
Redesigning the Spoofax Testing
Language

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

V. Lanting
born in Gouda

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl/

www.ewi.tudelft.nl/

c©2020 V. Lanting. All rights reserved.

Redesigning the Spoofax Testing
Language

Author: V. Lanting
Student id: 1513273
Email: volkerlanting@gmail.com
Thesis defense: 29-01-2020

Abstract

The Spoofax Testing Language (SPT) is the existing solution for
testing in the Spoofax language workbench. It allows developers of do-
main specific languages to write their test cases declaratively. As it aims
to be implementation agnostic, developers don’t need to concern them-
selves with the details of the artifacts generated by Spoofax, and can
write their tests before implementing their language. However, the pre-
vious implementation has become slow and unusable for larger test suites
and can not be executed programatically. This means it can’t be used for
continuous integration and automated regression testing. As Spoofax was
redesigned to become more robust and platform independent, the previ-
ous SPT is no longer compatible. We took this opportunity to redesign
SPT.

In this thesis we will discuss the benefits of a testing approach like
SPT, how far along it is on the path of testing any language, and what
is required to make it usable by modern day developers. We will analyze
the problems that SPT had to tackle and how it solved them, and which
problems still remain. Finally, we present and evaluate our new design
and implementation to solve some of these remaining problems. We
created a platform independent, real-time performant, easily extendable
architecture that allows SPT to be used for automated tasks such as
continuous integration and the automated grading of students’ domain
specific languages.

Thesis Committee:

Chair: Prof. Dr. E. Visser, Faculty EEMCS, TU Delft
Committee member: Dr. A. Zaidman, Faculty EEMCS, TU Delft
Committee member: Dr. J. Cockx, Faculty EEMCS, TU Delft
Daiy supervisor: G. Konat, Faculty EEMCS, TU Delft

Contents

Contents iii

1 Introduction 1

2 Background 5

2.1 Testing in Language Engineering 5

2.2 The Spoofax Language Workbench 8

2.3 The Spoofax Testing Language 14

3 Requirements Analysis 27

3.1 The ideas behind SPT . 27

3.2 Previous SPT architecture and implementation 33

3.3 Use Cases for SPT . 43

4 Proposed solution for SPT 49

4.1 SPT Core . 50

4.2 Changes to the language . 54

4.3 Adding new test expectations 57

5 Evaluation 61

5.1 Requirements of chapter 3.1 . 61

5.2 Requirements of chapter 3.2 . 65

5.3 Requirements of chapter 3.3 . 69

6 Related work 73

6.1 Testing in language workbenches 73

6.2 Testing outside of language workbenches 76

6.3 Test generation . 77

7 Future work 79

7.1 Dynamic markers . 79

iii

Contents

7.2 Editor services . 79
7.3 Sandboxing . 80

8 Conclusion 81

Bibliography 83

iv

Chapter 1

Introduction

Testing is an important tool to gain confidence in the correctness of a software
system. According to a survey by the National Institute of Standards and
Technology software failures are estimated to cost the US economy around
59.5 billion dollars each year [1]. The NIST estimated that 22.2 billion of
these losses could be saved by the correct use of existing software testing
approaches throughout the development process. This illustrates not only the
importance of software testing, but also the importance of making it easier for
developers to apply software testing approaches. For example, by providing
tools for writing and executing tests.

The Spoofax Testing Language (SPT) does exactly that for the field of
language engineering [2]. It is a domain specific software language (DSL)
in which language engineers can declare test cases for the software language
they are developing. By focusing on the field of language engineering, SPT
can offer abstractions specific to the testing of software languages. These
domain specific abstractions greatly reduce the effort of writing test cases and
enable the use of test driven development [3].

Figure 1.1 shows a test case for the syntax of the MiniSQL language.
It illustrates some of the powerful abstractions of SPT. First, the program
that is being tested is not just treated as text, but is a first class citizen
of the language, allowing us to show syntax highlighting and errors directly
in the input program. This representation of an input program is called a
fragment in SPT. Second, it illustrates how test cases in SPT are declarative.
A simple parse succeeds is enough to indicate that the input program should
be parsed and the parsing is expected to succeed. SPT provides a predefined
set of these test expectations, which can be used to test the different aspects of
the language (like its parser). Finally, it shows how tests are executed and the
results are displayed directly inside the editor, as the developer is writing the
test, shortening the feedback cycle as much as possible. This short feedback
cycle and declarative syntax of SPT, make it very suitable for test driven
development.

1

1. Introduction

Figure 1.1: An example of a test case in SPT.

SPT is one of the tools offered by the Spoofax language workbench [4]. A
language workbench is a collection of tools for the development of a software
language, which are integrated into a single environment [5]. Language work-
benches are basically Integrated Development Environments (IDE) specifi-
cally made for the development of software languages. They allow the creation
of a software language implementation with significantly less code, improving
the maintainability of the implementation [6].

As Spoofax was being used to develop more languages, new use cases and
requirements arose for Spoofax and its tools. In response to this, the core of
the Spoofax language workbench has been rewritten to be more robust and to
break away from its tight coupling with the Eclipse IDE to become platform
independent. This major change meant that many of the tools provided by
Spoofax (including SPT) had to be ported to the new implementation.

The previous implementation of SPT is tightly coupled with both the old
Spoofax internals and Eclipse. Due to this, porting it would require quite
a lot of changes. At the same time, new use cases have emerged for SPT,
which its previous design does not support. These new use cases are integrat-
ing SPT in a continuous integration system, and using SPT test suites for
automated grading of student submissions for a compiler construction course,
where students learn to make their own language implementation. As the pre-
vious SPT does not allow programmatic execution of tests, these use cases are
not yet supported. There is also a significant performance degradation as test
suites get larger, and the implementation does not allow easy addition of new
test expectations. Therefore, we decided to use this opportunity to reevaluate
SPT and identify its shortcomings, so a new version could be created to tackle
these problems and support the new use cases.

In this thesis we will analyze the previous implementation of SPT to
find the main problems, and analyze the new use cases to create a list of
requirements. Then, we propose a new design that:

• works with the new Spoofax,

• does not suffer from the same performance problem,

• allows the easy addition of new test expectations,

2

• allows programmatic execution of test cases,

• and meets the requirements for the new use cases.

We implemented this new design and evaluated it by using it for both
existing and new use cases. The new implementation was used for test driven
development of the MiniSQL language. It was integrated into the Maven build
system to allow its use during continuous integration, and it was used to create
an automated grading system for the Compiler Construction course at the
Delft University of Technology. Finally, we benchmarked the execution time
of test suites of different lengths and compared those against the execution
times of the previous SPT.

The rest of this thesis is outlined as followed. In chapter 2 we provide
more background information about the field of language engineering, lan-
guage workbenches and specifically Spoofax, and the ideas behind and bene-
fits of SPT. Then, we move on to the analysis of the previous implementation
of SPT in chapter 3, where we give an overview of the most pressing problems
and present a list of requirements for the new design. In chapter 4 we present
our new proposed design and discuss how it tackles the problems and meets
the requirements outlined in chapter 3. The implementation of this new de-
sign will be evaluated in chapter 5, where we will briefly discuss how it was
used for all use cases discussed in chapter 3.3 and evaluate if it meets the re-
quirements. Next, we’ll discuss how this work fits in the current landscape in
chapter 6, and in chapter 7 we will discuss what more can be done to improve
SPT.

3

Chapter 2

Background

2.1 Testing in Language Engineering

The field of language engineering is concerned with the creation of computer
languages, languages designed to communicate instructions to a computer.
Examples of computer languages are programming languages like C, Java, or
JavaScript, but also query languages like SQL, and markup languages like
HTML.

When talking about languages, we make a distinction between the lan-
guage specification and the language implementation. Most languages have a
textual specification which describes the syntax of the language (i.e. what you
are allowed to write) and the semantics of a language (i.e. what it means).
However, to execute programs written in the language a software system is
required. This system is called the language implementation. The relation
between the specification and implementation is illustrated in figure 2.1. It
usually consists of some, or all of the following components:

• Parsing – the parser transforms the program from its initial representa-
tion, usually a textual representation, to a format that can more easily
be reasoned about. Usually the output is some form of Abstract Syntax
Tree (AST), a tree representation of the syntactical information of the
program. Parsing checks if the syntax of a program is valid.

• Analysis – after parsing, the AST can be used to reason about the
static semantics of the program. This includes things like generating
errors when a variable is used before it is defined, and type analysis.
Analysis checks the static semantics of the program.

• Transformation – if a program has valid syntax and static semantics,
it can be transformed to a different format. For example, a compiler
would transform the AST to machine code that can be executed on the
computer. A transpiler would transform the AST to a representation of
another programming language.

5

2. Background

Figure 2.1: The language specification describes the behaviour of the aspects
of a language, like what constitutes a valid program and what should happen
when it is executed. There can be any number of implementations that provide
this behaviour.

Any errors in the language implementation can affect all programs that
are executed with it, so the proper testing of a language implementation is
crucial. To assist with the creation of the language implementation and its
tests, we need proper tool support.

There is already extensive support for the development of generic software
systems in the form of Integrated Development Environments (IDEs). An
IDE integrates a set of tools into a single environment, allowing a developer
to enjoy their benefits in an intuitive way. This same principle is being applied
to the development of languages. Both new and existing tools for language
development are integrated into a single environment (usually into an existing
IDE) for the language developer. Such an environment is called a Language
Workbench. Examples of language workbenches are XText and Spoofax [4].
These language workbenches allow the developer to formally specify (parts
of) the language specification, and will generate (parts of) the language im-
plementation from this specification.

When testing languages, this distinction between the language specifica-
tion and the language implementation is important (see figure 2.1). The in-
tended behaviour of the language is specified in the specification, and the
implementation should implement this behaviour. This means that any tests
concerned with the observable behaviour of the language (so called black-box
tests [7]), can be written against the specification, instead of against the im-
plementation. This has two main benefits. First, it abstracts over the imple-
mentation specifics, making it faster and less complex to write the tests. This
is especially important when the tools of a language workbench are used to
create the language. These tools often generate artifacts for the language im-
plementation, like how a parser generator generates a parser from a grammar
specification. This means the language engineer writes the specification, not

6

2.1. Testing in Language Engineering

the implementation. Therefore, writing tests that require knowledge about
the generated artifacts is a bigger hurdle than when the implementation is
written by hand.

Second, it allows the sharing of test cases. Let’s look at an example: the
EcmaScript standard is the specification for the JavaScript language. Some
well known language implementations for this language are the V8 and Spi-
derMonkey JavaScript engines. When multiple implementations of the same
specification are created, they all have to be tested. In this case we would like
to reuse as many tests as possible, with the least amount of effort.

When it comes to testing of generic software systems, one of the main tools
is a unit testing framework. There are unit testing frameworks for most gen-
eral purpose languages, allowing developers to write tests for software written
in that specific general purpose programming language (GPL). These frame-
works are often based on the xUnit family of frameworks [8], which provides
a general architecture for unit testing frameworks. Keeping the terminology
and general architecture of frameworks consistent across the implementations
for different GPLs makes it easier for developers to start writing tests if they
are already familiar with a different framework of the xUnit family. Unit tests
written in such a framework can only be used to test the behaviour of a sys-
tem written in the programming language supported by the framework. For
software systems written in multiple programming languages, multiple unit
testing frameworks would have to be used.

Using this standard approach to unit testing, we would test against the
implementation. So each language implementation would have their own test
suite, using the unit testing framework for the language in which the language
implementation was written. Testing against the specification, instead of the
implementation, would result in a test suite per language specification, that
can be reused for all language implementations of the language. The difference
between these testing setups is illustrated in figure 2.2.

The problem is how to abstract over the language implementation and
write tests against a language specification. One solution is to write the tests
in the language that is being tested. For example, the Ecma TC39 committee
has a test suite of test cases written in JavaScript that can be used to test
JavaScript Engines [9]. This approach only works if the language is expressive
enough to test itself, which is not the case for many domain specific languages
(DSLs), especially declarative ones. Another limitation of this approach is
that it generally does not allow negative test cases, like verifying that wrong
syntax is indeed rejected, as that would result in non-compiling tests. This
problem can be solved by creating a program to execute these tests and check
if negative tests actually failed, but such a program would need to be created
for each language implementation.

In [2] a solution to this problem was proposed: the use of a declarative
testing language, called a Language Parametric Testing Language (LPTL),
that allows the user to specify black-box test cases for the domain of language

7

2. Background

(a) Traditional unit testing approach.

(b) Unit testing at the level of the language
specification.

Figure 2.2: Unit testing setups for testing languages.

engineering. It is called language parametric, because it can be used to write
tests for any textual language. The proposed LPTL comes with a range
of tools and abstractions to ease the creation of unit tests. For example,
the programs that serve as test inputs are treated as first class members of
the LPTL, allowing syntax highlighting and content completion within these
program texts, and intuitive selection of elements within the program text.

A subset of this LPTL was implemented for the Spoofax language work-
bench. This implementation was called the Spoofax Testing Language (SPT).
In the next section we will give more background information about the
Spoofax language workbench. After that, we will go into more detail about
SPT and its benefits.

2.2 The Spoofax Language Workbench

The implementation of SPT as described in [2] was used as a tool to facilitate
testing of languages created with the Spoofax language workbench [4]. Before

8

2.2. The Spoofax Language Workbench

we discuss this version of SPT and its benefits, we will first give an overview
of what Spoofax is and what if offers.

Like any language workbench, Spoofax offers a set of tools for the develop-
ment of the different components of a language implementation, and integrates
them into a single environment. The environment of choice for Spoofax is the
Eclipse IDE. The tools that Spoofax offers are a set of declarative DSLs in
which the language developer can express each component of their language.
These DSLs are each specific to a specific domain within language engineer-
ing. For example, the Syntax Definition Formalism (SDF) [10] can be used to
express the syntax of the language, and the Name Binding Language (NaBL)
[11] can be used to specify the scoping and reference resolution rules for the
analysis of the language.

By using these DSLs, the language developer can specify each component
of their language in a declarative way, without having to deal with the details
of how it is implemented. This approach shields the developer from a lot of
the accidental complexity involved in the creation of a language implementa-
tion, and allows them to focus on what the language should be doing. The
specifications written in these DSLs together describe the language that is
being developed, and are called the language definition. From the language
definition, artifacts are generated, resulting in the language product. Spoofax
can then use the artifacts of the language product to provide the services
they describe, like a parser, a compiler, or an editor providing syntax high-
lighting and code completion. This combination of the language product and
the Spoofax framework forms the language implementation. For example, the
SDF grammar specification is part of the language definition. It produces a
parse table as part of the language product. The parse table can then be used
by Spoofax’s parser framework to parse programs of the language. The com-
bination of the parser framework and the parse table is part of the language
implementation. These concepts are illustrated in figure 2.3.

Spoofax offers editors for all its DSLs, with editor services like syntax
highlighting, content completion, and real-time error reporting inside the edi-
tor. We will now give a quick example of how Spoofax’s DSLs can be used to
develop a language. To illustrate how a language can be developed, we will
use the development of MiniSQL as an example. MiniSQL is a small subset
of the SQL query language. We will discuss how each aspect of the language
(parsing, analysis, transformation, and editor services) can be specified in
Spoofax.

Parsing

To specify the syntax of a language, the Syntax Definition Formalism (SDF)
[10] can be used. Let’s look at the grammar definition of our example language
MiniSQL. It allows the definition of tables using the CREATE TABLE statement,

9

2. Background

Figure 2.3: A language definition in Spoofax is written using several DSLs.
From this language definition, artifacts are generated that, together with
Spoofax, form the language implementation.

and simple queries with a SELECT, FROM, and optional WHERE clause. An ex-
ample program of this language would look like this:

CREATE TABLE Tbl (

intCol int,

strCol VARCHAR

);

SELECT t.intCol

FROM Tbl t

WHERE t.intCol = 5 AND t.strCol = "some string";

The grammar definition for this language is written in SDF3 using pro-
duction rules and templates. Production rules specify what program text each
non terminal can produce. If a program can be produced from any of the lan-
guage’s starting non terminals it is a valid program. Apart from the syntax of
the language, the production rules also specify what the abstract syntax tree
(AST) that results from parsing should look like. Each production rule starts
with the name of the sort (non terminal) followed by a dot and the name of
the constructor of the AST node that should be created for this production.
Here is the production rule for the CREATE TABLE statement of our language:

Statement.TableDef = <

CREATE TABLE <ID> (

<{ColDef ",\n"}*>

10

2.2. The Spoofax Language Workbench

Figure 2.4: The AST of a sample MiniSQL statement.

);

>

This rule specifies that the sort (non terminal) Statement can produce the
literal strings (keywords) CREATE and TABLE, separated by whitespace (called
layout), followed by the sort ID and any number of ColDef sorts, separated
by a comma. When a string like this is found in a program, it will be parsed
to a TableDef(id, coldefs) AST node, where the first child is the ID node
representing the name of the table, and the second child a list of ColDef nodes
representing the column definitions of this table.

From production rules like these a parse table is generated that allows
Spoofax’s parser to parse a program written in our language to an AST. An
example of such an AST is given in figure 2.4.

Analysis

After a program has been parsed to an AST, it can be analyzed. The analyzer
checks the AST and returns any error messages, warnings, or notes that should
be produced. The specification from which this analyzer will be generated
usually consists of three parts: name analysis, type analysis, and any other
analysis.

The name analysis specification specifies what kind of named entities exist
in the language, what constructs define them, how they are scoped, and what
constructs refer to them. MiniSQL has three different kinds of named entities:
tables, columns, and fro’s. Tables and columns are quite self explanatory. A

11

2. Background

fro is the entity represented by an expression in the FROM clause of a query.
In normal SQL this could be a view, a reference to a table, or a table alias.
MiniSQL only allows table aliases.

To specify where these Tables, Columns, and Fro’s are defined, we can use
the Name Binding Language (NaBL) [11].

TableDef(tname, coldefs) :

defines Table tname

scopes Column

ColDef(cname, typeref) :

defines Column cname of type typeref

FroDef(tname, alias) :

defines Fro alias

imports Column from Table tname

scopes Column

refers to Table tname

These rules specify that if a TableDef(tname, coldefs) node is found in
the AST, it will be a definition site of a Table with the name in the tname node,
and it creates a new scope for Columns. When a ColDef(cname, typeref)

node is found, it will be a definition site for a Column. We can also specify any
properties of this column like its type. These types can be used later in the
type analysis specification. The final rule specifies that if a FroDef(tname,

alias) node is found, representing a table alias in the FROM clause of a query,
it is a definition site of a Fro with the name of the node alias. It also specifies
that this Fro creates a scope for columns and imports all columns from the
scope of the table with the name of the node tname. Finally, it also specifies
that the tname node is a use site of the Table with the name of the tname

node.

From these name analysis specification rules, Stratego code will be gen-
erated. When unresolved references or duplicate definitions are found, an
error message will be generated by this code. This generated Stratego code is
included in the generated code for the analyzer (see figure 2.3).

The second part of the analysis specification is type analysis. Type analysis
can be specified using the Type System language (TS).

ColRef(tname, cname) : ctype

where definition of cname : ctype

Int(i) : INT()

String(str) : VARCHAR()

12

2.2. The Spoofax Language Workbench

Equals(e1, e2) : BOOL()

where

e1 : e1type

and e2 : e2type

and e1type == e2type

else error $[Expected [e1type], not [e2type]] on e2

The first rule specifies that a ColRef(tname, cname) node has the same
type as the definition that the cname node refers to. This links in with the
name analysis to find the Column it refers to and get the type that was
recorded for that definition. Next we specify the types for ints and strings.
Finally we specify the type of the equals expression, and generate an error
message on the e2 node if the types on both sides of the equals sign don’t
match. For example, when comparing a string and an int typed column.

Just like the NaBL code, TS will generate Stratego code that can be
included in the analyzer.

The final part of the analysis specification is written in Stratego [12]. For
example, we can generate a warning on the name of a table if it doesn’t start
with a capital letter.

constraint-warning:

TableDef(tname, cols) ->

(tname, "Table names usually start with a capital.")

where

[first-char | other-chars] := <explode-string> tname;

<is-lower> first-char

A Stratego rule matches an AST term on the left of the arrow and its
result on the right of the arrow. Additional computation can be done in the
where clause. The analysis framework of Spoofax will then traverse the AST
and call these Stratego rules to collect all errors, warnings, and notes. As
the example illustrates, Stratego is not as declarative as TS and NaBL. In
return, this allows the developer to implement any analysis they want.

The Stratego code generated by the NaBL and TS specifications, and the
manually written Stratego code are used by Spoofax’s analysis framework to
process the AST and gather all error messages, warnings, and notes. Together,
the framework and the Stratego files form the analyzer that is part of the
language implementation.

Transformations

The next part of the language specification are the transformation rules. These
rules can be used to transform the program into something else. For exam-
ple, transformation rules can be used to transform the ANSI SQL JOIN ON

13

2. Background

Figure 2.5: An example of a menu entry in the editor.

expressions of MiniSQL to Oracle SQL style predicates in the WHERE clause.
Transformations are implemented with Stratego rules.

Editor Services

The final part of a language specification are the specifications for several
editor services. These specifications are written in ESV, and are used by the
editor created by Spoofax to initialize the editor’s services.

An example of such an editor service is a menu entry. Menu entries can
be specified using ESV.

menu: "Generation" (openeditor) (realtime)

action: "Generate Oracle SQL" = gen-ora-style-builder

This specification means the editor will contain a menu labeled ’Generation’,
with a menu entry called ’Generate Oracle SQL’. When the menu entry is
pressed, the Stratego rule gen-ora-style-builder will be executed on the
selected part of the AST. Figure 2.5 shows an example menu entry for this
transformation.

Other editor services that can be specified through ESV files are syntax
coloring, content completion, code folding, and an outline view. Spoofax will
generate sensical defaults for these services, so the language developer does
not have to specify them.

2.3 The Spoofax Testing Language

Now that we have seen how Spoofax offers DSLs for each component of a
language, it should come as no surprise that their testing solution is also a
DSL. The Spoofax Testing language (SPT) is a DSL that can be used to
specify test cases for the behavior of a language [2]. Just like the other DSLs
that are a part of Spoofax, SPT offers domain specific abstractions to increase

14

2.3. The Spoofax Testing Language

the expressiveness and productivity of the language developer. The domain
of SPT is black-box testing of textual languages. In black-box testing (or
behavioural testing [7]) the behaviour of an object is tested. A black-box test
consists of an object under test, an input for that object, and the expected
output. It feeds the input to the object under test and compares the obtained
output with the expected output. The advantage of black-box testing is that
it only requires knowledge of the requirements of the object, not of the actual
implementation details. As a language developer using Spoofax only wrote the
language definition, from which a language implementation was generated, it
is a great benefit to be able to write tests without needing to know any details
about the generated language implementation.

Spoofax has an editor for SPT test specifications which offers editor ser-
vices like syntax highlighting, content completion, and real-time error report-
ing. The tests that the developer specifies in SPT are executed as the test
is being written. Any failing test cases are marked with an error. This was
done to make the cycle of test driven development as short as possible [3].
In test driven development, the developer first writes tests for a new feature.
They then watch them fail, to ensure that the tests do indeed capture the
new behaviour introduced by the new feature. Only after this will the feature
actually be implemented. After the implementation is complete, the developer
reruns the tests to check if they do indeed pass. If so, they now have more
confidence in the correctness of the implementation. By executing the tests
as they are being written and reporting the errors in real-time SPT facilitates
this process.

In this chapter we will give an overview of the previous SPT, as it was
used in Spoofax versions below 2.0, before the major rewrite of the Spoofax
architecture.

Test Cases

A test case in SPT corresponds to a subtest as described in [7]. It is the
smallest unit of testing and consists of the component under test, the initial
state for that component, the input, and the expected output. In this section
we will discuss how SPT uses domain specific abstractions to make it easier
to specify test cases.

The behavior of a language depends on the program that it gets as input.
Therefore, when designing black-box tests for a language, the input of a test
case is always a program text. This program is either faulty and the test
should ensure that the fault is discovered (a negative test case), or it is a
correct program and the test should ensure that it is not erroneously marked
as faulty (a positive test case). We call such an input program text a fragment.

Let’s look at an example. Throughout this thesis we will be using examples
of test cases for the MiniSQL language. MiniSQL is a very small subset of
SQL that only allows the creation of tables with integer (INT) and string

15

2. Background

test table creation [[

CREATE TABLE T (

intCol INT

);

]] parse succeeds

(a) A positive test case for the
syntax of the create table state-
ment.

test mandatory whitespace [[

CREATETABLE T (

intCol INT

);

]] parse fails

(b) A negative test case to ensure
that whitespace is mandatory be-
tween CREATE and TABLE.

Figure 2.6: Example test cases for the syntax of the MiniSQL language.

(VARCHAR)columns, and simple select, project, join queries. An example of
both a positive and a negative test case for the syntax of the create table

statement of MiniSQL is shown in figure 2.6. These test cases illustrate some
of the basic abstractions that SPT offers.

The expected output of a test case depends on the component of the
language that is being tested. For example, given a certain program, a parser
will produce an abstract syntax tree, an analyser can produce semantic error-
and warning messages, and a runtime can execute the program to obtain some
result. As the format of the expected output depends on the component under
test, SPT combines the two in a so called test expectation. In the example
of figure 2.6 the parse expectation is used. It declares that the parser is
the component that should be tested. It is followed by either succeeds, to
indicate that the expected output of this test is a successful parse (i.e. no errors
occurred during parsing), or fails, to indicate that the expected output of
the parser should contain at least 1 error message.

The syntax of a test case in SPT is as follows: A test case begins with
the test keyword, which is followed by the description of the test case, the
input fragment, and one or more test expectations. We will first describe how
the input of a test case can be specified in a fragment, and what the benefits
of fragments are. Then, we will discuss the set of test expectations offered by
SPT and how they can be used to specify the component under test and the
expected output. Finally, we will discuss the initial state for the component
under test.

Fragments

As discussed above, the input of a black-box test for a language is always a
program, written in that language. In generic testing frameworks, the program
would be represented as text (e.g., a string). However, because SPT is domain
specific, we can treat the fragment as an actual program, and invoke the editor
services of the language under test if they are available. This means that the
full range of editor services (e.g., syntax highlighting or content completion)

16

2.3. The Spoofax Testing Language

test resolution of tablenames [[

CREATE TABLE [[MyTable]] (intCol INT);

SELECT t.intCol FROM [[MyTable]] t;

]] resolve #2 to #1

Figure 2.7: A test to check if the reference MyTable in the FROM clause resolves
to the correct table definition.

could be available to the developer as they are writing the program text. Also,
any errors or warnings produced by failing test cases can be shown directly
inside the program text to make it easier to discover why a test failed. This
makes the creation of programs as test inputs just as easy as writing the
program in the actual editor for the language under test.

An example of how fragments allow the use of editor services can be seen in
figure 1.1. This is an example of an erroneous test case. The developer wanted
to create a positive test case for the syntax of the CREATE TABLE statement,
but forgot the semicolon at the end of the statement. Because SPT executes
tests as they are being written it is immediately visible that the test fails (the
red error on the test description) and because of fragments it is possible to
report the error in the input program text, allowing the placement of an error
on the missing semicolon.

The previous SPT only invokes the parser and analysis of the language
under test. It does not invoke any of the other possible editor services of
the language under test. It does, however, support a predefined syntax high-
lighting on the program text of the fragment. The syntax highlighting on the
fragment is specified by SPT itself, based on token information supplied by
the parser of the language under test, so it uses the same highlighting as the
rest of the SPT code.

For some tests, a bit more information is required than just the program
text. For example, to test if a reference resolves to the correct definition,
we need to know which reference should be resolved and which definition it
should resolve to. To accomplish this SPT allows the selection of parts of
the program within a fragment. To select a part of the fragment, the same
delimiters are used as those that delimit the fragment (usually [[and]]).
Selections can then be referred to by the order in which they appear in the
fragment. They are numbered from left to right, from top to bottom, starting
at 1. An example of the use of selections in a fragment to test name resolution
for the MiniSQL language can be seen in figure 2.7. Here we declare that we
expect the reference at the second selection to resolve to the definition at the
first selection.

17

2. Background

Test Expectations

The expectations of a test case specify the component under test, and what the
expected output is. The set of test expectations supported by SPT is grouped
based on components that are common to most language implementations.
For example, we’ve already seen the parse expectations which are used to
test the parser, and very briefly touched upon the resolve expectation which
is used to test the name analysis.

We will now give an overview of all the expectations offered by SPT.

Testing the Parser

To test the syntax of the language under test SPT invokes its parser. All test
expectations related to testing the parser begin with parse. They only differ
in the expected output. SPT expects a parser to produce an AST if the input
program has valid syntax, or one or more errors if it does not. We’ve already
seen the most basic way to test the syntax of an input program in figure 2.6:
parse succeeds and parse fails. When the parser produces one or more
errors, the parsing is considered to have failed. If it produces no errors, it is
considered to have succeeded.

In case of a successful parse, the developer may want to reason about
the structure of the produced AST. To do so SPT offers 3 more ways to
express the expected output. The first way is to express exactly what the AST
should look like. To stay implementation independent the Annotated Terms
(ATerms) format [13] can be used. The ATerms format offers a platform- and
language independent way to represent tree-like data structures. An example
of how the ATerm format can be used to specify an expected AST can be seen
in figure 2.8. When specifying expected output as an ATerm, an underscore
can be used in place of any node as a wildcard, to indicate that you don’t care
about the output in that specific part of the data. This is useful when you
don’t know, or don’t care about, the exact value of a part of the data. For
example when testing the output of a transformation that generates unique
names which can’t be known beforehand.

As the input program gets bigger or more complicated, the AST can get
quite big. The second way of expressing the expected output was made to
tackle this problem. The parse to file <filename> test expectation can be
used to separate the ATerm representation of the expected AST from the rest
of the SPT file. When evaluating this expectation, the ATerm representation
will be read from the specified file and compared to the output of the test.

The third way to express the expected output is to use an output fragment.
Just like the input fragment of a test case, an output fragment is a piece of
program text written in a different language, for which SPT will try to provide
editor services. This type of expected output is also known as concrete syntax,
as opposed to abstract syntax that is expressed using ATerms. At the end of

18

2.3. The Spoofax Testing Language

test produce the given AST [[

CREATE TABLE T(intCol INT);

]] parse to Module([

TableDef(

"T",

[ColDef("intCol", Int())]

)

])

(a) Check if the fragment parses to
the given AST in ATerm format.

(b) Graphical representation of
the AST.

Figure 2.8: Using the ATerm format to specify the expected output.

test precedence [[

4 + 5 * 6

]] parse to [[

4 + (5 * 6)

]]

(a) Concrete syntax

test precedence [[

4 + 5 * 6

]] parse to Add(

Int("4"),

Mul(Int("5"), Int("6"))

)

(b) Abstract syntax

Figure 2.9: Using concrete- or abstract syntax to test operator precedence.

this section we will discuss how the language of the output fragment can be
specified. The output program will be parsed with the specified language, or
with the language under test if no other language was specified for the output
fragment, and the resulting AST is compared against the output of the test
case. A typical example where concrete syntax is useful is to test operator
precedence or associativity. Although such a test could be specified by pro-
viding the expected AST in ATerm format, it is more concise and convenient
to use concrete syntax. Especially because in such a test we don’t care about
the actual values in the AST, we only want the precedence and associativity
to be correct. Both the abstract syntax approach and the concrete syntax
approach for such a test are illustrated in figure 2.9.

Next, we will discuss the expectations that can be used to test the analysis
of a language.

19

2. Background

test duplicate tables not allowed [[

CREATE TABLE t (intCol INT);

CREATE TABLE [[T]] (intCol INT);

CREATE TABLE [[T]] (intCol INT);

]]2 errors

1 warning

/Duplicate table/

Figure 2.10: Testing for error messages on duplicate table names, and a warn-
ing on a table name that isn’t capitalized.

Testing the Analysis

The analysis uses the AST of the program to reason about its meaning. Anal-
ysis is usually used to signal problems or possible problems in the program
to the developer, but it can also be used to provide editor services such as
tooltips with type information when hovering over expressions or following a
reference to its definition by clicking on it. In its most basic form, SPT ex-
pects the analysis to return a set of error and warning messages. For example,
the analysis of MiniSQL returns an error when comparing incomparable types,
and it returns a warning on table names that don’t start with a capital letter.
The expected output for errors and warnings can be expressed as n errors

and n warnings respectively. The number n here can be any non-negative
integer. SPT will check if exactly n errors or warnings were returned. As 1

errors is not proper English, SPT also offers the n error and n warning

expectations. They are just an alias for their plural counterparts. Figure 2.10
shows a test case that uses all of SPT’s test expectations related to testing
errors and warnings. This test case expects 2 errors, because duplicate table
names are not allowed (one error on each duplicate table name). It expects
1 warning, because a table name without a starting capital letter is used (t).
The third test expectation specifies that one of these error and warning mes-
sages should contain the string “Duplicate table”. As long as at least one of
the errors or warnings contains that string, the expectation is met. Finally, it
illustrates how selections inside the fragment can be used to specify stronger
test expectations. When the n errors or n warnings test expectations are
present, SPT checks if all marked selections in the input fragment contain
an error or warning message. So in this example we ensure that the error
messages are indeed located on the duplicate table names.

SPT also offers dedicated test expectations for name analysis. The core of
name analysis is to determine to which definition the references in a program
refer. Most languages that do static name analysis do not allow references
for which no definition can be found, as both their value and type can’t be
known. To check if the name analysis managed to resolve a reference to any

20

2.3. The Spoofax Testing Language

test reference resolution [[

CREATE TABLE S (intCol INT);

CREATE TABLE [[T]] (intCol INT);

SELECT t.intCol FROM [[T]] t;

]] resolve #2 to #1

Figure 2.11: Checking if a reference to a table resolves to the correct definition.

definition, the resolve test expectation can be used. The reference in the
input fragment should be selected, and the resolve keyword should then be
followed by the reference to that selection. To check if it resolves to a specific
definition, the definition can be selected as well and the resolve expectation
can be followed by the to keyword and the reference to the selected definition.
An example test case for the name analysis on table names can be found in
figure 2.11.

Testing Transformations

Part of the language implementation generated by Spoofax is an editor for the
language that is being developed. As discussed in section 2.2 transformations
can be made available to users through the menu of this generated editor. In
Spoofax versions before 2.0 transformations that were made available this way
were called builders. To test these transformations SPT offers the build test
expectations.

Let’s take the gen-ora-style-builder builder from section 2.2 as an ex-
ample. To test if a builder succeeds a simple build builder-name is enough.
To test if a builder fails, we can just add the fails keyword, just like we do
with the parse test expectation. If we also want to test the output of the trans-
formation, the same options are available as for the parse test expectation:
an ATerm representation of the output, or an output fragment. Figure 2.12
shows how we can test the output of the gen-ora-style-builder builder.
Note that we can mark a selection within the input fragment (in this case the
SELECT query). The builder will be executed as if the user selected the marked
text before executing the builder. This example illustrates the situation from
figure 2.5;

Testing other components

We have now discussed all of the test expectations that SPT offers to test
the behavior of components that are common to most languages (parsing,
analysis, transformations). However, some areas are not yet covered. For
example, editor services like syntax highlighting and content completion can
not be tested with the expectations we have discussed so far.

21

2. Background

test join predicate transformation [[

CREATE TABLE Tbl (

intCol int,

strCol VARCHAR

);

[[

SELECT t1.intCol, t2.strCol

FROM Tbl t1

JOIN Tbl t2

ON t1.intCol = t2.intCol;

]]

]] build gen-ora-style-builder to "

SELECT t1.intCol, t2.strCol,

FROM Tbl t1, Tbl t2

WHERE t1.intCol = t2.intCol;

"

Figure 2.12: Testing the transformation from MiniSQL’s ANSI style joins to
Oracle style join predicates.

To cover the testing of any component, there is the run expectation. This
expectation allows the developer to run something on either the entire input
fragment or on a selection within the fragment. In Spoofax, the Stratego
language is used to glue all the different components together and to extend
them with functionality that could not be expressed in one of the other meta
languages [12]. The run expectation can be used to run a piece of Stratego
code (called a strategy), allowing the developer to test arbitrary components
of their language implementation. An example of the run expectation can be
seen in figure 2.13. Here we check the type of a selected expression by invoking
the get-type strategy. This strategy interfaces with the type system that the
developer defined in the TS meta-language. To specify the expected output
of the strategy, the same format can be used as for the build expectation:
fails, an ATerm specification, or an output fragment.

Finally, SPT offers a freeform test expectation to test arbitrary pieces
of Stratego code without even requiring an input fragment. By using this
freeform expectation, SPT kind of turns in to a unit testing framework for
Stratego code. An example of the freeform expectation can be seen in fig-
ure 2.14, where we specify some test cases for the sum strategy of Stratego,
which is supposed to sum up all the elements in a list.

22

2.3. The Spoofax Testing Language

test check types [[

CREATE TABLE T (intCol INT);

SELECT t.intCol

FROM T t

WHERE [[t.intCol > 5]];

]] run get-type to Boolean()

Figure 2.13: Running a Stratego strategy to test the type of a comparison
operation.

test sum works on lists

<sum()> [1,2,3] succeeds

test sum ONLY works on lists

<sum()> 1 fails

test does sum work?

<sum()> [1,2,3] => 6

Figure 2.14: Some freeform test cases for the sum strategy of Stratego.

Test Suites

Test cases are grouped into so called test suites. Each SPT file is a named
test suite that contains zero or more test cases. Organizing test cases into test
suites does not only allow the developer to organize their tests, it also offers
possibilities for the configuration of all the tests in a test suite at once.

A test suite starts with the module keyword, followed by the name of the
test suite. This declaration is followed by one or more configuration headers,
that provide runtime configuration for all the tests in the test suite. After
these headers, test cases and setup blocks can be declared. This setup block
is how test fixtures can be defined in the previous SPT. They provide a way
to set up and tear down the initial state for all the tests in the test suite.

First, we will provide an overview of the available configuration headers.
Then, test fixtures will be discussed.

Configuration Headers

The most important configuration header is the language header. This header
specifies what the language under test is for all the tests in the test suite. It
starts with the language keyword, followed by the name of the language under
test. This header is optional as long as the test suite contains no test cases.
As soon as the test suite contains a test case, the language under test has
to be specified through this header. The language that is specified using this

23

2. Background

module expressions

language MiniSQL

test expression syntax [[

CREATE TABLE T(

intCol INT

);

SELECT t.intCol

FROM T t

WHERE

t.intCol > 4 + 5 * 6;

]]

(a) Wrapping an expression in a
valid MiniSQL program.

module expressions

language MiniSQL

start symbol Exp

test expression syntax [[

4 + 5 * 6

]]

(b) Using the start symbol header
to reduce boilerplate.

Figure 2.15: The start symbol header allows parsing to start from a different
non terminal to reduce the size of fragments.

header will be used for all the input fragments and for evaluation of the test
expectations of all the test cases in the test suite. To specify a language
to use with the output fragments of the test cases inside the test suite, use
the target language header. All output fragments, like those from parse,
build, or run expectations, will be parsed with the specified language.

The next header is the optional start symbol header. This header speci-
fies from which start symbol the syntax tests should operate. A start symbol
is simply a non terminal of the grammar definition that the language devel-
oper wrote in SDF. It can be used to test the syntax of parts of the language,
thereby reducing the amount of boilerplate code that has to be written. For
example, let’s take another look at figure 2.9 where we test the operator prece-
dence in MiniSQL. The input fragments of these tests are just expressions, and
not valid MiniSQL programs. If the MiniSQL parser would be executed on
such a fragment, it would fail, causing the tests to fail. To test the syntax
of expressions we would have to put the expression inside a real MiniSQL
program. For example, by wrapping it in a predicate of a query, but that
would require declaring the full program for every test case for the syntax of
expressions.

Figure 2.15 shows the difference in boilerplate that the use of the start
symbol header can bring. These test suites only contain a single test case, but
the difference becomes even more apparent as more test cases are added to
the test suite, because the start symbol header applies to all test cases in the
test suite.

24

2.3. The Spoofax Testing Language

module expressions

language MiniSQL

setup schema [[

CREATE TABLE T (

intCol int,

strCol VARCHAR

);

]]

test select syntax [[

SELECT t.intCol

FROM T t;

]] parse succeeds

test join syntax [[

SELECT t1.strCol

FROM T t1 JOIN T t2

ON t1.intCol = t2.intCol;

]] parse succeeds

Figure 2.16: Using test fixtures to declare initial state for all test cases.

Fixtures

We already discussed how the start symbol header can be used to reduce
boilerplate. This only works if the parser is capable of parsing from a specified
non terminal. If this is not possible, or to specify other initial state of the
component under test, test fixtures can be used. Test fixtures are textual
fragments that will be combined with the input fragment of each test case to
create the actual input program for that test. As such, they can be used to
extract text common to all test cases in the test suite. Test fixtures can be
expressed with setup blocks. For example, in figure 2.16 a test fixture is used
to create the schema that is used by both test cases.

25

Chapter 3

Requirements Analysis

Last chapter we discussed how behavioural test cases for languages can be
concisely and declaratively specified using SPT. In this chapter we will look
at how the previous SPT works and what its shortcomings are. First, we will
briefly touch upon the Language Parametric Testing Language (LPTL) [2].
The LPTL is the generalized idea behind SPT: to make a testing language
which can be used to test any other language (the language parameter of the
LPTL). We will discuss how the previous SPT implements the ideas and
goals of the LPTL, and where it falls short. Then, we will give an overview
of the architecture of the previous SPT and discuss some problems resulting
from this architecture. Finally, we will discuss the use cases for SPT. Both
the use cases for which it was designed and the use cases that emerged over
time as it was being used in practice. For each use case we will look at if, and
how, the previous implementation of SPT can be used to fulfill it.

3.1 The ideas behind SPT

When SPT was designed, the goal was to make a testing language that could
be used to test any textual software language. The term for this language was
a Language Parametric Testing Language (LPTL) [2]. SPT is the Spoofax
specific implementation of a subset of the design goals of this LPTL. We will
discuss the LPTL in a little more detail, outline these design goals, and look
at how the previous SPT tries to meet them.

An LPTL is a testing language for computer languages, which is com-
pletely agnostic to the language it is testing. Ideally, the LPTL should be
agnostic to both the language specification and the language implementation
of the language it is testing. When it is agnostic to the language specification,
it means that tests can be written for any language specification. When it is
agnostic to the language implementation, it means that tests can be executed
against any implementation of the language specification. The specific lan-
guage specification and implementation that are being tested can be seen as

27

3. Requirements Analysis

the language parameters of the testing language.

The novelty of an LPTL is that it can use abstractions specific to the
domain of testing languages, to offer tool support for writing tests. By treat-
ing input programs for tests as a first class citizen of the testing language,
the LPTL can offer editor services like real-time error reporting, syntax high-
lighting, and content completion within this input program. It also allows
easy selection of parts of the program. The use of test expectations specific to
testing language components (like the parser or analysis) allows the developer
to concisely declare what should be tested. Instead of implementing a test
case, they merely have to declare it. This focus on supporting the developer
when writing test cases is the main benefit of an LPTL.

The second benefit of an LPTL is that it allows the developer to write tests
against the language specification, not the implementation. As illustrated in
figure 2.2 this allows the reuse of test cases, which is useful for languages with
many different implementations (like JavaScript or SQL). This way of testing
allows the use of test driven development, as the developer can write tests that
capture the desired behaviour before they implement it. It is also particularly
well suited for testing languages created by using a language workbench, as the
language implementation is generated for such languages, and the developer
does not need to have in-depth knowledge of the details of the generated
implementation to test it.

The third benefit is that an LPTL allows the testing of any language.
This means that once the developer is familiar with the LPTL, they can use
it to read and write tests for many different languages.

To offer these benefits, an LPTL would have to meet some requirements.
The main requirements are outlined as design goals of an LPTL in [2].

• agnostic to the language specification

• agnostic to the language implementation

• allow instantiation for a specific language under test

• offer test fixtures

Language specification agnostic

The first design goal is to be language specification agnostic. This means it
should be possible to test any textual language. To do this, we should offer a
way to express any textual input program as a first class citizen of the LPTL.

As we have already seen in chapter 2.3 the previous SPT uses fragments
to express input programs as first class citizens. However, due to its architec-
ture and implementation, these fragments do not allow the expression of all
program texts. There are 2 limitations on the language specifications it can
test.

28

3.1. The ideas behind SPT

test double selection marker [[

a = [[5]]

print a[0][0]

]] 0 errors

(a) In this case, we would get an
error, as the variable a is assigned
the value 5. The double square
brackets around the 5 are inter-
preted as an SPT selection.

test triple selection marker [[[

a = [[5]]

print a[0][0]

]]] 0 errors

(b) In this case the test would suc-
ceed. The double square brack-
ets are not considered a selection,
as the triple squared brackets are
used as delimiter of the fragment.

Figure 3.1: Using different markers to not conflict with the program text in
the fragment. These test cases use Python as the language under test.

The first limitation is mostly a theoretical limitation. To be able to recog-
nize selections inside a fragment, the program text inside the fragment should
not contain the selection markers as part of the program itself. If it does,
SPT will parse it as a selection marker instead, possibly causing faulty pro-
gram syntax in the input program. This issue is illustrated in figure 3.1a,
where we are testing a simple (and contrived) Python program. In this pro-
gram we assign a list, containing a list, containing the value 5 to the variable
a. The syntax for this introduces two square brackets directly after each other,
which also happens to be the syntax for an SPT selection marker. The test
case in figure 3.1a would fail, as the double square brackets would be parsed
as SPT tokens and removed from the program text, causing the variable a to
have the value 5 instead of a list with a list with the value 5. As we already
mentioned, this is hardly a problem in practice, as SPT offers multiple mark-
ers to work around this problem. In figure 3.1b we can see how we can use
the triple square brackets as delimiters for the fragment, causing SPT to use
these same triple square brackets as a selection marker. The double square
brackets would no longer be parsed as a selection marker, and there would no
longer be an issue. Another easy solution for this problem would be to add a
space between the two subsequent square brackets in figure 3.1a. This is still
valid Python syntax, with the same semantics, but since the square brackets
no longer directly follow each other, they are not parsed as an SPT selection
marker.

The second limitation is a bigger problem. Due to its architecture and
implementation for showing error messages inside the fragment, the previous
SPT does not support all layout sensitive language specifications. A lay-
out sensitive language is a language where whitespace characters (e.g., tabs,
spaces, or newlines) actually matter for the syntax and semantics of the pro-
gram. The problem is caused by the way the previous SPT handles the parsing
of test cases. It replaces all SPT specific characters in the file with spaces,
and leaves only the text inside the fragment and test fixtures intact. We will

29

3. Requirements Analysis

test double selection marker [[

def main():

[[x]] = "hello world"

print [[x]]

main()

]] resolve #1 to #0

0 errors

Figure 3.2: The SPT selection markers will be replaced by whitespace, causing
the ’print’ statement to be incorrectly indented.

discuss why SPT does this in chapter 3.2, where we will look into the details of
the architecture and implementation of SPT. The problem with this approach
is that it adds whitespace characters to the program text, which may alter
the meaning of the program or cause syntax errors. An example of this can
be seen in figure 3.2. Here we have another test case for the Python language.
Python is layout sensitive, because it expects blocks of statements to start at
the same column (character offset from the start of the line). As the double
square brackets would get replaced by spaces, the assignment of variable x
will be indented by 2 extra spaces. This would cause the next line (the print
statement) to not be on the same column and therefore the program would
raise an error. A possible workaround for this specific problem would be to
indent the print statement by another 2 spaces. It would solve the indentation
problem, but would require taking these implementation details of SPT into
account while writing tests, which defeats the main purpose of SPT: to make
writing tests easier.

Language implementation agnostic

Next is the design goal to be agnostic to the language implementation. There
are two parts to meeting this requirement. First, the LPTL should allow the
developer to specify tests for their language without having to worry about
implementation details. Second, these tests should be executed against an
actual implementation.

For the first part, we need to allow the developer to reason about the be-
havior of the implementation, without needing to specify any details of the
implementation. The proposed LPTL of [2] accomplishes this by offering a
set of test expectations for common components of language implementations.
However, this set of expectations can not cover all components of any imple-
mentation. For example, there are no test expectations for things like the
type system or testing tooltips that pop up when you hover over elements of
the program. To allow testing of such components that are not covered by

30

3.1. The ideas behind SPT

the LPTL’s main test expectations, there is the run expectation, which runs
something against (part of) the input program and checks the result. This
is implementation agnostic in the sense that the developer doesn’t have to
specify how this thing should be executed or where it can be found.

The previous SPT offers test expectations for parsing, errors and warnings
resulting from semantic analysis, and reference resolution. It also implements
the run expectation, and therefore fully covers this first part.

The second part of being agnostic to the language implementation is exe-
cuting the test cases. It requires executing parts of the language implementa-
tion. To do so, either the LPTL should have knowledge about the language
implementation or the language implementation must adhere to some interface
defined by the LPTL. Both of these solutions mean we exclude some language
implementations, making it impossible to be truly agnostic to the language
implementation. Therefore, the LPTL should limit the amount of work one
has to do to make the tests executable against a new implementation. For
example, by requiring the implementation to expose its behavior through a
specific API.

As SPT is the Spoofax specific implementation of an LPTL, this design
goal to be language implementation agnostic can be limited to language im-
plementations generated by Spoofax. However, the previous SPT does not
call the components of the language implementations through a generic API.
Instead, it directly uses some of the generated artifacts. The biggest problem
here is that it uses the generated parse table for the language under test to
parse test cases. However, Spoofax allows a language to register a custom
parser, which can do additional tasks on top of just parsing a file with the
generated parse table. For example, the previous SPT has such a custom
parser. This custom parser takes care of parsing the test cases and merging
the results into the output of the parsed SPT syntax. As the previous SPT
does not support these custom parsers, it can not be used to test itself. Even
though the syntax of fragments allows SPT to test itself (language specifi-
cation agnostic), this direct usage of the parse table means SPT can not be
used to execute test cases against itself.

Instantiate the language under test

The third design goal is to be able to instantiate the LPTL for a specific
language under test. This means that it should be possible to specify which
language to use, and the implementation for that language should be loaded.
That way the tests can be executed against that implementation and the
results can be displayed directly in the editor. It is not acceptable to have to
compile a different version of the LPTL for each language we want to test it
with. This means the instantiation should happen at runtime.

The way this is done in the previous SPT relies on the architecture of
Spoofax before version 2.0. As these versions were tied into the Eclipse IDE,

31

3. Requirements Analysis

it meant that SPT was only used inside this environment. Therefore, it could
use the IMP language registry which was part of all Spoofax installations,
to access all Spoofax languages registered in the current Eclipse IDE. Based
on the name in the language header of the test suite, SPT pulls the required
artifacts from this language registry and uses them to execute tests.

The limitation here, is that it requires a running instance of Eclipse to be
able to execute tests. Which makes programmatic execution of test cases a
problem. It also means that in order to test against a different implementation
for the language under test, this new implementation has to be loaded into
the language registry. Doing so requires manual work and a restart of Eclipse.

Test fixtures

The final design goal for the LPTL is to offer test fixtures which can be used
to factor out boilerplate code from multiple test cases. Test fixtures are a part
of an input program, which will be combined with the fragment of each test
case to form the input program which will actually be tested.

We have already shown an example of test fixtures in section 2.3. What’s
important to note here, is that the test fixtures of the previous SPT are
slightly different than the proposed fixtures of the LPTL [2]. There can be
only one LPTL test fixture per test suite. The test fixture is located in one
place and defines the place where the program text of the test cases’ fragment
should be inserted with the following marker [[...]]. Test fixtures in SPT
are called setup blocks. Each test suite can contain multiple setup blocks, and
they have no markers to insert the program text of the fragment. Instead, the
setup blocks are located around the test cases and when a test case is parsed,
all SPT specific syntax is replaced by spaces, and only the text of the setup
blocks and the test case’s fragment remains, which is parsed with the language
under test. This difference is illustrated in figure 3.3, which shows the same
test case as in figure 2.15 with test fixtures from the LPTL and with setup
blocks from SPT.

Setup blocks are more powerful than test fixtures, but less readable, be-
cause they can be inserted between test cases. This would cause some test
cases’ fragments to be ’inserted’ at other places than other test cases’ frag-
ments. In practice this power is seldom needed and only confuses the reader
of the test suite. This is illustrated in figure 3.3b where we need to define a
separate setup block at the end of the test suite just to insert the semi colon.
The test fixture in figure 3.3a is a lot more readable, as it is in the same
place. The only reason for the setup blocks of the previous SPT is the fact
that it was required to allow the use of the whitespace technique we discussed
before. As mentioned before, we will discuss why SPT needs this whitespace
technique in chapter 3.2.

In this section we have discussed the design goals behind SPT and some
of the problems that have to be solved to meet them. These problems are

32

3.2. Previous SPT architecture and implementation

fixture [[

CREATE TABLE T(

intCol INT

);

SELECT t.intCol

FROM T t

WHERE

t.intCol > [[...]];

]]

test expression syntax [[

4 + 5 * 6

]]

(a) Test fixtures of the LPTL.

setup header [[

CREATE TABLE T(

intCol INT

);

SELECT t.intCol

FROM T t

WHERE

t.intCol >

]]

test expression syntax [[

4 + 5 * 6

]]

setup footer [[

;

]]

(b) Test fixtures of the previous
SPT.

Figure 3.3: Test fixtures between SPT and LPTL.

summarized in table 3.1.

3.2 Previous SPT architecture and
implementation

As we discussed in the previous section, the idea behind SPT was to create a
single language that allows:

1. the declarative specification of tests for any textual language,

2. instantiating SPT with a language implementation,

3. the execution of these test cases using this language implementation,

4. reuse of boilerplate code between tests by offering test fixtures.

Each of these goals provides their own problems that SPT had to tackle. In
this section we will discuss the architecture of the previous SPT, the problems
that had to be solved, and how the previous implementation has tackled them.

The main architecture for the previous SPT was determined by the goal
to have a single language to test any other language created with Spoofax. In
the Spoofax ecosystem, most of the tools that are offered are languages which

33

3. Requirements Analysis

Category Discussion Solved

Specification
agnostic

dynamic markers 1.1
selections in program
text

1.2

Implementation
agnostic

extensible set of expec-
tations

1.3

allow custom parsers 1.4
error reporting in frag-
ment

1.5

syntax highlighting 1.6
other editor tools 1.7

Fixtures declarative fixtures 1.8

Instantiation reuse tests for multiple
implementations

1.9

Table 3.1: Summary of the problem areas where the previous SPT does not
(fully) meet the goals of an LPTL, as we discussed in section 3.1.

are themselves made with Spoofax. The decision was made to do this for SPT
as well. To do so, it meant the parsing, analysis, and editor services of the
language under test had to be integrated with those of SPT itself, and the
results had to be merged with those of SPT itself in such a way that Spoofax
could handle them.

As explained in section 2.2, each Spoofax language consists of the following
main aspects: parsing, analysis, transformation, and editor services. We will
now discuss for each aspect, how the previous SPT tackled the problem of
combining its own results with those of the language under test.

Parsing Tests and Fragments

During the parsing phase both the SPT syntax and the fragments of the test
cases are parsed. To accomplish this, SPT first needs to be instantiated with
the language under test, so it knows how to parse the fragments. There are
two ways to accomplish this. The first is merging the grammar of SPT and
the language under test. The second is parsing the fragments separately from
the SPT syntax.

Merging the grammars is not an easy task, as the SPT selections syntax
can be used inside the program text of the fragment and faulty syntax is al-
lowed inside fragments as well. For this reason, SPT uses the second approach
and parses the fragments separately from the SPT syntax.

Parsing the fragments separately requires several steps. First, the SPT
syntax is parsed, so we have access to the configuration headers, the raw
text inside the fragments, the selections, and the test expectations of each

34

3.2. Previous SPT architecture and implementation

test. Then, we need to instantiate SPT and get the parser for the language
under test. Then, the parser needs the fragment text as input, without any
characters that are part of SPT selections. With the use of test fixtures, the
fragment text needs to be created from the combination of these test fixtures
and the fragment itself. Finally, the parse results of the fragments have to be
merged with the parse result from the SPT syntax. This includes the ASTs
of fragments that parse successfully and the errors of fragments that failed to
parse.

This approach to parsing does not fit well within the Spoofax paradigm.
In Spoofax, the language developer writes a grammar definition, from which a
parse table is generated that can be used with Spoofax’ scannerless generalized
LR parser (SGLR) [14]. The problem with this is that it does not allow the
developer to perform any custom actions like the ones required to parse the
fragments. To work around this problem, Spoofax allows languages to provide
a custom parser, which can perform additional actions, as long as it returns
an AST and a token stream. We will now discuss how the custom parser for
SPT parsed the fragments of the test cases and combined their results with
the results of parsing the SPT syntax.

Instantiate SPT To parse the fragments of the test cases, the custom SPT
parser has to know where it can find the parse table for the language
under test. Spoofax was tightly coupled with the Eclipse IDE at the
time and it used the IDE Metatooling Platform (IMP) for Eclipse to
store information for all Spoofax languages that were installed. The
SPT parser uses the IMP language registry directly to find the parse
table for the language under test and then invokes the SGLR parser to
parse the fragment.

This approach has two main drawbacks. First, the dependency on the
IMP language registry means the SPT parser requires an Eclipse envi-
ronment. When Spoofax was redesigned and became platform indepen-
dent in version 2.0, SPT could not be easily migrated, because it still
had direct dependencies on Eclipse and IMP. Second, the explicit use of
the SGLR parser means SPT can only be used to test languages that
work with the standard Spoofax parser. Any language that requires a
custom parser, like SPT itself, can not be tested with this approach.

Obtaining fragment text Fragments of test cases can contain selections.
Selections are delimited on the left and right by markers which are part
of the SPT syntax instead of the fragment. These selection markers
need to be removed from the fragment to obtain the fragment text. The
previous SPT simply replaces these markers with spaces. The reason
for doing this, is that it keeps the location of the characters within the
fragment text, defined by the line number and character offset, in sync
with the location of these characters in the test specification. This is

35

3. Requirements Analysis

important when merging the parse result of the fragment with the parse
result of the SPT syntax, which we will discuss later.

For test fixtures, the text of the fragment has to be combined with
the fixture. We have already explained how the test fixtures of SPT
are different from those of the proposed LPTL. Instead of a single test
fixture, SPT requires the use of multiple setup blocks. The location of
the setup block relative to the fragment determines how it should be
combined with the fragment text. All text of all setup blocks before the
fragment should come before the fragment text, and all text of all setup
blocks after the fragment should come after the fragment text.

This approach of using multiple setup blocks was chosen to keep the
locations of characters in the resulting program text in sync with their
locations in the test specification. If the LPTL test fixture would have
been used, it means that there can be characters (like the semicolon of
figure 3.3a) which appear before the characters of the test’s fragment
in the test specification, but appear after the test fragment in the com-
bined program text of the fragment and the test fixture. Because the
characters no longer have the same location within the test specification
and within the program text constructed from combining the fixture
with the fragment text, it becomes harder to merge the token streams.
We will look at token streams, why they need to be merged, and what
problems this brings in more detail when we discuss the merging of the
parse results.

Just like with selections inside the fragment, any character that is not
part of the setup blocks’ text or the fragment text is replaced with a
space. The resulting text (with lots of whitespace) is given to the SGLR
parser with the parse table for the language under test, to obtain a parse
result for the fragment. This step is repeated for every fragment in the
test specification.

For larger test suites, all this excess whitespace slowed down the parsing
a lot. We benchmarked this on a simple test suite that can be generated
when you make an example Spoofax project. This test suite contains 7
tests and a total of 56 lines and the fragments were parsed in less than a
tenth of a second. When copying these 7 tests 11 times, we get a total of
77 tests on 516 lines, and the parsing of fragments slowed down to more
than 34 seconds. To allow direct feedback to the developer, parsing
is triggered every time the developer edits the test suite. In such a
case, waiting for more than a couple of seconds to get any feedback is a
problem.

Merging parse results Finally, the parse results of the fragments have to
be combined with the parse result of the SPT syntax. The main result
of parsing with the SGLR is either an AST or one or more parse er-

36

3.2. Previous SPT architecture and implementation

(a) The token stream produced by parsing
an SPT test case.

(b) The token stream
produced by parsing the
fragment of this test case
with the parser of the lan-
guage under test.

Figure 3.4: Token streams from parsing a test case and its fragment. Each
block represents a token in the stream.

rors. Next to this result, the parser also returns a token stream. In the
standard approach to parsing, a lexer (or scanner) first turns a program
text into a token stream, and then the parser parses the token stream.
However, the SGLR is scannerless, which means it directly parses the
program text and produces a token stream. The tokens in this token
stream represent syntactic elements like keywords, delimiters, or text,
which makes them useful for services like syntax coloring. The nodes of
the AST are linked to one or more tokens in the token stream. Each
token is linked to one or more characters in the program text, so tokens
can be used to find the location of the characters that represent the
AST node. When a program text fails to parse, an error token is used
to represent the characters that could not be parsed.

In figure 3.4 we can see an example of such token streams. First, we see
the token stream produced by parsing only the SPT syntax (figure 3.4a).
Each block represents a token, and the color of the block represents the
type of the token. In this figure tokens representing layout (i.e., whites-
pace) are white. Tokens representing keywords are purple. Green is
used for operator tokens. Blue represents text, and finally red repre-
sents numbers. We can see that as far as the SPT syntax is concerned
the entire fragment is just text. The other token stream (figure 3.4b) is
what we would get from parsing the fragment text with the parser for
the language under test. Here we see that this token stream does provide
further syntactic meaning to the fragment by recognizing numbers and
operators.

To merge the parse results of the fragments with the parse result of
the SPT syntax, both the ASTs and the token streams have to be
merged. Merging the ASTs is achieved by annotating the SPT AST
node representing the fragment, with the AST resulting from parsing
the fragment. If an error occurred during the parsing of the fragment,
the SPT AST node is annotated with an error node. This way, the
analysis of SPT can access the parse result of the fragment and use it
to execute the test. This situation is illustrated in figure 3.5.

37

3. Requirements Analysis

Figure 3.5: The AST of the parsed fragment (in yellow) is added as an anno-
tation on the AST of the SPT syntax.

Merging the token streams is a bit more complicated. Each AST is
linked to a single token stream and each node in that AST is linked
to a set of tokens from that stream. Editor services like clicking on a
reference to jump to the definition of that reference use this link to know
where to jump to. For services like these, the character locations of the
tokens of the parsed fragment need to match those of the original test
specification. The Spoofax editor uses error tokens in the token stream
of the AST it gets from the parser to mark any parse errors. For a
positive test case, where no syntax errors are expected, any parse errors
should be reported in the fragment. To do so, these unexpected parse
errors in the token streams of the parsed fragments have to be merged
into the token stream of the AST returned by the custom SPT parser.

We call the token stream obtained by parsing the SPT syntax the SPT
token stream (see figure 3.4a). The token stream of the parse result of the
fragment text will be called the fragment token stream (see figure 3.4b).
The custom parser creates a new token stream and copies over all tokens
from the SPT token stream, up to the first token that is linked to a
character in a fragment text. Then, if a parse failure is expected for this
fragment, any error tokens in the fragment token stream are converted
into other tokens. This prevents SPT from showing parse errors on
fragments of test cases where such a parse error was expected. Next,
it copies over the tokens from the fragment token stream that contain
characters inside the fragment text.

As described above, the character locations of the parsed fragment text
are consistent with their location in the original test specification due to

38

3.2. Previous SPT architecture and implementation

Figure 3.6: The token streams from figure 3.4 merged into a single token
stream.

the whitespace technique that the custom SPT parser uses. Therefore,
the tokens from the fragment token streams work seamlessly with those
from the SPT token stream and can just be appended to the new stream.
If the offsets would have been different we would have to determine if a
token was part of the fragment text, or of a test fixture. If it’s part of the
fragment text, the character offsets linked to the token should be mapped
to match the actual offsets within the test specification. Although this
is feasible, it does make things a lot more complicated. Therefore, the
previous SPT uses its whitespace technique to avoid these problems.

Next, it skips all tokens containing characters from the fragment text
from the SPT token stream. This process repeats until all fragments
have been processed. The end result is a new token stream where the
tokens of the fragment token stream are used for each fragment. All
the other tokens in the new token stream come from the SPT token
stream. For the example token streams from figure 3.4, the resulting
merged token stream is shown in figure 3.6. Here we can see that the
blue text tokens representing the fragment in the SPT token stream
have all simply been replaced by the tokens from the fragment token
stream.

During this merging of the token streams, we lost the tokens from the
SPT token stream representing the fragments (the blue tokens from
figure 3.4). Any AST nodes linked to these old tokens now have to be
linked to the new tokens (the ones copied over from the fragment token
stream) so they are still linked to the correct locations in the file. After
this is done, all AST nodes of the merged SPT AST and fragment
ASTs are linked to tokens in the new token stream. This means that
the merged AST and token stream can safely be passed back to Spoofax.

The returned token stream is used by the Spoofax editor to determine
the syntax highlighting for the file. This means that the syntax high-
lighting of SPT is applied to the tokens from the parsed fragments. The
result is a form of syntax highlighting as defined by SPT, instead of the
highlighting as defined by the language under test. As Spoofax does not
allow the language developer to dynamically determine the highlight-
ing rules, this was the only possible approach to getting some form of
highlighting. This means it is a limitation in both SPT and in Spoofax.

39

3. Requirements Analysis

Analysis and executing tests

Whenever changes are made to a program in the Spoofax editor, the new
program is parsed and analyzed. Problems with the syntax of the program
are detected during parsing. We already discussed how this works for SPT
in the previous section. Analysis is responsible for finding any problems with
the semantics of the program, like type or name errors. To enable interactive
test execution the previous SPT executes tests during the analysis stage and
reports any failing test results like semantic errors.

For Spoofax, the input for the analysis stage is the AST obtained from
the parsing stage. The result should be a new AST with more information,
like types and information about definitions and references, and a collection
of messages. The new AST’s nodes are linked to nodes of the input AST and
therefore they are also linked to a location in the program text. The messages
consist of a location within the program text, a message text, and a severity
(i.e. errors, warnings, and notes).

Just like how the SPT parser parses both SPT syntax and the fragments,
the analysis of SPT should also analyze both itself and the fragments. An
example of an analysis error in SPT itself would be if a test expectation ref-
erences a selection, but there are no selections in the corresponding fragment.
This analysis of SPT itself always happens. Analysis of the fragment itself is
only required if a test expectation that does not test the parser is present. For
example, to test reference resolution, we need the information from the new
AST returned from the analysis of the fragment. After analyzing the frag-
ment, the expectations can be checked. Based on the evaluation of the test
expectations some messages from the analyzed fragment have to be propa-
gated to the output of the SPT analysis. For parse expectations, the analyzer
simply checks the parse result of the fragment to see if it was an error or not.

Analyzing the fragment Just like the SPT parser obtained the parse table
for the language under test from the IMP language registry, the SPT
analyzer can obtain the analyzer for the language under test. Although
the previous SPT uses the parse table of the language under test to
parse the fragments, thereby losing the possibility of testing languages
with a custom parser, the analysis in Spoofax is always triggered from
a Stratego strategy. So when it comes to analysis, SPT supports all
languages created with Spoofax.

The analyzer is executed and the result is stored, as all actions required
for the evaluation of test expectations require this result.

Evaluating test expectations To evaluate test expectations related to mes-
sages (i.e. errors, warnings, notes), the analyzer simply checks the mes-
sages it got from analyzing the fragment. As the output AST from the
analysis of the fragment is linked to the input AST that was obtained

40

3.2. Previous SPT architecture and implementation

from parsing, the locations of the messages already correspond to loca-
tions in the test specification file. This makes it trivial to check both the
number of messages, and if the location of the message matches that of
a selection inside the fragment.

For reference resolution expectations (i.e. resolve expectations), the
IMP language registry is consulted to get the reference resolution strat-
egy. This strategy is executed on a node of the AST obtained from
analysis of the fragment. Running reference resolution on an AST node
representing a reference returns the AST node corresponding to the def-
inition of that reference. First, the reference node needs to be obtained,
based on a selection in the fragment. SPT traverses the AST until it
finds a node node with the same location as the selection. However,
more than one node can have the same location. For example, both the
List and the ColRef nodes on the left side of figure 2.4 correspond to
the same characters in the program text, and therefore have the same
location. In the case of reference resolution, SPT always gets the inner-
most node (in this case the ColRef) as that is where the analysis stores
the reference resolution information. To check if the output of reference
resolution is correct, we simply compare the location of the returned
AST node with the location of the selection.

The final type of test expectations are transformations (i.e. build ex-
pectations), running Stratego strategies (i.e. run expectations), and
freeform Stratego test expectations. The build and run expectations
first select what part of the analyzed AST to run on, either the entire
AST or the node corresponding to the selection if a selection was made.
Just as with reference resolution, there may be more than one such node.
In this case SPT selects the outer most node that matches the location
of the selection. Now the specified builder or strategy can be executed
on this input and the result can be compared with the expected output.
For the freeform expectations, there is no input fragment at all. The
Stratego code inside the expectation is simply evaluated and the result
compared with the expected output.

Each test expectation is evaluated separately. If any expectation fails,
an error message is generated on the description of the test. A test ex-
pectation can fail because the action (e.g., reference resolution) failed
to execute properly or because the output does not match the expected
output. Although the expectations are evaluated separately, they use
the same input fragment and the same selections. This can make the
semantics of a test case unclear, when multiple expectations share the
same selections. For example, when you test for error or warning mes-
sages, all selections in the fragment are expected to contain an error or
warning. This means it is not possible to test a builder in the same test
case, as the selections of the error or warning expectation will also be

41

3. Requirements Analysis

used by the build expectation. Only in the rare case where these selec-
tions are at exactly the same spot can we combine the two expectations.

propagating messages When a test expectation fails, new error or warning
messages are generated to describe what went wrong. However, some
of the original messages from analyzing the fragment may be important
for the language engineer to see why the test failed. For example, when
a test expectation specifies it expects an error at a certain location, but
the error is actually somewhere else, it would be good to show that
error in the editor. In cases such as this, these messages are collected
and also returned as part of the output of the analysis phase of SPT.
These messages are simply copied over, because their location is already
in sync with the location of the test specification. The downside of
this approach is that a message that spans from an element in a test
fixture to an element in the input fragment of the test case will be
displayed in its entirety by the editor. So the editor will also mark
all the SPT characters in between the element in the test fixture and
the element in the input fragment as part of the message, because no
care is taken to prevent that. Another problem is that the test fixtures
are combined with all input fragments of the test specification. So any
messages inside the fixture can be propagated by each failing test case,
resulting in duplicate messages.

Transformations for SPT

There are two transformations for SPT in the menu of the SPT editor. Both
transformations are batch test runners which can be used to get a more concise
overview of test results. The first transformation executes the tests of the test
specification that is currently open in the editor. The second transformation
executes all tests of all test specifications in the same project as the test
specification that is currently open in the editor. The usual way to see if tests
were executed correctly is to manually check for errors in the editor. However,
the batch runner provides a clear and concise overview of the results of the
execution of all tests of one or more test specifications.

These transformations are a good illustration of how broad the idea of a
transformation is. They are no source to source transformation, but instead
parse and analyze all the appropriate test specifications and provide a graphi-
cal representation of the output. Figure 3.7 shows the batch execution of two
test specifications, sqltest and test-example. For each test case in these
specifications it shows the description (i.e., name) of the test case and a color
to indicate if it passed or failed.

The batch runner consists of two parts. The first part is the transfor-
mation implementation in the Spoofax project. This part determines which
test specification files it should execute on and parses and analyzes those files.

42

3.3. Use Cases for SPT

Figure 3.7: The batch runner that executed all tests of two different test
specifications.

Category Discussion Solved

Parsing
test custom parsers 2.1
platform independent 2.2
real time feedback 2.3

Analysis
clear semantics of test
expectations

2.4

errors contained in
fragments

2.5

Table 3.2: Summary of the problems with the previous SPT implementation
we discussed in section 3.2.

While it does that it calls into the second part of the batch runner, the so
called test listener. This test listener is connected to a graphical UI element
in the Eclipse workspace. By separating the batch runner into two parts it is
possible to use a different test listener if applicable. The transformation and
the test listener are linked to each other at runtime through the use of Eclipse’s
extension points API. Although this test runner gives a nice overview of the
results of multiple test suites at once, it can only be manually executed from
within the Eclipse IDE.

The problems we discussed in this section are summarized in table 3.2.

3.3 Use Cases for SPT

We have already discussed some of the problems SPT faces in trying to meet
its design goals and doing what it was created for: to enable test driven

43

3. Requirements Analysis

development of languages with the Spoofax language workbench. However,
as SPT was being used, new use cases emerged. We will give an overview of
both the main use cases for which SPT was designed, and the use cases that
arose while SPT was in use. For each use case we will look at how well the
previous SPT can be used to meet that use case, and identify any potential
problems.

Interactive Test Case Design

Interactive test case design is concerned with supporting the creation of test
cases. Instead of only offering a way to run test specifications, the developer
should be provided with interactive services when writing the test specifica-
tion. For example, when writing a test specification in SPT, there is syntax
highlighting available and errors are reported inside the fragment. Test cases
are executed as soon as they are written and any test failures are reported
directly inside the editor. These editor services make it easier to write the
test specification and facilitate test driven development. This was one of the
main use cases for which SPT was developed.

To aid the language engineer with writing tests, the previous SPT offers
syntax highlighting, content completion, real time error reporting, and hover
tooltips for the SPT syntax. For example, the content completion can gener-
ate templates for a test case, or complete a test expectation. Hovering over
a fragment of a test case will show a tooltip with the result of parsing the
fragment.

The provided editor services for the program text inside the fragments
and test fixtures are a bit more limited. Ideally, the language engineer would
have syntax highlighting, content completion, real time error reporting, and
hover tooltips available while writing the fragment. However, the previous
SPT only supports real time error reporting and a limited version of syntax
highlighting within fragments and test fixtures. We already discussed when
and how syntactic and semantic errors are propagated to the SPT editor in
the previous section. We also discussed the perfomance limitations on larger
test suites. This means that, for larger test suites, the error reporting is no
longer real time. The syntax highlighting within fragments and test fixtures
is also a little tricky. Instead of using the syntax highlighting as defined by
the language under test, SPT uses its own highlighting rules. Languages
developed with Spoofax can define their own syntax highlighting rules using
the Editor SerVice language (ESV). It is possible to define syntactic colors
and styles based on the name or type of an AST node. Unless a custom syntax
highlighting specification is present, a language developed with Spoofax will
use the default syntax highlighting based on the tokens in the token stream.
The previous SPT applies this default token based highlighting to the text
within fragments and test fixtures.

44

3.3. Use Cases for SPT

Regression testing

When using test driven development, tests are written for each feature of the
language implementation. When a feature is completed, the tests for that
feature will become part of the regression tests. Regression tests are tests
used to verify if a software system still has the correct behaviour after it has
been changed. So when a new feature is implemented, the tests that were
written for the other features will also be executed again to verify that the
behaviour has not changed. Even when test driven development is not used,
regression tests are often still used. They can help verify that any changes
made during maintenance do not introduce new bugs.

The set of regression tests can become pretty large, making it impractical
to run them by manually inspecting each test case of each test suite inside the
SPT editor. This use case creates the need for a way to run multiple test suites
and check the results in a convenient overview. If the set of regression tests
becomes really large, a subset of tests is often selected as the quick regression
tests. These are the most important tests and should be executed after every
modification. The full set of regression tests can then be executed less often
to reduce the time spent running tests.

Regression testing was also part of the use cases for which SPT was de-
veloped. To help give an overview of test results from either one test suite, or
all test suites in a project, SPT has a batch runner (see figure 3.7. Although
there is no way to specify which test suites should be part of short regression
tests, and which ones shouldn’t, it does allow the developer to quickly check
the results of all test suites of the project.

Continuous Integration

For bigger software projects, where multiple developers work on the same
system, the changes of each developer can be made simultaneously and the
resulting differences in the system have to be integrated with each other. The
more the two systems diverge, the harder it will be to integrate them. The
solution for this problem is continuous integration [15], where developers reg-
ularly integrate their changes with a controlled version of the software system.
To further reduce the manual effort, a continuous integration server can be
used. A continuous integration server will usually build the software system
and run the regression tests whenever a developer integrates his changes. If
the system fails to build or some tests fail, the change can be rejected, causing
the controlled version of the software system to stay in a working state.

As Spoofax was being used in bigger projects, the need for automatic exe-
cution of SPT tests by a continuous integration system arose. The continuous
integration server usually wants to reject a change as quickly as possible if a
problem was found, causing it to stop test execution as soon as one regression
test fails (fail fast strategy). However, some systems prefer to run all tests

45

3. Requirements Analysis

and give a more detailed and comprehensive list of the problems with the
change, to make integration easier for the developer. Therefore, both of these
execution strategies have to be supported for this use case.

In the previous SPT the only way to execute test cases is to open them in
the editor, or to run the batch runner. Both approaches are tightly integrated
with the Eclipse IDE and can only be executed manually. Another problem
is the fact that the results of the test cases are not displayed in a machine
processable way. This means that a continuous integration system can not
execute the tests, and even if it could, it could not check the results.

Automated Grading of Student Tests and Language
Implementations

During the Compiler Construction course at the Delft University of Technol-
ogy, students learn about both traditional and new techniques for the creation
of compilers. The course is accompanied by a lab, where students create their
own language implementation, using Spoofax, of a subset of the Java program-
ming language, called MiniJava. The lab is split up into several steps, each
covering a certain component like the parser, the type system, name analysis,
other static semantic checks, and the compiler that transforms the MiniJava
program to Jasmin bytecode.

Test driven development is used for this lab, where the students first submit
an SPT test suite for a new feature that they will be implementing. The
test suite is graded by running it against a set of slightly wrong reference
implementations with regards to the feature that is supposed to be tested by
their test suite. Their grade depends on how many of these errors are caught
by their test suite. After that, they get to implement and submit their own
implementation, using Spoofax, which is graded by running our own test suite
on their implementation.

This lab both illustrates the capability of SPT to be used for test driven
development, as well as its capability to write tests against the language spec-
ification, not the implementation. This second point is illustrated by the fact
that students’ test cases can be executed on a set of slightly different language
implementations, as well as the fact that our own test suite can be executed
on the students’ language implementations.

To make automated grading of both the students’ test suites and their
implementations possible, some way of programmatic execution of SPT test
cases is required. The grading of a student’s language implementation is quite
straightforward, we simply run an existing test suite against their implemen-
tation and detract points for every failing test case. The only requirements
this poses are the automatic execution of tests and having the test run return
a machine processable result.

The grading of a student’s test suite is a bit trickier. First, a set of slightly
wrong language implementations has to be created. Each test case should then

46

3.3. Use Cases for SPT

Category Discussion Solved

Interactive
design

editor services for SPT 3.1
editor services for frag-
ments

3.2

real time feedback 3.3

Regression
testing

select test suites to run 3.4

Continuous
integration

test execution strate-
gies

3.5

programmatic execu-
tion

3.6

machine processable
output

3.7

Automated
grading

filtering test cases 3.8

Table 3.3: Summary of the problems we have to tackle to make SPT suitable
for the use cases we discussed section 3.3.

be executed first against a correct reference implementation of the language.
If it fails against the correct implementation, the test case no longer needs
to be executed against the slightly wrong implementations, as its failure does
not mean anything. The test cases that did indeed pass against the correct
implementation are then executed against each slightly wrong implementa-
tion. If any of them fail, the test suite discovered the bug represented by that
implementation and the rest of the test cases no longer need to be executed
on this implementation. The student then gets points for every wrong imple-
mentation that his test suite discovered. This requires more instrumentation
of test execution. It requires access to the actual test cases to filter out those
that failed against the correct reference implementation, as well as a fail-fast
mode of execution for the remaining test cases, where test execution stops as
soon as a failing test case occurs.

We have looked at the two use cases for which SPT was created, and
found some problems with the previous approach. For the two new use cases
we also identified some missing features. Although some of them overlap, we
summarize the results in table 3.3.

47

Chapter 4

Proposed solution for SPT

The main problems with the previous SPT that sparked this thesis were the
fact that it isn’t compatible with the new Spoofax, and that it could not be
used for the new use cases: continuous integration and automated grading (see
chapter 3.3). After analysis of the previous implementation we also found
another big problem (see chapter 3.2): the whitespace method used by the
implementation to keep error messages at the right location in the test suite
caused test execution of larger test suites to grind to a halt. It also meant
that the implementation had to use different, less declarative, test fixtures
than the orignal design of [2] (see chapter 3.1).

Solving these three problems is the main goal for the new design of SPT.
But since we were doing an overhaul anyway, we also decided to tackle some
other design issues. As discussed in chapter 2.3 and chapter 3.1, SPT gains
a lot of its declarative power from concise test expectations to test common
components of languages. However, these expectations can not capture ev-
ery conceivable component of every language (hence the need for the run

expectation). Therefore, we can expect to need more test expectations in the
future. So we also aim to make the new design extensible with regards to test
expectations.

This brings us to the following list of problems to solve:

1. work with the new Spoofax 2.0

2. support the use cases of chapter 3.3

3. move more towards an LPTL

4. extensible with regards to test expectations

To work with the new Spoofax, we identified which parts of SPT depended
on the old Spoofax internals, Eclipse, or IMP. For supporting projects (more
than 1 test suite) SPT used Eclipse specific APIs. For loading the language
under test it used IMP. To access components of this language (parse table,

49

4. Proposed solution for SPT

Figure 4.1: The architecture of the new SPT core API. The TestExtractor
extracts the test cases from an SPT specification. The TestCaseRunner can
then be used to execute test cases.

analysis, transformations) it used the old Spoofax internals. The new Spoofax
version offers APIs for all these things. The previous SPT is a monolith, so
although getting SPT to work with the new Spoofax is a straightforward port,
it’s a tedious process.

The other problems require a bit more changes to the setup of the previous
SPT. To fix these problems we split SPT into multiple parts to create a more
modular system. The main parts are SPT Core, the SPT grammar, and the
interactive Spoofax language for SPT providing the editor support. The idea
behind this split is that the core of SPT (to execute test cases) should be
used by machines (required for continuous integration and automated grading
and regression testing) and people (interactive test case design). However, the
machines are not interested in the editor support for SPT.

We will now discuss SPT Core and its architecture. Then, we will list the
changes we propose for the SPT grammar, to move more towards the goals
of an LPTL and make the language clearer. Finally, we describe the process
of adding new test expectations to SPT.

4.1 SPT Core

The main functionality of SPT Core is to execute test cases defined in an SPT
test specification. In the simplest use case you just pass a test specification
to SPT Core and get the test results back. However, the new use cases
require more control over test execution, like a fail-fast execution strategy or
cherry-picking which test cases from the specification should be executed and
which shouldn’t be. Therefore, we decided to go with the same architecture
that has been used for the xUnit family of unit testing frameworks [8]. This
architecture represents every test case as a single unit, which can be executed
with a test runner. The benefit of this approach is that the user has complete
control over which test cases they want to run.

Figure 4.1 illustrates how a list of TestCase objects can be obtained from
an SPT test suite specification. These TestCases contain all the information

50

4.1. SPT Core

that is required to execute the test case, like the fragment text and the list
of test expectations. The TestCaseRunner can then be used to execute one
or more of these TestCases. The result is a TestResult object, which contains
information about the execution of the test case, like whether it passed or
not, and if not, a collection of error messages. We leave it up to the user of
the API to decide how to represent this information. For example, the SPT
editor will show any error messages at the right location in the fragment, and
a regression tester will give a more concise overview with just the test case
name and whether it passed or not.

Extracting Test Cases

To extract the test cases from a test suite, the SPT syntax needs to be parsed.
As discussed in chapter 3.2, the grammar of SPT syntax can not be combined
with the language under test into a single grammar. The main reason for this
is that SPT has to allow both instantiation for any language under test, and
negative test cases with faulty syntax in the fragments. Therefore we still
use the same approach of first parsing the SPT syntax, and then parsing the
fragments later, after SPT has been instantiated.

We decided to delay instantiation of SPT until the test case is executed,
instead of doing it during test case extraction. The main reason for this design
decision was to support the use case of automated grading of student test cases.
These tests have to be executed multiple times against different reference
implementations, to see if they catch the mistakes in these implementations.
By delaying the instantiation until the test is executed, we only have to extract
the test cases once. An added benefit of leaving the parsing of the fragments
until test execution, is that a simple parser generated by Spoofax can be used
to parse the SPT syntax, instead of the custom parser that the old SPT used.

As illustrated in figure 4.1 the resulting AST from parsing the SPT syntax
is the input for the extractor. We also allow passing the test suite file instead
of the parse result, for convenience. In that case the extractor parses it before
the extraction starts. The extractor then retrieves the configuration headers
and their values from the AST, like the module name of the test suite and
the name of the language under test. It also processes each test case’s AST
node. For each test case it extracts the description, and converts the AST
node representing the fragment into a Fragment object that can be queried
for its text and any selections inside the text.

The fragment text is combined with the test fixture if the test suite has
one and is represented as pairs of a starting character offset and a string.
The character offset is the offset of the first character of the string in the test
specification. An example of the fragment text for the test case of figure 3.3a
can be seen in figure 4.2. Here we see the text of fragment and the test fixture.
Each piece of text is preceded by the start offset of the first character of the
piece of text in the actual file. After each piece we can see the range of offsets

51

4. Proposed solution for SPT

Figure 4.2: The representation of the fragment text of figure 3.3a as stored in
SPT Core. It stores the text as tuple of the start offset of the text in the test
suite and the text itself. To the right is the offset range that the text would
span when all texts are appended.

this piece of text would span if we only considered the fragment text. With
this information we can keep track of where each piece of the fragment text
is located and map any errors to the correct location in the test specification
file without using the whitespace trick we discussed in chapter 3.2. We will
get into this in more detail when discussing the execution of tests.

The only remaining part of the test case are the test expectations. SPT
Core has expectation providers, which can be registered through dependency
injection. For each AST node representing a test expectation, this expecta-
tion providers are searched to find one that can convert this AST node to
a TestExpectation object. The resulting expectations are added to the Test-
Case object. By using dependency injection to convert test expectations’ AST
nodes to an intermediate format, it becomes easy to add new test expectations
to SPT.

With the description of the test case, the program text of the fixture and
fragment, and the test expectations we have everything we need to represent
a test case. The next step is to execute this test case.

Executing Test Cases

To execute a test case, we pass the test case object and the language under
test to the TestRunner. The runner will execute the test and return whether
the test case was executed and passed all expectations. If any errors occur, or
expectations aren’t met, the result will also contain error messages mapped
to the correct location in the test suite.

The first step of executing the test case is to check what should happen.
The runner searches through all registered expectation evaluators to find an
evaluator for each of the test expectations of the test case. These evalua-
tors can be registered through dependency injection, just like the expectation
providers we already discussed. An expectation evaluator is responsible for

52

4.1. SPT Core

checking if a test expectation is met or not. Once we have all the expectation
evaluators, we check if they require a parse result or an analysis result. This
lets us avoid doing unnecessary work.

Depending on the needs of the expectation evaluators, the program text of
the test case (the fragment and fixture text) is parsed and possibly analysed
using the given language under test. Each evaluator then gets the parse or
analysis result and returns whether the test expectation passes or not. If the
expectation is not met, the result also contains a list of error messages.

The final job of the evaluator is to specify which selections inside the
fragment it uses to determine if the test expectation is met. This way we can
give a warning if a test case contains any unused selections.

Once we have the results of each test expectation, we know if the test case
passed or not.

Although the evaluation of test expectations is left completely to the test
expectation evaluator, we do have some utilities for tasks performed by mul-
tiple expectations. As shown in figure 2.9 some test expectations have output
fragments. These fragments also have to be parsed or analysed, either with
the language under test, or with a different language. In the previous SPT,
this is called the target language and can be declared with a configuration
header as discussed in chapter 2.3. We argue that the language for the output
fragment should be specific to the output fragment, and should therefore not
be configured for all output fragments in the test suite. We will discuss this
in more detail in the next section. What is important to know is that these
target languages have to be obtained somehow. The language under test is
explicitly passed to the test runner to be able to rerun test cases with different
language implementations for the automated grading use case of chapter 3.3.
For now, we don’t have a use case that requires the swapping of these target
languages as well, so they are loaded the standard way. The new Spoofax
offers a language registry to register languages by name. As SPT Core runs
within the Spoofax framework, we use this language registry to retrieve the
target language by name. Once the target language is obtained, the output
fragment can be parsed with the FragmentParser utility. This is the same util-
ity that is used to parse the input fragment and keep the locations of messages
in sync with the location of the fragment in the test suite.

We made two different implementations for this fragment parser. One uses
the same whitespace trick that the previous SPT uses. It replaces all charac-
ters of the SPT syntax with spaces, leaving only the fixture and fragment text
in tact and at the same location (character offset) as it has in the actual file.
This trivially ensures the messages are mapped to the right location in the
test suite, but is extremely slow and limits the ability of SPT to test layout
sensitive languages. The other implementation simply concatenates the text
of the fixture and fragment, without adding any whitespace. It then keeps the
locations of messages in track by mapping them back to the correct location
in the test suite. Each fragment’s text can be represented as a set of tuples

53

4. Proposed solution for SPT

of a start offset and a piece of program text. This is illustrated in figure 4.2,
where we see the pieces of fragment text of the test case from figure 3.3a.
Each consecutive piece of program text is accompanied by the offset of the
first character of that piece of text. In figure 4.2 this start offset is located
to the left of the program text. On the right the we can see the range of
character offsets it spans if we concatenate the pieces. So any location at off-
sets between 0 and 91 will actually be 10 characters further in the actual test
specification. Any location between 92 and 103 will actually be 40 characters
further (132 − 92). And any location between 104 and 105 will actually be 5
characters back in the actual test specification. This method requires a bit
more work to keep the locations of AST nodes in track with the position of
the corresponding text in the test suite. But by doing so SPT can test layout
sensitive language and each test case can be executed in time proportional to
the length of the program text of the test case, as opposed to the file length
of the test suite it was in. Another benefit of this approach is that the declar-
ative LPTL style test fixtures discussed in chapter 3.1 can now be used, as
the fragment no longer needs to be in between the start and end of the test
fixture in the actual test suite.

The methods described above are not only used to keep messages in the
correct location in the test suite, but also to get the AST nodes corresponding
to a selection in the fragment. For these selections we have the location in
the test suite, and need to map that to the right location used by the parser
of the fragment. As discussed in chapter 3.2 the AST nodes produced by
the parser are linked to their corresponding text by using character offsets.
The fragment parser also needs to make sure these links are still correct with
regards to the actual location in the test suite, so we can easily obtain the
AST nodes corresponding to a selection.

We also have a utility that can be used to compare AST nodes, taking the
wildcards of expected output in consideration (see chapter 2.3).

This way the evaluator can easily parse and analyze fragments, compare
output, and get AST nodes corresponding to the selection in the test case.
The specifics of what to do with these building blocks is left to the evaluator.

4.2 Changes to the language

Apart from changes to the architecture of SPT, we also propose changes to
the language itself. These changes are meant to make SPT more declarative
and easier to understand. One of the problems we discussed in chapter 3
was that the behaviour of some of the test expectations of the previous SPT
were not clear and not documented. Especially the behaviour of multiple test
expectations on the same test case, and the selections within them was not
clear.

The first change was to remove the target language configuration header.

54

4.2. Changes to the language

A target language determines which language should be used to work with the
output fragments, the fragments of some test expectations, like the parse to

expectation. By specifying this target language in a configuration header, the
developer is forced to group their test cases in test suites based on the tar-
get language of the test expectations of the test cases. We believe test cases
should be grouped into test suites based on which part of the language they
test, not based on the specifics of test expectations that are used. Therefore,
the target language header has been removed. Instead, the developer can
specify the target language for each output fragment in the test expectation.
If no target language is specified, the language under test is used for that
fragment. This allows the developer to group test cases as they wish, and
also makes it a lot clearer what the test case means, as the target language is
stated right at the test expectation that uses it.

We also replaced the setup blocks the previous SPT uses by the more
declarative test fixtures from [2]. This change was made possible by removing
the whitespace trick and keeping track of the location of fragment text in a
different way as discussed in the previous section.

Finally, we made some changes to the test expectations. Some of these
changes were made to make the test expectations more clear or legible. Others
simply add more functionality.

One of the most unclear set of expectations were the ones for testing anal-
ysis messages (errors, warnings, and notes). A clear example can be found in
figure 2.10. Here we have 3 test expectations to check some assertions about
error and warning messages. The semantics of the first 2 test expectations
seems quite straightforward: we expect exactly 2 errors and 1 warning. How-
ever, the presence of selections in the fragment makes it a lot less simple. As
discussed before, if any of the n errors, n warnings, or n notes test ex-
pectations are present, each selection in the test case must contain an error,
warning, or note. This makes it hard to combine these test expectations with
other test expectations that use selections. For example, if we have a resolve

to expectation as well as a 1 warning expectation, we now have to ensure the
selection used by the resolve to expectation has an error, warning, or note.
Another problem is that you can’t specify what you expect at the selection.
Even if you only have a n errors expectation with a selection, it will still pass
if there is only a warning or note at the selection. Both of these problems can
be fixed by making the expectation a bit more specific. For these reasons, we
updated these test expectations to ignore selections, unless they are specifi-
cally mentioned in the expectation. This gives us far greater control over what
we test, makes the semantics of the expectation clearer, and therefore allows
easier combination of test expectation. The example of figure 2.10 can now
be written as shown in figure 4.3. We can ensure the errors are located at the
duplicate table names, and that they are actual errors not warnings. We can
also ensure the warning is where we expect it: on the table name starting with
a lower case letter. Finally, we can now also be more specific when testing the

55

4. Proposed solution for SPT

test duplicate tables not allowed [[

CREATE TABLE [[t]] (intCol INT);

CREATE TABLE [[T]] (intCol INT);

CREATE TABLE [[T]] (intCol INT);

]] 2 errors at #2, #3

1 warning at #1

error like "Duplicate table" at #2

error like "Duplicate table" at #3

warning like "should start with a capital" at #1

Figure 4.3: Testing for error messages on duplicate table names, and a warning
on a table name that isn’t capitalized.

contents of errors, warnings, and notes. The old syntax only checks if there
is any error or warning with contents that match the expectation. With the
new syntax we can specify if we expect an error, or a warning, or a note with
the given contents. We can also optionally specify a selection to ensure the
message is located at a specific spot. As can be seen in figure 4.3 we can now
fully test the messages and their locations and contents for this example.

Another change we made to these message expectations is to less specific
if one chooses to. For example, in the test case of figure 4.3 we currently
check if there are exactly 2 errors. What we would really like to check in this
example, however, is only if the duplicate table name errors are present. If,
for whatever reason, there would also be another error, we still want this test
to pass. As long as the duplicate table errors are present and at the right
location. To allow this kind of testing we added an optional operator (=, <,
<=, >, >=) in front of the expectation. So for figure 4.3 we can write >= 2

errors at #2, #3. A change like this would have been difficult to add in the
previous architecture for SPT, where the evaluation of all test expectations
was intertwined. However, with the new approach, the evaluation of each test
expectation is isolated in it’s own evaluator, making it easy to add or change
functionality. We will discuss this new approach to test expectations in more
detail in the next section.

We made a similar change to the run expectation. This expectation runs
and Stratego strategy on either the entire fragment, or on the AST node
corresponding to the first selection in the fragment. As with this test expec-
tations for checking analysis messages, this implicit use of selections makes
it harder to combine it with other test expectations that also use selections.
Therefore, we decided to allow the developer to specify on which selection the
strategy should be run. The syntax for this is run my-strategy on #1.

Finally, we change the build test expectation. This expectation runs a
transformation, which was called a builder in the old Spoofax versions. In the
previous SPT it is executed the same way as any other Stratego strategy. The

56

4.3. Adding new test expectations

input of a builder is a tuple with some specific information regarding the AST
of the full program and the currently selected AST node (if there is any). This
knowledge of the expected input of a builder could be considered knowledge
of the internals of Spoofax, instead of a public API. As the new Spoofax has
a public API specifically for executing transformations, we decided we should
rely on that, instead of the previous way of running transformations. This
new API, however, does not work based on the name of the transformation
(the name of the Stratego strategy), but based on the name under which this
transformation is registered. Let’s look at the example of figure 2.12. Here
we see a test for the transformation that is defined as shown in figure 2.5.
The previous SPT would construct the specific input tuple for builders and
execute the gen-ora-style-builder strategy. The new Spoofax’s public API
for transformations, however, needs to be passed the name under which it is
registered: “Generate Oracle SQL”. As this name is not necessarily unique,
one may have to also specify the menu’s in which the transformation is nested.
In this case, that would be “Generation -¿ Generate Oracle SQL”.

Because this is such a drastic change, and to keep the terminology consis-
tent, we decided to rename the build expectation to transform. The only
difference is the name of the builder, and that instead of specifying the strategy
name, the name (or hierarchy of names) under which it is registered should be
passed. The expectation of figure 2.12 would now be transform "Generation

-> Generate Oracle SQL to ...".

4.3 Adding new test expectations

Although the previous grammar of SPT supports test expectations for content
completion and refactoring, these are both broken. There is also no support for
the testing of analysis messages of the note severity. These test expectations
will have to be implemented at some point, and it’s very likely that more new
test expectations could be added in the future. A possible example would be
a has type test expectation to test the type system. Therefore, we separated
the evaluation of each test expectation from the others, making it a modular
system. This makes it easier to add new test expectations, or change the
behaviour of existing test expectations, without affecting others.

Each test expectation has 4 components:

1. A grammar component. The expectation has to be recognized by the
SPT parser so it can generate an AST from it.

2. A TestExpectationProvider. This class can take the AST node of the
expectation and extract its data into a data model.

3. A TestExpectation data model. This model will hold all the information
required to evaluate the test expectation. It will be a part of a TestCase.

57

4. Proposed solution for SPT

test check types [[

CREATE TABLE T (intCol INT);

SELECT t.intCol

FROM T t

WHERE [[t.intCol > 5]];

]] #1 has type Boolean()

Figure 4.4: A possible new test expectation to test the type system.

4. A TestExpectationEvaluator. This evaluator will be given the TestEx-
pectation and the results from parsing or analysing the test case’s input
fragment. It should then determine if the expectation passes or not, and
report the results.

To add a new test expectation, these 4 parts have to be implemented.
Let’s say we wanted to add a new test expectation to test the type system,
a has type expectation. Consider the current way we test the type system,
as illustrated in figure 2.13. This depends on the existence of a get-type

Stratego strategy that returns the type of the AST node at the first selection
in the fragment. As we did with the other test expectations that use selections,
we would want to make the actual selection to use explicit. An example of
our desired expectation can be seen in figure 4.4.

As discussed before, we split the main grammar for SPT from the rest of
the Spoofax language. This way we can not only use just this main grammar
for parsing an SPT test suite, before passing it to the test case extractor, but
we can also simply extend the grammar to add a new test expectation. Of
course we do need to take care that this new test expectation’s syntax does
not conflict with the existing test expectations. Apart from that, no other
knowledge of the SPT grammar is required. Let’s use the example of a test
expectation to test the type system. We could either change the original SPT
grammar, or create a new grammar which imports the original grammar. We
just need to add the following grammar rule:

Expectation.HasType = <<SelectionRef> has type <ATerm>>

The next step is to create a provider for our test expectation. If we de-
cided not to extend the original SPT grammar, but create a new one, we’d
have to parse our test suite (see figure 4.4) with this new grammar, and pass
the result to the test case extractor as described before. The extractor will
find the HasType(SelectionRef(1), Boolean()) node and ask all registered
providers if they can turn this AST node into a data model. Again, we have
the option of extending the actual SPT implementation, or simply extending
it by adding a new Guice Module. Guice is the dependency injection frame-
work used by the new Spoofax. The SPT Core program is also implemented

58

4.3. Adding new test expectations

as a Guice Module that can be loaded into Spoofax. So we can extend this
module, or just create a new module and make sure that is also loaded into
Spoofax when we run the test case extraction.

The next step is the actual data model for this new test expectation which
implements the ITestExpectation interface. It would be a simple data object
to store the region of the test expectation’s AST node (for purposes of error
reporting, as required by the ITestExpectation interface), the number of the
selection reference, and the expected type. The extractor would hand the
AST node to the provider we just created, which would hand back our new
data model. Let’s say we called this class HasTypeExpectation. This object
would be added to the resulting TestCase’s list of expectations.

The final step is the evaluator. During test execution, the test runner will
look at the expectations of our test case and try to find the evaluator that
was registered for our new HasTypeExpectation, using Guice. The resulting
evaluator will be given the HasTypeExpectation object along with the parse
and analysis result of the input fragment and the TestCase itself, and be asked
to evaluate the test expectation. The evaluator would then ask the number of
the selection reference from the HasTypeExpectation, and get this selection
from the TestCase. It will use Spoofax’s public API to retrieve the AST
node corresponding to the location of this selection from the AST of the the
analysis of the input fragment. The next step would be to determine the type
of this AST node. At the moment Spoofax has no public API for that yet,
which is why we still use the get-type strategy. We can then compare the
resulting type with the expected output from the HasTypeExpectation. If it
matches, we report success to the test runner. If anything along the way failed,
we report failure, and one or more messages describing what went wrong.

As we can see, the only part of this process where we have to worry about
other test expectations is in writing the grammar extension. Further more,
all parts can either be implemented separately from our new SPT, or added
to it. This allows us to add test expectations specific for some languages in
separate modules. The user of SPT can then determine if they want to use
these modules with new test expectations or just keep to the standard SPT.
We hope this flexibility in a modular setup will make the new SPT a good
base to further develop the language as Spoofax gains more and more features.

For example, once Spoofax gets a public API for obtaining the type of
an AST node, we can follow the process outlined above to add this new test
expectation, without disturbing the rest of the system.

59

Chapter 5

Evaluation

We have implemented the proposed solution from chapter 4 and evaluated if
it indeed fixed the problems we discoverd in chapter 3.

First we will go over the three tables that summarize the problems we
found in chapters 3.1, 3.2, and 3.3. For each of the problems we will discuss
if they are solved or not. For those we consider solved, we will explain why
we do so. For those that are not yet solved, we will discuss the difficulties
we encountered for the problem and why we did not solve them. In the next
chapter we will discuss the main shortcomings and look at the next steps to
improve upon our new SPT with future work.

Then, we will discuss each of the use cases of chapter 3.3 and explain how
we used the proposed solution in this setting.

5.1 Requirements of chapter 3.1

In chapter 3.1 we examined the idea behind SPT and which problems SPT
has to tackle to get as close to this idea as possible. These problems were
summarized in table 3.1:

1.1 dynamic markers The markers SPT offers for selections in fragments
restrict the languages which can be tested with SPT, as these markers
may not be used in the program text of the fragment. In practice this
is not a real problem, as SPT offers 3 different markers, and most lan-
guages allow the use of whitespace to break up such sequences in their
program text.

Due to this limited impact, we did not attempt to solve this problem
and it’s still present in both the previous and the new SPT. In the next
chapter we will discuss a possible approach to solving it as future work.

1.2 selections The problem here was that the previous SPT replaces all
SPT syntax (including the selection markers) with spaces. This means

61

5. Evaluation

test selections where whitespace isn’t allowed [[

CREATE TA[[]]BLE T();

]] parse succeeds

Figure 5.1: Selections in the fragment should not influence the program text
that is given to the parser of the language under test.

that it can not be used to test layout sensitive languages where these
extra spaces change the semantics of the program.

This behaviour can be illustrated and evaluated with the test case of
figure 5.1. Here we can see a selection in the middle of a keyword. The
previous SPT would replace that marker with spaces, causing a parse
error. Our proposed solution uses a different way to keep the locations
of the fragment text in track with where they really are in the test suite
file. Thanks to this, we no longer need to replace the marker with spaces.
Instead, the new SPT just takes out the marker’s syntax, resulting in a
valid MiniSQL program, causing the parsing to succeed.

As the new SPT’s selections no longer affect the program text, we can
now also use them when testing layout sensitive languages. Therefore,
we consider this problem solved.

1.3 extensible expectations As described in chapter chap:requirements the
previous SPT was implemented as a standard Spoofax language. The
evaluation of test expectations was done in Stratego, and it was done in
such a way that the evaluation of one type of expectation intertwined
with those of other test expectations. The proposed solution fully sepa-
rates the evaluation of test expectations, and allow new expectations to
be added to the language without disturbing the others. Therefore, we
consider this problem solved.

1.4 allow custom parsers The problem here was that the previous SPT
uses the parse table of the language under test directly to parse the
fragments. If the language under test has a custom parser, it will simply
be ignored. As the new Spoofax offers a public API for parsing text
with a given language, this problem was solved for us. All we had to
do was use this API. The benefit is that SPT can now be used to test
more complex languages.

A very nice moment in the implementation of the proposed solution was
when we were able to test SPT specifications with SPT itself.

Evaluating whether or not custom parsers work in the new Spoofax is
outside of the scope of this paper.

62

5.1. Requirements of chapter 3.1

1.5 error reporting This describes the problem where SPT has to keep
the locations of AST nodes of the parsed fragments in track with the
location of the corresponding text in the test suite file. The problem is
that the fragment text that is parsed is not the actual text in the file.
The file also contains SPT syntax.

Although the previous SPT does indeed report errors inside the input
fragment, any errors that span from within the fragment’s text to the
text in a test fixture will cause the error to stretch over all test cases in
between the fragment and the offending setup block of the test fixture.
We solved this problem in our proposed solution by trimming messages
to always fit inside the fragment. If the message was completely inside
the test fixture, we can’t trim it to be contained in the fragment, and
will simply place it on the description of the test case instead. This is a
slight improvement on the error reporting in the previous SPT.

1.6 syntax highlighting This is the problem of providing syntax highlight-
ing in the fragment itself. Ideally, we’d use the syntax highlighting
defined by the language under test to highlight the program text in fix-
tures and fragments. This was not possible, both in the old Spoofax and
in the new Spoofax, so the problem was, and remains, unsolved. It is
the most important focus for future work, as there is much to be gained
in terms of usability.

There is however one problem with our proposed solution that the pre-
vious SPT does not have. The previous SPT parses fragments and
merges their token streams into the SPT token stream. This allows the
Spoofax editor to use the token-based syntax highlighting defined for
SPT itself on the program text in the fragments as well. Although it’s
not the highlighting defined by the language under test, at the very least
it is still some highlighting, which helps greatly in the readability of test
cases.

Our proposed solution moved the parsing of fragments to execution time
(i.e. the analysis phase) instead of parse time. This makes it possible
to reuse test cases and greatly simplifies the SPT parser, but it also
means that the token streams can only be merged at execution time.
Spoofax only does syntax highlighting during parse time, so the merged
token streams after analysis do not affect syntax highlighting. The result
is that the new SPT doesn’t have any highlighting on fragment text
anymore.

The solution to this problem would be to change Spoofax to offer an API
for syntax highlighting so we can use the highlighting of the language
under test. As the new SPT is meant as a basis on which SPT can
be further developed while Spoofax is further developed, we decided not
to try to incorporate the hacky way the previous SPT provides some

63

5. Evaluation

highlighting to fragment texts. We would rather see Spoofax extended
with a public API for semantic highlighting and use that for SPT.

Until that time though, the lack of any kind of highlighting in fragments
is a big unsolved problem for our proposed solution. Much more so than
it is in the previous SPT.

1.7 other editor tools Syntax highlighting in fragments got it’s own men-
tion, as it was partially solved in the previous SPT, but not in our
proposed solution. However, there are many more editor tools we would
like to offer inside fragments. Some examples of these would be content
completion or tooltips with type information that pop up as you hover
over AST nodes.

These editor services are not supported in the previous SPT and they
are not supported in our proposed solution either. Therefore we mark
this problem as not solved, but there is a clear path to a solution by
extending Spoofax. We will discuss this in more detail in chapter 7.

1.8 declarative fixtures This is the problem of the setup blocks used by the
previous SPT, as opposed to the test fixtures described in the paper.
The setup blocks were invented so any text of the test fixture that comes
after the text of a fragment, also comes after the fragment text in the
test suite. This was required to make the whitespace trick work. As we
implemented a new way to keep locations of AST nodes in track with
the actual location of text in the file in our proposed solution, we can
now use the more declarative test fixtures as described in the paper.

We used the test case of figure 3.3a to verify that the new type of fixture
works. This test parses and executes as expected with the new SPT.

1.9 reuse test cases This is the problem of when SPT is instantiated with
a specific language under test. The previous SPT does this at parse
time, making it impossible to reuse test cases to execute them against
different languages under test. The proposed solution instantiates SPT
at analysis time, which does allow reuse of test cases. This is further
facilitated by the SPT Core data model, allowing the user control over
individual test cases.

As part of our implementation of the proposed solution, we included
a test runner which can be executed from the command line. This
test runner first extracts test cases, and then executes them with the
given language. We used this runner and two similar language imple-
mentations to make sure we could execute the same test against both
languages.

64

5.2. Requirements of chapter 3.2

5.2 Requirements of chapter 3.2

In chapter 3.2 we discussed the architecture of the previous SPT and identified
some problems with its implementation. These problems were summarized in
table 3.2:

2.1 allow custom parsers This requirement is the same as requirement 1.4
discussed above. The problem of not supporting custom parsers was
caused by the lack of an API to obtain such a parser based on the
language name. This was solved for us by the new Spoofax, which does
offer an API for parsing.

As this was solved by Spoofax itself, and not by our new design, evalu-
ation of this feature is outside of the scope of this thesis.

2.2 platform independent A platform independent version of SPT can be
used programmatically on development machines, as well as continuous
integration servers. The previous SPT only works within an Eclipse
instance with Spoofax loaded, making it hard to execute programmat-
ically. The new Spoofax is platform independent as it is written in
Java. Several projects have already been started to integrate it into
other integrated development environments like NetBeans and Emacs.
The proposed solution is a module within this Spoofax framework and
is therefore also platform independent.

We evaluated this by using the command line test runner that is part of
our new implementation on both MacOS and Windows machines.

2.3 real time feedback One of the biggest usability problems with the pre-
vious SPT, is that it is too slow to provide real time feedback on larger
test suites. As the test execution takes place as the developer writes
their tests, slow execution means the developer has to pause while writ-
ing their tests. While the test execution is running, none of the other
editor tools were available. We discovered that this slow down is caused
by the whitespace trick employed in the previous SPT. As the test suite
grows in size, so does the amount of whitespace that the parser of the
language under test has to handle. On larger test suites performance is
so bad that the user has to wait several minutes before they get feedback
when writing tests. By removing the need for the whitespace trick in
the new SPT, the execution time no longer explodes as a test suite gets
larger. This leaves us with a fast enough response time for real time
feedback. We benchmarked the previous SPT and our implementation
of the proposed solution to verify that this problem was indeed fixed.
The benchmarks were done on a Macbook Air with a 1.7 GHz Intel Core
i7 processor and 8GB of ram.

65

5. Evaluation

We started the benchmark with the standard set of test cases that is
part of the example project of Spoofax. This baseline test is included
below.

module test-example

language Runtime

setup Common [[

module test

]]

test Simple entity [[

entity User {

name : String

other : User

}

]] 0 errors

test Resolve type fails [[

entity User {

name : [[Strin]]

other : [[Use]]

}

]] 2 errors

test Duplicate entity fails [[

[[entity User {}]]

[[entity User {}]]

]] 2 errors

test Duplicate property fails [[

entity User {

[[name : String]]

[[name : String]]

}

]] 2 errors

test Resolve type [[

entity [[User]] {}

entity Owner {

owns : [[User]]

}

66

5.2. Requirements of chapter 3.2

]] resolve #2 to #1

Parsing the fragments of these test cases took around 8 to 16ms depend-
ing on the test case. We duplicated these test cases to create larger test
suites, one with about 500 lines, and another with about 1000 lines. The
resulting parse times are recorded in table 5.1. Note that this was just
a single run for each test suite, because the actual values down to the
millisecond are not what we are interested in. We simply care about the
order of magnitude. We can see that parsing the same test case in a test
suite of about 500 lines is an order of magnitude slower than parsing
it in the baseline test suite of about 50 lines. The larger test suite, of
about 1000 lines, increases the parse time of each test case by another
order of magnitude.

We can see that with the previous SPT the parse time for a single
test case becomes longer as the size of the test suite grows. It is also
important to note that a longer test suite usually has more test cases
than a smaller one, all of which will take longer to parse. The result is
that for the 500 line test suite we had to wait 34 seconds until all test
cases were parsed, and for the larger test suite of 1000 lines we had to
wait 346 seconds. This is not fast enough for real time feedback.

Test description baseline (50 lines) 500 lines 1000 lines

Simple entity 12ms 719ms 4815ms

Resolve type fails 16ms 609ms 3982ms

Duplicate entity fails 10ms 581ms 3813ms

Duplicate property fails 8ms 568ms 3925ms

Resolve type 8ms 555ms 3770ms

Table 5.1: Parse times from the previous SPTfor the fragments of the test
cases from the baseline test suite, and larger test suites made by simply copying
the test cases from the baseline test suite.

Our proposed solution no longer uses the whitespace trick, which means
that the length of the program text of a test case no longer depends on
the size of the test suite. We ran the same tests as we did for the previous
SPT and the results can be found in table 5.2. The results show that
this problem is now indeed solved, the medium test suite was parsed in
155ms, and the long one in 281ms. Each test case has a consistent parse
time that is fast enough for real time feedback.

2.4 clear semantics of test expectations The behaviour of test expecta-
tions in the previous SPT is not always clear. Especially when multiple
expectations are combined, or when selections are present in the frag-
ment. The changes discussed in chapter 4.2 fix these problems. Each test

67

5. Evaluation

Test description baseline (50 lines) 500 lines 1000 lines

Simple entity 29ms 14ms 15ms

Resolve type fails 4ms 4ms 2ms

Duplicate entity fails 4ms 3ms 2ms

Duplicate property fails 3ms 2ms 3ms

Resolve type 4ms 3ms 2ms

Table 5.2: Parse times from our proposed solution for the fragments of the
test cases from the baseline test suite, and larger test suites made by simply
copying the test cases from the baseline test suite.

fixture [[

CREATE TABLE T(

stringCol VARCHAR

);

SELECT t.stringCol FROM T t WHERE

t.stringCol = 3 + [[...]];

]]

test selections where whitespace isn’t allowed [[

5

]] 0 errors

Figure 5.2: This test case fails, as the expression

3 + 5

is not of type String. The error will only be shown on the test case, not on
the fixture.

expectation is now self contained and combining multiple test expecta-
tions on a single test case does not influence their individual semantics.
We documented the available test expectations and their semantics. This
documentation can be found on the Spoofax documentation website:
http://www.metaborg.org/en/latest/source/langdev/meta/lang/spt/index.html.

2.5 errors contained in fragments When an error in the test case starts
in a setup block, and ends in the fragment text, or vice versa, the error
spans the full length between setup block and fragment. This means that
it spans over all test cases in between as well. This problem was fixed
in our proposed solution by simply cutting off errors, and other analysis
messages, to stay within the fragment itself. If an analysis message is
fully outside of the fragment, it is relocated to the description of the test
case.

This behaviour can be evaluated with a testcase like that of figure 5.2.

68

5.3. Requirements of chapter 3.3

Here we have an expression of type Int being compared to a column of
type String. In the previous SPT (using setup blocks instead of the
fixture) the error about the wrong type would span all the way from the
3 in the test fixture to the 5 in the fragment. All characters between the
3 and 5 would be marked as an error, including the SPT syntax. In the
new SPT the error is cut off at the start of the fragment.

5.3 Requirements of chapter 3.3

In this chapter we listed the main use cases for SPT. Both the ones for which
it was designed, and the new use cases that emerged as SPT was being used in
practise. We will first discuss each of the problems SPT encounters for these
use cases, as summarized in table 3.3. Then, we will give an example of how
our proposed solution is used in each of these use cases, to further illustrate
why we believe our proposed solution is suited for these use cases.

3.1 editor services for SPT To support the developer in writing tests, the
editor in which they write their tests should offer editor services like
syntax highlighting, content completion, and error reporting. For the
SPT syntax, these editor services are all available, both in the previous
SPT and in our proposed solution.

3.2 editor services inside fragments We would also like to provide the
editor services mentioned above for the language under test inside the
fragments. As we have discussed for requirements 1.6 and 1.7, the editor
support inside fragments is still lacking.

3.3 real time feedback This requirement is the same as 2.3 and is discussed
in the previous section.

3.4 select which suite to run In the previous SPT tests are executed man-
ually by either opening them in the Eclipse editor, or by executing all
tests of a project through the batch runner discussed in chapter 3.2.
We maintained this batch test runner in our proposed solution, but also
added a command line test runner, where the user can specify which
test suites to execute. Of course the SPT core API can also be used
programmatically.

This gives the user complete control over which test suites to execute.

3.5 test execution strategies The idea is that we need more control over
how tests are executed. In the previous SPT we can only execute no
tests, or all tests of a test suite. Sometimes we want to stop running
tests as soon as the first test fails to save time (fail-fast).

69

5. Evaluation

As the SPT core API gives the user complete control over which test
cases they want to run, these strategies can be implemented. Therefore,
we consider this problem solved.

3.6 programmatic execution As we mentioned above, the previous SPT
only allows manual execution of tests. We added a command line test
runner to execute test suites, and programs can also use the SPT core
API directly to execute tests. This means that any program that can
interface with Java or the command line can execute tests with our
proposed solution.

3.7 machine processable output The results of executing test cases in the
previous SPT are either displayed directly in the editor, or in a graphical
overview in the batch runner. Neither of these are well suited for a
program to interpret. This issue is solved by the SPT core API, which
returns data objects with a boolean to indicate whether the test passed,
and a set of messages to give further feedback as to why it failed if it
did.

3.8 filtering test cases to execute This was a new requirement posed by
the Automated Grading use case. Here students submit test suites and
we need to determine automatically how good these test suites are. To
check if a test suite is good, we want to check if it would catch certain
types of errors in the language implementation. The first step, however,
is to ignore all test cases that fail even on a correct implementation.
This is not possible with the previous SPT as it can only execute all the
tests in a test suite.

The SPT core API does allow the user to execute a single test case.
Allowing them to filter out test cases if they want. We will discuss
the details of the grading approach when we evaluate the Automated
Grading use case.

Now that we have briefly discussed the main problems that have to be
solved to use SPT for the use cases of chapter 3.3, we can see that all of
them are solved by our proposed solution. We believe this solution is suitable
for all use cases that we have discussed. To further prove this point, the
implementation of our proposed solution is already being used in practise.
We will now discuss how our proposed solution is used in each of these use
cases.

Interactive test case design This use case is about supporting the devel-
oper as much as possible as they write their test cases. The previous
SPT can already be used for this use case, as it was designed for it. Our
proposed solution adds more declarative test fixtures, has more spe-
cific test expectations, contains errors inside the fragments, and is fast

70

5.3. Requirements of chapter 3.3

enough for real time feedback even for longer test cases. These changes
all help the developer with writing test cases in a declarative manner,
to make writing tests as easy as possible.

One big downside of the proposed solution is the total lack of syntax
highlighting in the fragment texts. As discussed above, even if it isn’t
the syntax highlighting of the language under test itself, at least the
previous SPT has some form of syntax highlighting inside fragments.

Currently, our proposed solution is shipped with the new Spoofax. This
means that it can be used by anyone who develops their language with
such a Spoofax version. It is used to test the GreenMarl language at
Oracle, and is widely used in the programming languages research group
at the Delft university of technology.

Regression testing Regression testing in the previous SPT requires manu-
ally executing tests in the Eclipse batch runner. We still offer this same
approach with our proposed solution, but also added more detailed error
reporting to help debug any failing test cases. Apart from that, regres-
sion testing can now also be done from the command line, using our
command line test runner.

In practise, regression testing is usually done as part of continuous inte-
gration, which we will discuss next.

Continuous integration As the previous SPT does not allow programmatic
test execution, it can not be used for continuous integration. Contin-
uous integration was one of the new use cases for SPT that we aimed
to make possible with our new design. Our proposed solution can be
used to execute tests programmatically, by using the SPT core API.
Gabril Konat has made a Maven plugin which executes all test suites
of a language project as part of the build process using SPT core. By
using this plugin in a language project, we can make a build fail when a
test case fails. This is both useful for regression testing and continuous
integration.

Automated grading This is the second new use case for which the previous
SPT can not be used because it can’t be used programmatically. For
the compiler construction course at the Delft university of technology,
an automated approach to grading of student test suites and language
implementations was wanted.

Now that we can execute test cases programmatically it’s quite trivial
to test a student’s language implementation. You simply run a few test
suites against it to find errors in the implementation, and detract points
for every failing test case or test suite. As SPT core gives control over
specific test cases, you could even assign different weights to each test
case. That way you can get more fine grained grading.

71

5. Evaluation

The hard part is the grading of a student’s test suites. To check if a
test suite is any good, we need to check if it would catch a problem in
the language implementation. For this a set of slightly wrong language
implementations was created. Each implementation has a specific error
in it. By executing the student’s test suite against the slightly wrong
implementation we can see if the test suite captures that particular error.
For every slightly wrong implementation that the test suite caught, we
can award points to the student.

The first problem is creating this set of slightly wrong language imple-
mentations. There is nothing SPT can do to make that easier.

The second problem is knowing if a test suite captured the error in the
implementation. For this, we first have to ensure the test suite passes
on a right implementation. As SPT core gives complete control over
which test cases are executed we can run the test suite on the correct
language implementation first and discard all test cases that fail on this
implementation. This leaves us with a set of test cases which don’t fail
on a correct implementation, so if they fail on a wrong implementation,
that means they caught the error in the implementation.

Next, we just need to execute these tests on each of the slightly wrong
implementations. SPT core allows us to reuse the test case and execute
it on a different language under test. This saves us the time required
to extract the test cases again or swap the language under test inside
Spoofax’s language registry. We can also stop test execution as soon as
the first test case fails, because that means the error was captured. As
both the set of student test suites and the set of slightly wrong language
implementations are quite large, anything we can save on performance
is quite welcome.

The final step is to award points for each error that the student’s test
suite has captured.

This automated grading approach has been implemented by Martijn
Dwars, using our proposed solution. It is currently being used for grad-
ing some of the lab exercises of the compiler construction course.

72

Chapter 6

Related work

As we have discussed in this thesis, the main power of SPT is to use domain
specific abstractions to allow language engineers to write declarative test cases
against their language’s specification. SPT combines the language under test
and the test cases themselves in the same editor, to further support the de-
veloper in writing tests. This concept of combining tests and the language, or
program, being tested, is not new. For example, Pyret ([16]) allows developers
to write their tests around their implementations. Although this combines the
program under test and the test in the same editor, it is not specific for lan-
guage engineering, nor does it enable declarative tests against the specification
instead of the implementation.

We will discuss other related work in three different categories. First, we
will look at other language workbenches and how they support the language
engineers in testing their language. Next, we’ll discuss how some languages
that have been developed without a language workbench are being tested.
Finally, we’ll take a look at some work in the field of test case generation. The
declarative nature of SPT tests makes it easy to generate an SPT specification
once the hard work of generating an input program is done.

6.1 Testing in language workbenches

Spoofax is not the only language workbench that is available. Here we will
briefly discuss how testing is done in 4 other major language workbenches,
and compare their benefits to SPT: XText, Rascal, Racket, and MPS.

XText – most of the language engineering in this language workbench is done
in an extension of Java, called XTend [17]. This language takes away
some of the boilerplate of Java, allowing the developer to write more
concise programs. As most programming is done in this extension of
Java, XText encourages developers to write their tests in JUnit, a well
known and widely used testing framework for Java. This means that the

73

6. Related work

Figure 6.1: An example of testing if a program has a warning
in XText (http://www.eclipse.org/Xtext/documentation/303_runtime_
concepts.html#testing)

test cases are focussed on testing the generated Java artifacts, instead of
the specification. However, XText provides some useful libraries which
can be used to make the test case more declarative. See figure 6.1 for
an example of a very declarative test case for parsing and analysis.

The biggest difference between this approach and SPT is that in XText’s
testing approach input programs are just strings. This means the devel-
oper does not have any editor services available inside the input program
text and it’s harder and less readable to reference parts of the program
text, as there are no markers available. The benefits of using JUnit,
however, are that regression testing, continuous integration, and pro-
grammatic execution of test cases is very easy. As JUnit offers all of this
out of the box. In this thesis we redesigned the architecture of SPT to
also offer these benefits.

Racket – a programming language with a strong focus on language oriented
programming [18]. This means they encourage developers to write their
own domain specific languages to solves the problem they are facing.
Therefore, all programming required to make a language using Racket, is
done in the Racket language. Any testing also happens in this language.

There are multiple ways to approach testing in Racket. First, there is
the OverEasy test engine. This is a test engine for Racket, allowing the
developer to group test cases into test suites. Another approach would
be to use RackUnit. RackUnit is a library for Racket that also allows
the developer to group test cases into test suites, but also provides an
easy way to set up and tear down the state of the component under test.

Tests are just code in Racket, which means they can be interspersed
between the actual implementation. This allows the developer to work
on the language under test and the test in the same editor. The down

74

http://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html#testing
http://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html#testing

6.1. Testing in language workbenches

side is that, although there are a lot of asserts and comparing functions
provided, there is not a lot of support specifically for testing languages.
This means the tests will be focussed on the implementation, and won’t
be reusable for other implementations of the language. Another conse-
quence is that test cases are not declarative, unless the developer writes
their own abstractions to make their tests declarative. The benefit of
SPT is that it offers these abstractions for you.

Rascal – this is a programming language with abstractions specifically for
working with source code [19]. These abstractions allow developers to
more easily create a language with Rascal, that with a programming lan-
guage without these abstractions. Just like with Racket, all the imple-
mentation of the language is done in the Rascal language itself, meaning
tests will also have to be written in this language.

Testing in Rascal can be done by creating functions with the test key-
word. These functions are written in the Rascal language, meaning you
have all the same abstractions available when writing tests that you do
when creating your language. This means tests can be more declara-
tive, without having to write the abstractions yourself. The downside
is the same as with Racket: you’re still writing tests against the im-
plementation, which means they can’t be shared between between two
implementations of the same language. Another problem is that there is
no way to group test cases into test suites for easier regression testing,
or built in support for continuous integration. Such tools, however, can
be built.

Another interesting feature of testing within Rascal, is that when a test
function is given parameters, the test engine will generate some random
values for these parameters. This is an interesting feature that is closely
related to test generation. Which we will discuss in the next section.

MPS – the MetaProgrammingSystem (MPS [20]) is an interesting language
workbench. It differs from the other language workbenches we discussed,
because it uses a projectional editor as opposed to textual editors. This
means it’s possible to create languages with input programs that are not
just textual, but have different graphical views. It also means that the
only way to create a program in such a language, is with the projectional
editor of that language.

As the programs in the language under test have to be written in the
MPS projectional editor, the tests too need to be able to provide this
editor. To do this, MPS allows the developer to specify their input pro-
gram for the test using the projectional editor for the language under
test. This input program can then be annotated with certain test expec-
tations which will be verified when the test is executed. The interesting

75

6. Related work

Figure 6.2: An example of testing the type system in MPS (https://www.
jetbrains.com/help/mps/testing-languages.html#nodetests)

thing is that such tests can only be created once the projectional editor of
the language under test is created. This makes test driven development
impossible, but it does maximize the integration of the editor services of
the language under test and the editor for the tests. An example of this
can be seen in figure 6.2, where the user is about to add an annotation
to test the types of a Java input program.

6.2 Testing outside of language workbenches

Not all languages are created in a language workbench. In this section we will
take a look at two well known general purpose programming languages and
how they are defined and tested: JavaScript and Java.

JavaScript – as we have mentioned in chapter 2 JavaScript has a test suite
written in the language itself [9]. The benefit of this approach is that
the test suite can be used to test any JavaScript engine, not just 1
implementation.

The test programs are parsed and evaluated and pass if no error occurs.
Without negative test cases, this means that an engine that does noth-
ing would trivially pass the tests. To allow negative test cases, they use
special comments with metadata. The test runner would need to in-
terpret this metadata and evaluate the test accordingly. This metadata
can be compared to the test expectations of SPT.

This approach to testing only works if the language is expressive enough
to evaluate itself. To do so, it would need things like type checks to check
its own types and value comparisons to test the dynamic semantics and
name resolution. Not all domain specific languages have these features,
and even if they do, the test runner that interprets the metadata would
still need to be implemented. SPT can be seen as the test runner for
languages created by the Spoofax language workbench. Which means
developers don’t need to write their own test runner.

76

https://www.jetbrains.com/help/mps/testing-languages.html#nodetests
https://www.jetbrains.com/help/mps/testing-languages.html#nodetests

6.3. Test generation

Java – the process for testing Java implementations works quite similar to
that of JavaScript. First, they make a specification for the language (in
the form of Java Specification Requests). Then, they create a Technology
Compliance Kit (TCK [21]). This is basically a set of test suites and a
harness to execute those tests.

The harness can be configured, but it does impose some constraints on
the Java implementation to allow the execution of the tests. The test
cases themselves provide metadata about the test in the comments above
the test case, and the harness interprets this to know how to execute it.

6.3 Test generation

In the previous section we saw how some languages are tested by running
manually written tests cases against a language implementation. It is up to the
developers who wrote these test cases to ensure they cover certain properties
of the language implementation that need to be verified. Another approach
to testing properties is to generate inputs instead of manually crafting them
and then check to see if the property holds. An example of this can be seen
in QuickCheck [22]. This is a Haskell tool that allows the developer to specify
properties of their implementation. QuickCheck will then generate inputs and
check if the property holds for these inputs.

If we want to apply such a technique to testing in language engineering, we
need to know which properties to test and what inputs should be generated.
This is pretty clear in SPT: a test case consists of an input program and test
expectations. The test expectations would be the properties to test, e.g. is the
syntax valid (parsing) or are the static semantics valid (analysis). The input
that needs to be generated is the input program. The most basic example
of a generated test would be to generate random strings and see if they can
be parsed. This wouldn’t be very helpful as a test, because the generator
wouldn’t know if the generated string is supposed to be valid syntax or not.

The main question for test generation in language engineering is to gener-
ate input programs of which we know certain properties. For example, Csmith
[23] can generate C programs with valid syntax and semantics. So C compilers
can be tested by seeing if they can compile the generated programs.

To bring this research to the Spoofax language workbench the Spoofax
Generator (SPG [24]) was created. This tool can generate syntactically valid
input programs based on the SDF grammar and can also generate well-typed
input programs based on the NaBL2 type definitions.

77

Chapter 7

Future work

In the evaluation we noted there are still two important unsolved problems
with both the previous and the new SPT. These are support for dynamic
fragment markers, and editor services (most notably syntax highlighting inside
fragments). These problems are excellent candidates for future work, as they
require both work on SPT and on Spoofax itself. In this chapter we will
describe these problems in a bit more detail. We also add another interesting
topic for future work to this list: the sandboxing of test execution. This topic
was discovered after the new SPT had been used in several actual language
projects.

7.1 Dynamic markers

Support for user-defined markers to delimit fragments is mainly a theoretical
problem. The two different markers SPT offers ([[[and [[[[) are sufficient
to test most languages. However, if we truly want to approach the goal of an
LPTL and become language specification agnostic, we need to allow the user
to define what delimiters they want to use, so any conflict with the syntax of
their language can be avoided.

To be able to solve this problem, we need add support for parameterized
grammars to Spoofax. To do so, we would need to extend the SDF meta DSL
as well as the parsing algorithm.

7.2 Editor services

As discussed in the previous chapter SPT has never properly supported the
editor services of the language under test, but with the new SPT we took a
step back in terms of syntax highlighting of fragments. This issue has high
priority for the users of SPT as it makes the writing of test cases a lot less
enjoyable.

79

7. Future work

To be able to add syntax highlighting to fragments again we would need
Spoofax to allow syntax highlighting to change after the analysis phase. This
would be required for us to change the highlighting of the fragments, as their
highlighting is currently determined during the analysis phase of SPT. An
added benefit would be that highlighting during analysis actually allows se-
mantic highlighting, instead of just syntax highlighting.

The approach to using the highlighting of the language under test would
be the same as using the other editor services. To be able to add these,
we would need a public API from Spoofax to access these editor services
from the language under test. The second step would be to provide a custom
implementation for these APIs for SPT itself. For example, Spoofax currently
uses the language’s grammar and parse table to provide content completion
for a language. We would need to override this for SPT, as content completion
requests within fragments would have to be delegated to the language under
test, while requests outside fragments would have to be handled using the
default parse table approach.

For content completion this public API to call the service for the language
under test exists, but the second part, overriding its behaviour for SPT, would
require quite some changes to the new Spoofax.

7.3 Sandboxing

When SPT was used in practise, it was used to test a language that performed
a lot of side effects during the analysis phase. It generated several custom
artifacts and reused them if they already existed. As SPT currently has no
way to track these side effects, it also can’t undo them after a test has executed.
This caused some test cases to exhibit different behaviour based on the order
in which they were executed and which custom artifacts already existed and
which did not.

To combat this problem, we would like to execute tests within a sandbox.
That would not only allow us to undo changes to the environment after each
test case, but would also provide a layer of security for our automated testing
approach.

80

Chapter 8

Conclusion

We have noted some of the problems with the previous SPT in chapter 3, and
proposed a solution for these problems in chapter 4. This proposed solution
solves many of the problems we identified, and can serve as a good basis for the
further development of Spoofax and SPT. It is already being used in practise
for interactive test case design, regression testing, continuous integration, and
automated grading.

Overall we met all of the goals that we started out with. The new solution
works with Spoofax versions above 2.0, has an extensible and modular archi-
tecture, and meets the requirements for the new use cases. We did, however,
run into some problems and limitations while designing this new SPT.

The first problem which remains unsolved is editor services inside test
fragments. For these editor services we’d need both a public API from Spoofax
to execute those editor services on the language under test, and we’d need to
be able to override the default implementation for SPT. If the editor service is
performed outside of a test fragment, the default service can be used, otherwise
we need to delegate it to the language under test. Future work would be
to research how this can be added to the new Spoofax architecture. The
most important editor service to focus on would be syntax highlighting, or
preferably even semantic highlighting.

Another problem is sandboxing of test execution. SPT creates a different
representation of reality for test execution, as the text in the test suite file is
not what the parser and analyser of the language under test are given. For this
reason, we need to map these locations between the ‘realms’ of SPT and the
language under test. We could take this one step further and fully separate
the execution environments, allowing us to sandbox the test execution. This
would be very helpful for language implementations that produce side effects
during the analysis phase.

We believe our proposed solution offers a good basis to build this future
research on.

81

Bibliography

[1] NIST. The economic impacts of inadequate infrastructure for soft-
ware testing. http://www.nist.gov/director/planning/upload/

report02-3.pdf, May 2002.

[2] Lennart C. L. Kats, Rob Vermaas, and Eelco Visser. Integrated lan-
guage definition testing: enabling test-driven language development. In
Cristina Videira Lopes and Kathleen Fisher, editors, Proceedings of the
26th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2011, part of
SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages 139–
154. ACM, 2011.

[3] K. Beck. Test-driven development: by example. Addison-Wesley Profes-
sional, 2003.

[4] Lennart C. L. Kats and Eelco Visser. The spoofax language workbench:
rules for declarative specification of languages and ides. In William R.
Cook, Siobhn Clarke, and Martin C. Rinard, editors, Proceedings of the
25th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2010, pages 444–
463, Reno/Tahoe, Nevada, 2010. ACM.

[5] Martin Fowler. Language workbenches: The killer-app for domain specific
languages? 2005.

[6] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Mar-
tin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido H.
Wachsmuth, and Jimi van der Woning. The state of the art in language
workbenches. In Martin Erwig, Richard F. Paige, and Eric Van Wyk,

83

http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf

Bibliography

editors, Software Language Engineering, pages 197–217, Cham, 2013.
Springer International Publishing.

[7] Boris Beizer. Black-Box Testing : techniques for functional testing of
software and systems. Wiley, 1995.

[8] Paul Hamill. Chapter 3: The xunit family of unit test frameworks. In
Unit Test Frameworks. O’Reilly, 2005.

[9] Ecma TC39 committee. Official ecmascript conformance test suite.
https://github.com/tc39/test262, 2018. [Online; accessed 2-August-
2018].

[10] Jan Heering, P. R. H. Hendriks, Paul Klint, and Jan Rekers. The syn-
tax definition formalism sdf - reference manual. SIGPLAN Notices,
24(11):43–75, 1989.

[11] Gabril D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco
Visser. Declarative name binding and scope rules. In Krzysztof Czar-
necki and Grel Hedin, editors, Software Language Engineering, 5th In-
ternational Conference, SLE 2012, Dresden, Germany, September 26-28,
2012, Revised Selected Papers, volume 7745 of Lecture Notes in Computer
Science, pages 311–331. Springer, 2012.

[12] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. Stratego/xt 0.17. a language and toolset for program transfor-
mation. Science of Computer Programming, 72(1-2):52–70, 2008.

[13] Mark G. J. van den Brand, H. A. de Jong, Paul Klint, and Pieter A.
Olivier. Efficient annotated terms. Software: Practice and Experience,
30(3):259–291, 2000.

[14] Eelco Visser. Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam, July
1997.

[15] Martin Fowler. Continuous integration, 2006. http://www.

martinfowler.com/articles/continuousIntegration.html, May
2006.

[16] Pyret. https://www.pyret.org/index.html. Accessed: 2019-12.

[17] M. Eysholdt and H. Behrens. Xtext: implement your language faster
than the quick and dirty way. In Proceedings of the ACM international
conference companion on Object oriented programming systems languages
and applications companion, pages 307–309. ACM, 2010.

84

https://github.com/tc39/test262
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://www.pyret.org/index.html

Bibliography

[18] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krish-
namurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. The
Racket Manifesto. In Thomas Ball, Rastislav Bodik, Shriram Krishna-
murthi, Benjamin S. Lerner, and Greg Morrisett, editors, 1st Summit
on Advances in Programming Languages (SNAPL 2015), volume 32 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 113–
128, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[19] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. Easy meta-
programming with rascal. In Joao M. Fernandes, Ralf Lmmel, Joost
Visser, and Joo Saraiva, editors, Generative and Transformational Tech-
niques in Software Engineering III - International Summer School,
GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised Papers, volume
6491 of Lecture Notes in Computer Science, pages 222–289. Springer,
2009.

[20] JetBrains. Mps: The domain-specific language creator by jet-
brains. https://www.jetbrains.com/mps, 2000. [Online; accessed 28-
December-2019].

[21] Oracle Corporation. Tck tools and documentation. https://jcp.org/

en/resources/tdk, 2019. [Online; accessed 29-December-2019].

[22] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. Acm sigplan notices, 46(4):53–64,
2011.

[23] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and un-
derstanding bugs in c compilers. In ACM SIGPLAN Notices, volume 46,
pages 283–294. ACM, 2011.

[24] Martijn Dwars. Random term generation for compiler testing in spoofax.
2018.

85

https://www.jetbrains.com/mps
https://jcp.org/en/resources/tdk
https://jcp.org/en/resources/tdk

	Contents
	Introduction
	Background
	Testing in Language Engineering
	The Spoofax Language Workbench
	The Spoofax Testing Language

	Requirements Analysis
	The ideas behind SPT
	Previous SPT architecture and implementation
	Use Cases for SPT

	Proposed solution for SPT
	SPT Core
	Changes to the language
	Adding new test expectations

	Evaluation
	Requirements of chapter 3.1
	Requirements of chapter 3.2
	Requirements of chapter 3.3

	Related work
	Testing in language workbenches
	Testing outside of language workbenches
	Test generation

	Future work
	Dynamic markers
	Editor services
	Sandboxing

	Conclusion
	Bibliography

