<]
TUDelft

Delft University of Technology

Material model for non-linear finite element analyses of large concrete structures

Engen, Morten; Hendriks, Max; @verli, Jan Arve; Aldstedt, Erik

Publication date
2016

Document Version
Final published version

Published in
fib Symposium 2016: Performance-based approaches for concrete structures: Materials technology,
structural design, analytical modelling, conformity assesment and testing

Citation (APA) .

Engen, M., Hendriks, M., @verli, J. A., & Aldstedt, E. (2016). Material model for non-linear finite element
analyses of large concrete structures. In H. Beushausen (Ed.), fib Symposium 2016: Performance-based
approaches for concrete structures: Materials technology, structural design, analytical modelling, conformity
assesment and testing International Federation for Structural Concrete (fib).

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.



MATERIAL MODEL FOR NON-LINEAR FINITE ELEMENT ANALYSES
OF LARGE CONCRETE STRUCTURES

Morten Engen®?, Max A. N. Hendriks*?, Jan Arve @verli! and Erik Aldstedt?

!Norwegian University of Science and Technology, Department of Structural Engineering, Trondheim,
Norway, 2Multiconsult ASA, Oslo, Norway, Delft University of Technology, Delft, The Netherlands

ABSTRACT

A fully triaxial material model for concrete was implemented in a commercial finite element code. The
only required input parameter was the cylinder compressive strength. The material model was suitable for
non-linear finite element analyses of large concrete structures. The importance of including a crack
closure algorithm was demonstrated on a case involving sequential loading. Bayesian inference was
applied to results from a series of benchmark analyses, and the results indicate that the modelling
uncertainty can be represented by a log-normal variable with a mean 1.10 and a coefficient of variation of
10.9%.

Keywords: Material model for concrete, non-linear finite element analyses, modelling uncertainty,
Bayesian inference, large concrete structures.

1. Introduction

The design of large concrete structures like dams and offshore oil and gas platforms are normally based on
global linear finite element analyses. This allows for using the principle of superpositioning in order to
handle the vast number of load combinations (Brekke et al. 1994, Engen et al. 2015). For such large shell
structures it is important to perform global analyses due to the interaction between global and local load
effects. Solid elements are normally used due to the required accuracy in structural joints, and the
elements are large compared to the sectional dimensions. Sufficient capacity is assured by performing
local sectional design.

In order to take better into account the real physical behavior of reinforced concrete, non-linear finite
element analyses (NLFEA) could be carried out. Due to cracking of concrete and yielding of
reinforcement, a redistribution of the internal forces can be expected. All of the choices regarding force
equilibrium, kinematic compatibility and constitutive relations influence the accuracy of the results
obtained from NLFEA, i.e. the modelling uncertainty. However, for reinforced concrete, the material
model for concrete is considered the largest source of modelling uncertainties.

The present work was based on a fully triaxial material model that has been developed since the 1970s and
is still subject to improvements (Kotsovos 1979, Kotsovos 1980, Markou & Papadrakakis 2013). Engen et
al. (2014) collected nearly 70 results from benchmark analyses reported in the literature which revealed a
modelling uncertainty with a sample mean close to 1.0 and a sample coefficient of variation of 13%. The
early versions of the material model were implemented in highly modular special purpose finite element
codes, and in order to make the material model available for practicing engineers, the model was adapted
to a commercial finite element code in the present work (Engen et al. 2016b).

In this paper, the material model will be briefly described and one case from a series of benchmark
analyses will be presented. By use of Bayesian inference, the modelling uncertainty will be quantified
based on a series of 38 benchmark analyses.



2. Fully triaxial material model for concrete

The deformation of concrete subjected to general states of stress can be described by non-linear elastic
moduli that are functions of the stress state (Kotsovos 1980). Such elastic moduli are normally valid up to
an ultimate stress level, at which cracking is initiated. A suitable fracture criterion which is also a function
of the stress level can be found in the literature (Kotsovos 1979). Due to the triaxial nature of the elastic
moduli and the fracture criterion, the effect of transverse compression and tension both on the capacity
and the ductility of plain concrete is automatically included. In the present work, the material model was
implemented in a fixed, smeared cracking framework, allowing for both cracking and crack closure. The
only required input parameter for the material model was the compressive strength f.. Details of the
material model can be found in a separate paper (Engen et al. 2016b). A brief demonstration of the
behavior on material level is given in Figure 1 and 2.
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(@) Uniaxial compression: 6x : 6y:6;=0:0:1.0. (b) Triaxial compression: 6 : 6y: 6, =0.1:0.1:1.0.

Fig. 1. Examples of loading, unloading and reloading of concrete with f. = 40 MPa.
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(a) Loading beyond cracking followed by unloading. (b) Reversed loading with crack closure followed by unloading. The

load pattern from a) is shown as dash-dotted.

Fig. 2. Examples of loading in shear of unreinforced concrete with f. = 40 MPa.

3. Kinematic compatibility and force equilibrium

Relatively large 8-noded solid elements were used for the concrete, and the reinforcement was represented
by embedded elements assuming no relative displacement between concrete and reinforcement. Modified
Newton-Raphson with a force convergence criterion of 1% in combination with line search was used for
solving the non-linear equilibrium equations.

4. Validation by benchmark analyses

The material model was validated on structural level by performing analyses of experiments from the
literature. Validation on material level can be found elsewhere (Kotsovos 1979, Kotsovos 1980, Engen et
al. 2015). Results from one selected benchmark analysis are summarized in this paper. The focus of the
present work is on the global behavior and the ultimate limit capacity, and the results are thus limited to
crack plots at selected load steps and a global force-displacement curve.

Jelic et al. (2004) performed experiments on simply supported rectangular beams subjected to sequential
loading. Beam LDCB3 was selected for the present paper. The layout and loading arrangement are shown



in Figure 3c. The load at midspan was applied and kept constant at a level of 90 kN while applying the
load at the tip of the cantilever until failure. In Figure 3a, the total load is plotted against the displacements
below the point loads. Positive deflections are downward, i.e. in the direction of the applied loads. Crack
plots for two selected load steps are shown in Figure 3b and 3c. It can be observed that several cracks
were closing during application of the second load. The brittle failure mode was characterized by diagonal
cracking extending between the point load at the tip of the cantilever and the right support.
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(b) Crack plot for full intensity of the load at midspan.
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Fig. 3. Results from analyses of a rectangular beam with an overhang subjected to sequential loading.

5. Quantification of the modelling uncertainty

According to the Probabilistic Model Code (JCSS 2001), the modelling uncertainty was defined as the
ratio of the experimental and the predicted capacity, Xmod = Rexp/Rnirea. In Bayesian data analysis both the
variable in question and the parameters of its probability distribution are treated as random variables
(Gelman et al. 2014). This allows for incorporating both prior knowledge and observed data, and also
serves as a tool to quantify the statistical uncertainty of the parameters of the probability distribution. By
assuming no prior information, the following equations (1) and (2) can be developed and used to estimate
the mean p and the variance ¢ of the variable in question given n observations collected in the vector y. E

refers to the expected value, y = %2?21 y; is the sample mean and s2 = ﬁ}j?:l(yi — )% is the sample

variance. The equations are adapted from the work by Gelman et al. (2014), and details of the derivations
can be found in the work by Engen et al. (2016a).
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By analyzing a series of 38 benchmark analyses, it was suggested to represent the modelling uncertainty
with a log-normally distributed variable. By applying (1) and (2) the mean of the modelling uncertainty

was estimated to 1.10 and the variance was estimated to 0.120 with a resulting coefficient of variation of
10.9%. The details of the calculations can be found in a separate paper (Engen et al. 2016a).

Engen et al. (2016a) defined the ductility index Xauility as the ratio of the plastic dissipation of the
reinforcement and the total plastic dissipation at failure. The ductility index is thus regarded as a
characterization of the failure mode, where the limiting values Xauciity = 0 and Xauetility = 1 would
correspond to a fully brittle and fully ductile failure mode respectively. Figure 4a shows the correlation
between the modelling uncertainty and the ductility index. A slight dependency of the modelling
uncertainty on the failure mode can be observed. Figure 4b shows the correlation between the modelling
uncertainty and the compressive strength, and no simple linear correlation can be observed.
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(a) Ductility index. (b) Compressive strength.

Fig. 4. Correlation between modelling uncertainty Xmed and a) ductility index Xauetility and b) compressive
strength fe.

6. Discussion

The detail level which is needed for the material model depends on the phenomena that are to be studied
in the analysis. In the present study, the ultimate limit capacity was sought, and for this purpose, the
simple material model was appropriate. The ability of the material model to allow for crack closure was
shown to be important in order to analyze cases involving sequential loading.

The modelling uncertainty got the largest contribution from the benchmark analyses with brittle failure
modes. Brittle failure modes that are governed by the concrete are often more difficult to predict with a
high degree of accuracy than ductile failure modes governed by the reinforcement (Schlune et al. 2012).
Also, the brittle failure modes have a higher inherent uncertainty due to the higher physical uncertainty of
concrete compared to the reinforcement (JCSS 2001). Due to this it was suggested that the numerator of
the modelling uncertainty unintentionally contributed to the estimated parameters of the probability
distribution of the modelling uncertainty. The simple multiplicative definition of the modelling uncertainty
that was used in the present work might not be optimal for separating the modelling uncertainty from other
uncertainties in engineering analyses.

Compared to results presented in the literature (e.g. Schlune et al. 2012) the estimated parameters for the
modelling uncertainty were considered adequate and comparable to the global safety factor for modelling
uncertainty for well validated numerical models proposed in fib Model Code 2010 (fib 2013).

7. Conclusions

The fully triaxial material model was implemented in a commercial finite element code. Despite the
simple behavior and the relatively large finite elements that were used, a series of 38 benchmark analyses
resulted in a modelling uncertainty with a mean 1.10 and a coefficient of variation of 10.9%. The results
support the findings from a recent paper (Engen et al. 2015) where a shift of the attention from a detailed
description of the post-cracking tensile behavior of concrete to a rational description of the pre-cracking
compressive behavior was advised in cases where large elements are used and the ultimate limit capacity
is sought.
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