ∈ C∞0

P k+1
t dω = dP kt ω, P k−1

t (δω) = δP kt ω.

4. If ω ∈ C∞0 is a k-form, we have that P kt ω ∈ C∞(M × [0,∞)) and

d

dt
P kt ω = LkP

k
t ω = P kt Lkω.

As done before, we will again define for s ∈ R and d ≥ 0 the subordinated semigroups

Qk,s,dt ω =

∫ ∞
0

P kuωe
st−d2umt(du).

We get the following analogue of proposition 4.2.3.

Proposition 4.5.3. The operators Qk,s,dt satisfy the following properties:

1. Qk,s,dt is a symmetric semigroup on L2,k with generator given by Ck,s,d = sI−(d2I−Lk)1/2.

2. MbQ
k,s,d
t = Qk,s+b,dt .
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3. If d ≥ ak, then for all k-forms ω we have that

|Qk,s,dt ω| ≤ Qs,(d
2−a2k)1/2

t |ω|.

4. If d2 ≥ a2
k|1− 2/p|, then (Qk,s,dt )t is a semigroup of bounded operators on Lp,k, where the

norms are bounded by et(s−(d2−a2k|1−2/p|)1/2.

5. If d2 ≥ a2
k|1− 2/p|, then there exist constants c(k, s, d) depending only on k, s, d such that

for all 1 ≤ p ≤ ∞ and all ω ∈ C∞0

||
−→
C k,s,dω||p ≤ c(k, s, d)(||ω||p + ||Lkω||p).

6. For all k-forms ω ∈ C∞0 , the function ω̄(x, t) = Qk,s,dt ω(x) is in C∞(M × (0,∞))∩C(M ×
[0,∞)) and satisfies (Ls,d0 + Lk)ω̄ = 0.

Proof. Part (1) and (2) are proved similarly as for function and 1-forms. For part (3), we observe
that the proof of proposition 4.2.3(3) relies on the fact that |P 1

t ω| ≤ e−r0tPt|ω|. In this case we
have for any k = 0, 1, . . . , n that |P kt ω| ≤ ea

2
ktPt|ω| and the proof is the same. Part (4) and (5)

also rely on the analogue of proposition 4.1.17. Finally, the proof for part (6) can also be copied
from the proof of proposition 4.2.2.

4.5.1 Boundedness of the Riesz transform on k-forms

As our semigroups Qk,s,dt satisfy the same properties as in the case for functions and 1-forms, it
might not be surprising that we find an analogue for theorem 4.4.2 for k-forms. Before we state
the theorem we define b0 = a0 and bk = max{ak, ak−1} for k = 1, . . . n and write Ck,d for the

generator of Qk,0,dt .

Theorem 4.5.4. Let 1 < p < ∞. There exists a constant c(p, k) only depending on p and k
such that for all k-forms ω ∈ C∞0 it holds that

||dω||p ≤ c(p, k)||Ck,bkω||p

and
||δω||p ≤ c(p, k)||Ck,bk−1ω||p.

The proof of this theorem uses the same strategy as the proof of theorem 4.4.2. We therefore
first prove a lemma.

Lemma 4.5.5. For all p, 1 ≤ p ≤ ∞, define a2
k,p = a2

k|1 − 2/p| and for all d ≥ ak,p write

d2 = e2 + a2
k,p where e ≥ 0. There exist two constants C1, C2 such that for all k, p and for all

k-forms ω and for all d ≥ ak,p it holds that

C1(e||ω||p + ||Ck,ak,pω||p) ≤ ||Ck,dω||p ≤ C2(e||ω||p + ||Ck,ak,pω||p).

Proof. The proof is similar to that of lemma 4.4.1. First observe that the inequalities are trivial
if d = ak,p, i.e., if e = 0. We may thus assume that d > ak,p.

By proposition 4.2.4 the function f1(x) = (1 + x)1/2(1 + x1/2)−1 is the Laplace transform
of some bounded measure n1. Let c > 0 be a constant to be determined later. We define the
operator ∫ ∞

0
P kcse

−a2k,pcsn1(ds).
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We have that∫ ∞
0

P kcse
−a2k,pcsn1(ds) =

∫ ∞
0

∫ ∞
0

e−λcse−a
2
k,pcsn1(ds)dEkλ

=

∫ ∞
0

(1 + c(λ+ a2
k,p))

1/2(1 + (c(λ+ a2
k,p))

1/2)−1dEkλ

= (I + c(a2
k,p − Lk))1/2(I + c1/2(a2

k,p − Lk)1/2)−1.

Now for any C∞0 k-form ω we obtain∣∣∣∣∣∣∣∣∫ ∞
0

P kcsωe
−a2k,pcsn1(ds)

∣∣∣∣∣∣∣∣
p

≤
∫ ∞

0
||P kcsω||pe

−a2k,pcsn1(ds)

≤
∫ ∞

0
ea

2
k,pcs||ω||pe−a

2
k,pcsn1(ds)

= |n1|||ω||p

which is finite as n1 is a bounded measure. But then we find that

||(I + c(a2
k,p − Lk))1/2ω||p ≤ |n1|||(I + c1/2(a2

k,p − Lk)1/2)ω||p
≤ |n1|(||ω||p + c1/2||Ck,ak,pω||p)

or after dividing by c1/2

||(1/c+ a2
k,p − Lk)1/2ω||p ≤ |n1|(c−1/2||ω||p + ||Ck,ak,pω||p.

We want that 1
c + a2

k,p = d, or 1
c = d2− a2

k,p = e2. Plugging this into the above estimate we find
that

||(d− Lk)1/2ω||p ≤ |n1|(e||ω||p + ||Ck,ak,pω||p
which is the second inequality, as Ck,dω = (d− Lk)1/2ω.

Furthermore, by proposition 4.2.4 also the functions f2(x) = (1 + x1/2)(1 + x)−1/2 and
f3(x) = (1 + x)−1/2 are Laplace transforms of bounded measures n2 and n3. In the same way
as above, we may write operators

(I + c1/2(a2
k,p − Lk)1/2)(I + c(a2

k,p − Lk))−1/2 =

∫ ∞
0

P kcse
−a2k,pcsn2(ds)

and

(I + c(a2
k,p − Lk))−1/2 =

∫ ∞
0

P kcse
−a2k,pcsn3(ds).

But then we find that

||ω + c1/2Ck,ak,pω||p ≤ |n2|||(I + c(a2
k,p − Lk))1/2ω||p

and
||ω||p ≤ |n3|||(I + c(a2

k,p − Lk))1/2ω||p
or again after dividing by c1/2 and again taking c = 1

e2

||eω + Ck,ak,pω||p ≤ |n2|||Ck,dω||p

and
e||ω||p ≤ |n3|||Ck,dω||p

Combining the two inequalites now gives the desired estimate.
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We also need the following proposition. Here we define Lk,s,d = Ls,d0 + Lk, which acts on

families of k-forms. Ls,d0 is as in section 4.2. We get the following computational result, which
is the analogue of proposition 4.2.5 for k-forms.

Proposition 4.5.6. Suppose that ω(x, t) is a family of k-forms which is smooth in (x, t) and
satisfies Lk,s1,d1ω = 0. Then

1. For all s2, d2 ≥ 0

Ls2,d2 |ω|2 ≥ 2

k!
|
∆
ω|2 + 2|D0ω + (s1 − s2)ω|2 + (2d2

1 − d2
2 − (s2 − 2s1)2 − 2a2

k)|ω|2.

2. If furthermore d2
1 − a2

k ≥ d2
2 ≥ s2

1, the for all ε > 0

Ls1,d2((|ω|2 + ε2)1/2 − ε) ≥ 0.

Proof. The proof is similar to that of proposition 4.2.5. Assume that Lk,s1,d1ω = 0. Writing out
Lk,s2,d2 − Lk,s1,d1 gives us that

Lk,s2,d2ω = Lk,s1,d1ω + 2(s1 − s2)D0ω + (s2
2 − s2

1 + d2
1 − d2

2)ω

= 2(s1 − s2)D0ω + (s2
2 − s2

1 + d2
1 − d2

2)ω

By equation (4.10), we have that (where we used that the part of Ls2,d20 can be treated as in the
proof of proposition 4.2.5)

Ls2,d2 |ω|2 = 2ω · Lk,s2,d2ω + 2|D0ω|2 +
2

k!
|
∆
ω|2 + 2Qk(ω, ω)− (s2

2 − d2
2)|ω|2

≥ 4(s1 − s2)ω ·D0ω + (s2
2 − 2s2

1 + 2d2
1 − d2

2)|ω|2 + 2|D0ω|2 +
2

k!
|
∆
ω|2 − 2a2

k|ω|2

=
2

k!
|
∆
ω|2 + 2|D0ω + (s1 − s2)ω|2 + (2d2

1 − d2
2 − (s2 − 2s1)2 − 2a2

k)|ω|2.

Here we used that Qk(ω, ω) ≥ −a2
k|ω|2 in the second line, and a rewriting identical to the one

in the proof of proposition 4.2.5 in the last line.

For the second part of the proposition, we can copy the proof of proposition 4.2.5, only now
we use the function φ(x) = ( xk! + ε2)1/2 − ε. In that case we find that

Ls1,d2((|ω|2/k! + ε2)1/2 − ε) ≥ 0

for all ε > 0, so in particular for (k!)−1/2ε, which gives us that

Ls1,d2((|ω|2 + ε2)1/2 − ε) = (k!)1/2Ls1,d2((|ω|2/k! + (ε(k!)−1/2)2)1/2 − ε(k!)−1/2) ≥ 0

as desired.

We are now ready to prove the boundedness of the Riesz transform on k-forms.

Proof of theorem 4.5.4. We will first focus on the estimate for dω. It suffices to show for all
d > bk that

||dω||p ≤ c(p, k)||Ck,dω||p
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where c(p, k) is some constant only depending on k and p. Indeed, if we have this, we find for
all d > bk that

||dω||p ≤ c(p, k)||Ck,dω||p ≤ c(p, k)((d2 − b2k)1/2||ω||p + ||Ck,bkω||p)

where the last inequality follows from lemma 4.5.5. (We actually need to look into the proof of
the lemma, in which case we see that it still holds with bk instead of ak,p as bk ≥ ak,p). Taking
the limit d ↓ bk, we find that

||dω||p ≤ c(p, k)||Ck,bkω||p.

It in fact suffices to show for all (k + 1)-forms η in C∞0 that

〈dω, η〉 ≤ c(p, k)||Ck,dω||p||η||q

where q is the conjugate exponent of p. The above is indeed sufficient, as it shows that the norm
of the map on Lq,k+1 given by η 7→ 〈dω, η〉 is bounded by c(p, k)||Ck,dω||p. As this norm is in
fact equal to ||dω||p we get our desired estimate.

Now fix d > bk, a k-form ω and a (k+1)-form η which are smooth and compactly supported.
We write

ω̄(x, t) = Qk,0,dt ; ω̂(x, t) = Qk,0,dt (Ck,dω)(x); η̄(x, t) = Qk+1,0,d
t η(x).

By proposition 4.5.3 we have that ω̄ satisfies Lk,0,dω̄ = 0. We can thus use proposition 4.5.6
with s1 = s2 = 0, d1 = d and d2 = 0, which gives us that

L0|ω̄|2 ≥ 2

k!
|
∆
ω̄|2 + 2|D0ω̄|2 + (2d2 − 2a2

k)|ω|2 ≥
2

k!
|
∆
ω̄|2 ≥ 2|dω̄|2.

Here we used that d > bk ≥ ak. The last inequality follows by using normal coordinates and
showing that the estimate holds pointwise. Observe that the same holds for ω̂. As d > ak+1, we
also find it for η̄. If we do the exact same, but leave out other terms, we furthermore have that

L0|η̄|2 ≥ 2|D0η̄|2.

Now observe that L0(ε) = 0, so that from proposition 4.5.6 we get for all ε > 0 that

L0((|ω̄|2 + ε)1/2) ≥ 0; L0((|ω̂|2 + ε)1/2) ≥ 0; L0((|η̄|2 + ε)1/2) ≥ 0.

Now by combining proposition 4.5.3 with 4.2.3 we find that

||ω̄(·, t)||p ≤ e−(d2−a2k)1/2t||ω||p
||ω̂(·, t)||p ≤ e−(d2−a2k)1/2t||Ck,dω||p ≤ ce−(d2−a2k)1/2t(||ω||p + ||Lkω||p)

||η̄(·, t)||p ≤ e−(d2−a2k)1/2t||η||p.

As the proof of proposition 4.5.3(6) is the same as that of 4.2.2(6), we also get exponential
bounds on the D0 derivatives of any order. All these estimates allow us to copy the proof of
theorem 4.4.2, which summarizes to

〈dω, η〉 =

∫ ∞
0

D2
0〈dω̄, η〉sds = 4

∫ ∞
0
〈dω̂,D0η̄〉sds
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≤

∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
|dω̂|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
p

∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
|D0η̄|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
q

.

Finally, as we have identical inequalities as in the proof of theorem 4.4.2, we find from
theorems 4.3.5 and 4.3.6 that∣∣∣∣∣

∣∣∣∣∣
(∫ ∞

0
|dω̂|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
p

≤ C(p)||ω̂0||p = C(p)||Ck,dω||p

and ∣∣∣∣∣
∣∣∣∣∣
(∫ ∞

0
|D0η̄|2sds

)1/2
∣∣∣∣∣
∣∣∣∣∣
q

≤ C(q)||η̄0||q = C(q)||η||q

Putting everything together gives us that

〈dω, η〉 ≤ C(p)||Ck,dω||p||η||q

which is sufficient, as argued above. This completes the proof of the first inequality.

The proof for δω is similar. It again suffices to show for all d > bk−1 that

||δω||p ≤ c(p, k)||Ck,dω||p

which again follows from

〈δω, η〉 ≤ c(p, k)||Ck,dω||p||η||q

for all (k − 1)-forms η in C∞0 . (Note that here η is a (k − 1)-form as δω is.) The argument

for proving this is identical as above, where we now have to define η̄(x, t) = Qk−1,0,d
t η(x). This

also makes clear why we need to consider bk−1 rather than bk. Finally, as we also have that
2
k! |

∆
ω̄|2 ≥ 2|δω̄|2, which can also be proven pointwise using normal coordinates, the remainder

of the proof is identical, with which the theorem is proved.

As before, we get the reverse inequalities as a corollary.

Corollary 4.5.7. Let dk,p = (b2k − a2
k,p)

1/2 + (b2k−1 − a2
k,p)

1/2 + 2ak,p. For all p ∈ (1,∞) and
all k = 0, 1 . . . , n, there exists a constant C(k, p) such that for all k-forms ω and all e ≥ dk,p it
holds that

||Ck,eω||p ≤ C(k, p)(e||ω||p + ||dω||p + ||δω||p).

Proof. We follow the idea of the proof of corollary 4.4.3. Observe that e ≥ dk,p > ak,p. We
will show that Ck,e(C∞0 ) is dense in Lp,k for any 1 ≤ p ≤ ∞. For this, let η ∈ Lq,k be an
arbitrary element orthogonal to Ck,e(C∞0 ). By proposition 3.1.5 for ω ∈ C∞0 we have that∫ t

0 Q
k,0,e
s ωds ∈ D(Ck,e) and

Ck,e
∫ t

0
Qk,0,es ωds = Qk,0,et ω − ω.

By similar reasoning as in the proof of corollary 4.4.3 (but now with the semigroup P kt ) we find

that this is orthogonal to η. Using the symmetry of Qk,0,et , we find that

0 = 〈Qk,0,et ω, η〉 − 〈ω, η〉 = 〈ω,Qk,0,et η − η〉.
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As this holds for all k-forms ω in C∞0 , we conclude that Qk,0,et η = η, or ||η||q = ||Qk,0,et η||q. But
as e > ak,p ≥ ak, we find that

||Qk,0,et η||q ≤ e−(e2−a2k)1/2t||η||q → 0 (t→∞).

This shows that ||η||q = 0, hence η = 0. We find that the only element of Lq,k orthogonal to
Ck,e(C∞0 ) is 0, hence Ck,e(C∞0 ) is dense in Lp,k.
By duality we may now write that

||Ck,eω||p = sup
{η∈C∞0 |||Ck,eη||q≤1}

〈Ck,eω,Ck,eη〉.

Now we have that

〈Ck,eω,Ck,eη〉 = 〈(Ck,e)2ω, η〉
= 〈(e2 − Lk)ω, η〉
= e2〈ω, η〉+ 〈dω,dη〉+ 〈δω, δη〉
≤ e2||ω||p||η||q + ||dω||p||dη||q + ||δω||p||δη||q
≤ (e||ω||p + ||dω||p + ||δω||p)(e||η||q + ||dη||q + ||δη||q).

In the line before last we used Hölder’s inequality and in the last line we simply added some
positive terms.

From theorem 4.5.4 and lemma 4.5.5 it now follows that

||dη||q + ||δη||q ≤ C(q, k)(||Ck,bkη||q + ||Ck,bk−1η||q)
≤ C(q, k)([(b2k − a2

k,p)
1/2 + (b2k−1 − a2

k,p)
1/2]||η||q + ||Ck,ak,pη||q).

But then we find that

e||η||q + ||dη||q + ||δη||q ≤ C(q, k)[e+ (b2k − a2
k,p)

1/2 + (b2k−1 − a2
k,p)

1/2]||η||q + ||Ck,ak,pη||q)
= C(q, k)[e+ dk,p − 2ak,p]||η||q + ||Ck,ak,pη||q).

Now as e ≥ dk,p, we have that

e+ dk,p ≤ 2e ≤ 2((e2 − a2
k,p)

1/2 + ak,p)

which rewrites to
e+ dk,p − 2ak,p ≤ 2(e2 − a2

k,p)
1/2.

Furthermore, by lemma 4.5.5 we obtain

(e2 − a2
k,p)

1/2||η||q + ||Ck,ak,pη||q) ≤ C||Ck,eη||q.

Using this, we find that

e||η||q + ||dη||q + ||δη||q ≤ C(q, k)||Ck,eη||q.

Finally, as
sup

{η∈C∞0 |||Ck,eη||q≤1}
||Ck,eη||q ≤ 1

we can put everything together to obtain that

||Ck,eω||p ≤ C(p, k)e||ω||p + ||dω||p + ||δω||p

as desired.
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4.6 Concluding remarks

We will finish this chapter with some concluding remarks. The theorems that are proven in [6]
are all under the assumption that the operators act on C∞0 functions or forms. In chapter 6 we
will carefully extend (or define where necessary) all these operators to Lp,k for 1 < p <∞. We
will also show that these extension agree at least on C∞0 . This allows us to apply the results of
this chapter so that we obtain estimates for these operators on Lp,k which will ultimately lead
to the results that we discuss in sections 6.3 and 6.4. Before we can turn to our results however,
we first need to introduce the concepts of R-sectoriality and H∞-functional calculi for sectorial
and bisectorial operators, which are the topics of the next chapter.



Chapter 5

R-sectoriality and H∞-calculus

In this chapter we will introduce the necessary notions for our analysis of the Hodge-Dirac
operator in the next chapter. We will introduce the concept of R-boundedness of a collection of
operators. Thereafter we define what we mean by a sectorial and bisectorial operator, as well as
an R-sectorial and R-bisectorial operator. Finally we will say what we mean by the fact that a
sectorial or bisectorial operator has a bounded H∞-functional calculus. Along with the various
definitions, we also collect some results which we want to use in the next chapter.

5.1 R-boundedness

Suppose that X,Y are two Banach spaces and denote by L(X,Y ) the set of bounded linear
operators from X to Y . Suppose that T = {Ti|i ∈ I} ⊂ L(X,Y ). We say that T is uniformly
bounded if the operator norms of the Ti are uniformly bounded, i.e., if

sup
i∈I
||Ti|| <∞

When working in a Hilbert space, this notion is usually fine to work with. However, in other
cases we need often to generalize this concept.

Definition 5.1.1 (R-boundedness). Suppose that X,Y are Banach spaces and let T ⊂ L(X,Y ).
Let (rn)n be a Rademacher sequence, i.e., a sequence of independent, identically distributed
random variables satisfying P(r1 = ±1) = 1

2 . We say that T is R-bounded if there exists a
constant C such that for all n ∈ N and all T1, . . . , Tn ∈ T and x1, . . . , xn ∈ X we have that

E

∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

rjTjxj

∣∣∣∣∣∣
∣∣∣∣∣∣
2 ≤ C2E

∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

rjxj

∣∣∣∣∣∣
∣∣∣∣∣∣
2 .

Notice that we may replace the 2 in the above statement by any p ∈ [1,∞). This will only result
in a different constant. See for example [18].

We now state the relationship between R-boundedness and uniform boundedness.

Proposition 5.1.2. Suppose that X,Y are Banach spaces and let T ⊂ L(X,Y ). If T is R-
bounded, then it is also uniformly bounded. If we furthermore assume that X,Y are Hilbert
spaces, the converse also holds.

Proof. First assume that T is R-bounded with constant C. Pick T ∈ T arbitrary. By the
R-boundedness we find for all x ∈ X that

||Tx||2 = E(||r1Tx||2) ≤ C2E(||r1x||2) = C2||x||2

77
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hence ||T || ≤ C. As this holds for arbitrary T , we find that sup{||T || : T ∈ T } ≤ C < ∞. We
conclude that T is uniformly bounded.

Now suppose that X,Y are Hilbert spaces and assume that T is uniformly bounded, say by
a constant C. Let k ∈ N and choose T1, . . . , Tk ∈ T and x1, . . . , xk ∈ X. We can write that

E

∣∣∣∣∣
∣∣∣∣∣
k∑

n=1

rnTnxn

∣∣∣∣∣
∣∣∣∣∣
2
 = E

(〈
k∑

n=1

rnTnxn,

k∑
m=1

rmTmxm

〉)

=
k∑

n,m=1

E(rnrm)〈Tnxn, Tmxm〉

=

k∑
n=1

〈Tnxn, Tnxn〉

=
k∑

n=1

||Tnxn||2

≤ C2
k∑

n=1

||xn||2.

Here the last line follows by the fact that T is uniformly bounded. We can use a similar rewriting
to find that

E

∣∣∣∣∣
∣∣∣∣∣
k∑

n=1

rnTnxn

∣∣∣∣∣
∣∣∣∣∣
2
 ≤ C2

k∑
n=1

||xn||2 = C2E

∣∣∣∣∣
∣∣∣∣∣
k∑

n=1

rnxn

∣∣∣∣∣
∣∣∣∣∣
2


proving that T is R-bounded.

Many results concerning uniform boundedness of sets of operators on Hilbert spaces turn
out to generalize to Banach spaces by replacing uniform boundedness by R-boundedness.

We conclude this section by proving an elementary property about R-boundedness of certain
sets of operators.

Proposition 5.1.3. Let X,Y, Z be Banach spaces and suppose that T ⊂ L(X,Y ) is R-bounded
and let B ∈ L(Y, Z). Then the set {BT : T ∈ T } is R-bounded in L(X,Z).

Proof. Let C be the constant from the R-boundedness of T . Let N ∈ N and pick T1, . . . , TN ∈ T
and x1, . . . , xN ∈ X. By the linearity and boundedness of B we get that

E

∣∣∣∣∣
∣∣∣∣∣∑
n=1

rnBTnxn

∣∣∣∣∣
∣∣∣∣∣
2
 = E

∣∣∣∣∣
∣∣∣∣∣B∑

n=1

rnTnxn

∣∣∣∣∣
∣∣∣∣∣
2


≤ ||B||2E

∣∣∣∣∣
∣∣∣∣∣∑
n=1

rnTnxn

∣∣∣∣∣
∣∣∣∣∣
2


≤ C2||B||2E

∣∣∣∣∣
∣∣∣∣∣∑
n=1

rnxn

∣∣∣∣∣
∣∣∣∣∣
2
 .

This proves that {BT : T ∈ T } is R-bounded.



5.2. R-SECTORIAL OPERATORS 79

5.2 R-sectorial operators

Before defining R-sectorial operators, we will first introduce the notion of a sectorial operator.
For ω ∈ (0, π) we define Σ+

ω to be the open sector of the complex plane given by

Σ+
ω = {z ∈ C \ {0} : | arg z| < ω}.

Definition 5.2.1 (Sectorial operator). A linear operator L with domain D(L) acting on a

Banach space X is called sectorial if there exists an ω ∈ [0, π) such that σ(L) ⊂ Σ+
ω and for all

θ ∈ (ω, π) it holds that ||(λ− L)−1|| .θ
1
|λ| for all λ /∈ Σ+

θ . The infimum over all possible ω for

which the above holds is denoted by ω(L), and is called the angle of sectoriality.

We begin with a simple observation about positive self-adjoint operators on some Hilbert
space H. This can be found in chapter 11 of [20].

Proposition 5.2.2. Suppose that L is a densely defined self-adjoint operator on a Hilbert space
H. Assume furthermore that for all h ∈ D(L) it holds that 〈Lh, h〉 ≥ 0. Then L is sectorial with
ω(L) = 0.

Proof. The self-adjointness of L implies that its spectrum is real. The positivity then implies
that the spectrum is in fact contained in the positive real axis.

Now suppose that λ /∈ [0,∞). For h ∈ D(L) with ||h|| = 1 we find by the Cauchy-Schwarz
inequality that

||(λ− L)h||||h|| ≥ |〈(λ− L)h, h〉| = |λ− 〈Lh, h〉| ≥ d(λ, [0,∞)).

Now pick µ > 0 and suppose that λ /∈ Σ+
µ . If Re(λ) ≤ 0, then d(λ, [0,∞)) = |λ|. If Re(λ) >

0, then d(λ, [0,∞)) = | Im(λ)|. Now observe that | Im(λ)| ≥ sin(µ)|λ|. We thus see that
d(λ, [0,∞)) ≥ min{1, sin(µ)}|λ|. But then we find that ||(λ − L)h|| & |λ|||h||−1. Consequently,
||(λ−L)−1h|| . 1

|λ| ||h||. As this holds for all h ∈ D(L) the continuity of (λ−L)−1 and density of

D(L) give us that ||(λ−L)−1|| . 1
|λ| . As the above holds for all µ > 0, we find that ω(L) = 0.

Example. As an example of an application of the above proposition we can consider the
operators −Lk on L2,k as defined in section 4.5 in chapter 4. By proposition 4.5.1 the opera-
tor Lk defined on C∞0 is essentially self-adjoint on L2,k. Hence it is closeable in L2,k, and its
closure is self-adjoint. We denote this closure again by Lk. Proposition 4.5.1 also gives us that
〈−Lkω, ω〉 ≥ 0 for all ω ∈ C∞0 and that C∞0 is dense in D(Lk). The positivity for arbtirary
ω ∈ D(Lk) now follows by approximation and the continuity of the inner product. The above
proposition thus applies, and we get that −Lk is sectorial on L2,k with ω(−Lk) = 0.

The key to extending the concept of sectoriality to R-sectoriality is to observe that the
second part of the definition of sectoriality can also be characterized by stating that the set

{λ(λ − L)−1|λ /∈ Σ+
θ } is bounded for all θ ∈ (ω, π). Replacing bounded by R-bounded, we get

the following definition.

Definition 5.2.3 (R-sectorial operator). A linear operator L with domain D(L) acting on a

Banach space X is called R-sectorial if there exists an ω ∈ [0, π) such that σ(L) ⊂ Σ+
ω and for

all θ ∈ (ω, π) it holds that the set {λ(λ−L)−1|λ /∈ Σ+
θ } is R-bounded. The infimum of all ω for

which the above holds is denoted by ωR(L).
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5.2.1 Bisectorial operators

Instead of assuming that the spectrum is contained in a single sector, we could also consider
operators of which the spectrum is contained in a double sector. If we write Σ−ω = −Σ+

ω , we
may define for ω ∈ (0, π2 ) a double sector of angle ω by Σω = Σ+

ω ∪ Σ−ω . We have the following
definition.

Definition 5.2.4 (Bisectorial operator). A linear operator L with domain D(L) acting on a
Banach space X is called bisectorial if there exists an ω ∈ (0, π2 ) such that σ(L) ⊂ Σω and for
all θ ∈ (ω, π2 ) the set {λ(λ − L)−1 : λ /∈ Σθ} is bounded. The infimum over all ω for which the
above holds is called the angle of bisectoriality.

As extension to the above definition, we call an operator R-bisectorial if it satisfies the above
definition with bounded replaced by R-bounded.

Typically, second order differential operators are sectorial, while first order differential oper-
ators are bisectorial.

5.3 H∞-functional calculus

In this section we will give a concise introduction to the holomorphic functional calculus for
sectorial and bisectorial operators. Along with the basic definitions we will collect some results
that we will need for our proofs in the next chapter. For sectorial operators we refer to [20] and
[17], whereas the treatment of bisectorial operators can be found in [11].

First of all, we need to introduce the spaces H∞(Ω) and H∞0 (Ω), where Ω is either Σ+
ω or

Σω for some ω ∈ (0, π), respectively ω ∈ (0, π2 ).

Definition 5.3.1. Let Ω be as above. The space H∞(Ω) is defined as the Banach space of all
bounded analytic functions on Ω endowed with the supremum norm. The set H∞0 (Ω) is defined
as the linear subspace of H∞(Ω) consisting of those f ∈ H∞(Ω) for which there exist constants
ε > 0 and C ≥ 0 such that

|f(z)| ≤ C |z|ε

(1 + |z|)2ε

for all z ∈ Ω.

The property for a function in H∞0 (Ω) simply tells us that the function must have some
decay near 0 and when |z| tends to infinity.

We will first focus on the case where A is a sectorial operator of angle ω on a Banach space
X. We wish to define a bounded operator f(A) for f ∈ H∞0 (Σ+

σ ), where σ > ω. This can be
done by the Dunford integral, which is inspired by the following theorem from complex analysis.

Theorem 5.3.2 (Cauchy Integral Formula). Let U be a domain in C and suppose that f : U → C
is a holomorphic function. Define D = {z ∈ C : |z−z0| ≤ r}, where r > 0 and such that D ⊂ U .
Then for all a in the interior of D it holds that

f(a) =
1

2πi

∫
∂D

f(z)

z − a
dz

where we traverse the boundary counter-clockwise.
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We will thus define

f(A) :=
1

2πi

∫
∂Σ+

θ

f(z)(z −A)−1dz

where θ ∈ (ω, σ) may be chosen arbitrarily as a consequence of the Cauchy integral theorem.
The contour-integral is oriented counter-clockwise, in the sense that the spectrum of A is on the
left-hand side when traversing the path. We will show that the integral is well defined as Bochner
integral in L(X). For this, first note that as θ > ω, we have that ∂Σθ \ {0} ⊂ ρ(A). This means
that for almost all z ∈ Σ+

θ the resolvent (z−A)−1 is well-defined. Furthermore, as A is sectorial,
there exists a constant Mθ such that for all z ∈ ∂Σ+

θ \ {0} it holds that ||z(z − A)−1|| ≤ Mθ.
This, together with the decay assumption on f gives us that

||f(A)|| ≤ Mθ

2π

∫
∂Σ+

θ

|f(z)| |dz|
|z|
≤ CM

2π

∫
∂Σ+

θ

|z|ε−1

(1 + |z|)2ε
|dz| <∞.

For completeness we also state the following result, which is theorem 10.16 in [17].

Theorem 5.3.3. Let A be a sectorial operator on a Banach space X and let ω(A) < σ < π.
The mapping H∞0 (Σ+

σ )→ L(X) defined by f 7→ f(A) is linear and multiplicative. Furthermore,
it holds that

ρ(A) = A(I +A)−2 for ρ(z) =
z

(1 + z)2

and we have the following convergence property: if fn, f ∈ H∞(Σ+
σ ) are uniformly bounded and

if fn(z)→ f(z) for all z ∈ Σ+
σ , then for all g ∈ H∞0 (Σ+

σ ) we have

lim
n→∞

(fng)(A) = (fg)(A).

Armed with the above construction, we define what we mean by a bounded H∞(Σ+
θ )-

functional calculus.

Definition 5.3.4 (Bounded H∞-functional calculus). Let A be a sectorial operator on a Banach
space X. We say that A admits a bounded H∞(Σ+

θ )-functional calculus if there exists a constant
Cθ ≥ 0 such that for all f ∈ H∞0 (Σ+

θ ) and all x ∈ X it holds that

||f(A)x|| ≤ Cθ||f ||∞||x||.

The infimum over all angles θ for which the above holds is denoted by ω+
H∞(A).

A sectorial operator A now admits a bounded H∞-functional calculus if there exists a θ ∈
(0, π) such that A admits a H∞(Σ+

θ )-functional calculus.

For a bisectorial operator A of angle ω we can make a similar construction. Indeed, the
main difference will be in the contour along which we must integrate. Instead of integrating
over ∂Σ+

θ , we will now integrate over ∂Σ+
θ ∪ ∂Σ−θ , where each piece of the contour is oriented

so that the spectrum is at your left-hand side when traversing the contour. We thus get a
H∞0 (Σθ)-functional calculus for A, which satisfies similar properties as discussed above for a
sectorial operator, as the proofs can be easily adjusted. However, the function ρ in theorem
5.3.3 should be replaced by the function ρ̃(z) = iz

(i+z)2
. By theorem 1.4.8 in [11] we then have

that ρ̃(A) = iA(i + A)−2. Finally, the notion of a bounded H∞-functional calculus can be
defined similar to definition 5.3.4, with the obvious adjustments.
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5.3.1 Extending the functional calculus to f ∈ H∞

The above definitions raise the question whether it is possible to extend the H∞-functional cal-
culus to abitrary f ∈ H∞, rather then restricting to holomorphic functions with sufficient decay.
There are multiple ways to make this extension, which all agree. We will give an overview of
how one can do this via regularization. For the rigorous details we refer to [17] and [11].

Let A be a sectorial or bisectorial operator on a Banach space X. In the remainder of the
discussion we will suppress the domains Σ+

ω , respectively Σω on which we work.
It turns out that for f ∈ H∞ we can in general only define f(A) as a closed operator on

R(A). For this reason we will restrict ourselves momentarily to the case where A has dense
range, in which case R(A) = X. By lemma 1.2.6 in [11] we then find that A is also injective.
Furthermore, by proposition 10.101 in [17] we find that D(A) ∩R(A) is dense in R(A). We can
thus consider the part of A in R(A)2 as densely defined operator. By proposition 15.23 in [20]
we find that A|

R(A)
is again bisectorial with the same angle as A and is furthermore injective

and has dense range.

We now want define f(A) for arbitrary f ∈ H∞ or even for the larger class of holomorphic
functions with polynomial growth at 0 and ∞, which we denote by H∞P . To do this, we follow
the ideas in [15] and [11] by regularizing the function f ∈ H∞P . By theorem 1.4.10 in [11] the
following definition makes sense.

Definition 5.3.5. Let f ∈ H∞P and let ρ(z) = z
(1+z)2

and ρ̃(z) = iz
(i+z)2

be as in the previous

section. Depending on whether A is sectorial or bisectorial, we define f(A) in the following way:

1. If A is sectorial, we define f(A) = ρ(A)−1(ρf)(A).

2. If A is bisectorial, we define f(A) = ρ̃(A)−1(ρ̃f)(A).

That we can define (ρf)(A) and (ρ̃f)(A) in the above definition follows from the fact that
both ρf and ρ̃f are H∞0 functions if f ∈ H∞P .

Finally, if f ∈ H∞0 , the definition of f(A) via regularization coincides with the definition via
the Dunford functional calculus. This follows readily from the multiplicativity as in theorem
5.3.3.

The following theorem sheds light on the question when f(A) as defined above is a bounded
operator. In the theorem we do not assume that A has dense range, in which case we can
only consider f(A) as a closed operator on R(A) as discussed earlier. The theorem as stated is
theorem 10.25 in [17]. The statement is also true for bisectorial operators with the appropriate
change of notation, see for example 1.4.20 in [11].

Theorem 5.3.6. Let A be a sectorial operator of angle ω(A) on X and fix σ ∈ (ω(A), π). Let
C ≥ 0 be a constant. The following statements are equivalent:

1. For all f ∈ H∞0 (Σ+
σ ) and x ∈ R(A) it holds that

||f(A)x|| ≤ C||f ||∞||x||.
1This also holds for bisectorial operators, as we can apply the proposition to iA which is sectorial if A is

bisectorial.
2R(A) is indeed again a Banach space as it is a closed subspace of X.
3This also holds for bisectorial operators. The injectivity and dense range can be retrieved by applying the

proposition to iA, which is sectorial. The argument that resolvent bounds carry over remains true for bisectorial
operators.
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2. For all f ∈ H∞(Σ+
σ ) the operator f(A) extends to a bounded operator on R(A) with norm

bounded by
||f(A)|| ≤ C||f ||∞.

Under these equivalent conditions we have for all f ∈ H∞(Σ+
σ ) and x ∈ R(A) that f(A)x ∈ R(A)

and
||f(A)||L(R(A))

≤ C||f ||∞.

Let us relate the above theorem to the definition of having a bounded H∞(Σ+
σ )-functional

calculus. If A admits a bounded H∞(Σ+
σ )-functional calculus, there exists a constant C ≥ 0 such

that for all f ∈ H∞0 (Σ+
σ ) and all x ∈ X it holds that ||f(A)x|| ≤ C||f ||∞||x||. This means that

part (1) of the above theorem is satisfied. By the above theorem, it thus implies that for any
f ∈ H∞(Σ+

σ ), the operator f(A) can be defined and extended to a bounded operator on R(A)
with norm bounded by ||f(A)|| ≤ C||f ||∞. This is something that we will use in the future.

Removing the dense range condition

Now suppose that A is a sectorial or bisectorial operator on a Banach space X, without the
additional assumption that it has dense range and suppose that A has a bounded H∞-functional
calculus. Let us furthermore assume that X is reflexive (with the idea that we are going to apply
this for Lp-spaces with 1 < p < ∞). By the above construction, for f ∈ H∞, we can define a
closed and bounded operator f(A) on R(A) by restricting A to its part in R(A). By proposition
10.9 in [17] we have that X = N(A) ⊕ R(A) if A is sectorial. Observing that iA is sectorial if
A is bisectorial, one sees that the direct sum decomposition also holds if A is bisectorial. We
can now extend f(A) to a bounded operator on X. Indeed, we simply achieve this by setting
f(A)x = 0 for x ∈ N(A).

5.3.2 Some additional results

We finish this section by collecting some results that we need in the next chapter. We start out
by a relation between an R-bisectorial operator and its square concerning the aspect of having
bounded H∞-functional calculi. This can be found in [25].

Proposition 5.3.7. Let 1 < p < ∞ and let A be an R-bisectorial operator on some closed
subspace of Lp. Then A2 is R-sectorial and for each ω ∈ (0, π2 ) the following are equivalent:

1. A admits a bounded H∞(Σω)-functional calculus.

2. A2 admits a bounded H∞(Σ2ω)-functional calculus.

We will also need the R-boundedness of certain sets of operators constructed via the H∞-
functional calculus. The following proposition is proposition 10.31 from [17].

Proposition 5.3.8. Let A be a sectorial operator with a bounded H∞(Σσ)-functional calculus
on a Banach space X and let σ < ν < π. For all φ ∈ H∞0 (Σν) the set

{φ(zA) : | arg(z)| < ν − σ}

is R-bounded in L(R(A)).

Remark 5.3.9. If X is reflexive, the operators φ(zA) can be extended to bounded operators on
X, the norm of which is bounded by the norm of φ(zA) as operator on R(A). Consequently, if
X is reflexive, we may replace L(R(A)) by L(X) in the above proposition.
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Chapter 6

The Hodge-Dirac operator

In this chapter we want to extend the results of sections 4 and 5 of the paper of Bakry which
are discussed in sections 4.4 and 4.5. For this, we will follow the ideas in [25]. Before coming
to the results, we first need to extend the operator d beyond C∞0 forms. We then define the
Hodge-Dirac operator Π = d + δ.

Before we continue, let us give a short recapitulation of the setting in chapter 4, and also
make some slight changes in notation. We consider a complete Riemannian manifold M of
dimension n, together with its volume measure dx. We furthermore pick a positive function
ρ ∈ C∞(M) and define the measure dm(x) = ρ(x)dx. From now on, all Lp-spaces that occur
are considered with respect to this measure m(dx), unless otherwise stated. Remember that
the exterior algebra over the tangent bundle is denoted by ΛTM =

⊕n
k=0 ΛkTM . A section of

ΛkTM is referred to as a k-form. We will write C∞0 (ΛkTM) for the set of smooth, compactly
supported k-forms. We will often simply write C∞0 when the order of the form is understood.

For two elements ω, η ∈ ΛTM we write ω =
∑n

k=0 ω
k and η =

∑n
k=0 η

k, where ωk, ηk are
k-forms. Their inner product (as forms) is then defined by ω · η =

∑n
k=0 ω

k · ηk. As usual,
we define the length of ω as |ω| =

√
ω · ω. For 1 ≤ p < ∞ we can now define Lp(ΛkTM) as

the closure of C∞0 (ΛkTM) with respect to the norm ||ω||pp =
∫
M |ω|

p dm(x). Note that these
are precisely the spaces Lp,k as defined in chapter 4. We only used that notation there to be
consistent with the paper [6] which we discussed in that chapter. However, we will still write
〈ω, η〉 =

∫
M ω · η dm(x) for the L2 inner product.

Additionally, we define

C∞0 (ΛTM) =
n⊕
k=0

C∞0 (ΛkTM), Lp(ΛTM) =
n⊕
k=0

Lp(ΛkTM).

Here, the last is understood to carry the norm ||ω||pp =
∫
M |ω|

pdm(x) =
∑n

k=0 ||ωk||
p
p, where we

again write ω =
∑n

k=0 ω
k with ωk a k-form. By standard estimates1 it is easy to see that ||ω||p

is equivalent to
∑n

k=0 ||ωk||Lp(ΛkTM).

Observe furthermore that C∞0 (ΛTM) =
⊕n

k=0C
∞
0 (ΛkTM) is dense in Lp(ΛTM) for 1 ≤

p < ∞. This follows easily from the fact that for each 0 ≤ k ≤ n it holds that C∞0 (ΛkTM) is
dense in Lp(ΛkTM).

For k = 0, 1, . . . , n we define the operators Lk = −(dk−1δk−1 + δkdk) acting on C∞0 k-forms.
These are known in the literature as Witten-Laplacians. Here δ is the adjoint of d in the L2 sense
with respect to the measure m(dx). By proposition 4.5.1 each Lk is essentially self-adjoint on
L2(ΛkTM). Consequently, the closure in L2(ΛkTM) is a self-adjoint operator, which we again

1For a, b > 0 it holds that (ap + bp)1/p ' a+ b.
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denote by Lk. We define P kt as the strongly continuous semigroup on L2(ΛkTM) generated by
Lk. Finally, we recall formula (4.10) on page 69 for L0|ω|2 where ω is a C∞0 k-form:

1

2
L0|ω|2 = ω · Lkω +

1

k!
|
∆
ω|2 +Qk(ω, ω).

We assume that for eacht k = 1, . . . , n there exists a constant ak ≥ 0 such that Qk(ω, ω) ≥
−a2

k|ω|2 for all ω ∈ C∞0 (ΛkTM). For k = 1 we have that Q1 = R = Ric−
∆∆

(log ρ). For other
k, Qk can also be expressed in terms of the curvature tensor, but in a more complex way.

Throughout the entire chapter we assume that R(X,X) ≥ 0 for any vector field X and
that Qk(ω, ω) ≥ 0 for any k-form ω. Only in the final section we will relax this assumption by
considering negative lower bounds.

6.1 Extension of d and the Hodge-Dirac operator

A priori, the exterior derivative d is only defined on smooth forms. As we wish to study the
action of the operator on k-forms seperately, we will denote by dk the exterior derivative acting
on smooth k-forms. By working in coordinate charts, it is easy to see that dk maps a C∞0 k-form
to a C∞0 (k + 1)-form. This means that we can consider dk as a densely defined operator on
Lp(ΛkTM) for any 1 ≤ p <∞.

Consequently, we can define the adjoint δk as an unbounded, closed operator on Lq(Λk+1TM)
where q is the conjugate exponent to p. We denote the domain of δk as operator on Lq(Λk+1TM)
by Dq(δk). By the closedness of δk, it follows that ω ∈ Dq(δk) precisely when there exists a
η ∈ Lq(ΛkTM) such that for all k-forms φ ∈ C∞0 it holds that

〈dkφ, ω〉 = 〈φ, η〉. (6.1)

In that case we define δkω = η.
Proposition 2.5.6 combined with proposition 4.1.11 gives us that if ω ∈ C∞0 (Λk+1TM), then

δkω exists, and is in fact in C∞0 (ΛkTM). In particular, we find that δkω ∈ Lq(ΛkTM) for all
1 < q ≤ ∞. This shows that C∞0 (Λk+1TM) ⊂ Dq(δk), and consequently, δk is densely de-
fined on Lq(Λk+1TM) for 1 < q < ∞. Furthermore, the adjoint operators acting on different
Lq(Λk+1TM) are consistent on C∞0 (Λk+1TM) in the sense that they agree on C∞0 (k + 1)-
forms. Indeed, let 1 < q, r ≤ ∞ and pick a (k + 1)-form ω ∈ C∞0 . The above shows that
ω ∈ Dq(δk) ∩ Dr(δk). As δkω ∈ C∞0 (ΛkTM), we can interpret condition (6.1) in both the Lq

and the Lr sense. By uniqueness of δkω it follows that δk as operator on Lq(Λk+1TM) and
Lr(Λk+1TM) is consistent on C∞0 (Λk+1TM) as claimed.

With the above in mind, we have the following lemma.

Lemma 6.1.1. The exterior derivative dk acting on C∞0 k-forms is closable in Lp(ΛkTM) for
1 ≤ p <∞.

Proof. Let (ωn)n be a sequence of C∞0 k-forms converging to 0 in Lp(ΛkTM), such that dkωn
converges to some (k + 1)-form η in Lp(Λk+1TM). We will prove that η = 0. For this, pick
an arbitrary (k + 1)-form φ ∈ C∞0 . Denoting q the conjugate exponent to p, we have that
φ ∈ Dq(δk). But then 〈ωn, δkφ〉 = 〈dkωn, φ〉 for every n ∈ N. Hölder’s inequality now implies
that

〈η, φ〉 = lim
n→∞

〈dkωn, φ〉 = lim
n→∞

〈ωn, δkφ〉 = 〈0, δkφ〉 = 0.

As C∞0 (Λk+1TM) is dense in Lp(Λk+1TM), we conclude that η = 0. This proves that dk is
closable in Lp(ΛkTM).
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This lemma allows us to define the closure of dk in Lp(ΛkTM), which we will again denote
by dk. Its domain Dp(dk) consists of those ω ∈ Lp(ΛkTM) for which there exists a sequence
(ωn)n of C∞0 k-forms such that ωn → ω in Lp(ΛkTM) and dkωn converges in Lp(Λk+1TM). If
ω ∈ Dp(dk) is not in C∞0 (ΛkTM) we define dkω = limn→∞ dkωn in the Lp(Λk+1TM) sense. The
closedness of the graph implies that this uniquely defines dkω.

Remark 6.1.2. If ω ∈ Dp(dk) then dkω is also the exterior derivative of ω in the weak sense.
Indeed, let (ωn)n be a sequence of C∞0 k-forms which converges to ω in Dp(dk). By Hölder’s
inequality, the following holds for all φ ∈ C∞0 (Λk+1TM) ⊂ Dq(δk)

〈dkω, φ〉 = lim
n→∞

〈dkωn, φ〉 = lim
n→∞

〈ωn, δkφ〉 = 〈ω, δkφ〉

which is the desired equality.

6.1.1 The Hodge-Dirac operator

As the exterior derivative d is defined on C∞0 (ΛTM), it is a densely defined operator on
Lp(ΛTM) for 1 ≤ p < ∞. Consequently, we can define its adjoint δ as an unbounded, closed
operator on Lq(ΛTM) where q is the conjugate exponent to p. By linearity we find that δ
restricted to Lq(ΛTM) coincided with δk as defined in the previous section.

We now define the Hodge-Dirac operator Π = d + δ a priori only on C∞0 (ΛTM) by setting
Πω = dω+δω for ω ∈ C∞0 (ΛTM). On

⊕n
k=0C

∞
0 (ΛkTM) it is represented by the (n+1)×(n+1)-

matrix

Π =


0 δ0

d0 0 δ1

. . .
. . .

. . .

dn−2 0 δn−1

dn−1 0


so that formally

Π2 =

 −L0

. . .

−Ln


is a diagonal matrix which we denote by −L. This follows from the fact that d2 = δ2 = 0.

We will show that the Hodge-Dirac operator is closable on Lp(ΛTM) for 1 ≤ p <∞.

Lemma 6.1.3. Π as defined above on C∞0 (ΛTM) is closable in Lp(ΛTM) =
⊕n

k=0 L
p(ΛkTM)

for 1 ≤ p <∞.

Proof. Let (ωn)n be a sequence in C∞0 (ΛTM) and suppose that ωn → 0 and Πωn → η both in
Lp(ΛTM). Decomposing along the direct sum we find that ωkn → ωk in Lp(ΛkTM) for 0 ≤ k ≤ n
and dk−1ω

k−1
n +δkω

k+1
n → ηk in Lp(ΛkTM) for 1 ≤ k ≤ n−1. For k = 0 we find that δ0ω

1
n → η0

in Lp(Λ0TM) and for k = n we have that dn−1ω
n−1
n → ηn in Lp(ΛnTM).

First consider 1 ≤ k ≤ n− 1, and pick φ ∈ C∞0 (ΛkTM). By Hölder’s inequality we find that

〈ηk, φ〉 = lim
n→∞

〈dk−1ω
k−1
n +δkω

k+1
n , φ〉 = lim

n→∞
〈ωk−1
n , δk−1φ〉+〈ωk+1

n ,dkφ〉 = 〈0, δkφ〉+〈0, dkφ〉 = 0.

This is justified as both ωk+1
n and φ are C∞0 forms, and thus are also in Dq(δk), respectively

Dq(δk−1), with q the conjugate exponent to p. It follows that ηk = 0 by density. The cases
k = 0, n are treated similarly. We conclude that ηk = 0 for all k, hence η = 0. It follows that Π
is closable in Lp(ΛTM).
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The lemma allows us to consider the Hodge-Dirac operator on Lp(ΛTM) as the closure in
Lp(ΛTM) of Π on C∞0 (ΛTM). For simplicity we will denote this closure again by Π when there
is no confusion. Its domain in Lp(ΛTM) is denoted by Dp(Π).

6.2 Extending the semigroup P k
t to Lp(ΛkTM)

Now that we succesfully extended the exterior derivative on k-forms, as well as the divergence to
closed and densely defined operators, it remains to extend the operator Lk = −(δkdk+dk−1δk−1),
at first defined only for smooth k-forms.

In proposition 4.5.1 we showed that the operator Lk is essentially self-adjoint on L2(ΛkTM).
Its closure is thus a self-adjoint operator on L2(ΛkTM) which we will also denote by Lk. The
semigroup P kt is now defined as the semigroup generated by Lk on L2(ΛkTM). We have the
following proposition, of which the proof is inspired by the proof of theorem 1.4.1 from [10].

Proposition 6.2.1. The strongly continuous contraction semigroup P kt on L2(ΛkTM), more
precisely, its restriction to Lp(ΛkTM) ∩ L2(ΛkTM), can be extended to a strongly continuous
contraction semigroup on Lp(ΛkTM) for any p ∈ [1,∞). Furthermore, these extensions are
consistent, i.e., the semigroups agree on the intersection Lp(ΛkTM) ∩ L2(ΛkTM).

Proof. By proposition 4.5.2 we have for all k-forms ω ∈ C∞0 and all 1 ≤ p ≤ ∞ that

||P kt ω||p ≤ ||ω||p.

As C∞0 (ΛkTM) is dense in Lp(ΛkTM) we find that each P kt extends to a contraction on
Lp(ΛkTM) for any 1 ≤ p ≤ ∞. This also implies the consistency on Lp(ΛkTM) ∩ L2(ΛkTM).
The semigroup property follows easily by approximation and the fact that each P kt is bounded,
hence continuous on Lp(ΛkTM). It remains to show strong continuity for 1 ≤ p <∞.

First consider the case p = 1. Pick a k-form ω ∈ C∞0 , and let the support of ω be contained
in E ⊂ M , where |E| < ∞. By definition we have that ||P kt ω||1 =

∫
M |P

k
t ω| dm(x). By the

Cauchy-Schwarz inequality and strong continuity on L2(ΛkTM) we find that

lim
t→0

∫
M
|P kt ω|1E dm(x) = lim

t→∞
〈|P kt ω|, 1E〉 = 〈|ω|, 1E〉 = ||ω||1.

On the other hand we have that ||P kt ω||1 ≤ ||ω||1. Combining the two, we find that

lim
t→0

∫
M

1M\E |P kt ω| dm(x) = 0.

But then

lim
t→0
||P kt ω − ω||1 = lim

t→0

∫
M
|P kt ω − ω|1E dm(x) + lim

t→0

∫
M
|P kt ω − ω|1M\E dm(x)

≤ lim
t→0

∫
M
|P kt ω − ω|1E dm(x) + lim

t→0

∫
M
|P kt ω|1M\E dm(x) + lim

t→0

∫
M
|ω|1M\E dm(x)

= lim
t→0

∫
M
|P kt ω − ω|1E dm(x)

≤ lim
t→0
||P kt ω − ω||2|E|1/2

= 0
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as |E| < ∞ and the fact that P kt is strongly continuous on L2(ΛkTM). The second equality
follows from the result above and the fact that ω has support inside E. Now pick ω ∈ L1(ΛkTM)
arbitrary, and approximate it with C∞0 k-forms ωn. The estimate

||P kt ω − ω||1 ≤ ||P kt ω − P kt ωn||1 + ||P kt ωn − ωn||1 + ||ωn − ω||1
≤ ||ω − ωn||1 + ||P kt ωn − ωn||1 + ||ωn − ω||1

shows that strong continuity also holds for ω.
Now let 1 < p < 2. By interpolation we find for a k-form ω ∈ C∞0 that

||P kt ω − ω||p ≤ ||P kt ω − ω||
2/p−1
1 ||P kt ω − ω||

2−2/p
2

where the upper bound goes to 0 by the strong continuity for p = 1, 2. By a similar approximation
as for the case p = 1 we find the strong continuity for all ω ∈ Lp(ΛkTM).

Now pick p ∈ (2,∞). Denote by q ∈ (1, 2) the conjugate exponent and let ω ∈ C∞0 (ΛkTM).
Then for all η ∈ C∞0 (ΛkTM) it holds by the symmetry of P kt and Hölder’s inequality that

|〈P kt ω − ω, η〉| = |〈ω, P kt η − η〉| ≤ ||ω||p||P kt η − η||q

which goes to 0 by the strong continuity for q ∈ (1, 2). The use of the symmetry of P kt in the
above argument is justified as we can first interpret the equality in the L2(ΛkTM) sense as
ω, η ∈ C∞0 (ΛkTM). The consistency of the P kt then also allows us to see the equality in the
sense of the Lp/Lq-duality. By approximation the above holds even for all η ∈ Lq(ΛkTM). This
shows that limt→0 P

k
t ω = ω in the weak-* topology. As Lq(ΛkTM) is reflexive, we also get weak

continuity. By proposition 3.1.8 this implies strong continuity.

Remark 6.2.2. When there is no confusion, we will use the same notation for the semigroups
and generators on the different Lp(ΛkTM). For the generator Lk on Lp(ΛkTM), we denote its
domain by Dp(Lk). Observe that if ω ∈ Dp(Lk) ∩Dr(Lk) then Lkω in the sense of Lp(ΛkTM)
coincides with the one in Lr(ΛkTM). Indeed, the sequence 1

t (P
k
t ω − ω) converges in both

Lp(ΛkTM) and Lr(ΛkTM) and the consistency of P kt implies that in both spaces this is the
same sequence. By switching to a subsequence along which almost everywhere convergence
holds, we find that the limits in Lp(ΛkTM) and Lr(ΛkTM) must coincide.

Remark 6.2.3. One can show that C∞0 (ΛkTM) is contained in Dp(Lk) for any 1 < p < ∞. To
do this, we follow the same idea as in the proof of lemma 4.8 in [25]. Pick a k-form ω ∈ C∞0 .
Then ω ∈ D2(Lk) ∩ Lp(ΛkTM). As Lp(ΛkTM) is reflexive, in order to show that ω ∈ Dp(Lk)
it suffices to show that lim supt↓0

1
t ||P

k
t ω − ω||p <∞. By proposition 3.1.5 we have that

1

t
(P kt ω − ω) =

1

t

∫ t

0
P ks Lkω ds

in L2(ΛkTM). However, as Lkω ∈ C∞0 (ΛkTM) as both d and δ map C∞0 (ΛTM) to C∞0 (ΛTM),
we actually have that Lkω ∈ L2(ΛkTM) ∩ Lp(ΛkTM). This means that we can interpret the
right hand side as a Bochner integral in Lp(ΛkTM) and consequently, we find the following
estimate

1

t
||P kt ω − ω||p ≤

1

t

∫ t

0
||P ks Lkω||p ds

≤ 1

t

∫ t

0
||Lkω||p ds

= ||Lkω||p.

But then lim supt↓0
1
t ||P

k
t ω − ω||p ≤ ||Lkω||p <∞, which proves the claim.
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6.2.1 R-sectoriality of −Lk
Now that we have defined −Lk also on Lp(ΛkTM), we will prove that it is R-sectorial. It turns
out that this follows by applying some general theorems consecutively. We will start out by
showing that the semigroup (P kt )t is analytic on Lp(ΛkTM) for 1 < p <∞. For this we can use
the following theorem by Stein, which is theorem 1 on p.67 in [33].

Theorem 6.2.4. Let (Ω, µ) be a σ-finite measure space and suppose that that the semigroup
(Tt)t satisfies

1. ||Ttf ||p ≤ ||f ||p for all 1 ≤ p ≤ ∞.

2. For all t ≥ 0, Tt is self-adjoint on L2(Ω).

Let 1 < p < ∞. Then the map t 7→ Tt has an “analytic continuation”, i.e., it extends to an
analytic Lp-operator-valued function z 7→ Tz, defined in the sector Σ+

ω where ω = π
2 (1−|2/p−1|).

On this sector it also holds that ||Tzf ||p ≤ ||f ||p.

We can now deduce that Lk generates a strongly continuous analytic contraction semigroup
on Lp(ΛkTM) for 1 < p <∞.

Corollary 6.2.5. Let 1 < p <∞. For all k = 0, 1, . . . , n, the operator Lk generates a strongly
continuous analytic contraction semigroup on Lp(ΛkTM) of angle π

2 (1− |2/p− 1|).

Proof. Fix 1 < p <∞. By proposition 6.2.1 the semigroup P kt generated by Lk on Lq(ΛkTM) is
a contraction for all 1 ≤ q ≤ ∞. Furthermore, proposition 4.5.1 gives us that Lk is self-adjoint on
L2(ΛkTM), which implies that the semigroup P kt on L2(ΛkTM) is self-adjoint. By the previous
theorem we conclude that the map t 7→ P kt extends to an analytic Lp-operator-valued function
z 7→ P kz defined in the sector Σω with ω = π

2 (1 − |2/p − 1|). Furthermore we get that on this
sector, P kz is a contraction.

It remains to argue that it defines a strongly continuous semigroup. Investigating the proof
of theorem 6.2.4, we see that on L2(ΛkTM) P kz is defined via the spectral theorem as ezLk , thus
defining a strongly continuous semigroup. By a similar approach as in the proof of proposition
6.2.1 one can show that P kz also defines a strongly continuous semigroup on Lp(ΛkTM) which
completes the proof.

In order to retrieve R-sectoriality of −Lk from the above corollary, we need to combine two
more results. The first one can be found on p.217 in [35], the second one is theorem 4.2 in [36].2

Proposition 6.2.6. If A generates an analytic contraction semigroup on Lq for some 1 < q <
∞, then A has maximal Lp-regularity.

Theorem 6.2.7. Let A be the generator of a bounded analytic semigroup in a UMD-space X.
Then A has maximal Lp-regularity for one (all) p ∈ (1,∞) on R+ if and only if one of the
following equivalent conditions is fulfilled.

1. {λR(λ,A) : λ ∈ Σσ} is R-bounded for some σ > π
2 .

2. {Tz : z ∈ Σδ} is R-bounded for some δ > 0.

2The concepts of maximal Lp-regularity and UMD spaces are of no real importance for us. The only thing we
use is the well-known fact that Lq for 1 < q <∞ has UMD.
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We will now derive the R-sectoriality of −Lk from these two results.

Proposition 6.2.8 (R-sectoriality of −Lk). Let 1 < p < ∞. The operator −Lk is R-sectorial
on Lp(ΛkTM) with angle ω < π

2 .

Proof. Fix 1 < p <∞. By corollary 6.2.5 Lk generates a strongly continuous analytic contrac-
tion semigroup on Lp(ΛkTM). Combining the above proposition and theorem, and noting that
Lp has UMD, we find that there exists a σ > π

2 such that the set {λR(λ, Lk) : λ ∈ Σσ}
is R-bounded. Note that this claim also entails that the spectrum of Lk is contained in
C \ Σσ. But then we find that the spectrum of −Lk is contained in Σπ−σ and that the set
{λR(λ,−Lk) : λ /∈ Σπ−σ} is R-bounded. This shows that −Lk is R-sectorial on Lp(ΛkTM) with
angle ω = π − σ < π

2 .

6.3 Boundedness of the Riesz transform

In this section we will extend theorem 4.5.4 and prove properties of the Hodge-Dirac operator,
where we follow the ideas in [25]. We assume that M is a complete Riemannian manifold of
dimension n. We define the quadratic forms Qk acting on k-forms by the following formula

1

2
L0|ω|2 = ω · Lkω +

1

k!
|
∆
ω|2 +Qk(ω, ω) (6.2)

which is formula (4.10) on 69. These Qk involve the curvature of M and we assume that Qk ≥ 0
for k = 1, . . . n.

Before we are able to do this, we will first define (−Lk)1/2 as an operator on Lp(ΛkTM) for
1 ≤ p < ∞. As −Lk is sectorial of angle less than π

2 , the following definition is justified by
proposition 3.8.2 in [1], and coincides with the work done in [15].

Definition 6.3.1. For 1 ≤ p <∞ we define the operator (−Lk)1/2 on Lp(ΛkTM) as the closed
operator with Dp(−Lk) as a core, on which it is defined as

(−Lk)1/2 =
1

π

∫ ∞
0
−s−1/2(s− Lk)−1Lk ds.

The following formal computation shows that on L2(ΛkTM) the above coincides with the
square root as defined via the spectral theorem. Remember that −Lk =

∫∞
0 λ dEkλ.

1

π

∫ ∞
0
−s−1/2(s− Lk)−1Lk ds =

1

π

∫ ∞
0

s−1/2

∫ ∞
0

(s+ λ)−1λ dEkλds

=
1

π

∫ ∞
0

∫ ∞
0

s−1/2(s+ λ)−1λ dsdEkλ

=
1

π

∫ ∞
0

[
2√
λ

tan−1(
√
s/
√
λ)

]∞
s=0

dEkλ

=

∫ ∞
0

λ1/2 dEkλ.

We will now prove that C∞0 (ΛkTM) is a core for Dp((−Lk)1/2) if 1 < p <∞.

Lemma 6.3.2. Let 1 < p <∞. For any k = 0, 1, . . . , n, C∞0 (ΛkTM) is dense in Dp((−Lk)1/2).
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Proof. Pick ω ∈ Dp((−Lk)1/2) arbitrary. By proposition 3.8.2 in [1] we have that ω ∈ Dp((I −
Lk)

1/2). But then we can consider (I−L)1/2ω ∈ Lp(ΛkTM). From the proof of corollaries 4.4.3
and 4.5.7 we get that there exists a sequence (ωn)n of C∞0 k-forms such that (I − Lk)1/2ωn →
(I − Lk)1/2ω in Lp(ΛkTM). By lemma’s 4.4.1 and 4.5.5 we then find that

||ωn − ω||Dp((−Lk)1/2) = ||ωn − ω||p + ||(−Lk)1/2(ωn − ω)||p . ||(I − Lk)1/2(ωn − ω)||p

By the choice of the sequence ωn we find that the last term goes to 0, hence we find that ωn
converges to ω in Dp((−Lk)1/2), proving the lemma.

We conclude our discussion of (−Lk)1/2 by showing that the different operators defined on
the different Lp(ΛkTM) agree at least on Dp(Lk) ∩Dr(Lk), where 1 ≤ p, r <∞. For this, first
observe that P kt is consistent on Lp(ΛkTM)∩Lr(ΛkTM) by proposition 6.2.1. Now observe that
(s− Lk)−1 =

∫∞
0 e−stP kt dt. As the integrand is consistent on Lp(ΛkTM) ∩ Lr(ΛkTM), we find

that (s− Lk)−1 is as well. Indeed, although the convergence of the integral must be considered
in Lp(ΛkTM) and Lr(ΛkTM) respectively, switching to a subsequence so that we get almost
everywhere convergence shows that the limits must agree. Now by remark 6.2.2 Lk is consistent
on Dp(Lk)∩Dr(Lk) and for ω ∈ Dp(Lk)∩Dr(Lk) it holds that Lkω ∈ Lp(ΛkTM)∩Lr(ΛkTM).
We find that the integrand in the definition of (−Lk)1/2 is consistent on Dp(Lk) ∩ Dr(Lk).
In the same way as above, the integral must yield the same result in both Lp(ΛkTM) and
Lr(ΛkTM), which shows that (−Lk)1/2 is consistent on Dp(Lk) ∩Dr(Λ

kTM). If p, r > 1, then
C∞0 (ΛkTM) ⊂ Dp(Lk) ∩Dr(Lk) and we also find consistency on C∞0 (ΛkTM).

The main reason why we want this consistency on C∞0 is that now the results in the paper
of Bakry as discussed in chapter 4 may be applied to the operator (−Lk)1/2 considered as an
operator on Lp(ΛkTM) for 1 < p <∞. Whenever we apply results from Bakry, this is what we
keep in mind.

We are now in a position to prove the following extension of theorem 4.5.4, together with
corollary 4.5.7 where we have homogeneous estimates as we assume that quadratic forms Qk are
nonnegative. Here by Πk := dk + δk−1 we mean the restriction of Π to Lp(ΛkTM) by noting
that we can consider an element ω ∈ Lp(ΛkTM) as (0, . . . , 0, ω, 0, . . . , 0) ∈ Lp(ΛTM).

Theorem 6.3.3 (Boundedness of the Riesz transform). Suppose that M is a complete Rie-
mannian manifold of dimension n and assume that Ql as in formula (6.2) is nonnegative
for all l ∈ {1, . . . , n}. Let 1 < p < ∞ and suppose that 0 ≤ k ≤ n (= dimM). Then
Dp((−Lk)1/2) = Dp(dk + δk−1) and for all ω in the common domain it holds that

||(dk + δk−1)ω||p 'p,k ||(−Lk)1/2ω||p.

Proof. We will first show that Dp((−Lk)1/2) ⊂ Dp(dk + δk−1) together with the estimate

||(dk + δk−1)ω||p .p,k ||(−Lk)1/2ω||p.

We first prove thatDp((−Lk)1/2) ⊂ Dp(dk+δk−1). For this, pick ω ∈ Dp((−Lk)1/2) arbitrary.
As C∞0 (ΛkTM) is dense in Dp((−Lk)1/2) by lemma 6.3.2, we can find a sequence ωn of smooth
k-forms converging to ω in Dp((−Lk)1/2). By theorem 4.5.4 we then find for n,m that

||ωn − ωm||p + ||(dk + δk−1)ωn − (dk + δk−1)ωm||p
. ||ωn − ωm||p + ||dkωn − dkωm||p + ||δk−1ωn + δk−1ωm||p
. ||ωn − ωm||p + ||(−Lk)1/2ωn − (−Lk)1/2ωm||p
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which shows that (ωn)n is Cauchy in Dp(dk + δk−1). Here, the first inequality is justified by the
fact that ωn, ωm ∈ C∞0 (ΛkTM), in which case (dk+δk−1)ωn = dkωn+δk−1ωn. By the closedness
of dk + δk−1 we then find that this sequence converges to some η ∈ Dp(dk + δk−1).

We now show that ω = η. For this, observe that both Dp((−Lk)1/2) and Dp(dk + δk−1)
are continuously embedded into Lp(ΛkTM). But then we find in Lp(ΛkTM) that ωn → ω and
ωn → η. Consequently, it must hold that ω = η. This proves that ω ∈ Dp(dk + δk−1), from
which we conclude that Dp((−Lk)1/2) ⊂ Dp(dk + δk−1).

To prove the given estimate, by theorem 4.5.4 it holds for all n that

||(dk + δk−1)ωn||p ≤ ||dkωn||p + ||δk−1ωn||p ≤ C(p, k)||(−Lk)1/2ωn||p.

By the continuity of the norm, and the fact that ωn → ω both in Dp((−Lk)1/2) and Dp(dk+δk−1)
we find that

||(dk + δk−1)ω||p ≤ C(p, k)||(−Lk)1/2ω||p
which concludes the first part of the proof.

The reverse inclusion and estimate may be proven in a similar manner. For this, one uses that
C∞0 (ΛkTM) is dense in Dp(dk+δk−1) as it is the closure of the operator defined on C∞0 (ΛkTM)
by lemma 6.1.3. One furthermore uses the estimate in corollary 4.5.7 which holds with e = 0
by our assumption on the lower bounds ak. Finally, the discussion of the norm on Lp(ΛTM)
at the beginning of the chapter shows that ||dkω||p + ||δk−1ω||p .p ||(dk + δk−1)ω||p for all
ω ∈ C∞0 (ΛkTM).

6.3.1 R-gradient bounds

We now wish to define for 1 < p < ∞ the operator dk/(−Lk)1/2 : Rp((−Lk)1/2) → Rp(dk)
which maps (−Lk)1/2ω to dkω for any ω ∈ Dp((−Lk)1/2). Here, by Rp we mean the range
of the operator considered on Lp(ΛkTM). The following lemma shows that this operator is
well-defined and bounded.

Lemma 6.3.4. The operator dk/(−Lk)1/2 as defined above is well-defined and bounded.

Proof. We start by showing that the operator is well-defined. For this, suppose that (−Lk)1/2ω =
(−Lk)1/2η in Lp(ΛkTM). By the estimate in theorem 6.3.3 we find that

||dkω − dkη||p ≤ C||(−Lk)1/2ω − (−Lk)1/2η||p = 0

Hence dkω = dkη in Lp(ΛkTM), which shows that the operator is well-defined. The boundedness
follows by the same estimate.

In the same way we can define the bounded operator δk−1/(−Lk)1/2 : Rp((−Lk)1/2) →
Rp(δk−1).

Before we can continue, we first need the following lemma.

Lemma 6.3.5. Let 1 < p <∞. Then Dp((−Lk)1/2) ⊂ Dp(dk) ∩Dp(δk−1).

Proof. We only proof that Dp((−Lk)1/2) ⊂ Dp(dk). The case for δk−1 is proved similarly.
In order to do this, pick ω ∈ Dp((−Lk)1/2) arbitrary. As C∞0 (ΛkTM) is dense in Dp(

√
−Lk)

by lemma 6.3.2, we can find a sequence ωn of smooth k-forms converging to ω in Dp((−Lk)1/2).
By theorem 4.5.4 we then find for n,m that

||ωn − ωm||p + ||dkωn − dkωm||p . ||ωn − ωm||p + ||(−Lk)1/2ωn − (−Lk)1/2ωm||p
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which shows that (ωn)n is Cauchy in Dp(dk). By the closedness of dk we then find that this
sequence converges to η ∈ Dp(dk).

We now show that ω = η. For this, observe that both Dp((−Lk)1/2) and Dp(dk) are contin-
uously embedded into Lp(ΛkTM). But then we find that in Lp(ΛkTM) we have that ωn → ω
and ωn → η. Consequently, it must hold that ω = η. This proves that ω ∈ Dp(dk), from which
we conclude that Dp((−Lk)1/2) ⊂ Dp(dk).

A consequence of this lemma is that the operators dk(I − t2Lk)−1 and δk−1(I − t2Lk)−1 are
well-defined. Indeed, as the operator Lk defines a contraction semigroup on Lp(ΛkTM), we have
that {λ ∈ C : Re(λ) > 0} is contained in the resolvent set of Lk by proposition 3.2.2. Hence,
for all t 6= 0, the operator (I − t2Lk)−1 is well-defined and bounded and maps Lp(ΛkTM) into
Dp(Lk). As Dp(Lk) = Dp(−Lk) ⊂ Dp((−Lk)1/2), we find that Dp(Lk) ⊂ Dp(dk) ∩ Dp(δk−1).
This shows that the operators dk(I − t2Lk)−1 and δk−1(I − t2Lk)−1 are well-defined. We will
use this in the following proposition.

Proposition 6.3.6 (R-gradient bounds). For any 0 ≤ k ≤ n(= dim(M)) the families of opera-
tors

{tdk(I − t2Lk)−1 : t > 0}

and

{tδk−1(I − t2Lk)−1 : t > 0}

are R-bounded in L(Lp(ΛkTM), Lp(Λk+1TM)), respectively L(Lp(ΛkTM), Lp(Λk−1TM) for 1 <
p <∞.

Proof. We will only prove that the first set is R-bounded, the other one following in exactly the
same way.

Note that for t > 0 we can write that

tdk(I − t2Lk)−1 = (dk/(−Lk)1/2)((−t2Lk)1/2(I − t2Lk)−1) = (dk/(−Lk)1/2)(ψ(−t2Lk))

where ψ(z) =
√
z

1+z .3 Observe that ψ ∈ H∞0 (Σ+
θ ) for any θ ∈ (0, π2 ). By proposition 5.3.8,

or more precisely the remark thereafter, we find that the set {ψ(−t2Lk) : t > 0} is R-
bounded in L(Lp(ΛkTM), Lp(ΛkTM)) . As the operator dk/(−Lk)1/2 is bounded, we con-
clude by proposition 5.1.3 that the set {(dk/(−Lk)1/2)(ψ(−t2Lk)) : t > 0} is R-bounded in
L(Lp(ΛkTM), Lp(Λk+1TM)), which concludes the proof.

6.3.2 The Hodge-Dirac operator

We are now able to commence our analysis of the Hodge-Dirac operator Π = d + δ. We will
start by showing that Π is R-bisectorial. For this, we first need a lemma.

Lemma 6.3.7. Let 1 ≤ p <∞. For any k = 0, 1, . . . , n and t ∈ R the following identities hold
on Dp(dk) and Dp(δk) respectivily

(I − t2Lk+1)−1dk = dk(I − t2Lk)−1

and

(I − t2Lk)−1δk = δk(I − t2Lk+1)−1.

3To see this, one could turn to the multiplicativity of the functional calculus for holomorphic functions with
polynomial limits at 0 and infinity.
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Proof. We will only prove the first identity, the second following in a similar manner.
If t = 0 the statement is trivial, so we will assume that t 6= 0. For a k-form ω ∈ C∞0 we

have that P k+1
t dkω = dkP

k
t ω by proposition 4.5.2. Here, the right-hand side is well-defined

as P kt ω ∈ Dp(Lk) ⊂ Dp(dk). Now pick ω ∈ Dp(dk) and let ωn ∈ C∞0 (ΛkTM) be a sequence
converging to ω ∈ Dp(dk). Such a sequence exists by the definition of dk as a closed operator.
In that case we have that ωn → ω and dkωn → dkω in Lp(ΛkTM) respectively Lp(Λk+1TM).
The boundedness of P kt and P k+1

t then implies that P kt ωn → P kt ω and P k+1
t dkωn → P k+1

t dkω
in Lp(ΛkTM) respectively Lp(Λk+1TM). As P k+1

t dkωn = dkP
k
t ωn for every n, and as the left

hand side converges, we obtain that dkP
k
t ωn converges in Lp(Λk+1TM). The closedness of dk

shows that P kt ω ∈ Dp(dk) and that P k+1
t dkω = dkP

k
t ω.

If we now take Laplace transforms on both sides and plug in the point λ = t−2 ∈ ρ(Lk) ∩
ρ(Lk+1) (as t−2 > 0) we get by proposition 3.2.2 that

(t−2 − Lk+1)−1dkω = dk(t
−2 − Lk)−1ω

which gives us that
t2(I − t2Lk+1)−1dkω = t2dk(I − t2Lk)−1ω

from which one deduces the desired identity.

Theorem 6.3.8 (R-bisectoriality of Π). Suppose that M is a complete Riemannian manifold of
dimension n and assume that Qk as in formula (6.2) is nonnegative for all k ∈ {1, . . . , n}. Let
1 < p <∞. Then the Hodge-Dirac operator Π is R-bisectorial on Lp(ΛTM).

Proof. We will start by showing that the set {it : t 6= 0} is contained in the resolvent set of Π.
We will do this by showing that (I − itΠ) has a two-sided bounded inverse.4 We claim that

(I − itΠ)−1
kl =


(I − t2Lk)−1 k = l

itdk−2(I − t2Lk−2)−1 k = l + 1

itδk−1(I − t2Lk)−1 k = l − 1

0 otherwise

This gives a matrix with three diagonals, looking like
(I − t2L0)−1 itδ0(I − t2L1)−1

itd0(I − t2L0)−1 (I − t2L1)−1 itδ1(I − t2L2)−1

. . .
. . .

. . .

itdn−2(I − t2Ln−2)−1 (I − t2Ln−1)−1 itδn−1(I − t2Ln)−1

itdn−1(I − t2Ln−1)−1 (I − t2Ln)−1

 .

By the R-sectoriality of −Lk (proposition 6.2.8) and the R-gradient bounds (proposition
6.3.6) we have that all entries are bounded. It only remains to check that it is in fact a two-
sided inverse. Let us first multiply by (I − itΠ) from the left. It suffices to compute the three
diagonals, as the other elements of the product are clearly 0. It is easy to see that for any k the
k-th diagonal element becomes

t2dk−2δk−2(I − t2Lk−1)−1 + (I − t2Lk−1)−1 + t2δk−1dk−1(I − t2Lk−1)−1 =

= (I − t2Lk−1)(I − t2Lk−1)−1 = I

4As we show this for all t 6= 0, rewriting then also gives that (it − Π) has two-sided bounded inverse for any
t 6= 0.
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as Lk−1 = −(dk−2δk−2 + δk−1dk−1). For k = 1, n the obvious adjustment should be made to the
above expression. For the two other diagonals it is easy to see that one gets two terms which
will cancel.

Let us now multiply by (I−itΠ) on the right side. Again computing only the three diagonals,
and using lemma 6.3.7 one easily sees that the product is again the identity.

It remains to show that the set {it(it − Π)−1 : t 6= 0} = {(it − Π)−1 : t 6= 0} is R-bounded.
For this, observe that the diagonal entries are R-bounded by the R-sectoriality of −Lk. The
R-boundedness of the other entries follows from the R-gradient bounds. Now observe that a set
of operator matrices is R-bounded precisely when each entry is R-bounded. We conclude that
Π is R-bisectorial.

We now wish to give sufficient conditions under which Π has a bounded H∞-functional
calculus on a bisector. Before we can do this, we first need the following proposition. Although
this result seems trivial, one also needs to show that the domains are equal, which needs a little
more effort.

Proposition 6.3.9. Let 1 < p <∞. Then Π2 = −L as operators on Lp(ΛTM).

Proof. It suffices to show for any k ∈ {0, 1, . . . , n} that Π2
k := dk−1δk−1 + δkdk = −Lk.

Here Π2
k is simply the restriction of Π2 to Lp(ΛkTM) by considering ω ∈ Lp(ΛkTM) as

(0, . . . , 0, ω, 0, . . . , 0) ∈ Lp(ΛTM).
By the previous theorem Π is bisectorial and consequently, Π2 is sectorial. But then Π2

k is
also sectorial. By proposition 6.2.8 we also have that −Lk is sectorial. We thus find that the
negative real axis is contained in the resolvent set of both Π2

k and −Lk, and hence the positive
real axis is contained in the resolvent set of both −Π2

k and Lk. Now pick λ > 0. As the operators
acting on different Lp(ΛkTM) are consistent on C∞0 (ΛkTM), we may consider the operators in
L2(ΛkTM) where Lkω = −Π2

kω for ω ∈ C∞0 (ΛTM) by definition. But then we also have that
(λ+ Π2

k)ω = (λ− Lk)ω for all ω ∈ C∞0 (ΛkTM).

We now prove that (λ − Lk)C∞0 is dense in Lp(ΛkTM). For this, let q be the conjugate
exponent to p and let η ∈ Lq(ΛkTM) be orthogonal to (λ− Lk)C∞0 and pick a k-form ω ∈ C∞0
arbitrary. Remember that Lk generates the strongly continuous semigroup of contraction P kt
on Lr(ΛkTM) for all 1 < r < ∞ which is consistent in the sense that the operators agree
Lr1(ΛkTM) ∩ Lr2(ΛkTM) for any 1 < r1, r2 < ∞. Now observe that Lk − λ generates the
semigroup e−λtP kt . By proposition 3.1.5 we have that

(λ− Lk)
(∫ t

0
e−λsP ks ω ds

)
= e−λtP kt ω − ω.

As e−λsP ks is consistent on the different Lp(ΛkTM) then so is
∫ t

0 e
−λsP ks ω ds. Indeed, al-

though we have to consider the integral as limit in different Lp-spaces, by switching to a sub-
sequence along which we have almost everywhere convergence shows that the limits must coin-
cide. Furthermore, by proposition 4.5.1 Lk defined on C∞0 (ΛkTM) is essentially self-adjoint on
L2(ΛkTM), hence C∞0 (ΛkTM) is dense in D2(Lk). But then we can find a sequence (ζn)n of
C∞0 k-forms which converges to

∫ t
0 e
−λsP ks ω ds in D2(Lk). By the choice of η we find for every

n that 〈η, ζn〉 = 0. By taking the limit n→∞ we find by Cauchy-Schwarz that

0 = 〈η, e−λtP kt ω − ω〉 = −〈η, ω〉+ 〈η, e−λtP kt ω〉.

Now let (ηn)n be a sequence of k-forms converging to η in Lq(ΛkTM). By the consistency of
P kt we may use the symmetry of P kt on L2(ΛkTM) to obtain that

〈η, e−λtP kt ω〉 = lim
n→∞

〈ηn, e−λtP kt ω〉 = lim
n→∞

〈e−λtP kt ηn, ω〉.



6.3. BOUNDEDNESS OF THE RIESZ TRANSFORM 97

Again using consistency, we can interpret e−λtP kt ηn in Lq(ΛkTM). By the boundedness of
e−λtP kt we then obtain that

〈η, e−λtP kt ω〉 = 〈e−λtP kt η, ω〉.

Combining the above equalities, we find that

〈e−λtP kt η − η, ω〉 = 0.

As this holds for all ω ∈ C∞0 (ΛkTM) we find by density that e−λtP kt η = η and conse-
quently, ||η||p = e−λt||P kt η||p. Using that P kt is a contraction in Lp(ΛkTM), we obtain that
||η||p ≤ e−λt||η||p. Taking the limit t → ∞ and recalling that λ > 0, we find that ||η||p = 0
from which it follows that η = 0. We thus find that 0 is the only element in Lq(ΛkTM) which
is orthogonal to (λ− Lk)C∞0 , from which it follows that (λ− Lk)C∞0 is dense in Lp(ΛkTM).

We can now finish the proof. Observe that ω = (λ + Π2
k)
−1(λ − Lk)ω for all ω ∈ C∞0 . But

then (λ + Π2
k)
−1 = (λ − Lk)−1 at least on (λ − Lk)C∞0 . As both operators are bounded on

Lp(ΛkTM), and (λ−Lk)C∞0 is dense in Lp(ΛkTM), we find that (λ+Π2
k)
−1 = (λ−Lk)−1 holds

on all of Lp(ΛkTM). From this we obtain that

Dp(Π
2
k) = Dp(λ+ Π2

k) = R((λ+ Π2
k)
−1) = R((λ− Lk)−1) = Dp(λ− Lk) = Dp(−Lk).

Finally, pick ω ∈ Dp(Π
2
k) = Dp(−Lk). Let η ∈ Lp(ΛkTM) be such that ω = (λ − Lk)−1η.

Then

(λ+ Π2
k)ω = (λ+ Π2

k)(λ− Lk)−1η = η = (λ− Lk)(λ− Lk)−1η = (λ− Lk)ω

from which it follows that Π2
kω = −Lkω. We conclude that Π2

k = −Lk, finishing the proof.

We will now give a sufficient condition under which the Hodge-Dirac operator Π has a
bounded H∞-functional calculus. We will discuss this condition in more detail in section 6.5,
where we will also relate to the results in the next section.

Theorem 6.3.10 (Bounded H∞-functional calculus Π). Suppose that M is a complete Rie-
mannian manifold of dimension n and assume that Ql as in formula (6.2) is nonnegative for all
l ∈ {1, . . . , n}. Let 1 < p <∞. Then the Hodge-Dirac operator Π on Lp(ΛkTM) has a bounded
H∞-functional calculus on a bisector if and only if for all k ∈ {0, 1, . . . , n} the operator −Lk
has a bounded H∞-functional calculus on Lp(ΛkTM).

Proof. As Π is R-bisectorial and Π2 = −L, we find by proposition 5.3.7 that Π has a bounded
H∞-functional calculus in Lp(ΛTM) on a bisector if and only if −L has a bounded H∞-
functional calculus in Lp(ΛTM) on a sector. As −L is a diagonal matrix, this last statement is
equivalent to stating that each −Lk has a bounded H∞-functional calculus in Lp(ΛkTM).

Finally, we will show that from this bounded H∞-functional calculus we can again retrieve
the Riesz bounds.

Theorem 6.3.11 (Riesz bounds from bounded H∞-functional calculus). Suppose that M is
a complete Riemannian manifold of dimension n and assume that Qk as in formula (6.2) is
nonnegative for all k ∈ {1, . . . , n}. Let 1 < p < ∞ and suppose that Π has a bounded H∞-
functional calculus on a bisector. Then Dp(Π) = Dp((−L)1/2) and for all ω in the common
domain it holds that

||Πω||p 'p ||(−L)1/2ω||p.
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Proof. Pick θ > ωH∞(Π) and let us consider the function sgn ∈ H∞(Σθ) given by sgn(z) =

1Σ+
θ
− 1Σ−θ

= z√
z2

=
√
z2

z . By the bounded H∞-functional calculus for Π we can define the

bounded operator sgn(Π) on all of Lp(ΛkTM) by the discussion at the end of section 5.3.1.

Now observe that
√

Π2 = (−L)1/2. By theorem 15.18 in [20] we see that this definition
comes from the extended functional calculus for −L, and consequently also from the functional
calculus for Π with the function f(z) =

√
z2 ∈ HP (Σθ). It then follows from theorem 1.4.12 in

[11] that

sgn(Π) ◦
√

Π2 ⊂ Π and sgn(Π) ◦Π ⊂
√

Π2

from which we conclude that Dp(sgn(Π) ◦
√

Π2) ⊂ Dp(Π) and Dp(sgn(Π) ◦ Π) ⊂ Dp(
√

Π2).

However, as sgn(Π) is bounded, this reduces to Dp(
√

Π2) ⊂ Dp(Π) and Dp(Π) ⊂ Dp(
√

Π2),

from which we conclude that Dp(
√

Π2) = Dp(Π). Consequently, we even have that

sgn(Π) ◦
√

Π2 = Π and sgn(Π) ◦Π =
√

Π2.

But then we find for ω ∈ Dp(Π) = Dp(
√

Π2) that

||Πω||p = ||sgn(Π) ◦
√

Π2ω||p .p ||
√

Π2ω||p

and

||
√

Π2ω||p = ||sgn(Π) ◦Πω||p .p ||Πω||p.

Remembering that
√

Π2 = (−L)1/2 gives the result.

We will conclude this section by summarizing the results in one theorem.

Theorem 6.3.12. Suppose that M is a complete Riemannian manifold of dimension n and let
1 < p <∞. Assume that for all k ∈ {0, 1, . . . , n} the operator −Lk has a bounded H∞-functional
calculus on Lp(ΛkTM). Then the following assertions are equivalent:

1. For all k ∈ {0, 1, . . . , n}, Dp((−Lk)1/2) = Dp(dk+δk−1) and for ω in this common domain
it holds that

||(dk + δk−1)ω||p ∼p,k ||(−Lk)1/2ω||p.

2. The Hodge-Dirac operator Π is R-sectorial on Lp(ΛTM).

3. The Hodge-Dirac operator Π has a bounded H∞-functional calculus on a bisector.

6.4 Nonzero lower bounds

In this section M is a complete Riemannian manifold of dimension n. We again define the
quadratic forms Qk acting on k-forms by the following formula

1

2
L0|ω|2 = ω · Lkω +

1

k!
|
∆
ω|2 +Qk(ω, ω) (6.3)

which is formula (4.10) on 69. These Qk involve the curvature of M and we assume that Qk ≥ 0
for k = 1, . . . n. We assume that for all k ∈ {1, . . . , n} there exists a constant ak ≥ 0 such that
Qk(ω, ω) ≥ −a2

k|ω| for all ω ∈ C∞0 (ΛkTM).

Our aim is to discuss the validity of the analogues of the results in the previous section. If
we investigate the proof of theorem 4.5.4 we see that we in fact have the following theorem.
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Theorem 6.4.1. Suppose that M is a complete Riemannian manifold of dimension n and
assume that Ql as in formula (6.3) is bounded from below for all l ∈ {1, . . . , n}. Then for
1 < p <∞ and k = 0, 1, . . . , n there exists a constant C(p, k) such that for all k-forms ω ∈ C∞0
the following estimates hold:

1. For all d ≥ bk, ||dkω||p ≤ C(p, k)||(d2 − Lk)−1||p.

2. For all d ≥ bk−1, ||δk−1ω||p ≤ C(p, k)||(d2 − Lk)−1||p.

Here bk = max{ak, ak+1} as was defined in section 4.5. Hence, denote r = max{ak : k =
0, 1, . . . , n} = max{bk : k = 0, 1, . . . , n}. In that case we have the above estimates for all k with
the operator (r2 − Lk)−1.

As Lk generates the semigroup P kt , the operator Lk − r2 generates the semigroup e−r
2tP kt .

Now remember that for all 1 ≤ p ≤ ∞ the semigroup P kt satisfies the estimate ||P kt ω||p ≤
ea

2
kt||ω||p (see proposition 4.5.2). As r ≥ ak ≥ 0 for any k, we then find that the semigroup

e−r
2tP kt satisfies ||e−r2tP kt ||p ≤ e−r

2tea
2
kt||ω||p ≤ ||ω||p.

Furthermore, as P kt is self-adjoint on L2(ΛkTM), it is obvious that e−r
2tP kt is also self-adjoint

on L2(ΛkTM). These observations show that we can follow the proof of proposition 6.2.8, but
now applied to the operator Lk − r2 to obtain the following result.

Proposition 6.4.2 (R-sectoriality of r2 − Lk). For any 1 < p < ∞, the operator r2 − Lk is
R-sectorial on Lp(ΛkTM) with angle less than π

2 .

We now wish to define the operator (r2−Lk)1/2. For this, we can follow the same construction
as was done in the previous section when we defined (−Lk)1/2. The operator (r2−Lk)1/2 satisfies
similar properties, such as that C∞0 (ΛkTM) is a core for Dp((r

2−Lk)1/2) if 1 < p <∞ and that
for 1 ≤ p, p′ < ∞ the operators are consistent on Dp(r

2 − Lk) ∩Dp′(r
2 − Lk), so in particular

also on C∞0 (ΛkTM) if p, p′ > 1.
Similar to theorem 6.3.3, we get the following extension of theorem 6.4.1.

Theorem 6.4.3 (Boundedness of the Riesz transform, nonzero lower bounds). Suppose that M
is a complete Riemannian manifold of dimension n and assume that Ql as in formula (6.3) is
bounded from below for all l ∈ {1, . . . , n}. Let 1 < p < ∞ and suppose that k ∈ {0, 1, . . . , n}.
Then Dp((r

2 − Lk)1/2) ⊂ Dp(dk + δk−1) and there exists a constant C(p, k) only depending on
p, k, such that for all ω ∈ Dp((r

2 − Lk)1/2) the following estimate holds:

||(dk + δk−1)ω||p ≤ C(p, k)||(r2 − Lk)1/2ω||p.

We will now state some analogue results to those of section 6.3.2. By applying the results
from section 6.3.1 to the operator Lk − r2 instead of Lk we obtain the following.

Proposition 6.4.4 (R-gradient bounds). Let 1 < p < ∞. For any 0 ≤ k ≤ n(= dim(M)) the
families of operators

{tdk(I − t2(Lk − r2))−1 : t > 0}

and
{tδk−1(I − t2(Lk − r2))−1 : t > 0}

are R-bounded in L(Lp(ΛkTM), Lp(Λk+1TM)), respectively L(Lp(ΛkTM), Lp(Λk−1TM).

We will now focus ourselves on the spectrum of the Hodge-Dirac operator Π. Note that we
cannot hope that Π remains bisectorial. Indeed, if it would be, then its square, −Lk, would be
sectorial, which is not necessarily the case. Before we can state the result, we first have to go
over two lemmas.
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Lemma 6.4.5. Let 1 < p <∞. For any k ∈ {0, 1, . . . , n− 1} and for any t ∈ R \ {0} such that
|t| < 1

r the operators

dk(I − t2Lk)−1 and δk−1(I − t2Lk)−1

are well-defined on Lp(ΛkTM).

Proof. We will only prove that the first operator is well-defined, the second following in a
similar manner. As ||P kt || ≤ er

2t we find by proposition 3.2.2 that {λ ∈ C|Reλ > r2} ⊂ ρ(Lk).
Consequently, for t 6= 0 such that |t| < 1

r we have that t−2 > r2 and thus (t−2 − Lk)−1 is well
defined and bounded. Consequently, we also find that (I − t2Lk)−1 is well-defined and bounded
and maps Lp(ΛkTM) into Dp(Lk). Now observe that

Dp(Lk) = Dp(r
2 − Lk) ⊂ Dp((r

2 − Lk)1/2) ⊂ Dp(dk)

where the last inclusion follows by applying the results from section 6.3.1 to the operator Lk−r2.
From this we conclude that dk(I − t2Lk)−1 is well defined.

Lemma 6.4.6. Let 1 ≤ p < ∞. For any k = 0, 1, . . . , n and t ∈ R with |t| < 1
r the following

identities hold on Dp(dk) and Dp(δk) respectively:

(I − t2Lk+1)−1dk = dk(I − t2Lk)−1

and

(I − t2Lk)−1δk = δk(I − t2Lk+1)−1.

Proof. We will again only proof the first identity, the second following in a similar manner.

Pick t such that |t| < 1
r . Observe that by the previous lemma all operators are well-defined.

For t = 0 the statement is trivial, so we may assume that t 6= 0. From the proof of lemma
6.3.7 we get for ω ∈ Dp(dk) that P k+1

t dkω = dkP
k
t ω. Observe that t−2 > r2 which implies that

t−2 ∈ ρ(Lk) ∩ ρ(Lk+1). By taking Laplace transforms we then find that

(t−2 − Lk+1)−1dkω = dk(t
−2 − Lk)−1ω

which rewrites to

t2(I − t2Lk+1)−1dkω = t2dk(I − t2Lk)−1ω

from which the desired identity follows.

With these lemmas at hand we can prove the following.

Theorem 6.4.7 (Spectrum of Π). Suppose that M is a complete Riemannian manifold of
dimension n and assume that Ql as in formula (6.3) is bounded from below for all l ∈ {1, . . . , n}.
Let 1 < p <∞. Then {it : |t| > r} ⊂ ρ(Π) when considering Π as an operator on Lp(ΛTM).

Proof. First observe that (it − Π)−1 = 1
it(I −

1
itΠ)−1. Hence is suffices to show that (I − itΠ)

is boundedly invertible for |t| < 1
r . To do this, we can simply use the representation deduced

in the proof of theorem 6.3.8 and observe that the entries are indeed bounded in the case when
|t| < 1

r . The above lemma guarantees that the necessary manipulations are in fact allowed.

We will leave out the results concerning the boundedH∞-functional calculus for Π for reasons
which we will explain in the next section.
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6.5 Remarks and conjecture

We will finish this chapter by discussing the results from the previous two sections concercing
the boundedness of the H∞-functional calculus for the Hodge-Dirac operator Π. In theorem
6.3.10 we stated that Π has a bounded H∞-functional calculus precisely when −Lk has one for
all k ∈ {0, 1, . . . , n}. Our belief is that this is indeed satisfied in the situation of section 6.3, the
reason for which is that in theorem 6.3.3 we have two-sided Riesz estimates. Our conjecture is
that these two-sided Riesz estimates for −Lk are equivalent to the fact that −Lk has a bounded
H∞-functional calculus. The reason for this is that we think it likely that we can prove two-sided
square-function estimates for −Lk from the two-sided Riesz estimates, which is the approach
as taken in [25]. These two-sided square-function estimates are equivalent to having a bounded
H∞-functional calculus.

This immediately leads us to explaining why we left out the results concercing the bounded
H∞-functional calculus in the previous section. In this case, we namely only have one-sided
Riesz estimates in theorem 6.4.3 and corollary 4.5.7 suggests that we do not obtain the reverse
inequalities, as we can no longer take e = 0. But then we can no longer expect to get two-
sided square-function estimates for −Lk, and consequently we should not expect that −Lk has
a bounded H∞-functional calculus.
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Chapter 7

Conclusion

We will conclude this thesis by recollecting in broad lines the work we have done. We have
studied the Riesz transform on a complete Riemannian manifold with Ricci curvature bounded
from below. We were particularly interested in the connection between the boundedness of the
Riesz transform and the boundedness of the H∞-functional calculus of the Hodge-Dirac operator
d + δ. In chapters 2, 3 and 5 we discussed some general theory concerning differential geome-
try, strongly continuous semigroups and the H∞-functional calculus for sectorial and bisectorial
operators. Chapters 4 and 6 form the most important chapters and deserve some more attention.

7.1 Boundedness of the Riesz transform on a complete Rieman-
nian manifold

The basis for our study of the Riesz transform on complete Riemannian manifolds is formed
by the paper ‘Étude des transformation de Riesz dans les variétés riemanniennes à courbure de
Ricci minorée’ by D. Bakry ([6]). We thoroughly discussed this paper in chapter 4. The paper
first aimed at proving the boundedness of the Riesz transform on functions. To this extend, the

(Witten-)Laplacian was defined as dδ+ δd both for functions and 1-forms, denoted by L and
−→
L

respectively. Here, δ denotes the adjoint of d in L2 with respect to the measure m(dx) = ρ(x)dx

for some smooth function ρ > 0. It is shown that L and
−→
L defined on C∞0 are essentially

self-adjoint on L2 and via the spectral theory the semigroups generated by the closure of L and−→
L were defined, which are denoted by Pt and

−→
P t respectively. In order to show that the Riesz

transform on functions is bounded, it was furthermore assumed that the Ricci-curvature was
bounded from below. This allowed for useful bounds on these semigroups generated by L and−→
L respectively.

The approach in proving the boundedness of the Riesz transform was to make use of sub-

ordinated semigroups formed from Pt and
−→
P t. It turned out that the generators of these sub-

ordinated semigroups were exactly the operators that came up in proving bounds for the Riesz
transform. However, in order to make full use of them, it was necessary to derive two important
estimates, which is done in section 3 of the paper. One of these estimates was proven with purely
analytic methods, while the other made clever use of the concept of martingales and conditional
expectation from probability theory.

In the final section from the paper of Bakry that we studied (section 5), it was shown that
all ideas used to prove the boundedness of the Riesz transform on functions can also be used
with minor adjustments to prove the boundedness of the Riesz transform on k-forms. In this
section, the Witten-Laplacian on k-forms is denoted as Lk and can be defined in the same way
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as for 1-forms, as d acts on forms of any order and we can again define its adjoint. With this
result at hand, we turned to an analysis of th Hodge-Dirac operator d + δ.

7.2 Hodge-Dirac operator

In chapter 6 we analysed the Hodge-Dirac operator Π = d + δ on a complete Riemannian
manifold with Ricci-curvature bounded from below. The inspiration for the results that we
acquired is formed by the paper ‘Quadratic estimates and functional calculi of perturbed Dirac
operators’ by A. Axelsson, S. Keith and A. McIntosh ([4]) as well as the paper ‘Boundedness of
Riesz transforms for elliptic operators on abstract Wiener spaces’ by J.Maas and J.M.A.M van
Neerven ([25]).

We started out by proving that the operators as defined in [6], which are primarily considered
only on L2 can be extended to Lp. We also showed that the boundedness of the Riesz transform
still holds in this interpretation of the operators, rather than only considering them to be acting
on C∞0 . This allowed us to consider the Hodge-Dirac operator acting on Lp for arbitrary 1 ≤
p < ∞. As the boundedness of the Riesz transform only holds for 1 < p < ∞, the results are
obviously restricted to that case.

Armed with the right extensions, we first showed that the boundedness of the Riesz transform
implies R-gradient bounds (propositions 6.3.6 and 6.4.4). These gradient bounds then in turn
imply the R-bisectoriality of Π. From this we deduced that Π has a bounded H∞-functional
calculus on a bisector. Finally, we proved that one can again retrieve the boundedness of the
Riesz-transform from this bounded H∞-functional calculus, which concluded our study.

7.3 Future considerations

Finally, we will point out a direction in which the results may be extended. In the light of
[4] (and also [25]), we could ask ourselves the question what happens if we consider perturbed
Dirac-type operators. As an example we could consider bounded operators B1 and B2 and form
the operators dB = B∗2dB∗1 and δB = B1δB2. The Hodge-Dirac operator we would then study
is ΠB = d + δB. This is a special case of what is done in [4] for L2, where they also replace the
operator d by a more general operator Γ which must satisfy Γ2 = 0, just like d. Additionally,
some assumptions are made for the operators B1 and B2. We could then ask ourselves if these
results also hold on Lp for arbitrary 1 < p < ∞. Our results in sections 6.3.2 and 6.4 would
then be special cases of this.



Appendix A

A.1 Identities from differential geometry

In all results that follow we assume that we work on a Riemannian manifold M with the Levi-
Civita connection

∆
. The identities and results are mainly used in chapter 4. We therefore use

the notation from that chapter. That means that the inner product between tangent vectors
and forms is denoted by ·, while the L2 innerproduct is written as 〈 , 〉.

Lemma A.1.1. Let η be a 1-form and denote by η∗ the corresponding tangent vector from the
duality via the metric. Let X,Y be tangent vectors. Then

∆
η(X,Y ) =

∆
Xη
∗ · Y.

Proof. By the compatibility with the metric, we have that

X(η∗ · Y ) =
∆
Xη
∗ · Y + η∗ ·

∆
XY.

Using this, we find

∆
η(X,Y ) =

∆
Xη(Y )

= X(η(Y ))− η(
∆
XY )

= X(η∗ · Y )− η∗ ·
∆
XY

=
∆
Xη
∗ · Y.

Corollary A.1.2. For any smooth function h, and 1-form ω we have

d(dh · ω) =
∆
ω(·,dh∗) +

∆∆
h(·, ω∗).

Proof. Let X be an arbitrary vector field. Then d(dh · ω)(X) = X(dh · ω) = X(dh∗ · ω∗). By
the compatibility of

∆
with the metric and lemma A.1.1, we find that

X(dh∗ · ω∗) =
∆
Xdh∗ · ω∗ + dh∗ ·

∆
Xω
∗ =

∆
dh(X,ω∗) +

∆
ω(X,dh∗).

Noticing that dh =
∆
h for function gives the desired equality.

Proposition A.1.3 (Hessian). For any function h, we have that
∆
h = dh and

∆∆
h(X,Y ) =

X(Y h)− (
∆
XY )h.
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Proof. Let X,Y be arbitrary tangent vectors. Then

∆
h(X) =

∆
Xh = Xh = dh(X)

which shows that
∆
h = dh.

Furthermore, we have that

∆∆
h(X,Y ) =

∆
Xdh(Y ) = X(dh(Y ))− dh(

∆
XY ) = X(Y h)− (

∆
XY )h

which proves the second identity.

Proposition A.1.4 (Symmetry Hessian). The Hessian
∆∆

h of a function h is symmetric.

Proof. Let X,Y be tangent vectors. Then

∆∆
h(X,Y ) = X(Y h)− (

∆
XY )h

= [X,Y ]h+ Y (Xh)− (
∆
XY )h

= Y (Xh)− (
∆
YX)h

=
∆∆

h(Y,X)

where we used proposition A.1.3 in the first line and the symmetry of the connection in the
third line.

Proposition A.1.5 (Commutativity rule for covariant derivative of 1-forms). Let ω be a 1-form.
Then for tangent vectors X,Y it holds that

∆
ω(X,Y ) =

∆
ω(Y,X)− dω(Y,X).

Proof. Using the symmetry of the connection we find that

∆
ω(Y,X)− dω(Y,X) =

∆
Xω(Y )− (X(ω(Y ))− Y (ω(X))− ω([X,Y ]))

= X(ω(Y ))− ω(
∆
XY )−X(ω(Y )) + Y (ω(X)) + ω([X,Y ])

= Y (ω(X))− ω(
∆
YX)

=
∆
ω(X,Y )

which is the desired equality. The expression for dω used in the first line follows from theorem
13 in chapter 7 of [32].

Lemma A.1.6 (’Product rule’ for divergence on k-forms). Denote by δ the divergence of k-
forms. For any function f , k-form ω and (k − 1)-form ε we have

〈δ(fω), ε〉 = 〈fδω, ε〉 − 〈ω,df ∧ ε〉

Proof. We have that

〈fδω, ε〉 = 〈δω, fε〉
= 〈ω,d(fε)〉
= 〈ω,df ∧ ε+ fdε〉
= 〈ω,df ∧ ε〉+ 〈fω, dε〉
= 〈ω,df ∧ ε〉+ 〈δ(fω), ε〉

which rewrites to the desired equality.
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Corollary A.1.7 (Product rule for the Laplace-Beltrami operator). Let f, g ∈ C∞0 , and denote
by ∆ = δd the Laplace-Beltrami operator. Then

∆(fg) = f∆g + g∆f − 2df · dg.

Proof. Applying lemma A.1.6 to a 1-form ω and arbitrary f, h ∈ C∞0 , we find that

〈δ(fω), h〉 = 〈fδω − ω · df, h〉.

As this holds for all h ∈ C∞0 , by density we find that δ(fω) = fδω − df · ω.
This identity now gives us that

∆(fg) = δ(fdg + gdf) = fδdg − df · dg + gδdf − df · dg = f∆g + g∆f − 2df · dg.

Lemma A.1.8 (Norm of wedge product). Suppose that ε is k-form and η a l-form. Then

|ε ∧ η| ≤ |ε||η|

Proof. Notice that the estimate is pointwise. Pick p ∈ M and let x1, . . . , xn be normal coordi-
nates. We can write ε =

∑
I εIdx

I and η =
∑

J ηJdxJ , where I and J are multi-indices of length
k respectively l. As the metric at the point p is given by G = I, the following holds at p

|ε ∧ η|2 =
∑
I,J

|εIηJdxI ∧ dxJ |2

≤
∑
I,J

|εI |2|ηJ |2

=

(∑
I

|εI |2
)(∑

J

|ηJ |2
)

= |ε|2|η|2

Here the first line follows by the Pythagorean theorem and the second by using that |dxI ∧dxJ |2
is either 0 or 1, depending if I and J contain common indices.

Lemma A.1.9. For a 1-form ω it holds that

∆|ω|2 = 2ω ·∆ω + 2|
∆
ω|2

Proof. We prove the equality locally. Let {x1, . . . , xd} be normal coordinates, and write ∂i = ∂
∂xi

.
In that case

∆
∂i∂i = 0 and hence

∆2
∂i∂i

:=
∆
∂i

∆
∂i −

∆∆
∂i
∂i

=
∆
∂i

∆
∂i

As ∆ = Tr(
∆∆

) =
∑d

i=1

∆2
∂i∂i

, we find that

∆|ω|2 =

d∑
i=1

∆
∂i

∆
∂i(ω · ω)

=
d∑
i=1

∆
∂i(

∆
∂iω · ω + ω ·

∆
∂iω)
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=
d∑
i=1

2(
∆
∂i

∆
∂iω) · ω + 2

∆
∂iω ·

∆
∂iω

= 2∆ω · ω + 2|
∆
ω|2

where we used compatibility with the metric twice and the fact that |ω|2 = ω · ω.

Proposition A.1.10. Let ρ be a smooth function, and suppose that ω is a k-form and ε a
(k − 1)-form. Then

ω · (dρ ∧ ε) = ι(dρ∗)ω · ε

where ι denotes contraction on the first entry.

Proof. Working in a chart, by linearity it suffices to prove the claim for ω = fdxi1 ∧ · · · ∧ dxik

where 1 ≤ i1 < · · · < ik ≤ n and ε = gdxj1 ∧ · · · ∧ dxjk−1 where 1 ≤ j1 < · · · < jk−1 ≤ n.

In that case we find that

ω · (dρ ∧ gdxj1 ∧ · · · ∧ dxjk−1)

= fg(dxi1 ∧ · · · ∧ dxik) · (dρ ∧ dxj1 ∧ · · · ∧ dxjk−1)

=

k∑
r=1

(−1)r+1fg(dxir · dρ)(dxi1 ∧ · · · ∧ d̂xir ∧ · · · ∧ dxik) · (dxj1 ∧ · · · ∧ dxjk−1)

= ι(dρ∗)ω · ε.

Here the third line follows by remembering that the inner product can be seen as the determinant
of a matrix, and that we can develop this determinant to the row of dρ. The last equality follows
by simply expanding ι(dρ∗)ω.

A.2 Some analytic and algebraic results

Lemma A.2.1. Let f ∈ C2([0,∞)) be such that |f(x)|, |f ′(x)|, |f ′′(x)| ≤ Ce−ax for some con-
stants C, a > 0. Then

f(0) =

∫ ∞
0

xf ′′(x)dx.

Proof. We simply compute limR→∞
∫ R

0 xf ′′(x)dx. Using integration by parts, we obtain∫ R

0
xf ′′(x)dx = [xf ′(x)]R0 −

∫ R

0
f ′(x)dx = Rf ′(R)− (f(R)− f(0)).

By the assumption f(R) and f ′(R) go to 0 exponentially as R→∞. But then also Rf ′(R)→ 0
as R→∞. We conclude that∫ ∞

0
xf ′′(x)dx = lim

R→∞
Rf ′(R)− f(R) + f(0) = f(0).

Lemma A.2.2. Let a, b, c, d ≥ 0. Then

ab+ cd ≤ (a2 + c2)1/2(b2 + d2)1/2.
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Proof. Note that
ab+ cd = ((ab+ cd)2)1/2 = (a2b2 + c2d2 + 2abcd)1/2

and
0 ≤ (ad− bc)2 = a2d2 + b2c2 − 2abcd

from which it follows that 2abcd ≤ a2d2 + b2c2. Combining the two, we find that

ab+ cd ≤ (a2b2 + a2d2 + b2c2 + c2d2)1/2 = (a2 + c2)1/2(b2 + d2)1/2

as desired.
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