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Summary

The application of blended acquisition along with irregular acquisition geometries contributes to the economic
perspective of a seismic survey. The joint migration inversion scheme is capable of directly processing the data
acquired in this way, i.e., without deblending or data reconstruction, and of subsequently estimating both reflectively
and velocity models. The workflow proposed in this study aims to design the source blending operator as well as
detector and source sampling operators. The approach iteratively computes these parameters in such a way that
the quality of reflectivity and velocity models, which are directly estimated from blended and irregularly-sampled
data, is adequate. The workflow integrates a genetic algorithm and a convolutional neural network to derive
optimum parameters. Bio-inspired operators enable the simultaneous update of the blending and sampling
operators. To relate the choice of survey parameters to the performance of a joint migration inversion, we utilize a
convolutional neural network. The applied network architecture discards suboptimal solutions among newly
generated ones. Conversely, it passes optimal ones to the subsequent step, which successfully enhances the
efficiency of the proposed approach. The resultant acquisition scenario yields a notable enhancement in both
reflectivity and velocity estimates attributed solely to the choice of survey parameters.
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The application of blended acquisition has drawnsaterable attention due to its ability to provide
high-quality seismic data in a cost-effective aintety manner (Berkhout, 2008). Efficient acquigitio
geometries, e.g., with a reduced number of irretutieployed detectors and sources, also known as
compressive sensing (Herrmann, 2010), considerabhtribute to the business aspect. For the
implementation of these techniques, the previoosytioned deficiency in recorded data needs to be
addressed through subsequent processing stepasdelblending and/or data reconstruction.

Introduction

Alternatively, a least-squares migration scheme awluce the subsurface reflectivity directly from
blended data, i.e., without the need of deblendygiteratively minimizing the misfit between the
observed and the estimated blended data (Tang mm#liB2009). Nemeth (1999) showed that the
technique is also capable of producing optimum stiase images even when the input data suffer
from coarse and/or irregular spatial-sampling. didifon to imaging, blended data can be directly
used for full waveform inversion which attemptsimimize the misfit between the observed data and
the forward-modeled blended data (Florez et all620Krebs et al (2009) and Boonyasiriwat and
Schuster (2010) demonstrated that the use of ranwlom shifts in blended shots and random
selections of sources to be inverted are effectigans to enhance the inversion results. Theseestudi
then infer that design of survey parameters resblendor the source blending and acquisition
geometries potentially contributes to an effectgtimate of subsurface properties when one aims to
directly use blended and irregularly-sampled data.

This paper, hence, proposes an iterative schemiertee optimum survey parameters that can provide
satisfactory reflectivity and velocity estimatea w joint migration inversion (JMI) (Berkhout, 2014
The technique iteratively estimates both a higloltdion reflectivity and a migration velocity model
by updating two independent operatdrsand W, each responsible for reflection and propagation
respectively. We extend the standard implementatfodMI to directly use blended and irregularly
sampled data. This is then incorporated into tlp@sed survey-design scheme. The workflow uses
errors in reflectivity and velocity estimates frahe JMI process for a given survey design. They are
subsequently evaluated by another system basdaeantegration of a genetic algorithm (GA) and a
convolutional neural network (CNN) to update blemdand sampling operators. Numerical examples
utilizing the dispersed source array (DSA) conc@éperkhout, 2012) outline the results of the
proposed workflow.

Survey design workflow

Berkhout (2008) proposed the theoretical framewafrlsource blending by introducing a blending
operatorI’, containing the blending information such as wtdohlirces to be blended and the blending
codes applied to each source. This enables usténdtlended dateR’, according to the following
formulation in the frequency domain:

P'=Pr =DXSI'. (1)

D andS are detector and source matrices containing tfeenration on their spatial locations at the
surface. X is the Earth transfer operator responsible forssetface reflection and propagation
properties, meaning thaX can be approximated frolR and W (Berkhout, 2014). Equation 1
indicates that any blending and spatial-samplifgeses can be modeled by desigring andT'.

JMI iteratively minimizes the residue between obedrand estimated data from its forward modeling
engine, the so-called full wavefield modeling (FWdJioln the JMI process, the data misfit can be
translated to errors iR and W. Resultant updated operators are then attribigsgectively to the
reflectivity and velocity models. In this study,rauinimization scheme in JMI can be formulated as:

3=3 JP= (P =X JaPt;. @

where the angle brackets indicate estimations. Trdgates that we can directly estimate both
reflectivity and velocity models using blended amegularly sampled data.
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Figure 1 illustrates our survey-design workflow,igbhiteratively performs the following three steps
to find D, S andI” while we assum& andW to be available in this study. The latter makessauvey
design subsurface dependent. The first step (luarbFigure 1) is FWMod to obtal® from known
subsurface propertieR andW, as well as estimated survey parameterss andI'. The second step
(red box in Figure 1) is the application of JMIdbtain <R> and<W> from P". In our workflow, we
formulate a multi-objective minimization based o tesidue betweeR and<R> as well a3V and

<W>:

. T _ 3 s\ |? ,\ ~ 12T _ 512 ~ 2T

=[] = SR -RILEM -] <[SR s @

where j is the objective function vector containing errars R and W . R is the reflectivity
information fromR converted to time such that any undesired effiots errors inW to Jg can be

avoided.W represents velocity fields converted frédkh In the third stepD, S andT" are updated in

the green box. Newly generated operators are subady fed into the next iteration. The procedure
stops onc¢ becomes sufficiently small, or the maximum numiféterations is exceeded.

Figure 1 The overall iterative survey-design
workflow. FMWod in the blue box generates
blended and irregularly sampled data (P').
JMI in the red box estimates reflectivity and
Optimized velocity models using a given design. GA and

' o = CNN embedded into the green box update the
. Parameter | No o Yes
= L survev parameters.

Survey parameter update

In this study, we integrate a GA and a CNN for shevey-design workflow (Figure 2). Using genetic
operators, we updaf®, S andI" simultaneously. The performance of JMI for a gigeinvey design is
assigned as its objective function vector describeelquation 3. The solution is iteratively updated
when the GA generates a design with a smaller inldéwever, in this case, we need to evaluate all
the solutions to obtain their objective functiodues even when the GA provide suboptimal solutions
which do not contribute to the subsequent iteratioaking our approach time consuming.

To handle this challenge, we integrate a CNN thabants for the selection of survey designs poor t
the JMI process. Our network architecture is desigto classify whether survey parameters for a
given design can satisfy predetermined threshaddedh onlr andJy,. Until this criterion is satisfied,
genetic operators repeatedly produce new survegnpeters which are subsequently evaluated by the
CNN. Only solutions that pass the classificatiogpsin the CNN go to the JMI process to deljive
from estimated reflectivity and velocity models.iknables only effective designs to be used fer th
subsequent iteration, leading to efficient convaogeas compared to a standard GA. At each iteration
we also train the CNN using the actual JMI resWe. apply a five-fold cross-validation allowing us
to utilize all samples for both testing and trafnipurposes, and then to assess the predictive
performances of the models. The best model amomgi$i subsequently used in the next iteration.
After a certain number of iterations, our workfl@aeghieves stable and acceptable performance along
with an insignificant difference in classificati@ccuracies between training and testing sets. It is
worth noting that an imperfection in the classifioa result has no direct impact on the update of
survey parameters, as it is done primarily on gssof the actual performance of JMI.

D Figure 2 The scheme focusing on the
T“ N procedure to optimize D, S and I'. The GA
o / repeatedly produces these operates till the
Train Criterion criterion in the CNN is met. They are
T O subsequently fed into JMI to obtain estimates
perr— P of reflectivity and velocity. The CNN is trained
Neural Network Operators DS T at each iteration using actual JMI results.
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Numerical examples

We numerically simulate acquisition scenarios thabrporate the blended DSA concept. Figure 3a
shows a shot gather that exemplifies our blendimyspatial-sampling schemes. It contains two active
shots with a 1000 m separation having differenbdhileg codes such as activation times and frequency
bands. Figures 3b-c illustrate parameters relatdte detector and source sampling. In our example,
50 detectors are irregularly distributed at thefaste in our model with a lateral length of 2000 m.
Three types of DSA source units having differentcmal properties, activation times and spatial-
sampling requirements are also irregularly distédu In Figure 3, these parameters are randomly
derived. In addition to the optimized design obddifrom the proposed approach, we show a result
that employs survey parameters generated by amanellization from a discrete uniform distribution
for a comparison purpose. Both cases employ thee sarmber of detectors and DSA source units.
Two sources are activated simultaneously. Paramasad in JMI are kept constant. In the optimized
design, we update the spatial distributions of cets and three types of DSA sources along with
their activation times ranging from O s to 0.256 s.

Figures 4a-b show the true subsurface responsédsrusieis study. The model contains a lens-shaped
high-velocity body above three horizontal reflestoFigures 4c-d show the initial reflectivity and
velocity models in JMI which exhibit no indicatiarf true geological features. Figures 4e-h show a
comparison of the JMI results between the two cafke random design leads to several oblique
lineaments, causing some jitter on the reflect®re lateral velocity variation, particularly beneat
the high-velocity body, adversely affects the kiagios of wave propagation. It consequently
generates undesired structural undulations on tteféectors. The optimized design, however, attains
notable enhancement in the JMI results. The leapesth body can be clearly delineated in both
reflectivity and velocity estimates. Reduction dififacts improves the coherence of reflectorsldba
achieves a robust estimate of the velocity modhbickvenables all the reflectors to be recoveredeclo
to their actual locations. This clearly demonssateat our approach is capable of optimizing survey
parameters to enhance reflectivity and velocitineses using blended and irregularly-sampled data.

Conclusions

The iterative scheme introduced in this study aimslesign survey parameters responsible for the
source blending and the spatial sampling of souscelsdetectorsThe proposed workflow integrates
a GA and a CNN to derive optimum blending and samgpbperators in an affordable computation
time. The resultant acquisition scenario can enmahe performance of JMI directly processing
blended and irregularly-sampled data without thednaf deblending or data reconstruction.

(a) Blended and irregularly- (b) Spatial sampling of detectors
sampled shot gather r T T - r
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Figure 3 Blended DSA acquisition scenarios used in this study.
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(a) True reflectivity model - (b) True velocity model
0 0

2600
2400
2200
2000
1800

[ 200 400 600 800 1000 1200 1400 1600 1800 2000
Lateral location (m)

Depth (m)

E
£
a
53
o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Lateral location (m)

(c) Initial reflectivity model (d) Initial velocity model
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(e)oEstimated reflectivity model (random design) (f) Fstimated velocity model (random design)
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(g) Estimated reflectivity model (optimized design) (h) Estimated velocity model (optimized design)
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Figure 4 Comparison of JMI results between two different design schemes. The notable enhancement
in the performance of JMI due solely to the choice of survey parametersis easily recognizable.
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