
BSc verslag TECHNISCHE WISKUNDE

“Asymptotisch gedrag van een stochast gegeven
een zeldzame gebeurtenis”

(Engelse titel: “ Limiting behavior of a random variable
conditional on a rare event”)

Koen Zomerdijk

Technische Universiteit Delft

Begeleider

Dr. R.C. Kraaij

Overig commissielid

Dr. Y. van Gennip

Juli, 2020 Delft



Abstract

As an insurer you want identify the risks you take to prevent bankruptcy. The
theory of large deviations formalizes the study of such rare events. We will use the
theorem of Cramér, which is a main theorem in large deviation theory, to investigate
the rate at which the probability of large deviations of the sums of random variables
decay. Using Sanov’s theorem we will derive an expression for large deviations of
the empirical measure. Furthermore, we will use Gibbs’s principle to derive the
distribution of random variables conditional on a large deviation.
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1 Introduction

When rolling a dice, your outcome can be 1, 2, 3, 4, 5, or 6. The mean is then
1+2+3+4+5+6

6
= 3.5. Intuition tells us that the average of multiple throws will be approx-

imately equal to the mean 3.5 and that more throws will probably result in an average
value closer to 3.5.
In this thesis we will study the probability of a large deviation of the average, for instance
throwing an average of 5 or above. The probability of throwing a 5 or above when rolling
one dice is 2

6
. However, when rolling 10 dices the probability of throwing an average

amount of 5 or above will be very low. Subsequently, when rolling 100 dices this proba-
bility will be even lower. This intuitively explains the fact that the probability of rolling
an average amount of 5 or above will decay as you roll more dices. In this thesis, we are
interested in what rate the probability of these large deviations decay. The occurrence of
such deviations is of importance in applications as, for instance, modelling insurances.

Suppose you are the owner of a non-life insurance company. Then you earn money
because your customers pay you a premium periodically. In exchange, you have to pay
your customers when they make a claim for damage. There is a possibility that there
is a period of extremely many claims or extremely high claims. In that case, the total
amount of claims you have to pay out is much higher than you expected and it could be
higher than your reserve fund. In other words, the payoff has a large deviation from the
expected value of the payoff. This could lead to bankruptcy.
Naturally, an insurer does not want to go bankrupt. By analysing the probability of such
a large deviation of the payoff, an insurer can choose a suitable value of the premium
such that the probability of bankruptcy will be sufficiently low.

Let us put this in a mathematical framework. Suppose we are modelling a die throw
or the payoff of an insurance claim. Let X1, X2, ... be i.i.d random variables on a prob-
ability space which contain the outcome of the die throws or the values of the payoffs
corresponding to the claims. Let

E [X] = µ ∈ R,
V ar [X] = σ2 ∈ (0,∞),

Sn := X1 + ...+Xn.

The intuition that averages converge is reflected by the Law of large numbers, which
states that

1

n
Sn

a.s.−−−→ µ, as n→∞.

This implies that

P
[

1

n
Sn ≥ µ+ c

]
−→ 0, for c > 0. (1.1)

The second main theorem of probability theory is the Central limit theorem. This theorem
describes the universal behavior of re-scaled averages. According to the Central limit
theorem, one has to scale up the difference

(
1
n
Sn − µ

)
by
√
n to obtain the non-trivial

limiting behavior

P
[

1

n
Sn ≥ µ+

c√
n

]
≈ 1− Φ

( c
σ

)
,
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where Φ(x) is the standard normal cumulative distribution function evaluated at x.
We see that 1

n
Sn typically fluctuates around µ with a distance of order 1√

n
. Such a devi-

ation is called a normal fluctuation.
The Law of large numbers and the Central limit theorem combined imply that the prob-
ability of all deviations of an order greater than 1√

n
will converge to 0, as n→∞. In this

thesis, we restrict ourselves to large deviations i.e. deviations of order 1, as in (1.1). We
will in particular study how fast the probability of a large deviation will converge to 0,
as n→∞.
In Section 2 we will see that when the moment generating function is finite, we typically
have for large values of n

P
[

1

n
Sn ≥ a

]
≈ e−nI(a), (1.2)

where I is a strictly convex function with the property that I (E [X]) = 0. Here I(a)
quantifies the exponential rate at which the tails of the distribution of Sn decay. When
the moment generating function is infinite, this probability typically converges slower.

Recall the insurance problem. Suppose the payoffs X1, X2, ... corresponding to the claims
are i.i.d. random variables and the the periodically paid premium is equal to a > E [X].
Furthermore, suppose your reserve fund only consists of the premiums paid. Then
Sn := X1 + ...+Xn is the total value of the claims. Now bankruptcy occurs when the av-
erage amount of a claim 1

n
Sn is higher than the periodically paid premium a and therefore

the probability of bankruptcy is given by P (Sn > na). Now the Law of large numbers
implies that the probability of bankruptcy will be equal to 0, as n→∞. However, there
can just be finitely many claims and thus the probability of bankruptcy P

(
1
n
Sn > a

)
will

never be equal to zero. So to identify the risk you take corresponding to a premium value
a, you are interested in the rate at which this probability decays as n will be very large,
and therefore this risk is quantified by (1.2). Moreover, to avoid bankruptcy, you should
know if a possible bankruptcy is likely to be caused by a single extremely high claim or by
extremely many claims. This can be studied using the distribution of a claim conditional
on a bankruptcy i.e. the distribution P

(
X1| 1nSn > a

)
.

In this thesis, we will see that the the moment generating function of the random variable
has a huge impact on the limiting behaviour of the large deviation of its sum. In the
Sections 2 up to 4, we will study the case where the moment generating function is finite.
Cramér’s theorem in Section 2 will state how the rate function I, which quantifies the
rate of exponential decay, can be derived. For the proof of this theorem we will introduce
the tilted measure Qµ. Under the measure Qµ, a large deviation becomes a typical event.
Section 3 describes the large deviation in terms of the empirical measure. Large devia-
tions of the payoff can be derived from large deviations of the type of claims, because the
payoff is a function of the claims. If now the payoff corresponding to the claims changes
you don’t have to make an analysis of your claims all over again, but instead you just
have to change the payoff function.
In Section 4 we will analyse the probability P

(
X1| 1nSn > a

)
. We will see that the distri-

bution function of this conditional probability is given by the tilted measure Qµ which
turned the large deviation to typical event.
In Section 5 we will look at the case where the moment generating function is infinite.
In this case the decay of P

(
1
n
Sn ≥ a

)
is not exponential, but polynomial. Therefore the

decay is slower than the case where the moment generating function is finite. Further-
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more, we will see that if the moment generating function is infinite, a large deviation is
most likely to be caused by one single random variable.
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2 Rate function

We will show that under certain conditions of the moment generating function of X, that
for n→∞ we have

P
[

1

n
Sn ≥ a

]
≈ e−nI(a), (2.1)

where the strictly convex function I(a) is called the rate function. Here I(a) quanti-
fies the rate at which the tails of the distribution of Sn decay. The rate function I(a)
has the property that I (E [X]) = 0, because the Law of large numbers implies that
P
[

1
n
Sn ≥ a

]
= 1. Another property of I(a) is that it increases as a goes further away

from E [X], this is because then Law of large numbers implies that P
[

1
n
Sn ≥ a

]
will be

lower.

We will see that the rate functions differ for different probability distributions, even if
they have the same mean and variance. If for example Xi ∼ Ber

(
1
2

)
and Yi ∼ N

(
1
2
, 1

4

)
,

then E [X] = E [Y ] and V ar(X) = V ar(Y ). However, the probability

P

(
1

n

n∑
i=1

Xi ≥ 1.5

)
= 0,

and therefore I(1.5) =∞, while the probability

P

(
1

n

n∑
i=1

Yi ≥ 1.5

)
=

∫ ∞
1.5

1√
1
2
nπ

e

1
2

(
x−n2√

n
4

)2

dx > 0,

and therefore I(1.5) <∞.
In Section 2.2, Proposition 2.10 states the rate functions corresponding to some common
probability distributions.

2.1 Cramér’s theorem

Cramér’s theorem [2] gives an expression for the rate function I(a) of (2.1). The condition
of this theorem is that the moment generating function of X is finite. We will see
in Proposition 2.9 that for the exponential distribution, where the moment generating
function is not finite everywhere, Cramér’s theorem is also valid.

Theorem 2.1 (Cramér’s Theorem). Let (Xi) be i.i.d. R-valued random variables satis-
fying

MX(t) = EetX1 <∞ ∀t ∈ R.

Let Sn =
∑n

i=1Xi. Then, for all a > EX1,

lim
n→∞

1

n
logP [Sn ≥ na] = −I(a),

where
I(a) = sup

µ∈R
[aµ− ϕ(µ)] ,

with
ϕ(µ) = logEeµX .
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Proof. The proof of the theorem consists of two parts, the first part proves limn→∞
1
n

logP [Sn ≥ na] ≤
−I(a) and the second part proves limn→∞

1
n

logP [Sn ≥ na] ≥ −I(a). We will start with
the proof of part 1.

Let λ > 0. We use Markov’s inequality to derive

P [Sn ≥ na] = P
[
eλSn ≥ eλna

]
≤

E
[
eλSn

]
eλna

=
E
[∏n

i=1 e
λXi
]

eλna
.

We know (Xi) are independent, therefore

P [Sn ≥ na] ≤
n∏
i=1

E
[
eλXi

]
e−λna

= E
[
eλX1

]n
e−λna

= en(
1
n

logE[eλX1 ]
n
−λa)

= e−n(λa−logE[eλX1 ]).

Subsequently, optimizing over λ results in

1

n
logP [Sn ≥ na] ≤ inf

λ>0
−
(
λa− logE

[
eλX1

])
≤ − sup

λ>0

(
λa− logE

[
eλX1

])
.

We are left to prove that

sup
λ>0

[λa− ϕ(λ)] = sup
λ∈R

[λa− ϕ(λ)] .

This is done in Lemma 2.8 where we analyse I(a) and its properties. Hence, we can
conclude

1

n
logP [Sn ≥ na] ≤ −I(a). (2.2)

In order to prove part 2 of the proof of Theorem 2.1, we will introduce a probability
measure Qµ, called the tilted measure. Later on, we will see that this µ is chosen such
that EQµ [X] = a. That implies that limn→∞

1
n
Sn = a. Therefore the tilted distribution

Qµ will shift the corresponding random variables, such that the rare event
{

1
n
Sn ≥ a

}
becomes a typical event.

Definition 2.2. Let P be a probability measure on a measurable space. Define the tilted
measure Qµ by

dQµ

dP
(x) =

exµ

EP [eµX ]
,

where µ is chosen such that µa− logE
[
eµX
]

= I(a).
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The following lemma shows that V arQµ [X] ∈ (0,∞).

Lemma 2.3. If V arP [X] > 0 then

V arQµ [X] ∈ (0,∞)

Proof. We know V arP [X] > 0, so X is not a constant on the probability measure P.
Therefore there exist an event A and and an event B such that P [X ∈ A] ,P [X ∈ B] > 0.
We know exµ is a strictly positive function and thus

dQµ

dP
(x) =

exµ

EP [eµX ]
> 0.

This implies

Qµ [X ∈ A] ≥
{

min
x∈A

dQµ

dP
(x)

}
P [X ∈ A] > 0,

Qµ [X ∈ B] ≥
{

min
x∈B

dQµ

dP
(x)

}
P [X ∈ B] > 0.

So X is not constant under the probability measure Q, hence V arQ [X] > 0.
Yet, we are left to show that V arQ [X] <∞. Therefore, we use that the moment gener-
ating function with respect to the probability measure Q is finite.
Let t ∈ R, we know µ 6= 0 so

EQµ
[
etX
]

=
EP[eµXetX ]

EP [eµX ]
=
MX(t+ µ)

MX(µ)
<∞. (2.3)

We know ex ≥ x2, if x ≥ 0 and e−x ≥ x2, if x ≤ 0. Therefore, using (2.3) with t = 1 and
t = −1 we derive

V arQµ = EQµ
[
X2
]
− EQµ [X]2 ≤ max

(
EQµ

[
eX
]
,EQµ

[
e−X

])
<∞.

Lemma 2.4. Let
ϕ(µ) = logE

[
eµX
]
,

where
E
[
eµX
]
<∞ ∀µ ∈ R.

Then ϕ(µ) is differentiable.

Proof. The moment generating function E
[
eµX
]

is differentiable on Bo, where B =
{µ : MX(µ) <∞}. We supposed E

[
eµX
]
<∞, hence E

[
eµX
]

is differentiable on µ ∈ R.
Furthermore, log y is differentiable for y > 0 and E

[
eµX
]
> 0 for all µ ∈ R. Hence, ϕ(µ)

is a composition of differentiable functions and thus is differentiable on µ ∈ R.

Lemma 2.5.
EQµ [X] = a

8



Proof. To deduce EQµ [X] = a, we will study the supremum on µ ∈ R of

µa− ϕ(µ). (2.4)

By Lemma 2.4 we know ϕ is differentiable. Setting the derivative of (2.4) equal to zero,
results in

a = ϕ
′
(µ). (2.5)

Differentiating ϕ(µ), gives

ϕ′(µ) =
∂

∂µ
logE

[
eµX
]

=
1

E [eµX ]
∗ ∂

∂µ
E
[
eµX
]

=
E
[
XeµX

]
E [eµX ]

(2.6)

= EQµ [X] . (2.7)

We apply the second derivative test to check whether a = EQµ [X] indeed implies a
supremum on (2.4) so that I(a) = µa − ϕ(µ). We know ϕ′(µ) is a quotient of two
differentiable functions, a finite moment generating function and the derivative of a finite
moment generating function, and hence ϕ′′(µ) exists. Differentiating (2.4) twice with
respect to µ gives

∂2

∂µ2
(µa− ϕ(µ)) = −ϕ′′(µ).

Differentiating ϕ(µ) twice, results in

ϕ′′(µ) =
∂

∂µ

(
E
[
XeµX

]
E [eµX ]

)

=
E
[
X2eµX

]
E
[
eµX
]
− E

[
XeµX

]
E
[
XeµX

]
E [eµX ]2

=
E
[
X2eµX

]
E [eµX ]

−

(
E
[
XeµX

]
E [eµX ]

)2

= E
[
X2 eµX

E [eµX ]

]
− E

[
X

eµX

E [eµX ]

]2

= EQ
[
X2
]
− EQ [X]2

= V arQ [X] . (2.8)

From Lemma 2.3 we know V arQ [X] > 0, so −ϕ′′(µ) < 0, and thus a = EQµ [X] indeed
implies a supremum on (2.4). Hence, we can conclude

EQµ [X] = a. (2.9)

The following Lemma will show that µ(a) is continuously differentiable in an open
neighborhood of a. We will use this fact in the proof of Lemma 2.7 where we show I is
a strictly convex function.
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Lemma 2.6. Let
I(x) = sup

µ̂∈R
[xµ̂− ϕ(µ̂)] = xµ(x)− ϕ(µ(x)).

Then µ is a continuously differentiable function of x for x in an open neighborhood of a.

Proof. Let J(x, y) = ϕ
′
(y)− x. Let µ∗ be such that

I(a) = µ∗a− ϕ(µ∗).

Then we know by (2.5) that ϕ
′
(µ∗) = a. Therefore J(a, µ∗) = ϕ

′
(µ∗)− a = 0.

Furthermore, using Lemma 2.3 and (2.8) we derive

∂J

∂y
(a, µ∗) = ϕ

′′
(µ∗) > 0.

Then we know by the implicit function theorem that there exists an open neighborhood
V of a, and an open neighborhood W of µ∗, and a continuously differentiable function
µ : V → W such that

(i) J(x, µ(x)) = 0 for all x ∈ V ,

(ii) J(x, y) 6= 0 for all (x, y) ∈ V xW with y 6= µ(x),

(iii)
∂µ

∂x
(x) exists for all x ∈ V .

So for every x ∈ V the function µ(x) is such that ϕ
′
(µ(x)) = x. Therefore, for every

x ∈ V there is a µ(x) ∈ W such that

I(x) = µ(x)x− ϕ(µ(x)).

Furthermore, µ(x) is a continuously differentiable in V .

Lemma 2.7. I is strictly convex.

Proof. Fix a0. We prove I
′′
(a0) > 0. According to Lemma 2.6 there exists a continuously

differentiable function a 7→ µ(a) in an open neighborhood of a0 such that

I(a) = sup
µ̂∈R

[xµ̂− ϕ(µ̂)] = µ(a)a− ϕ(µ(a)). (2.10)

Now, differentiating both the left-hand side and the right-hand side of (2.10) with respect
to a results in

I ′(a) = a
dµ

da
(a) + µ(a)− ϕ′(µ)

dµ

da
(a).

Subsequently, using (2.5) we get I ′(a0) = µ(a0), and thus

I ′′(a0) =
dµ

da
(a0). (2.11)

Differentiating (2.5) with respect to a gives

ϕ′′(µ(a0))
dµ

da
(a0) = 1. (2.12)
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Hence
dµ

da
(a0) =

1

ϕ′′(µ(a0))
. (2.13)

Subsequently, (2.11) combined with (2.13) gives

I ′′(a0) =
dµ

da
(a0) =

1

ϕ′′(µ(a0))
=

1

V arQ [X]
.

Furthermore, we know from Lemma 2.3 that V arQ [X] ∈ (0,∞), so I ′′(a0) > 0, hence I
is strictly convex.

With the obtained results, we can now prove the remaining part of the proof of
Theorem 2.1.

Part 2 of proof of theorem 2.1. Using the Radon-Nikodym derivative from Definition 2.2,
we derive

P [Sn ≥ na] = E
[
1{ 1

n
Sn≥a}

]
= E

[
1{ 1

n
Sn≥a}

dQµ

dP
(X1, .., Xn)

(
dQµ

dP

)−1

(X1, .., Xn)

]

= EQµ

[
1{ 1

n
Sn≥a}

E
[
eµX
]n

eSnµ

]
= EQµ

[
1{ 1

n
Sn≥a}e

log(E[eµX]
n
)−Snµ

]
= EQµ

[
1{ 1

n
Sn≥a}e

n(log(E[eµX])− 1
n
Snµ)

]
.

As we want to derive an expression of the lower bound, we need an upper bound on
1
n
Sn. Using the result that 1

n
Sn → a under Qµ, we can restrict [a,∞) to [a, a+ ε), for an

arbitrary ε > 0, without losing too much information about the upper bound of 1
n
Sn.

P [Sn ≥ na] ≥ EQµ

[
1{ 1

n
Sn∈[a,a+ε]}e

n(log(E[eµX])− 1
n
Snµ)

]
≥ EQµ

[
1{ 1

n
Sn∈[a,a+ε]}

]
en(log(E[eµX])−(a+ε)µ)

= EQµ

[
1{ 1

n
Sn∈[a,a+ε]}

]
e−n(aµ−log(E[eµX]))e−nµε

≥ EQµ

[
1{ 1

n
Sn∈[a,a+ε]}

]
e−nI(a)e−nµε

= Qµ

[
1

n
Sn ∈ [a, a+ ε]

]
e−nI(a)e−nµε. (2.14)

We will apply the Central Limit Theorem to prove that the left term of (2.14) tends to
1
2
, as n → ∞. We know from Lemma 2.3 that σ2 := V arQµ ∈ (0,∞). And from (2.9)

that EQµ [X] = a. So by the Central Limit Theorem

lim
n→∞

Qµ

[
1

n
Sn ∈ [a, a+ ε]

]
= lim

n→∞
(Qµ [Sn ≤ n (a+ ε)]−Qµ [Sn ≥ na])

= lim
n→∞

Qµ

[
Sn − na
σ
√
n
≤ an+ nε− an

σ
√
n

]
−
(

1− lim
n→∞

Qµ [Sn ≤ na]
)

11



= lim
n→∞

Qµ

[
Sn − na
σ
√
n
≤ nε

σ
√
n

]
+ lim

n→∞
Qµ

[
Sn − na
σ
√
n
≤ na− na

σ
√
n

]
− 1

= lim
n→∞

Φ

(√
nε

σ

)
+ Φ (0)− 1

= 1 +
1

2
− 1 =

1

2
.

This results in combined with (2.14) implies

lim
n→∞

1

n
log (P [Sn ≥ na]) ≥ lim

n→∞

1

n
log

(
Qµ

[
1

n
Sn ∈ [a, a+ ε]

]
e−nI(a)e−nµε

)
= lim

n→∞

(
log
(
Qµ

[
1
n
Sn ∈ [a, a+ ε]

])
n

)
− I(a)− µε

= lim
n→∞

(
log
(
Qµ

[
1
n
Sn ∈ [a, a+ ε]

])
n

)
− I(a)− µε

= lim
n→∞

(
log
(

1
2

)
n

)
− I(a)− µε

= −I(a)− µε.

We chose ε > 0 arbitrarily. Hence

lim
n→∞

1

n
logP [Sn ≥ na] ≥ −I(a). (2.15)

If we combine (2.2) and (2.15) we can conclude that

lim
n→∞

1

n
logP [Sn ≥ na] = −I(a).

Lemma 2.8.
sup
λ∈R

[λa− ϕ(λ)] = sup
λ>0

[λa− ϕ(λ)]

Proof. From (2.5) we know
ϕ
′
(λ(a)) = a. (2.16)

Furthermore, (2.7) combined with the fact that a > E [X] implies

ϕ′(0) = E [X] < a. (2.17)

Using (2.6) we derive
ϕ
′
(0) = E [X] . (2.18)

Hence (2.16) combined with (2.17) and (2.18) results in

ϕ
′
(λ(a)) > ϕ

′
(0). (2.19)

From Lemma 2.3 we know V arQµ [X] > 0. Subsequently, using (2.8) we derive ϕ
′′
(λ) > 0.

Hence ϕ
′
(λ) is a strictly increasing function of λ. Therefore, (2.19) implies λ(a) > 0.
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One of the conditions in Cramér’s theorem is that the moment generating function
EeµX <∞ for all µ ∈ R. The moment generating function of the exponential distribution
is given by

MX(µ) = EeµX =

{
λ

λ−µ , if µ < λ,

∞, otherwise.

Therefore, the exponential distribution does not meet the condition in Cramér’s theorem.
However, in the next proposition we will see that Cramér’s theorem still holds for the
exponential distribution.

Proposition 2.9. Theorem 2.1 also holds for the exponential distribution for a > 0.

Proof. In the first part of the proof of Theorem 2.1 we derive the upper bound

1

n
logP [Sn ≥ na] ≤ −I(a) = − sup

µ∈R

[
aµ− logEeµX

]
.

This upper bound is independent of whether E
[
eµX
]

is finite or not and therefore will
still hold.

For the proof of the lower bound we used the tilted measure Qµ. Therefore we have
to show that this measure exists in the case of the exponential distribution. Let a > 0.
If we suppose that µ ≥ λ, then E

[
eµX
]

=∞. This implies

aµ− logE
[
eµX
]

= −∞.

But a ∗ 0− logE
[
e0∗X] = 0. Hence

sup
µ∈R

[µa− ϕ(µ)] = sup
µ<λ

[µa− ϕ(µ)] .

We know that E
[
eµX
]

is finite for µ < λ, and therefore using (2.5) we derive

ϕ
′
(µ) =

∂

∂µ
log

(
λ

λ− µ

)
=

1

λ− µ
= a.

Note that 1
λ−µ covers the set (0,∞) for µ < λ. Therefore for every a > 0 there exists

a µ such that ϕ
′
(µ) = a. Hence, we know the measure Qµ exists for every a > 0 and

therefore the proof of part 2 of the proof of Cramér’s theorem still holds.

2.2 Rate functions of common probability distributions

From Theorem 2.1 we know that for large n

P
[

1

n
Sn ≥ a

]
≈ e−nI(a).

where the rate function I(a) = supµ∈R [aµ− ϕ(µ)].
In Proposition 2.10, the rate functions I(a) corresponding to some common probability

distributions are given.
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Proposition 2.10. Let the rate function I(a) = supµ∈R [µa− ϕ(µ)]. The table below
contains probability distributions with their corresponding rate functions.

Distribution Rate function I(a)

Constant(c)

{
0, if a = c

∞, otherwise

Bernoulli(p)

{
a log

(
a
p

)
+ (1− a) log

(
1−a
1−p

)
, if a ∈ [0, 1]

∞, otherwise

Binomial(n, p)

{
a log

(
a
p

)
+ (n− a) log

(
n−a
1−p

)
, if a ∈ [0, n]

∞, otherwise

Poisson(λ)


a log

(
a
λ

)
− a+ λ, if a > 0

λ, if a = 0

∞, if a < 0

Exponential(λ)

{
aλ− 1− log(aλ), if a > 0

∞, if a ≤ 0

Normal(λ, σ2) 1
2

(a−λ)2

σ2 , for a ∈ R

Proof. In the proofs of the rate functions of the distributions, we use the same method for
every distribution except for the constant random variable. We first use (2.5) to compute
µ from a, subsequently we derive an expression for µ, and after that we use µ to derive
an expression for I(a).
(i) Let X = c ∈ R.
Then MX(µ) = E

[
eµX
]

= ecµ.
Therefore

I(a) = sup
µ∈R

[µa− log (ecµ)] = sup
µ∈R

[µ(a− c)] =

{
0 if a = c,

∞ otherwise.

(ii) Let X ∼ Bernoulli(p) for p ∈ [0, 1].
We know MX(µ) = E

[
eµX
]

= q + peµ.
If a < 0. Then

lim
µ→−∞

[µa− log (q + peµ)] =∞.

Hence, I(a) =∞ for a > 0.
If a > 0. Then

lim
µ→∞

[µa− log (q + peµ)] =∞.

Hence, I(a) =∞ for a < 0.
If a ∈ [0, 1]. Then we can express a as

a =
∂

∂µ
(log (q + peµ)) =

peµ

q + peµ
.

Subsequently, the expression for µ follows by

aq + apeµ = peµ

14



peµ(1− a) = aq

eµ =
a

1− a
q

p

µ = log

(
a

p

)
− log

(
1− a
q

)
. (2.20)

Therefore

I(a) = a

(
log

(
a

p

)
− log

(
1− a
q

))
− log

(
q + p

a

1− a
q

p

)
= a log

(
a

p

)
− a log

(
1− a
q

)
− log

(
q

(
1 +

a

1− a

))
= a log

(
a

p

)
− a log

(
1− a
q

)
− log

(
q

(
1− a
1− a

+
a

1− a

))
= a log

(
a

p

)
− a log

(
1− a
q

)
− log

(
q

1− a

)
= a log

(
a

p

)
− a log

(
1− a
q

)
+ log

(
1− a
q

)
= a log

(
a

p

)
+ (1− a) log

(
1− a
q

)
= a log

(
a

p

)
+ (1− a) log

(
1− a
1− p

)
.

(iii) Let X ∼ Binomial(n, p) for n ∈ N and p ∈ [0, 1].
We know MX(µ) = E

[
eµX
]

= (q + peµ)n.
If a < 0. Then

lim
µ→−∞

[µa− log [(q + peµ)n]] = lim
µ→−∞

[µa− n log (q + peµ)] =∞.

Hence, I(a) =∞ for a < 0.
If a > n. Then

lim
µ→∞

[aµ− log [(q + peµ)n]] = lim
µ→∞

[aµ− n log (q + peµ)] =∞.

Therefore, I(a) =∞ for a > n.
If a ∈ [0, n]. Then we can express a as

a =
∂

∂µ
ϕ(µ)

=
∂

∂µ
[log (q + peµ)n]

= n
∂

∂µ
[log (q + peµ)]

=
npeµ

q + peµ
.

Subsequently, the expression for µ follows by

aq + apeµ = npeµ
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peµ(n− a) = aq

eµ =
a

n− a
q

p

µ = log

(
a

p

)
− log

(
n− a
q

)
. (2.21)

Therefore

I(a) = a

(
log

(
a

p

)
− log

(
n− a
q

))
− log

[(
q + p

a

n− a
q

p

)n]
= a log

(
a

p

)
− a log

(
n− a
q

)
− n log

(
q

(
1 +

a

n− a

))
= a log

(
a

p

)
− a log

(
n− a
q

)
− n log

(
q

(
n− a
n− a

+
a

n− a

))
= a log

(
a

p

)
− a log

(
n− a
q

)
− n log

(
qn

n− a

)
= a log

(
a

p

)
− a log

(
n− a
q

)
+ n log

(
n− a
nq

)
= a log

(
a

p

)
+ (n− a) log

(
n− a
nq

)
= a log

(
a

p

)
+ (n− a) log

(
n− a
1− p

)
.

(iv) Let X ∼ Poisson(λ) for λ > 0.
We know MX(µ) = E

[
eµX
]

= eλ(eµ−1).
So ϕ(µ) = logMX(µ) = λeµ − λ.
If a < 0. Then

lim
µ→−∞

[aµ− λeµ + λ] =∞.

Therefore, I(a) =∞ for a < 0. If a = 0. Then

sup
µ∈R

[λ− λeµ] = λ.

Hence, I(a) = λ for a = 0.
If a > 0. Then we can express a as

a =
∂

∂µ
ϕ(µ) =

∂

∂µ

(
eλe

µ−λ) = λeµ.

So
µ = log

(a
λ

)
. (2.22)

Hence

I(a) = sup
µ∈R

[aµ− logϕ(µ)]

= µa− λeµ + λ

= log
(a
λ

)
a− λelog( aλ) + λ
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= a log
(a
λ

)
− a+ λ.

(v) Let X ∼ Exponential(λ) for λ > 0.
According to Proposition 2.9 we can use Cramér’s theorem to derive the rate function of
the exponential distribution.

MX(µ) = EeµX =

{
λ

λ−µ , if µ < λ,

∞, otherwise.

Let a ≤ 0. Then

lim
µ→−∞

[
aµ− log

(
λ

λ− µ

)]
= lim

µ→−∞
[aµ− log (λ) + log (λ− µ)] =∞.

Therefore, I(a) =∞ for a ≤ 0.
If a > 0. Then we can express a as

a =
∂

∂µ
ϕ(µ)

=
∂

∂µ

(
log

(
λ

λ− µ

))
=

1
λ

λ−µ
∗ λ

(λ− µ)2

=
1

λ− µ
.

So

µ =
aλ− 1

a
. (2.23)

Hence

I(a) = a ∗ aλ− 1

a
− log

(
λ

λ− aλ−1
a

)

= aλ− 1− log

(
λ

λ− aλ−1
a

)

= aλ− 1− log

(
λ
1
a

)
= aλ− 1− log(aλ).

(iv) Let X ∼ Normal(λ, σ2) for λ ∈ R and σ2 > 0. Now

MX(µ) = E
[
eµX
]

=

∫ ∞
−∞

eµx
1√

2πσ2
e−

1
2

(x−λ)2

σ2 dx.

Apply integration by substitution, let z = x−µ
σ

, then x = zσ + λ,
∣∣dx
dz

∣∣ = σ.

MX(µ) = eλµ
∫ ∞
−∞

ezσµ
1√

2πσ2
e

1
2
z2σdz
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= eλµ
∫ ∞
−∞

ezσµ
1√
2π
e

1
2
z2dz

= eλµ
∫ ∞
−∞

1√
2π
e−

1
2
z2+zσµ− 1

2
σ2µe

1
2
σ2µ2dz

= eλµ+ 1
2
σ2µ2

∫ ∞
−∞

1√
2π
e−

1
2

(z−σµ)2dz.

The part inside the integral is the density function of the N(σµ, 1)-distribution. Therefore

the integral is equal to 1. Hence MX(µ) = eλµ+ 1
2
σ2µ2 .

Now we can express a as

a =
∂

∂µ
ϕ(µ) =

∂

∂µ

(
λµ− σ2µ2

2

)
= λ+ µσ2. (2.24)

So

µ =
a− λ
σ2

. (2.25)

Hence, the rate function is given by

I(a) = a
a− λ
σ2
− λa− λ

σ2
− σ2

2

(
a− λ
σ2

)2

=
1

2

(a− λ)2

σ2
.
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3 Large deviation of the empirical measure

Recall the insurance model from the introduction. Note that there is a clear distinction
between the claim and the payoff. The claim is the event for which money is claimed
by a client of the insurer, while the payoff is a function of the claim which displays the
corresponding amount of money the insurer has to pay for a claim.
If we study Section 2 in the context of insurances, we can derive a rate function that
quantifies at which rate the probability of bankruptcy decays, as n→∞.
However, if due to reinsurance or other circumstances the payoff changes and thus the
underlying probabilistic structure of the payoff changes, we have to make a new analysis
of our payoff in order to find the corresponding rate function. Note that only the un-
derlying probabilistic structure of the payoff changes, while the underlying probabilistic
structure of the claims does not change.
To save us the work of analyzing the probabilistic structure of the payoff again, we can
describe our problem as a large deviation of the empirical measure instead of a large devi-
ation of the empirical average. The empirical measure is the relative frequency at which
an event occurs. With the use of the empirical measure we can describe the probability
of bankruptcy as a large deviation of the type of claims corresponding to a large payoff,
instead of a large deviation of the payoffs itself. If now the payoff changes, one can simply
choose a different function to describe the payoff corresponding to the claims, while using
the same model for the claims as before.
In Section 2 we studied the large deviation of the average of a sequence of random vari-
ables. However, in this section we study the large deviation of the empirical measure of
a sequence of random variables.

Suppose there are r different type of claims. Let Y1, ..., Yn be the claims an insurer
receives. Then we can restrict ourselves to the following conditions

Yi ∈ S = {1, ..., r} ⊂ N, (3.1a)

Y1, Y2, ... are i.i.d. with marginal law ρ = (ρs)s∈S, (3.1b)

ρs > 0 ∀s ∈ S. (3.1c)

Now Yi = s ∈ S can be interpreted as the i-th claim has type s. Furthermore, let
f : S → R be the function which maps the type of claim s to the payoff f(s) and thus

Xi = f(Yi), for i = 1, ..., n.

Then the total payoff is defined as

Sn :=
n∑
i=1

Xi.

Thus instead of analysing the payoffs Xi, we will analyse the claims Yi. Later we will
derive info over Xi from Yi.
Note that Yi take values in the finite set S. This is more restrictive than the conditions
we saw in Section 2, because now continuous distribution functions will be excluded.
However, the results we will obtain can be extended so that it can also be used for
continuous distributions. In that case, some partial sums should be written as integrals.
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Definition 3.1 (Empirical measure). Let Y1, Y2, ... be a sequence of independent identi-
cally distributed random variables on S. Them the empirical measure Ln is defined as

Ln(s) =
1

n

n∑
i=1

1{Yi=s} for s ∈ S.

Let M1(S) be the set of probabilities measures on S. M1(S) is given by

M1(S) :=

{
ν = (ν1, ..., νr) ∈ [0, 1]r :

r∑
s=1

νs = 1

}
.

So clearly Ln ∈M1(S).

Definition 3.2 (Total variation distance). For µ, ν ∈M1(S), the total variation distance
is given by

d(µ, ν) =
1

2

r∑
s=1

|µs − νs|.

The total variation distance measures the distance between two probability measures
in M1(S).
To derive an asymptotic relation for the large deviation of the empirical measure, we need
to introduce the concept relative entropy. The relative entropy between two probability
distributions is a measure of the distance between them.

Definition 3.3 (Relative entropy). The relative entropy of a probability vector ν with
respect to another probability vector µ is

H(ν|ρ) :=
r∑
s=1

νs log
νs
ρs
.

3.1 Sanov’s Theorem

As in the case of the empirical average, the empirical measure will converge to its average,
as n→∞. Namely, for each s the Law of large numbers implies

lim
n→∞

Ln(s) = lim
n→∞

1

n

n∑
i=1

1{Yi=s}
a.s.−−−→ ρs,

for all s ∈ S as n→∞. Therefore

d (Ln, ρ)
a.s.−−−→ 0. as n→∞.

A large deviation of the empirical measure can be measured by the distance between the
empirical measure Ln and the original measure ρ.
Sanov’s theorem describes large deviations of the empirical measure in terms of relative
entropy. In the proof of Theorem 3.4 we follow Theorem 2.2 in [2].

Theorem 3.4 (Sanov’s Theorem). Let Ln as in definition 3.1 and H(ν|ρ) as in definition
3.3. Then, for all a > 0,

lim
n→∞

1

n
logP (Ln ∈ Bc

a(ρ)) = − inf
ν∈Bca(ρ)

Iρ(ν), (3.2)

where Ba(ρ) = {ν ∈M1(S) : d(ν, ρ) ≤ a}, Bc
a = M1(S)\Ba(ρ) and

Iρ(ν) = H(ν|ρ). (3.3)
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Proof. Let

Kn =

{
k = (k1, ..., kr) ∈ Nr

0 :
r∑
s=1

ks = n

}
and note that 1

n
Kn ⊂M1(S) for all n ∈ N. Then Ln has the multinomial distribution

P
(
Ln(s) =

ks
n
∀s
)

= n!
r∏
s=1

ρkss
ks!

, k ∈ Kn. (3.4)

For k ∈ Kn, let νn(k) = 1
n
k ∈M1(S). Let

Qn(a) = max
k∈Kn:νn(k)∈Bca(ρ)

(
n!

r∏
s=1

ρkss
ks!

)
. (3.5)

Then clearly,
Qn(a) ≤ P (Ln ∈ Bc

a(ρ)) ≤ |Kn|Qn(a). (3.6)

We first study one of the terms in (3.5). Stirling’s formula is given by

n! ∼
√

2πn
(n
e

)n
.

This implies
log n! = n log n− n+O(log n). (3.7)

Subsequently, using (3.7) and
∑r

s=1
ks
n

= 1 we derive

1

n
log

(
n!

r∏
s=1

ρkss
ks!

)
=

1

n
log n! +

1

n
log

(
r∏
s=1

ρkss
ks!

)

=
1

n
(n log n− n+O(log n)) +

1

n

r∑
s=1

(
log
(
ρkss
)
− log(ks!)

)
= log n− 1 +O

(
log n

n

)
+

1

n

r∑
s=1

[ks log(ρs)− (ks log ks − ks +O(log ks))]

= log n− 1 +O
(

log n

n

)
+

r∑
s=1

[
ks
n

(log ρs − log ks) +
1

n
O (log ks))

]
+

r∑
s=1

ks
n

=
r∑
s=1

ks
n

log n+O
(

log n

n

)
+

r∑
s=1

[
ks
n

(log ρs − log ks) +
1

n
O(log ks)

]
=

r∑
s=1

ks
n

(
log ρs − log

ks
n

)
+O

(
log n

n

)
+

r∑
s=1

1

n
O(log ks)

= −
r∑
s=1

νn(k) log

(
νn(k)

ρs

)
+O

(
log n

n

)
+

1

n

r∑
s=1

O(log ks)

= −Iρ(νn(k)) +O
(

log n

n

)
+

1

n

r∑
s=1

O(log ks)

= −Iρ(νn(k)) + o(1). (3.8)
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Applying (3.5) to (3.8) results in

1

n
logQn(a) = max

k∈Kn:νn(k)∈Bca(ρ)
{−Iρ(νn(k)) + o(1)}

= − min
k∈Kn:νn(k)∈Bca(ρ)

Iρ(νn(k)) + o(1). (3.9)

We will now prove that

lim
n→∞

min
k∈Kn:νn(k)∈Bca(ρ)

Iρ(νn(k)) = inf
ν∈Bca(ρ)

Iρ(ν). (3.10)

We know each νn(k) ∈M1(S) and we know v 7→ Iρ(ν) is continuous as it is a composition
of continuous functions. Hence

(i)
⋃
n∈N

{νn(k) : k ∈ Kn} is dense in M1(S),

(ii) v 7→ Iρ(ν) is continuous on M1(S).

(i) implies that for every ν ∈ M1(S) there exists a sequence (Kn)n∈N, with kn ∈ Kn for
all n, such that

lim
n→∞

d(νn(kn), v) = 0.

Subsequently, (ii) implies
lim
n→∞

Iρ(νn(kn)) = Iρ(ν). (3.11)

Bc
a(ρ) is an open set, so

lim sup
n→∞

min
k∈Kn:νn(k)∈Bca(ρ)

Iρ(νn(k)) ≤ lim
n→∞

Iρ(νn(k)) = Iρ(ν). (3.12)

Optimizing over ν ∈ Bc
a(ρ) results in

lim sup
n→∞

min
k∈Kn:νn(k)∈Bca(ρ)

Iρ(νn(k)) ≤ inf
ν∈Bca(ρ)

Iρ(ν). (3.13)

We know
lim sup
n→∞

min
k∈Kn:νn(k)∈Bca(ρ)

Iρ(νn(k)) ≥ inf
ν∈Bca(ρ)

Iρ(ν). (3.14)

Therefore, (3.13) together with (3.14) gives (3.10). Now using (3.9) and (3.10) we derive

lim
n→∞

1

n
logQn(a) = − inf

ν∈Bca(ρ)
Iρ(ν). (3.15)

Every component of the vector Kn belongs to the set { 0
n
, 1
n
, ..., n

n
}. The cardinality of this

set is (n+ 1). This vector is specified by at most r of such quantities. So| Kn |≤ (n+ 1)r.
We know 1

n
log((n+ 1)r)→ 0, as n→∞. Hence 1

n
log | Kn |→ 0. Therefore using (3.15)

we derive

lim
n→∞

1

n
log(| Kn | Qn(a)) = lim

n→∞

1

n
log | Kn | + lim

n→∞

1

n
logQn(a) = − inf

ν∈Bca(ρ)
Iρ(ν).

Subsequently, using (3.6), we can conclude that

lim
n→∞

1

n
logP (Ln ∈ Bc

a(ρ)) = − inf
ν∈Bca(ρ)

Iρ(ν).
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3.2 The coincidence of Cramér’s theorem and Sanov’s theorem

A large deviation of the empirical measure is more general than a large deviation of the
empirical average. Therefore, a large deviation of the empirical measure can imply a large
deviation of the empirical average. We have the relation

1

n
Sn =

r∑
s=1

sLn(s). (3.16)

Theorem 2.1 described the rate of decay for large deviations of the empirical average 1
n
Sn,

while Theorem 3.4 did the same for large deviations of the empirical measure Ln(s). This
implies that there exists a link between the 2 theorems. First we will study Theorem
3.5 which indicates the link between (3.16) and Theorem 3.4. After that, Theorem 3.6
will link the rate function of corresponding to the empirical average to the rate function
corresponding to the empirical measure. In the proof of Theorem 3.5 we follow Theorem
2.15 from [2].

Theorem 3.5. For ν ∈M1(S), let mν =
∑

s sνs. Then, for all a > 0,

lim
n→∞

1

n
logP

(
1

n
Sn ∈ Bc

a(mρ)

)
= − inf

z∈Bca(mρ)
Î(z),

where Ba(mρ) = {z ∈ R :| z −mρ |≤ a} and

Î(z) = inf
ν∈M1(S):mν=z

Iρ(ν), (3.17)

where Iρ(ν) is as in (3.3).

Proof. Note that {
1

n
Sn ∈ Bc

a(mρ)

}
⇐⇒

{
Ln ∈ B̂c

a(ρ)
}
,

where
B̂a(ρ) = {ν ∈M1(S) :| mν −mρ |≤ a} .

We know v 7→ mρ is continuous. Therefore, using that the image of an open set under
a continuous function is again an open set, we derive that Bc

a(ρ) is an open subset of
M1(S).
In the proof of Theorem 3.4 we only use that Bc

a(ρ) is open to prove (3.12). Hence, Theo-
rem 3.4 also holds when Bc

a(ρ) is replaced by an arbitrary open set of M1(S). Therefore,
using (3.16) and Theorem 3.4 with Bc

a(ρ) replaced by B̂c
a(ρ), we derive

lim
n→∞

1

n
logP

(
1

n
Sn ∈ Bc

a(mρ)

)
= − inf

ν∈B̂ca(ρ)
Iρ(ν).

Now the claim follows from the fact that

inf
z∈B̂ca(ρ)

Iρ(ν) = inf
z∈Bca(mρ)

inf
ν∈M1(S):mν=z

Iρ(ν).

Theorem 3.6 shows that I(z) of Theorem 2.1 and Î(z) of Theorem 3.5 coincide. In
the proof of this theorem we use the method of Lagrange multipliers.
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Theorem 3.6. Let I(z) as in Theorem 2.1 and Î(z) as in Theorem 3.5. Then

I(z) = Î(z).

Proof. From (3.17) we know, we want to compute

inf
ν∈M1(Γ):mν=z

Iρ(ν) = inf
ν∈M1(Γ):mν=z

∑
s

νs log

(
νs
ρs

)
.

We know ν log
(
ν
ρ

)
is convex in the set (0,∞), hence the extremum we will find on (0,∞)

using the method of Lagrange multipliers will be an infimum.

The two conditions that must be satisfied are

(i)
∑
s

νs = 1, because ν ∈M1(S),

(ii)
∑
s

sνs = z, because mν = z.

Hence, the optimization problem is given by

Minimize
∑
s

νs log

(
νs
ρs

)
,

subject to: G1(νs) =
∑
s

νs − 1 = 0,

G2(νs) =
∑
s

sνs − z = 0.

The Lagrangian becomes

L =
∑
s

νs log

(
νs
ρs

)
− µ1G1 − µ2G2

=
∑
s

[
νs log

(
νs
ρs

)]
− µ1

(∑
s

νs − 1

)
− µ2

(∑
s

sνs − z

)

=
∑
s

[
νs log

(
νs
ρs

)
− µ1νs − µ2sνs

]
− µ1 − µ2z.

Differentiating the Lagrangian with respect to νs gives

∂

∂νs
L =

∑
s

[
log

(
νs
ρs

)
+ 1− µ1 − µ2s

]
=
∑
s

[log (νs)− log (ρs) + 1− µ1 − µ2s] = 0.

Therefore ∑
s

log (νs) =
∑
s

[log (ρs) + µ1 + µ2s− 1]
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∏
s

νs =
∏
s

ρse
µ1+µ2s−1

νs = ρse
µ1+µ2s−1. (3.18)

We know νs is a probability measure, and thus
∑

s νs = 1. This gives∑
s

ρse
µ1+µ2s−1 = 1.

Therefore ∑
s

ρse
µ2s = e1−µ1 . (3.19)

Subsequently, an expression for µ1 follows by (3.19) which implies

µ1 = 1− log

(∑
s

ρse
µ2s

)
. (3.20)

Now (3.18) applied to (3.20) results in

νs = ρse
µ1+µ2s−1

= ρse
1−log(

∑
s ρse

µ2s)+µ2s−1

=
ρse

µ2s∑
s ρse

µ2s
. (3.21)

Subsequently, using (3.21) with µ = µ2, we derive

Î(z) = inf
ν∈M1(S):mν=z

Iρ(ν)

=
∑
s

νs log

(
νs
ρs

)
=
∑
s

νs log

(
eµs∑
s ρse

µs

)

=
∑
s

νsµs−
∑
s

[
νs log

(∑
s

ρse
µs

)]

= µ
∑
s

sνs − log

(∑
s

ρse
µs

)∑
s

νs

= µ
∑
s

[
s

ρse
µs∑

s ρse
µs

]
− log

(∑
s

ρse
µs

)
.

Replacing the sums by expectation gives

Î(z) = µ
E
[
XeµX

]
E [eµX ]

− log
(
E
[
eµX
])
. (3.22)

We know I(z) takes a supremum if the derivative with respect to µ equals zero. We know
that

∂

∂µ

(
zµ− logE

[
eµX
])

= 0,
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gives

z =
E
[
XeµX

]
E [eµX ]

.

So

I(z) = sup
µ∈R

[
zµ− logE

[
eµX
]]

= µ
E
[
XeµX

]
E [eµX ]

− log
(
E
[
eµX
])
. (3.23)

Hence, by (3.22) and (3.23) we can conclude

I(z) = Î(z).
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4 Distribution of a random variable conditional on a

large deviation

An insurer wants to avoid bankruptcy and thus wants to know what kind of claims will
likely lead to bankruptcy. This can be studied by the distribution of the claim conditional
on a bankruptcy.
Therefore, we want to derive an expression for the conditional probability of the claim
Y1 when the total payoff Sn ∈ A for large n, where A is a subset of R. We denote this
conditional probability as

ρ∗n(s) := Pρ
(
Y1 = s | 1

n
Sn ∈ A

)
, for s = 1, ..., r.

In Section 2 we studied the case where 1
n
Sn ≥ a. However, 1

n
Sn ∈ A is a more general

case. Because we can interpret A as A = [a,∞). Then

ρ∗n(s) = Pρ
(
Y1 = s | 1

n
Sn ≥ a

)
.

This describes the probability of the random variable Y constrained to a large deviation
of the sum Sn.
We will prove in this section that this conditional probability is the tilted measure Qµ

from Definition 2.2.

4.1 Gibbs’s Principle

Gibbs’s principle gives an expression for the limit points of ρ∗n as n → ∞ in terms of
entropy, which we introduced in Section 3. Before we can state Gibbs’s principle we will
rewrite ρ∗n(s) in terms of the empirical measure Ln(s).
Let f = (f1, f2, ..., fr), where fs = f (s). We can write 1

n
Sn as

1

n
Sn =

1

n

n∑
i=1

Xi

=
1

n

n∑
i=1

f (Yi)

=
1

n

n∑
i=1

f11{Yi=1} + f21{Yi=2} + ...+ fr1{Yi=r}

= f1
1

n

n∑
i=1

1{Yi=1} + f2
1

n

n∑
i=1

1{Yi=2} + ...+ fr
1

n

n∑
i=1

1{Yi=r}

= 〈f, Ln〉,

where 〈f, π〉 denotes the integral of f against the measure π.
Now

ρ∗n(s) = Pρ
(
Y1 = s| 1

n
Sn ∈ A

)
= E

[
Ln(s)| 1

n
Sn ∈ A

]
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= E [Ln(s)|〈f, Ln〉 ∈ A] .

Hence, with Γ := {ν : 〈f, ν〉 ∈ A} we derive

ρ∗n = E [Ln|Ln ∈ Γ] .

Let
IΓ := inf

ν∈Γo
H(ν|ρ) = inf

ν∈Γ̄
H(ν|ρ). (4.1)

The following theorem is from Theorem 3.3.3 in [1].

Theorem 4.1 (Gibbs’s principle). Let

M :=
{
ν ∈ Γ̄ : H(ν|ρ) = IΓ

}
.

Then
(a) All the limit points of {ρ∗n} belong to co (M), the closure of the convex hull of M.
(b) When Γ is a convex set of non-empty interior, the set M consists of a single point to
which ρ∗n converge as n→∞

Note that Gibbs’s principle states that

lim
n→∞

ρ∗n = ν̂,

where ν̂ is such that
H(ν̂|ρ) = inf

ν∈Γ̄
H(ν|ρ).

Therefore, Pρ
(
Y1 = s| 1

n
Sn ∈ A

)
converges to the probability measure which has the lowest

relative entropy corresponding to the original measure ρ. In section 4.2 we will see that
this is the tilted measure Qµ from Definition 2.2.

Proof. (a) The statement : All the limit points of {ρ∗n} belong to co (M), is equivalent
with

d (ρ∗n, co(M))→ 0,

where the total variational distance d is defined in Definition 3.2. LetMδ := {ν : d (ν,M) < δ}.
Since d is a convex function on M1 (Σ) ×M1 (Σ), each point in co

(
Mδ
)

is within vari-
ational distance δ of some point in co (M). δ > 0 can be arbitrarily small, and thus it
suffices to prove

d
(
ρ∗n, co(Mδ)

)
→ 0. (4.2)

We will first derive a lower bound of the distance between ρ∗n and an arbitrary subset
U ⊂ M1(S). Since E [Ln|Ln ∈ U ∩ Γ] belongs to co(U), while ρ∗n = E [Ln|Ln ∈ Γ], it
follows that

d (ρ∗n, co(U)) = inf
ν∈co(U)

d (E [Ln|Ln ∈ Γ] , co(U))

≤ d (E [Ln|Ln ∈ Γ] ,E [Ln|Ln ∈ U ∩ Γ]) . (4.3)

By the law of total expectation, we know

E [Ln|Ln ∈ Γ] = E [Ln|Ln ∈ Γ ∩ U ]P (Ln ∈ U |Ln ∈ Γ) + E [Ln|Ln ∈ Γ ∩ U c]P (Ln ∈ U c|Ln ∈ Γ) .
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Using this, we can derive

E [Ln|Ln ∈ Γ]− E [Ln|Ln ∈ U ∩ Γ] =

E [Ln|Ln ∈ Γ ∩ U ]P (Ln ∈ U |Ln ∈ Γ) + E [Ln|Ln ∈ Γ ∩ U c]P (Ln ∈ U c|Ln ∈ Γ)− E [Ln|Ln ∈ U ∩ Γ]

= E [Ln|Ln ∈ Γ ∩ U ] (1− P (Ln ∈ U c|Ln ∈ Γ))− E [Ln|Ln ∈ U ∩ Γ]

+ E [Ln|Ln ∈ Γ ∩ U c]P (Ln ∈ U c|Ln ∈ Γ)

= P (Ln ∈ U c|Ln ∈ Γ) {E [Ln|Ln ∈ Γ ∩ U c]− E [Ln|Ln ∈ Γ ∩ U ]} . (4.4)

Therefore

d (E [Ln|Ln ∈ Γ] ,E [Ln|Ln ∈ U ∩ Γ]) =

P (Ln ∈ U c|Ln ∈ Γ) d (E [Ln|Ln ∈ Γ ∩ U c] ,E [Ln|Ln ∈ Γ ∩ U ]) . (4.5)

Now (4.3) combined with (4.5) results in

d (ρ∗n, co(U)) ≤ P (Ln ∈ U c|Ln ∈ Γ) {E [Ln|Ln ∈ Γ ∩ U c]− E [Ln|Ln ∈ Γ ∩ U ]}
= P (Ln ∈ U c|Ln ∈ Γ) d (E [Ln|Ln ∈ Γ ∩ U c] ,E [Ln|Ln ∈ Γ ∩ U ]) .

Subsequently, using that Ln ∈M1(S) and d(µ, ν) ≤ 1 for µ, ν ∈M1(S), we derive

d (ρ∗n, co(U)) ≤ P (Ln ∈ U c|Ln ∈ Γ) . (4.6)

We know Mδ ∈M1(S), so (4.6) applied to U =Mδ gives

d
(
ρ∗n, co(Mδ)

)
≤ P

(
Ln ∈

(
Mδ
)c |Ln ∈ Γ

)
. (4.7)

Note that

lim sup
n→∞

1

n
logPρ

(
Ln ∈

(
Mδ
)c |Ln ∈ Γ

)
< 0, (4.8)

implies
lim
n→∞

P
(
Ln ∈

(
Mδ
)c |Ln ∈ Γ

)
= 0.

Therefore, if the statement (4.8) is true, then (4.7) implies (4.2) and the claim will follow.
Hence, it suffices to prove that the statement (4.8) is correct in order to complete the
proof.
From Theorem 3.4 and (4.1) we know

IΓ = − lim
n→∞

1

n
logPµ (Ln ∈ Γ) . (4.9)

Using (3.14) we derive

lim sup
n→∞

1

n
logPρ

(
Ln ∈

(
Mδ
)c ∩ Γ

)
≤ lim sup

n→∞

1

n
logPρ (Ln ∈ Γ) (4.10)

≤ − inf
ν∈Γ

H(ν|ρ)

≤ − inf
ν∈(Mδ)

c
∩Γ

H(ν|ρ)

≤ − inf
ν∈(Mδ)

c
∩Γ̄

H(ν|ρ). (4.11)
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Due to the strictly inequality condition on the distance,Mδ are clearly open sets.Therefore(
Mδ
)c

are closed sets. An intersection of closed sets is closed, so
(
Mδ
)c ∩ Γ̄ is closed.

Moreover,
(
Mδ
)c ∩ Γ̄ is clearly bounded, hence

(
Mδ
)c ∩ Γ̄ is compact.

A lower semi-continuous function on a compact set always contains its infimum and M
is the set of the minimizers v of H(ν|µ). Hence, the set

(
Mδ
)c

does not contain the

minimizers of H(ν|µ). Thus for some ν̃ ∈
(
Mδ
)c ∩ Γ̄,

inf
ν∈(Mδ)

c
∩Γ̄

H(ν|ρ) = H(ν̃|ρ) > inf
ν∈Γ

H(ν|ρ) = IΓ. (4.12)

If we combine (4.11) and (4.12) we get

lim sup
n→∞

1

n
logPρ

(
Ln ∈

(
Mδ
)c ∩ Γ

)
< −IΓ. (4.13)

If we apply the definition of conditional probability and combine (4.9) and (4.13), we
derive

lim sup
n→∞

1

n
logPρ

(
Ln ∈

(
Mδ
)c |Ln ∈ Γ

)
= lim sup

n→∞

1

n
log

(
Pρ
(
Ln ∈

(
Mδ
)c ∩ Γ

)
Pρ (Ln ∈ Γ)

)

= lim sup
n→∞

{
1

n
logPρ

(
Ln ∈

(
Mδ
)c ∩ Γ

)
− 1

n
logPρ (Ln ∈ Γ)

}
< −IΓ + IΓ = 0.

Now the claim follows.

(b) Note that H(ν|ρ) is a sum of strictly convex functions and therefore is strictly convex.
Hence, H(ν|ρ) has a unique minimum. Therefore, there exists one unique measure ν̂ ∈ Γ̂
such that

H(ν̂|ρ) = inf
ν∈Γ̂

H(ν|ρ).

Hence, M consists of a single point and is therefore a closed set. This implies M = ν̂.
Subsequently using (a) we can conclude that ρ∗n → ν̂, as n→∞.

4.2 Expression of the conditional distribution given a large de-
viation of the sum

Note that, by the definition of ρ∗n, Gibbs’s principle states

lim
n→∞

Pρ
(
Y1 = s| 1

n
Sn ∈ A

)
= ν̂,

where ν̂ is defined such that
H(ν̂|ρ) = inf

ν∈Γ̄
H(ν|ρ).

In the proof of Theorem 3.6, we used Lagrange multipliers to derive this minimum. From
(3.21) and Theorem 3.6 we know this ν̂ is given by

ν̂ =
ρse

µs∑
s ρse

µs
=
ρ(s)eµs

E [eµX ]
,
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where µ is chosen such that

µa− logE
[
eµX
]

= sup
µ̂∈R

{
µ̂a− logE

[
eµ̂X
]}
.

Hence, as mentioned earlier in this section, the conditional distribution we are looking
for, is the tilted measure Qµ from definition 2.2. Thus

lim
n→∞

Pρ
(
Y1 = s | 1

n
Sn ∈ A

)
= Qµ(s),

where Qµ(s) is defined in Definition 2.2.

4.3 distributions conditional on rare events for several proba-
bility distributions

From section 4.2 we know that the conditional distribution of a single random variable,
constrained to a large deviation of the sum, is given by the tilted measure Qµ. The Radon-
Nikodym derivative of the conditional probability distribution is given by Definition 2.2.
In Proposition 4.2 we will derive an expression for this tilted measure Qµ for some common
probability distributions.

Proposition 4.2. The probability distribution under the tilted measure Qµ defined as in
Definition 2.2 are given by

Original distribution Tilted distribution Conditional distribution

Bernoulli(p) Bernoulli
(

peµ

1−p+peµ

)
Bernoulli(a)

Binomial(n, p) Binomial
(
n, peµ

1−p+peµ

)
Binomial

(
n, a

n

)
Poisson(λ) Poisson(λeµ) Poisson(a)
Exponential(λ) Exponential(λ− µ) Exponential

(
1
a

)
Normal(λ, σ2) Normal(λ+ µσ2, σ2) Normal(a, σ2)

Proof. (i) Let X ∼ Bernoulli(p), with p ≥ 0. Then the tilted distribution at X = 0 is
given by

Qµ (X = 0) = EP

[
1{X=0}

dQµ

dP
(0)

]
= EP

[
1{X=0}

e0

EP [eµX ]

]
= EP

[
1{X=0}

1

q + peµ

]
.

Subsequently, using P (X = 0) = 1 − p and the moment generating function MX(t) =
1− p+ pet, results in

Qµ (X = 0) = (1− p) 1

1− p+ peµ

=
1− p

1− p+ peµ
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=
1− p+ peµ − peµ

1− p+ peµ

= 1− peµ

1− p+ peµ
.

Similarly, the tilted distribution at X = 1 is given by

Qµ (X = 1) = EP

[
1{X=1}

dQµ

dP
(1)

]
= EP

[
1{X=1}

eµ

EP [eµX ]

]
= p

eµ

1− p+ peµ

=
peµ

1− p+ peµ
.

Hence, Qµ has the Bernoulli
(

peµ

1−p+peµ

)
-distribution.

From (2.20) we know

µ = log

(
a

p

)
− log

(
1− a
q

)
.

Therefore

peµ

1− p+ peµ
=

pelog(ap)−log( 1−a
q )

q + pelog(ap)−log( 1−a
q )

=
a q

1−a

q + a q
1−a

=
a

1− a+ a
= a.

Hence, Qµ has the Bernoulli(a)-distribution.
(ii) Let X ∼ Binomial(n, p), with n, p ≥ 0. Then the tilted distribution at X = k is given
by

Qµ (X = k) = EP

[
1{X=k}

dQµ

dP
(X = k)

]
.

Subsequently, using that P (X = k) =
(
n
k

)
pk(1− p)n−k and the moment generating func-

tion MX(t) = (1− p+ pet)
n
, we derive

Qµ (X = k) =

(
n

k

)
pk(1− p)n−k ekµ

E [eµX ]

=

(
n

k

)
pk(1− p)n−k ekµ

(1− p+ peµ)n

=

(
n

k

)
pk(1− p)n−k (eµ)k

1

(1− p+ peµ)k
1

(1− p+ peµ)n−k

=

(
n

k

)(
peµ

1− p+ peµ

)k (
1− p

1− p+ peµ

)n−k
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=

(
n

k

)(
peµ

1− p+ peµ

)k (
1− p+ peµ − peµ

1− p+ peµ

)n−k
=

(
n

k

)(
peµ

1− p+ peµ

)k (
1− peµ

1− p+ peµ

)n−k
.

Therefore, Qµ has the Binomial
(
n, peµ

1−p+peµ

)
-distribution.

From (2.21) we know

µ = log

(
a

p

)
− log

(
n− a
q

)
.

This implies

peµ

1− p+ peµ
=

pelog(ap)−log(n−aq )

1− p+ pelog(ap)−log(n−aq )

=
a q
n−a

q + a q
n−a

=
a

n− a+ a
=
a

n
.

Hence, Qµ has the Binomial
(
n, a

n

)
-distribution.

(iii) Let X ∼ Poisson(λ), with λ ∈ R+. Then the tilted distribution at X = k is given by

Qµ (X = k) = EP

[
1{X=k}

dQµ

dP
(X = k)

]
.

Subsequently, using that P (X = k) = λk

k!
e−λ and that the moment generating function

MX(t) = eλ(e
t−1), we derive

Qµ (X = k) =
λk

k!
e−λ

ekµ

E [eµX ]

=
λk

k!
e−λekµe−λ(eµ−1)

=
λk

k!
ekµ−λe

µ

=
(λeµ)k

k!
e−λe

−µ
.

Hence, Qµ has the Poisson(λeµ)-distribution.
From (2.22) we know

µ = log
(a
λ

)
.

This implies

λeµ = λ
a

λ
= a.

Hence, Qµ has the Poisson(a)-distribution.
(iv) Let X ∼ Exponential(λ), with λ > 0. The the tilted distribution function is given
by

Qµ (X ≤ a) = EQ

[
1{X≤a}

dQ
dP

]
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= EQ

[
1{X≤a}

exµ

E [eµX ]

]
.

Subsequently, using that λe−λx is the density function of the exponential distribution and
that the moment generating function is given by MX(t) = λ

λ−t , we derive

Qµ (X ≤ a) =

∫ a

0

exµ(
λ

λ−µ

)λe−λxdx
= (λ− µ)

∫ a

0

ex(µ−λ)dx

= (λ− µ)

[
1

(µ− λ)
ex(µ−λ)

]a
0

= −
[
e−x(λ−µ)

]a
0

= 1− e−(λ−µ)a.

Therefore, Qµ has the Exponential(λ− µ)-distribution. From (2.23) we know

µ =
aλ− 1

a
.

This implies

λ− µ = λ− aλ− 1

a
=

1

a
.

Hence, Qµ has the Exponential
(

1
a

)
-distribution.

(v) Let X ∼ Normal(λ, σ2), with λ ∈ R and σ2 > 0. The the tilted distribution function
is given by

Qµ (X ≤ a) = EQ

[
1{X≤a}

dQ
dP

]
= EQ

[
1{X≤a}

exµ

E [eµX ]

]
.

Subsequently, using that 1√
2πσ2

e−
1
2(x−λσ )

2

is the density function of the normal distribution

and that the moment generating function is given by MX(t) = e−λµ−
σ2µ2

2 , we derive

Qµ (X ≤ a) =

∫ a

−∞
exµe−λµ−

σ2µ2

2
1√

2πσ2
e−

1
2(x−λσ )

2

dx

= e−λµ−
σ2µ2

2

∫ a

−∞
exµ

1√
2πσ2

e−
1
2(x−λσ )

2

dx

= e−λµ−
σ2µ2

2

∫ a

−∞
exµ−

1
2σ2

(x2−2λx+λ2) 1√
2πσ2

dx

= e−λµ−
σ2µ2

2

∫ a

−∞
e−

1
2σ2

(x2−2x(λ+µσ2)+λ2) 1√
2πσ2

dx

= e−λµ−
σ2µ2

2

∫ a

−∞
e
− 1

2σ2

(
x2−2x(λ+µσ2)+(λ+µσ2)

2
)

+ 1
2σ2

(2λµσ2+µ2σ2) 1√
2πσ2

dx
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= e−λµ−
σ2µ2

2
+λµ+σ2µ2

2

∫ a

−∞

1√
2πσ2

e−
1
2

(x−(λ+µσ2))
2

σ2 dx

=

∫ a

−∞

1√
2πσ2

e−
1
2

(x−(λ+µσ2))
2

σ2 dx.

Therefore, Qµ has the Normal(λ+ µσ2, σ2)-distribution. From (2.25) we know

µ =
a− λ
σ2

.

This implies

λ+ µσ2 = λ+
a− λ
σ2

σ2 = a.

Hence, Qµ has the Normal(a, σ2)-distribution.

Note that the Conditional distribution functions in Proposition 4.2 all have expected
value a and finite positive variance as stated in Lemma 2.5 and Lemma 2.3 respectively.
The expected value a can intuitively be interpreted as that when a large deviations occurs,
it will probably occur in the most common way.
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5 Large deviation of random variables with an infi-

nite moment generating function

In this thesis we always supposed that the moment generating function of the distribution
of the random variable was finite. This section is about the distribution of a random
variable, conditional on a large deviation of the sum, where its corresponding moment
generating function is not finite.
In Proposition 2.9 we saw that Cramér’s theorem was still valid despite the fact that the
moment generating function was not finite everywhere, but was finite in a neighborhood of
0. Because then the expectation and variance are finite. However, for many distributions
with infinite moment generating functions, the theorems we applied are invalid. A well-
known distribution where this is the case is the Pareto distribution.

5.1 Large deviation of the Pareto distribution

If we study part 1 of the proof of Cramér’s theorem we see that the upper bound is

1

n
logP [Sn ≥ na] ≤ −I(a) = − sup

µ∈R

[
aµ− logEeµX

]
= 0,

for the Pareto distribution. Therefore part 1 of the proof of Cramér’s theorem still holds.
However, part 2 of the proof of Cramér’s theorem is not valid for the Pareto distribution.
In order to prove part 2 of the theorem we used the tilted measure Qµ and the Central
limit theorem. For the Pareto distribution, the moment generating function is not finite
and therefore the tilted measure Qµ is not defined. Therefore, we can not use Cramér’s
theorem to describe a large deviation for the Pareto distribution.

The Pareto distribution belongs to the class of regularly varying distributions with tail

F (x) = x−αL(x), x > 0,

where L(x) is a slowly varying function. A function L : (0.∞)→ (0,∞) is slowly varying
if for all a > 0,

lim
x→∞

L(ax)

L(x)
= 1.

Theorem 5.1 gives an expression of the limiting behavior of Sn for large values of a for the
Pareto distribution. It states that the probability of a large deviation of the maximum
value and the probability of a large deviation of the sum are asymptotically the same.
This is different from what we have seen in Section 4. In the following theorem we use
page 38 from [4].

Theorem 5.1. Let F (x) = x−αL(x) for α ≥ 0 and L(x) a slowly varying function. Let
X1, X2, ..., Xn be independent identically distribution random variables with distribution
function F. Define Mn := max (X1, X2, ..., Xn) and Sn :=

∑n
i=1 Xi. Then

P (Mn > b) ∼ P (Sn > b) , as b→∞. (5.1)

In (5.1), the notation
P (Mn > b) ∼ P (Sn > b) ,
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stands for

lim
n→∞

P (Mn > b)

P (Sn > b)
= 1.

Proof. From the definition of Sn we know

P (Sn > b) = P

(
n∑
i=1

Xi > b

)

= 1− P

(
n∑
i=1

Xi ≤ b

)
.

Subsequently, for F n∗(x) := P (
∑n

i=1Xi ≤ x) we derive

P (Sn > b) = 1− F n∗(b)

= F n∗(b).

To calculate P (Mn > b), we use the fact that the event Mn ≤ b implies Xi ≤ b for every
i = 1, ..., n. This gives

P (Mn > b) = 1− P (Mn ≤ b)

= 1− P (X1 ≤ b, ..., Xn ≤ b)

= 1−
n∏
i=1

P (Xi < b)

= 1− F n(b)

=
n−1∑
k=0

F k(b)−
n∑
k=1

F k(b)

= (1− F (b))

(
n−1∑
k=0

F k(b)

)

= F (b)
n−1∑
k=0

F k(b).

Subsequently, limb→∞ F (b) = 1 implies

lim
b→∞

(
F (b)

n−1∑
k=0

F k(b)

)
= lim

b→∞

(
F (b)n

)
.

Hence for b→∞,
P (Mn > b) ∼ nF (b), as b→∞, (5.2)

P (Sn > b) = F n∗(b), as b→∞.

Due to Corollary 1.3.2 from [4] it follows that

P (Mn > b) ∼ P (Sn > b) , as b→∞.
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Note that Theorem 5.1 only describes the large deviation for large values of b, whereas
Theorem 2.1 describes the large deviation for every value of b. Theorem 5.1 can be inter-
preted as follows. When b is large, then the tail of the largest value in a sample determines
the tail of the sum of this sample.
We know that the variance of the Pareto distribution with shape parameter α > 0 is
equal to ∞. This means that there is definitely a probability that for a sequence of ran-
dom variables, one variable is much higher than the others. According to Theorem 5.1,
the largest variable determines the tail of the sum of independent random variables. So
for large sample size n, the probability that the sum of independent Pareto distributed
random variables is exceptionally large is equal to n times the probability that the first
sample is exceptionally large.

Theorem 5.2 gives an expression for a large deviation of the sum of Pareto distributed
random variables. Theorem 5.2 is Theorem 1.9 from [3].

Theorem 5.2. Let X1, X2, ..., Xn be identically distributed and suppose that F (x) =
x−αL(x), where L(x) is a slowly varying function and α > 2. If, in addition, E[X] = 0,
σ2 = 1 and E|X1|2+δ <∞, then

P (Sn ≥ b) =

(
1− Φ

(
b√
n

))
(1 + o(1)) + n (1− F (b)) (1 + o(1)) , (5.3)

for n→∞ and b ≥
√
n.

Note that the Pareto distribution can not have the property E[X] = 0. However,
we can shift by some constant such that these conditions will be obtained. The most
important condition of this theorem is that the tails of the distribution are heavy.
For b = na and n large, Theorem 5.2 implies

P
(

1

n
Sn ≥ a

)
≈
(
1− Φ

(√
na
))

(1 + o(1)) + n (1− F (na)) (1 + o(1)) . (5.4)

From Section 2 we know that for a finite moment generating function we have

P
[

1

n
Sn ≥ a

]
≈ e−nI(a).

Therefore we see that P
(

1
n
Sn ≥ a

)
decays exponentially when the moment generating

function is finite.
Note that the right-hand side of (5.4) for the Pareto distribution with F (x) = x−α can
be written as

n (1− F (na)) (1 + o(1)) ≈ n(na)−α = n1−αa−α.

This is not an exponential decay. So clearly, the probability of a rare event decays slower
for the Pareto distribution than for a distribution with a finite moment generating func-
tion.

From the proof in Nagaev [3] we know that (5.3) can be split up in two equations.
When b relatively is large the behavior of the tails dominate and therefore

P (Sn ≥ b) = n (1− F (b)) (1 + o(1)) . (5.5)
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When b is relatively small the probability will behave like the Central limit theorem,
therefore

P (Sn ≥ b) =

(
1− Φ

(
b√
n

))
(1 + o(1)), (5.6)

when b is relatively small.
Using (5.2) we know that as n→∞ and b→∞, (5.5) becomes

P (Sn ≥ b) = P (Mn ≥ b) . (5.7)

Note that (5.7) coincides with Theorem 5.1. Therefore, for sufficiently large values of b,
the sum Sn exceeds b essentially because one of the Xi’s assumes a value exceeding b.
The large deviation of the sum is thus caused by a large deviation of one of the values
Xi.
However, (5.6) can be interpreted as follows. Now, the probability that the sum Sn ex-
ceeds the value b is normally distributed and therefore the probability that one individual
Xi exceeds b is very small compared to the probability that Sn exceeds b.
Hence, the cause of a large deviation, is different for large values of a and relatively small
values of b.
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6 Discussion

In Section 2, 3 and 4 we assumed that the moment generating function of the random
variable X was finite. Cramér’s theorem stated that the rate function I(a) such that

P
[

1

n
Sn ≥ a

]
≈ e−nI(a),

is given by supµ∈R
[
aµ− logEeµX

]
. In order to prove Cramér’s theorem we used the

tilted measure Qµ as defined in Definition 2.2.
We studied the case of large deviations in a more general context in Section 3, because
we studied the large deviations of the empirical measure instead of large deviations of the
empirical average. Now it will be much easier for an insurer to make a small adjustment
to his model when the payoff structure of the claims change, instead of analyzing the
claims all over again. Sanov’s theorem stated

lim
n→∞

1

n
logP (Ln ∈ Bc

a(ρ)) = − inf
ν∈Bca(ρ)

H(ν|ρ),

and therefore described the exponential decay of a large deviation of the empirical measure
in terms of relative entropy In section 3.2 we saw that Cramér’s theorem can be derived
from Sanov’s theorem.
In Section 4 we saw Gibbs’s Principle stated that the distribution function constrained to
a large deviation was the probability measure that caused the lowest entropy. In Section
4.2 we saw this measure is given by

lim
n→∞

Pρ
(
Y1 = s | 1

n
Sn ∈ A

)
= Qµ(s),

where Qµ(s) is the tilted measure we already used in the proof of the lower bound of
Cramér’s Theorem.
In Section 5 we studied the cases where the moment generating function does not exist.
Theorem 5.1 stated that for a sequences random variables from the Pareto distribution

P (Mn > b) ∼ P (Sn > b) , as b→∞,

where Mn = max (X1, X2, ..., Xn). Therefore a large deviation for a large value of b is
caused by a large deviation of a single random variable. Theorem 5.2 implies that for
large values of n the probability

P
(

1

n
Sn ≥ a

)
≈
(
1− Φ

(√
na
))

(1 + o(1)) + n (1− F (na)) (1 + o(1)) .

Therefore, in contrast to the earlier sections, P
(

1
n
Sn ≥ a

)
does not decay exponentially

for the Pareto distribution, but decays polynomially as

P
(

1

n
Sn ≥ a

)
≈ n1−αa−α,

and therefore decays slower.
We saw that if a is relatively large, the large deviation is caused by one single variable.
While in the case that a is relatively small, the deviation is described by the Central limit
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theorem and therefore the deviation is likely to be caused by multiple variables.

In this thesis we always assumed the random variables X1, X2, ..., Xn were independent,
however in the case of insurances, this is often not the case. When, for instance, a village
is burned down by a forest fire, a household contents insurance company will have to pay
much higher claims then they usually do. Therefore, further research of large deviations
in the field of mathematical insurance should also study the deviations in the case the
random variables are not independent. However, this wouldn’t mean that our results are
bad. Although claims, of for example a car insurance company, are not dependent, they
are certainly not strongly correlated and therefore theorems like the Law of large numbers
and the Central Limit Theorem can still be used to make a good approximation.
Furthermore, the theorems we stated gave expression of probabilities as n → ∞. How-
ever, in the real world the number of claims will always be finite, therefore these theorems
are maybe less powerful than they initially seemed. Therefore, further research can be
done on large deviations for a finite number of random variables.
Further studies can also investigate the number of claims instead of the value of the
claims. In that case, the number of claims could be determined by a discrete probability
distribution like for example the Poisson distribution.
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