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Abstract: In this paper, we present an implementation of a model predictive controller (MPC)
for wind farm power tracking problem. The controller is evaluated in the high-fidelity PAral-
lelized Large-eddy simulation Model (PALM). By taking measurements from PALM, we show
that the closed-loop MPC can provide power reference tracking while reducing force variations
on a farm level by solving a constrained optimization problem at each time step. A six turbine
wind farm case study is presented in which the controller operates with yawed turbines that
increases the potential power that can be harvested with the wind farm, and we show that it is
possible to track a reference power signal that temporarily exceeds the power harvested when
operating under the so-called greedy control settings.
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1. INTRODUCTION

A large part of all renewable energy finds its origin in
wind (Enerdata, 2017). Consequently, the stimulation of
wind power penetration in the network becomes more
important. This can be stimulated by the provision of grid
facilities such as secondary frequency regulation by wind
farms. Here, the objective is to track a power reference
signal with a wind farm by dynamically de- and uprating
the turbines. Investigating and understanding the problem
should result in a smoother penetration of wind energy in
the energy market.

In this paper the objective is to have the total wind
farm’s power generation output track a certain demanded
power signal generated by operators, during a time span
of several minutes (Ela et al., 2014). In wind farms, this
objective could be separated into two tasks: 1) distribution
of the wind farm power reference signal to reference
signals for the individual turbines in the farm and 2)
tracking of the local references by the individual turbines.
In (Shapiro et al., 2017), both these tasks are solved
in a centralized wind farm controller, which solves a
constrained optimization problem containing wake and
turbine models. In (van Wingerden et al., 2017; Vali et al.,
2018), no wake model or constraints have been taken into
account in the controller providing tracking. Wind farm
controllers that provide power tracking are also presented
in (Spudić et al., 2010; Madjidian et al., 2011; Biegel
et al., 2013; Siniscalchi-Minna et al., 2018). Although
interesting, these controllers are not tested in a high-

⋆ These authors were supported by the Uncertainty Reduction in
Smart Energy Systems (URSES) research program funded by the
Dutch organization for scientific research (NWO) and Shell under
the project Aquifer Thermal Energy Storage Smart Grids (ATES-
SG) with grant number 408-13-030.

fidelity simulation environment, which makes it difficult to
assess if the therein presented results can be obtained in
practice. This work is focussed on controller development
in a high-fidelity simulation environment and consequently
is focussed on the flow dynamics in a wind farm.

This paper proposes a reference tracking framework in
which a model predictive controller (MPC) solves a con-
strained optimization problem containing a simplified
wind farm model that is updated each time step according
to local rotor-averaged wind speed measurements. The
applied reference signal distribution is based on the yet
to be defined available power. This results in good track-
ing performance for reference signals below the averaged
power harvested with greedy control settings, i.e., the
time-averaged power harvested with maximal control set-
tings. However, reference signals above this limit will not
be satisfactorily tracked. Therefore, the steady-state wind
farm model as presented in (Bastankhah and Porte-Agél,
2016) is employed to find the optimal steady-state yaw
angles. The MPC is then tested with optimal steady-state
yaw angles and we show that our proposed framework can
track reference signals even above the greedy limit. The
proposed MPC is tested in the high-fidelity PArallelized
Large-eddy simulation Model (PALM) considering a six
turbine wind farm case study. An important contribution
of this paper is to provide the reader with additional
simulation results compared to (Boersma et al., 2018).

2. WIND FARM SIMULATION MODEL

The PArallelized Large-eddy simulation Model (PALM) is
a high-fidelity wind farm model (Maronga et al., 2015).
The PALM model is based on the filtered incompressible
Navier-Stokes equations. It includes the actuator disk
model (ADM) (Betz, 1926) to determine the turbine’s
forcing terms acting on the flow. This turbine model is
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in (Spudić et al., 2010; Madjidian et al., 2011; Biegel
et al., 2013; Siniscalchi-Minna et al., 2018). Although
interesting, these controllers are not tested in a high-

⋆ These authors were supported by the Uncertainty Reduction in
Smart Energy Systems (URSES) research program funded by the
Dutch organization for scientific research (NWO) and Shell under
the project Aquifer Thermal Energy Storage Smart Grids (ATES-
SG) with grant number 408-13-030.

fidelity simulation environment, which makes it difficult to
assess if the therein presented results can be obtained in
practice. This work is focussed on controller development
in a high-fidelity simulation environment and consequently
is focussed on the flow dynamics in a wind farm.

This paper proposes a reference tracking framework in
which a model predictive controller (MPC) solves a con-
strained optimization problem containing a simplified
wind farm model that is updated each time step according
to local rotor-averaged wind speed measurements. The
applied reference signal distribution is based on the yet
to be defined available power. This results in good track-
ing performance for reference signals below the averaged
power harvested with greedy control settings, i.e., the
time-averaged power harvested with maximal control set-
tings. However, reference signals above this limit will not
be satisfactorily tracked. Therefore, the steady-state wind
farm model as presented in (Bastankhah and Porte-Agél,
2016) is employed to find the optimal steady-state yaw
angles. The MPC is then tested with optimal steady-state
yaw angles and we show that our proposed framework can
track reference signals even above the greedy limit. The
proposed MPC is tested in the high-fidelity PArallelized
Large-eddy simulation Model (PALM) considering a six
turbine wind farm case study. An important contribution
of this paper is to provide the reader with additional
simulation results compared to (Boersma et al., 2018).

2. WIND FARM SIMULATION MODEL

The PArallelized Large-eddy simulation Model (PALM) is
a high-fidelity wind farm model (Maronga et al., 2015).
The PALM model is based on the filtered incompressible
Navier-Stokes equations. It includes the actuator disk
model (ADM) (Betz, 1926) to determine the turbine’s
forcing terms acting on the flow. This turbine model is

6th IFAC Conference on Nonlinear Model Predictive Control
Madison, WI, USA, August 19-22, 2018

Copyright © 2018 IFAC 275

A Model Predictive Wind Farm Controller

with Linear Parameter-Varying Models

Sjoerd Boersma, Vahab Rostampour⋆ , Bart Doekemeijer
Jan-Willem van Wingerden and Tamás Keviczky ⋆

Delft Center of Systems and Control, Delft University of Technology,
The Netherlands. (e-mail: {v.rostampour, s.boersma, j.w.vanwingerden,

t.keviczky}@tudelft.nl)

Abstract: In this paper, we present an implementation of a model predictive controller (MPC)
for wind farm power tracking problem. The controller is evaluated in the high-fidelity PAral-
lelized Large-eddy simulation Model (PALM). By taking measurements from PALM, we show
that the closed-loop MPC can provide power reference tracking while reducing force variations
on a farm level by solving a constrained optimization problem at each time step. A six turbine
wind farm case study is presented in which the controller operates with yawed turbines that
increases the potential power that can be harvested with the wind farm, and we show that it is
possible to track a reference power signal that temporarily exceeds the power harvested when
operating under the so-called greedy control settings.

Keywords: Wind farm, Model Predictive Control, Large-eddy simulations

1. INTRODUCTION

A large part of all renewable energy finds its origin in
wind (Enerdata, 2017). Consequently, the stimulation of
wind power penetration in the network becomes more
important. This can be stimulated by the provision of grid
facilities such as secondary frequency regulation by wind
farms. Here, the objective is to track a power reference
signal with a wind farm by dynamically de- and uprating
the turbines. Investigating and understanding the problem
should result in a smoother penetration of wind energy in
the energy market.

In this paper the objective is to have the total wind
farm’s power generation output track a certain demanded
power signal generated by operators, during a time span
of several minutes (Ela et al., 2014). In wind farms, this
objective could be separated into two tasks: 1) distribution
of the wind farm power reference signal to reference
signals for the individual turbines in the farm and 2)
tracking of the local references by the individual turbines.
In (Shapiro et al., 2017), both these tasks are solved
in a centralized wind farm controller, which solves a
constrained optimization problem containing wake and
turbine models. In (van Wingerden et al., 2017; Vali et al.,
2018), no wake model or constraints have been taken into
account in the controller providing tracking. Wind farm
controllers that provide power tracking are also presented
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efficient due its lower requirements of grid resolution and
coarser allowed time-stepping as compared to having to
resolve detailed flow surrounding rotating blades (Meyers
and Meneveau, 2010). A consequence of choosing the
ADM is that the control signals are the disk-based thrust
coefficient C ′

Ti
(t) following (Meyers and Meneveau, 2010).

Simulations are initialized as follows: a fully developed
flow field is generated in the precursor with U∞=8 [m/s]
and V∞=W∞=0 [m/s] and a TI∞ of approximately 6%
at hub-height in front of the wind farm. Then, for the
specific topology considered in this work, the flow is
propagated 900 seconds in advance with constant control
settings so that the wakes are fully developed. Here, non-
cyclic boundary conditions and time-dependent turbulent
inflow data are imposed by using a turbulence recycling
method (Maronga et al., 2015). The flow field obtained
after these 900 seconds is utilized as initial flow field for
the simulation results presented in this paper. We assume
that the measured variables at time t are 1) the force that
a turbine exerts on the flow Fi(t), 2) the power generated
by a turbine Pi(t) and 3) the rotor-averaged wind velocity
vi(t) for i = 1, 2, . . . ,ℵ with ℵ the number of turbines in
the farm.

3. CONTROLLER MODEL

The MPC paradigm applies the receding horizon principle
in which a finite-time constrained optimization problem is
solved at each time step using future predictions of the
system’s state. This highlights the necessity of having a
representative dynamical model to predict state trajecto-
ries of the real system. However, due to nonlinear dynamics
and uncertain atmospheric conditions, it is challenging to
obtain a dynamical wind farm model suitable for online
control (Boersma et al., 2017). In this paper we there-
fore employ wind turbine models with varying dynami-
cal system parameters, since the measured rotor-averaged
wind velocity is a time-varying parameter. This avoids the
challenge of including a wake model in the optimization
problem.

Consider now the turbine models employed in the MPC
for i = 1, 2, . . . ,ℵ that are based on a filtered version of
the actuator disk theory as follows:

Pi(t) =
πD2

8

(

vi(t) cos[γi(t)]
)3

Ĉ′
Ti
(t) , (1a)

Fi(t) =
πD2

8

(

vi(t) cos[γi(t)]
)2

Ĉ′
Ti
(t) , (1b)

C ′
Ti
(t) = τ

dĈ ′
Ti
(t)

dt
+ Ĉ′

Ti
(t) , (1c)

where Pi(t) is the filtered generated power, Fi(t) the

filtered force, C ′
Ti
(t) the control signal, Ĉ ′

Ti
(t) the first-

order filtered control signal, γi the yaw angle, and vi(t) the
rotor-averaged longitudinal wind velocity. The parameters
τ ∈ R+ is the filter’s time constants that acts on the
control signal. Temporally discretizing (1c) using the zero-
order hold method with sample period h = 1 [s] and lifting
the state variables of the turbines results in the following
state-space linear parameter-varying system model:

xk+1 = Axk +B(vk,γk)C
′

T,k, yk = xk, (2)

where xk = [x1,k x2,k · · · xℵ,k] ∈ R3ℵ such that xi,k =
[

Fi,k Pi,k Ĉ′
Ti,k

]

∈ R3, and C′

T,k, Ĉ
′

T,k ∈ Rℵ. The system

matrices are defined as follows:

A = blkdiag

(

A1, A2, . . . , Aℵ

)

,

B(vk) = blkdiag

(

B1(v1,k), B2(v2,k), . . . , Bℵ(vℵ,k)
)

,

where blkdiag(·) denotes block diagonal concatenation
of matrices or vectors Ai ∈ R3×3 and Bi(vi,k) ∈ R3×1,
respectively, for i = 1, 2, . . . ,ℵ.

4. CONTROL STRATEGY

4.1 Reference distribution

Based on (Hansen et al., 2006), we consider the following
reference distribution:

P ref
i,k = min

(

P ref
k

∑ℵ
i=1 P

aiv
i,k

P aiv
i,k , P aiv

i,k

)

, (3a)

P aiv
i,k =

πD2

8
[vi,k cos(γi)]

3C′
T,max , (3b)

where P aiv
i,k the available power for the ith turbine, P ref

k the

wind farm power reference signal, P ref
i,k the reference signal

for the ith turbine, and C ′
T,max = 2 the maximum value of

the control signals.

4.2 Model Predictive Controller

Consider the cost function of the MPC at each time step
k to be as follows:

V (xk,x
ref
k0
,C′

T,k) :=(xk − xref
k0
)TQ(xk − xref

k0
)

+ (xk − xk−1)
TS(xk − xk−1)

+C′

T,k

T
R C′

T,k ,

where Q,S ∈ R3ℵ×3ℵ, and R = Iℵ ·r ∈ Rℵ×ℵ are weighting
coefficient matrices. Q and S are defined to be:

Q = Iℵ ⊗

(

0 0 0
0 q 0
0 0 0

)

, S = Iℵ ⊗

(

s 0 0
0 0 0
0 0 0

)

, (4)

where ⊗ is the Kronecker product and r, q, s ∈ R are
controller tuning variables such that by tuning each weight
one can increase or decrease the importance of the corre-
sponding term in the cost function. The variable xref

k0
in

the cost function represents the reference tracking signal
and it is considered to be

xref
k0

=
(

0 P ref
1,k0

0 0 P ref
2,k0

0 . . . 0 P ref
ℵ,k0

0
)T

∈ R
3ℵ.

Now we are in a position to formulate a finite-time con-
strained optimization problem at time step k0 for the
complete wind farm as:

min
{C′

T,k}
k0+Nh
k=k0

k0+Nh
∑

k=k0

V (xk,x
ref
k0
,C′

T,k) (5a)

subject to (5b)

xk+1 = Axk +Bu(vk0
,γk0

)C′

T,k +BrP
ref
k , (5c)

C ′
T,min ≤ C′

Ti,k
≤ C′

T,max, |C ′
Ti,k

− C′
Ti,k-1

| < dC′
T ,
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where C ′
T,max = 2, C′

T,min = 0.1, and dC ′
T = 0.2 repre-

sent the maximum and minimum bounds on the control
variables and its variation, respectively, whereas xk0

and
vk0

denote the measured state and rotor-averaged wind ve-
locity at time k0, respectively. Note that the optimization
problem is formulated on a farm level, although the opti-
mization problems could also be solved locally. However,
this work is a step in the direction of a centralized wind
farm MPC without reference distribution, and hence we
employ this formulation.

5. SIMULATION RESULTS

The PALM simulation results are all of a neutral at-
mospheric boundary layer and will be discussed in this
section. We first present a simulation study in which the
controller is working under yawed conditions that, as will
be shown, increases the set of trackable wind farm refer-
ence signals. We then study the effect of the controller
on the variation of the axial force and finally, we provide a
simulation study where the controller is tested under time-
varying atmospheric conditions. More precisely, during
the 900 second simulation time, the lateral flow velocity
component is perturbed.

In all the aforementioned case studies the controller is
applied to a wind farm with specifications as described
in (Boersma et al., 2018). We note that in the six turbine
case study presented in this work, the controller takes
approximately 0.07 [s] on a regular notebook and single
core for evaluating new control signals. The CPLEX solver
is used to solve the optimization problem.

5.1 Simulation Performance Measures

In order to assess the controller performance under differ-
ent settings, two criteria are introduced

� =

(

||P ref
k −

∑ℵ
i=1 Pi,k||2

ebase
− 1

)

· 100 % , (6a)

dFi =

(

∑N

k=1(Fi,k − Fi,k−1)
2

dFi,base

− 1

)

· 100 % , (6b)

with dFi,base =
∑N

k=1(Fi,k − Fi,k−1)
2 and ebase = ||P ref

k −
∑ℵ

i=1 Pi,k||2 for s = 0. Note that a negative � indicates
improved tracking and a negative dFi indicates decreased
force variations over the complete simulation time with
respect to the s = 0 case.

5.2 Optimal Yaw Actuation Setting

The proposed MPC is evaluated under zero yaw and yaw
settings for maximal power capture in steady-state with
the prediction horizon Nh = 15 that is found after tuning
the controller. The wind farm power reference signal is
defined as:

P ref
k = 0.8P greedy + 0.3P greedyδPk , (7)

where δPk is a normalized “RegD” type AGC signal (Pi-
long, 2013) coming from an operator, and P greedy ≈
7.5 [MW] presents the time-averaged produced wind farm
power under greedy control, i.e., with CTi,k = 2 and
γi = 0. Note that, for a short period, more power is
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Fig. 1. Wind farm tracking results of the controller under
different yaw settings.

demanded from the farm than the power harvested under
greedy control. The simulation results are obtained with
controller parameters Nh = 15, q = 104, r = 104, s = 0
that are found after tuning and are presented in Fig. 1.
The top plot in Fig. 1 illustrates that the power refer-
ence cannot be tracked without an undesired error for a
period between 300 and 600 seconds. This is due to a de-
manded power larger than the previously defined available
power in the farm under the imposed reference distribution
(see (3)). The authors in (Fleming et al., 2016) illustrated
that redirecting the wake can be beneficial during active
power control when demanding more power from the farm
than available under non-yawed turbines. Following this
idea, optimal steady-state yaw settings are imposed dur-
ing the complete simulation. These settings, γi = γ∗

i =
{−24.3,−24.3,−16.2,−16.2, 0, 0} [deg], are found using
the wind farm optimization tool FLORIS (Doekemeijer,
2018) in which a steady-state wind farm model (Bas-
tankhah and Porte-Agél, 2016) is employed to predict and
maximize the steady-state power production for different
yaw settings. The bottom plot of Fig. 1 illustrates that
better tracking is ensured when the turbines are set to
their optimal yaw settings with respect to the case when
γi = 0. This is due to the increase of available power when
controlling under optimal yaw settings and consequently,
reference signals with higher amplitudes can be tracked.
Instead of yawing the turbines, it could also be possible
to increase the available power by imposing a different
distribution than presented in (1a). This idea is however
not further investigated in this work. The tracking results
of the individual turbines in the nonyawed case can be
found in Fig. 2 and the control signals of the yawed case
in Fig. 3.

5.3 Minimizing Axial Force Variation

We now study the effect of the controller tuning parameter
s (see (5)). This weight acts on the axial force variation
and an increasing s makes the optimization penalizes the
variation more. One could consider this variation as a
measure for turbine fatigue and it is therefore interesting
to minimize this quantity, possibly expanding the turbine’s
lifetime. The following wind farm power reference signal is
applied:

P ref
k = 0.7P greedy + 0.2P greedyδPk . (8)
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where C ′
T,max = 2, C′

T,min = 0.1, and dC ′
T = 0.2 repre-

sent the maximum and minimum bounds on the control
variables and its variation, respectively, whereas xk0

and
vk0

denote the measured state and rotor-averaged wind ve-
locity at time k0, respectively. Note that the optimization
problem is formulated on a farm level, although the opti-
mization problems could also be solved locally. However,
this work is a step in the direction of a centralized wind
farm MPC without reference distribution, and hence we
employ this formulation.

5. SIMULATION RESULTS

The PALM simulation results are all of a neutral at-
mospheric boundary layer and will be discussed in this
section. We first present a simulation study in which the
controller is working under yawed conditions that, as will
be shown, increases the set of trackable wind farm refer-
ence signals. We then study the effect of the controller
on the variation of the axial force and finally, we provide a
simulation study where the controller is tested under time-
varying atmospheric conditions. More precisely, during
the 900 second simulation time, the lateral flow velocity
component is perturbed.

In all the aforementioned case studies the controller is
applied to a wind farm with specifications as described
in (Boersma et al., 2018). We note that in the six turbine
case study presented in this work, the controller takes
approximately 0.07 [s] on a regular notebook and single
core for evaluating new control signals. The CPLEX solver
is used to solve the optimization problem.

5.1 Simulation Performance Measures

In order to assess the controller performance under differ-
ent settings, two criteria are introduced

� =

(

||P ref
k −

∑ℵ
i=1 Pi,k||2

ebase
− 1

)

· 100 % , (6a)

dFi =

(

∑N

k=1(Fi,k − Fi,k−1)
2

dFi,base

− 1

)

· 100 % , (6b)

with dFi,base =
∑N

k=1(Fi,k − Fi,k−1)
2 and ebase = ||P ref

k −
∑ℵ

i=1 Pi,k||2 for s = 0. Note that a negative � indicates
improved tracking and a negative dFi indicates decreased
force variations over the complete simulation time with
respect to the s = 0 case.

5.2 Optimal Yaw Actuation Setting

The proposed MPC is evaluated under zero yaw and yaw
settings for maximal power capture in steady-state with
the prediction horizon Nh = 15 that is found after tuning
the controller. The wind farm power reference signal is
defined as:

P ref
k = 0.8P greedy + 0.3P greedyδPk , (7)

where δPk is a normalized “RegD” type AGC signal (Pi-
long, 2013) coming from an operator, and P greedy ≈
7.5 [MW] presents the time-averaged produced wind farm
power under greedy control, i.e., with CTi,k = 2 and
γi = 0. Note that, for a short period, more power is
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Fig. 1. Wind farm tracking results of the controller under
different yaw settings.

demanded from the farm than the power harvested under
greedy control. The simulation results are obtained with
controller parameters Nh = 15, q = 104, r = 104, s = 0
that are found after tuning and are presented in Fig. 1.
The top plot in Fig. 1 illustrates that the power refer-
ence cannot be tracked without an undesired error for a
period between 300 and 600 seconds. This is due to a de-
manded power larger than the previously defined available
power in the farm under the imposed reference distribution
(see (3)). The authors in (Fleming et al., 2016) illustrated
that redirecting the wake can be beneficial during active
power control when demanding more power from the farm
than available under non-yawed turbines. Following this
idea, optimal steady-state yaw settings are imposed dur-
ing the complete simulation. These settings, γi = γ∗

i =
{−24.3,−24.3,−16.2,−16.2, 0, 0} [deg], are found using
the wind farm optimization tool FLORIS (Doekemeijer,
2018) in which a steady-state wind farm model (Bas-
tankhah and Porte-Agél, 2016) is employed to predict and
maximize the steady-state power production for different
yaw settings. The bottom plot of Fig. 1 illustrates that
better tracking is ensured when the turbines are set to
their optimal yaw settings with respect to the case when
γi = 0. This is due to the increase of available power when
controlling under optimal yaw settings and consequently,
reference signals with higher amplitudes can be tracked.
Instead of yawing the turbines, it could also be possible
to increase the available power by imposing a different
distribution than presented in (1a). This idea is however
not further investigated in this work. The tracking results
of the individual turbines in the nonyawed case can be
found in Fig. 2 and the control signals of the yawed case
in Fig. 3.

5.3 Minimizing Axial Force Variation

We now study the effect of the controller tuning parameter
s (see (5)). This weight acts on the axial force variation
and an increasing s makes the optimization penalizes the
variation more. One could consider this variation as a
measure for turbine fatigue and it is therefore interesting
to minimize this quantity, possibly expanding the turbine’s
lifetime. The following wind farm power reference signal is
applied:

P ref
k = 0.7P greedy + 0.2P greedyδPk . (8)
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Fig. 2. Turbine tracking results of the controller under γi = 0. The black arrow on the left of the figure indicates the
wind direction.
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Fig. 3. Turbine control signals under γ∗
i = {−24.3,−24.3,−16.2,−16.2, 0, 0} [deg] (dashed) and γi = 0 (solid). The

black arrow on the left of the figure indicates the wind direction.
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Table 1. Weight s on the variation of the force,
with corresponding performance measures in

percentages as given in (6).

s � dF1 dF2 dF3 dF4 dF5 dF6

50 0.94 -4.38 -1.82 -2.26 1.89 -2.43 1.82
250 -2.91 -1.95 -2.22 -0.91 -0.14 -5.94 5.28
500 1.06 -4.42 -1.86 -2.29 1.86 -2.44 1.78
1000 -2.72 -2.01 -2.28 -0.97 -0.18 -5.96 5.23
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Fig. 4. Wind farm tracking results of the MPC for two dif-
ferent weights s. The power signal

�

i P
∗
i,k is obtained

with s∗ = 0 and
�

i P
†
i,k with s† = 103.

Note that here, the reference signal is not exceeding greedy
power, which makes it a less challenging tracking task
than presented in Section 5.2. In total, 5 simulations are
performed with a different value for s in each, but under
constant q = 104, r = 104 that are found after tuning the
controller. Table 1 gives the performance measures that
correspond to the different values of the weight s.

From Table 1 it can be concluded by looking at the
value

�

i dFi, that increasing the weight s results, on a
farm level, in a decrease in the axial force variation over
the complete simulation horizon. There are however local
increases (see for example turbine 6), which yet need to be
understood. Nevertheless, tracking is ensured in all cases
(see Fig. 4) and is not significantly changing according to
changes in the weight s.

5.4 Time Varying Atmospheric Conditions

In this section, simulation results are presented in which
the lateral flow velocity component ṽk across the complete
farm is perturbed as follows:

vk =







ṽk + 0.01ṽk, if k > 550 and k < 600,

ṽk + 0.01ṽk, if k > 800 and k < 850,

ṽk, otherwise.

(9)

The perturbation of ṽk is applied before time integration
of the Navier-Stokes equations in PALM and yields vk.
The latter is then used to compute the flow velocity com-
ponents ũk+1, ṽk+1, w̃k+1. The wind farm power reference
signal is given in (8) and equal controller parameters as
presented before are used.

In Fig. 5, the tracking results are depicted. It can be seen
that the wind farm power signal is tracking its reference
even under atmospheric flow perturbations. These atmo-
spheric changes are captured in the parameter-varying
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Fig. 5. Wind farm power and reference signal under
atmospheric flow perturbations.
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Fig. 6. Longitudinal flow field at k = 850 [s].

turbine models that are employed by the controller. Fig. 7,
the control signals. In the latter, one can observe that
the amplitude of the control signals is decreased after
perturbations are applied to the lateral flow velocity com-
ponent. This is due to the fact that the cross wind deflects
the wakes away from the downwind rotors (see Fig. 6).
As a consequence, the flow velocity components at these
downwind turbines are larger, and smaller control signals
are necessary to obtain the desired power.

6. CONCLUSIONS

In this paper, we formulated and implemented a con-
strained model predictive controller (MPC) in the high-
fidelity Parallelized Large-Eddy Simulation Model (PALM).
The MPC provides secondary frequency regulation and we
showed that it is interesting to include, beside the thrust
coefficient, also the yaw angles as control variables when
tracking a reference signal above greedy power. We showed
that, when properly chosen, different yaw settings can
increase the available power as defined in this paper. In the
MPC, the available power and wind farm power reference
are considered constant during each prediction horizon.
This makes our proposed closed-loop framework applicable
when there is no prior knowledge on the power reference
signal. On the other hand, the wind farm available power
depends, i.a., on the control settings of upwind turbines.
This dependency is not taken into account in the opti-
mization, but could be included by incorporating a wake
model in the MPC. Future work focusses on eliminating
the imposed distribution and instead, make the MPC
find a control signal distribution such that power tracking
is ensured and possible other performance measures are
optimized.

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

279



	 Sjoerd Boersma  et al. / IFAC PapersOnLine 51-20 (2018) 241–246	 245
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percentages as given in (6).

s � dF1 dF2 dF3 dF4 dF5 dF6

50 0.94 -4.38 -1.82 -2.26 1.89 -2.43 1.82
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Note that here, the reference signal is not exceeding greedy
power, which makes it a less challenging tracking task
than presented in Section 5.2. In total, 5 simulations are
performed with a different value for s in each, but under
constant q = 104, r = 104 that are found after tuning the
controller. Table 1 gives the performance measures that
correspond to the different values of the weight s.

From Table 1 it can be concluded by looking at the
value

�

i dFi, that increasing the weight s results, on a
farm level, in a decrease in the axial force variation over
the complete simulation horizon. There are however local
increases (see for example turbine 6), which yet need to be
understood. Nevertheless, tracking is ensured in all cases
(see Fig. 4) and is not significantly changing according to
changes in the weight s.

5.4 Time Varying Atmospheric Conditions

In this section, simulation results are presented in which
the lateral flow velocity component ṽk across the complete
farm is perturbed as follows:

vk =







ṽk + 0.01ṽk, if k > 550 and k < 600,

ṽk + 0.01ṽk, if k > 800 and k < 850,

ṽk, otherwise.

(9)

The perturbation of ṽk is applied before time integration
of the Navier-Stokes equations in PALM and yields vk.
The latter is then used to compute the flow velocity com-
ponents ũk+1, ṽk+1, w̃k+1. The wind farm power reference
signal is given in (8) and equal controller parameters as
presented before are used.

In Fig. 5, the tracking results are depicted. It can be seen
that the wind farm power signal is tracking its reference
even under atmospheric flow perturbations. These atmo-
spheric changes are captured in the parameter-varying
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turbine models that are employed by the controller. Fig. 7,
the control signals. In the latter, one can observe that
the amplitude of the control signals is decreased after
perturbations are applied to the lateral flow velocity com-
ponent. This is due to the fact that the cross wind deflects
the wakes away from the downwind rotors (see Fig. 6).
As a consequence, the flow velocity components at these
downwind turbines are larger, and smaller control signals
are necessary to obtain the desired power.

6. CONCLUSIONS

In this paper, we formulated and implemented a con-
strained model predictive controller (MPC) in the high-
fidelity Parallelized Large-Eddy Simulation Model (PALM).
The MPC provides secondary frequency regulation and we
showed that it is interesting to include, beside the thrust
coefficient, also the yaw angles as control variables when
tracking a reference signal above greedy power. We showed
that, when properly chosen, different yaw settings can
increase the available power as defined in this paper. In the
MPC, the available power and wind farm power reference
are considered constant during each prediction horizon.
This makes our proposed closed-loop framework applicable
when there is no prior knowledge on the power reference
signal. On the other hand, the wind farm available power
depends, i.a., on the control settings of upwind turbines.
This dependency is not taken into account in the opti-
mization, but could be included by incorporating a wake
model in the MPC. Future work focusses on eliminating
the imposed distribution and instead, make the MPC
find a control signal distribution such that power tracking
is ensured and possible other performance measures are
optimized.
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Fig. 7. Control signals under atmospheric flow perturbations. The arrow on the left indicates the wind direction.
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