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Abstract

As an insurer you want identify the risks you take to prevent bankruptcy. The
theory of large deviations formalizes the study of such rare events. We will use the
theorem of Cramér, which is a main theorem in large deviation theory, to investigate
the rate at which the probability of large deviations of the sums of random variables
decay. Using Sanov’s theorem we will derive an expression for large deviations of
the empirical measure. Furthermore, we will use Gibbs’s principle to derive the
distribution of random variables conditional on a large deviation.
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1 Introduction

When rolling a dice, your outcome can be 1, 2, 3, 4, 5, or 6. The mean is then
%‘”5*6 = 3.5. Intuition tells us that the average of multiple throws will be approx-
imately equal to the mean 3.5 and that more throws will probably result in an average
value closer to 3.5.

In this thesis we will study the probability of a large deviation of the average, for instance
throwing an average of 5 or above. The probability of throwing a 5 or above when rolling
one dice is %. However, when rolling 10 dices the probability of throwing an average
amount of 5 or above will be very low. Subsequently, when rolling 100 dices this proba-
bility will be even lower. This intuitively explains the fact that the probability of rolling
an average amount of 5 or above will decay as you roll more dices. In this thesis, we are
interested in what rate the probability of these large deviations decay. The occurrence of
such deviations is of importance in applications as, for instance, modelling insurances.

Suppose you are the owner of a non-life insurance company. Then you earn money
because your customers pay you a premium periodically. In exchange, you have to pay
your customers when they make a claim for damage. There is a possibility that there
is a period of extremely many claims or extremely high claims. In that case, the total
amount of claims you have to pay out is much higher than you expected and it could be
higher than your reserve fund. In other words, the payoff has a large deviation from the
expected value of the payoff. This could lead to bankruptcy.

Naturally, an insurer does not want to go bankrupt. By analysing the probability of such
a large deviation of the payoff, an insurer can choose a suitable value of the premium
such that the probability of bankruptcy will be sufficiently low.

Let us put this in a mathematical framework. Suppose we are modelling a die throw
or the payoff of an insurance claim. Let Xi, X, ... be i.i.d random variables on a prob-
ability space which contain the outcome of the die throws or the values of the payoffs
corresponding to the claims. Let

E[X]=p€eR,
Var [X] = o* € (0,00),

The intuition that averages converge is reflected by the Law of large numbers, which
states that

1 a.s.
—S, —— 1, as n — oo.
n

This implies that
1
]P’{—Snzlz—kc] — 0, for ¢ > 0. (1.1)
n

The second main theorem of probability theory is the Central limit theorem. This theorem
describes the universal behavior of re-scaled averages. According to the Central limit
theorem, one has to scale up the difference (%Sn — ,u) by /n to obtain the non-trivial
limiting behavior
1 c c
P|=S, > p+ —— zl—cp(-),
{n =7 ﬁ}
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where ®(x) is the standard normal cumulative distribution function evaluated at x.

We see that %Sn typically fluctuates around p with a distance of order \/Lﬁ Such a devi-
ation is called a normal fluctuation.

The Law of large numbers and the Central limit theorem combined imply that the prob-

ability of all deviations of an order greater than \/iﬁ will converge to 0, as n — oo. In this

thesis, we restrict ourselves to large deviations i.e. deviations of order 1, as in . We
will in particular study how fast the probability of a large deviation will converge to 0,
as n — o0.

In Section 2 we will see that when the moment generating function is finite, we typically
have for large values of n

P lS >a| ~ e @ (1.2)
n n )

where [ is a strictly convex function with the property that [ (E[X]) = 0. Here I(a)
quantifies the exponential rate at which the tails of the distribution of S,, decay. When
the moment generating function is infinite, this probability typically converges slower.

Recall the insurance problem. Suppose the payoffs X, X, ... corresponding to the claims
are i.i.d. random variables and the the periodically paid premium is equal to a > E [X].
Furthermore, suppose your reserve fund only consists of the premiums paid. Then
Sp = Xy + ...+ X, is the total value of the claims. Now bankruptcy occurs when the av-
erage amount of a claim %Sn is higher than the periodically paid premium a and therefore
the probability of bankruptcy is given by P (S, > na). Now the Law of large numbers
implies that the probability of bankruptcy will be equal to 0, as n — co. However, there
can just be finitely many claims and thus the probability of bankruptcy P (%Sn > a) will
never be equal to zero. So to identify the risk you take corresponding to a premium value
a, you are interested in the rate at which this probability decays as n will be very large,
and therefore this risk is quantified by (1.2). Moreover, to avoid bankruptcy, you should
know if a possible bankruptcy is likely to be caused by a single extremely high claim or by
extremely many claims. This can be studied using the distribution of a claim conditional
on a bankruptcy i.e. the distribution P (Xl\%Sn > a).

In this thesis, we will see that the the moment generating function of the random variable
has a huge impact on the limiting behaviour of the large deviation of its sum. In the
Sections 2 up to 4, we will study the case where the moment generating function is finite.
Cramér’s theorem in Section 2 will state how the rate function 7/, which quantifies the
rate of exponential decay, can be derived. For the proof of this theorem we will introduce
the tilted measure Q,. Under the measure Q,,, a large deviation becomes a typical event.
Section 3 describes the large deviation in terms of the empirical measure. Large devia-
tions of the payoff can be derived from large deviations of the type of claims, because the
payoff is a function of the claims. If now the payoff corresponding to the claims changes
you don’t have to make an analysis of your claims all over again, but instead you just
have to change the payoff function.

In Section 4 we will analyse the probability P (X 1\%8,1 > a). We will see that the distri-
bution function of this conditional probability is given by the tilted measure Q,, which
turned the large deviation to typical event.

In Section 5 we will look at the case where the moment generating function is infinite.
In this case the decay of P (%Sn > a) is not exponential, but polynomial. Therefore the
decay is slower than the case where the moment generating function is finite. Further-
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more, we will see that if the moment generating function is infinite, a large deviation is
most likely to be caused by one single random variable.



2 Rate function

We will show that under certain conditions of the moment generating function of X, that
for n — oo we have

P an > a] ~ e @) (2.1)
n

where the strictly convex function I(a) is called the rate function. Here I(a) quanti-
fies the rate at which the tails of the distribution of S,, decay. The rate function I(a)
has the property that I (E[X]) = 0, because the Law of large numbers implies that
P [%Sn > a] = 1. Another property of I(a) is that it increases as a goes further away
from E [X], this is because then Law of large numbers implies that P [15, > a] will be
lower.

We will see that the rate functions differ for different probability distributions, even if
they have the same mean and variance. If for example X; ~ Ber (%) and Y; ~ N (%, 411)7
then E[X] =E[Y] and Var(X) = Var(Y). However, the probability

1 n
P[-S"X,>15] =0,

and therefore I(1.5) = oo, while the probability

2
1< o ()
P(‘Zmzm):/ e Wi gz >0,
nizl 1 1

.5 ES
2TL?T

and therefore I(1.5) < oo.
In Section 2.2, Proposition [2.10] states the rate functions corresponding to some common
probability distributions.

2.1 Cramér’s theorem

Cramér’s theorem [2] gives an expression for the rate function I(a) of (2.1)). The condition
of this theorem is that the moment generating function of X is finite. We will see
in Proposition that for the exponential distribution, where the moment generating
function is not finite everywhere, Cramér’s theorem is also valid.

Theorem 2.1 (Cramér’s Theorem). Let (X;) be i.i.d. R-valued random variables satis-
fying
Mx(t) =Ee™ <00 VteR.

Let S, =>"" | X;. Then, for all a > EXj,

1
lim —logP[S, > na| = —1I(a),

n—oo N,
where

I(a) = sup lape — o(p)]

with
(1) = log Ee~.
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Proof. The proof of the theorem consists of two parts, the first part proves lim,,_, ., % logP[S,, > na] <
—I(a) and the second part proves lim,, %log}P’ [Sy, > na] > —I(a). We will start with
the proof of part 1.

Let A > 0. We use Markov’s inequality to derive

P[S, >na| =P [e’\S” > e’\m]
E [e’\S"}
f; eAna

_ E [IT, ] _

eAna

We know (X;) are independent, therefore

—-n

=€

—~

Aa—logE[e*X1]) '

Subsequently, optimizing over A results in

1 ) AX
ElogIP’[Sn > nal < }\I;%— ()\a —logE [e 1])

< —sup ()\a —logE [e’\Xl}) .
A>0

We are left to prove that

sup [Aa — @(A)] = sup [Aa — p(A)].

A>0 AeR
This is done in Lemma where we analyse [(a) and its properties. Hence, we can
conclude

%ngP’ [Sy, > na] < —I(a). (2:2)
[

In order to prove part 2 of the proof of Theorem we will introduce a probability
measure Q,, called the tilted measure. Later on, we will see that this ;1 is chosen such
that Eg, [X] = a. That implies that lim, o %Sn = a. Therefore the tilted distribution
Q,, will shift the corresponding random variables, such that the rare event {%Sn > a}
becomes a typical event.

Definition 2.2. Let P be a probability measure on a measurable space. Define the tilted
measure Q,, by

dQ e
@ 7 B

where i is chosen such that pa —logE [e"X] = I(a).
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The following lemma shows that Varg, [X] € (0,00).

Lemma 2.3. If Varp [X] > 0 then
Varg, [X] € (0,00)

Proof. We know Varp [X] > 0, so X is not a constant on the probability measure P.
Therefore there exist an event A and and an event B such that P[X € A] ,P[X € B] > 0.
We know e™ is a strictly positive function and thus

dQ, erH

A P R

This implies

Qu[X € A] > {géig%(m)}P[X c Al >0,

Qu[X €B] > {min%(m)}P[X € B] > 0.

zeB

So X is not constant under the probability measure Q, hence Varg [X] > 0.
Yet, we are left to show that Varg [X] < co. Therefore, we use that the moment gener-
ating function with respect to the probability measure Q is finite.
Let t € R, we know p # 0 so
E]P’[e“XetX] . MX (t + :u)

Eq, [¢¥] = B o]~ My () < 00. (2.3)

We know e® > 22, if x > 0 and e=® > 2?2, if 2 < 0. Therefore, using (2.3)) with ¢ = 1 and
t = —1 we derive

Varg, = Eq, [X?] — Eq, [X]* < max (Eq, [¢¥],Eq, [e]) < cc.

Lemma 2.4. Let
o(p) =logE [e"¥]

where
E [e”X} <oo YpueR

Then p(u) is differentiable.

Proof. The moment generating function E [e“X] is differentiable on B°, where B =
{p: Mx(u) < co}. We supposed E [G”X} < 00, hence E [e“X} is differentiable on p € R.
Furthermore, logy is differentiable for y > 0 and E [e*¥] > 0 for all 4 € R. Hence, ¢(u)
is a composition of differentiable functions and thus is differentiable on u € R. m

Lemma 2.5.
]EQu [X] =a



Proof. To deduce Eq, [X]| = a, we will study the supremum on p € R of

pa — p(p). (2.4)

By Lemma we know ¢ is differentiable. Setting the derivative of (2.4) equal to zero,
results in

) 2.5)
Differentiating ¢(u), gives

B
/ - nX
¢ (1) o logE [e"*]

1 0 X
= E [ *8_,uE [e }
_ E[Xer] (2.6)
E [erX] '
= Eq, [X]. (2.7)

We apply the second derivative test to check whether a = Eg, [X] indeed implies a
supremum on so that I(a) = pa — ¢(u). We know ¢'(u) is a quotient of two
differentiable functions, a finite moment generating function and the derivative of a finite
moment generating function, and hence ¢”(u) exists. Differentiating twice with
respect to p gives

0? "

Ere (na —p(p)) = —¢ ().

Differentiating (i) twice, results in

Vi a E [Xeux]
©"(p) = 3_M (W)

E [X2e*X] E [e*X] — E [Xe"X] E [XetX]

E [onX]?
CE[X%]  (E[Xxe]\
=TR[] E [o+X]

-2 ['gn] -2 [esm]
= Varg | X]. (2.8)

From Lemma 2.3 we know Varg [X] > 0, so —¢” (1) < 0, and thus a = Eg, [X] indeed
implies a supremum on (2.4). Hence, we can conclude

Eg, [X] = a. (2.9)
O

The following Lemma will show that u(a) is continuously differentiable in an open
neighborhood of a. We will use this fact in the proof of Lemma [2.7] where we show I is
a strictly convex function.



Lemma 2.6. Let
I(x) = sup [zt — o(f1)] = zp(x) — o(p(x)).
feR
Then p is a continuously differentiable function of x for x in an open neighborhood of a.

Proof. Let J(x,y) = ¢ (y) — x. Let p* be such that

I(a) = pa — ().

Then we know by (2.5) that ¢ (u*) = a. Therefore J(a, u*) = ¢ (u*) —a = 0.
Furthermore, using Lemma and (2.8) we derive

a&] * 1" *
a—y(a,u)—w (") > 0.

Then we know by the implicit function theorem that there exists an open neighborhood
V of a, and an open neighborhood W of p*, and a continuously differentiable function
w 'V — W such that

(i) J(z,u(z))=0foral z eV,
(i) J(x,y) #0 for all (x,y) € VW with y # p(z),
(iii) %(:p) exists for all x € V.

So for every z € V the function p(z) is such that ¢ (u(z)) = 2. Therefore, for every
x € V there is a pu(z) € W such that

I(z) = p(z)x — p(u(x)).
Furthermore, u(x) is a continuously differentiable in V. O
Lemma 2.7. [ is strictly convex.

Proof. Fix ag. We prove I (ag) > 0. According to Lemma [2.6/there exists a continuously
differentiable function a — p(a) in an open neighborhood of ay such that

I(a) = sup [t — p(1)] = pla)a — p(u(a)). (2.10)

fER

Now, differentiating both the left-hand side and the right-hand side of (2.10f) with respect

to a results in p p
I'(a) =a?t — ().
(a) = a——(a) + pla) = ¢'() - (a)

Subsequently, using (2.5)) we get I'(ag) = p(ao), and thus

d
"(a) = d—Z(ao). (2.11)
Differentiating ([2.5) with respect to a gives
" dp
¥ (M(ao))%(ao) =1 (2.12)
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Hence

du 1
—(ag) = ———. 2.13
4™ = P lufan) 219
Subsequently, (2.11]) combined with (2.13]) gives
du 1 B 1

Tn) = G410 = Sitaae) ~ Varg (X1

Furthermore, we know from Lemma [2.3| that Varg [X] € (0,00), so I"(ap) > 0, hence I
is strictly convex. O

With the obtained results, we can now prove the remaining part of the proof of
Theorem 211

Part 2 of proof of theorem[2.1]. Using the Radon-Nikodym derivative from Definition[2.2]
we derive

P[S, > na] = E {1{%5,2(1}}

d dQ,\
=E|T11g50 C%L(X Xn)(%) (Xl,..,Xn)]
[ E[e"X}n
:EQM 1{%Sn2a} GS”'U‘

log(E[e“X]n)—Snu]

N

As we want to derive an expression of the lower bound, we need an upper bound on
13,. Using the result that =5, — a under Q,,, we can restrict [a,0) to [a,a+ ¢), for an
arbitrary ¢ > 0, without losing too much information about the upper bound of %Sn.

P [S” Z na’] 2 EQu -IL{%Sne[a,curg]}en(log(E[euX])7%5"'“)]

n(log(E|e#X|)—(a+e
ZEQ# 1{ SnEaa-‘rE]} € ( g( [ ]) (+)M)

—n(ap—log(E|erX —n,
= Eq, _:H'{%Sne[a,a+s}}_ ¢ (antoa(E[e"X])) e

1 —nl(a) ,—n
> EQ# _1{%Sn6[a,a+6]}_ € ( )6 .

1
=Q, {—Sn € [a,a+ e]} e (a) g—npe (2.14)
n

We will apply the Central Limit Theorem to prove that the left term of (2.14]) tends to
1, as n — oo. We know from Lemma that o := Varg, € (0,00). And from (2.9)
that Eg, [X] = a. So by the Central Limit Theorem

n—oo n—oo

lim Q, [7115” € [a,a—i—a]} = lim (Q,[S, < n(a+¢)] —Q,[S, > nal)

n—oo

:hm(@#ls —na<an—|—n6—an] (
o

vno T oyn
11

1—lim Q,[5, < na])

n—oo



na ne

— lim Q S, — < 4 lim Q S, —na _ na—na
oo 0'\/_ _0'\/_ n—oo 1 U\/ﬁ - U\/ﬁ

:hmé(J%) P (0) — 1

n—oo

1 1
—14+-—1=-.
T3 2

This results in combined with (2.14]) implies

1 1
lim —log (P[S, > na]) > lim — log <Q# [ Sn € la,a+ 8]] e"l(“)e"‘“)
n

n—oo N n—oo 1
1 1S, )
= lim o8 ([ e[aa—i_g]}))—](a)—,us
n— 00 n
1 =S € a,
= lim o8 ([ E[aa+€]])>—f(a)—u6
n—00 n
1 1
~ lim %(9>—1my—m
n—o0 n
= —1I(a) — pe.
We chose € > 0 arbitrarily. Hence
1
lim —logP[S, > na] > —1(a). (2.15)
n—oo M

If we combine (2.2]) and (2.15) we can conclude that

1
lim —logP[S, > na] = —I(a).

n—oo M,
[
Lemma 2.8.
sup [Aa — p(A)] = sup [Aa — p(N)]
AeR A>0
Proof. From (2.5 we know
o (A(a)) = a. (2.16)
Furthermore, (2.7) combined with the fact that a > E [X] implies
¢'(0) =E[X] < a. (2.17)
Using ([2.6) we derive
¢ (0) =E[X]. (2.18)
Hence ([2.16]) combined with (2.17)) and (2.18)) results in
@ (Ma)) > ¢ '(0). (2.19)
From Lemmawe know Varg, [X] > 0. Subsequently, using ([2.8)) we derive 0" (\) > 0.
Hence ¢'()) is a strictly increasing function of A. Therefore, (2.19) implies A(a) > 0. O

12



One of the conditions in Cramér’s theorem is that the moment generating function
EetX < oo for all 4 € R. The moment generating function of the exponential distribution
is given by

>\ .
=, i p < A,
My () = EetX = %m0 1 =
oo,  otherwise.
Therefore, the exponential distribution does not meet the condition in Cramér’s theorem.
However, in the next proposition we will see that Cramér’s theorem still holds for the
exponential distribution.

Proposition 2.9. Theorem [2.1] also holds for the exponential distribution for a > 0.

Proof. In the first part of the proof of Theorem [2.1] we derive the upper bound

1
—logP[S, > na] < —I(a) = —sup [ap — log Ee"¥] .
n nER

This upper bound is independent of whether E [e“X ] is finite or not and therefore will
still hold.

For the proof of the lower bound we used the tilted measure Q,. Therefore we have
to show that this measure exists in the case of the exponential distribution. Let a > 0.
If we suppose that u > A, then E [e“X ] = 00. This implies

ap — logE [e“X} = —00.
But a* 0 — logE [¢™*] = 0. Hence

Sup [na —o(p)] = Sup [na —p(p)] -

We know that E [e“X ] is finite for p < A, and therefore using (2.5)) we derive

Note that /\_iu covers the set (0,00) for p < A. Therefore for every a > 0 there exists

a p such that ¢'(p) = a. Hence, we know the measure Q, exists for every a > 0 and
therefore the proof of part 2 of the proof of Cramér’s theorem still holds. ]

2.2 Rate functions of common probability distributions

From Theorem [2.1) we know that for large n
1 —nl(a)
P|-S,>a|l =e )
n

where the rate function I(a) = sup,,cg [ap — @(1)].
In Proposition the rate functions I (a) corresponding to some common probability
distributions are given.
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Proposition 2.10. Let the rate function I(a) = sup,cg [pa — o(pn)]. The table below
contains probability distributions with their corresponding rate functions.

Distribution | Rate function I(a)

Constant(c) {0’ ifa=c

00 otherwise

1 (1—a)l (L—>,f e 0,1
Bernoulli(p) ¢ og a)log {3 ifaelo,1]
0, otherw1se

{alog (n —a)log (’f:;) , ifa €[0,n]

Binomial(n, p)
0o, otherwise

alog —a—i-)\ ifa>0
Poisson(\) A ifa=0
oo, ifa<0
A —1—log(a)), ifa>0
Exponential(\) a . og(aX), if a >
00, if a <0

Normal(\, 02) —(“;2’\)2, for a € R

1
2

Proof. In the proofs of the rate functions of the distributions, we use the same method for
every distribution except for the constant random variable. We first use to compute
p from a, subsequently we derive an expression for u, and after that we use p to derive
an expression for /(a).

(i) Let X =c € R.

Then Mx () = E [e"X] = et

Therefore

I(a) = sup [a — log ()] = sup [u(a — )] = {O a=c

LER ueR oo otherwise.

(ii) Let X ~ Bernoulli(p) for p € [0, 1].
We know My (n) = E [e"¥] = g + pe'.
If a < 0. Then
lim [pua —log (¢ + pet)] = oc.

U—>—00
Hence, I(a) = oo for a > 0.

If a > 0. Then
lim [pa — log (¢ + pe*)] = oo.

H—00

Hence, I(a) = oo for a < 0.
If a € [0,1]. Then we can express a as

0 pet
- 71 mY) — ,
0 = 5 (g g+ per)) =

Subsequently, the expression for p follows by
aq + ape! = pe!

14



o= 4
1l—ap
1—
= log <g>—log( a). (2.20)
p q
Therefore
1—
I(a):a(log(g)—log( a))—log(q—irp ¢ —)
p q l—ap
1 —
:alog(g>—alog( a)—log(q(l—l— ¢ ))
P q 1—a
a 1l—a 1—a a
=alog | — | —alog —log | g
P q l—a 1-a
1—
—alog(g)—alog( a)—log( q )
P q 1—a
a 1—a l1—a
—alog(—)—alog( >+log( )
p q q
1—
= alog (2> +(1—a) log< a)
p q
a 1—a
=alog | — | + 1—alo( )
g(p) (1—a)log -

If a < 0. Then

lim [pua —log[(q+pe")"]] = lim [ua — nlog (¢ + pe')] = oc.

p——00 p—>—00

Hence, I(a) = oo for a < 0.
If a > n. Then

lim [ap —log [(q + pe')"]] = lim [ap — nlog (¢ + pet)] = oo.

U—>00 H—00

Therefore, I(a) = oo for a > n.
If a € [0,n]. Then we can express a as

0
a:@ (1)

= % [log (¢ + pe*)"]

_ 8 1 14

= "5 [log (q + pe')]
npet

g+ pet

Subsequently, the expression for y follows by
aq + ape’ = npet
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pet(n—a) = aq
a q

et = =

n—ap

1= log <%> _log (” ; a) . (2.21)

Therefore
I(a):a(log(g)—log(n_a>)—logl(q—kp ¢ Q)]
p q n—ap
—alog(g>—alog<n_a>—nlog(q(l—l— ¢ )>
P q n—a
a n—a n—a a
:alog<—>—alog< )—nlog(q( + ))
P q n—a n-—a
a n—a qn
:alog<—>—alog( )—nlog( )
P q n—a
a n—a n—a
:alog<—>—alog< >+nlog( )
p q ng
:alog<g>+(n—a)log<n_a>
p ng
a n—a
=alog| -]+ (n—a)lo < )
g<p> ( )log l—p

(iv) Let X ~ Poisson(A) for A > 0.
We know My () = E [erX] = eMe" 1),
So ¢(p) = log Mx(p1) = Ae# — X,
If a < 0. Then
lim [ap — Ae + ] = 0.

p—>—00

Therefore, I(a) = oo for a < 0. If @ = 0. Then

sup [A — Aet] = A,

neER

Hence, I(a) = A for a = 0.
If a > 0. Then we can express a as

_ i . 2 el —A\ o
a_ﬁu (,u)—au(e ) = Aet.
So 4
1= log (X> . (2.22)
Hence

I(a) = sup [ap — log p(p)]

= pa — el + A

= log <§> a — Aels(3) + A
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= alog (%) —a+ A\

(v) Let X ~ Exponential(\) for A > 0.
According to Proposition we can use Cramér’s theorem to derive the rate function of
the exponential distribution.

if p <A,

A
My (p) = Eet™ = ¢ A .
oo,  otherwise.

Let a < 0. Then
U—>—00 U—>—00

i o~ tog (2 )] = tim_ s tog () + 1o (3 = ] -

Therefore, I(a) = oo for a < 0.
If a > 0. Then we can express a as

0
a = @@(M)
9 (e (D
o\ P\
1 § A
v (A=p)?
B 1
= P
So N1
a\ —
p=— (2.23)
Hence

A
:w\—l—log()\_—%:l)
:a)\—l—log<%)

=aX — 1 —log(aN).
(iv) Let X ~ Normal(\,0?) for A € R and 02 > 0. Now

My () = E [e"¥]

( -))?
/ \/27?02 7 de.

Apply integration by substitution, let z = =£, then x = zo + A, ! } =o0.
> 1

Mx (p) = e’\“/ et er*odz
—oo V2mo?
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8

e?oH 1

_= eAH‘/
o V2T
>~ 1
AL
=e e
/oo V2T
_ Hutgoiu? /OO 1 iG-ow?
= e M2 e 2 dz.
—oo V2T
The part inside the integral is the density function of the N (o, 1)-distribution. Therefore

the integral is equal to 1. Hence Mx(u) = eMtz0%u?
Now we can express a as

1.2
e2” dz

1.2 1.2 1.2 2
—52°tzopu—50 M€§J W dZ

a= % (n) = 6% ()\,u - UQQ'MQ) = A+ po’. (2.24)
So W
p=——- (2.25)
Hence, the rate function is given by
2 2 2
I(a) = aaa—Q)\ B )\aa—2)\ B % (aa—2)\> _1(a ;2)\)
O
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3 Large deviation of the empirical measure

Recall the insurance model from the introduction. Note that there is a clear distinction
between the claim and the payoff. The claim is the event for which money is claimed
by a client of the insurer, while the payoff is a function of the claim which displays the
corresponding amount of money the insurer has to pay for a claim.

If we study Section 2 in the context of insurances, we can derive a rate function that
quantifies at which rate the probability of bankruptcy decays, as n — oo.

However, if due to reinsurance or other circumstances the payoff changes and thus the
underlying probabilistic structure of the payoff changes, we have to make a new analysis
of our payoff in order to find the corresponding rate function. Note that only the un-
derlying probabilistic structure of the payoftf changes, while the underlying probabilistic
structure of the claims does not change.

To save us the work of analyzing the probabilistic structure of the payoff again, we can
describe our problem as a large deviation of the empirical measure instead of a large devi-
ation of the empirical average. The empirical measure is the relative frequency at which
an event occurs. With the use of the empirical measure we can describe the probability
of bankruptcy as a large deviation of the type of claims corresponding to a large payoff,
instead of a large deviation of the payoffs itself. If now the payoff changes, one can simply
choose a different function to describe the payoff corresponding to the claims, while using
the same model for the claims as before.

In Section 2 we studied the large deviation of the average of a sequence of random vari-
ables. However, in this section we study the large deviation of the empirical measure of
a sequence of random variables.

Suppose there are r different type of claims. Let Yi,...,Y, be the claims an insurer
receives. Then we can restrict ourselves to the following conditions

;e S={1,..,r} CN, (3.1a)
Y1,Ys, ... are i.i.d. with marginal law p = (ps)ses, (3.1b)
ps >0 VselS. (3.1c)

Now Y; = s € S can be interpreted as the i-th claim has type s. Furthermore, let
f: S — R be the function which maps the type of claim s to the payoff f(s) and thus

X;=f), fori=1,.. n.

Then the total payoff is defined as

Thus instead of analysing the payoffs X;, we will analyse the claims Y;. Later we will
derive info over X; from Y;.

Note that Y, take values in the finite set S. This is more restrictive than the conditions
we saw in Section 2, because now continuous distribution functions will be excluded.
However, the results we will obtain can be extended so that it can also be used for
continuous distributions. In that case, some partial sums should be written as integrals.
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Definition 3.1 (Empirical measure). Let Y1,Ys, ... be a sequence of independent identi-
cally distributed random variables on S. Them the empirical measure L, is defined as

1 n
S) = E Z ]l{Yi:s} fOT’ s€eS.
i=1

Let 91, (.S) be the set of probabilities measures on S. 9 (S) is given by

My (S) = {1/ = (v1,...,1p) €0,1]": ZVS = 1} :

So clearly L,, € 9,(S).
Definition 3.2 (Total variation distance). For u,v € 0 (S), the total variation distance

s given by
1 T
= 5 Z |:us - Vs|-
s=1

The total variation distance measures the distance between two probability measures
in M (S).
To derive an asymptotic relation for the large deviation of the empirical measure, we need
to introduce the concept relative entropy. The relative entropy between two probability
distributions is a measure of the distance between them.

Definition 3.3 (Relative entropy). The relative entropy of a probability vector v with
respect to another probability vector i is

V‘p ZVS log—

3.1 Sanov’s Theorem

As in the case of the empirical average, the empirical measure will converge to its average,
as n — oo. Namely, for each s the Law of large numbers implies

lim L,(s) = lim — Z Liy,—s} % b,

n—00 n—oo M

for all s € .S as n — 0. Therefore
d(Lpn, p) —== 0. asn — oo.

A large deviation of the empirical measure can be measured by the distance between the
empirical measure L, and the original measure p.

Sanov’s theorem describes large deviations of the empirical measure in terms of relative
entropy. In the proof of Theorem (3.4 we follow Theorem 2.2 in [2].

Theorem 3.4 (Sanov’s Theorem). Let L, as in definition[3.1 and H(v|p) as in definition
[3.8 Then, for all a >0,

lim S logP (L, € Bilp) =~ inf L,(0) (3:2)
where By(p) = {v € M (S) : d(v,p) < a}, BS =M (S)\Bu(p) and
() = H(vlp). (33)
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Proof. Let
K, = {k = (k1 k) €ENG Y k= n}
s=1

and note that %Kn C My (S) for all n € N. Then L,, has the multinomial distribution

P (Ln(s) - —vs) =l T] ZS!’ k€ K, (3.4)

For k € K,, let v,(k) = £k € 9,(5). Let

Qnla) = max ) (n! T Z—I;'> : (3.5)
s=1 %

keKn:wn(k)eBS(p
Then clearly,
Qn(a) <P (Ln € Bi(p)) < [Kn|Qn(a). (3.6)
We first study one of the terms in (3.5)). Stirling’s formula is given by
n! ~ v2mn (2)71 .
e

This implies
logn! =nlogn —n+ O(logn). (3.7)

Subsequently, using (3.7) and Y_._, & =1 we derive

— % (nlogn —n+ O(logn)) + % Z (log (P’;) - log(ks!))

s=1
r

logn 1
ogn +(’)( 2 )+n§: ks log(ps) — (kslog ks — ks + O(log ks))]
logn " ks 1 —~ k,
ogn +O( - )+S_ —(log p, ogks)+n(9(0gks))} +s§1:_”

s=1

|

—l—i @(logp —logk)—i-l(’)(logk)

£ n s s n s

o (loen +§T:10<1 k)
n 2 Og Ks

)
)>+0

_Z—logn—i-(?( gn)
n

— ky ks
= — | log ps —log — | +
n n

s=1

Y (o <y,;)(sk loin) +%20(mgk5)
= 1)+ 0 (1) 4 13" Ot
— —L(va(k)) + o(1). (3.8)



Applying (3.5)) to (3.8]) results in

L10g Qula) = ema {1, ((k) + o(1)}
=— min I, (vn(k)) + o(1). (3.9)

keKn:wn(k)EBS(p)

We will now prove that

li i I(vp(k)) = inf I,(v). 3.10

nl—>nolo kEKn:IJITILl(IkI)IGBg(p) p(V ( )) uelllalg(p) p(V) ( )
We know each v,,(k) € 9, (S) and we know v — I,(v) is continuous as it is a composition
of continuous functions. Hence

(i) | J{va(k) : k € K,} is dense in 2y (S),
neN
(i1) v — I,(v) is continuous on M (.5).

(i) implies that for every v € 9% (S) there exists a sequence (K, )nen, with &, € K, for
all n, such that
lim d(v,(k,),v) = 0.

n—oo
Subsequently, (ii) implies
lim 1,(v,(kn)) = 1,(v). (3.11)
n—oo
B¢(p) is an open set, so
li i L(v,(k)) < lim I,(v,(k)) = 1,(v). 3.12
msup omin e (R) < Tim L (v (k) = I,(v) (3.12)

Optimizing over v € BS(p) results in

li i I,(v,(k)) < inf I,(v). 3.13
MO ks P ) S B To) (313)
We know
li i L(v,(k)) > inf I,(v). 3.14
PSP, emmensn U 2 B ) (314
Therefore, (3.13)) together with (3.14)) gives (3.10). Now using (3.9)) and (3.10]) we derive
1
lim —1 nla) =— inf I,(v). 3.15
Jim -~ log Qn(a) = = inf I,(v) (3.15)

Every component of the vector K, belongs to the set {%, %, ..., 2}. The cardinality of this
set is (n+1). This vector is specified by at most r of such quantities. So| K, |< (n+1)".
We know 1 log((n+ 1)") — 0, as n — co. Hence % log | K, |= 0. Therefore using (3.15)
we derive

o1 | 1 .
nh_)rgoglog(\ K, | Qnla)) = Jg&ﬁbg | K, | +nh_>ngoﬁloan(a) =— inf I,(v).
Subsequently, using (3.6)), we can conclude that
1
lim —logP (L, € B;(p)) = — inf I,(v).

n—o0 1 veBg(p)
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3.2 The coincidence of Cramér’s theorem and Sanov’s theorem

A large deviation of the empirical measure is more general than a large deviation of the
empirical average. Therefore, a large deviation of the empirical measure can imply a large
deviation of the empirical average. We have the relation

r

Su =Y sLy(s). (3.16)

s=1

S|

Theorem described the rate of decay for large deviations of the empirical average %Sn,
while Theorem [3.4]did the same for large deviations of the empirical measure L, (s). This
implies that there exists a link between the 2 theorems. First we will study Theorem
E which indicates the link between and Theorem . After that, Theorem (3.6
will link the rate function of corresponding to the empirical average to the rate function
corresponding to the empirical measure. In the proof of Theorem we follow Theorem
2.15 from [2].

Theorem 3.5. For v € M4 (S), let m, =) svs. Then, for all a > 0,

.1 1 c B : 5
Jin 1ogP (15, € Bi(my)) = _jnt (2
where B,(m,) ={z € R:| z—m, |< a} and
I(z)= _inf L), (3.17)

veMy (S):my=2

where 1,(v) is as in (3.3)).

Proof. Note that
1 A
{ES” € Bg(mp)} = {Ln € Bg(p)},

where

Bu(p) = {v € My(S) :l my — m, |< a}.
We know v +— m, is continuous. Therefore, using that the image of an open set under
a continuous function is again an open set, we derive that BS(p) is an open subset of
My (S).
In the proof of Theorem [3.4] we only use that BS(p) is open to prove (3.12)). Hence, Theo-
rem also holds when B¢(p) is replaced by an arbitrary open set of 9t;(.S). Therefore,
using and Theoremwith B¢(p) replaced by B¢(p), we derive

1 1
lim —logP | =5, € B;(m,) | =— inf I,(v).
s g <n ( p)) veBs (o) p( )
Now the claim follows from the fact that
inf I,(v)= iInf inf I,(v).
ZEB(CL(p) p( ) z€BS(myp) vEM(S)my,=2 p( )

[
Theorem shows that I(z) of Theorem and I(z) of Theorem coincide. In

the proof of this theorem we use the method of Lagrange multipliers.
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Theorem 3.6. Let I(z) as in Theorem and I(z) as in Theorem . Then

I(z) =I(2).

Proof. From (3.17]) we know, we want to compute

inf I f o 1
1/693713}):7711,:2 p<V) uefmlélrl )ymy=z Z Vs 108 ( )

We know v log (%) is convex in the set (0, 00), hence the extremum we will find on (0, 00)
using the method of Lagrange multipliers will be an infimum.

The two conditions that must be satisfied are

(i) ZVS =1, because v € M;(9),

(44) Z svs =z, because m, = z.

S

Hence, the optimization problem is given by
Minimize Z Vg log (E)
- S ps Y
subject to: Gi(vs) = Z v, —1=0,

Go(vs) = ZSI/S —2z=0.

S

The Lagrangian becomes

£=> vlog (Z—) — Gy — Gy

b (e ()
-y { log (p_) v u} i — pa.

Differentiating the Lagrangian with respect to vs gives

8us£ ;{b( >+1—u1 pzsl

= " [log (vs) —log (ps) + 1 — 1z — pias] = 0.

Therefore

> log (vs) =Y [log (ps) + pi1 + pras — 1]

s
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S S

vy = pgertthesTl (3.18)

We know v, is a probability measure, and thus ) | v, = 1. This gives

E pseuﬁ—uzs—l -1
S

Therefore

Z peel?® = el (3.19)

S

Subsequently, an expression for p; follows by (3.19) which implies

w1 =1—log (Z pse“25) : (3.20)
Now ([3.18]) applied to (3.20]) results in

_ 1+p2s—1
Ve = pseﬂ 12

= 61—log<z:S pse“2s)+uzs—1
s

pse.“QS
>, pseres

Subsequently, using (3.21)) with = uy, we derive

I(z)= _inf I
(Z> V€9ﬁ1%gl):myzz p(V)

Vs
ol
s
- Y 5)
= vips— Y [Vs log (Z pse“5>]
=p Y sv,—log <Z pse“s) > v
] e (2

Replacing the sums by expectation gives

(3.21)

I(z) = p% —log (E [¢"*]). (3.22)

We know [(z) takes a supremum if the derivative with respect to u equals zero. We know
that

% (zp —logE [e“XD =0,
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gives
_ E[Xert]
PE o] onx]

So

I(z) = SLelg (210 — log E [¥]]

E [Xet¥]

= MW — log (E [e“X]) .

Hence, by (3.22) and (3.23]) we can conclude
I(z) = I(2).

26
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4 Distribution of a random variable conditional on a
large deviation

An insurer wants to avoid bankruptcy and thus wants to know what kind of claims will
likely lead to bankruptcy. This can be studied by the distribution of the claim conditional
on a bankruptcy.

Therefore, we want to derive an expression for the conditional probability of the claim
Y; when the total payoff S,, € A for large n, where A is a subset of R. We denote this
conditional probability as

1
pn(s) =P, (Yl =s| =5, ¢ A) , fors=1,..,r
n

In Section 2 we studied the case where %Sn > a. However, %Sn € A is a more general
case. Because we can interpret A as A = [a,00). Then

1
pr(s) =P, (Y1 =s| =S, Za).
n
This describes the probability of the random variable Y constrained to a large deviation
of the sum §S,,.

We will prove in this section that this conditional probability is the tilted measure Q,
from Definition 2.2

4.1 Gibbs’s Principle

Gibbs’s principle gives an expression for the limit points of p as n — oo in terms of
entropy, which we introduced in Section 3. Before we can state Gibbs’s principle we will
rewrite pf(s) in terms of the empirical measure L, (s).

Let f = (f1, fa, .., fr), where f, = f(s). We can write =S, as
1 1 —
1 n
= > ()
i=1
1 n
- ; Zl fl]l{yizl} + f2]l{Y¢:2} + ...+ fT]l{YiZT}

1< 1 & 1 <
= —_ ]]_ L - ]]_ L — r ]]- L=
fln; {m_1}+f2n; (vi=2} +fn; {Yi=r}

= <f> Ln>a

where (f,m) denotes the integral of f against the measure 7.
Now

pr(s) =P, (Y1 = s|%5n € A)
_E [Ln(s)]lSn € A}
n
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CE[Lu(s)|(/, L) € A].
Hence, with T := {v : (f,v) € A} we derive
gt =E[Ln|L, €T].

Let
Ir := inf H(v|p) = inf H(v|p). (4.1)
vel

vele

The following theorem is from Theorem 3.3.3 in [1].

Theorem 4.1 (Gibbs’s principle). Let
M:={vel:Hlp) =1Ir}.

Then

(a) All the limit points of {p}} belong to co (M), the closure of the convex hull of M.
(b) When T is a convex set of non-empty interior, the set M consists of a single point to
which p}, converge as n — 0o

Note that Gibbs’s principle states that

VRN
lim p; =7,
n—oo

where 7 is such that
H(0|p) = inf H(v|p).
vel
Therefore, P, (Yl = s]%Sn € A) converges to the probability measure which has the lowest
relative entropy corresponding to the original measure p. In section 4.2 we will see that
this is the tilted measure Q,, from Definition [2.2

Proof. (a) The statement : All the limit points of {p}} belong to ¢ (M), is equivalent
with

d (pr,,co(M)) — 0,
where the total variational distance d is defined in Definition[3.2} Let M? := {v : d (v, M) < d}.
Since d is a convex function on M; (X) x M (X), each point in co (M?) is within vari-
ational distance 0 of some point in co (M). ¢ > 0 can be arbitrarily small, and thus it

suffices to prove
d (pf, co(M®)) = 0. (4.2)

We will first derive a lower bound of the distance between p} and an arbitrary subset
U c 9My(S). Since E[L,|L, € UNT] belongs to co(U), while p¥ = E[L,|L, € T'], it
follows that

d(p;,co(U)) = Veicg(fU)d(E [Ln|L, € T],co(U))
<d(E[L,|L, €T],E[L,|L, € UNTY). (4.3)

By the law of total expectation, we know

E[Ly|L, €T =E|[Ly|L, € CAU]P (L, € U|L, € L)+ E[Ln|L, € TNUYP(L, € U°|L, €T).
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Using this, we can derive

E([L,|L, €| —E[L,|L, € UNT] =

E[L,|L, e TNU]P(L, € U|L, €T)+E[L,|L, e TNUP(L, € U|L, €T) —E[L,|L, € UNT]
=E[L,|L, €eTNU|(1 -P(L, € U|L, €T)) —E[L,|L, € UNT]

+E|[L,|L, e TNU|P(L, € U°|L, €T)

=P (L, € U°|L, e D) {E[L,|L, e TNU ] —E[L,|L, e TNU]}. (4.4)

Therefore

d(E[Ln|Ly € T],E[Ln|L, € UNTY]) =
P (L, € U°|Ly € T)d(E[Ly|Ly, € TN U], E[Ly|L, €T NU]). (4.5)

Now ([4.3)) combined with (4.5)) results in

d(p:,co(U)) <P (L, € U|Ly € D) {E [Ly|Ln € TN U] —E[Ly|L, € TN U]}
=P (L, € UL, €T)d(E[Ly|Ly € TNU,E[Ln|L, €TNU)).

Subsequently, using that L, € 9,(S) and d(u,v) <1 for p, v € M, (S), we derive
d(py,coU)) <P(L, € U°|L, €T). (4.6)

We know M°® € M, (9), so (1.6)) applied to U = M°® gives

d(p;,coM’)) <P (L, € (M°)°|L, €T). (4.7)
Note that )
limsup —log P, (L, € (M°)"|L, €T) <0, (4.8)
n—oo
implies

lim P (L, € (M°)°|L, €T) =0.

n—oo
Therefore, if the statement (4.8)) is true, then (4.7)) implies (4.2)) and the claim will follow.

Hence, it suffices to prove that the statement (4.8]) is correct in order to complete the
proof.

From Theorem and (4.1) we know

.1
Ir = — nh—>I£10 - loglP, (L, €T). (4.9)
Using (13.14) we derive
1 c 1
limsup —logP, (L, € (M®°)°NT) < limsup —logP, (L, €T (4.10)
n—00 n—oo N
< _;
< —inf H(v|p)
<— inf H(v|p)
VE(M‘S)CQF
<— inf  H(v|p). (4.11)
ve(Mmd) N
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Due to the strictly inequality condition on the distance, M? are clearly open sets. Therefore
(M‘s)c are closed sets. An intersection of closed sets is closed, so (/\/l‘s)C NT is closed.
Moreover, (./\/l‘s)c NT is clearly bounded, hence (./\/l‘;)c NT is compact.

A lower semi-continuous function on a compact set always contains its infimum and M
is the set of the minimizers v of H(v|u). Hence, the set (M°)° does not contain the
minimizers of H(v|u). Thus for some 7 € (M°®)°NT,

inf  H(vlp) = H(D|p) > inf H(v|p) = Ir. (4.12)
ve(Mm?)° Nl ver
If we combine (4.11]) and (4.12)) we get
1 c
lim sup ﬁlog P, (L, € (./\/l‘s) NT) < —Ir. (4.13)
n—oo

If we apply the definition of conditional probability and combine (4.9) and (4.13]), we

derive

P, (L, €T)

5 Cc
lim sup L logP, (L, € (Ma)c |L,, € T') = limsup ! log (Pp (Ln € (M) 0 F)>
n—oo T n—oo T

_ limsup {%logIP’p (Ln € (M) D)~ L1ogP, (2, € r)}

n—o0

< —Ir+1Ir=0.
Now the claim follows.

(b) Note that H(v|p) is a sum of strictly convex functions and therefore is strictly convex.
Hence, H(v|p) has a unique minimum. Therefore, there exists one unique measure € I
such that

H(vlp) = inf H(v|p).

Hence, M consists of a single point and is therefore a closed set. This implies M

=U.
Subsequently using (a) we can conclude that p; — ©, as n — oc. ]

4.2 Expression of the conditional distribution given a large de-
viation of the sum

Note that, by the definition of p}, Gibbs’s principle states

1
lim P, <Y1 =s|=5, € A> =7,
n

n—0o0

where 7 is defined such that
H(p|p) = inf H(v|p).

In the proof of Theorem [3.6, we used Lagrange multipliers to derive this minimum. From
(3.21)) and Theorem 3.6/ we know this  is given by

pset®  p(s)er
2 psers ElerX]’
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where p is chosen such that
pa — logE [e“X] = sup {ﬂa —logE [e[‘X] } .
AeR

Hence, as mentioned earlier in this section, the conditional distribution we are looking
for, is the tilted measure Q, from definition 2.2} Thus

lim P,
n—oo

(Y1 _s| %Sn € A> — Qu(s),

where Q,,(s) is defined in Definition [2.2]

4.3 distributions conditional on rare events for several proba-
bility distributions

From section 4.2 we know that the conditional distribution of a single random variable,
constrained to a large deviation of the sum, is given by the tilted measure Q,. The Radon-
Nikodym derivative of the conditional probability distribution is given by Definition [2.2]
In Proposition 4.2 we will derive an expression for this tilted measure Q, for some common
probability distributions.

Proposition 4.2. The probability distribution under the tilted measure Q,, defined as in
Definition are given by

Original distribution

Tilted distribution

Conditional distribution

Bernoulli(p)

. pek
Bernoulli < i per )

Bernoulli(a)

Binomial(n, p) Binomial (n, % Binomial (n, £)
Poisson(\) Poisson(Ae*) Poisson(a)
Exponential(\) Exponential(A — ) Exponential (1)

Normal(), 0?)

Normal(\ + po?, o?)

Normal(a, o%)

Proof. (i) Let X ~ Bernoulli(p), with p > 0. Then the tilted distribution at X = 0 is
given by

dQ,

o)

Lix=o}

Lx=og, WJ
1

Tyx— .
L = 0}q+p6“}

Subsequently, using P (X =0) = 1 — p and the moment generating function Mx(t) =

1 — p + pet, results in

1
X=0=(1-p— —
__d-»

1 —p+per
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1 —p+pet — pet
1 —p+per
pe’
T

Similarly, the tilted distribution at X = 1 is given by

Q, (X = 1) = Be [ 1) T2 1)

eu
= Ep {H{le} }

Ep [erX]
eN
P —p+ pet
__ pe
1 —p+per’

Hence, Q, has the Bernoulli(lfﬁefpeu>—distribution.

From ([2.20) we know

a 1—a
u:10g<—)—log( )
p q
Therefore
pe” B péog(%)—log(%)
1 — p + pet q-{-pelOg(%)*lOg(l;a)
e
g+al
a
= ——— = a
l—a+a

Hence, Q, has the Bernoulli(a)-distribution.
(ii) Let X ~ Binomial(n, p), with n,p > 0. Then the tilted distribution at X = k is given
by

dQ,

—p (X =F)

Qu (X =k) = Ep {E{sz}

Subsequently, using that P (X = k) = (Z) pF(1 — p)"~* and the moment generating func-
tion Mx(t) = (1 — p+ pe')"”, we derive

ku
Q.(X =k)= <Z pR(L — p)nkEfeux]
YN kg \n—k ekt

1 1

k n—Fk k

pr(1—p)" " (e") =
(1= p+per) (1= p+ per)

pe“ k 1_p n—k
1 —p+ pet 1 —p+ pet
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_(n pek 1 —p+pet — per\"F
_(k) (1—p+pe“) ( 1—p+ per )
AL pet k ] pet n-k
B (k) <1—p+pe“) ( N 1—p+p6“> '

Therefore, @, has the Binomial (n, %)—distribution.

1-p
From ([2.21)) we know
a n—a
u—log(—)—log( >
p q
This implies
peiu' pelOg(%)_10g<n;a)
L —p+ pet N 1— P +p€10g(%)_10g<n;a)
a4
— n—a
q+a-t
B a _a
T n—a4+a n

Hence, Q, has the Binomial(n, %)—distribution.
(iii) Let X ~ Poisson(\), with A € RT. Then the tilted distribution at X = k is given by

dQ,

Qu (X - k) = Ep H{X:k}ﬁ (X = /f)

Subsequently, using that P(X = k) = 2_1;6_/\ and that the moment generating function

Mx(t) = 6)\(et71), we derive

I \F ) ekn
Qu(X =k)= W R[N

k

— %e—kekue—)\(e”—l)
A pen

= __pltHh—Ae
k!

o ()\€M>k —de H

k!

Hence, Q, has the Poisson(Ae#)-distribution.
From (2.22]) we know
a
:l (_> ’
p=log (5

el = )\% = a.

This implies

Hence, Q, has the Poisson(a)-distribution.
(iv) Let X ~ Exponential(A), with A > 0. The the tilted distribution function is given
by
dQ
QX <) = o [1xen B
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eH
- [t g5 |

Subsequently, using that Ae™** is the density function of the exponential distribution and
that the moment generating function is given by Mx (t) = ﬁ, we derive
a exu
0.(X<a)= [ SSre s
o (%)
=(\— u)/ e* =Ny
0
S SR
(=) 0

- e,

— 1 — ¢ A-ma

Therefore, Q, has the Exponential(A — p)-distribution. From (2.23) we know

al —1
= :
a

This implies

ar—1 1
=
Hence, Q, has the Exponential(%)—distribution.

A—p=A\—

(v) Let X ~ Normal(),o?), with A € R and 02 > 0. The the tilted distribution function
is given by

d
QX <) = o [1xen B

eH
o [Boxzog o |-

oo\ 2
2(*3%)" is the density function of the normal distribution

: 1
Subsequently, using that Ner=is

Ap—

02 2
and that the moment generating function is given by Mx (t) = e ™~ "2~ we derive

a 02;1,2 1 1(z— 2
Q. (X <a) :/ e M2 e 2(57) dy

— 6_)\“_ 0'22[,1.2 / 6,20%(x272$()\+ﬂ0-2)+()\+“02)2>+20%(2)\“02+H202) 1 du
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(o= (1))

oy, 1 1 )
e 2 o2 dx

—o0 V2702

=€

o2

/a 1 1 (- (H ) )
= e 2

—oo V2702

Therefore, Q, has the Normal(\ + po?, 0?)-distribution. From (2.25)) we know

a— A

2

IU/:
g

This implies

)\~|—u02:)\+a_2 o’ = a.

Hence, Q, has the Normal(a, 0%)-distribution. O

Note that the Conditional distribution functions in Proposition all have expected
value a and finite positive variance as stated in Lemma and Lemma respectively.
The expected value a can intuitively be interpreted as that when a large deviations occurs,
it will probably occur in the most common way.
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5 Large deviation of random variables with an infi-
nite moment generating function

In this thesis we always supposed that the moment generating function of the distribution
of the random variable was finite. This section is about the distribution of a random
variable, conditional on a large deviation of the sum, where its corresponding moment
generating function is not finite.

In Proposition we saw that Cramér’s theorem was still valid despite the fact that the
moment generating function was not finite everywhere, but was finite in a neighborhood of
0. Because then the expectation and variance are finite. However, for many distributions
with infinite moment generating functions, the theorems we applied are invalid. A well-
known distribution where this is the case is the Pareto distribution.

5.1 Large deviation of the Pareto distribution

If we study part 1 of the proof of Cramér’s theorem we see that the upper bound is

1
—logP[S, > na] < —I(a) = —sup [ap — log Ee"*] =0,
n pneER

for the Pareto distribution. Therefore part 1 of the proof of Cramér’s theorem still holds.
However, part 2 of the proof of Cramér’s theorem is not valid for the Pareto distribution.
In order to prove part 2 of the theorem we used the tilted measure Q, and the Central
limit theorem. For the Pareto distribution, the moment generating function is not finite
and therefore the tilted measure QQ, is not defined. Therefore, we can not use Cramér’s
theorem to describe a large deviation for the Pareto distribution.

The Pareto distribution belongs to the class of regularly varying distributions with tail
F(r)=2"“L(z), x>0,

where L(z) is a slowly varying function. A function L : (0.00) — (0, 00) is slowly varying
if for all a > 0,

. L(ax)
SR

Theorem [5.1] gives an expression of the limiting behavior of S, for large values of a for the
Pareto distribution. It states that the probability of a large deviation of the maximum
value and the probability of a large deviation of the sum are asymptotically the same.
This is different from what we have seen in Section 4. In the following theorem we use
page 38 from [4].

Theorem 5.1. Let F(z) = 27 *L(z) for a > 0 and L(x) a slowly varying function. Let
X1, Xo, ..., X, be independent identically distribution random variables with distribution
function F. Define M, = max (X1, Xs, ..., X,,) and S, := " | X;. Then

P(M, >0b) ~P(S,>0b), asb— oo. (5.1)

In (p.1)), the notation
P (M, >b) ~P (S, >0),
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stands for

P (M,
lim (My, > b)

— =1
n—oo P (S, > b)

Proof. From the definition of .S,, we know

Subsequently, for F™*(x) :=P (> | X; < x) we derive

P (S, > b) =1 — F™(b)
= Fe(b).

To calculate P (M,, > b), we use the fact that the event M, < b implies X; < b for every
1 =1,...,n. This gives
P(M,>b)=1-P (M, <b)
—1-P(X, <b,., X, < D)

Subsequently, lim;_,,, F'(b) = 1 implies

i (FII 0 ) = o (7).

Hence for b — oo,

P (M, >b) ~nF(b), as b — oo, (5.2)
P (S, > b) = F™(b), as b — oo.
Due to Corollary 1.3.2 from [4] it follows that

P (M, >b) ~P (S, >b), as b — 0.



Note that Theorem 5.1 only describes the large deviation for large values of b, whereas

Theorem describes the large deviation for every value of b. Theorem can be inter-
preted as follows. When b is large, then the tail of the largest value in a sample determines
the tail of the sum of this sample.
We know that the variance of the Pareto distribution with shape parameter o > 0 is
equal to oo. This means that there is definitely a probability that for a sequence of ran-
dom variables, one variable is much higher than the others. According to Theorem [5.1]
the largest variable determines the tail of the sum of independent random variables. So
for large sample size n, the probability that the sum of independent Pareto distributed
random variables is exceptionally large is equal to n times the probability that the first
sample is exceptionally large.

Theorem gives an expression for a large deviation of the sum of Pareto distributed
random variables. Theorem [5.2]is Theorem 1.9 from [3].

Theorem 5.2. Let X, Xo, ..., X, be identically distributed and suppose that F(x)
x~*L(x), where L(x) is a slowly varying function and o > 2. If, in addition, E[X| =
02 =1 and E| X, |*™ < oo, then

0
P(S,>0b) = (1 - (%)) (1+0(1)+n(l—F(@®)(1+o0(1))), (5.3)
forn — oo and b > \/n.

Note that the Pareto distribution can not have the property E[X] = 0. However,
we can shift by some constant such that these conditions will be obtained. The most
important condition of this theorem is that the tails of the distribution are heavy.

For b = na and n large, Theorem implies

1
P (;Sn > a) ~ (1-®(vna)) (14 0(1)) +n (1 = F(na)) (1 +o(1)). (5.4)
From Section 2 we know that for a finite moment generating function we have
1 —nl
P|=S,>al ~e ™M@,
n

Therefore we see that P (%Sn > a) decays exponentially when the moment generating
function is finite.
Note that the right-hand side of for the Pareto distribution with F(z) = ™% can
be written as

n (1 — F(na))(1+o(1)) ~n(na)™® =n'"*a"

This is not an exponential decay. So clearly, the probability of a rare event decays slower
for the Pareto distribution than for a distribution with a finite moment generating func-
tion.

From the proof in Nagaev [3] we know that (5.3) can be split up in two equations.
When b relatively is large the behavior of the tails dominate and therefore

P(S, >b) =n(l—F®b)(1+o0(1)). (5.5)
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When b is relatively small the probability will behave like the Central limit theorem,

therefore
P(S, >b) = <1 — (%)) (1+0(1)), (5.6)

when b is relatively small.
Using (5.2) we know that as n — oo and b — oo, (5.5)) becomes

P (S, >b) =P (M, >b). (5.7)

Note that coincides with Theorem |5.1| Therefore, for sufficiently large values of b,
the sum S, exceeds b essentially because one of the X;’s assumes a value exceeding b.
The large deviation of the sum is thus caused by a large deviation of one of the values
X;.

However, can be interpreted as follows. Now, the probability that the sum S5, ex-
ceeds the value b is normally distributed and therefore the probability that one individual
X, exceeds b is very small compared to the probability that S, exceeds b.

Hence, the cause of a large deviation, is different for large values of a and relatively small
values of b.
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6 Discussion

In Section 2, 3 and 4 we assumed that the moment generating function of the random
variable X was finite. Cramér’s theorem stated that the rate function /(a) such that

P [lSn > a] ~ e @)
n

is given by sup,cg [a,u — log Eet* } In order to prove Cramér’s theorem we used the
tilted measure Q, as defined in Definition [2.2]

We studied the case of large deviations in a more general context in Section 3, because
we studied the large deviations of the empirical measure instead of large deviations of the
empirical average. Now it will be much easier for an insurer to make a small adjustment
to his model when the payoff structure of the claims change, instead of analyzing the
claims all over again. Sanov’s theorem stated

1 . )
Mim —1ogP (Ln € By(p)) = = inf "H(vlp),

and therefore described the exponential decay of a large deviation of the empirical measure
in terms of relative entropy In section 3.2 we saw that Cramér’s theorem can be derived
from Sanov’s theorem.

In Section 4 we saw Gibbs’s Principle stated that the distribution function constrained to
a large deviation was the probability measure that caused the lowest entropy. In Section
4.2 we saw this measure is given by

lim P, (Y1 _s| %sn e A> — Qu(s),

n—o0

where Q,(s) is the tilted measure we already used in the proof of the lower bound of
Cramér’s Theorem.

In Section 5 we studied the cases where the moment generating function does not exist.
Theorem stated that for a sequences random variables from the Pareto distribution

P (M, >0b) ~P(S, >b), as b — oo,

where M, = max (X3, Xy, ..., X,,). Therefore a large deviation for a large value of b is
caused by a large deviation of a single random variable. Theorem implies that for
large values of n the probability

P (%Sn > a) ~ (1= (vna)) (1+o0(1)) +n (1= F(na)) (1+o(1)).

Therefore, in contrast to the earlier sections, P (%Sn > a) does not decay exponentially
for the Pareto distribution, but decays polynomially as

1
P (—Sn > a) ~nl% 7,
n
and therefore decays slower.
We saw that if a is relatively large, the large deviation is caused by one single variable.

While in the case that a is relatively small, the deviation is described by the Central limit
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theorem and therefore the deviation is likely to be caused by multiple variables.

In this thesis we always assumed the random variables X, X5, ..., X,, were independent,
however in the case of insurances, this is often not the case. When, for instance, a village
is burned down by a forest fire, a household contents insurance company will have to pay
much higher claims then they usually do. Therefore, further research of large deviations
in the field of mathematical insurance should also study the deviations in the case the
random variables are not independent. However, this wouldn’t mean that our results are
bad. Although claims, of for example a car insurance company, are not dependent, they
are certainly not strongly correlated and therefore theorems like the Law of large numbers
and the Central Limit Theorem can still be used to make a good approximation.
Furthermore, the theorems we stated gave expression of probabilities as n — oo. How-
ever, in the real world the number of claims will always be finite, therefore these theorems
are maybe less powerful than they initially seemed. Therefore, further research can be
done on large deviations for a finite number of random variables.

Further studies can also investigate the number of claims instead of the value of the
claims. In that case, the number of claims could be determined by a discrete probability
distribution like for example the Poisson distribution.
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