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1 Abstract

With the increase of machine learning applications in our every-day life, high-quality datasets
are becoming necessary to train accurate and reliable models. This research delves into the
factors that contribute to a high quality dataset and examines how different dataset metrics
affect the performance of machine learning models particularly focusing on Graph Neural
Networks (GNNs) Tabular Transformers and Large Language Models (LLMs). The metrics,
under scrutiny include graph sparsity, missing data cells, modularity and text length. Vari-
ous datasets are adjusted to assess how these metrics impact model performance.

The results of the experiments reveal that sparse graphs can preserve relational informa-
tion. However increasing density does not necessarily lead to improved performance due to
noise interference. The models demonstrated accuracy and low error rates in the presence of
significant missing data indicating their ability to handle incomplete information effectively
and generalize well based on imputation strategies and structural design. Higher modularity
was found to aid in capturing patterns. Introduced complexity that could potentially hinder
performance. Notably text length emerged as a factor influencing model performance by
offering contextual details.

These insights show the significance of considering attributes when designing machine learn-
ing models for intricate predictive tasks. Through experimentation and optimization of these
metrics we can enhance model resilience and accuracy for applicability, in real world scenar-
ios.



2 Introduction

The quality and characteristics of datasets play an important role in the performance of ma-
chine learning models, especially where Graph Neural Networks (GNNs), Large Language
Models (LLMs), and Transformers are used. This paper aims to lay a foundation about the
important aspects that make a dataset great. Understanding and improving dataset quality
when performing machine learning tasks is important because the data’s integrity directly
influences the performance and reliability of the models [14].

The main research question of this paper is: What defines a high-quality dataset, and
which metrics most accurately assess its usefulness? To address this question, the paper
aims to explore a set of dataset metrics. These metrics will provide an outline about how
they can contribute to a better dataset used in machine learning tasks.

Throughout the project, we will be introducing the datasets such as OGBN Arxiv (Open
Graph Benchmark) [9], Amazon-Fashion [10], and the IBM Transactions for Anti Money
Laundering dataset [2]. They will then be modified and structured to be usable for spe-
cific machine learning tasks. This paper aims to analyse these datasets to understand their
structural and statistical nuances, and then use the datasets to see which metrics contribute
to the quality of a dataset.

Through the course of this paper, we will explore the methodology for creating and evalu-
ating these datasets, detail the experimental setups including the sources and types of data
used. With that, this paper aims to give an answer to the main question, "What makes
a great dataset?". The conclusion will reflect on the impact of the metrics and propose
directions for future research that could further refine dataset construction and evaluation
in the field of machine learning.

Finally, this introduction outlines the scope and ambition of the project, setting the stage for
an in-depth exploration of dataset quality and construction, aiming to significantly enhance
the tools available to data scientists and researchers in the field.

3 Background Information

In the machine learning field, it is known that the quality of datasets is important for
creating great models.[14] As machine learning models, especially those employing Graph
Neural Networks (GNNs), Large Language Models (LLMs), and Transformers, become more
advanced, the datasets they are trained on must be carefully constructed and evaluated to
ensure the reliability of the models. This paper aims to go deep into the characteristics that
define a high-quality dataset, particularly focusing on their application in machine learning
tasks.

3.1 Importance of Dataset Quality

The integrity and quality of datasets directly influence the performance of machine learning
models. Poor-quality data can lead to inaccurate models, which can significantly affect the
outcomes in applications such as fraud detection and financial analysis. Hence, understand-
ing the factors that contribute to dataset quality is important. Each of these factors can



impact the model’s ability to learn and generalize from the data, affecting its predictive
performance. Therefore, it is important to learn about these features.[13].

3.2 Historical Context: Data in Machine Learning

The importance of data in machine learning was recognized early on. In the 1990s, the UCI
Machine Learning Repository was established, providing a resource for researchers. Over
time, the scale and complexity of datasets have increased, leading to the development of
benchmarks such as the MNIST dataset for handwritten digit recognition and the ImageNet
dataset, which spurred advancements in computer vision [11, 4].

3.3 The Role of Graphs in Machine Learning

Graphs have become increasingly important in machine learning, particularly with the rise
of Graph Neural Networks (GNNs). GNNs are designed to work with graph-structured data,
capturing the relationships between entities. The Open Graph Benchmark (OGB) is one
such initiative aimed at providing standardized datasets for evaluating GNNs [8].

3.4 Previous Research and Literature

Previous research has explored various aspects of dataset construction, evaluation and aug-
mentation. For example, the "Open Graph Benchmark: Datasets for Machine Learning
on Graphs" focuses on creating datasets optimized for graph-based machine learning tasks.
However, the literature often lacks detailed analysis on the suitability of these datasets for
specific tasks, such as fraud detection or financial crime analysis. In addition there are
other papers like the "A survey on dataset quality in machine learning" [1], which explores
the importance and challenges of dataset quality in machine learning applications. However,
they do not necessarily explore what makes datasets great, but they focus on the importance
of the quality of them instead. This paper aims to fill this gap by conducting an in-depth
exploration of different datasets and their applicability to various machine learning tasks
[12]. This way, the final goal is to find out about the dataset metrics that make a great
dataset for a specific task.

3.5 Contribution to the Field

By focusing on the detailed analysis of various datasets, this paper aims to contribute to
the field of machine learning. It aims to provide an understanding of some of the factors
that make a great dataset. This, in turn, can lead to the development of more accurate and
reliable machine learning models.

4 Methodology

This chapter outlines the methodology defined to address the research questions, which
focuses on obtaining and formatting datasets, experimenting with different metrics, and
evaluating their impact on various machine learning models. The objective is to identify
the metrics that differentiate datasets and determine which metrics make a dataset better
suited for specific models and why.



4.1 Data Acquisition

The initial step was to collect datasets that can be used with the models that we have, which
can provide diverse types of data relevant to the research objectives. The datasets included
OGB (Open Graph Benchmark)[9], which offers a variety of graph datasets for machine
learning research; Amazon-Fashion[10], focusing on reviews on Amazon fashion products;
IBM AML[2], which contains fraud and non-fraud banking transactions; and Ethereum Phis-
ing Transaction Network [18], which includes data about Ethereum transactions.

These datasets are introduced and prepared to evaluate the performance of different models
that the group is working on. This is why different kinds of datasets are chosen, since only
some datasets can work with specific models.

Dataset Type Data Content

Amazon-Fashion Text-based, graph struc- | Amazon customer reviews and ratings
tured on fashion products

IBM-AML Numeric, graph struc- | Synthetic transaction records with flags
tured indicating suspicious transactions.

Ogbn-arxiv Numeric, graph struc- | A citation network of Computer Science
tured (CS) papers from arXiv. (Text values

are represented as node2vec vectors)

Ogbun-arxiv (text) Text-based, graph struc- | A citation network of Computer Science
tured (CS) papers from arXiv.

Ethereum Phishing | Numeric, graph struc- | Transaction records related to

Transaction  Net- | tured Ethereum phishing activities

work

Table 3.1: Description of the datasets considered

4.2 Data Preparation

To be able to use the datasets with models we have, it is first needed to apply pre-processing
step (if needed), and convert it to a PyTorch[16] Dataset object. Tabular data were converted
into CSV format and structured to include the necesarry features, while graph data were
represented in formats compatible with graph neural network (GNN) libraries, and also in
a tabular format, which is necessary for testing the dataset with other models.

4.3 Procedure

Initial experiments starts with the analysis of each graph. There are several metrics that
could change the model’s performance. The metrics that will be used in this project will
be shown in Section 5. After analysing each dataset, finding the differences between the
datasets is crucial to learn about which datasets can be used for testing out which metric.
At the end, the goal is to explore if there is a correlation between these metrics and model
performance to identify patterns and insights.



5 Experimental Setup

To evaluate the dataset quality, several key metrics have been chosen. These metrics will
be run on the model for comparison to determine if we can conclude that they contribute
to a great dataset and improve the model’s performance.

Metric Importance

Graph Sparsity Some models may perform better on sparse
graphs due to it’s simple structure. Knowing
the sparsity can help in choosing and tuning
these algorithms for optimal performance.
Number of missing cells A high number of missing cells can indicate
poor data quality, which can adversely affect
the performance of machine learning models.
Modularity Identifying the structure of communities
might reveal insights into the natural divisions
within the dataset.

Table 4.1: Importance of the general metrics.

However, different metrics are also used to evaluate different types of datasets, as an
example, since we are using LLMs, some other metrics such as the length of texts could be
analysed for text heavy datasets, since it could also effect the performance of LLMs.

Metric Importance
Text Length The length of the text could influence LLM'’s
behaviour, this can cause the model work bet-
ter or worse.

Table 4.2: Importance of the metrics for text-heavy datasets

Each metric requires it’s own analysis, therefore it is not possible to use the same results
to compare each metric. To overcome this, it is necessary to conduct different experiments
to assess each metric.

To evaluate the impact of the graph sparsity on the model performance, we are going to use
the IBM dataset, since it has initial sparsity of 0.99 and it is relatively a large dataset, there-
fore reducing the sparsity won’t change the graph structure like the others. The approach
is to use the same dataset, but modifying it to have different versions of it with different
sparsity rates. This way, the same model will be run on all the modified datasets, and the
results will help us to assess the impact.

The datasets we have don’t have any missing cells, but to assess the impact of number
off missing cells, the IBM dataset will be used, since it hasmany columns and many rows
that missing values can occur, therefore it is possible to insert meaningful and realistic miss-
ing cells. The dataset will be modified to include missing cells, and again the same model
will be run on all the modified datasets, to help us assess the impact of the number of
missing cells in a dataset on the quality of it.

To assess the impact of modularity, the IBM-AML dataset will be used, since it has many



communities already and better defined than other datasets. It will also be modified in a
way that some of the edges between the communities will be removed, to change it’s struc-
ture and change the modularity. This will be used to help us assess the impact ofmodularity
of a dataset on the quality of it.

For the text length metric, the Amazon-fashion dataset will be used. The dataset will
be splitted up into different batches, with different average length text. The model will be
trained and evaluated on this different batches, too see how the model works with datasets
that include different text lengths.This experiment is important since the text length can
directly influence the LLMs performance, which also influences the model’s performance

6 Results

To take the results for each metric, only 2 different models used. The first one is a model
which contains a backbone, which consists of integrated Graph Neural Networks (GNNs)
and Tabular Transformers. The GNNs handle data with network structures, capturing
relationships between nodes, while the Tabular Transformers process structured, tabular
data to identify patterns and dependencies. These two components work together to fuse
the information, transforming the raw input embeddings. These embeddings, are then fed
into decoders which is specialized for both link prediction + mask cell modelling, since
it would give more insight about the dataset’s performance on both link prediction and
MCM. The model is trained by using these decoders to perform the desired prediction tasks
to achieve results. This model is used to evaluate the metrics graph sparsity, number of
missing cells, and modularity. The model is evaluated with 3 different metrics; MRR (Mean
Reciprocal Rank), Accuracy, and RMSE (Root Squared Mean Error). MRR is a metric used
to evaluate link prediction performance (1 being perfect link prediction), Accuracy shows
how accurately the model performs Mask Cell Modeling (MCM) tasks, and RMSE indicates
the error in the model’s performance during MCM tasks, with lower values indicating better
performance.
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Figure 1: Representation of the first model

The second model which is used to evaluate the effect of length of the text on the model
has a more basic high-level structure, where the RoBERTa [5] text embeddings are created
at the start, and sent to an FTTransformer [6] to complete a regression task, which outputs
a Mean Squared Error (MSE).
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Figure 2: Representation of the second model

6.1 Graph Sparsity

Graph sparsity shows how many relationships there are, and how complex the graph is.
Therefore, it can effect the model’s performance directly, especially on link prediction re-
lated tasks.

To explore the impact of the density/sparsity of the graph, IBM Transactions dataset is
used, since it provides a great structure to apply link prediction tasks, and also has a high
sparsity rate on the full dataset. A random of 500 thousand rows are taken from the dataset,
to make the computation more efficient.

A good way to make a graph denser is by adding more edges to it, however in our case,
the graph nodes and edges has many features, so creating synthetic edges could cause more
problems if it is not done properly. In this experiment, the approach is to increase the
density by finding different denser subsets within the graph, in increasing density. However,
it could also be important to keep the dataset size and label distribution similar, since it
could also affect the performance of the model.

Sparsity MRR 1 Accuracy 1 RMSE |
0.9999 0.066 0.838 0.110
0.8264 0.054 0.821 0.134
0.7452 0.056 0.792 0.148
0.6623 0.052 0.812 0.166

Table 6.1: Sparsity of the graph and the outputs of the model after 10 epochs

6.2 Number of missing cells

Missing data can occur for numerous reasons including data collection errors or privacy
concerns. That’s why it is important to learn about how it effects the model’s performance
to see to what extent the datasets with missing data is usable for machine learning tasks.

To explore this, the IBM Transactions dataset is used, since there are many columns that
we can create missing cells, and does not contain text. So it can be used for even simple
machine learning tasks. The dataset has columns like amount received (transaction amount)
and receiving currency, which can be treated as missing values, and con be replaced with



placeholder values. In this case, the categorical columns are replaced with "None" while
numerical columns are replaced with "-1". The initial dataset doesn’t have any missing
cells, therefore this experiment will compare different rates of missing values.

Missing cells | Number of Rows | MRR 1 Accuracy 1 | RMSE |
(Percentage)

0% 500000 0.066 0.838 0.110
10% 500000 0.069 0.834 0.114
30% 500000 0.068 0.811 0.134
50% 500000 0.071 0.815 0.131

Table 6.2: Number of missing cells in the dataset and the outputs of the model after 10
epochs

6.3 Modularity

High modularity indicates a strong presence of clusters with dense connections internally
and sparser connections between them. This can be crucial for understanding the quality of
network partitions and can influence the performance of machine learning algorithms.

To investigate the impact of modularity on the graph, we use the IBM Transactions dataset,
which is ideal for exploring various graph properties due to its complex structure. The
dataset is divided into different clusters to study the effects of varying modularity levels. A
random subset of 500 thousand rows is selected to maintain computational efficiency.

There are several different algorithms to calculate the modularity of a graph, such as the
Louvain Method[3] and Spectral Optimization[15]. Hovewer, in this experiment, Label Prop-
agation algorithm[17] is used, since it is faster to compute and can be easily done with a
NetworkX function[7]. For changing the modularity, there are several ways to create a new
subgraph like removing edges that connect nodes in different communities, and adding edges
within or between communities. In this experiment, the first approach will be used, since
in the second approach, adding synthetic edges to the graph might also effect it’s quality,
which can lead to different results. Using the first approach will help us evaluate the de-
coder’s effectiveness in identifying community structures and understanding how modularity
influences the performance on link prediction and MCM.

Modularity Number of rows | MRR 1 Accuracy 1 | RMSE |
0.5225 1500000 0.3386 0.843 0,101
0.6472 750000 0.066 0.838 0.110
0.7233 500000 0.061 0.813 0.116

Table 6.3: Text lengths of the data in the subsets and the MSE after 11 epochs

6.4 Text Length

Overall text length given might affect how the LLMs perform, which would change the
outcome of the model. This experiment therefore focuses on dividing the Amazon-Fashion



dataset into different subsets with different average text lengths properly. These subsets
will then be used to train the model separately, which then they would give us insight about
how the model performs.

The dataset is divided into 3 subsets with 100 thousand rows each, which includes reviews
where the text length is smaller than 10, reviews where the text length is larger than 70,
and reviews where the text length is in between.

The mean squared error (MSE) is calculated at the end of each epoch, which is used as
a metric of performance of the model. Because of the computational and time constraints,
only 11 epochs were taken into consideration as the final result of this experiment.

Text length Number of rows MSE]
Any 100000 0.5523
<=10 100000 0.3663
> 10 and < 70 100000 0.3934
>= 170 100000 0.3502

Table 6.4: Text lengths of the data in the subsets and the MSE after 11 epochs

7 Discussion

In this study, we examined the effects of graph sparsity, the number of missing cells, mod-
ularity, and text length on the performance of machine learning models. The information
derived from these experiments are important for understanding the importance of these
factors in the context of machine learning tasks, since they can guide us about creating new
great datasets.

7.1 Graph Sparsity

Our results show a small relationship between graph sparsity and model performance. While
extremely sparse graphs (sparsity 0.9999) resulted in the highest accuracy (0.838) and the
lowest RMSE (0.110), this was not the case as sparsity decreased. For example, at a sparsity
of 0.6623, the model’s accuracy dropped to 0.812 and RMSE increased to 0.166.

One possible reason for these results could be that sparse graphs, despite having fewer
connections, they may still capture relationships that are important for correct predictions.
However, as we make the graph denser, the model could start focusing on redundant or less
informative edges that do not contribute to the predictive power too much. This noise can
obscure useful patterns and potentially lead to over-fitting, where the model performs good
on the training data but bad on unseen data.

7.2 Number of Missing Cells

The presence of missing cells had a somewhat counter intuitive effect on model performance.
Up to 50% missing cells, the model had a high accuracy (0.815) and low RMSE (0.131).
Interestingly, there was a slight improvement in MRR as the percentage of missing cells



increased.

This might be because the model could rely more on the patterns. When the model encoun-
ters missing data, it might rely more on the patterns within the data rather than fitting
to potentially correlations present in full datasets. Additionally, the imputation techniques
used to handle missing data could play an important role. Effective imputation methods
can reduce the negative impact of missing values, keeping the integrity of the dataset and
supporting strong model performance. If the experiment is repeated again using different
imputation techniques, the performance could be worse, or better. This is why it could be a
great idea to repeat the experiment with different techniques, to see which technique works
the best and the worst.

7.3 Modularity

The new data on modularity presents an interesting scenario. Higher modularity levels
(0.6472) resulted in high accuracy (0.838) but also a slight increase in RMSE (0.110) com-
pared to lower modularity (0.5225), which showed an accuracy of 0.843 and a lower RMSE
(0.101). The highest modularity level (0.7233) led to a decrease in accuracy (0.813) and an
increase in RMSE (0.116).

This suggests that while modularity can improve the learning of meaningful patterns by
creating defined clusters, there is a trade-off. Higher modularity might create complex-
ity by creating more defined clusters that the model finds difficult to understand. The
increased complexity can result in higher variability in model predictions, therefore can
increase RMSE. Additionally, it is also seen that the MRR decreased with increasing mod-
ularity. This could be because of the size of the graph instead of modularity. In smaller
datasets, it is likely that the neighbourhoods are much smaller when sampling edges for link
prediction, which could result in poor performance.

7.4 Text Length

Text length showed a clear influence on model performance, with longer texts (>= 70 words)
yielding the lowest MSE (0.3502). In contrast, shorter texts (<= 10 words) resulted in a
higher MSE (0.3663). This shows that richer textual information provides better context,
enabling the model to make more accurate predictions.

The overall higher MSE for text-based tasks compared to graph-based tasks shows the
potential limitations in the model’s ability to effectively utilize textual data. This could be
due to the inherent change and noise in text data, which can create challenges for pattern
extraction. Longer texts might provide more context, but they also could introduce more
irrelevant or noisy data, which the model needs to learn to filter out effectively. RoBERTa
embeddings and FTTransformer appears to handle this reasonably well, but improvements
could be explored in future work.

8 Conclusion and Future Improvements

The goal of this research was to explore more about what makes a great dataset. It focused
on extracting some features that could influence the quality of datasets used in machine
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learning, and find out if we can describe a dataset’s usefulness using those features. The
features used mainly in the research were listed as graph sparsity, number of missing cells,
modularity, and text length. The experiments conducted to provide insights into how these
factors impact model performance and offer a foundation for future dataset construction
and evaluation.

The results show that:

e Graph Sparsity: Extremely sparse graphs can keep in some important information,
but increasing density does not directly improve performance due to potential noise
and complexity. The introduction of redundant or less informative edges in denser
graphs may obscure useful patterns and lead to over-fitting.

e Number of Missing Cells: The model shows resilience to missing data, maintaining
high accuracy and low RMSE even with up to 50% missing cells. The model’s ability
to generalize from incomplete data, or the imputation techniques could contribute to
this resilience.

e Modularity: Higher modularity generally improves model performance by facilitating
meaningful pattern learning, however the methods of changing modularity can intro-
duce challenges. The balance between benefiting from clear community structures and
managing the complexity they introduce is crucial.

e Text Length: Longer text improves the model performance by providing more con-
textual information, but the overall noise in text data can create challenges. The
model needs to effectively filter out irrelevant information to leverage the benefits of
longer texts.

These findings show the importance of carefully considering graph and data characteris-
tics when developing machine learning models for complex predictive tasks. By understand-
ing and optimizing these factors, we can improve the accuracy of models, making them
better suited for real-world applications, and even create better datasets.

Building on these insights, future research could explore other techniques for handling graph
sparsity and missing data, such as trying out new data imputation methods and graph aug-
mentation strategies. Additionally, further investigation into the relationship between text
length and other linguistic features could result in improvements in text-based model per-
formance. Optimizing modularity through more refined clustering algorithms and exploring
their impact on various graph-based task could also present a great approach to improve the
model capability. Apart from these, for each metric, multiple experiments could be done,
with using different datasets and different variables, to learn more about how the metrics
actually influence the model. And finally, other graph/dataset metrics like diameter of a
graph and degree centrality could be evaluated as well, to determine what makes a dataset
great.

Overall, this study lays a foundation for future research about the graph and text character-
istics in machine learning, guiding the development of more effective and resilient models.
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9 Responsible Research

Conducting responsible research is an important step that involves ensuring ethical con-
siderations and reproducibility that could affect the outcomes of the study. This section
outlines the measures taken to uphold these principles.

9.1 Concerns

While and after conducting the research, there are several things that we need to be aware
of, to reduce the possible negative effects of this research.

9.1.1 Energy Consumption

The research requires too much amount computational resources and therefore energy con-
sumption, for training complex machine learning models. We acknowledge this environmen-
tal impact and therefore didn’t use any unnecessary computational power, and tried to do
everything locally as much as possible.

9.1.2 Bias

Bias in machine learning can arise from various sources, including the data, the models, and
the experimental design. To mitigate bias, the following steps were taken:

e Balanced Sampling: In experiments involving subsets of data, care was taken to
ensure that the samples were balanced and representative of the overall dataset de-
pending on the task.

e Algorithmic Fairness: The models were evaluated using multiple metrics (MRR,
Accuracy, RMSE, MSE) to ensure a fair assessment of their performance. This multi-
faceted evaluation helps in identifying any biases that might arise from relying on a
single metric.

9.2 Reproducibility

Ensuring the reproducibility of our experiments is important to validate the results and
enable other researchers to build upon our work. We have taken several steps to facilitate
reproducibility:

9.2.1 Data Availability

All datasets used in this study are publicly available and can be accessed from the following
sources:

¢ OGB Arxiv (Open Graph Benchmark): https://ogb.stanford.edu/docs/
nodeprop/#ogbn-arxiv

e Amazon-Fashion: https://jmcauley.ucsd.edu/data/amazon/

e IBM Transactions for Anti Money Laundering: https://www.kaggle.com/
datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml

o Ethereum Phishing Transaction Network: https://www.kaggle.com/datasets/
xblock/ethereum-phishing-transaction-network
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9.2.2 Code and Implementation

The code used to preprocess the data, train the models, and a README file to help you
setup and reproduce the results is available in the repository, which is also provided with
required comments and documentation.
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