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Summary 
 
The application of blended acquisition along with irregular acquisition geometries contributes to the economic 
perspective of a seismic survey. The joint migration inversion scheme is capable of directly processing the data 
acquired in this way, i.e., without deblending or data reconstruction, and of subsequently estimating both reflectively 
and velocity models. The workflow proposed in this study aims to design the source blending operator as well as 
detector and source sampling operators. The approach iteratively computes these parameters in such a way that 
the quality of reflectivity and velocity models, which are directly estimated from blended and irregularly-sampled 
data, is adequate. The workflow integrates a genetic algorithm and a convolutional neural network to derive 
optimum parameters. Bio-inspired operators enable the simultaneous update of the blending and sampling 
operators. To relate the choice of survey parameters to the performance of a joint migration inversion, we utilize a 
convolutional neural network. The applied network architecture discards suboptimal solutions among newly 
generated ones. Conversely, it passes optimal ones to the subsequent step, which successfully enhances the 
efficiency of the proposed approach. The resultant acquisition scenario yields a notable enhancement in both 
reflectivity and velocity estimates attributed solely to the choice of survey parameters. 
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Introduction 
 
The application of blended acquisition has drawn considerable attention due to its ability to provide 
high-quality seismic data in a cost-effective and timely manner (Berkhout, 2008). Efficient acquisition 
geometries, e.g., with a reduced number of irregularly deployed detectors and sources, also known as 
compressive sensing (Herrmann, 2010), considerably contribute to the business aspect. For the 
implementation of these techniques, the previously mentioned deficiency in recorded data needs to be 
addressed through subsequent processing steps such as deblending and/or data reconstruction.  
 
Alternatively, a least-squares migration scheme can produce the subsurface reflectivity directly from 
blended data, i.e., without the need of deblending, by iteratively minimizing the misfit between the 
observed and the estimated blended data (Tang and Biondi, 2009). Nemeth (1999) showed that the 
technique is also capable of producing optimum subsurface images even when the input data suffer 
from coarse and/or irregular spatial-sampling. In addition to imaging, blended data can be directly 
used for full waveform inversion which attempts to minimize the misfit between the observed data and 
the forward-modeled blended data (Florez et al., 2016). Krebs et al (2009) and Boonyasiriwat and 
Schuster (2010) demonstrated that the use of random time shifts in blended shots and random 
selections of sources to be inverted are effective means to enhance the inversion results. These studies 
then infer that design of survey parameters responsible for the source blending and acquisition 
geometries potentially contributes to an effective estimate of subsurface properties when one aims to 
directly use blended and irregularly-sampled data. 
 
This paper, hence, proposes an iterative scheme to derive optimum survey parameters that can provide 
satisfactory reflectivity and velocity estimates via a joint migration inversion (JMI) (Berkhout, 2014). 
The technique iteratively estimates both a high-resolution reflectivity and a migration velocity model 
by updating two independent operators, R and W, each responsible for reflection and propagation 
respectively. We extend the standard implementation of JMI to directly use blended and irregularly 
sampled data. This is then incorporated into the proposed survey-design scheme. The workflow uses 
errors in reflectivity and velocity estimates from the JMI process for a given survey design. They are 
subsequently evaluated by another system based on the integration of a genetic algorithm (GA) and a 
convolutional neural network (CNN) to update blending and sampling operators. Numerical examples 
utilizing the dispersed source array (DSA) concept (Berkhout, 2012) outline the results of the 
proposed workflow. 
 
Survey design workflow 
 
Berkhout (2008) proposed the theoretical framework of source blending by introducing a blending 
operator, Γ, containing the blending information such as which sources to be blended and the blending 
codes applied to each source. This enables us to obtain blended data, P′, according to the following 
formulation in the frequency domain: 

' = =P PΓ DXSΓ .  (1) 
D and S are detector and source matrices containing the information on their spatial locations at the 
surface. X is the Earth transfer operator responsible for subsurface reflection and propagation 
properties, meaning that X can be approximated from R and W (Berkhout, 2014). Equation 1 
indicates that any blending and spatial-sampling schemes can be modeled by designing D, S and Γ.  
 
JMI iteratively minimizes the residue between observed and estimated data from its forward modeling 
engine, the so-called full wavefield modeling (FWMod). In the JMI process, the data misfit can be 
translated to errors in R and W. Resultant updated operators are then attributed respectively to the 
reflectivity and velocity models. In this study, our minimization scheme in JMI can be formulated as: 

2 2

2 2
' ' 'J

ω ω
= − = ∆∑ ∑P P P , (2) 

where the angle brackets indicate estimations. This indicates that we can directly estimate both 
reflectivity and velocity models using blended and irregularly sampled data. 
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Figure 1 The overall iterative survey-design 
workflow. FMWod in the blue box generates 
blended and irregularly sampled data (P'). 
JMI in the red box estimates reflectivity and 
velocity models using a given design. GA and 
CNN embedded into the green box update the 
survey parameters.    

Figure 2 The scheme focusing on the 
procedure to optimize D, S and Γ. The GA 
repeatedly produces these operates till the 
criterion in the CNN is met. They are 
subsequently fed into JMI to obtain estimates 
of reflectivity and velocity. The CNN is trained 
at each iteration using actual JMI results.    

Figure 1 illustrates our survey-design workflow, which iteratively performs the following three steps 
to find D, S and Γ while we assume R and W to be available in this study. The latter makes our survey 
design subsurface dependent. The first step (blue box in Figure 1) is FWMod to obtain P′ from known 
subsurface properties, R and W, as well as estimated survey parameters, D, S and Γ. The second step 
(red box in Figure 1) is the application of JMI to obtain <R> and <W> from P′. In our workflow, we 
formulate a multi-objective minimization based on the residue between  R and <R> as well as W and 
<W>: 

[ ]
2 2 2 2

R W
2 22 2

ˆ ˆ ˆ ˆ ˆ ˆ, , ,
T T

T
J J

ω ω ω ω
   = = − − = ∆ ∆     
∑ ∑ ∑ ∑j R R W W R W , (3) 

where j  is the objective function vector containing errors in R̂ and Ŵ . R̂  is the reflectivity 
information from R converted to time such that any undesired effects from errors in W to JR can be 

avoided. Ŵ represents velocity fields converted from W. In the third step, D, S and Γ are updated in 
the green box. Newly generated operators are subsequently fed into the next iteration. The procedure 
stops once j  becomes sufficiently small, or the maximum number of iterations is exceeded. 
 

  
 
Survey parameter update 
 
In this study, we integrate a GA and a CNN for the survey-design workflow (Figure 2). Using genetic 
operators, we update D, S and Γ simultaneously. The performance of JMI for a given survey design is 
assigned as its objective function vector described in equation 3. The solution is iteratively updated 
when the GA generates a design with a smaller misfit. However, in this case, we need to evaluate all 
the solutions to obtain their objective function values even when the GA provide suboptimal solutions 
which do not contribute to the subsequent iteration, making our approach time consuming.  
 
To handle this challenge, we integrate a CNN that accounts for the selection of survey designs prior to 
the JMI process. Our network architecture is designed to classify whether survey parameters for a 
given design can satisfy predetermined thresholds based on JR and JW. Until this criterion is satisfied, 
genetic operators repeatedly produce new survey parameters which are subsequently evaluated by the 
CNN. Only solutions that pass the classification step in the CNN go to the JMI process to derive j  
from estimated reflectivity and velocity models. This enables only effective designs to be used for the 
subsequent iteration, leading to efficient convergence as compared to a standard GA. At each iteration, 
we also train the CNN using the actual JMI results. We apply a five-fold cross-validation allowing us 
to utilize all samples for both testing and training purposes, and then to assess the predictive 
performances of the models. The best model among five is subsequently used in the next iteration. 
After a certain number of iterations, our workflow achieves stable and acceptable performance along 
with an insignificant difference in classification accuracies between training and testing sets. It is 
worth noting that an imperfection in the classification result has no direct impact on the update of 
survey parameters, as it is done primarily on the basis of the actual performance of JMI. 
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Numerical examples 
 
We numerically simulate acquisition scenarios that incorporate the blended DSA concept. Figure 3a 
shows a shot gather that exemplifies our blending and spatial-sampling schemes. It contains two active 
shots with a 1000 m separation having different blending codes such as activation times and frequency 
bands. Figures 3b-c illustrate parameters related to the detector and source sampling. In our example, 
50 detectors are irregularly distributed at the surface in our model with a lateral length of 2000 m. 
Three types of DSA source units having different spectral properties, activation times and spatial-
sampling requirements are also irregularly distributed. In Figure 3, these parameters are randomly 
derived. In addition to the optimized design obtained from the proposed approach, we show a result 
that employs survey parameters generated by a random realization from a discrete uniform distribution 
for a comparison purpose. Both cases employ the same number of detectors and DSA source units. 
Two sources are activated simultaneously. Parameters used in JMI are kept constant. In the optimized 
design, we update the spatial distributions of detectors and three types of DSA sources along with 
their activation times ranging from 0 s to 0.256 s.  
 
Figures 4a-b show the true subsurface responses used in this study. The model contains a lens-shaped 
high-velocity body above three horizontal reflectors. Figures 4c-d show the initial reflectivity and 
velocity models in JMI which exhibit no indication of true geological features. Figures 4e-h show a 
comparison of the JMI results between the two cases. The random design leads to several oblique 
lineaments, causing some jitter on the reflectors. The lateral velocity variation, particularly beneath 
the high-velocity body, adversely affects the kinematics of wave propagation. It consequently 
generates undesired structural undulations on three reflectors. The optimized design, however, attains 
notable enhancement in the JMI results. The lens-shaped body can be clearly delineated in both 
reflectivity and velocity estimates. Reduction of artifacts improves the coherence of reflectors. It also 
achieves a robust estimate of the velocity model, which enables all the reflectors to be recovered close 
to their actual locations. This clearly demonstrates that our approach is capable of optimizing survey 
parameters to enhance reflectivity and velocity estimates using blended and irregularly-sampled data.  
 
Conclusions 
 
The iterative scheme introduced in this study aims to design survey parameters responsible for the 
source blending and the spatial sampling of sources and detectors. The proposed workflow integrates 
a GA and a CNN to derive optimum blending and sampling operators in an affordable computation 
time. The resultant acquisition scenario can enhance the performance of JMI directly processing 
blended and irregularly-sampled data without the need of deblending or data reconstruction. 

 
Figure 3 Blended DSA acquisition scenarios used in this study. 
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Figure 4 Comparison of JMI results between two different design schemes. The notable enhancement 
in the performance of JMI due solely to the choice of survey parameters is easily recognizable.   
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