
Synchronization Of Wireless Accelerometer
Sensors For Industrial Application

Swarna Narayanan

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft

Synchronization Of Wireless Accelerometer Sensors
For Industrial Application

by

Swarna Narayanan

in partial fulfillment of the requirements for the degree of

Master of Science
in Embedded Systems

at the Delft University of Technology,
to be defended publicly on Monday August 26, 2019 at 01:00 PM.

Student number: 4719905
Supervisor: Dr. MSc. Stoyan Nihtianov, TU Delft, ASML B.V
Thesis committee: Dr. MSc. Stoyan Nihtianov, TU Delft, ASML B.V

Dr. MSc. Qinwen Fan , TU Delft
Prof. Dr. Earl McCune, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

During this thesis I embarked on a steep learning curve. I would like to express my gratitude to my
supervisor Dr. Stoyan Nihtianov for giving me an opportunity to work on an interesting project at ASML
and for his invaluable guidance through out the thesis. I also thank my colleagues Mr. Alvaro Torres Di
Zeo and Mr. Reza Taherkhani for their insightful discussions and constructive feedback. Mr. Flaviano
Tateo from ASML has been very helpful in the testing process. My friends from Eindhoven and Delft
have been a pillar of strength and a constant motivation all along this journey. I am grateful to my
parents and sister for believing in me and always being there.

ந��

(Thank You)

Swarna Narayanan
Eindhoven, August 2019

iii

Abstract

Wireless sensor networks play a vital role in major technological developments. The success of such
networks depend on the quality and reliability of data acquisition. Despite a lot of research involving
network clock synchronization, the area of synchronous sampling has not been dealt in much detail.
This thesis aims at studying and implementing synchronization at the sensor level on wireless ac-
celerometer sensors. The designated application for this thesis involves machine condition monitoring
using accelerometer sensors that requires high synchronization accuracy between the samples. Two
approaches are presented to obtain synchronous sampling, namely: real-time and subsequent syn-
chronization. The sensor nodes designed with commercially-off-the-shelf components are used for the
implementation of the two methods. The embedded software was developed as a platform to realize
the proposed synchronous data acquisition techniques. The real-time synchronization uses a software
solution and provides an interrupt-based triggering to align the sampling instant of the sensors. An
external reliable clock source is required for the accelerometer to implement this technique. The signal
propagation delay were minimized by employing interrupts whenever possible. In subsequent syn-
chronization, the samples are collected asynchronously by the sensor nodes. Each sample from the
sensor is assigned a timestamp according to its local clock. As a post-process, the time shift between
the samples collected by the sensor nodes are estimated and realigned using cross-correlation, in-
terpolation and re-sampling. The subsequent synchronization technique can be used when real-time
network synchronization is not possible. The testing environment was designed to emulate the real
application. A mechanical shaker was used to provide controlled input signals to the sensors in order
to synchronously reconstruct the signals in time-domain.

v

Contents

List of Figures ix

List of Tables xi

Abbreviations and Acronyms xiii

1 Introduction 1
1.1 Objectives . 1
1.2 Contribution. 1
1.3 Thesis Organisation . 2

2 System Description 3
2.1 Overview . 3
2.2 Application and Requirements . 3
2.3 Related Work . 5
2.4 Hardware System: Sensor Node . 7

2.4.1 Accelerometer . 7
2.4.2 Memory . 7
2.4.3 Wireless Microcontroller with Radio. 8
2.4.4 Crystal Oscillator . 8
2.4.5 Battery . 8

2.5 Network Synchronization . 9
2.6 Accelerometer Sensor . 9

2.6.1 Operating Principle. 10
2.6.2 ADXL 355 MEMS Accelerometer . 11
2.6.3 Sensor Synchronization . 13

3 Synchronization Approach and Realization 17
3.1 Overview . 17
3.2 Embedded Firmware Architecture . 17

3.2.1 SPI Driver . 17
3.2.2 Sensor Driver . 19
3.2.3 Memory Driver . 19
3.2.4 Timing . 19
3.2.5 Other Modules . 19
3.2.6 Interrupt Handling and Interrupt Latency . 20

3.3 Data Acquisition . 20
3.4 Synchronous Sampling . 22
3.5 Approach . 24

3.5.1 Real-Time Synchronization . 24
3.5.2 Subsequent Synchronization . 27

4 Test Results and Analysis 29
4.1 Overview . 29
4.2 Testing Methodology and Specification . 29

4.2.1 Test Setup . 29
4.2.2 Reference Sensor . 29

vii

viii Contents

4.2.3 Preliminary testing and observations . 31
4.3 Synchronization Tests and Results . 34

4.3.1 Real-Time Synchronization . 36
4.3.2 Subsequent Synchronization . 37

5 Conclusion 43
5.1 Recommendations for Future Work . 43

Bibliography 45

A Sensor orientation 47

B General Purpose Timer clock generation :Listing 49

C Sensor data retrieval :Listing 51

D Clock frequency stability distribution 53

E Subsequent synchronization :Listing 57

List of Figures

2.1 Illustration of sensor network on the wafer handler . 4
2.2 Sampling time for two sensors at different locations 4
2.3 Clock Skew illustration [6] . 6
2.4 Hardware architecture of the sensor node . 7
2.5 MEMS accelerometer operating principle [19] . 10
2.6 ADXL355 functional block diagram [15] . 11
2.7 Signal flow via Σ − Δ ADC and Digital filter [21] . 12
2.8 Internal clock frequency distribution of ADXL355 [15]. 14
2.9 External clock and synchronization signal input to sensor 14

3.1 Sensor node Embedded Firmware Architecture (Highlighted blocks are the focus of this
thesis) . 18

3.2 SPI configuration for memory and sensor . 18
3.3 Interrupt mapping between the ADXL355 and microcontroller 20
3.4 Data conversion flow for the x-axis measurement . 21
3.5 Acceleration data plot for 30 seconds . 22
3.6 Real-time Synchronization approach in a network with 3 sensor nodes and a sink . . . 23
3.7 Subsequent synchronization approach in a network with three sensor nodes and a sink 23
3.8 Capture of the INT1 pin of two sensors triggered when a data sample is ready to be read 24
3.9 Eye pattern of the clock generated from general purpose time of the MCU 26
3.10 Eye pattern of the clock generated from function generator 26

4.1 Test Setup . 30
4.2 Sensor nodes and reference sensor on the shaker . 30
4.3 Comparison of reference sensor(pak) and Microelectromechanical systems (MEMS) sen-

sor for a decaying sine input . 31
4.4 Acceleration data for positive z-axis orientation with the constant fit line 32
4.5 10 Hz sine input to sensor for 40 seconds depicting sample corruption after every sync

pulse . 34
4.6 Propagation delay of external interrupt . 35
4.7 Interrupt propagation delay between three sensor nodes for sync pulse 35
4.8 Common clock and synchronization interrupt given to sensor nodes 36
4.9 Data Ready Interrupts synchronizing after the synchronization pulse 37
4.10 Synchronization tolerance for real-time synchronization 38
4.11 Capture of the scope showing the worst and best case error for Plot 4.10 38
4.12 Synchronization tolerance for a clock source with 40 ppm relative frequency error . . . 39
4.13 Synchronization tolerance for clock source with 50 ppm relative frequency error 39
4.14 Capture of the scope showing the worst and best case error for Plot 4.12 40
4.15 Capture of the scope showing the worst and best case error for Plot 4.13 40
4.16 Acceleration data plot for two sensors capturing the same input signal before subse-

quent synchronization . 41
4.17 Acceleration data plot for two sensors capturing the same input signal after subsequent

synchronization . 41

ix

x List of Figures

A.1 Accelerometer output with varying orientation to gravity 47

D.1 Frequency Variation of General Purpose Timer clock 53
D.2 Frequency Variation of General Purpose Timer clock 54
D.3 Frequency Variation of Function generator 1 . 54
D.4 Frequency Variation of Function generator 2 . 55
D.5 The Function generators used as clock and external synchronization interrupt sources . 56

List of Tables

2.1 Crystal oscillator comparison . 8
2.2 ADXL355 Parameters . 11
2.3 Range and sensitivity . 11

3.1 Frequency stability . 25

4.1 Constant fit value for the different sensor orientations 32
4.2 Sensor bias for the three axes . 32
4.3 Standard deviation of acceleration data for five test sets 32
4.4 Sampling rate comparison . 33
4.5 Delay in registering synchronization interrupt . 33
4.6 Interrupt propagation delay between 3 sensor nodes 34
4.7 Function generator frequency settings . 37

xi

Abbreviations and Acronyms

ADC Analog-to-digital converter. 7, 11, 12, 33

API Application programming interface. 19

BLE Bluetooth low energy. 8, 33

EEPROM Electrically erasable programmable random access memory. 7

FRAM Ferroelectric random access memory. 7, 8

I2C Inter-integrated circuit. 7

MCU Microcontroller unit. 9, 23, 25, 27

MEMS Microelectromechanical systems. ix, 9–11, 31

ODR Output data rate. 12, 13

PCB Printed circuit board. 7, 8

ppm Parts per million. 5, 8, 25, 36

PWM Pulse width modulation. 24

RMS Root mean square. 13

SPI Serial peripheral interface. 7, 12

WSN Wireless sensor network. 1, 3, 5

xiii

1
Introduction

A Wireless sensor network (WSN) is a collection of spatially distributed sensors that gather information
at different locations and transmits to the sink through wireless links. The applications of such networks
are vast and ever-growing, the major advantage being the ease with which they can be deployed and
removed whenever required. However, the greatest challenge lies in combining the measurements
and processing them from different sensor nodes to obtain a better interpretation of the environment.
Achieving this, requires the knowledge of precise measurement instances at all locations, which calls
for synchronization at the data acquisition phase. Despite a lot of research involving network clock
synchronization, the area of synchronous sampling has not been dealt in much detail.

This master’s thesis aims at studying, implementing and validating synchronization at the sensor
level on wireless accelerometer sensors. An accelerometer is an inertial sensor that measures the
vibrations of the platform on which it is placed. These accelerometer sensor nodes have been proposed
to diagnose the dynamics of wafer handlers located in the photo-lithographic machines of ASML. The
diagnosis involves performing experimental modal analysis of the data obtained. However, in order to
extract reliable modal information, the samples must be synchronized with very low tolerance for error.
Furthermore, a sufficiently high sampling rate is required to capture high frequency components.

1.1. Objectives
• To study the accelerometer sensor and present a method to achieve sensor-level synchronization.

• To develop embedded firmware as a platform to implement data acquisition and synchronous
sampling.

• To align the sampling instances of each sensor within a tolerant limit of 50 𝜇𝑠.

1.2. Contribution
• Embedded software to integrate various peripherals were written. A hardware abstraction layer
(HAL) were implemented using device drivers.

• Two approaches to synchronous sampling, namely the real-time and subsequent synchronization
techniques were proposed.

• The synchronization approaches were implemented and their accuracy were tested on the ac-
celerometer sensor nodes.

1

2 1. Introduction

1.3. Thesis Organisation
The thesis is organized into five chapters and is described as follows. Chapter 2 describes the system
with respect to its application and requirements. It also provides an account of the hardware system
under consideration. The operating principle and working of the accelerometer sensor is explained
in detail. A review of current research topics in line with this thesis is also presented. Chapter 3
discusses the embedded platform on which the synchronization approach is implemented. Important
aspects of the firmware is detailed. Synchronous sampling is elucidated along with the approach for
implementation. Chapter 4 illustrates the testing procedure followed. The results obtained are analysed
and presented. Chapter 5 concludes the thesis with recommendations for future work.

2
System Description

2.1. Overview
This chapter gives the necessary background information and related works regarding the project. The
application for which the project is to be developed is discussed briefly along with the requirements in
Section 2.2. Section 2.3 presents a review of current research work in line with this thesis. The chapter
also summarizes the ”state of the art” of wireless network and the sensor node used in Sections 2.4
and 2.6.2. The network synchronization for this WSN is summed up in Section 2.5.

2.2. Application and Requirements
The photo-lithography machines of ASML consist of several components and modules, of which the
wafer handler comprises the entry and exit stage. A wafer is a thin disc sliced from a silicon cylinder on
which, circuit patterns are imprinted. Robots inside the wafer handler transports the wafer for exposing
it to photo-lithographic imprinting and return the exposed wafers [1]. The issue with this stage is that
these robots often halt suddenly or move irrationally with high acceleration. Therefore, these robots
must be monitored to understand its system dynamics. This monitoring is required only at times when
diagnosis is necessary and involves acquiring signals from various points on the robots synchronously.
Hence, a standalone system that can be deployed when diagnosis is necessary is preferred. Moreover,
the wafer handler is already densely packed with its own components which does not leave enough
room to install cabled or built-in sensors. Therefore, a WSN standalone system is favored, since it
reduces the complexity and hassle of stopping the machine to lay cables or add built-in sensors. The
proposed WSN on the wafer handler is illustrated in Figure 2.1.

The wafer flow trajectory in the wafer handler stage is indicated with arrows. The pre-alignment
unit centers the wafer before the load robot fetches it and gives it to the next stage. The unload robot
transfers the wafer from the previous stage and gives it to discharge unit. The wafer then exits the
stage from here. The green cubes on the robots represent the sensor nodes in potential locations for
collecting acceleration signals. The sink node is placed near the wafer handler and sends periodic sig-
nals to the sensors to keep the clocks synchronized. The sink node receives the required acceleration
data and transfers it to the host PC for further off-line analysis. This architecture is proposed for the
atmospheric wafer handler. With suitable housing and improved design, the sensor network can also
be extended to the vacuum stage.

The approach to diagnosing the wafer handler is to collect signals from accelerometer sensors
placed at different locations on the robot. The required sampling rate at all sensor locations is 1000
samples per second. The sampling instants at each location must be synchronized to a maximum

3

4 2. System Description

S1

S2

S3

S4

S5

S6

Lo
ad

Rob
ot

Un
loa
d	

Ro
bo
t

Prealignment
Unit

Discharge
Unit

Wafer Flow

Entry

Exit

Other
Stages

Sink
Host PC

WAFER
HANDLER

Figure 2.1: Illustration of sensor network on the wafer handler

allowable tolerance of 55.55 micro seconds. This requirement is illustrated in figure 2.2. If 𝑡 and
𝑡 are the sampling times of the two sensors at to different locations, the difference between them
should be less than 55.55 𝜇𝑠.

Sensor 1

δt

Sensor 2

t11

t21

t12

t22

Figure 2.2: Sampling time for two sensors at different locations

The events required to initiate retrieval of the acceleration data collected for 30 seconds from sensors
are specified by the stakeholders at ASML. The first event occurs when the machine stops suddenly in
the middle of its operation. In this case, the data of interest will be the samples collected shortly before
this event was registered. The second event is when the robot’s movements exceed an acceleration

2.3. Related Work 5

threshold. For this scenario, the samples collected directly after the event registration are taken into
consideration. At a sampling frequency of 1KHz, the number of samples collected is 30,000 for a period
of 30 seconds. The time required for the synchronously collected samples to reach the host system
is not time-critical. Since the wireless sensor nodes is required to be placed at different locations on
the dense wafer handler, it should be small, lightweight and dissipate less heat while consuming power
from a battery. These requirements were taken into account when the sensor node was designed,
which is elaborated on Section 2.4. The collected data enables to perform experimental modal analysis
to understand the complex dynamics of the wafer handler robots. The strict synchronization constraint
on the sampling time is specified to avoid any distortion in the resulting mode shapes.

2.3. Related Work
Modal analysis is a popular method for diagnosing the dynamic performance of vehicles, machines and
structures in response to external excitation [2]. Natural frequencies, damping factors and vibration
mode shapes are the key modal parameters that are to be extracted from the system for further anal-
ysis. WSNs can be used to carry out vibration monitoring as they enable effective analysis after data
acquisition. In order to reconstruct mode shapes in modal analysis, a frequency domain decomposition
(FDD) technique is used. This method measures the variation in shape of the mode based on the
synchronicity of the sensor. If considerable error occurs in the time data at a single location, a relative
time shift is introduced to the data sampled at that point. This time shift when translated into the fre-
quency domain for modal analysis leads to an error in the resolution of the mode shape [3]. The cited
work shows the impact of time synchronization on mode shape reconstruction. Hence, synchronization
accuracy in the range of micro-seconds is required to achieve the desirable results for the application.

Time-synchronization in a WSN is a matter of interest in time-critical applications. In applications
that involve multi-sensor fusion, exact time stamping of data and clock synchronization is inevitable.
This allows for a meaningful understanding of the system. If the timestamps are incorrect, then the
estimation of the system behavior cannot be evaluated properly. The latencies introduced into the
system must be measured and compensated. The tolerance is usually in the range of a few seconds in
environmental monitoring and drops to tens of microseconds in more demanding vibration-based mon-
itoring [4]. For an application with a high sampling rate, even a small synchronization error between
sampling points causes major phase distortions [5]. A sensor network consists of several nodes that
transmit data to a master sink node. In a distributed sensor network, each node has its own internal
clock. The frequency stability of the oscillator varies from sensor to sensor which introduces clock skew
relative to each other [6]. The skew is affected by environmental factors such as temperature, humidity
and aging. The clock skew is greater than 1, if the physical clock is faster than the real clock. Similarly,
the clock skew is less than 1, if the physical clock is slower than the real clock. This is represented in
Figure 2.3.

The crux of synchronization is to align the sampling instances of the sensor nodes in a network. The
offset created due to the drifting of the clocks needs to be corrected at certain intervals. If we take an
example of a clock that guarantees a frequency stability of ±20 Parts per million (ppm) , the maximum
clock drift at the end of a one-second period is 40𝜇𝑠. A simpler synchronization problem would be to
order the occurrence of events by comparing the local clocks. A more intricate problem would be to
observe and record the drift and relative offset between the clocks. Reference broadcast synchroniza-
tion (RBS) [7] and the flooding time synchronization protocol (FTSP) [8] are algorithms that adopt drift
compensation techniques. Even though these protocols assure compensation of the software clock of
a node, accurate synchronous sampling is not guaranteed. Offset, drift and jitter are a few common
errors related to synchronization [9]. Along with these errors, the frequent trigger for synchronization
also affects the reconstruction of the acquired signal. The clock offset introduces a constant time shift
in the sampling instants. If the clock drift is considered to be constant over shorter periods of time, the

6 2. System Description

Figure 2.3: Clock Skew illustration [6]

acquired signal will phase away from the original signal proportional to the drift rate. The clock period
jitter introduces non-linear distortion to the signal but usually at a very insignificant level compared to
the other two factors.

The work of Funck and Gühmann, discusses two time-synchronization methods, namely, proactive
and reactive sampling. Proactive synchronized sampling makes use of a priori time synchronization,
whereas reactive sampling acquires samples independently from their local clocks asynchronously.
These samples may not be sampled at the same instant across all nodes. This requires interpolation
and re-sampling at individual channels for synchronous output. A hybrid approach also exists, in which
the clocks synchronize to a master clock and a posteriori synchronization is performed on the obtained
timestamps. The post-processing synchronization is also called timescale transformation, wherein, the
local timestamp of the sample at one sensor is mapped onto the local time of another sensor node
[9]. However, this approach adds communication and computational overhead since, the timestamp
of each sensor node must be transmitted along with the data.

According to Feng [11], a delayed measurement start-time, sampling frequency instability and sam-
pling interval jitter between sensor nodes are also key sources that lead to non-synchronous sampling in
sensor networks, apart from clock synchronization error. Reconstruction of signals in the time-domain
being a computationally complex task, is replaced by using a frequency-domain correction approach to
recover the true spectral density of the asynchronous samples in this work [11]. The power spectral
density is obtained using fast Fourier transform (FFT) method. The corrected spectral density and
correlation functions are then used in modal analysis algorithms.

The software for the sensor nodes must be compact and efficient due to the lack of room for
extensive computational power and memory on the microcontrollers. A modular design without much
inter-dependency would enable to easily extend and improve the application. This requires the need
for a flexible software architecture that is broken down into different modules for each function [12].
Efficient interrupt handling in an embedded system is important to avoid latencies and power overhead
[13].

2.4. Hardware System: Sensor Node 7

ADXL355	
Accelerometer

FRAM
Memory

Microcontroller	
Unit

Battery

BLE	
Radio

Crystal	
OSC

Figure 2.4: Hardware architecture of the sensor node

2.4. Hardware System: Sensor Node
The sensor node consists of various commercially off the shelf components based on the requirements
of the application. The Printed circuit board (PCB) with the sensor, memory, microcontroller, radio and
battery were already designed in the work of Zeo. The hardware architecture of the node is represented
in Figure 2.4. The dimensions of the board are 27 mm x 24 mm. A brief description of each component
in the sensor node is described in the following sub-sections. Section 2.4.4 on the crystal oscillator is
the new addition to the already existing sensor node layout.

2.4.1. Accelerometer
The accelerometer ADXL355 from Analog Devices [15] was suggested for this research project by the
stakeholders at ASML. This is a tri-axial MEMS based accelerometer with digital output. It also has
an integrated temperature sensor. This device can be used as an inertial measurement unit (IMU)
in stabilization systems, structural health monitoring, tilt sensing, robotics and condition monitoring
applications. Together with a small form factor and low power consumption, this device is ideal for
implementation in sensor networks. The ADXL355 includes three high resolution Σ−Δ Analog-to-digital
converters (ADCs) to give digital output that is insensitive to the fluctuations in 1.8V supply voltage.
Filters are included before and after these ADCs to provide accurate output. The sensing elements
for the three axes have separate signal paths to reduce the offset noise and drift. The range, output
data rates and filter corner frequencies are user-programmable via register access. The accelerometer
has provision for a communication interface with the host via Serial peripheral interface (SPI) or Inter-
integrated circuit (I2C) protocols. More information on the accelerometer can be found in Section
2.6.2.

2.4.2. Memory
The memory used here is a Ferroelectric random access memory (FRAM), which is nonvolatile thereby
eliminating complexities, overhead and bus delays as opposed to Electrically erasable programmable
random access memory (EEPROM). The FRAM with part name CY15B104Q from Cypress [16] was
selected based on its promising features. The non-volatile data storage is combined with the high

8 2. System Description

RAM performance. Since the data becomes non-volatile as soon as it is written, there is no data loss
even during power disruption. The FRAM uses a mere 300𝜇𝐴 active current and 100𝜇𝐴 standby current
owing to low power consumption. In addition, fast read/write cycles, high endurance and a guaranteed
data retention period of 151 years is also offered. It supports two SPI modes with a speed of up to
40MHz.

2.4.3. Wireless Microcontroller with Radio
Bluetooth low energy (BLE) wireless communication standard was selected based on its low power
consumption and output current while it also offers considerably decent data rate options for the
application. The peak current generated must be low since the system is operated by a battery with
low current handling capacity. The link quality and throughput can be improved by making use of the
modulation schemes of BLE. The latest microcontrollers also offer built-in radio module. The CC2640R2F
microcontroller with a BLE radio from Texas Instruments [17], was chosen since it offers both Cortex-
M3 and Cortex-M0 enabling higher processing capability while keeping the transmission power and
current consumption at a minimum of 5 dBm and 6.1 mA respectively.

2.4.4. Crystal Oscillator
The sensor requires an oscillator with a stable frequency of 1.024 MHz. A quartz crystal based oscillator
is known to provide greater frequency stability compared to a simple LC or RC oscillator. The frequency
stability is characterized by its ppm value and can be expressed as:

𝑝𝑝𝑚 = Δ𝑓
𝐹 (2.1)

where 𝐹 is the center frequency and Δ𝑓 is the change in frequency over varying temperature and time.
There are different types of crystal oscillators such as simple crystal oscillator (XO), temperature com-
pensated oscillator (TCXO), Oven controlled oscillator (OCXO) and voltage controlled oscillator. The
current consumption of crystal oscillators is usually in the range of milli amperes. A voltage supply of
3.3V is provided by the battery source. The form factor of the oscillator is also an important factor for
our application. Simple XOs are usually smaller than the other oscillators while also promising a toler-
able frequency stability. For this application, a simple crystal oscillator could fulfill its purpose. While
choosing a crystal oscillator, there are a number of features to be looked into such as the frequency
range, tolerance over temperature and ageing, operating voltage and form factor. A comparison of the
available crystal oscillators that are suitable for our application are presented in Table 2.1.

Table 2.1: Crystal oscillator comparison

Part Number Frequency Range(MHz) Operating Voltage(V) Frequency Tolerance(ppm) Dimensions
Si510/511 0.1 to 250 3.3, 2.5, or 1.8 ±30 2.5 × 3.2 mm
GXO-3201L 0.75 to 50 2.5 - 3.3 ±25 2.5 × 2.0 mm
IDT XL 0.75 to 1350 2.5 or 3.3 ±20 3.2 × 2.5 mm

2.4.5. Battery
The requirements of the application specify a battery run time of 48 hours. There is also a constraint
on the maximum power dissipation of 10 mW. Hence these factors were taken into account when
choosing the battery. The battery must be able to handle the current consumed by the components of
the sensor system. One such battery that satisfies most of the criteria is the 𝐿𝑖−𝑆𝑂𝐶𝑙 based LTC-5PN.
This battery also offers good voltage stability with a small form factor. The battery is attached onto a
separate PCB mounted on the board with all the other components. This board is replaced after the
battery capacity has been depleted.

2.5. Network Synchronization 9

2.5. Network Synchronization
The three main objectives of the wireless communication between the sensor and sink nodes are to
enable clock synchronization, an event-triggered interrupt and data retrieval. The data retrieval of the
samples does not have a strict time constraint, whereas the clock synchronization between the nodes
is pivotal for the wireless network. The communication protocol aims at reducing the delay in commu-
nicating the start of an event across nodes by providing a common notion of time between the network
clocks. The different states of the system are initialization, idle, measurement and data collection.

The channel access for the network is provided using Time Division Multiple Access (TDMA) mech-
anism. The time frame is divided into a number of slots depending on the number of sensor nodes
present at the system startup. Each sensor node is assigned a particular slot number to reply to the
beacons sent by the sink. This enables the sink to keep track of the sensor nodes in the network.
Since the network is to be placed inside the Wafer handler with a metallic closure, the effects of exter-
nal network interference, multi path fading and electromagnetic interference were taken into account
when designing the communication protocol.

The synchronization of sensor nodes must remain within certain limits in spite of the aforemen-
tioned factors. In the network, we consider the sink node to be the master clock which transmits the
beacon periodically to all sensor nodes. Upon reception of the beacon, all the clocks of the sensor
nodes synchronize with the master clock. This is done by estimating the local clock offset from that of
the sink’s clock. The interval in which the sink sends a beacon is calculated by considering the tolerance
of the Microcontroller unit (MCU) clock crystal oscillator. The data sheet specifies the tolerance of the
MCU crystal and real time clock crystal to be 20ppm. For a required accuracy of 55.55𝜇𝑠, this interval
is 1.389 seconds. In the initialization and idle states, the network is kept synchronized by periodic
transmission of beacons and reception of beacon replies. This is also useful in keeping a check on lost
connection between the nodes and sink.

The user can start the measurement after the initialization. There can be two events that trigger
data collection, namely, the machine stopping suddenly and an overshoot of the acceleration thresh-
old. These events are communicated to the network via the beacons from the sink nodes. The data
collection stops once the machine stop event is identified and will continue to sample for the next 30
seconds after the acceleration threshold overshoot event is registered at all sensor nodes through the
sink beacons. Data retrieval starts when the required data is placed in the memory with time stamps.
The data acquisition process is described in detail in Section 3.3. The previous work concludes with an
operational Bluetooth low energy network with a synchronization accuracy of 4𝜇𝑠 between the sensor
nodes. This is achieved by sending periodic beacons every second from the sink to sensor nodes with
the timestamp of the sink. The MCU on sensor node calculates the drift and compensates for the offset.
The power consumption of the components of the system were also examined in different modes of
operation.

2.6. Accelerometer Sensor
An accelerometer can be represented as a mass-damper-spring system. The most common accelerom-
eters are either based on piezoelectric effect or capacitance. Other sensing techniques include electron
tunneling, resonance, optical and thermal based sensors [18]. Piezoelectric accelerometers depend on
the stress generated by the force on the micro-crystal structures, thereby generating a voltage. Ca-
pacitance based accelerometers sense the variation in capacitance due to the movement of the plates.
The latter is used in our project and the following subsections elaborate more on it. They are called
MEMS accelerometers.

10 2. System Description

Figure 2.5: MEMS accelerometer operating principle [19]

2.6.1. Operating Principle
Micro-electromechanical systems (MEMS) are components manufactured using micro-fabrication tech-
nique which contain small mechanical parts such as membranes or cantilevers. MEMS are mostly used
for miniaturizing devices to adapt to space-constrained applications. They are also more energy effi-
cient than other types of accelerometers. MEMS are directly integrated with the electronics on a silicon
chip which eases the process of system integration.

As mentioned above, MEMS accelerometers are based on change of capacitance due to the distur-
bance of micro-mechanical structures within the sensor. For a parallel plate capacitor,:

𝐶 = 𝜖 𝜖𝐴𝑑 = 𝜖
1
𝑑 , (2.2)

where 𝜖 is the permittivity constant of the material, 𝐴 is the area of electrodes, and 𝑑 is the distance
between the plates. The capacitance varies with respect to each of these parameters which is the
main principle behind MEMS sensing. A proof mass suspended through a mechanical structure moves
between the movable and stationary plates of the capacitor as seen in Figure 2.5. The proof mass
shifts down when the acceleration vector points upwards [19]. This shifts the plates thereby inducing
a change in capacitance. The displacement of the proof mass and its output voltage are calculated
with the measured capacitance difference due to their linear proportionality. The proof mass weighs
approximately 0.1𝜇𝑔 [20]. To obtain accelerations in three axes, sets of capacitors are placed in
perpendicular directions. The high stiffness of the springs and the lightweight proof mass contributes
to the high resonant frequency of MEMS sensors.

The output of the MEMS accelerometer can either be analog or digital. Analog accelerometers pro-
vide a continuous output proportional to acceleration. Its digital counterpart makes use of pulse width
modulation, wherein, the width of the pulse at high voltage is proportional to the acceleration. The
range of the accelerometers can be from ±1.5𝑔 to ±16𝑔. For our application of condition monitoring
which involves sudden stops and starts, we require a range around ±2𝑔. For a given input to the
accelerometer, the magnitude of the response signifies its sensitivity. The higher the sensitivity, the
better the accuracy of the acceleration output is. The sensitivity and noise of an accelerometer impact
its resolution. The operation and performance of the ADXL355 sensor under consideration is discussed
in the following sub-sections.

2.6. Accelerometer Sensor 11

Figure 2.6: ADXL355 functional block diagram [15]

2.6.2. ADXL 355 MEMS Accelerometer
The ADXL355 presents acceleration measurement along three perpendicular axes, which was briefly
introduced in Section 2.4.1. The important features of the sensor is shown in Table 2.2. The accelerom-
eter provides three user-selectable ranges with the respective sensitivities as indicated in Table 2.3. It
weighs 260 milli grams and measures of 6 mm x 6 mm x 2.1 mm in dimension. The ADXL355 also
has a temperature sensor, but this feature will not be used for the application under consideration. A
functional block diagram of the sensor is illustrated in Figure 2.6.

Table 2.2: ADXL355 Parameters

Parameter Description Min Typical Max Unit
𝐹 Sampling frequency 3.9 4000 Hz
𝑁.𝐷 Noise density 25 𝜇𝑔√𝐻𝑧
𝑉 Power supply 2.25 2.5 3.6 V
𝑇 Temperature range -40 +125 °𝐶
𝐼 Current consumption during measurement 200 𝜇𝐴
𝐼 Current consumption at stand by 21 𝜇𝐴

There are three sets of MEMS sensing elements that follow separate differential signal trajectories
to reduce noise and drift. The ADXL355 being a digital variant of a MEMS accelerometer, it includes
three ADCs to provide high resolution 20-bit digital output per axis. The analog anti-aliasing filter,
filters the X, Y and Z axis analog outputs before entering the high resolution ADCs. A successive ap-
proximation register(SAR) ADC is used by the temperature sensor to provide 12-bit resolution digital
output. The Σ − Δ ADC used for acceleration sensing has an oversampling architecture. Oversampling
reduces aliasing and quantization noise. Noise shaping is an additional feature of the Σ − Δ modulator

Table 2.3: Range and sensitivity

Range(𝑔) Typical Sensitivity(𝐿𝑆𝐵/𝑔) Scale factor (𝜇𝑔/𝐿𝑆𝐵)
±2.048 256,000 3.9
±4.096 128,000 7.8
±8.192 64,000 15.6

12 2. System Description

Figure 2.7: Signal flow via ADC and Digital filter [21]

that shifts the quantization noise of the ADC into high frequency while a low pass filter removes this
noise [21].

A flow diagram of a typical Σ−Δ ADC is given in Figure 2.7. The ADC operation runs on an external
or internal clock source and is divided into the modulator frequency. This is the rate at which the digital
filter receives data from the modulator. The digital filter is a band-pass filter, the high and low-pass
poles of which can be accessed and modified via filter settings register. Through the second stage
of low-pass decimation filter, the desired output data rate between 3.9 Hz to 4 KHz is obtained. This
decimation happens inside the digital filter. There is a delay introduced with the decimation filter setting
and attenuation occurs at a corner frequency of Output data rate (ODR)/4. For an ODR setting of 1KHz
and corner frequency at 250 Hz, the group delay is 1.78 ms. If an interpolation filter is also enabled,
then for these settings the total delay adds up to 2.75 ms. The total group delay is measured from the
analog input to the ADC until the acceleration data is ready to be read at the interface. The resonant
frequency of this model is 2.4 KHz.

The sensor has provision for data transfer via SPI (Serial Peripheral Interface) or I2C (Inter-integrated
circuits) protocol. I2C is implemented for low-speed peripherals for on-chip signal transfer. It has a
master-slave architecture with multiple masters and slaves. Each slave device is identified by a unique
address. The devices are connected to the masters using only two lines which are data line and a clock
line. SPIs are widely used in embedded systems for short distance communication. This allows any
number of slave devices for a single master to be selected through the slave select (SS) line which is a
active low signal. Whenever there is data transferred between a slave and a master,this line is set low
to indicate that the bus is occupied by a particular slave device. There are separate data lines and clock
lines to enable full-duplex transfer while I2C offers only a half-duplex. SPIs offer speed over a broader
range which is much faster than I2C. Hence SPI is preferred for most sensor network applications where
the data transfer speed cannot be traded-off with the amount of data. The SPI clock speed can range
from 100 KHz to 10 MHz with the clock polarity and clock phase being 0.

The sensor data is formatted in two’s complement with the most significant bit first. The newest
data from the three axes are stored in the respective data registers. Whenever there is a new set of

2.6. Accelerometer Sensor 13

acceleration data available, the DATA_RDY bit of the STATUS register is set. The data acquisition from
the registers is described along with software description in Section 3.3.

Performance
Even when the accelerometer is still, there is an offset in the average value of the signal. This is the
sensor bias which is usually specified in the data sheet. The smallest acceleration that can be detected
by the sensor is its resolution. However, the resolution is limited by noise. For a digital accelerometer,
the resolution(R) is given by:

𝑅 = 𝑅𝑎𝑛𝑔𝑒
2 (2.3)

For our application we use the ±2.048 g range with the 20 bit ADC. From the equation 2.3, the reso-
lution for these parameters gives 3.906 𝜇𝑔.

Noise is any deviation from the actual signal. The power spectral density specifies the noise level of
the sensor above which the signals can be measured. Usually, additive white Gaussian noise (AWGN) is
assumed in which there is equal distribution of noise in the frequency domain and a normal distribution
in the time domain. The Root mean square (RMS) and peak-to-peak noise are deduced from the power
spectral density (PSD) plot with a 6𝜎 approximation. The main sources of noise in MEMS sensors are
thermal noise due to mechanical vibrations and 1/𝑓 electronic noise and quantization noise from signal
conditioning. The mechanical noise arises due to Brownian motion of gas molecules. A trade-off exists
between bandwidth and noise since noise is distributed across all frequencies. The RMS noise is given
by:

𝑛 = 𝜌√1.6𝐵 (2.4)

where 𝜌 is the noise density of the sensor given as 25𝜇𝑔/√𝐻𝑧, and B is the cut off frequency set in
the filter settings register.

For an ODR setting of 1 KHz, the LPF (low pass filter) frequency is 250 Hz. The factor 1.6 represents
the quality of the filter. This is the estimated value for a single-pole low pass filter. Applying these
values to Equation 2.4, we calculate the RMS noise to be 500 𝜇𝑔. The ADC quantization noise exhibits
a Gaussian nature. The peak-to-peak noise is calculated as 6.6 ×RMS noise spanning the 99.9% of
the signal [22]. In this case it is 3.3mg. Since the peak-to-peak noise is significantly larger than the
resolution, there is a high limiting factor on the acceleration measurement. The measurements are
guaranteed to be stable over a large temperature range, making the sensor ideal for applications that
demand temporal and temperature stability.

2.6.3. Sensor Synchronization
The accelerometer, in normal operation, employs the internal clock to run the functional components
of the sensor. The frequency of internal clock of the sensor is 4 KHz which is multiplied to provide the
required 1.024 MHz. The frequency variation of this clock is as given in Figure 2.8. The clocks have a
frequency variation of 20% from the center frequency.

The signal representing the output data rate (ODR) is the alignment of the output of the decimation
filter. When the sensor operates with its internal clock, the data is retrieved asynchronously by the
processor. The 20% drift of the clock also shifts the sampling instant temporally leading to output
signal distortion. However, if there is a need for absolute synchronization with the external sources,
this internal clock can be over-ridden by external synchronization. The ADXL355 sensor offers two
possibilities for synchronizing the sensors externally.

External Synchronization with Interpolation
In external synchronization with interpolation method, an external signal corresponding to the required
output data rate is fed to the sensor. The time resolution of the interpolation filter is 64 times the

14 2. System Description

Figure 2.8: Internal clock frequency distribution of ADXL355 [15].

sampling frequency. This forces the sample to be ready at the desired rate which is asynchronous to
the sensor’s clock. Nevertheless, this introduces an increase in group delay and attenuation. The delay
between the sync signal input and the data ready output for 1 KHz ODR is 14 internal oscillator cycles
which is close to 3.5 ms. A minimum of four samples per second could be lost in this technique.

Full External Synchronization
The other option is to provide full synchronization with an external master clock and a synchronization
signal. This method does not include an interpolation filter thus already eliminating the oscillator cycle
delay. The external clock that is provided over-rides the internal oscillator to become the master clock
for the sensor. All the functional blocks of the sensor now runs with this external clock as the master.
Additionally, a synchronization signal is required to align the output of the decimation filter with a
particular clock edge. This technique is useful in sensor networks that require data to be sampled
synchronously at all sensor locations. The external signals required to the sensor are illustrated in
Figure 2.9. When the sensor is to be used in this mode, the following conditions must be met:

External
Clock

External
Sync

INT2

DRDY

ADXL
355

Figure 2.9: External clock and synchronization signal input to sensor

• The external master clock must be 1.024 MHz with a low frequency tolerance

• An external synchronization signal must be provided to align the internal output data rate filters

2.6. Accelerometer Sensor 15

• The width of the external synchronization pulse must last for at least four times the external clock
period.

If the external synchronization signal is missing, the sensor runs on its own synchronization. The
external clock is given to the INT2 pin (pin 13) and the synchronization signal is supplied to the DRDY
pin (pin 14) of the sensor. The samples that are collected before the synchronization signal arrives, is
discarded. This signal realigns the ODR and the corresponding filter in order to achieve synchronous
sampling. As a consequence, two subsequent samples are corrupted which is investigated in Section
4.2.3. The implementation of this mode is described further in Section 3.5.

3
Synchronization Approach and

Realization

3.1. Overview
This chapter discusses the approach followed for the synchronization at the sensor level. The firmware
architecture for the sensor node is described in the following section 3.2. Data acquisition from the
accelerometer and its processing is briefly explained in Section 3.3. The two techniques that can be
used to obtain synchronous sampling are presented in Section 3.4. The implementation of the two
approaches are detailed in Section 3.5.

3.2. Embedded Firmware Architecture
To properly understand the hardware, it is important to determine the hardware dependency of an em-
bedded system. The different hardware peripherals involved in this system were discussed in Section
2.4. In order to access and control the various hardware resources such as timers, memory, sensors,
serial communication etc., device drivers which comprise the so called hardware abstraction layer (HAL)
are required to be developed [23]. The device drivers act as an interface between the hardware and
the embedded software. They are usually modelled around the peripherals. In this system, a separate
device driver is implemented for each of the peripherals such as memory, sensor and SPI to facilitate
data transfer.

The sensor node software makes use of the Texas Instruments driver library functions for register
access of the micro-controller rather than using the real-time operating system (RTOS) in order to
achieve micro-second level network synchronization. The software architecture of the system is given
in Figure 3.1. While the grey-colored blocks were already implemented in the previous project [14],
the communication protocol and coordinator blocks have been left for future work. The blue-colored
blocks were modified or partially developed. The white-colored blocks were entirely implemented for
this thesis. The red-colored blocks represent the peripherals of the BLE microcontroller unit. A brief
description of the software drivers that were implemented are described in the following sub-sections.

3.2.1. SPI Driver
The serial peripheral interface (SPI) handles the communication between the host processor and other
peripherals. SPI is used in our system since we have the requirement for high data rate during data
transfer between peripherals. The SPI bus lines are routed using general purpose input/output (GPIO)

17

18 3. Synchronization Approach and Realization

SPI

RTC

RF CORE

GPIO

Sensor
Driver

SPI
Driver

Memory
Driver

Measurement Co-ordinator Communication
protocol

Timing Radio
Driver

CPE
Controller

Figure 3.1: Sensor node Embedded Firmware Architecture (Highlighted blocks are the focus of this thesis)

pins for SPI operation. In Figure 3.2, the SPI interface between the sensor and memory functioning
as slave devices for the single MCU master is illustrated. The SPI operates with only four wires, thus
making it an easier choice in most embedded system development. The serial clock (SCLK) drives the
data synchronization between the master and slave devices. The master device provides the SCLK.
The throughput of the serial data depends on the serial clock speed. The clock speed used here is 2
MHz. The data lines are the master-out slave-in (MOSI) and master-in slave-out (MISO) which enables
full duplex communication. The slave-select or the chip-select (𝐶𝑆) line is an active low signal.

Since our system has two slave devices, there are two 𝐶𝑆 pins connected via he GPIO to the master
MCU. The corresponding 𝐶𝑆 line is pulled down or asserted according to the slave that has access to
the SPI bus for data transfer. Only one slave can have access to the SPI bus at a time. The master has
control over the slave’s access to the SPI bus. The data is sent as bytes with the most significant bit
first, over the SPI bus lines for each transaction. The 𝐶𝑆 line is de-asserted after the slave has finished
transferring its data. At start-up, the SPI bus is initialized by mapping the GPIOs to the SPI signals.
The SPI in the MCU is configured in the master mode and specifies the clock polarity and phase as low
(mode 0). A few dedicated application program interfaces (APIs) were written to carry out basic SPI
functions such as Spi_Send, Spi_Receive, Spi_FlushFifo and Spi_Transaction.

SCLK
MOSI

MISO

CS_MEM

CS_SEN

SCLK
MOSI

MISO

CS_SEN

SCLK
MOSI

MISO

CS_MEM

M
C
U

M
AS

TE
R

SEN
SO

R
SLAVE

M
EM

O
RY

SLAVE

Figure 3.2: SPI configuration for memory and sensor

3.2. Embedded Firmware Architecture 19

3.2.2. Sensor Driver
The ADXL355 sensor uses the SPI bus to communicate with the system. The sensor, being one of the
SPI slaves, requires an interface between the MCU and the sensor for data transfer, register access and
control. The sensor driver implements these functionalities in its respective Application programming
interfaces (APIs). The internal registers of the sensor offers controlled access in order to program, mod-
ify or read certain parameters pertaining to its operation. The reading and writing of these registers
are facilitated through the APIs Sen_Read_Register and Sen_Write_Register respectively by passing
the required parameters of register address, destination address to store the read value and value to
be written. The data sheet [15] provides a complete list of control registers with its corresponding
addresses.

The GPIO pin for the SPI chip select is specified in a macro. The Sen_Init API configures the registers
required before we start the measurement. This includes resetting the sensor, setting the output data
rate (ODR), specifying the acceleration output range in gravitational(g) unit and selecting the mode of
synchronization. The sensor is configured to sample at a frequency of 1 KHz with a measurement range
of ±2𝑔. The power control register is then set to measurement mode to start the normal operation of
the sensor. The necessary sensor interrupts are also mapped to the GPIO of the MCU before starting
to read the data. The most important API of this driver is the Sen_Read_Accelerometer, which is
responsible for reading the STATUS register and the three dedicated data registers for each of the x, y
and z axes. The STATUS register is a read-only register whose DATA_RDY bit is set, when a complete
x, y and z-axis measurement is made and the results can be read out. The DATA_RDY bit clears on a
read of the STATUS register. The acceleration data is left justified and formatted in two’s complement.
Each axis measurement is 20 bits long and stored in three registers of 8 bits each. The combined data
is returned as a data array buffer from this function.

3.2.3. Memory Driver
The memory peripheral used in the system also makes use of the SPI for data transfer. The FRAM from
Cypress being a 4 Mbit dense memory, requires a three-byte addressing during an SPI transaction. The
FRAM accesses the SPI bus when the 𝐶𝑆_𝑀𝐸𝑀 is asserted. There are six opcodes that provide control
over the FRAM device such as write enable/disable, write/read data and write/read status register. Each
read/write cycle has an opcode, 3-byte address and data specified in that order on an SPI bus with
an active low 𝐶𝑆 line as an 8-bit data transfer. The APIs that aid the operations are implemented as
part of the memory driver. They are Mem_Write, Mem_Read and Mem_ReadStatus. The first address
location of the memory array is allocated to the memory flag. The flag is set when the memory is filled
with 30 seconds worth of data, and once the memory is read out, this flag is cleared.

3.2.4. Timing
The software timers that generate events for the timeouts and periods were written with the real
time clock (RTC) as its base. The timeouts and periods were kept track of by counting system ticks.
Each system tick is approximately 1 milli second. The modules were used to perform certain start-
up functions such as initializing the real time clock, synchronizing the RTC with the radio timer (RAT)
during wake up and enabling channel 2 of the RTC to generate periodic signal. The dynamic functions
of the timing module are meant to initialize and update the periods and timeouts during run-time. For
example, a timeout is enabled to detect the synchronization pulse within a time interval.

3.2.5. Other Modules
The command packet engine (CPE) controller enables the communication between the main processor
and the RF(radio frequency) core by submitting instructions via register access. The radio driver makes
use of the CPE controller to send instructions to the RF core to perform operations such as turning on/off
radio, transmitting/receiving packets, setting data rate, transmission power and frequency channel.

20 3. Synchronization Approach and Realization

The 4 MHz radio timer in the RF core schedules these instructions. A partial development of the
communication protocol module was used to test the reliability of network synchronization and link
quality between the sensor and sink nodes. The yet to be implemented coordinator module can act
as a manager by sending commands to the memory and sensor drivers via the measurement block,
handle power management, sleep wake-up cycles of the microcontroller, among others.

3.2.6. Interrupt Handling and Interrupt Latency
An interrupt is a signal from an external hardware or internal software event to the processor to stop
the current flow of instructions and service the triggered events. In accessing the above described
drivers, interrupts have been used to avoid missing out on a time-critical occurrence of an event. The
interrupt handling properties affect the data acquisition process greatly. Interrupt latency is defined
as the number of clock cycles that a processor takes to respond to an interrupt event from the time
of its arrival. The Cortex-M3 processor used in our system takes 12 cycles from the assertion of the
interrupt request up to the execution of first instruction in the handler. The processor offers hardware-
supported entry and exit of the interrupts. The two main interrupts used in the architecture are for
the synchronization pulse to the sensor and the data-ready signals generated from the ADC of sensor.
The interrupt mapping between the sensor and the microcontroller is as shown in Figure 3.3.

INT1

DRDY

Senor
DataReady

Sync
Pulse

AD
XL
35
5

Se
ns
or

M
CU

Figure 3.3: Interrupt mapping between the ADXL355 and microcontroller

The INT1 (pin 12) and DRDY (pin14) of the ADXL355 sensor are mapped to the two GPIO pins of
the microcontroller. The Sensor Data-Ready GPIO pin is mapped to receive the interrupt from INT1 pin.
Whenever the synchronization pulse is to be fed to the sensor, the DRDY pin receives it from the Sync
Pulse GPIO pin. Since the interrupt service routines perform critical tasks, they must be kept short to
reduce any latency that they may introduce to the flow of software control.

3.3. Data Acquisition
As the name suggests, data acquisition is the process of acquiring and storing measurement data for
further analysis. Retrieval of data can be continuous, event-driven or on-demand. The sink generates
the on-demand data transmission. For continuous retrieval, the data is sent periodically. In an event-
driven query, the data transmission is triggered only in the case of an event. Obtaining a discrete signal
in equal intervals from a continuous process is called sampling. This interval is termed as the sampling
rate of the signal. The sampling rate is determined using the Nyquist theorem, which states that

A continuous signal 𝑥(𝑡) can be uniquely identified by discrete samples 𝑥[𝑛] taken at an
interval of 1/𝑓 seconds, if the sampling frequency 𝑓 is at least twice the highest frequency
component of the signal.

The Nyquist frequency is half of the sampling frequency 𝑓 . The above theorem holds true if the Fourier
transform of the signal at frequencies greater than the Nyquist frequency is zero.

The data originating from the ADXL355 sensor cannot be directly used for modal analysis. The data
must be obtained in units of gravity (g). The sensor outputs the acceleration as a 20bit ADC stored

3.3. Data Acquisition 21

in three data registers per axis. The signal flow from the analog sensor to ADC output is described in
Section 2.6.2. As an example, Figure 3.4 shows the steps followed to convert a 20 bit ADC into an
acceleration value for the x-axis. The corresponding code snippet used is given in Appendix C.

x19 - x12 x11 - x4 x3 - x0

Bit Shifting
XDATA1>>4; XDATA2<<4; XDATA3<<12

XDATA1XDATA3 XDATA2

x19 - x0

078151623 4

XDATA * scale factor

Decimal
Conversion

Figure 3.4: Data conversion flow for the x-axis measurement

Since the most significant bit of the data is first available at the ADC, the registers are read in the
order of XDATA3, XDATA2 and XDATA1. The bits in the registers have to be shifted and combined to
form a 20-bit value for each axis. The first 4 bits of the XDATA1 register are reserved and do not contain
required data bits. Hence they are discarded when combining. The combined value is converted to
decimal using the equation 3.1.

𝑋𝐷𝐴𝑇𝐴 = −𝑥 ∗ 2 +∑𝑎 2 (3.1)

where n=20 bits of the number x. The combined XDATA is then multiplied by the scale factor, which
corresponds to the range setting for the accelerometer as presented in Table 2.3. The resulting acceler-
ation value is in units of g. The data is now ready for further analysis in the frequency or time domain.
A simple orientation test was done to ensure the correctness of the data as depicted in Appendix A.
Figure 3.5 shows the acceleration data plot for a 30 second period. The data was obtained at a sam-
pling rate of 1 KHz with a ±2𝑔 range. The sensor was kept on a fairly flat surface in a temperature
controlled clean-room with the z-axis pointing upwards (orientation in the green box in figure A.1).
Hence the acceleration value is approximately 0𝑔 along the x and y axes, and 1𝑔 along the z-axis.
The slight offset from their ideal values are due to the sensor bias which is briefly discussed in section
4.2.3.

The data is repeatedly read from the internal registers of the x, y and z axes. The memory module
stores the samples until the data are retrieved externally. From the specifications of the application,

22 3. Synchronization Approach and Realization

Figure 3.5: Acceleration data plot for 30 seconds

30 seconds of measured sensor data is made available for further processing. The non-volatile FRAM
retains the data as long as required. The acceleration at all locations is sampled synchronously by the
system. Depending on our application and network design, an event-driven method is deployed. The
event can be the machine suddenly stopping or an acceleration overshoot, as discussed in Section 2.2.
The measurement starts as soon as the user indicates it. But data retrieval is triggered only when
encountering the above events. However, the sensor continues to measure at all times.

3.4. Synchronous Sampling
Time synchronization is crucial for wireless sensor networks that often limits the application’s boundaries
due to a demanding requirement for synchronous sampling. Combining and processing the measure-
ments obtained across all nodes of a network is one of the greatest challenges. The knowledge of the
relationship between the sampling instances of the measurement is crucial in achieving sensor-level
synchronization. For the application of modal analysis, the sampling instance of the sensors must be
synchronized.

Measuring the sampling time of a sensor can introduce two types of errors: Deterministic and
random errors. The deterministic errors include the group delay of the sensor filters, propagation delay
in the circuitry and clock offset. The random errors may consist of clock drift, interrupts, etc. These
errors influence the synchronization accuracy of the measurement. In order to obtain synchronous
samples, two different approaches are proposed: real-time and subsequent synchronization of samples.

Real-time Synchronization
In real-time synchronization, the sampling is triggered at the same time on all sensor nodes using
synchronized clocks thus guaranteeing identical sampling instant. This method is illustrated in Figure
3.6. The generation of synchronization trigger signal is the most time-critical element of this method.
Hence any compensation applied to the on-board MCU clock should not lead to timing jitter above the
acceptable tolerance level. The propagation delay between the synchronization pulse and the subse-
quent triggering of an event must be kept minimal by employing interrupts.

From Figure 3.6, it can be observed that the synchronization pulse is given at the same time to all
nodes. However, the detection of this signal at the sensor node might not occur at the same time as

3.4. Synchronous Sampling 23

SINK

SENSOR
NODE 3

SENSOR
NODE 2

SENSOR
NODE 1

Sampling
Synchronization

trigger

Figure 3.6: Real-time Synchronization approach in a network with 3 sensor nodes and a sink

SENSOR
NODE 2

SENSOR
NODE 1

SENSOR
NODE 3

Timestamp
translation

Interpolation &
Resampling

x1 , t1 x2 , t2 x3 , t3

Figure 3.7: Subsequent synchronization approach in a network with three sensor nodes and a sink

the other nodes. This propagation delay places a limit on the maximum achievable synchronization
accuracy. The advantage of this method is that there is no signal processing overhead at the sink node
for synchronization. The obtained samples can be directly used for further analysis.

Subsequent synchronization
In subsequent synchronization, sampling is triggered with the sensor node’s own local unsynchronized
clock. The samples from different nodes would not have the same sampling times. The steps involved
in this method are illustrated in Figure 3.7. Each sample is assigned a timestamp according to its corre-
sponding local MCU clock before being sent to the sink. The challenge is to assign a sample timestamp
that is considerably close to the real measurement time corresponding to the node’s local clock. As a
post-process, the local clock based timestamps are either translated to a global timescale of the sink
node or to one of the sensor node’s local clock. Further interpolation and re-sampling is performed
to obtain synchronous samples when the sampling frequency satisfies the Nyquist theorem. The final
synchronization accuracy is impacted by the time-stamping of the data.

This method also allows the sensor nodes to remain in low power state for a longer period of time.
Considerable computational effort is required when post processing the timestamps for interpolation
in order to obtain synchronous samples. The interpolation and re-sampling algorithms determine the

24 3. Synchronization Approach and Realization

Sensor 1
INT1 pin

Sensor 2
INT1 pin

Figure 3.8: Capture of the INT1 pin of two sensors triggered when a data sample is ready to be read

synchronization accuracy of the sensor nodes.

3.5. Approach
The synchronization methods previously discussed, are to be realized for our application with the avail-
able resources. The developed embedded firmware (Section 3.2) provides the platform to implement
the techniques. In order to quantify the synchronization accuracy between the sensor nodes, the in-
terrupt signal that is triggered when a new sample is ready is used. Figure 3.8 shows a capture from
a logic analyzer. The signals comprise an active-low ADC interrupt routed from the physical INT1pin
of two different sensors nodes. The frequency of these signals corresponds to the output data rate
of the sensor, which is 1 KHz. The sensor clocks are free running and unsynchronized. The trigger
to start sampling is received at all nodes by the beacon transmission from the sink with the accuracy
of the network synchronization protocol. From the previous work [14], this network synchronization
tolerance is kept under 4 𝜇𝑠.

3.5.1. Real-Time Synchronization
The objective of synchronous sampling in this context is to ensure that the time difference between
the falling edge of two corresponding INT1 pulse from figure 3.8 is kept below a required minimum.
In order to implement external synchronization on the accelerometer sensor, few steps described in
Section 2.6.2 must be followed. The sensor must be fed with the necessary signals as given in figure
2.9. The generation of the two most important signals: the external clock and external synchronization
signal are described in the following subsections.

Clock Generation
The external clock to be generated acts as the master clock for the ADXL355 accelerometer sensor.
This clock drives the various functionalities of the sensor. The nominal frequency requirement is at
1.024 MHz as indicated in the data-sheet [15]. The final solution is to use a simple crystal oscillator
(XO) as described in Section 2.4.4. However, in order to qualify the proposal, other clock sources were
used to implement the synchronization. The clock sources considered were the general purpose timer
offered by the microcontroller unit and a waveform function generator.

The CC2640R2F microcontroller has programmable timers that can be used as a timing resource.
Out of the four general purpose timers, timer 2 is configured in Pulse width modulation (PWM) mode
as a 16-bit down-counter for our application. The timer is derived from a 48 MHz clock. A code snippet
of the PWM mode configuration that outputs a 1.024 MHz clock is listed in Appendix B. This source
was used since it is directly available within the microcontroller to check for the possibility of synchro-
nization and it is better than what the ADXL355 internal clock offers. The next source that was used
is a waveform generator from Keysight 33500B series [24]. The waveform generator uses trueform
technology and offers a low jitter of 40𝑝𝑠, a low harmonic distortion of 0.04% and a high frequency
resolution of 1𝜇𝐻𝑧. The amplitude is set at 3V peak-to-peak. This source was used to emulate a crystal

3.5. Approach 25

oscillator.

These sources must be validated in order to obtain reliable results from the sensor node. The clock
source has a great influence on the operation of the sensor. The nominal frequency is the designed
operational frequency of the oscillator. The variation of the output frequency from the oscillators’s
nominal frequency is termed as frequency stability. The frequency stability of a quartz crystal in an
oscillator is an important property that depends on temperature, aging, supply voltage, vibration noise,
etc,. This variation is expressed in parts per million (ppm) as:

𝜖[𝑝𝑝𝑚] = 𝑂𝑢𝑡𝑝𝑢𝑡𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 10 (3.2)

Even when the manufacturer of the proposed crystal oscillators in Table 2.1 designs them for a
frequency of 1.024 MHz, it can never stably output that frequency. A frequency meter can be used to
gauge how much the clock varies from its nominal frequency. For our experiment, Keysight 53230A
universal frequency counters [25] was used. The clock output from either of the sources is fed to the
frequency counter and the values are recorded to evaluate the frequency accuracy. The frequency sta-
bility of the two sources measured using the method above are displayed in Table 3.1. The histograms
of the frequency distribution around the offset and random error are given in Appendix D.

Table 3.1: Frequency stability

Source Max Frequency
(MHz)

Min Frequency
(MHz)

Mean Frequency
(MHz)

Frequency Accuracy
(ppm)

General Purpose Timer 1.025707331 1.026094390 1.026063352 +1668.11
Function generator 1 1.024000292 1.024000291 1.024000292 +0.28445
Function generator 2 1.024000271 1.024000268 1.024000269 +0.26364

An eye diagram aids in understanding a signal’s characteristics by retrieving parameters such as
amplitude, time distortion, etc. An eye diagram is generated by overlapping multiple sweeps of seg-
ments of a signal in a high-speed sampling oscilloscope. The measurement equipment used here is
the Keysight InfiniiVision MSO-X 3034T [26]. The triggering edge is set to both the rising and falling
edge to capture the eye pattern. The misalignment of the rise and fall times is termed as timing jitter.
The eye height is the difference between the low and high level of the signal. The eye width is the
measure between the left and the right crossing point. The eye patterns of the general purpose timer
clock and function generator clock are given in Figures 3.9 and 3.10 obtained from the oscilloscope.

By comparing the eye patterns, we can infer that the eye crossings are more stable in a function
generator clock than that of the general purpose timer. The eye height is constant for a general purpose
clock signal whereas, for a function generator signal, a ringing effect can be noticed. This ringing is
due to the mismatch in transmission line impedance of the probe. It was observed that the ringing
effect did not induce any unusual behaviour at the receiving module.

Synchronization Pulse generation
The other key signal is the synchronization pulse to be given to the DRDY pin of the ADXL355 sensor.
This signal aligns the output data rate filter to prepare the sample and trigger the interrupt on the
INT1 pin as in Figure 3.8. Section 2.6.2 explains more about the internal working of the sensor. This
signal is taken as an interrupt to the MCU when it registers a beacon reception from the sink node.
In order to emulate this behavior, the synchronization pulse signal is also generated from a function
generator. Since beacons at the network synchronization level are transmitted at a frequency of 1
Hz, the function generator is also set to provide a square waveform at 1Hz. Right after the beacon

26 3. Synchronization Approach and Realization

Figure 3.9: Eye pattern of the clock generated from general purpose time of the MCU

Figure 3.10: Eye pattern of the clock generated from function generator

3.5. Approach 27

is received as an interrupt at the MCU, the DRDY pin of the sensor is driven high inside the inter-
rupt handler. Since this is a critical section of the firmware, the interrupt handler is kept as short
as possible to reduce interrupt latency. The frequency of this synchronization pulse can also be var-
ied according to the worst case synchronization error between any two sensors recorded for each case.

3.5.2. Subsequent Synchronization
In the implementation of the subsequent synchronization, periodic synchronization signals are not
required. When the sink transmits a beacon to indicate the start of measurement to all the nodes, the
nodes record this interrupt trigger according to its local clock and start measuring. In order to perform
subsequent synchronization, the local time at every reception of the interrupt from the INT1 pin of
the sensor is recorded. The time stamps attached to the samples correspond to the own local MCU
clock. The timestamp is given by a timer derived from a 48 MHz clock which has a 21 ns resolution
approximately. The clocks need not be synchronized continuously. The memory stores the timestamped
samples for later retrieval. Hence even in case of node failure, the memory will hold the last 30 seconds
worth of information. The sample synchronization can be done after we retrieve the timestamps of
the measurements at the sink/host. The time-shift between the sensor data is estimated and the
data is re-sampled accordingly by compensating for the positive/ negative lag. The interpolation and
re-sampling of the received data is done on the host. MATLAB was chosen as a favorable platform to
perform such post-processing techniques.

4
Test Results and Analysis

4.1. Overview
This chapter describes the experimental setup and results from the implementation of synchroniza-
tion approach discussed in Section 3.5. The testing method and specifications are explained in the
forthcoming subsections. The observations recorded from performing a series of preliminary tests are
also included. The implementation and the results of the real-time and subsequent synchronization
techniques are elaborated in Section 4.3.

4.2. Testing Methodology and Specification
The quality of signals obtained from the sensor is an important factor when being used for high-
precision applications such as experimental modal analysis. A basic sanity check for an accelerometer
is to perform a gravitational orientation test by placing it flat on a fairly vibration-free surface and
aligning the axis of accelerometer along the axis of rotation. This is described in Appendix A. One of
the methods to test the reliability of an inertial measurement unit is to provide dynamic controllable
excitation and observe the response of the sensor. A mechanical shaker is used to provide the input
excitation signals. A shaker is an electro-dynamic exciter that delivers force and vibrates according to
the input signal. This in turn excites any object such as an inertial sensor placed on a shaker. The data
obtained from these tests are used to obtain the frequency response which is further used in modal
analysis. A set of precursory tests to observe and analyze the behavior of the sensor and software
were also performed which are discussed in Section 4.2.3.

4.2.1. Test Setup
In order to measure the controlled input, shaker tests were performed. To obtain a better understanding
of the MEMS sensor performance, it was compared to a well-performing high quality reference sensor
(Section 4.2.2). Figure 4.1 illustrates the test setup used. The sensor nodes and reference sensor
were placed on a flat fixture atop the shaker. The shaker was driven by the signal generator which
provided the various input excitation signals. Care was taken when mounting the sensors on the shaker
platform and orienting them along the same axes. Since the shaker requires enough energy to excite,
a compatible power amplifier is used. The actual testing equipment and the sensor nodes are shown
in the Figure 4.2.

4.2.2. Reference Sensor
The reference sensor used for testing is the industrial standard piezoelectric tri-axial accelerometer
PCB356B18 [27]. Piezoelectric sensors are extremely stable with high sensitivity. This sensor measures

29

30 4. Test Results and Analysis

Signal Generator

Amplifier

Shaker

R S1 S2

Data Acquisition

R : Reference Sensor
S1: Sensor 1
S2: Sensor 2

Figure 4.1: Test Setup

External
trigger

Sensor 1

Reference
sensor Sensor 2

Figure 4.2: Sensor nodes and reference sensor on the shaker

upto ±5𝑔. The time response of the reference sensor was compared with the decaying sine input signal
from the function generator to cross-check the excitation of the mechanical shaker. The sensor nodes
were compared in the time and frequency domains to that of the reference sensor. The corresponding
plots are presented in Figure 4.3. The sampling frequency of the reference sensor was at 16 KHz. The
data from the reference were acquired by the pak data acquisition system.

4.2. Testing Methodology and Specification 31

(a) Time-domain (b) Frequency-domain

Figure 4.3: Comparison of reference sensor(pak) and MEMS sensor for a decaying sine input

4.2.3. Preliminary testing and observations
In order to understand the behavior of the sensor and the impact of firmware on the performance, a
set of preliminary tests were carried out. These included checking for variation in the sampling rates,
sensor noise, effect of synchronization on the data, and impact of time delay on synchronization. The
observations from these tests helped in gaining understanding of the system.

Sensor Bias and Noise
Under free-fall conditions, the acceleration value should ideally be zero. Zero-g offset is any deviation
from this ideal value for free-fall. Any two devices of the same part number might differ in their zero-g
offset which are influenced by their manufacturing and packaging process. The average signal output
has a small offset even when the sensor is at rest which is also called bias of sensor. Since the biases
change over time, the error in inertial measurement data also varies. The following measurement
was done in a temperature controlled clean room with very litle external vibration. The sensor axes
were oriented according to Figure A.1 each time to obtain the zero-g offset for each axis. Graph 4.4
shows the acceleration measurement for the positive z-axis pointing upwards along with a constant
fit line. The constant fit line represents the mean shift of acceleration distribution for each axis [28].
The constant fit values for the acceleration distribution of six possible orientations are tabulated in 4.1.
The positive and negative signs for the axes is to indicate that the axes were pointing upwards and
downwards respectively. The sensor bias values are calculated from the fit values and were subtracted
from the actual measurements to obtain true acceleration data. This is represented by :

𝐴 (𝑔) = (𝐴 − 𝐴)/𝐺𝑎𝑖𝑛 (4.1)

where 𝐴 and 𝐴 are in terms of g, and 𝐺𝑎𝑖𝑛 is assumed to be unity for simplicity. However,
the misalignment in angle tilt is also to be considered while calculating the gain. The sensor bias values
for each axis is shown in Table 4.2.

From a similar measurement environment, the noise level of the sensor was also obtained. The
standard deviation of the value from the constant fit provided the noise component of the signal.
The theoretical noise value was calculated in Section 2.6.2 to be 3.3 mg. Table 4.3 gives the average
standard deviation of noise for a certain number of measurement runs. It can be inferred that the noise
level complies with that of the calculated theoretical value. As mentioned earlier, the noise places a
limit on the resolution of the acceleration detection.

Sampling Rate Variation
The requirement is to sample the acceleration data at 1 KHz. A simple test was conducted to test if
there were any variations in the number of samples collected. Table 4.4 shows the number of samples
collected under three different conditions:

32 4. Test Results and Analysis

Ac
ce

le
ra

tio
n

(g
)

Figure 4.4: Acceleration data for positive z-axis orientation with the constant fit line

Table 4.1: Constant fit value for the different sensor orientations

Orientation x-axis (10 𝑔) y-axis (10 𝑔) z-axis (10 𝑔)
+X 1027.4 18.9 -16.4
-X -1033.1 22.3 -12.1
+Y -16.9 1034 10.3
-Y -12.5 -1021 -19.2
+Z -31.0 -7.1 1001
-Z -21.3 -10.5 -1012

Table 4.2: Sensor bias for the three axes

Axis Bias (10 𝑔)
x -14.566
y 6.100
z -8.066

Table 4.3: Standard deviation of acceleration data for five test sets

Test No. x-axis (10 𝑔) y-axis (10 𝑔) z-axis (10 𝑔)
1 0.26730 0.25585 0.34562
2 0.25598 0.25598 0.34478
3 0.28230 0.26743 0.35548
4 0.27061 0.25737 0.34474
5 0.26230 0.25950 0.34537

4.2. Testing Methodology and Specification 33

With Ext Sync (FG) External synchronization for the sensor with a clock source from the function
generator at ~0.2 ppm

With Ext Sync (GPT) External synchronization for the sensor with a clock source from the general
purpose timer clock at ~1600 ppm

Without Ext Sync Sensor with its own internal clock source without external synchronization.

Table 4.4: Sampling rate comparison

Conditions Samples/1 sec Samples/30 sec Actual sampling rate (Hz)
With Ext Sync (FG) 1000 30000 1000
With Ext Sync (GPT) 1002 30060 1002
Without Ext Sync 985 29517 983.9

The number of samples for one second and 30 seconds are listed along with the corresponding
sampling in Table 4.4. If the sensor works under its own internal clock, it collects lesser samples than
the estimated number. In case of external synchronization, two different clock sources are provided
and the corresponding variation in the number of samples was recorded. It can be understood that
the clocks are one of the main sources of variation in sampling frequency. The better the clocks, the
less the sampling rate varies.

Sample Corruption
Even though the use of external synchronization for the sensors provides better stability in terms of
sampling rate, there is a drawback that was observed. For every synchronization trigger pulse given
to the sensor, the two subsequent samples were corrupted. This can be seen in Figure 4.5, where
the vertical lines denotes the corrupted data points. A 10 Hz sine signal was given as an input to the
mechanical shaker on which the sensor was placed. A synchronization pulse was given at a frequency
of 0.1 Hz (period = 10 sec) for a measurement interval of 40 seconds. The sample corruption was
clearly visible in the plot after the synchronization pulse. This is due to the resetting of the decimation
filters after the pulse. The output data rate filters realigned with respect to the previously received
synchronization pulse. This caused the samples to be re-sampled incorrectly by the ADCs. Hence the
samples after the synchronization pulse read the extreme range of the accelerometer. Since the range
was set at ±2𝑔, the corrupted samples read around this value.

Interrupt Propagation Delay
For the synchronization to work as proposed, the external synchronization pulse need to be registered
in the microcontroller and the subsequent signal should be fed to the sensor with minimal propagation
delay. This critical function was hence kept in an interrupt routine to ensure that the system responds
quickly to external triggers. The external trigger was generated from the function generator at the
required frequency. It was set at 1 Hz to emulate the reception of beacon packets from the sink node
via BLE. Figure 4.6 shows that there is a clear propagation delay when the synchronization signal is
generated and its reception at each sensor. Table 4.5 summarizes this delay averaged over a period of
40 seconds for three test runs. A zoomed-in Figure 4.7 shows that there is a difference in the reception
time for each of the sensors. Even though it is in the range of few microseconds, it is useful to know
this information for further optimization. The values are provided in Table 4.6.

Table 4.5: Delay in registering synchronization interrupt

Min (ns) Max (ns) Mean (ns) Standard deviation (ns)
963 1000 984.44 9.69

34 4. Test Results and Analysis

Figure 4.5: 10 Hz sine input to sensor for 40 seconds depicting sample corruption after every sync pulse

4.3. Synchronization Tests and Results
The objective was to acquire synchronous samples by aligning their sampling instants across the sensor
nodes. It can be inferred from the previous tests that the master clock source for the sensor plays
an important role in enabling the synchronization at the sampling level. In order to substantiate the
inference, two sensor nodes were fed with the same clock source. The result was that the ADC sampled
exactly at the same instant for all the sensors. This can be seen in Figure 4.8.

The frequency stability of the clock in this case does not matter, since the synchronization error is
due to the relative drift of the respective sensor clocks. The following subsections elaborate on the
obtained synchronization error for the two methods of synchronization. The tests were done to emulate
the practical application as close as possible.

Table 4.6: Interrupt propagation delay between 3 sensor nodes

Min (ns) Max (ns) Mean (ns) Standard Deviation (ns)
Sensor 1 & 2 1.0 12.1 5.42 3.32
Sensor 1 & 3 1.0 13.0 6.64 3.85
Sensor 2 & 3 1.7 10.4 5.08 2.92

4.3. Synchronization Tests and Results 35

External
Interrupt

Sensor 1
Sync Pulse

Sensor 2
Sync Pulse

Sensor 3
Sync Pulse

Figure 4.6: Propagation delay of external interrupt

Sensor 1
Sync Pulse

Sensor 2
Sync Pulse

Sensor 3
Sync Pulse

Figure 4.7: Interrupt propagation delay between three sensor nodes for sync pulse

36 4. Test Results and Analysis

Common
Sensor
Clock

External
Sync

Sensor 1
Data Ready

Sensor 2
Data Ready

Figure 4.8: Common clock and synchronization interrupt given to sensor nodes

4.3.1. Real-Time Synchronization
The synchronization tolerance for the real-time technique was analyzed for both clock sources. Figure
4.9 shows how the sampling instant aligns after the synchronization interrupt. This is for the re-
synchronization period of 1 second for the three sensor nodes. The sensors were fed with general
purpose timer clocks. The worst case time difference between the sampling instants are around 500
𝜇𝑠. The frequency stability of the sensor clock and synchronization accuracy are related by:

𝑇 =
Δ𝑡 _

𝑝𝑝𝑚 (4.2)

where 𝑇 is the re-synchronization period required to achieve the synchronization accuracy, Δ𝑡 _
for a clock with a frequency stability in ppm.

Substituting the frequency accuracy of the general purpose timer with 1600 ppm and the required
accuracy of synchronization with 55.55 𝜇𝑠 in Equation 4.2, results in re-synchronization period of 30
ms. The sensor with a clock source from the general purpose timer and a re-synchronization period
of 32ms is shown in Figure 4.10 for two sensors. Figure 4.10 shows the plot for synchronization error
between two sensor nodes for a re-synchronization period of 32ms. The plots depict the experimental
data obtained from the logic analyzer by scoping the required signals from the sensors and external
trigger. We can see that after the synchronization pulse is given, the error reduces to a small value
(<5 𝜇𝑠) and again gradually rises to around 58 𝜇𝑠. A zoomed-in capture of the scope is given in Figure
4.11.

As shown in Table 3.1, the frequency stability of the function generator is almost ideal. However,
in a real application scenario, crystals are never accurate and tend to drift over time, temperature,
humidity, external vibration, etc. Hence to emulate the behavior of a market-available crystal oscillator
to be used as a sensor clock, the relative frequency variation of the function generator was kept around
40 ppm and 50 ppm. This was done by proving a 40 Hz and a 50 Hz relative difference respectively
between the two function generators as shown in Table 4.7.

With the function generator emulating the drifting behavior of a practical crystal oscillator, the
synchronization test was performed for a re-synchronization period of 1 second. The expected syn-
chronization error between the sampling times of the two sensors was 40 𝜇𝑠 and 50 𝜇𝑠 respectively.

4.3. Synchronization Tests and Results 37

Sensor 1
Data Ready

Sensor 2
Data Ready

Sensor 3
Data Ready

Sensor 1
Sync

Figure 4.9: Data Ready Interrupts synchronizing after the synchronization pulse

Table 4.7: Function generator frequency settings

Relative frequency accuracy (ppm) FG 1 frequency (MHz) FG 2 frequency (MHz)
40 1.024000 1.024040
50 1.024000 1.024050

The corresponding synchronization error for the two frequency accuracy setting are given in Figures
4.12 and 4.13 respectively. The captures from the logic analyzer is also given in Figures 4.14 and 4.15.

4.3.2. Subsequent Synchronization
As described in Section 3.5, the subsequent synchronization is done as a post-processing technique.
The timestamps of the samples assigned according to the local microcontroller clock were used to
estimate the time-shift and align the samples. In order to enable synchronization, the time-stamps
were added in the interrupt handler right after the ADC interrupt was registered. MATLAB was used
for processing the obtained acceleration data and its corresponding timestamps from each sensor.

The data plot for the two sensors for a decaying sine input signal is given in Figure 4.16. The
time-shift was measured to be 0.005 seconds. Post-processing this data involved estimating the time
shift and re-sampling one sensor with respect to the other in order to align them in time to achieve
synchronization. The offset in the amplitude of the signals was normalized to zero by subtracting the
mean of the signal from each sample point. The index corresponding to the maximum correlation was
used to obtain the lag between the signals. Figure 4.17 shows the time-shifted and re-aligned signals
from the two sensors.

38 4. Test Results and Analysis

Figure 4.10: Synchronization tolerance for real-time synchronization

Figure 4.11: Capture of the scope showing the worst and best case error for Plot 4.10

4.3. Synchronization Tests and Results 39

Figure 4.12: Synchronization tolerance for a clock source with 40 ppm relative frequency error

Figure 4.13: Synchronization tolerance for clock source with 50 ppm relative frequency error

40 4. Test Results and Analysis

Figure 4.14: Capture of the scope showing the worst and best case error for Plot 4.12

Figure 4.15: Capture of the scope showing the worst and best case error for Plot 4.13

4.3. Synchronization Tests and Results 41

Figure 4.16: Acceleration data plot for two sensors capturing the same input signal before subsequent synchronization

Figure 4.17: Acceleration data plot for two sensors capturing the same input signal after subsequent synchronization

5
Conclusion

Use of wireless networks for monitoring purposes has been deemed advantageous over wired net-
works. It can be used to remotely obtain a quantified perception of the application environment. The
proposed distributed network is to analyze the dynamics of the wafer handler robots inside the photo-
lithographic machine at ASML. In order to obtain reliable information, accelerometer sensors must be
placed at various locations inside the machine and obtain samples. The requirement for successful
sensor fusion is that the samples must be obtained with high synchronization.

In this thesis, the emphasis was placed on obtaining synchronous samples across sensors in a
network. The importance and effects of synchronous sampling was discussed. Two approaches to
achieve synchronization in samples were introduced and implemented. The real-time synchronization
uses a software solution by providing interrupt-based triggering which realigns the ADC operation of
the sensor. It was shown that with the use of reasonably stable clocks for the sensors, a synchro-
nization tolerance of the required 55 𝜇𝑠 can be achieved in the real-time synchronization technique.
The 55𝜇𝑠 mainly comprises of the network synchronization for beacon transmission and the sampling
time variation between any two sensors in the network. The trade-off here is that there is data cor-
ruption after every call for synchronization. The subsequent synchronization approach is based on
post-processing the obtained signals along with their timestamps to align them in time by re-sampling.
The drawback, however, is that the signals are approximated due to interpolation and re-sampling.
The use of timestamps further increases the overhead on the packet payload to be stored in memory
and transmitted to the sink. Hence this provides a relatively easy solution to synchronous sampling, but
at the cost of data approximation/quantization error. If the application does not allow room for such
errors, then the real-time technique is the most suitable. With a stable clock compensating wireless
network infrastructure, the real-time synchronization technique stands as a proof of concept.

5.1. Recommendations for Future Work
This work has laid the foundation for further optimization. A few possible directions for future work
are listed below.

• An interface is to be built between the network and sensor to enable the wireless transfer of
acceleration data from the memory to the sink node.

• Redesigning of the sensor node PCB is required to include the proposed crystal oscillator as a
clock source for the sensor.

• Vacuum compatible housing is required for the sensor node to be placed in the vacuum wafer
stage of the photo-lithography machine.

43

Bibliography

[1] U. Uyumaz and Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software
Technology (ST), Wafer flow simulator visualizer, Ph.D. thesis (2013), eindverslag.

[2] K. F. Kiefer, B. Swanson, E. Krug, G. Ajupova, and P. L. Walter, Wireless Sensors Applied to Modal
Analysis, .

[3] V. Krishnamurthy, K. Fowler, and E. Sazonov, The effect of time synchronization of wireless sensors
on the modal analysis of structures, Smart Materials and Structures 17 (2008), 10.1088/0964-
1726/17/5/055018.

[4] A. K. Andreas Engel, Demo: The need for wireless clock drift estimation and its acceleration on a
heterogeneous sensor node, EEE Proc. Conference on Local Computer Networks (LCN), Clearwater
Beach, Florida (USA) (2015).

[5] B. Bengherbia, M. O. Zmirli, A. Toubal, and A. Guessoum, FPGA-based wireless sensor nodes for
vibration monitoring system and fault diagnosis, Measurement 101, 81 (2017).

[6] B. Jiang, M. Chen, and F. Chen, A clock drift compensation method for synchronous sampling in
sensor networks, Measurement Science and Technology 30 (2019), 10.1088/1361-6501/aaf6c7.

[7] J. Elson, L. Girod, and D. Estrin, Fine-Grained Network Time Synchronization using Reference
Broadcasts *, Tech. Rep. (2002).

[8] M. L. Sichitiu and C. Veerarittiphan, Simple, Accurate Time Synchronization for Wireless Sensor
Networks, Tech. Rep.

[9] K. Römer, P. Blum, and L. Meier, Time Synchronization and Calibration in Wireless Sensor Net-
works, in Handbook of Sensor Networks (John Wiley & Sons, Inc., 2005) pp. 199–237.

[10] J. Funck and C. Gühmann, Comparison of approaches to time-synchronous sampling in wireless
sensor networks, Measurement: Journal of the International Measurement Confederation 56, 203
(2014).

[11] Z. Feng and L. S. Katafygiotis, THE EFFECT OF NON-SYNCHRONOUS SENSING IN WIRELESS
SENSORS ON STRUCTURAL MODAL IDENTIFICATION, Tech. Rep.

[12] M. A. Javaid, Wireless Sensor Networks: Software Architecture, (2014).

[13] C. Shore and T. Manager, Efficient Interrupts on Cortex-M Microcontrollers, Tech. Rep.

[14] A. T. D. Zeo, A wireless sensor network for machine dynamics performance monitoring, (2019).

[15] A. Devices, ADXL354/ADXL355 (Rev. A), (2016).

[16] Cypress, CY15B104Q FRAM 4Mbit Memory, (2017).

[17] Texas Instruments, CC2640R2F BLE Microcontroller, (2017).

[18] K. N. N. Yazdi, F. Ayazi, Micromachined inertial sensors, Proceedings of the IEEE 86, 1640 (1998).

[19] C. Li, R. Azzam, and T. Fernández-Steeger, Kalman filters in geotechnical monitoring of ground
subsidence using data from MEMS sensors, Sensors 16, 1109 (2016).

45

http://dx.doi.org/10.1088/0964-1726/17/5/055018
http://dx.doi.org/10.1088/0964-1726/17/5/055018
https://www.ieeelcn.org/prior/LCN40/lcn40demos/Engel.pdf
https://www.ieeelcn.org/prior/LCN40/lcn40demos/Engel.pdf
http://dx.doi.org/10.1016/j.measurement.2017.01.022
http://dx.doi.org/ 10.1088/1361-6501/aaf6c7
http://dx.doi.org/10.1002/047174414x.ch7
http://dx.doi.org/10.1016/j.measurement.2014.07.001
http://dx.doi.org/10.1016/j.measurement.2014.07.001
http://dx.doi.org/10.2139/ssrn.2391872
www.embedded-world.eu
www.analog.com
http://www-inst.eecs.berkeley.edu/~ee290g/fa08/projects/InertialSensors_IEEE.Najafi.pdf
http://dx.doi.org/10.3390/s16071109

46 Bibliography

[20] M. Andrejašic, Mems accelerometer - seminar, (2008).

[21] A. Devices, Fundamental Principles Behind the Sigma-Delta ADC Topology: Part 1, (2016).

[22] McCarthy Mary, Peak-to-Peak Resolution Versus Effective Resolution, .

[23] A. Jerraya and W. Wolf, Hardware/software interface codesign for embedded systems, Computer
38, 63 (2005).

[24] Keysight Technologies 33500B Series Waveform Generators, Tech. Rep.

[25] Keysight 53131A/132A/181A Counters Data Sheet Recommended replacement products: 53200
Series RF and universal frequency counter/timers (Data sheet publication number: 5990-6283EN),
Tech. Rep.

[26] K. Technologies, InfiniiVision 3000T X-Series Oscilloscopes, Tech. Rep.

[27] Industrial standard piezoelectric tri-axial accelerometer pcb356b18, (2007).

[28] J. Joemon and J. Mullassery, EMBEDDED DATA ACQUISITION PLATFORM FOR LOW SPEED AU-
TOMATED SURFACE MEASUREMENTS ON ASPHALT, Tech. Rep. (2015).

http://mafija.fmf.uni-lj.si/seminar/files/2007_2008/MEMS_accelerometers-koncna.pdf
www.analog.com
http://dx.doi.org/10.1109/mc.2005.61
http://dx.doi.org/10.1109/mc.2005.61
www.keysight.com
http://www.sysel.com.pe/wp-content/uploads/2019/03/356B18.pdf

A
Sensor orientation

The data coming out of the sensor is raw acceleration. Hence, in order to get meaningful information
from it, the data have to be combined and scaled accordingly. A sanity check to confirm the correct
retrieval of information, is shown in figure A.1. The values adjacent to each orientation is the ideal
acceleration output. The data plot in figure 3.5 is obtained by placing the accelerometer in the positive
Z direction pointing upwards (green box in A.1). These orientations are also used to obtain the sensor
bias and noise of the accelerometer sensor.

Figure A.1: Accelerometer output with varying orientation to gravity

47

B
General Purpose Timer clock

generation :Listing

The code listing is of the function Sen_HW_Clock_Setup which generates the required 1.024 MHz
clock from the general purpose timer of the microcontroller in the pulse width modulated mode. The
generated signal is routed to the general purpose input/output pin 10 of the microcontroller which is
further given as an input to the INT2 pin of the ADXL355 sensor. Since the signal is to be derived from
the 48 MHz clock, the load value of timer is 46 to obtain a 1.024 MHz frequency.

1 s t a t i c vo id Sen_HW_Clock_Setup (u in t32_t t imer_base)
2 {
3 const u in t32_t IOID = BRD_SEN_INT2 ; / / DIO_10 Pin on ch ip
4 const u in t32_t TIMER_LOAD_VAL = 46; / / 48MHz/46 = ¬1.024MHz
5

6 / / Set con f i gu r a t i on parameters accord ing to the t imer number
7 u in t32_t po r t_ i d = 0 , subsc r i be r = 0 , event_source = 0 , per iph_t imer = 0;
8 i f (t imer_base == GPT0_BASE)
9 {
10 por t_ id = IOC_PORT_MCU_PORT_EVENT0;
11 subsc r i be r = EVENT_O_GPT0ACAPTSEL ;
12 event_source = EVENT_GPT0ACAPTSEL_EV_PORT_EVENT0 ;
13 per iph_t imer = PRCM_PERIPH_TIMER0 ;
14 }
15 e l se i f (t imer_base == GPT2_BASE)
16 {
17 por t_ id = IOC_PORT_MCU_PORT_EVENT4;
18 subsc r i be r = EVENT_O_GPT2ACAPTSEL ;
19 event_source = EVENT_GPT2ACAPTSEL_EV_PORT_EVENT4 ;
20 per iph_t imer = PRCM_PERIPH_TIMER2 ;
21 }
22

23 / / Map t imer event to GPIO and r e g i s t e r CPU event
24 IOCPortConf igureSet (IOID , por t_ id , IOC_STD_OUTPUT) ;
25 EventReg is te r (subsc r iber , event_source) ;
26

27 / / Enable t imer pe r i phe ra l
28 PRCMPeripheralRunEnable (per iph_t imer) ;
29 PRCMLoadSet () ;
30 whi le (! PRCMLoadGet ()) ;
31

32 / / Conf igure and enable t imer accord ing to steps i n the datasheet
33 / / 1 . Ensure the t imer i s d i sab led (c l e a r the TnEN b i t) before making any changes .

49

50 B. General Purpose Timer clock generation :Listing

34 TimerDisab le (t imer_base , TIMER_BOTH) ;
35 / / 2 . Wri te the GPTM Con f i gu ra t i on Reg i s te r (GPT:CFG) with a value of 0x0000 0004.
36 HWREG(t imer_base + GPT_O_CFG) = 0x00000004 ;
37 / / 3 . In the GPTM Timer Mode Reg i s te r (GPT:TnMR) , wr i t e the TnCMR f i e l d to 0x1 and wr i t e ...

the TnMR f i e l d to 0x2 .
38 HWREG(t imer_base + GPT_O_TAMR) |= 0b1010 ;
39 / / 4 . Conf igure the output s t a t e of the PWM s i gna l (whether or not i t i s i nve r ted) i n ...

the GPTM Cont ro l Reg i s te r (GPT:CTL) TnPWML f i e l d .
40 / / 5 . I f a p re s ca l e r i s to be used , wr i t e the presca le va lue to the GPTM Timer n ...

Presca le Reg i s te r (GPT:TnPR) .
41 / / T imerPresca leSet (t imer_base , TIMER_A , 255) ; / / xxx
42 / / T imerPrescaleMatchSet (t imer_base , TIMER_A , 0) ; / / xxx
43 / / 6 . I f PWM i n t e r r u p t s are used , con f igu re the i n t e r r u p t cond i t i on in the GPT:CTL ...

TnEVENT r e g i s t e r f i e l d , and enable the i n t e r r u p t s by s e t t i n g the GPT:TnMR TnPWMIE ...
r e g i s t e r b i t .

44 / / HWREG(t imer_base + GPT_O_CTL) |= 0xC ;
45 HWREG(t imer_base + GPT_O_CTL) |= 0x0 ; / / p o s i t i v e edge
46 HWREG(t imer_base + GPT_O_TAMR) |= 0x200 ;
47 / / 7 . Load the t imer s t a r t va lue i n t o the GPTM Timer n I n t e r v a l Load Reg i s te r (GPT: TnILR...

) .
48 TimerLoadSet (t imer_base , TIMER_A , TIMER_LOAD_VAL) ;
49 / / 8 . Load the GPTM Timer n Match Reg i s te r (GPT:TnMATCHR) with the match value .
50 TimerMatchSet (t imer_base , TIMER_A , TIMER_LOAD_VAL/2) ; / / to get 50% duty cyc l e
51 / / 9 . Set the GPTM Cont ro l Reg i s te r (GPT:CTL) TnEN b i t to enable the t imer and begin ...

generat ion of the output PWM s i gna l .
52 TimerEnable (t imer_base , TIMER_A) ;
53

54 }

C
Sensor data retrieval :Listing

The code snippet below shows how the data bits from the sensor are combined to form a 20-bit
acceleration value according to the figure 3.4. The value that is stored in the xdata, ydata and zdata
variables are then multiplied by the scaling factor corresponding to its range setting. The function
Sen_Single_Byte_Read takes the source register address and a pointer to the destination address
as its parameters. This function accesses the SPI via the SPI driver in order to move data to the
microcontroller and then to the memory for storage.

1 Sen_Single_Byte_Read (XDATA3 , (i n t 8_ t *)&xdata3) ;
2 Sen_Single_Byte_Read (XDATA2 , (i n t 8_ t *)&xdata2) ;
3 Sen_Single_Byte_Read (XDATA1 , (i n t 8_ t *)&xdata1) ;
4 xdata =(i n t) xdata3 <<12|(i n t) xdata2 <<4|(i n t) xdata1>>4;
5 i f (xdata & (1 << 20 - 1))
6 xdata = xdata - (1 << 20) ;
7

8 Sen_Single_Byte_Read (YDATA3 , (i n t 8_ t *)&ydata3) ;
9 Sen_Single_Byte_Read (YDATA2 , (i n t 8_ t *)&ydata2) ;
10 Sen_Single_Byte_Read (YDATA1 , (i n t 8_ t *)&ydata1) ;
11 ydata = (i n t) ydata3 <<12|(i n t) ydata2 <<4|(i n t) ydata1>>4;
12 i f (ydata & (1 << 20 - 1))
13 ydata = ydata - (1 << 20) ;
14

15 Sen_Single_Byte_Read (ZDATA3 , (i n t 8_ t *)&zdata3) ;
16 Sen_Single_Byte_Read (ZDATA2 , (i n t 8_ t *)&zdata2) ;
17 Sen_Single_Byte_Read (ZDATA1 , (i n t 8_ t *)&zdata1) ;
18 zdata = (i n t) zdata3 <<12|(i n t) zdata2 <<4|(i n t) zdata1>>4;
19 i f (zdata & (1 << 20 - 1))
20 zdata = zdata - (1 << 20) ;

51

D
Clock frequency stability

distribution

From the discussion on sensor synchronization, separate clock sources were required to act as master
clocks for the accelerometer sensor. In order to validate the approach, two clock sources were con-
sidered, namely: General purpose timer clock and function generator. The validation of these clocks
were presented in section 3.5 with the help of universal frequency counters and eye patterns. Every
oscillator has an offset error and a random error. An offset error is more or less the same for given
period of measurement. But the random error is the frequent fluctuation of frequency. A more detailed
information can be obtained by the distribution of the frequency variation. The plots below show the
distribution of random error around the offset error for the nominal frequency of 1.024MHz.

Figure D.1: Frequency Variation of General Purpose Timer clock

The figure D.5 shows the three function generators used for emulating the clocks and the external
synchronization signal for the sensors. The clocks are set at a nominal frequency of 1.024MHz, 3 V
peak-to-peak and at a duty cycle of 50%. The external synchronization pulse is given by a 1Hz square
wave signal.

53

54 D. Clock frequency stability distribution

Figure D.2: Frequency Variation of General Purpose Timer clock

Figure D.3: Frequency Variation of Function generator 1

55

Figure D.4: Frequency Variation of Function generator 2

56 D. Clock frequency stability distribution

Sensor 2
Clock

Sensor 1
Clock

External
Sync

Interrupt

Figure D.5: The Function generators used as clock and external synchronization interrupt sources

E
Subsequent synchronization :Listing

The following MATLAB code listing is used to perform subsequent synchronization on the obtained
acceleration data from two sensors for the same input signal as discussed in section 4.3.2.

1 c l ea r ;
2 c l c ;
3 c lo se a l l ;
4

5 % Load data
6

7 f i lename = ” sen1shaker2.csv ” ;
8 raw_data1 = csvread (fi lename) ;
9 t1=raw_data1((9000:11000) ,1) /48;
10 x1=raw_data1 (: , 2) /256000;
11 y1=raw_data1 (: , 3) /256000;
12 z1=raw_data1((9000:11000) ,4) /256000;
13 f i lename = ” sen2shaker2.csv ” ;
14 raw_data2 = csvread (fi lename) ;
15 t2=raw_data2((9000:11000) ,1) /48;
16 x2=raw_data2 (: , 2) /256000;
17 y2=raw_data2 (: , 3) /256000;
18 z2=raw_data2((9000:11000) ,4) /256000;
19

20 z1=z1 -mean(z1) ;
21 z1=z1/max(z1) ;
22 z2=z2 -mean(z2) ;
23 z2=z2/max(z2) ;
24

25 ts1=t imeser i e s (z1 , t1) ;
26 ts2=t imeser i e s (z2 , t2) ;
27

28 [ts1 , ts2]=synchronize (ts1 , ts2 , ' Uniform ' , ' InterpMethod ' , ' l i n e a r ') ;
29 f i gu re ;
30 plot (ts1.Time , ts1.Data) ;
31 hold on
32 plot (ts2.Time , ts2.Data) ;
33

34 % Cross - co r r e l a t i on
35

36 T1=z1 ;
37 T2=z2 ;
38 Fs1=1000;
39 Fs2=1000;
40 Fs = 1000;

57

58 E. Subsequent synchronization :Listing

41

42 [P1 ,Q1] = rat (Fs/Fs1) ; % Rational f rac t i on approximation
43 [P2 ,Q2] = rat (Fs/Fs2) ; % Rational f rac t i on approximation
44 T1_res = resample (T1,P1,Q1) ; % Change sampling rate by rat iona l factor
45 T2_res = resample (T2,P2,Q2) ; % Change sampling rate by rat iona l factor
46

47 dt = 1/Fs ;
48 t = 0: dt : dt ∗(length (T1_res) -1) ;
49

50

51

52 f i gu re
53 hold on ;
54 plot (t1 ,T1, ' LineWidth ' ,2)
55 plot (t2 ,T2, ' LineWidth ' ,2)
56 t i t l e (' Original Data ') ;
57 legend (' Sensor 1 z - axis ' , ' Sensor 2 z - axis ') ;
58 xlabe l ('Timestamp(microseconds) ') ;
59 ylabe l (' Accelerat ion (g) ') ;
60

61

62 f i gu re
63 hold on ;
64 plot (t , T1_res , ' LineWidth ' ,2)
65 plot (t , T2_res , ' LineWidth ' ,2)
66 t i t l e ('Resampled Data ') ;
67 legend (' Sensor 1 z - axis ' , ' Sensor 2 z - axis ') ;
68 xlabe l ('Times(microseconds) ') ;
69 ylabe l (' Accelerat ion (g) ') ;
70

71 [C1, lag1] = xcorr (T1_res , T2_res) ;
72

73

74 f i gu re
75 hold on ;
76 plot (C1)
77 t i t l e (' Cross - co r r e l a t i on ')
78 [¬ , I] = max(abs (C1)) ;
79 SampleDiff = lag1 (I) ;
80

81 t imeDiff = SampleDiff/Fs
82

83

84 f i gu re
85 hold on ;
86 plot (t , T1_res , ' LineWidth ' ,2)
87 plot (t+timeDiff , T2_res , ' LineWidth ' ,2)
88 t i t l e (' Aligned s igna l ') ;
89 legend (' Sensor 1 z - axis ' , ' Sensor 2 z - axis ') ;
90 xlabe l ('Time(microseconds) ') ;
91 ylabe l (' Accelerat ion (g) ') ;

	List of Figures
	List of Tables
	Abbreviations and Acronyms
	Introduction
	Objectives
	Contribution
	Thesis Organisation

	System Description
	Overview
	Application and Requirements
	Related Work
	Hardware System: Sensor Node
	Accelerometer
	Memory
	Wireless Microcontroller with Radio
	Crystal Oscillator
	Battery

	Network Synchronization
	Accelerometer Sensor
	Operating Principle
	ADXL 355 MEMS Accelerometer
	Sensor Synchronization

	Synchronization Approach and Realization
	Overview
	Embedded Firmware Architecture
	SPI Driver
	Sensor Driver
	Memory Driver
	Timing
	Other Modules
	Interrupt Handling and Interrupt Latency

	Data Acquisition
	Synchronous Sampling
	Approach
	Real-Time Synchronization
	Subsequent Synchronization

	Test Results and Analysis
	Overview
	Testing Methodology and Specification
	Test Setup
	Reference Sensor
	Preliminary testing and observations

	Synchronization Tests and Results
	Real-Time Synchronization
	Subsequent Synchronization

	Conclusion
	Recommendations for Future Work

	Bibliography
	Sensor orientation
	General Purpose Timer clock generation :Listing
	Sensor data retrieval :Listing
	Clock frequency stability distribution
	Subsequent synchronization :Listing

