IME-ADAPTIVE GRID
AN DIRGILGGICA L SOILY =ik
USING PETSC

HeESIS RERPOKIT

MUKKUND SUNJII BABU GHEETHAA

Time-Adaptive Grid Hydrological solver
using PETSC

Thesis Report

by

\Vukkund Sunjii Babu Gheethaa

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Thursday July 16, 2020 at 10:00 AM.

Student number: 4817303

Project duration: October 1, 2019 — July 1, 2020

Thesis committee: Dr. Domenico Lahaye, TU Delft, supervisor
Prof. dr. Chris J. Budd, University of Bath
Dr. Matthias Moller, TU Delft
Ir. Eelco Naarding, SIM-CI BV

This thesis is confidential and cannot be made public until July 16, 2020.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

The thesis is an extension to my internship project conducted at SIM-CI, The Hague on July, 2019 as
part of my master’s program. A serial version of the model was successfully implemented and sub-
sequently integrated into the company’s software pipeline. Nevertheless, the computational overhead
of the solver proved to be a bottleneck. Therefore, the need to parallelise the model emerged as a
necessity. Furthermore, as an attempt to contribute to the open-source scientific software community,
this thesis also is geared towards serving that purpose on top of providing a reliable hydrological model
for the use of urban planning organisations.

In truth, this project wouldn’t have been possible without the strong commitment and dedication
offered from several of my support groups. Firstly, | would like to thank my mother who has provided
with all the love and support that a son can ask for. She has and always will be the most important
role-model in my life.

| would also like to sincerely pass my gratitude to my thesis supervisor, Prof. Domenico Lahaye
for his wonderful advice and support throughout the course of this project. Finally, | would be remiss if
| did not acknowledge the invaluable guidance and knowledge offered by Eelco Naarding and Martijn
Stroeven of SIM-CI.

Thank you for your unwavering support.

Mukkund Sunjii Babu Gheethaa
Delft, July 2020

Introduction

1.1
1.2
1.3

1.6

Motivation.
Involvement of SIM-CI Holding BV
Modelling Approach
1.3.1 Finite Element Method
1.3.2 Finite Volume Method
1.3.3 Grid Adaptivity
Open-Source Scientific Libraries
Open-Source Meshing Tools
151 Gmsh
152 Pdest,
153 DMForest.
Objectives.

Problem Description

2.1

Scalar Advection Equation
2.2 Shallow Water Equations

Numerical Methodology

3.1
3.2
3.3
3.4

3.5
3.6

Scalar Advection Equation

Shallow Water Equation

Godunov Upwind Method
Riemann Solver.
3.4.1 Rusanov Approximate Riemann Solver
3.4.2 HLL Approximate Riemann Solver
3.4.3 Augmented Riemann Solver
MUSCL-Hancock Scheme
Stability Criteria.

Implementation

4.1
4.2

4.3
4.4
4.5

System Decomposition.
421 VEC.
422 IndexSets(IS)
423 SNES.
4.2.4 Time Stepping (TS)
4.2.5 Data Management (DM)
Finite Volume Method Framework on PETSc
Routine to Compute Time Derivative
Integration of DMPlex Example

Adaptive Grid Refinement

5.1
5.2

5.3
54

5.5

DMPlex,
5.1.1 Datalayout.
Partitioning oL
Quad-Tree
Interpolation Methodology
541 Refining.
542 Coarsening
Adapting Criteria
5.5.1 Criteria for Scalar Advection Equation

Contents

Vi Contents

5.6 Implementationin PETSc 31
5.6.1 Algorithm for the Adaption Routine 31

5.6.2 Process Description 32

6 Numerical Results 33
6.1 Scalar Advection Equation. L L 33
6.1.1 Error Comparison. e 34

6.1.2 ScalingTests 35

6.2 Shallow Water Equations 36
6.2.1 CircularDamBreak 36

6.2.2 ScalingTests e 39

6.2.3 FlowOverBump e 41

6.2.4 Perturbation Over EllipticalHump 42

7 Conclusion 47
7.01 Future Work. L 47

Bibliography 49

Introduction

1.1. Motivation

At the start of the new millennium, countless studies have identified climate change as one of the emi-
nent dangers posed to modern civilization. With the increase in the development of public infrastructure
and the ever-expanding urbanization efforts, the rate of climate change is superseding any naturally
evolving process. One of the many potentially disastrous consequences is the rising sea levels and
the uncontrolled flooding of urban infrastructure.

Modern municipalities and governmental bodies are rushing to gather efficient methodologies to be
better prepared for this inevitable consequence of flooding. Furthermore, financial institutions such as
insurance firms must account for floods in their risk assessments. The accuracy of these estimates
could potentially reflect the value of their respective investments into various critical infrastructure. A
sound judgement on the reliability of the systems under extreme conditions such as heavy rainfalls
and/or flash floods is an important factor to be considered.

Figure 1.1: Floods in York, UK

Accurate and efficient methodologies must be made accessible to these organisations to build
smarter cities that adapt to a rapid climatic shift. Analysis of the overland flooding patterns can be
provided by empirical studies on scaled-down models. The pitfalls of this method lie in the physical
time and cost associated with building and maintaining experimental models. On the other end of the
spectrum, it can be provided by numerical models governed by the physical laws of hydrology. With
the advent of efficient high-performance computers, numerous governments rely on simulation data
provided by numerical models.

2 1. Introduction

Conventional hydrological numerical models are based on fixed grid methods. The conditions re-
lated to a typical flooding scenario are highly irregular because of the characteristics of the urban
landscape and of the time-dependent flow patterns acquired by the flood. To provide a reliable and ac-
curate solution, the numerical model must be efficient and accurately provide propagation information
of the water. This is critical in predicting the overall damage inflicted by an overland flooding event.
Fixed grid solvers are not capable of efficiently carrying out this task without the use of an unrealistic
amount of computational resources.

Time-adaptive grid methods for hydrological applications provide a viable solution. Due to the adapt-
ability of the method, a vast array of scenarios can be simulated with a high degree of accuracy while at
the same time adhering to manageable grid sizes. A massively parallel solver further expedites the pro-
cess by taking advantage of the high-performance computing resources available. Additionally, the use
of an open source framework to base such a solver with the required documentation is needed by both
academia and industry alike. After conducting a comprehensive survey of the available open-source,
top-level scientific libraries, it was decided to base the model using PETSc (Portable Extensible Toolkit
for Scientific Computation) [8]. The objective is thus to create a parallel, time-adaptive grid hydrological
solver based on an open-source framework provided by the scientific library PETSc.

Due to the extensive nature of PETSc, the process of creating the final model several preliminary
and intermediate steps. These steps included identifying the functions and capabilities of the various
subsystems making up the scientific library. With the information in hand, the final model was created
and validated with previously verified empirical and analytical cases. Furthermore, the various tun-
ing parameters associated with a time-adaptive grid model is analysed to identify their effect on the
accuracy and the computational resources required.

1.2. Involvement of SIM-CI Holding BV

SIM-CI, The Hague, The Netherlands is a tech startup that offered a simulation platform through a
SaaS platform. Their flagship service was the simulation of cascading effects on the critical infrastruc-
tures of a city. Their software thus conducted a simulation of rare-events such as telecommunication
failures, electrical outages, flooding events, or disruption of public transports in cities with typical mod-
ern amenities. Through the simultaneous operation of multiple models, the cascading effects of a
given disturbance can be visualized through a Unity client offered by the company. The same can
be achieved in the case of a dyke break or flash floods. Using specialised models that calculate the
damage on buildings and the implications of a power outage or a telecommunication failure, the total
financial impact of such an event can be reported to the user.

Anin-house hydrological model proved to be a vital addition to the product’s repertoire. Furthermore,
the hydrological models could also be used to enrich the predictions calculated by the damage models.
Therefore, the inception of the project was carried out in collaboration with SIM-CI [25]. Part of the
primary objective of the thesis revolved around the functional requirements put forth by the development
team of the company. According to the requirements, the final model must thus fulfill the following:

* Model Performance: The hydrological model must be robust and capable of handling a wide
variety of scenarios including being able to model dyke breaks, and heavy rainfalls. Furthermore,
the model must be scalable and written in C/C++.

» Accuracy of the Results : As the output of the model is used to estimate the damage, control the
traffic flow, and/or the operation of first responders, the accuracy of the model is of high priority.

» Maintainability: The piece of software must be well documented and highly modular in nature.
This could allow for easier debugging and for retrofitting the model to accommodate client-specific
cases.

* Integration with the Software : In order to model cascading effects, the hydrological model must
be integrated into the software pipeline. Therefore, the model must be built to suit the APl adopted
and maintained by the company. This indeed dictates the choice of the coding patterns of the
model.

» Licensing: The final model created would henceforth be the intellectual property of the company.
Therefore, the model must be based on open-source software that offers the appropriate distri-
bution rights.

1.3. Modelling Approach 3

During the initial stages of the project, due to the passing of certain legal legislatures, SIM-CI was
forced to stop all the ongoing operations by its parent company. As a result, it was decided to carry out
the project without the involvement of SIM-CI. Nevertheless, valuable technical assistance was offered
by Martijn Stroeven, CTO and Eelco Naarding, Scientific Software Programmer of SIM-CI throughout
the duration of the project. With the fall-out of the collaboration with the company, it was found that
the core of the functional requirements still provided value to the open-source scientific community.
Therefore, together with the administration of SIM-CI and Dr. Lahaye (thesis supervisor), it was decided
that the model created in this project not made proprietary. The source code for the models can be
found in the author’s Github repository [26].

1.3. Modelling Approach

In recent years, significant research has been done into numerically modelling overland flows. A ma-
jority of occurrences of free surface water flow in a natural setting can be captured by solving the
two-dimensional shallow water equations (SWE). The SWE are obtained using the depth-averaged
version of the Navier-Stokes equations. The equations assume a hydro-static condition across the
vertical gradients of pressure. Furthermore, it maintains that the horizontal velocity is constant across
the entire depth of the fluid section. Some of the numerical methods that were considered to solve the
hyperbolic partial differential equation (PDE) are described in the following sub-sections.

1.3.1. Finite Element Method

The finite element method is a popular approach to solve PDE’s. It is capable of tackling complex
boundary conditions as opposed to a finite difference or a finite volume method. Behrens [10] followed
a similar approach by employing a lower order finite element approach while carrying out local refine-
ments to the mesh. For the temporal discretisation, a semi-implicit Lagrangian method was used. The
interpolation and velocity calculations involved in the method are independent and hence are in an
excellent position for parallelization. Similar flexibility is offered when the Discontinuous Galerkin (DG)
method is combined with an adaptivity strategy that modifies the local order of accuracy in the areas
of interest [55]. However, it was found that the number of degrees of freedom associated with DG
methods is higher when compared to continuous finite element methods [21]. Additionally, the finite
element approach poses a higher degree of difficulty in terms of implementation and optimization for
scalability.

1.3.2. Finite Volume Method

On the other hand, a number of commercial codes are based on the finite volume method (FVM).
These algorithms include the high-resolution Godunov-type methods which are very well suited to solve
for the SWE. For instance, Leveque [41] uses a second-order accurate method to solve for various
flooding test cases. Discontinuities in the domain, often called hydraulic jumps, are regular artifacts of
overland flooding and can be solved effectively using high-resolution methods. The Godunov method
can be applied by solving the Riemann problem across the domain. However, using an exact Riemann
solver is computationally expensive. Therefore, an approximate Riemann solver offers an alternative
solution to reduce the computational overhead. Liang [44] uses an HLLC approximate Riemann solver
in conjunction with a Godunov type method. Additionally, to avoid spurious, non-physical oscillations
usually observed in second-order methods, limiters can be applied to damp them down. Such an
approach is adopted by Liang [45] to obtain a robust model capable of solving for dam-break scenarios.
In the face of a number of benefits offered by FVM, it was decided to base the models presented in the
project using this numerical methodology.

1.3.3. Grid Adaptivity
In the applications of geophysical modelling, the domain to be solved usually consists of vasts areas
of land and water bodies. If one were to use a uniform grid solver for such applications, they would be
heavily restricted to using low-resolution grids. Complex behaviours of over-surface flows such as the
interaction with urban terrains such as buildings and canals cannot be resolved and hence, naturally
lead to high localized errors. Couple of methodologies are available to overcome the grid resolution
issue and increase the overall efficiency of the model.

The first solution is to use non-uniform grids which can be selectively refined in certain areas of

4 1. Introduction

the grid. For instance, in tsunami modelling such a necessity is evident along the coastlines where
the resolution of the grid is required to be high. As a result, simulations are conducted on grids that
are selectively refined along the coastlines in order to provide the required accuracy of the solution in
such highly volatile regions. Therefore in the studies [3, 63, 65], the tsunami models are equipped to
handle nested and unstructured grids. Similarly, in the case of hydrological models, multiple studies
[16, 29, 36, 43, 57] have been dedicated to solving the PDE on unstructured or non-uniform, structured
grids. However, the drawback of a static, non-uniform grid is its ability to capture the wave-front of the
water accurately. In dam break cases, it is essential to accurately predict the dry-wet interface which is
time-dependent. Furthermore, in the majority of flooding scenarios taking place in urban landscapes,
it is often hard to predict areas in the domain that requires higher resolutions.

Another solution to the challenges presented above would be to adapt the grid with time to obtain
better accuracy in specific areas of the domain. By doing this, a comfortable level of autonomy is
reached by delegating the task of refining the grid to the conditions provided by the scenario. Thus,
it would result in lowering the error in the solution while increasing the conditioning and the efficiency
of the model. Although, the approach of refining the mesh multiple times poses an additional memory
overhead, the accuracy and the efficiency of the model are expected to outweigh the drawbacks. Some
of the popular grid adaption techniques are presented below:

Ql QZ

Figure 1.2: lllustration of a r-Refinement strategy

1. r-refinement (Relocation Refinement): Often called the moving mesh method [30, 61], it is a
newer development in the area of mesh adaptivity. In r-refinement methods, the quadrature of
the mesh is moved according to solution criteria. However, the number of mesh points, and the
topology of the mesh is kept constant. Budd [12] provides a comprehensive account of the algo-
rithms associated with moving meshes. Due to the fixed parameters of the mesh, r-refinement
methods offer easier discretisation strategies in FEM. As the overall connectivity and topology
do not change, hanging nodes (nodes on faces with neighboring cells having dissimilar refine-
ment levels) are naturally eliminated. In the study by McRae [49], the general-purpose algorithm
provided for generating moving meshes for non-linear PDE’s offer these benefits. Furthermore,
mathematical and computational overheads associated with modifying the load balancing and
data structures are no longer an issue due to the fixed arrangement of the mesh points. Never-
theless, the moving nature of the mesh requires solving auxiliary PDE’s to obtain the position and
velocity of the mesh points. Thus, this adds to the cost of implementing a relatively novel method
while bearing the computational expenses created by the additional degrees of freedom.

2. p-refinement: Similar to r-refinement methods, this approach is well suited to FEM. It involves
non-uniform discretisation of PDE’s across the domain. Based on a posteriori estimate computed
using the solution, the local order of the polynomials is modified according to the threshold con-
ditions. In one study [62], p-refinement strategies were used to solve the wave-continuity formu-
lation of the shallow water equations. The method provided an accurate estimate of the surface
elevation by maintaining continuity. Furthermore, it was demonstrated that when compared to
lower order polynomials, quadratic elements produce more accurate results [5, 6]. Nevertheless,

1.4. Open-Source Scientific Libraries 5

this adaption strategy is suitable for parts of the domain where the solution is relatively smooth.
Kubatko [37] uses a hybrid hp-refinement technique to tackle both smooth and discontinuous
solutions.

3. h-refinement: Being one of the more widely researched approaches to grid adaptivity, it is em-
ployed by a number of commercial software suites. The h-refinement strategies involve refining
and coarsening static grids for every time step based on a posteriori error estimate. It is shown
to accurately capture highly discontinuous solutions and thus well suited to be used with FVM
schemes [19, 34, 46, 48]. Numerous studies [11, 17, 18, 42, 46] have employed this method-
ology for geophysical phenomena such as storm surges, weather prediction, and dam breaks.
However, using an improper selection of a posteriori error estimate or a lower order interpolation
schemes may lead to non-physical numerical artifacts in the solution. Nevertheless, by using
a balanced interpolation scheme in combination with a well-balanced numerical scheme, highly
accurate solutions have been produced [13, 31, 50, 56]. Due to the proven background and ben-
efits associated with FVM, the model created in the current project is based on the h-refinement
scheme.

1.4. Open-Source Scientific Libraries

In light of developing an open-source model, a survey of the available open-source scientific libraries
was conducted. Based on the method being used a variety of Computational Fluid Dynamics (CFD)
codes were available. FEniCS [2] is one such platform for models based on the finite element method.
It offers a python interface which accommodates for an easier translation of mathematical operators
into the program. Furthermore, algorithms for adaptive mesh refinement can be instituted using the
library as was done in the study [33].

An alternative for the finite volume method is offered by OpenFOAM [28]. With an extensive user-
base and an active community, it features a comprehensive list of capabilities to develop hydrodynamic
models. Numerous studies have been dedicated to exploring the h-refinement methods on oct-trees in
3-dimensional space and quad-trees in 2-dimensional space [15, 47, 51]. Nevertheless, OpenFOAM
does not offer access to control every parameter associated with the numerical methodology.

PETSc[1, 7, 9, 64] is another counterpart to the high-level open-source scientific library. It provides
a number of versatile modules and data structures to facilitate the production of massively parallel,
large scale models for partial differential equations. Its solvers and meshing tools are used by other
libraries such as OpenFOAM and FEniCS. With a large and active development community, a number
of geophysical models were developed using the TS (Time-stepping) and ODE (Ordinary differential
equation) solvers of PETSc [23, 52, 58]. As opposed to the other choices, PETSc can be considered
as a library-oriented more towards the mathematical framework rather than the final application. Fur-
thermore, with considerations of the functional requirements posed by SIM-CI (see section 1.2), it was
decided to implement the model using PETSc.

1.5. Open-Source Meshing Tools

In favour of rapidly producing prototypes and trying to stay focused on testing and improving the existing
h-refinement adaptive grid solutions for SWE, a decision was made to make use of existing open-source
tools. By doing this, the time required for the development of the software is bypassed and the need to
reinvent the wheel is thus eliminated. Therefore, a survey of available open-source tools was conducted
and the results are discussed hereon.

Within the h-refinement approach, there exists a variety of strategies to increase the resolution of
the grid. This could either be block or cell-based adaptive mesh refinement (AMR). In the block-based
approach [22], the grid connectivity associated with the data structure remains small. On account
of reduced changes in the grid resolutions, this approach has a smaller effect on creating numerical
artifacts.

On the other hand, cell-based approach are focused on uniformly subdividing individual cells (par-
ent) into smaller constituents (children). The algorithm, thus, relies more on tree structures to handle the
resulting grid connectivity. Although it raises concerns in the implementation of the numerical method,
it offers an easier route for load balancing among multiple processors. Therefore, highly scalable algo-
rithms can be produced using this approach. Additionally, due to an increase in the number of "blocks”

6 1. Introduction

@ Level 1

[Ty

Level

fH

Figure 1.3: Cell-Based refinement strategy

in the grid, it can efficiently adapt to highly complex geometries.

1.5.1. Gmsh

Gmsh [24] is a popular open-source unstructured mesh generator that comes with pre- and post-
processing utilities. It provides an attractive alternative to the other mesh generators as it offered a well-
documented SDK. Furthermore, it has extensive features corresponding to adapting the h-refinement
strategy [38]. Nevertheless, under the General Public License (GPL) of the software, it was prohibited
to integrate into a closed-source software.

1.5.2. P4est

Another popular library for handling hierarchical quad- and oct-trees is p4est [14, 20]. It offers parallel
cell-based AMR algorithms using linear storage. Using tree-based methods and schemes that are
recursive, it does not allow overlapping refinement. Therefore, these attributes make it very efficient in
storing distributed meshes and balancing loads.

1.5.3. DMForest

DMPLEX is a subset of methods and routines found within the DM module of PETSc [39]. It supports
the storage and handling of various 3rd party mesh formats such as MED, Gmsh, and CGNS to name
a few. The grid connectivity is then stored in the form of a directed acyclic graph (DAG). Each layer in
the DAG represents a quadrature element of the grid. However, DMPLEX by definition was created to
store and handle conformal meshes. The support for non-conformal, hierarchical meshes later came
in the form of an interface called DMForest [32]. DMForest, essentially uses the algorithms provided
by P4est and outputs the data in the unstructured grid format used by DMPLEX. Since DMPLEX offers
the ideal platform to create models that call on the DM API of PETSc, it was chosen as the meshing
tool for the subsequent models presented in this project.

1.6. Objectives

The need to model shallow water flows over the urban landscape is evident and its application exists
for a number of governmental organisations. Furthermore, the necessity is heavily justified by the lack
of well-documented, validated open-source hydrological solvers that support varying topography and
adaptive mesh refinement. The objective of the project was thus to create a scalable, and efficient
hydrological solver that features the h-refinement strategy. Furthermore, the hydrological solver must
be capable of handling highly discontinuous initial conditions that are often encountered in real life

1.6. Objectives 7

flooding scenarios.

With the decision to base the model on an open-source scientific library, a portion of the effort was
dedicated to understanding and delineating the subsystems and subroutines offered by the library.
Although the package is provided with a number of exercises, one might find the learning curve to be
relatively steep. Therefore, it was recognized that a secondary objective of the project was also to
provide a smoother ramp to understanding and effectively applying PETSc for the inception of other
mathematical models. Hence, together with the comments provided in the source code, this report can
be used as a building block for constructing other time-dependent numerical models based on PETSc.

Problem Description

2.1. Scalar Advection Equation
In order to facilitate the understanding of the framework of PETSc, the strategy of divide and conquer
was used. The bigger problem of solving a non-linear system of PDE’s was broken into smaller parts.
With simpler and smaller problems at hand, individual functionalities of a complex scientific library such
as PETSc could be focused, studied and tested. In mathematical terms, the easiest route would be to
create a functional solver for a scalar, linear PDE’s and then move on to more complex PDE’s such as
the shallow water equations.

Being a scalar and a linear PDE, the creation and manipulation of the advection model was relatively
simpler than that of the shallow water equations. The advection equation that is solved by the Riemann
solver is given by:

Ju 4 Ju N ou 0 21
ot T %x T8y T 1)
Here, a and b is a constant. Now, consider an initial condition (Cauchy problem) given by

u(x,y,t =0) =uo(x,y)
We can derive the solution of the PDE to the initial condition as the following,
u(x,y,t) =upg(x —at,y — at)

When u(x,y,t) is plotted, we see that it moves along space and time without any deformations
(characteristic lines in a x-t plane). Hence for this case, we have the exact solution for the initial problem
and thus allowing a detailed error analysis and grid sensitivity analysis to be performed. The errors
computed are norms of the differences between the exact solution and the numerical solution.

2.2. Shallow Water Equations

In terms of mathematical complexity, the next step would be to solve for a system of non-linear PDE. The
two dimensional shallow water equations (SWE) exhibit these characteristics. The SWE is a deduction
of the Navier-Stokes equations with the assumption of a hydrostratic condition for pressure. Besides,
the velocities are assumed to be constant across the column of water. This essentially is obtained
by neglecting the viscous effects. Due to relatively lower water column heights, the Coriolis effect is
considered negligible as opposed to being a factor in tsunami modelling.

When considering the PDE without the involvement of a topography or the effects of friction, one
obtains the SWE without any source terms. The first wave of models were modelled using SWE without
bathymetry terms as a step to both expedite the process and test the efficacy of the AMR algorithm.
The formulation of this system is shown in eq. 2.2.

oU OF 9G _

3t tax tay = (2.2)

9

10 2. Problem Description

By taking into account the effect of frictional terms (S¢) and topographic slopes (S;), the SWE can
be expanded as

ou oF 69—571 Se(U 2.3

Here, the vectors are defined as the following:

h uh vh
U= |uh| F= u2h+%gh2 G = uvh
vh uvh v2h + %ghz_
0 0
0zp(x.y) _M
o= | =T
_ hazb(x,y) Iy u,v)
6y p

T (u,v) = pCruvu? + v2 (2.4)
7y (u,v) = pCrovu? + v? (2.5)
where z,(x,y) is the bed elevation of the domain. As shown in eq. (2.4) and (2.5), 7, (u,v) and

7,,(u, v) account for the friction offered by the bed. They are also a function of the bed roughness
coefficient which is given by

n2
Cr = gh1/3
Furthermore, n is called as the manning coefficient. It is estimated through empirical methods that
are carried out through controlled measurements of the flow of liquids over different terrains.

Numerical Methodology

3.1. Scalar Advection Equation

For the scalar advection equation, the discretisation was done using the finite difference method. This

choice is motivated by the use of the DMDA module of PETSc. Suited to handle uniform meshes, the

DMDA module offers routines store and handle adjacency information of the respective cell centers.

This naturally results in a straight forward procedure to implement the finite difference method.
Consider eq.(2.1), the spacial derivatives are discretized using the first order upwind method. Sup-

pose for a inner cell (i,), once the spatial discretization is carried out, the equation then becomes

Ju(x,y,t)

3t —[a*uy +a"uf] — [b*u; + b uy] (3.1)

where

at = max(a,0), a =min(a,0)

n _ . n n _gn
o Wy Wi +_ Yt "W
ux = _—, ux = —-—
Ax Ax
b* = max(b,0), b~ = min(b,0)
n n n n
o Wy T Y +_ Yij+1 "W
u, = , Uy =
Y Ay Ay

For the purpose of verifying the solver’s numerical order of accuracy, the Forward Euler method is
used to discretise in the temporal domain. Eq.(3.1) thus becomes

ufft =l — At ([atur +a] + bruy + b))

3.2. Shallow Water Equation
The spatial discretisation of the two dimensional shallow water equations are done using the finite
volume based Godunov type approach.

Let us reconsider eq.(2.2) and write it in the form of a differential conservation law,

Ut +F(Wy +G(W)y, =0 (3.2)

Now, the integral form can be written as:

d
—ff‘lldv+f.7'[.ﬁdﬂ=0
dt v Q

where Q is the domain boundary, V represents the control volume, I = [F,G]T corresponds to the
flux and 7 is the normal vector in the respective Cartesian coordinates.

11

12 3. Numerical Methodology

For two dimensions, the cell average of conserved variables across the cell area can be computed

using
. d
i= f fvudv (3.3)

Furthermore, the average of the net sum of normal fluxes through the interfaces of the cell can be
computed from the integral.

N

1 1)

i Z F= o f H.AdQ (3.4)
p=1 @

Using eq.(3.3) and (3.4), the semi-discrete form can be written where the flux term is discretised in
space while the cell average is left continuous in time,

dfa+1i;r—o 3.5
dt IAIp_lp_ (3:5)

where F, = f;p”“ [n,F(U) + nG(W)]dQ. For a two dimensional space composed of I; ;),Vi,j €

[1,n], where every cell is a quadrilateral, and the appropriate cell widths in the x and y directions are
Ax and Ax respectively, eq.(3.5) can be written as

d . 1
U= _E(TH%J —ﬁ_%,j) - E(giﬁ% —Qi,j_%) (3.6)
The numerical method is considered complete once the flux terms at the interfaces, i.e., 7, 1 I g; o1
2’ Y2

are defined. The choice of these terms are further decided by the numerical scheme picked. The Go-
dunov flux is picked as the choice of the flux to provide a complete and a conservative scheme.

3.3. Godunov Upwind Method

Assuming that we have a solution which when distributed across a finite grid, is decomposed into n
piece-wise constant solutions. The intuition behind the Godunov method is that each of these piece-
wise constant solutions are travelling at a finite speed and can be computed. Thereafter, the final
solution can be exactly computed by solving the Riemann problem at the interfaces of each cell. Without
any extensions, the scheme is first order accurate. For brevity and clarity, the Godunov method is
represented by the one dimensional version of the shallow water problem.

U +F(U), =0 (3.7)

Following the procedure in section 3.2, eq.(3.7) can be discretized in space and time and be repre-
sented as the following

un=un+1_£(}i 1 —F 1) (3.8)
l l Ax Y i+3 i-3

Now consider x =i + - in a tiny fraction of the domain, x,_s < x < x,, 1. Here we can see that it
2 2

can be reduced to a initial value problem (IVP) which consists of a discontinuity at x = i + % and so on.
Considering the same PDE governing the problem, the initial value of U for the specified domain can
be written as

uy, if x < X, 1
Ux, ty) = 2
" U, x> X1
Using the same logic, a similar VP can be instituted for the interface at x,_1. In order to compute
the flux at the interface, say (F(U),, 1), where the value of U, 1 is such that aléng the t axis, we have
x/t = 0. Therefore, to find the valuze of U, 1(x/t = 0), onezneeds to solve the Riemann problem
2

corresponding to eq.(3.7). The exact choice and type of Riemann solver is explained further in the
upcoming section.

3.4. Riemann Solver 13

3.4. Riemann Solver
Reconsidering eq.(3.8), we assume that the flux terms F,_ 1 and F,_1 do not change over time. Then,

the fluxes can be exactly computed using the values providzed by thezsolution of the Riemann problem.
Depending on the type of case (rarefaction wave or a shock), the Riemann solver provides the values
at the interface. Consequently, one can compute the flux values using those values.

Depending on the complexity of the equation, solving the exact Riemann fluxes at the interface can
be very computationally expensive. For the two dimensional scalar advection equation, the use of an
exact Riemann solver is very much feasible. This is because one has to only worry about a single wave
propagating at every interface due to the simplicity of the equation. However, it is a different case when
it comes to the shallow water equations where multiple waves propagating at the different speeds and
possibly in different directions. As a consequence, utilization of an exact Riemann solver becomes
impractical.

The exact Riemann solver in this case can be considered to be redundant as there is not a significant
gain in accuracy when shifting from exact to approximate Riemann solvers. Furthermore, approximate
Riemann solvers are not as computationally expensive when compared to their counterparts. There-
fore in the following sections, the approximate Riemann solvers used in shallow water equations are
described.

3.4.1. Rusanov Approximate Riemann Solver

We know that when a naive average of the flux in the left and side of the interface is considered, the
method is unconditionally unstable for hyperbolic systems. However the instabilities can be eliminated
by adding enough viscosity to the average. The magnitude of the stability can be predicted by the
largest local wave speed given by the eigenvalues of A. The largest of them can be considered as the
viscosity coefficient. As an illustration, for a hyperbolic system, one has

ou N aF(U) 0
Jat ox

Then the Rusanov Flux is defined as the following:
1
Frusanov(Uy — Ug) = E(g:(uL) + F(Ug) — Amax (U — Ug)) (3.9)

Here, u; and uy are values of the state vectors based on the left and right cells of the corresponding
interface.

In the case of the shallow water equations, there are 3 eigenvalues for this system. The maximum
wave speed is thus given by:

Amax = Maxyejy, —ug) |A(F (W] = max(u® + ghy, u® + ghg)

Here, n, and n, are normals in the x and y direction. However, it must be noted that the choice of the
wave speed is restricted. For stability, the following condition must be satisfied

Ax
Mnax < v (3.10)

In the case of an equality in €q.(3.10), then the flux provided by eq.(3.9) results in a Lax Friedrichs
flux. To establish a stable condition for each timestep, an estimate of the maximum wave speed must
be known. Using the combination of the wave speed and the Courant-Friedrichs-Lewy value (CFL) C,
one can compute a maximum timestep value.

Ax

At=C

max

3.4.2. HLL Approximate Riemann Solver

Similar to the Rusanov approximate Riemann solver, this solver takes into account an estimate of
the minimum and the maximum wave speeds. In this approach, the effects of sheer waves and any
intermediate waves are assumed to be negligible. As shown in figure 3.1, let us again consider the

14 3. Numerical Methodology

L1
Z —
2

Figure 3.1: Wave structure of the Riemann problem at the interface x =i + %

interface i + = where we set the state vectors U, = U; and Ui = U;, as the left and right states of the
interface. Similarly for flux vectors we set F, = F(U;) and Fgr = F(U;41)-

Then the flux at the interface is decided based on the estimated speeds of the left-going and right-
going waves. A number of different formulations for the estimates of the wave speeds are available.
This choice is again made to obtain the best resulting accuracy and stability for the scheme.

F, ifS, >0
Fopt = Friem 15,025,
Fr, ifSp <0
The HLL flux is given by,
SpFL — S.Fp + SpS (U —UyL)
Friem = S —S (311)
R L

As mentioned before, the wave speeds are chosen such that it handles the interfaces of dry neigh-
bors. Therefore, an appropriate condition is necessary for the left and right wave speeds, and the
intermediate parameters as described by Toro [54].

{ﬁR -2 ghR! |th =0
SL =

min(iy, —+/ghy, Uin —ghin), ifhy >0
.- {aL +2./ghy, ifhg =0
R =

min(ttg —+/ghg, Uin ++/ghin), ifhg >0

where, a; r = \/gh,r is the gravity wave speed and 4, x = u; gz n, + v, g n, is the normal velocity
with respect to the interface. Furthermore, u, r and v, are the velocities in the x and y coordinates
with respect to the interface. The intermediate variables u;,, and h;,, are given by

2
1/1 1
hin = 5 <E(\/ghL +ghg + Z(ﬁL - aR)) (3.12)
1
Uip = E(dL‘}'wR)‘l'\/ghL_\/ghR (3.13)

3.5. MUSCL-Hancock Scheme 15

3.4.3. Augmented Riemann Solver

The topography in the domain can be taken into consideration with the addition of the source term
containing the bed slope term. Rewriting eq.(2.3) without the source term associated with friction, we
have

ou 9F 090G
Let the topography z(x,y) be a function of the domain. Here the source term associated with the
topography is defined as,

0
9z(x.y)
Sp(W) = |9,
9z(x,y)
—gh—73,~
For clarity and simplicity, the formulation of the augmented HLL Riemann solver provided by Au-
desse [4] is only provided for the interfaces with normals in the x direction. One can easily derive the

corresponding formulations in the y direction using the same procedure.

0
lim'UL,'uR—)'U asAx—>05b (uL! Ug, zy, ZR) = [_ghaz(xry)] (314)
ox

With the approximation shown in eq.(3.14), they can be transferred to the LHS and grouped into the

fluxes. Furthermore, one of the primary motivations of reformulating the flux terms using the bathymetry

term is to provide a well balanced model that are consistent in steady state cases. One of such cases

involve a level water surface height with a varying topography. In the absence of a balancing term in the

flux formulation, there will be non-physical fluxes resulting in a scheme that does violates conservation

of mass. Thus, for states U and U;, a well balanced scheme should satisfy the hydraulic balance
condition given by

UL + by = UL + b, (3.15)
Uz = U2 (3.16)

From eq. (3.12) and (3.13), we can see that the intermediary states u;,, and h;,, will not depend on
the bathymetry terms. This in turn implies that the fluxes left and right of the interface at x = i + % can
also be defined as a function of the bathymetry z; and z; respectively. They are given by

r SLSR(ZR—2L)
SR—SL
0z
—SLgAxha
SR—SL
r SLSR(ZR—2L)
SR=SL
0z
—SRgAxha
SR=SL

ﬁil(uL'uR'ZL' zg) = Friem + (3.17)
2

FR 1 (Us, Ur, 21, 28) = Friem + (3.18)
2

where F,.;., is given by eq.(3.11). Furthermore, the well-balanced property is provided by adopting
a natural discretisation for the bed slope terms. It is given by

aZ 1 hL + hR
Ax 2 (zr — 21)

ox Ax

3.5. MUSCL-Hancock Scheme

The PETSc TS module allows the configuration of various time stepping methods such as the Euler
Forward Method, Euler Backward method, Generalised Linear Methods, Runge-Kutta Time stepping
schemes to name a few. An explicit time stepping method is chosen over an implicit one as it was found
to be far too computationally expensive. When coupled with time-adaptive meshes, the advantages
offered by implicit time-stepping methods is outweighed by its higher FLOP (Floating point operations)
count and memory usage. To achieve an overall second-order accurate scheme, the MUSL-Hancock

16 3. Numerical Methodology

method is chosen. According to the scheme, the solution is updated in two steps, namely the predictor
and the corrector step. In the first step, the solution is marched forth by half a time step. Expanding on
€q.(3.6) and dropping the " symbol, we have
n+s E At
TL - n _Tn _ n n
u u + (TL+ J jrl—%]) ZAy (g11+ gi, —%)

Here the flux terms are computed using the appropriate Riemann solver. However, the state vectors
required by the Riemann solver are linearly interpolated values from the cell centers to the correspond-
ing face centroids. To suppress spurious oscillations, various limiters such as of types Minmod, Van-
Leer, or Superbee can be used in the reconstruction procedure. For instance, such an interpolation for
the state vector at a position (x, y) based on a cell centered value at (x;, y;) is given by

U(X,y) = 'Ul-J- + r.V‘Ui_J-

where r is the distance vector from the cell center to point under consideration and VU, ; is the
gradient of the state vector. Next the corrector step foIIows but now the reconstruction of the state

vector is done based on the updated values i.e., u"* This step is thus given by,

n+ At n+l n+l n+
run+1 U- J2 —(F 2 —F - 2
TR i+30 -) 2Ay(g gi.f—é)
The fluxes at the interface must be computed twice. Thus, the R|emann solver is utilized twice for
every time step marched forward. As a result, the TSSetRHSFunction () is called twice for every

time step.

3.6. Stability Criteria

As an explicit scheme is used, the time step value is limited by the maximum wave speeds in the two
coordinates, S, and S,,. For the two models they are specified below for Q = (i,j) € {(1,m) x (1,n)}:

« Scalar Advection Equation : Sy =u;; and S, = v;
+ Shallow Water Equations : S, = u; ; +,/gh;; and S, = v;; +.,/gh; ;
This criteria is measured by the CFL number. The time step is thus computed from the following,

Ax); i Ay); i
At = Cming minn(ij , minﬂ—(Vi)
Sy Sy

For the subsequent test cases illustrated, a CFL number of 1 has been used. Note that if the implicit
time stepping solver is used, the value of the time step is no longer bounded by the CFL number.

https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetRHSFunction.html

Implementation

4.1. PETSc

Portable, Extensible Toolkit for Scientific Computation (PETSc) is a compilation of data types and rou-
tines developed for numerically modelling of partial differential equations. PETSc is suited to create
highly scalable solvers which perform large scale scientific computations through the usage of MPI
and/or GPU accelerators. It consists of different linear PDE, non-linear PDE, and ODE solvers. Most
of the implementation of the library is carried out in C and C++ with additional wrappers written in
Python.

The purpose of choosing PETSc to base the models presented in this report can be illustrated
through several of its features. They are given below:

+ Parallelization: PETSc offers an intuitive interface to work with parallel vectors and matrices. A
majority of the underlying mechanisms needed for a parallel programming are hidden behind
user-friendly interfaces and routines. These routines are relatively simple to conceptualize from
the perspective of an applied mathematician. Operations such as communication of ghost points
between domains, assembly of matrices are facilitated through the functions already available in
the library.

» Modularity: PETSc is divided into several subsystems which are responsible for handling various
functions in the subsequent numerical modeling of the mathematical model. They have been
structured in a manner that promotes low coupling between subsystems and high coherence
within a subsystem. More information on each of the subsystem is provided later in section 4.2.

» Post-processing Options: The library also provides a myriad of methods to process the output of
the solution. The solution thus, can be converted and visualized in 3rd party applications such as
MATLAB, HDF5Viewer or ParaView to name a few. The availability of multiple choices proved to
be extremely valuable during the visualizations of unstructured, adaptive grid solutions.

» Comprehensive Debugging : PETSc can be configured to be used in conjunction with several
open-source debuggers such as lldb and hrefhttps://valgrind.orgvalgrind. Thus, identifying bugs,
memory leaks and running benchmarks for models is facilitated by this support.

+ Software Support : There is an extremely active community working on improving and providing
additional tutorials for the library. PETSc enjoys support and contribution from academic and
industrial researchers based all across the globe. The primary developers provided valuable
suggestions during the project which helped smoothen the learning curve and accelerated the
progress.

4.2. System Decomposition

In figure 4.1, an overview of system decomposition is shown. As mentioned earlier, PETSc is a 'collec-
tion’ of modules using the fundamental frameworks already set in place at the lowest level of abstraction.
A brief description of each of the module is given below.

17

https://lldb.llvm.org

18

4. Implementation

PETSc

E—— SEE— SE—— SE—
DA —{ METHOD NE‘é"gﬁé“cﬂNE " Axﬁ%ﬁ% ON GENERAL
— — — CE—
PLEX | RHS FUNCTION iR BLOCK
— EEEE— — —
FOREST | TIMESTEP vieRoToR STRIDE
- - - -
) E—
— POSTSTEP
-
—
L MONITOR
)

Figure 4.1: System Decomposition of PETSc

4.2.1.VEC

VEC, a data type defined in PETSc, is meant for storing, accessing and manipulating vectors associated
with the model. It can be considered as one of the simplest type of a PETSc data type and is suitably
located at the very bottom of the abstraction level. In the context of numerical modelling of partial
differential equations (PDE), VEC is critical to a majority of the operations as solutions, quadrature
information and adaptive grid parameters which are all stored in the form of vectors. Some of the basic
routines and its description is given below:

» Vector Creation and Assembly: The VEC object is created by passing the MPI comm object
and the initialized vector. Preliminary operations such as setting the size and values follow
after the creation of the VEC itself. Once the object is defined, VvecAssemblyBegin () and
VecAssemblyEnd () has to be called to complete the assembly of the object.

» Vector Distribution: Some of the operations are dedicated to the management of the storage
and distribution of the VEC object across multiple domains and/or processors. For example, the
function VecGetOwnershipRange () allows the user to obtain the indices of the vector in range
for a given processor. Different routines are available for 'Read-Only’ or 'Read-Write’ access of
the vectors such as vecGetArray (). This must be followed by the routine vecRestoreArray
() to record the changes.

» Vector Operations: Most of the basic operations such as basic arithmetic are provided for the
VEC operations. Furthermore, Norm computations are facilitated with specific routines. They are
automatically suited for both parallel and serial vectors. However, operations between a serial
and a parallel vector are not allowed.

4.2.2. Index Sets (IS)

To implement the operations of scattering and gathering in Vector objects, the Index Set (IS) object is
created. It essentially refers to the variable that contains the indices of the vectors or matrices. In the
majority of the routines, the IS object is used to store the processor ranges of VEC objects. Additional

https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecAssemblyBegin.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecAssemblyEnd.html%23VecAssemblyEnd
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecGetOwnershipRange.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecGetArray.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecRestoreArray.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecRestoreArray.html

4.2. System Decomposition 19

usages include the storage of indices of the inter-processor and boundary ghost cells. In the context
of the adaptive grid method, the IS object is used to store the indices of the cells that are tagged to be
refined or coarsened. This is explained in later sections.

4.2.3. SNES
This module provides a suite of routines to tackle large scale non-linear systems. Much of the method-
ologies are based on the linear solvers (KSP) which are not covered in this report. With an identical
interface to other solvers, the data structures used by SNES are in turn similar. The nonlinear equations
are solved from the form given below:

F(x)=0

As provided in the PETSc manual, the solver uses Newton’s method to solve the non-linear problem.
Therefore, the solution vector of n-dimension is computed using the following equation:

X1 = X — J (1) THF ()

where k = 0,1,..,n The user thus, has to provide a routine to assemble the Jacobian matrix J/(x;) and
define the form function F(x;).

4.2.4. Time Stepping (TS)

With the fundamental elements of the framework (VEC and I3)in place, Ordinary Differential Equation
(ODE) solvers and Differential Algebraic System (DAE) solvers can be solved using the TS module of
PETSc. Regardless of the numerical method used, the TS module solves for the equation written in
the form:

F(t,u,) = G(t,u) (4.1)

Where the initial condition is defined by u(ty) = u,. Here in the context of PETSc programs, the
term G(t,u) is generally called as the right-hand side (RHS) function. There are options for either
providing an user-defined routine for the RHS expression (typically in the case of cell-based finite dif-
ference method). Nevertheless, the models used in the project were based on finite volume methods.
Therefore, the RHS expression was computed using residual evaluation routines predefined in the TS
module.

While constructing a transient model using PETSc, it is essential to define a few essential parame-
ters for the solver. They are described as follows:

* TSSetType () : Sets the type of time stepping solver to be used. The temporal discretisation
can be chosen from a variety of methods prescribed in the TS module. Some of them include,
forward and backward Euler, Runge-Kutta methods and, general linear methods. More of such
options is given in Table 11 of [8].

* TSSetTimeStep () : Sets the timestep value at the start of every time iteration. The user is
responsible in providing a routine to effectively compute the timestep dt from the grid and solution
parameters.

* TSSetPostStep () and TSSetMonitor () : These routines correspond to the post computation
step of the solver. They are essentially used for monitoring the residuals and producing the output
in various formats.

4.2.5. Data Management (DM)

As per the definition provided by PETSc [8], DM provides a collection of routines and data structures to
define and facilitate the communication between the VEC and MAT objects and the distribution of mesh
elements corresponding to a particular PDE. Apart from some basic functions, DM itself is divided into
3 major types.

» Distributed Arrays (DMDA): Itis responsible for creating and handling Cartesian structured meshes.
The interface for the topology and geometry is provided by this class of objects. Furthermore,
it is also capable of parallel refining and coarsening. Routines such as DMDACreate2D () and

https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetType.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetTimeStep.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetPostStep.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSMonitorSet.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DMDA/DMDACreate2d.html

20

4. Implementation

DMDACreate3D () can be used to create two and three dimensional uniform meshes respec-
tively. Although highly optimised for the finite difference method, the drawback of DMDA lies in
its lack of support for non-uniform, unstructured meshes.

Plex: The void created by DMDA is filled in by the DM of Plex type. They are suited for handling
of unstructured and/or non-conformal meshes. DMPlex is very well suited for problems using the
finite volume or the finite element method as it allows the user to loop over the cell interfaces.
Furthermore, the functionality of reading from a 3rd party mesh format and store it as DM objects
are also available.

Forest: It can be considered as a derivative of DMPlex. It is suited to handle parallel quad-trees
in 2D and oct-trees in 3D. In the context of the final model using the adaptive grid method, the
DMForest contains routines responsible for handling the mesh information and the subsequent
interpolation associated with adapting the mesh from one refinement level to another.

4.3. Finite Volume Method Framework on PETSc

In this section and in figure 4.2, the implementation of the Finite Volume Method (FVM) in PETSc is
described in detail. As an example, the advection model is chosen for this section. Nevertheless, the
rudimentary flow of the process remains unchanged for other PDE’s using FVM. The flow of the process
is divided into 3 sections as listed below.

. User Context: The user contextis a custom st ruct defined by the user to store model or physics-

related parameters. This would include, coefficients and constants whose access is needed by
multiple modules down the line of the process. For example, CFL number, gravitational constant,
or advection coefficient could be part of the user context. Some important PETSc data structures
such as the PetscFV object can also be included in the user context as was done for the adaptive
grid model.

. DMPLEX: Being a DM object of type Plex, it contains all of the essential information corresponding

to the mesh. Inputs such as custom labels for the type of boundary conditions, size, and type of
the grids can be specified using the routines provided by the DM library. In all of the models used
in the project, DMPlexCreateBoxMesh () is used to create the data structure for the mesh. Fur-
thermore DMSetAdjacency () is used to configure the DM object to store adjacency information
about various mesh elements such as cell centers and cell faces. The number of cells marked for
overlap is also specified to allow the parallelisation of the problem. Subsequently, it is followed
by the distribution of the ghost cell locations.

. PETSc FV: Specific functions related to FVM are available through the PetscFV object. Here,

the user has to provide the number of fields, degrees of freedom, and the dimension. In the case
of an advection model, the number of fields and degree of freedom are equal to one. A similar
translation could be made for the shallow water equations. Furthermore, the type of the PetscFVv
object decides the interpolation type (Least Squares or Upwind).

. Discrete System (DS): In the process of creating a finite volume model, the spatial discretisation

of the system is provided to the TS module through the DS object. The specification of the Rie-
mann solver is provided through the DS object. Moreover, the routine used to compute the time
derivative values for the TS module uses the data structure defined in the DS object.

. Time Stepping (TS): The solution vector X is marched forward in time by the respective time

stepping solver specified in the TS object. As mentioned before, using the PetscFV and DS
object, F(t,u,u) in eq. 4.1 is computed. With the appropriate time-step dt, the solution vector
of the next timestep is computed followed by the routine for post-processing is executed. As a
final step, the solution can be outputted into a file, for instance, in the .vtu format for visualization
purposes.

https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DMDA/DMDACreate3d.html%23DMDACreate3d
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DMPLEX/DMPlexCreateBoxMesh.html
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DMSetAdjacency.html

4.4. Routine to Compute Time Derivative 21

USER CONTEXT
MODEL PHYSICS PHYSICS_ADVECT
v y
DM Iteration till convergence / max. time
INPUTS FOR BOX MESH: OMPLEX Solution Vector X

« Labels for BCs « Contains the solution at

¢ Dimension « Using DMPLEXCreate- time t Setting the initial

« No. of faces in each BoxMesh() . [I)'mens'ons andvector <] condition for the
dimension « Orread it from a existing p; nitionling obtair‘lle d problem

» Specify bc type mesh file. from the DM object

« Type - Tensor (or) Simplex

TS

Set the tilmestep dt

Set Adjacency options

FVM - args : dm, True,

Construct Ghost cells

Set the overlap
between procs.

Arg: Overlay =1 :

« Responsible for marching
solution

« Time marching methods
can be specified

Arg: Min. cell size,

le—> f
cfl and maximum

False Arg: NULL : Ghost layer . N speed
; ; " Single layer of overlay « Interacts with FV, DM and
FEM - args : dm, False, of 1 is configured i y ’
True between partitions DS object
Riemann Function
INPUT: PFJ,?S—FV
« State vector values left and « Number of fields
right of the interface « Spacial dimensions
° gprmal§ 4 field numb « FVType: Upwind/Least
« Dimension and field number Squares
OUTPUT: o DOF - number of
components
« Riemann Flux at the
interface
FINAL SOLUTION
l For Post-Processing
DS

Set Riemann Solver « Contains the model
Arg: DS object, Riemann :zsg:if n(iscretlsatlon
Function, field number < Gontainsithe rules for.

flux evaluation

Figure 4.2: Process flow for a Finite Volume Method Model in PETSc

4.4. Routine to Compute Time Derivative
The steps involved in the course of the computation of time derivative in eq. 4.1 is described in detail
hereon.

1. The initial step in the process remains the same as illustrated in the fig. 4.2. As mentioned in

22 4. Implementation
Initialise DM .| Initialise PETSc Initialise PETSc
itiali 7 FVM " DS
Initialise TS
o [nitialise solution vector
TSSetRHSFunction() |« * Set time stepping type
e Set the max. time and dt
¢ Set the residual monitor
Y
TSComputeRHSFunction()
l Gradients not used
DM N eo(;“:(:tric _’l v Compute Gradients Loop over
79 gradient data used domain faces
data
A
Limiters not used ?{ PETSc FVM
i Object
For each face read: Limiters used
Y
° 32?:: structed Handle the Reconstruct state
« Face centroids bofundary B varla;bléas “SO'lf‘g ‘
« Face normals aces computed gradients
e Volume
—> Roe Flux | |
(or)
. Time Solver
Riemann solve Rusanov Accumulate Flux .
PETSc DS for each face Flux over each cell 1 marchmg forward
in time
(or)
—> HLLC Flux ——

Figure 4.3: Computation of the Right Hand Side by the TS solver

the previous section, the PetscFV and DS object are required for the subsequent computations
used by the time stepping solver.

. The routine DMPlexTSComputeRHSFunctionFVM () is used to trigger the computation of the

time derivative using the Riemann solver specified using the DS object.

. The algorithm for computing the flux residuals for every cell starts with the geometric data obtained

from the IstinlineDMPLEX object. The gradients are then computed using the solution vector
and the adjacency information. The routine responsible for the reconstruction of the gradients is
encapsulated by the PetscFV object. Subsequently, if the usage of a limiter is specified, they are
used during the reconstruction procedure.

. If the gradient computation is disabled, the state variables are not reconstructed at the cell in-

terfaces. Rather, in this case, the cell center values are directly taken into consideration by the
Riemann solver.

https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/DMPlexTSComputeRHSFunctionFVM.html

4.5. Integration of DMPlex Example 23

5. Aloop is passed which spans across the cell interfaces or faces. Together with the normals and
the state variables on either side of the cell interface, the Riemann fluxes are calculated for every
face.

6. Finally anotherloop, now spanning across every cell is passed. The fluxes across each of the face
are accumulated and the residual value is computed. Values corresponding to the cell-centered
source term can be included in this routine. The time derivative vector is then finally passed to
the time-stepping solver.

4.5. Integration of DMPlex Example

As mentioned in section 1.6, one of the tertiary objectives was to provide a smoother ramp for the
creation of time-dependent numerical models using PETSc. Therefore, a new TS tutorial was integrated
into the development version of PETSc. The tutorial consists of a uniform grid, a simple advection model
based on FVM, and DMPlex. A number of reasons motivated this step.

After a survey of the currently available TS tutorials available in the repository, there were not any
programs dedicated to demonstrating different routines of DMPlex. Furthermore, this void is more
significant for models based on FVM as there were only 2 tutorials using the numerical methodology.
In both of the tutorials, advanced routines and adaptive mesh refinement were instituted. As one
might imagine, there is a huge leap in complexity between a uniform solver and an adaptive grid solver.
Therefore, the tutorial integrated served to fill this void. Next, the discretisation methods in the available
examples are not explicitly provided. This makes it harder to understand the role of each routine. The
same applies to the Riemann solver interface used by the DS and TS object.

The proposition for a new tutorial was gladly accepted by Mark Adams and Matthew Knepley of the
PETSc Development team who acknowledged the gap mentioned before. In order to make changes
to the repository, one has to go through the Continuous Integration process used by PETSc. This
allows for multiple developers (with the appropriate authorisation) to seamlessly introduce improvement
and fixes without disrupting the master branch. This integration process is implemented by creating
a software pipeline containing multiple checks for the various compiler warnings based on different
operating systems. Once the pipeline is passed, the new tutorial has to pass through a review done by
the primary developers of the software. In this case, the review was done by developers Mark Adams,
Matthew Knepley, Jed Brown and Satish Balay. The tutorial can be found in the latest version of PETSc
under the directory . /src/ts/tutorials/ex52.c

https://crd.lbl.gov/departments/applied-mathematics/scalable-solvers/members/staff-members/mark-adams/
https://engineering.buffalo.edu/computer-science-engineering/people/faculty-directory/matthew-knepley.html
https://www.colorado.edu/cs/jed-brown
https://www.mcs.anl.gov/~balay/
https://gitlab.com/petsc/petsc/-/blob/master/src/ts/tutorials/ex52.c

Adaptive Grid Refinement

Using an existing implementation in the PETSc DM module, it was possible to carry out adaptive grid
simulations for the advection and the SWE model. This section will focus on the mathematical details
behind the adaptive grid method. The models implemented earlier were only capable of handling uni-
form, structured grids produced using functions in DMDA and DMPlex. To shift to adaptive grid method,
the initial grid produced by DMPLEXCreateBoxMesh () is refined or coarsened according to various
adapting criteria that are discussed later in section 5.5. But first, DMPlex, the module responsible for
handling unstructured grid data is described in detail in the following section.

5.1. DMPlex

The subsystem DMPlex of the module DM is used to manage all unstructured grids in PETSc [8]. As
explained in section 4.2.5, DMPlex supports the management of data of non-conformal, unstructured
grids which are to be used in the adaptive grid algorithms. The prime advantage offered by DMPlex is
that it recognizes every component of the mesh composed of points related to each other. This enables
the recycling of algorithms across multiple dimensions without a radical shift in mesh management
routines.

@D A @A
& & N\ & e

Figure 5.1: Hasse diagram of a 2D quadrilateral mesh where (€;) is the edge, (V) is the vertex, and (F) is the face for i € [0, 5]

5.1.1. Data Layout

The points are stored as the data type int and their corresponding relations between each other are
termed as cones. The Hasse diagram, shown in 5.1, is used to represent the relations between the
points which can then be combined to form different entities in the grid. Also called a Directed Acyclic
Graph, the Hasse diagram in DMPlex is composed of layers corresponding to the different entities in
the grid. According to the conventions used by PETSc, the grid entities are stored consecutively and

25

https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DMPLEX/DMPlexCreateBoxMesh.html

26 5. Adaptive Grid Refinement

the order varies according to the dimension. For instance, in a two-dimensional grid, the points of
entities are stored in the order: faces (F), vertices (V), and edges (&).

To couple the discretisation with the specified PDE, an object called PetscSection is used. Es-
sentially, it provides a data layout to store and associate the degrees of freedom with each point in
space. Therefore, with the DM object in hand, a PetscSection object is created with parameters
specific to the PDE being solved.

5.2. Partitioning

The partitioning of the grid is required to take place before the actual numerical operations start. There-
fore, it can be included in the pre-processing steps. It is thus vital to note that the partitioning of the
grid is a prerequisite for creating parallel data structures. PETSc outsources much of this workload by
using parallel partitioning algorithms provided by ParMETIS [35]. An interface developed by George
Karypis allows for the use of the parallel mesh distribution algorithms in PETSc.

As per version 3.13 (June 2nd, 2020), PETSc does not feature dynamic partitioning that allows
the balancing of loads by sending and receiving matrix and vector elements between the different
processes. This is especially useful when one is trying to dynamically refine or coarsen the grids. It
would promote the recycling of older data structures to create updated structures. In the absence of
this route, adaptive mesh refinements in PETSc takes place through recreating the data structures from
scratch.

5.3. Quad-Tree

The quad-tree is a natural extension to a uniform Cartesian grid. This grid, however, is limited to be
composed of only square elements or cells. A quad-tree adaption is represented in figure 5.2.

Here, cell a is considered to be at the initial state of the grid with refinement level, say, 1. Conse-
quently, by using a given adaptive criteria, the initial grid (cell a in figure 5.2) is adapted or refined to
4 square cells. The cells, thus have a refinement level of 2 (for instance cell b). In the next adaption
step, the diagonal cells are further refined into 4 more cells. Cell ¢ has a refinement level of 3 in the 3rd
adaption cycle. In the final step, after another round of adaption, we obtain a higher refinement level.
The same logic in reverse can be used for coarsening.

Note that in order to keep the model stable for the different configurations of the grid, it is necessary
to maintain a 1:2 refinement and coarsening ratio. Thus, no neighbouring cells in both the diagonal and
orthogonal directions can differ by more than one level of refinement. If the condition is violated, then
it might be the case that the interpolation errors would dominate the errors introduced by the model.
Therefore, this may ultimately lead to either an invalid solution or instability during run time.

5.4. Interpolation Methodology

In this section, the grid-adaption routines used by PETSc is described in detail. It must be noted that
the methodology starts from the assumption that the grid partitioning and the formation of the data
structures "post-adaption” are already available. Partitioning algorithms, thus, would not be discussed
here as it is beyond the scope of this project. Two different adaption scenarios are considered in this
section; a grid being refined and a grid being coarsened.

One of the prime advantages of quad-trees is that it allows one to form a parent-child relationship
between two different cells with different refinement levels. To illustrate this property, consider figure
5.3. Suppose we have 2 DM objects containing the grid data, namely D M;,, - the "pre-adaption” grid and
DM,y - the "post-adaption” grid. Furthermore, for both of the grids, DM,..; is considered as the refer-
ence grid. Reference grids are typically uniform containing cells at a specified initial refinement level.
It can be seen that using the parent-child hierarchy diagram, one can derive the relation between the
cell {2} (parent) and cells {5, 6,7, 8} (children). This information enables efficient interpolation routines
while refining or coarsening a given region of the domain. These techniques are further elaborated in
the following sections.

5.4.1. Refining
The adaptive mesh refinement algorithm also must provide routines to compute the new state vector,
say U}' on the adapted grid at timestep n of cell i. In the case of refining, a linear interpolation technique

5.4. Interpolation Methodology 27

a
b
C
A
Y
<
o o |
l °
° ° d ° °

Figure 5.2: lllustration of a quad-tree structure

is employed to reconstruct the cell values for the post-adaption grid. Consider figure 5.3, the pre- and
post-adaption grids are DM;,, and DM,,,; respectively.

Using the DM in and PetscFV objects, the gradients of the state vector are computed using
DMPlexComputeGradientFVvM () for the pre-adaption grid. Furthermore, centroids of the cells are
known for both the pre- and post-adaption grids. Using this information, a linear interpolation, similar
to the one mentioned in section 3.5 can be carried out and the state vector of the ‘’daughter’ cells can
be computed.

To further illustrate this, consider cell {2} in DM;,. It's refinement level is increased by 1, thus
resulting in the formation of 4 more ‘daughter’ cells {5, 6,7, 8}. Now consider the reconstruction of the
state variables at cell centre 8. Suppose the centroid of 2 is at X, = (x,, y,) and the centroid of 3 is at
Xg = (xg, ¥8), then

D = (Xg — X,) = (Ax, AY)T (5.1)

If G = (Gx, Gy)" are the gradients of state vector U, of cell 2 in the x and y directions, then the state
vector Ug at cell 8 can be computed by

Ug=U,+G.D (5.2)

5.4.2. Coarsening

Due to the hierarchical structure of the grid, coarsening or reducing a refinement level is achieved very
efficiently. When the grid is coarsened, the grid associated with the ’daughter’ cell is essentially rolled
back to the grid with its parent cell configuration. Therefore, the state vector of the newer, coarser

https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DMPLEX/DMPlexComputeGradientFVM.html

28

5. Adaptive Grid Refinement

REFINING PARENT-CHILD
HEIRARCHY

DMref

@)

DM;,

@)

()

OO »
o iy
: A
-DMout __________ y?l‘ ______ I __?___
[] ; []
/

@ ®
® ®

Figure 5.3: Refinement of a DM object and interpolation of state vector

5.5. Adapting Criteria 29

cell can be obtained by directly injecting the value already owned by the parent cell. In figure 5.4,
cells {1,2, 3,4} are coarsened to obtain cell 0. Here, there is no need for further reconstruction of state
vector at cell 0 as the hierarchical model of the grid allows for the direct injection of the value. However,
if the final refinement level of the cell falls below that of the reference grid, then reconstruction would
be necessary.

COARSENING PARENT-CHILD
HEIRARCHY

DM, s

@)

OO
OO

DMout

ok

Figure 5.4: Coarsening a DM object and injection of state vector

5.5. Adapting Criteria

The main attraction towards pursuing an adaptive grid approach is that it allows the increase in the
resolution of the solution in specific areas of interest. The areas of interest can be dictated by differ-
ent parameters and it changes over time. The quantifying parameter will henceforth be called as the
adapting criterion 0. The type and magnitude of © are critical to the accuracy of the final solution. In
addition, the choice is also critical to the computational resources required.

When considering the threshold values of the adapting criteria (6, and 0,), we consider either an
absolute value or a relative value. They are described more in detail below.

» Absolute Value: In this case, fixed values of ©; and 0, are considered when deciding whether to
adapt a given cell. The decision is carried out using the following criteria:

1. Refine the cell when @ > 0,.

30 5. Adaptive Grid Refinement

2. Coarsen the cell when 0 < 0,.
3. Keep the same refinement level otherwise.

Here, if the criterion falls above 0., the cell is refined. On the other hand, if it falls below 0., the
cell is coarsened. The threshold values are dependent on the scenario and are thus found using
a trial and error process. It varies according to a given scenario and domain.

* Relative Value: In this project, a relative value of 9,,,, is used instead. The decision of adaption
is now based on the ratio of the 0 of a cell with respect to the highest value of 0 at that particular
time step of all the cells in the domain. Thus, refining or coarsening is carried out using the
following logic:

1. Refine the cell when eei'j

>0,

max
91,]

2. Coarsen the cell when < 0,,.

max

3. Keep the same refinement level otherwise.

Here, if the criterion falls above 0,4, the cell is refined. On the other hand, if it falls below ©,.,, the
cellis coarsened. Using this strategy reduces the level of arbitrariness when choosing the thresh-
old values of the criteria. Although this is a better approach to choose when drawing comparisons
between various types of criteria, it introduces certain challenges. One of the challenges being
that there might be unwanted adaption for minor perturbations in some parts of the domain.

The choice for the formulation of adapting criteria depends on the physical system under consid-
eration. Therefore, the formulation for both the scalar advection and the shallow water equations are
presented in separate sub-sections.

5.5.1. Criteria for Scalar Advection Equation
Due to the scalar nature of the equation, © is easily identified. The gradients of the state variable in
both directions are considered. The formulation is thus given below:

6 = ou\’ 4 ou\’
- dx dy
Criteria for Shallow Water Equations

In this case, a number of potential parameters are identified for the adaption of the grid. The gradient of
water height is a good indicator of change in the solution. Nevertheless, changes in velocity could also
indicate the wave propagation. This might lead to a solution that could better capture the wave-front.
In view of these different factors, three different formulations are considered and presented below.

1. Gradients of Height : Here, the only deciding factor for the adaption is based on the change in

heights of the solution.
o |(onY NEL ’
- dx dy

2. Average of the gradients of height and tensile components of velocity: The change in velocities
are taken into account in the criterion. Nevertheless, the sheer gradients of the velocity are

neglected.
o 6h2+ 6h2+ 6u2+ v\’
T2 dx dy dx dy
3. Sum of the gradients of the state vector: The sum of the squares of the gradients of the state
vector is considered in this formulation. Note the inclusion of the sheer gradients of the velocity.

@=hi+h)+uf+uj+vi+v)

5.6. Implementation in PETSc 31

After a number of tests, it was found that criteria 2 and 3 are highly sensitive, especially at the
boundaries of the domain. This could be attributed to the contribution of the sheer gradients of the
velocity. Tests with criteria 1, on the other hand, do not show this behaviour at the boundaries. Fur-
thermore, it was found to accurately identify the wave-fronts and other areas of interests in the domain.
Therefore, the gradients of height were chosen as the criteria of choice.

5.6. Implementation in PETSc

As described in section 4.2.5, the module DMForest contains a suite of objects and subroutines that fa-
cilitates the handling and usage of hierarchical meshes. Nevertheless, additional steps are to be made

to pre-process the DM object to treat the special artifacts of non-conformal meshes such as dangling
edges. Furthermore, the procedure involved in the adaptive mesh refinementroutine, adapttotolerance
() is described in the following sections.

5.6.1. Algorithm for the Adaption Routine

PROBLEM CONTEXT
PETSC DS PETSC FV
s 20
PRE-ADAPTION OBJECTS ADAPTION POST-
PROCESS ADAPTION

Base DM Pre-adapted DM > P’el':;’;g‘ed >|(DMAdaptLabel() }—«—» Post-adapted DM

TSGetDM() ! | Post-adapted TS

A

| OBJECTS

A A

Pre-adapted TS Pre-Adapted X | DMForestTransferVec() i—v—> Post-Adapted X

TSSolve() <

Figure 5.5: Flow of operations for adaption

The algorithm of the adaptive mesh refinement method is shown in figure 5.5. The subroutine
adapttotolerance () is responsible for carrying out the adaption process according to a selected
criterion. Therefore, all of the routines explained here are performed by calling this function.

The process starts with the pre-adapted TS object. At the start of the process, the pre-adapted
solution vector X and pre-adapted TS object are available. The DM contained by the pre-adapted TS
object can be considered as the base DM that needs to adapted according to a given strategy. A pre-
adapted DM object is created by duplicating the base DM as a measure to not change or disrupt the
pointers of the existing DM. According to the adaption criteria © (section 5.5), the cells in the grid are
marked with the following labels:

* DM ADAPT LABEL REFINE : Label given to increase the refinement level by 1.

* DM _ADAPT LABEL COARSEN : Label given to decrease the refinement level by 1.

32 5. Adaptive Grid Refinement

* DM _ADAPT LABEL KEEP : Label given to maintain the same refinement level.

Once the labels are assigned to the pre-adapted DM, it can be adapted using the function

* DMForestSetMaximumRefinementLevel () : The maximum refinement level that any cell in
the grid can attain.

* DMForestSetMinimumRefinementLevel () : The minimum refinement level that any cell in
the grid can attain.

* DMForestSetInitialRefinementLevel () : Theinitial refinementlevel of the reference grid.
This is provided during the creation of the reference grid.

Once the post-adapted DM is computed, the solution vector X (pre-adapted vector) can also be
transferred to the new DM. This process is responsible for the re-interpolation of the solution vector to
the post-adapted DM. Using the updated solution vector, an updated TS object can also be obtained.
This is ultimately used to march the solution to the next time-step.

5.6.2. Process Description
With the help of the description provided by the previous sections, the flow of process associated with
the adaptive grid method in the solver is explained in this section.

1. The process starts with a uniform grid with a given initial refinement level. The solution vector is
then created with the prescribed initial condition.

2. An initial adaption procedure is carried out in order to provide an adequate resolution to the
areas of the grids that requires it. For instance, in the case of a dam break problem, it is es-
sential to have highly refined cells in the region which contains the hydraulic jump. The initial
adaption can be carried out using adapttotolerance (). However in this step, the routine
DMForestTransferVec () (see figure 5.5) is not employed to avoid interpolation errors. In-
stead, the exact initial solution is projected onto the updated solution vector. The initial adaption
procedure is usually limited by a specified number of iterations in light of the computational re-
sources and memory used.

3. After the initial adaption is completed, the solution is marched forward by a time-step using
TSSolve (). Subsequently, the time-stepping procedure is carried out by the algorithm provided
in section 5.6.1. The user can also set the number of adaption iterations for each time-step. The
recommended value is 1 adaption iteration per time-step after the initial adaption step.

4. Once the maximum time is reached, the solution vector X is thus post-processed and outputted
in a specified format.

https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DMFOREST/DMForestSetMaximumRefinement.html
https://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/DMFOREST/DMForestSetMinimumRefinement.html
https://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/DMFOREST/DMForestSetInitialRefinement.html%23DMForestSetInitialRefinement
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSolve.html

Numerical Results

6.1. Scalar Advection Equation

The purpose of this test to evaluate the performance of an advection solver built using DMDA (Finite
Difference Method) and DMPLEX (Finite Volume Method) and to verify the numerical order of accuracy.
The description of the test cases and the respective results are given in the upcoming sections. For all
of the test cases, the absolute error € is chosen as the barometer. Suppose i € [1,n], then the L1 error

norm is computed using
n

lell =) e 6.1)

i=1

where 4; is the area of the cell and €; = u,m — Uexact 1S the relative error. Here uy,,,, and ugy oo are
the numerical and exact solutions respectively.

In order to measure the efficacy and accuracy of the model, a simple initial condition was prescribed.
The exact solution to the problem is known, and the error is thus computed using numerical and exact
solutions. For the initial condition, a smooth bump is projected on the domainu € Q: Q c [0,1] X [0, 1].

14+ e739", ifr < 0.025
1, otherwise

up(x,y) = {

where r = (x — 0.5)% + (y — 0.5)2. For the above initial condition, the exact solution is given as:

9,0) 14e737®, ifr(t) < 0.025
u(x,y,t) = .
y 1, otherwise

r(t) = (x — (0.5 + at))? + (y — (0.5 + bt))?

Here a and b are considered as known constants. Parametric studies were conducted separately
using the DMDA and DMPIlex solvers.

For this scenario, a transmissive boundary condition was imposed on all the 4 boundaries. Con-
sider a one dimensional grid of size n, where cells u, and u,,; are considered as ghost points, the
transmissive boundary condition can be defined as:

u0=u1

hpi1 = hy,

In this condition, the flow is meant to freely exit the domain without any disruption. Hence they can
also be called open boundaries.

33

34 6. Numerical Results

10_1 ' ' ' T
—a—DMDA Solver]
—a—DMPLEX Solver| |
A
£
o
Z 10°| :
—
|
-3 L ‘ , , , e
10 S y
10 10

Ah (m)

Figure 6.1: Varying the meshwidth by keeping a constant timestep

6.1.1. Error Comparison

As mentioned previously, the simple advection model was built using both the FDM and FVM ap-
proaches. As explained in section 4.2.5, DMDA contains routines to handle structured Cartesian grids.
On the other hand, DMPlex can handle unstructured and/or nor-conformal grids. To make a direct
comparison, only structured, uniform grids are taken into consideration. As mentioned in section 3.1,
the Forward Euler method is used to march in time and a first-order upwind method is used for the
spatial discretisation. Therefore, both of the methodologies are first order in space and time and are
equivalent in mathematical terms.

Mesh-width (m) L1 Norm Order
1/25 0.029618 0.93
1/50 0.020330 0.95
1/75 0.015916 0.78
1/100 0.013502 0.86
1/125 0.011837 0.89

Table 6.1: Error norms of the DMPLEX solver

Mesh-width (m) L1 Norm Order
1/25 0.011983 0.70
1/50 0.008507 0.91
1/75 0.006998 0.81
1/100 0.005731 0.83
1/125 0.005211 0.86

Table 6.2: Error norms of the DMDA solver

6.1. Scalar Advection Equation 35

Assuming the temporal discretisation error is negligible, a timestep of 0.005 sec is taken. The mesh-
widths are however varied from 1/25m to 1/125m. The L1 norms are computed using (6.1) for each
of the cases. Figure 6.1 shows the trends in errors for both of the solvers. The difference in the errors
shown between the solvers can be attributed to the variation in the routines used by the TS and/or the
DM modules. Nevertheless, the numerical order of accuracy in space is close to the theoretical order
of accuracy as shown in tables 6.1 and 6.2.

6.1.2. Scaling Tests

In order to evaluate the parallel efficiency of the user-defined and pre-built algorithms, a strong scal-
ing test is performed. A strong scaling test is conducted by constraining the grid to be of the same
mesh-width while varying the number of workers. All of the tests were conducted on an Intel Core™
i7-7700HQ CPU (4 x 2.80 Ghz) with 31.2GB of on-board RAM. The problem description remains the
same as the ones mentioned in the previous section. A mesh-width is chosen such that a perfect load
balancing can be achieved across the processor range. Therefore, a 240 x 240 uniform Cartesian grid
is used where the final time is T = 50 sec and the time-step is dt = 0.001 sec.

Furthermore, the parallel efficiencies are computed using

T
Speedup Ratio = el (6.2)
Ty
- Ty
Parallel Efficiency = (6.3)
h.Ty

where Tj, is the time taken by using h processors and T; is the time taken by a single processor.

Speedup Ratio

—e— Actual Ratio
—— Ideal Ratio

Parallel Efficiency

—e— Actual Ratio
——Ideal Ratio |-

1:2

e
pry

357

Speedup Ratio
b e
Parallel Efficiency
o o o o
(] ~ [e-] [(e] —_

o
]

N

0.4
1.5}

0.3f

M 2 3 4 1 2 3 4
No. of workers No. of workers

Figure 6.2: Scalability of the DMDA solver

Using the inbuilt profiling routines, the number of FLOP(s) (Floating point operations) for the two
solvers were evaluated. Table 6.3 and 6.4 provides the FLOP count, memory consumption and time
consumption percentages of some of the major routines when using 4 processors. Please note that the
percentages are meant to represent the weights of each routine. Additionally, as some of the routines
are subsets of other routines, considerable overlap can be found in the memory and FLOP percentage
values.

As mentioned in 4.2.5, the DMDA is highly optimised for cell-center based finite difference methods.
This can be noticed in the efficiencies shown in figure 6.2. Nevertheless, to implement the Riemann
solver and use non-uniform meshes, it was imperative to make a shift to DMPlex. However, for the
current numerical methodology employed, the usage of DMPlex can be considered inefficient. This
is demonstrated in figure 6.3. A large portion of the computation time is consumed by routines that
compute residuals over each cell (table 6.1). By looping over the faces in the domain, there is a
significant increase in the communication overhead when compared to the DMDA solver. Furthermore,
the majority of the FLOP(s) is consumed by time-stepping routine

36 6. Numerical Results

Speedup Ratio Parallel Efficiency

4 1.2
35} ;
o 3l 509/
5 308"
i ©
1%2 5 ﬁ 0.7
@ Q
g TO06|
) 8 05
0.4
15¢
, 0.3 *
1 : ‘ 0.2 :
1 2 3 4 1 2 3 4
No. of workers No. of workers
Figure 6.3: Scalability of the DMPlex solver
Routine % Time % FLOP % Memory
Norm Computation 23 13 0
Vector Operations 12 13 0
Vector Partitioning 7 0 100
Time Stepping 74 87 99
RHS Evaluation 58 73 99
Table 6.3: Profiling of the DMDA Solver
Routine % Time % FLOP % Memory
Residual Evaluation 76 0 33
Grid Operations 33 13 100
Norm Computation 4 43 0
Vector Operations 1 43 0
Time Stepping 95 56 100
RHS Evaluation 93 13 100

Table 6.4: Profiling of the DMPlex Solver

6.2. Shallow Water Equations

A number of benchmark cases are available to validate and benchmark the shallow water model. The
tests were conducted to evaluate the solver for the validity of its solutions across the domain. Typically
this information serves a key role in the risk analysis report for the civil departments to produce flood
inundation maps.

One of the primary tests includes the dam break problem. A dam break scenario can be regarded
as an idealized condition that is extremely rare to occur in a real-life setting. However, surpassing all
the odds, a total failure occurred in 1959, when the Malpasset dam ruptured, subsequently ravaging
human and animal life. This event, being rare yet disastrous, poses a hard challenge for numerical
models. Recognizing the significance of this scenario, a CADAM European workshop was created to
experimentally simulate the flow features of the dam break problem. Thus, using this data, the results
from the model are validated in the following section.

6.2.1. Circular Dam Break

This is an idealized scenario [54] with a completely flat topography. It is an illustrative case to study
the wave propagation during the collapse of a circular wall of water. A square domain of dimensions
40m x 40m is completely wet with a specified water height. In this scenario, a circular patch at the

6.2. Shallow Water Equations 37

center of the domain (x* = 20m, y* = 20 m) contains water at an elevated height. Due to no source
terms, the friction and bed slope terms are neglected. Furthermore, the entire domain is considered to
be at rest at t = 0. The initial condition is given by:

hgam = 2.5, if(x —x")% + (y —y*)? < r?

h ’ 1t=0 = .
(x y) {h — 05‘ If(x _x*)Z + (y_y*)Z > r2

Here, r = 2.5m is the radius of the cylindrical section of water. Assuming an infinitesimal film
covering the cylindrical section of water at first. The dam break is thus initiated once this film is removed
instantaneously such that the entire section of water starts gaining momentum due to gravity.

Time = 0.4 sec Time = 0.4 sec

¢ Reference Solution 5
HLL Solver r
257 # | ——Rusanov Solver 7

¢ Reference Solution
HLL Solver
—— Rusanov Solver

0 10 20 30 40 0 10 20 30 40

x (m) X (m)
(a) Water elevation att = 0.4 sec (b) Velocity u att = 0.4 sec
14 Time = 0.7 sec " Time = 0.7 sec
. e, .
i1 o

09+ .
~08
E
<o7 E

0.6

¢ Reference Solution ° ¢ Reference Solution

0.5 HLL Solver - 3t ¢ HLL Solver
—— Rusanov Solver —— Rusanov Solver

0.4

0 10 20 30 40 0 10 20 30 40
x (m) x(m)

(c) Water elevation att = 0.7 sec (d) Velocity u att = 0.7 sec

Figure 6.4: Circular Dam break test on a uniform grid

Two tests were conducted and the heights and velocities of the water column at the center cross-
section of the domain were captured at a given set of times. Furthermore, the tests were conducted
by using the Rusanov and HLL approximate Riemann solvers explained in sections 3.4.1 and 3.4.2
respectively. For both the tests, the 2nd order accurate Runge-Kutta method was chosen as the time
integrator and the CFL value was set to 1. Specific parameters of the two tests are described more in
detail below.

1. Test on a uniform grid: For this test, a fine uniform grid of mesh-width Ax = 1/300m and Ay =
1/300m. The minmod limiter was employed for this test. The results of this test are shown in
figure 6.4.

2. Test on a time adaptive grid: In this test, the AMR solver was employed. The mesh width of the
grid before adaption is set to Ax = 1/24m and Ay = 1/24m. At the initial time t = 0, the uniform

38 6. Numerical Results

5 Time = 0.4 sec " Time = 0.4 sec
¢ Reference Solution
HLL Solver 3
25 " |—Rusanov Solver]

-

Velocity (m/sec)
L o

'
N

¢ Reference Solution

-3 4 HLL Solver
|——Rusanov Solver
0 L L -4 L L L
0 10 20 30 40 0 10 20 30 40
X (m) X (m)
(a) Water elevation at t = 0.4 sec (b) Velocity u att = 0.4 sec
14 Time = 0.7 sec " Time = 0.7 sec
° *
1 3
2
09 o 5
Q L]
) 1
€ 0.8 £
= > 0
<07t o 3]
91
2
0.6 2
* Reference Solution _ _ * Reference Solution
0.5 ™ _— HLL Solver -3+ ——HLL Solver 1
——Rusanov Solver |——Rusanov Solver
0.4 L L -4 L L !
0 10 20 30 40 0 10 20 30 40
x(m) X (m)
(c) Water elevation att = 0.7 sec (d) Velocity u att = 0.7 sec

Figure 6.5: Circular Dam break test on time adaptive grid

grid is further adapted in 25 iterations based on the gradients of the initial condition. Furthermore,
the maximum refinement level that a cell can attain during the simulation was set to level 7. The
grid adaptivity is set up such that the cell is refined when the relative threshold 0,.,; > 0.6. On
the other hand, the cell is coarsened when 0,.; < 0.1 or kept at the same refinement level when
it falls in this interval. The results of this test are shown in figure 6.4.

Furthermore, in this scenario, 2 boundary conditions are implemented. Consider a one-dimensional
grid of size n where cells with indices 0 and n+1 are considered as ghost points, the boundary conditions
can then be defined as:

1. Transmissive Boundary: In this condition, the flow is meant to freely exit the domain without any
disruption. Hence they can also be called open boundaries. The state vector can be computed
using:

ho = hl,uO = ul,v() = Ul

hps1 = hpyUnyr = Up, Vpyq = Vp

2. Reflective Boundary: In this condition, the flow momentum is reversed forcing it to reflect back
from the wall. The state vector can be computed using:
ho = hl,uo = —Uq, Vg =V
hn+1 = hn'un+1 = "Up,Vnt1 = Vp

At the very start of the cylindrical dam break, an initial shock is seen to travel outward from the
center of the cylinder. Moreover, at t = 0.4 sec, a rarefaction wave is also seen to travel in the opposite

6.2. Shallow Water Equations 39

direction towards the center. Att = 0.7 sec, the rarefaction wave reflects off of the center and begins to
travel outwards. This trend continues and leads to the water level dropping to the bottom att = 3.5/, sec.
At the same time, a secondary shock moving inwards is formed. At t = 4.7/, sec, the primary shock
appears to reach the boundaries of the domain and the secondary shock reaches the center of the
domain.

4
g5 X0 | | |

Cell Count

0.5 ——HLL Solver
—— Rusanov Solver
0 | 1 1 1
0 0.2 0.4 0.6 0.8 1

Time (sec)

Figure 6.6: Cell count for the HLL and Rusanov approximate Riemann solvers

From figures 6.4 and 6.5, it is clear that the AMR solver achieves comparable accuracy while at
the same time having average grid sizes much smaller than its counterpart. Figure 6.6 shows the
evolution of the cells over time for both of the Riemann solvers. On average, the HLL solver contained
16855 cells, and the Rusanov solver solved for 22937 cells over the course of the test. Thus, it can
be said, similar accuracy can be achieved with the adaptive grid solver but with far higher efficiencies.
Furthermore, it can noted that although there is not a marked difference between the HLL and the
Rusanov Riemann solvers in terms of accuracy, the problem of encountering negative heights might
be more pronounced in the Rusanov Riemann solver. Whereas the heights computed by the HLL
Riemann solver enforce positive heights with the help of a correcting factor.

6.2.2. Scaling Tests

Using the same hardware as mentioned in section 6.1.2, a strong scaling test is performed for the
shallow water equation model for the circular dam break scenario. It is, however performed for the
fixed and adaptive grid scenarios. For the purpose of obtaining an informative comparison, the grid
sizes of the uniform and adaptive grid solvers are kept around the same value. However, due to the
sensitivity of the adaptive grid solver, there is a difference between the mesh-width of the uniform grid
solver and the average mesh-width of the adaptive grid solver. In the case of the uniform grid solver, the
mesh is composed of 90 x 90 cells. On the other hand, in the case of the adaptive grid refinement, an
average cell count of 8248 cells was found across the time of the simulation. The parallel efficiencies
are again computed using the same metrics as given in equations (6.2) and (6.3). They are given by,

I
Speedup Ratio = —
Th

Parallel Efficiency =

h
h.Ty
For both the scenarios, the final time of T = 1 sec was used and the 2nd order Runge Kutta method
was chosen as the time integration method. A fixed grid of size 120 x 120 was chosen for this test. For

40

6. Numerical Results

3.5

Speedup Ratio
N
[6,]

N

w

—e— Actual Ratio
—— Ideal Ratio

Speedup Ratio

0.5
0.4
15¢
0.3
1 : : 0.2 :
1 2 3 2 3
No. of workers No. of workers
Figure 6.7: Weak scaling test of the fixed grid solver
4 Speedup Ratio 1 Parallel Efficiency
—e— Actual Ratio —e— Actual Ratio
—— Ideal Ratio 1 ——Ideal Ratio
3.5
1
0.9

Speedup Ratio
N
[9)]

w

Parallel Efficiency

=
©

o
)

Parallel Efficiency
o o
[} ~

2
©

Parallel Efficiency
(=]
~

0.6
2 et
05
0.4+
15]
0.3
1 : : 0.2 :
1 2 3 1 2 3

No. of workers

Figure 6.8: Strong scaling test of the adaptive grid solver

No. of workers

—e— Actual Ratio
——Ideal Ratio |-

the adaptive grid solver, a 24 x 24 was chosen as the initial grid which was then passed through 25
adaption iterations. The values of the relative thresholds remained the same as in section 6.2.1. Figures
6.7 and 6.8 illustrate the scalability of the fixed and adaptive grid solvers respectively. Furthermore,
the profiling results for the fixed and adaptive grid cases are provided in tables 6.5 and 6.6 respectively
when using 4 processors.

Routine % Time % FLOP % Memory
Residual Evaluation 59 0 19

Grid Partitioning 3 0 9

Mesh Generation 0 0 19

Vector Operations 1 58 0

Time Stepping 72 96 57

RHS Evaluation 71 2 57

Table 6.5: Profiling of the uniform grid solver

The primary difference between the fixed grid and adaptive grid solvers lies in the memory used.

6.2. Shallow Water Equations 41

Routine % Time % FLOP % Memory
Residual Evaluation 27 0 9

Intial Mesh Generation 3 0 26

Grid Adaption 1 0 49

Vector Operations 0 44 0

Time Stepping 30 45 19

RHS Evaluation 30 1 19

Table 6.6: Profiling of the adaptive grid solver

Due to the tree structure of grids produced by DMForest, a large proportion of the memory is used by
the adaption procedures. This is shown in table 6.6 where the grid generation and adaption take over
75% of the total memory used. Furthermore, due to the decrease in the overall size of the grid, there
is a significant decrease in the time spent in evaluating the residuals of each cell. For the fixed grid
solver, this routine accounts for 59% of the total computation time as opposed to 27% for the adaptive
grid solver. Due to the shift in the computational overhead from time stepping and residual evaluation
routines to grid adaption and partitioning routines, a significant increase in the speedup ratio is noticed
(figure 6.8).

6.2.3. Flow Over Bump
This test helps in the validation of the treatment of the source terms. It was first proposed by Goutal
et. al [27] to validate a shallow water solver with varying topography. Furthermore, numerous other
studies [46, 53, 59, 66] corroborated the original result with the ones provided by their studies.

The scenario involves a one-dimensional channel flow over a given parabolic hump in the domain.
The length of the domain is 25 m and friction is neglected for these cases. The hump is defined by

0.2 — 0.05(x — 10)2, if8<x <12
0, if otherwise

z(x) =

Depending on the boundary conditions and the initial conditions, the steady-state solution could
either be subcritical or transcritical. A one-dimensional grid with mesh-width 1/1000 m was chosen
for the test. A uniform grid was chosen for the tests as DMForest does not accommodate an one
dimensional grid. Furthermore, the results provided by the uniform grid were deemed satisfactory. The
CFL number was set to 1 and a minmod limiter was used.

First, for the subcritical solution, the initial water surface height (h+2) is set to 2 m, and the discharge
is set to uh = 4.42m?/sec. The boundary conditions are given by

Upstream (x = 0) : uh = 4.42m?/sec
Downstream (x = 25): h=2m

The steady state solution was obtained around time T = 40 sec. Fig. 6.9a and 6.9b show a good
agreement between the exact solution and the numerical solution computed by the model.

Next, for the transcritical steady-state solution, the initial water surface height (h + z) is set to 0.33
m and the discharge is set to uh = 0.18 m? /sec. The test is again carried out in the same domain and
on a grid with the same mesh-width as mentioned previously. The boundary conditions for this case
are given by

Upstream (x = 0) : uh = 0.18 m?/sec
Downstream (x =25): h=0.33m

The steady-state solutions were obtained at time T = 60 sec. As for the previous case, a CFL value
of 1 was set. For this scenario, figure 6.10a shows that the predicted numerical water heights are in
close agreement with the exact solution. Nevertheless, in figure 6.10b a slight deviation is seen in
the case of the predicted discharge rates. Similar deviations were reported by several other studies
[53, 60, 66].

42 6. Numerical Results

* Exact Solution * Exact Solution
2.8 —— Numerical Solution 4.9 —— Numerical Solution
2.6 4.8
24 4.7
221 Ta6f
= 2z
£ ~
= 2t 4.5
= £
1.8 < 44
1.6+ 4.3
1.4 4.2
1.2 41
1 , , , . 4 . .
0 [} 10 15 20 25 0 5 10 15 20 25
x (m) x (m)
(a) Steady state solution of water height (b) Steady state solution of discharge
0.6 0.4

* Exact Solution * Exact Solution
Numerical Solution 0.35 - Numerical Solution |-

0 5 10 15 20 25 0 5 10 15 20 25
X (m) X (m)

(a) Steady state solution of h in a transcritical flow (b) Steady state solution of discharge in a transcritical flow

6.2.4. Perturbation Over Elliptical Hump

The previous case can be extended in the two-dimensional space by introducing a bathymetry which
is a function of x and y. Introduced by Leveque et. al [40], it consists of a [0, 2] x [0, 1] domain which
is frictionless and completely wet. The topography is defined by

z(x,y) = 0.8e(~5(x~0.9?~50(y~05)%)

Therefore, the bathymetry is a elliptical hump as shown in figure 6.11. The initial conditions are
given by

1.01, if0.05<x<0.15
= u
1.0, ifotherwise

vh=0

h =0

Suppose subscripts b and i denote the boundary and inner cell values, then the boundary conditions
are given by

1. Transmissive condition: Lateral Walls (y = 0, y = 1) and Upstream (x = 0)
{h}p = {h};

{uh}y = {uh};
{vh}p = {vh}i

6.2. Shallow Water Equations 43

2. Mirror condition: Downstream (x = 2)

{h}p = {h};
{uh}y, = —{uh};
{vh}p = {vh}i

0.8 —

0.7 —

0.6 —|

Height (m)
o
BN
|

o
©
|

0.2 —

0.1 —

0~

0 y (m)

1 1.2 1.4 16
X (m)

Figure 6.11: Elliptical profile of the bed

From the initial conditions, this scenario provides an ideal challenge to test the well-balanced nature
of the model. Furthermore, the model can be tested for its capability to predict the multitude of complex
features arising from the interactions between the waves and the varied topography of the bed. The
test was conducted on a 300 x 150 fixed grid.

Figures 6.12 to 6.15 show the contours of the water heights at different times. At the start of the
scenario, the surface perturbation instantly leads to the formation of 2 waves travelling in opposite
directions. Att = 0.12 sec, the wave travelling west had already passed out of the domain. On the
other hand, the wave travelling east gradually tends to distort due to spatially varying slopes of the
topography. Att=0.24 sec, a crest is formed as the perturbation passes over the hump. The energy of
the gravity waves at the peak ultimately leads to it being dissipated through scattering as seen in figure
6.13. Att = 0.36 sec, one can see a multitude of interactions between the reflected and oncoming
waves. The results obtained using the model are in general agreement with [44] and [40].

44 6. Numerical Results

1.0e+00
[1.0025

©1.002

ght.Re

— 1.0015

— 1.001

uField_0.Hei

1.0005

[1.0e+00

Figure 6.12: Water heights at t = 0.12 sec. Contour values range from h = 0.9999m to h = 1.0029m

1.0e+00
1.0025

— 1.002

ght.Re

— 1.0015

— 1.001

uField_0.Hei

1.0005

[1.0e+00

Figure 6.13: Water heights at t = 0.24 sec. Contour values range from h = 0.9999m to h = 1.0029m

6.2. Shallow Water Equations 45

1.0025

1.002
— 1.0015
— 1.001

Figure 6.14: Water heights at t = 0.36 sec. Contour values range from h = 0.99939m to h = 1.0029m

1.0e+00

1.0012

1.001

1.0008
— 1.0006
— 1.0004
- }.0002
— 0.9998

0.9996
0.9994
1.0e+00

Figure 6.15: Water heights at t = 0.48 sec. Contour values range from h = 0.99903 mto h = 1.0016m

1.0e+00

[1.0005
1.0e+00

ght.Re

uField_0.Hei

ght.Re

uField_0.Hei

Conclusion

The effect of the human footprint on the ecological balance is increasing as time passes. One of the
disruptions caused is the rise in likelihood of devastating floods in urban environments. As a result,
urban planners are persuaded to design and develop more robust critical infrastructure to best mitigate
the damage caused by flash floods and storm surges. Numerical flood modelling provides a tool to aid
in building smarter designs and thus help in reinforcing the critical infrastructure for longevity.

Due to the large scale nature of the domains, numerical solvers geared towards solving the flooding
phenomena in urban landscapes must be highly efficient and accurate. This is achieved through the
usage of time-adaptive grids which enables high-resolution solutions in various areas of interest and
accurately predicting the wave propagation of the water. Thus the aim of the thesis is to build a scalable,
and accurate hydrological solver capable of solving for time-adaptive grids. The hydrological solver
must be able to handle highly non-uniform bathymetry and initial conditions as witnessed in many real-
life scenarios. Furthermore, it was emphasized to base the solver on an open-source scientific library
to promote its adoption and future development.

The goal is achieved by creating the h-refinement based hydrological model that utilizes the highly
efficient and scalable numerical solvers offered by PETSc. The model is thus, able to solve on a quad-
tree mesh generated and manipulated by the DMPlex and DMForest. Furthermore, a novel adaption
strategy (section 5.5) is implemented to increase the adaptivity of the model to various scenarios.
Using the proposed algorithms, various cases have been carried out as a step to validate the model
and evaluate the performance of the model. Using the dam break scenarios (section 6.2.1) and the
channel flow scenarios (section 6.2.3), it can be concluded the required accuracy and versatility of the
model is demonstrated. Furthermore, the well-balanced nature of the fixed grid solver is verified in the
perturbation over an elliptical hump (section 6.2.4).

7.0.1. Future Work
A number of improvements can be made to the model that would further elevate its scope of applications
in the industry and academia. These are stated below:

» Performance: As shown in figures 6.3 and 6.7 obtained from the profiling studies, the parallel
efficiencies of the fixed grid solvers can be considered to be lacking. Further optimizations can be
made to the interface associated with the residual evaluation subroutines of the PETSc module.
The same can be done for user-defined routines found within the written program such as in
the Riemann solvers. This would also naturally lead to a boost in performance for the AMR
solver. Next, the proposed adaption criteria subroutine (adapttotolerance ()) can be further
simplified and optimised.

» 'Well-Balancedness’ of the AMR Solver: Although, the fixed grid solver was found to be well-
balanced as demonstrated in section 6.2.4, the same cannot be applied to the AMR solver. Due
to the difference in the DM types (Plex in the case of a fixed grid and P4est in the case of an
adaptive grid), minor noise was found to be scattered across the domain. Upon further inspection,
it was found that the problem most likely, lies in the PETSc-P4est interface as opposed to existing

47

48

7. Conclusion

in the implementation of the libraries themselves. Furthermore, the interface connecting the two
libraries is comprehensive which prolongs debugging. As a result, it was decided to dig deeper
into the issue and make the necessary corrections while the report is being evaluated. With an
open conversation with the PETSc development team, the reality of this error correction is very
much possible as was shown in the earlier stages of the project. Should there be a successful
fix, the accuracy of the solutions obtained from the AMR solver can in-turn be increased.

LIDAR Data: The cases presented in this project contain artificially generated bathymetry. How-
ever, in order to achieve the full potential of the model, a modular interface needs to be built to
allow for the parsing of open-source LIDAR data of an area. This could ultimately allow solving for
realistic flooding scenarios. Such a capability can be realised by making use of geospatial data
processing libraries such as Shapely, Fiona, GeoPandas and/or GDAL to name a few. All of the
stated libraries are open-source and can be incorporated into the model using Python wrappers
provided by PETSc.

https://pypi.org/project/Shapely/
https://pypi.org/project/Fiona/
https://geopandas.org
https://gdal.org

Bibliography

[1] Shrirang Abhyankar, Jed Brown, Emil M Constantinescu, Debojyoti Ghosh, Barry F Smith, and
Hong Zhang. Petsc/ts: A modern scalable ode/dae solver library. arXiv preprint arXiv:1806.01437,
2018.

[2] Martin Alnaes, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris
Richardson, Johannes Ring, Marie E Rognes, and Garth N Wells. The fenics project version 1.5.
Archive of Numerical Software, 3(100), 2015.

[3] Alexey Androsov, Jorn Behrens, and Sergey Danilov. Tsunami modelling with unstructured grids.
interaction between tides and tsunami waves. In Computational Science and High Performance
Computing 1V, pages 191-206. Springer, 2011.

[4] Emmanuel Audusse, Christophe Chalons, and Philippe Ung. A simple well-balanced and positive
numerical scheme for the shallow-water system. Communications in Mathematical Sciences, 13
(5):1317-1332, 2015.

[5] | BabuSka and BQ Guo. The h-p version of the finite element method for domains with curved
boundaries. SIAM Journal on Numerical Analysis, 25(4):837—861, 1988.

[6] Ivo Babuska, Barna A Szabo, and | Norman Katz. The p-version of the finite element method.
SIAM journal on numerical analysis, 18(3):515-545, 1981.

[7] Satish Balay, William D. Gropp, Lois Curfman Mclnnes, and Barry F. Smith. Efficient management
of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P.
Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163—202. Birkhduser
Press, 1997.

[8] Satish Balay, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisan-
dro Dalcin, Alp Dener, Victor Eijkhout, W Gropp, et al. Petsc users manual. 2019.

[9] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman,
Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Dmitry Karpeyev, Dinesh Kaushik,
Matthew G. Knepley, Dave A. May, Lois Curfman Mclnnes, Richard Tran Mills, Todd Munson, Karl
Rupp, Patrick Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.13, Argonne National Laboratory, 2020.
URL https://www.mcs.anl.gov/petsc.

[10] Jorn Behrens. Atmospheric and ocean modeling with an adaptive finite element solver for the
shallow-water equations. Applied Numerical Mathematics, 26(1-2):217—-226, 1998.

[11] Jorn Behrens, Natalja Rakowsky, Wolfgang Hiller, Dérthe Handorf, Matthias Lauter, Jurgen
Papke, and Klaus Dethloff. amatos: Parallel adaptive mesh generator for atmospheric and oceanic
simulation. Ocean modelling, 10(1-2):171-183, 2005.

[12] Chris J Budd, Weizhang Huang, and Robert D Russell. Adaptivity with moving grids. Acta Nu-
merica, 18:111-241, 2009.

[13] J Burguete, Pilar Garcia-Navarro, and J Murillo. Friction term discretization and limitation to pre-
serve stability and conservation in the 1d shallow-water model: Application to unsteady irrigation
and river flow. International Journal for Numerical Methods in Fluids, 58(4):403—-425, 2008.

[14] Carsten Burstedde, Lucas C Wilcox, and Omar Ghattas. p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3):
1103-1133, 2011.

49

https://www.mcs.anl.gov/petsc

50 Bibliography

[15] Xuan Cai, Holger Marschall, Martin Wérner, and Olaf Deutschmann. A phase field method with
adaptive mesh refinement for numerical simulation of 3d wetting processes with openfoam®. In
2nd International Symposium on Multiscale Multiphase Process Engineering (MMPE), Hamburg,
Germany. DECHEMA, 2014.

[16] Vincenzo Casulli and Roy A Walters. An unstructured grid, three-dimensional model based on
the shallow water equations. International journal for numerical methods in fluids, 32(3):331-348,
2000.

[17] Stephen P Cook. Adaptive Mesh Methods for Numerical Weather Prediction. PhD thesis, Univer-
sity of Bath, 2016.

[18] Stephen L Cornford, Daniel F Martin, Daniel T Graves, Douglas F Ranken, Anne M Le Brocq,
Rupert M Gladstone, Antony J Payne, Esmond G Ng, and William H Lipscomb. Adaptive mesh,
finite volume modeling of marine ice sheets. Journal of Computational Physics, 232(1):529-549,
2013.

[19] Sanderson L Gonzaga de Oliveira, Mauricio Kischinhevsk, and Jodo Manuel RS Tavares. Novel
graph-based adaptive triangular mesh refinement for finite-volume discretizations. 2013.

[20] Florence Drui, Alexandru Fikl, Pierre Kestener, Samuel Kokh, Adam Larat, Vincent Le Chenadec,
and Marc Massot. Experimenting with the p4est library for amr simulations of two-phase flows.
ESAIM: Proceedings and Surveys, 53:232-247, 2016.

[21] Alexandre Ern, Serge Piperno, and Karim Djadel. A well-balanced runge—kutta discontinuous
galerkin method for the shallow-water equations with flooding and drying. International journal for
numerical methods in fluids, 58(1):1-25, 2008.

[22] L Freret, L Ivan, Hans De Sterck, and Clinton PT Groth. High-order finite-volume method with
block-based amr for magnetohydrodynamics flows. Journal of Scientific Computing, 79(1):176—
208, 2019.

[23] Mikito Furuichi and Dave A May. Implicit solution of the material transport in stokes flow sim-
ulation: Toward thermal convection simulation surrounded by free surface. Computer Physics
Communications, 192:1-11, 2015.

[24] Christophe Geuzaine and Jean-Frangois Remacle. Gmsh: A 3-d finite element mesh genera-
tor with built-in pre-and post-processing facilities. International journal for numerical methods in
engineering, 79(11):1309-1331, 2009.

[25] Babu Gheethaa. Well-balanced hydrological model based on 2d shallow water equations, 2019.

[26] Mukkund Sunijii Babu Gheethaa. Time-adaptive hydrological solver. https://github.com/
mukkundl996/petsc, 2020.

[27] N Goutal. Proceedings of the 2nd workshop on dam-break wave simulation. Department Labora-
toire National d’Hydraulique, Groupe Hydraulique Fluviale, 1997.

[28] Christopher J Greenshields. Openfoam user guide. OpenFOAM Foundation Ltd, version, 3(1):
€2888, 2015.

[29] David A Ham, Julie Pietrzak, and Guus S Stelling. A scalable unstructured grid 3-dimensional
finite volume model for the shallow water equations. Ocean Modelling, 10(1-2):153—-169, 2005.

[30] Weizhang Huang and Robert D Russell. Adaptive moving mesh methods, volume 174. Springer
Science & Business Media, 2010.

[31] Yuxin Huang, Ningchuan Zhang, and Yuguo Pei. Well-balanced finite volume scheme for shallow
water flooding and drying over arbitrary topography. Engineering Applications of Computational
Fluid Mechanics, 7(1):40-54, 2013.

[32] Tobin Isaac and Matthew G Knepley. Support for non-conformal meshes in petsc’s dmplex inter-
face. arXiv preprint arXiv:1508.02470, 2015.

https://github.com/mukkund1996/petsc
https://github.com/mukkund1996/petsc

Bibliography 51

[33] J Jansson, Ezhilmathi Krishnasamy, and M Leoni. Adaptive direct fem simulation with
unicorn/fenics-hpc for cs1. 5th International Workshop on High Order CFD Methods, 2018.

[34] Hrvoje Jasak and AD Gosman. Automatic resolution control for the finite-volume method, part 2:
Adaptive mesh refinement and coarsening. Numerical Heat Transfer: Part B: Fundamentals, 38
(3):257-271, 2000.

[35] George Karypis, Kirk Schloegel, and Vipin Kumar. Parmetis. Parallel graph partitioning and sparse
matrix ordering library. Version, 2, 2003.

[36] Georges Kesserwani and Qiuhua Liang. Rkdg2 shallow-water solver on non-uniform grids with
local time steps: Application to 1d and 2d hydrodynamics. Applied Mathematical Modelling, 39
(3-4):1317-1340, 2015.

[37] Ethan J Kubatko, Shintaro Bunya, Clint Dawson, and Joannes J Westerink. Dynamic p-adaptive
runge—kutta discontinuous galerkin methods for the shallow water equations. Computer Methods
in Applied Mechanics and Engineering, 198(21-26):1766—-1774, 2009.

[38] Andrew B Lambe and Aleksander Czekanski. Topology optimization using a continuous density
field and adaptive mesh refinement. International Journal for Numerical Methods in Engineering,
113(3):357-373, 2018.

[39] Michael Lange, Matthew G Knepley, and Gerard J Gorman. Flexible, scalable mesh and data
management using petsc dmplex. arXiv preprint arXiv:1505.04633, 2015.

[40] Randall J LeVeque. Balancing source terms and flux gradients in high-resolution godunov meth-
ods: the quasi-steady wave-propagation algorithm. Journal of computational physics, 146(1):
346-365, 1998.

[41] Randall J LeVeque and David L George. High-resolution finite volume methods for the shallow
water equations with bathymetry and dry states. In Advanced numerical models for simulating
tsunami waves and runup, pages 43—73. World Scientific, 2008.

[42] Q Liang, AGL Borthwick, and G Stelling. Simulation of dam-and dyke-break hydrodynamics on
dynamically adaptive quadtree grids. International journal for numerical methods in fluids, 46(2):
127-162, 2004.

[43] Qiuhua Liang. A structured but non-uniform cartesian grid-based model for the shallow water
equations. International Journal for Numerical Methods in Fluids, 66(5):537-554, 2011.

[44] Qiuhua Liang and Alistair GL Borthwick. Adaptive quadtree simulation of shallow flows with wet—
dry fronts over complex topography. Computers & Fluids, 38(2):221-234, 2009.

[45] Qiuhua Liang and Fabien Marche. Numerical resolution of well-balanced shallow water equations
with complex source terms. Advances in water resources, 32(6):873-884, 2009.

[46] Kyle T Mandli and Clint N Dawson. Adaptive mesh refinement for storm surge. Ocean Modelling,
75:36-50, 2014.

[47] Tomislav Maric, Holger Marschall, and Dieter Bothe. vofoam-a geometrical volume of fluid al-
gorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using
openfoam. arXiv preprint arXiv:1305.3417, 2013.

[48] Tomislav Maric, Holger Marschall, and Dieter Bothe. vofoam-a geometrical volume of fluid al-
gorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using
openfoam. arXiv preprint arXiv:1305.3417, 2013.

[49] Andrew TT McRae, Colin J Cotter, and Chris J Budd. Optimal-transport-based mesh adaptivity
on the plane and sphere using finite elements. SIAM Journal on Scientific Computing, 40(2):
A1121-A1148, 2018.

52 Bibliography

[50] Daniel Rettenmaier, Daniel Deising, Yun Ouedraogo, Erion Gjonaj, Herbert De Gersem, Dieter
Bothe, Cameron Tropea, and Holger Marschall. Load balanced 2d and 3d adaptive mesh refine-
ment in openfoam. SoftwareX, 10:100317, 2019.

[51] Daniel Rettenmaier, Daniel Deising, Yun Ouedraogo, Erion Gjonaj, Herbert De Gersem, Dieter
Bothe, Cameron Tropea, and Holger Marschall. Load balanced 2d and 3d adaptive mesh refine-
ment in openfoam. SoftwareX, 10:100317, 2019.

[52] Jeremy A Riousset, Carol S Paty, Robert J Lillis, Matthew O Fillingim, Scott L England, Paul G
Withers, and John P M Hale. Three-dimensional multifluid modeling of atmospheric electrodynam-
ics in mars’ dynamo region. Journal of Geophysical Research: Space Physics, 118(6):3647—-3659,
2013.

[53] Benedict D Rogers, Alistair GL Borthwick, and Paul H Taylor. Mathematical balancing of flux gra-
dient and source terms prior to using roe’s approximate riemann solver. Journal of Computational
Physics, 192(2):422-451, 2003.

[54] Eleuterio F Toro and Eleuterio Toro. Shock-capturing methods for free-surface shallow flows,
volume 868. Wiley New York, 2001.

[65] Giovanni Tumolo, Luca Bonaventura, and Marco Restelli. A semi-implicit, semi-lagrangian, p-
adaptive discontinuous galerkin method for the shallow water equations. Journal of Computational
Physics, 232(1):46—67, 2013.

[56] Renato Vacondio, Alessandro Dal Palu, Alessia Ferrari, Paolo Mignosa, Francesca Aureli, and
Susanna Dazzi. A non-uniform efficient grid type for gpu-parallel shallow water equations models.
Environmental Modelling & Software, 88:119-137, 2017.

[57] Renato Vacondio, Alessandro Dal Palu, Alessia Ferrari, Paolo Mignosa, Francesca Aureli, and
Susanna Dazzi. A non-uniform efficient grid type for gpu-parallel shallow water equations models.
Environmental Modelling & Software, 88:119-137, 2017.

[58] Manuel Valera, Mary P. Thomas, Mariangel Garcia, and Jose E. Castillo. Parallel implementation
of a PETSc-Based framework for the general curvilinear coastal ocean model. Journal of Marine
Science and Engineering, 7(6), 2019. ISSN 2077-1312. doi: 10.3390/jmse7060185. URL
https://www.mdpi.com/2077-1312/7/6/185.

[59] Alessandro Valiani and Lorenzo Begnudelli. Divergence form for bed slope source term in shallow
water equations. Journal of Hydraulic Engineering, 132(7):652-665, 2006.

[60] Alessandro Valiani and Lorenzo Begnudelli. Divergence form for bed slope source term in shallow
water equations. Journal of Hydraulic Engineering, 132(7):652—-665, 2006.

[61] Emily Walsh. Moving mesh methods for problems in meteorology. PhD thesis, University of Bath,
2010.

[62] RA Walters and EJ Barragy. Comparison of h and p finite element approximations of the shallow
water equations. International journal for numerical methods in fluids, 24(1):61-79, 1997.

[63] Yoshiki Yamazaki, Kwok Fai Cheung, and Zygmunt Kowalik. Depth-integrated, non-hydrostatic
model with grid nesting for tsunami generation, propagation, and run-up. International Journal for
Numerical Methods in Fluids, 67(12):2081-2107, 2011.

[64] Hong Zhang, Emil M. Constantinescu, and Barry F. Smith. PETSc TSAdjoint: a discrete adjoint
ODE solver for first-order and second-order sensitivity analysis, journal = arXiv e-preprints, eprint
=1912.07696, archiveprefix = arXiv, year=2019.

[65] Yinglong J Zhang and Antonio M Baptista. An efficient and robust tsunami model on unstructured
grids. parti: Inundation benchmarks. Pure and Applied Geophysics, 165(11-12):2229-2248, 2008.

[66] Jian G Zhou, Derek M Causon, Clive G Mingham, and David M Ingram. The surface gradient
method for the treatment of source terms in the shallow-water equations. Journal of Computational
physics, 168(1):1-25, 2001.

https://www.mdpi.com/2077-1312/7/6/185

	Introduction
	Motivation
	Involvement of SIM-CI Holding BV
	Modelling Approach
	Finite Element Method
	Finite Volume Method
	Grid Adaptivity

	Open-Source Scientific Libraries
	Open-Source Meshing Tools
	Gmsh
	P4est
	DMForest

	Objectives

	Problem Description
	Scalar Advection Equation
	Shallow Water Equations

	Numerical Methodology
	Scalar Advection Equation
	Shallow Water Equation
	Godunov Upwind Method
	Riemann Solver
	Rusanov Approximate Riemann Solver
	HLL Approximate Riemann Solver
	Augmented Riemann Solver

	MUSCL-Hancock Scheme
	Stability Criteria

	Implementation
	PETSc
	System Decomposition
	VEC
	Index Sets (IS)
	SNES
	Time Stepping (TS)
	Data Management (DM)

	Finite Volume Method Framework on PETSc
	Routine to Compute Time Derivative
	Integration of DMPlex Example

	Adaptive Grid Refinement
	DMPlex
	Data Layout

	Partitioning
	Quad-Tree
	Interpolation Methodology
	Refining
	Coarsening

	Adapting Criteria
	Criteria for Scalar Advection Equation

	Implementation in PETSc
	Algorithm for the Adaption Routine
	Process Description

	Numerical Results
	Scalar Advection Equation
	Error Comparison
	Scaling Tests

	Shallow Water Equations
	Circular Dam Break
	Scaling Tests
	Flow Over Bump
	Perturbation Over Elliptical Hump

	Conclusion
	Future Work

	Bibliography

