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Abstract: This paper presents a numerical approach for investigating fatigue delamination propaga-
tion in composite stiffened panels loaded in compression in the post-buckling field. These components
are widely utilized in aerospace structures due to their lightweight and high-strength properties.
However, fatigue-induced damage, particularly delamination at the skin–stringer interface, poses
a significant challenge. The proposed numerical approach, called the “Min–Max Load Approach”,
allows for the calculation of the local stress ratio in a single finite element analysis. It represents the
ratio between the minimum and maximum values of the stress along the delamination front, enabling
accurate evaluation of the crack growth rate. The methodology is applied here in conjunction with
the cohesive zone model technique to evaluate the post-buckling fatigue behavior of a composite
single-stringer specimen with an initial delamination. Comparisons with experimental data validate
the predictive capabilities of the proposed approach.

Keywords: fatigue; crack propagation; finite element analysis; post-buckling; min–max load approach

1. Introduction

The use of composite materials in aerospace engineering has revolutionized aircraft
design, offering significant advantages in terms of weight reduction, structural efficiency,
and performance. Composite stiffened structures, made of a combination of composite
skin and stiffening elements, are commonly employed in fuselage and wing assemblies
to withstand aerodynamic loads while minimizing weight. The buckling load of these
structures can be considerably lower than their ultimate failure load.

However, the post-buckling behavior of composite stiffened panels represents a com-
plex and challenging phenomenon. The cyclic loads may induce significant out-of-plane
displacements, which in turn may trigger the initiation and propagation of fatigue cracks,
compromising the structural integrity and potentially leading to failure. Without accu-
rate predictive models, the full potential of composite materials in aerospace applications
is hindered, as designers are compelled to rely on conservative design approaches that
compromise the weight-saving benefits of composite materials.

Numerous studies can be found in the literature addressing the problem of numerically
simulating fatigue delamination growth in composite materials, but often these works are
limited to small specimens at the coupon level. The fatigue analysis of composite structures
in post-buckling loading conditions remains an unresolved challenge.

The heterogeneous nature of composite materials, coupled with strain localization,
presents a considerable challenge in accurately predicting and understanding failure mech-
anisms in composite laminates [1]. Delamination growth is often addressed as a crack
propagation phenomenon, adapting approaches initially devised for metallic materials.
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For example, Paris’ law [2] is frequently employed to establish a relationship between the
crack growth rate and the energy release rate or stress intensity factor during the loading
cycle. Numerous numerical methods have emerged with the goal of incorporating Paris’
law into Finite Element (FE) analyses. Several researchers [3–7] have utilized the Virtual
Crack Closure Technique (VCCT) to determine the energy release rate and subsequently
the crack growth rate according to Paris’ law. This methodology was recently integrated
into the FE software ABAQUS [8] and has proven effective in analyzing fatigue-induced
delamination at the coupon level [9]. On the other hand, Cohesive Zone Model (CZM)
approaches represent a widely used alternative that offers some advantages over VCCT.
Despite requiring a more detailed discretization compared to VCCT, this technique has
the capability to simulate both damage initiation and growth, while the VCCT is limited
to only damage propagation. CZM methodologies, originally developed for quasi-static
loading conditions [10–13], have been later extended to incorporate degradation resulting
from cyclic loading by integrating Paris’ law into the constitutive model [14–20].

Regardless of the approach (VCCT or CZM), to simulate constant amplitude fatigue
loading conditions in a FE analysis, the “envelope load method” [21] is usually adopted.
To save computational times, instead of numerically simulating the entire load variation
during a fatigue cycle, the structure is subjected to a constant load equal to the maximum
load, with information regarding the minimum load embedded in the damage model
using the applied load ratio, the ratio between the minimum and maximum applied load
during the fatigue cycle (RApplied = Pmin/Pmax). However, the crack propagation rate does
not depend on the variation of the applied (external) load, but rather on the change of
the stress state at the crack tip resulting from the applied load. It is possible to define
the local stress ratio as the ratio between the minimum and maximum stress value at the
crack tip or, alternatively, as the square root of the ratio between the minimum and the
maximum energy release rate values (RLocal = σmin/σmax = (Gmin/Gmax)0.5). The assumption
that RApplied is equal to RLocal represents a major drawback of the approaches based on the
“envelope load method”.

To address this limitation, a numerical technique, named the “Min–Max Load Ap-
proach”, has been introduced to assess the local stress ratio during fatigue analysis [22,23].
The methodology has been validated using the literature’s experimental data from coupon
tests, such as Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens,
and a modified version of the MMB specimen where the loading conditions were modified
to produce a variable local stress ratio. The approach has been then applied to simulate
the propagation of a skin–stringer separation in a composite stiffened panel subjected
to compressive loads, with the results compared against experimental data taken from
the literature.

In this paper, a numerical study on fatigue delamination growth in a Single-Stringer
Compression (SSC) specimen subjected to post-buckling fatigue load is performed using
the “Min–Max Load Approach”. Compared to previous research activities, in this paper,
the developed numerical methodology is validated with results obtained from an exten-
sive in-house experimental testing campaign, which provided access to unique data not
available in the literature [24]. Few works of research can be found in the literature where
the buckling and post-buckling behavior of composite stiffened structures under fatigue
compressive loads is experimentally investigated for different type of stringer [25,26]. The
SSC specimen was conceived to emulate the performance of large multi-stringer panels
commonly found in fuselage structures [27]. While compact in size and computationally
manageable, this specimen enables the creation of detailed numerical models capable of
encompassing all damage modes observed in corresponding multi-stringer panels. Several
experimental test campaigns were conducted on SSC specimens with a focus on examining
the damage tolerance and fatigue life of specimens with initial delamination or indentation
damage [28,29]. However, the experimental studies in the literature focus solely on a
particular combination of load level and loading ratio, whereas various combinations of
these parameters are analyzed in [24].
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In Section 2, the importance of calculating the local stress ratio for fatigue damage
propagation analysis is discussed in detail. Section 3 outlines the developed “Min–Max
Load Approach”, and briefly summarizes the cohesive fatigue damage formulation used
in this work. Section 4 describes the geometry and FE model of the SSC specimen, while
Section 5 presents the numerical results of a quasi-static analysis conducted to validate the
FE model of the SSC specimen. Section 6 reports the outcomes of the fatigue analysis and
compares them with the experimental data. Finally, in Section 7 the results in terms of local
stress ratio are discussed.

2. Local Stress Ratio

Fatigue delamination growth is typically analyzed using fracture mechanics ap-
proaches where the delamination growth rate (da/dN) is related to the Energy Release Rate
(∆G) as shown in Figure 1, where a typical fatigue crack growth curve is reported.
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Figure 1. Fatigue crack growth curve.

The behavior shown in Figure 1 can be divided into three distinct regions. In the first
region, characterized by a sharp drop in the growth rate, the crack starts to nucleate. In the
second region, the log-linear behavior indicates a stable growth of the delamination, while
in the third region, the crack propagation becomes unstable. The stable crack propagation
observed in the second region is governed by Paris’ law [2], which in its most basic form is
represented by the following equation:

da
dN

= C f (∆G)m (1)

where a is the crack length, N is the number of cycles, f (∆G) is a function of the varia-
tion of the Energy Release Rate during the load cycle (∆G = Gmax − Gmin), and C and m
are experimentally determined parameters that depend on the material and load condi-
tions. Paris’ law, initially developed for fatigue crack evolution in metallic materials, is
now commonly used in numerical methodologies for predicting delamination growth in
composite materials.

In fatigue analysis, numerical methodologies are often implemented together with the
“envelope load method” [21]. To save computational resources, rather than simulating the
full load variation for every cycle, only the maximum load is modeled. The load variation is
accounted for, within the adopted damage model, through a predefined parameter, known
as the applied (external) load ratio, which is the ratio between the minimum and maximum
applied load during a single fatigue cycle, represented by the following equation:

RApplied =
Pmin
Pmax

(2)

Indeed, by simulating the structure only in the maximum load configuration, it is not
possible to retrieve information on the state of stress at the crack tip when the structure
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is subjected to the minimum load of a fatigue cycle. It is therefore assumed that the
deformed shape remains consistent between the minimum and maximum load, with the
stresses scaled by a factor equal to the applied load ratio. To address these uncertainties,
including variations in strength and life data, environmental effects, and uncertainties in
load application, safety factors are employed at every stage of composite structure design,
mirroring traditional practices for metal structures. These safety factors typically ensure a
high level of reliability, although not quantifiable.

As shown in Equation (1), the crack propagation rate is highly dependent on the
variation of the state of stress at the crack tip, namely the “local stress ratio”, the ratio
between the minimum and the maximum value of the stress at the crack tip or, alternatively,
the square root of the ratio between the minimum and the maximum value of the energy
release rate, as represented by the following equation:

RLocal =
σmin
σmax

=

(
Gmin
Gmax

)0.5
(3)

In the “envelope load method”, it is assumed that the local stress ratio is equal to the
applied (external) load ratio and remains constant during crack propagation.

This assumption is generally verified for simple structures at the coupon level; how-
ever, for more complex specimens and loading conditions, where the stresses are not
proportional to the external load, it is not fulfilled. When the structure is subjected to two
or more non-synchronized loads, or when stiffened structures are loaded in post-buckling
fatigue conditions, resulting in changes to the buckling mode shape between the maximum
and the minimum load of the fatigue cycle [29–31], the applied (external) load ratio is
different from the local stress ratio which changes along the delamination front and during
the propagation of the delamination.

In Figure 2, a graphical representation illustrates why evaluating the local stress ratio
in stiffened structures subjected to post-buckling fatigue is necessary.
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As the deformed shape changes in the post-buckling regime, points A and B along
the delamination front of the skin–stringer separation locally undergo two different load
oscillations. Therefore, the two points are subjected to two distinct local stress ratios, both
different from the applied load ratio. It is evident that employing the applied load ratio
to calculate the crack growth rate would result in an inaccurate prediction of damage
propagation. Indeed, the local stress ratio varies not only across different points along the
crack front but also changes as the delamination propagates, altering the post-buckling
shape of the specimen. In contrast, the applied load ratio remains constant and does not
correspond to the local stress ratio at any point.
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3. Min–Max Load Approach

The proposed methodology, named the “Min–Max Load Approach”, enables the as-
sessment of the local stress ratio during fatigue crack propagation analysis. Indeed, fatigue
delamination growth rate is significantly affected by variations in the local stress ratio.
Specifically, as the local stress ratio increases, the growth rate decreases. While the local
stress ratio may be considered constant for coupon specimens, in larger structures subjected
to post-buckling loading conditions, the local stress ratio varies along the delamination
front and as the delamination propagates. Therefore, implementing a numerical approach
that dynamically tracks the evolution of the local stress ratio as the damage propagates
becomes essential for accurately predicting fatigue delamination growth. The methodology
relies on the FE method in conjunction with the Cohesive Zone Model (CZM) to simulate
damage propagation.

To compute the local stress ratio, it is essential to know the stress distribution of the
structure under both maximum and minimum loads during the fatigue cycle. The idea of
the methodology is to perform a single FE analysis with two identical models representing
the same structure but subjected to different constant applied loads, the minimum and
the maximum loads during the fatigue cycle. The general approach of the proposed
methodology is graphically represented in Figure 3.
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During the analysis, the two models interact to assess the local stress ratio and conduct
fatigue calculations. Specifically, the minimum energy release rate value at the crack
tip is obtained from the model under the minimum load and transferred to the model
representing the structure subjected to the maximum load. This information about the
minimum and maximum energy release rate values allows for the calculation of the local
stress ratio for each element along the delamination front, enabling the evaluation of the
crack growth rate. After completing the fatigue calculations, the increase in the damage state
of the cohesive elements is transferred to the elements of the minimum load configuration
to ensure consistency in representing the crack between both models.

One of the advantages of the proposed methodology is that it can be used in conjunc-
tion with any fatigue cohesive constitutive model. In this work, an existing model taken
from the literature is employed [16], introducing some modifications required to implement
the “Min–Max Load Approach”.

Cohesive elements have been developed and extensively used to numerically simu-
late the initiation and propagation of delamination under quasi-static or impact loading
conditions. The cohesive formulation frequently adopted involves the use of a bilinear
traction–separation law, as shown in Figure 4 [10,11].
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The stress linearly increases up to the interface strength of the material (σc), related to
the damage initiation displacement (∆0). Beyond this point, the stress starts to decrease
until the final displacement (∆f) and the complete failure of the element. The integral of the
traction–separation law represents the Critical Energy Release Rate (GC) of the material.
The interface degradation of the cohesive element is directly related to the evolution of a
damage variable (d), which can be calculated with the following equation [16]:

d =
∆ f (λ − ∆0)

λ
(

∆ f − ∆0

) (4)

The constitutive model can be extended to simulate fatigue damage propagation by
considering the evolution of the damage variable with the number of fatigue cycles.

The model adopted in this work is based on the assumption that the evolution of the
cohesive damage can be expressed as the sum of a quasi-static damage rate (∂ds/∂N) and a
fatigue damage rate (∂df/∂N), as represented by the following equation:

∂d
∂N

=
∂ds

∂N
+

∂d f

∂N
(5)

The part related to the quasi-static damage (∂ds/∂N) is evaluated according to Equation (4),
while the fatigue damage rate (∂df/∂N) is formulated as follows:

∂d f

∂N
=

1
lCZ

[
∆ f (1 − d) + d∆0

]2

∆ f ∆0

da
dN

(6)

where lCZ is the length of the cohesive zone and da/dN is the crack growth rate. The
implementation of the quasi-static damage rate and the fatigue damage rate are described
in detail in [21,22]. In this model, the crack growth rate is assessed using a semi-empirical
fatigue delamination growth law. The model is based on the assumption that the lo-
cal stress ratio and the mode mixity only influence the slope of the crack growth rate
curve (da/dN) as a function of the normalized energy release rate (Gmax/Gc). This law,
governed by a single formula and three independent material parameters, enables the
calculation of the crack growth rate, taking into account variations in mode mixity and local
stress ratio [32,33].

A flowchart illustrating the sequence of operations carried out within a User Material
Subroutine (UMAT), developed to take into account the “Min–Max Load Approach” and
the cohesive delamination formulation in the FE code ABAQUS [8], is depicted in Figure 5.
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Figure 5. Implementation of the fatigue delamination model in the ABAQUS UMAT subroutine.

During the analysis, for each time increment of the non-linear analysis, the subroutine
processes all the integration points of each cohesive element.

To differentiate between the two configurations (minimum and maximum load), each
element in one configuration is assigned the same number as its corresponding element in
the other configuration, with a known constant offset. If the integration point belongs to an
element that is part of the minimum load configuration, the damage variable and stresses
are updated by extracting the value from the corresponding integration point on the model
representing the maximum load configuration, and then the energy release rate is calculated.
On the other hand, if the element belongs to the maximum load configuration, first the
nodal displacements provided by the FE solver are adopted to update the damage variable
and stresses, and then, by using the minimum energy release rate value obtained from
the corresponding element in the other configuration, the local stress ratio is determined
and employed to calculate fatigue damage. The interchange of variables between the two
models is enabled through a COMMON BLOCK, a Fortran-specific feature that enables the
transfer of information between subroutines.

4. Single-Stringer Composite (SSC) Specimen

A Single-Stringer Composite (SSC) specimen is analyzed. The SSC specimen is de-
signed to replicate the behavior of large multi-stringer panels commonly found in fuselage
structures. The specimen is 320 mm long with a free length of 260 mm, taking into account
tabs of 30 mm at each end. An initial delamination of 40 mm is positioned at the center of
the specimen between one of the stringer flanges and the skin (Figure 6). The skin consists
of eight plies of carbon-epoxy IM7/8552 with the stacking sequence [45/90/−45/0]s, while
the stringer has seven plies with the layup [−45/0/45/0/45/0/−45]. The ply thickness is
0.125 mm.

The numerical model is discretized in ABAQUS using a combination of continuum
shell elements (SC8R) for the skin and the stringer, solid elements (C3D8R) for the potting
material and zero-thickness cohesive elements (COH3D8) to simulate the growth of the
skin-stringer separation. The model reflects conditions on a 1:1 geometric scale. The
average size of the elements is approximately 2 mm for the composite laminates and
10 mm for the potting regions. The initial delamination is incorporated into the numerical
model by excluding cohesive elements from the center of the specimen, thereby creating
an initial separation between the skin and the stringer. A finer discretization is adopted
in the area potentially interested by the propagation. In particular, close to the position
of the initial delamination fronts, a 50 mm region is discretized with an element length of
0.05 mm. To reduce computational times, tie constraints are used to connect the stringer
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flange with a finer mesh to the surrounding part of the structure where the element size is
larger. The total number of elements is around 165,000. To simulate the load application, the
nodes belonging to the external faces of the potting are rigidly connected to two reference
points where the boundary conditions are applied. For one reference point, all the degrees
of freedom are blocked, while the other can only move in the longitudinal direction. The
FE model and boundary conditions are shown in Figure 7.
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The elastic material properties were determined through a previous experimental
campaign of material characterization [34], while the interface material properties and
fatigue properties were taken from the literature [27]. The values adopted for the numerical
analyses are reported in Table 1.

Table 1. Material properties of IM7/8552.

Lamina Properties Interface Properties

E1 [MPa] 146,000 G1C [kJ/m2] 0.277
E2 = E3 [MPa] 8220 G2C [kJ/m2] 0.788

G12 = G13 [MPa] 4500 η 1.63
G23 [MPa] 3900 τ0

3 [MPa] 60
ν12 = ν13 0.32 τ0

1 = τ0
2 [MPa] 90

ν23 0.45 K [N/mm3] 106
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To predict the post-buckling shape of the specimen, geometrical imperfections that
occur during the manufacturing process must be considered in the numerical model. These
imperfections cause a deviation of the actual geometrical dimensions of the specimen
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from the design. During the experimental tests, a single Digital Image Correlation (DIC)
system, VIC-3D 8, positioned to observe the specimen from the skin side, was used to detect
both in-plane and out-of-plane displacements and to monitor buckling and post-buckling
shapes during skin–stringer propagation. To enable DIC measurements, before the tests,
the specimens were painted with white color and then with black speckles of approximately
1.5 mm. The geometrical imperfections were measured using DIC before the experimental
test. Both the shape and size of the imperfections were consistent among the different
specimens with a slightly curved shape in the transversal direction, most likely caused by
the internal stresses during the curing process, as shown in Figure 8a. The geometrical
imperfections are introduced in the numerical model by performing a preliminary linear
step analysis where the imperfections are imposed on the nodes as applied displacements.
The resulting deformed shape of the specimen is shown in Figure 8b.
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5. Quasi-Static Analysis and Experimental Comparison

The quasi-static analysis is performed using the dynamic implicit solver under
displacement-controlled conditions to replicate the tests. In the dynamic implicit solver,
inertia effects are introduced to regularize the model’s unstable behavior resulting from
post-buckling phenomena and to enhance the convergence rate of the solver. The test cam-
paign included two specimens subjected to quasi-static compressive loads with a loading
rate of 0.1 mm/min. The numerical results in terms of load vs. applied displacement are
shown in Figure 9, compared with the results of the experimental quasi-static test [24].
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The numerical results in Figure 9 are in good agreement with the experimental data
in terms of initial stiffness, buckling load and skin–stringer separation opening load and
displacement. It must be noted that the model cannot predict the global collapse of the
specimen that occurs during the experimental test at an applied displacement of about
0.92 mm due to the failure of the stringer, as the numerical model does not consider
fiber/matrix failure.

Figure 10 shows the contour plot of the out-of-plane displacements at four different
values of the applied load with the corresponding evolution of the skin–stringer separation
compared with the DIC images and ultrasonic C-scan acquired during the quasi-static test.
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The evolution of the out-of-plane displacements predicted by the numerical model
is in agreement with the DIC images from a qualitative point of view. Initially, the global
buckling of the specimen starts in the skin with two half-waves on the side of the delamina-
tion and three on the opposite (Figure 10a,e). As the load increases, it is possible to observe
the effect of the skin–stringer separation on the buckling shape with an increase in the
out-of-plane displacements in the delamination area (Figure 10b,f). At an applied load of
27.4 kN the skin–stringer separation suddenly opened, causing a shift in the post-buckling
shape with one half-wave observed on the delamination side and three half-waves on the
opposite side (Figure 10c,g). The change in the post-buckling shape and the onset of the
delamination during the experimental test are associated with the load drop observed in
the load-displacement curve shown in Figure 9. In the experimental test, the load drop
is steeper since the opening of the delamination occurs suddenly, while in the numerical
model, the buckling shape transition and the delamination opening are more gradual. After
this point, the post-buckling shape no longer changes, and the delamination keeps growing
until it reaches the end of the refined cohesive zone (Figure 10d,h). It can be noted from
Figure 10h that during the experimental test, the delamination propagates on the opposite
flange before the collapse. The numerical model cannot simulate this phenomenon since
no cohesive elements were placed there. It would have been possible to place cohesive
elements underneath the undamaged flange; however, this would have resulted in a sub-
stantial increase in computational time. Anyway, it would not have been possible to use
the same model for the fatigue analyses since the damage model based on Paris’ law allows
one only to simulate the propagation of an existing damage and not the damage initiation
in a pristine area.

From the comparison in Figure 10, it can be observed that the skin–stringer sepa-
ration in the numerical model propagates faster than in the experimental tests. One of
the main reasons for this discrepancy are the interface properties adopted in the numer-
ical analysis which are obtained from the standard DCB and MMB specimens with a
delamination positioned between 0◦ plies, while in the SSC the skin–stringer separation is
positioned between −45◦ and 45◦ plies. Previous work [34] has shown that delamination
between differently oriented plies results in a large increase of the fracture toughness
as the delamination propagates due to the presence of fiber-bridging and delamination
migration to adjacent plies, phenomena which were both observed during the performed
experimental tests.

6. Fatigue Analysis and Experimental Comparison

The “Min–Max Load Approach” is implemented to study fatigue behavior by dis-
cretizing two identical models in the same analysis, as shown in Figure 7. The two models
are subjected to different constant loads, one to the maximum load and the other to the
minimum load of the fatigue cycle. During the analysis, the two models exchange infor-
mation to perform the fatigue calculation following the operations described in Figure 5.
The boundary conditions applied to each model are identical to those used in quasi-static
analysis and are enforced through reference nodes associated with the degrees of freedom
of the nodes on the external faces of the two specimens. An image of the FE model before
the analysis is shown in Figure 11.

To replicate the experimental testing conditions, a load-controlled analysis is per-
formed using the dynamic implicit solver with the specimen cycling between 25.2 kN and
2.52 kN. The analysis is divided into two steps: in the first quasi-static step, the load is
increased up to the minimum and maximum values; then, in the second step, the load is
kept constant.

The growth of the delamination, as the number of cycles increases, affects the post-
buckling shape of the specimen, as shown in Figure 12, where the post-buckling shape with
the out-of-plane displacements distribution and the damage propagation predicted by the
numerical model can be qualitatively compared to the DIC and C-scan images captured
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during the experimental test. The DIC images are slightly tilted since the two cameras used
for the VIC3D were not perfectly aligned perpendicular to the specimen.
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At the beginning of the fatigue test, the post-buckling shape consists of two half-waves
on the delamination side and three half-waves on the opposite side (Figure 12a,d). The
growth of the skin–stringer separation results in a change of the post-buckling shape
with one half-wave on the delamination side and three half-waves on the opposite side
(Figure 12b,e). As the number of cycles increases, the post-buckling shape remains sta-
ble and the half-wave on the delamination side slowly moves towards the center while
the out-of-plane displacements increase (Figure 12c,f). The analysis is terminated after
990 cycles, when the delamination reaches the end of the refined cohesive zone.

It can be observed that there is an agreement between the sequence of events observed
during the experimental fatigue tests and the numerical analysis. On the other hand, a
quantitative comparison of the propagation of the delamination with the number of cycles
shows that the numerical model tends to overestimate the growth of the delamination,
similar to the findings of the quasi-static analysis. The same considerations made in
the previous section regarding the increase of fracture toughness as the delamination
propagates can be extended to the fatigue analysis. Indeed, the Paris’ law parameters
adopted in the numerical model were obtained from unidirectional specimens where the
effect of fiber bridging and delamination migration are negligible.

In the numerical analysis, the skin–stringer separation starts to propagate already
during the first cycle (Figure 12a). The delamination starts to grow from the top left corner,
influenced by the post-buckling shape of the panel. As the number of cycles increases, the
skin–stringer separation rapidly grows (Figure 12b), resulting in the delamination fronts
taking on a progressively straighter configuration. After 990 cycles, the damage reaches the
end of the refined cohesive zone, and the analysis is stopped (Figure 12c).

On the other hand, the experimental C-scan images show that the delamination
remains closed during the first cycle (Figure 12d); it opens around 7000 cycles, resulting
in the change in the buckling shape observed in Figure 12e, and finally slowly grows,
reaching 77 mm after 50,000 cycles (Figure 12f). The progression of the skin–stringer
separation is clearly influenced by the sequence of buckling events, which in turn is
affected by the growth of the delamination. During the experimental test, the delamination
length stabilized after 50,000 cycles. Subsequently, the specimen was able to endure
150,000 cycles without experiencing a global collapse of the structure, prompting the
termination of the test.
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7. Analysis of Local Stress Ratio

As stated in Section 2, the “Min–Max Load Approach” provides insight into the de-
formed shape of the structure when subjected to the minimum load during each fatigue
cycle. To illustrate the significance of this knowledge, Figures 13 and 14 compare the nu-
merical deformed shapes with the out-of-plane displacements contour plot at the minimum
and maximum load with the experimental DIC images during the first cycle for an analysis
with a maximum load of 29.2 kN and a load ratio of 0.1 and 0.5, respectively. From both
the numerical and experimental images of the specimen subjected to an applied load ratio
of 0.1, shown in Figure 13, it is possible to observe that the specimen oscillates between
pre- and post-buckling conditions during each fatigue cycle. On the other hand, from
the images related to the specimen subjected to an applied load ratio of 0.5 in Figure 14,
the specimen remains in post-buckling at both the minimum and maximum loads. This
phenomenon would not have been captured using traditional load envelope approaches
since the deformed shape of the structure at the minimum load is assumed to be equal to
the one at the maximum load with the displacements scaled by the applied load ratio.
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During the numerical analysis, within the UMAT, the value of the local stress ratio
is calculated for each integration point of the cohesive elements for each increment of the
non-linear analysis and stored in a state variable. In Figure 15a,b the contour plots of the
state variable related to the local stress ratio are presented for the analyses with an applied
load ratio of 0.1 and 0.5, respectively. As expected by observing the numerical deformed
shapes of the analysis with an applied load ratio of 0.1 shown in Figure 15a, the value of
the local stress ratio is almost zero along the delamination front because the structure at the
minimum load is only slightly deformed, resulting in almost zero opening stresses in all
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the points. On the other hand, for the analysis with an applied load ratio of 0.5, shown in
Figure 15b, the local stress ratio varies along the delamination front from zero to values close
to one. Additionally, the local stress ratio changes as the delamination propagates since
the post-buckling shapes at the minimum and maximum load may differ. The significance
of the developed “Min–Max Load Approach” in simulating fatigue delamination growth
in the post-buckling regime lies in its ability to use the actual values of the local stress
ratio in all the points to calculate the delamination propagation rate, whereas traditional
load envelope approaches would have assumed a local stress ratio equal to 0.1 and 0.5
everywhere on the delamination front.
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8. Conclusions

The fatigue behavior of composite stiffened structures in post-buckling conditions
has been numerically investigated. This study has focused on validating, using in-house
experimental data, a numerical approach for simulating fatigue delamination propagation
on single-stringer composite specimens. The numerical methodology, called the “Min–Max
Load Approach”, based on the Cohesive Zone Model technique, is able to dynamically
capture the local stress ratio during the damage evolution.

The response of a single-stringer composite specimen with an initial delamination
under post-buckling compressive fatigue load was numerically investigated. The numerical
results have proven to be consistent with the data of the experimental campaign, demon-
strating both the potential and limitations of the proposed approach. The delamination
opening load obtained from the quasi-static analysis (27.4 kN) is around 5% higher than the
experimental value (26 kN); however, both the quasi-static and the fatigue analyses over-
estimated the delamination propagation. During the fatigue analysis, with the specimen
cycling between 25.2 kN and 2.52 kN, the delamination exhibited rapid growth, extending
to the end of the refined cohesive zone (94 mm) after 990 cycles, while in the experimental
tests it reached 77 mm after 50,000 cycles. The analysis of the local stress ratio revealed
that for an applied load ratio of 0.1, the local stress ratio remains almost zero across the
delamination front. In contrast, at an applied load ratio of 0.5, significant fluctuations in the
local stress ratio are evident across the delamination front, with values ranging between
0.3 and 0.8. Further studies are needed on the fracture material properties adopted as
the input of the numerical model. Specifically, in this work, the material properties are
obtained from standard unidirectional specimens where the delamination is positioned
between 0◦ plies and no R-curve effect has been considered. A fully static and fatigue
material characterization in terms of fracture toughness and R-curve for all mode mixities is
necessary to further improve the numerical results. Despite these limitations, the proposed
numerical methodology represents a step forward towards developing numerical tools for
accurately simulating delamination growth under fatigue loading conditions in complex
structural problems compared to the current state of the art, which is mostly limited at



J. Compos. Sci. 2024, 8, 143 16 of 17

the coupon level. The methodology has the potential to be scaled up for larger structures
representing components or subassemblies of aeronautical structures. Enlarging the struc-
ture would lead to a substantial increase in computational cost, as the structure needs to be
modeled twice. Nevertheless, applying a constant load would facilitate the convergence of
the nonlinear algorithm since at each load increment the deformed state of the structures
does not deviate significantly from the previous equilibrium state.
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