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SUMMARY

A general description has been developed for the tails of signals which

extend form —eo to +oo. To correct for the (inevatable) truncation of
Cj

measured line profiles the asymptotic power series 2 i°°= 2 o (where c;j

are constants and x is the distance form the chosen origin) is used. The
correction procedure works either in real space or in Fourier space. The
latter procedure adds corrections to the (distorted) discrete Fourier
transform of the truncated signal yielding a corrected Fourier transform
without the characteristic distortions. This makes further analysis of the
Fourier transform possible in terms of size (distribution) and strains.

The corrections proposed for truncation takes into account:

(i) wrong estimation of background ("horizontal" truncation)

(ii) lost tails due to truncation ("vertical” truncation).
A computer program has been written for developing and testing the
procedure.
The Cauchy, Gaussian and two size-broadened line profiles
-signals related to the field of X-ray diffraction- are simulated and used as
test cases.

The results are quite satisfactory for the Cauchy line profile and the two
size-broadened line profiles. Typical errors of the average column length
(crystallite size) of 50-100 % without correction are reduced to 1-10 %
after applying the correction. Negative fractions -physically impossible- of
column lengths in the column length distribution no longer occur.







1. INTRODUCTION

It is known that truncation of signals heavily distorts their Fourier
transforms. The interpretation of these Fourier transforms will yield
unreliable data. Unfortunately in many practical cases truncation is
unavoidable due to overlap with other signals or the signal continues
outside the possible measurement range. Then it is useful to estimate the
lost part of the signal or the mutilation of its Fourier transform.

Other ways to treat truncated signals exist, e.g. the use of window
functions to smooth the discontinuity of the signal caused by truncation.
This kind of smoothing implies changing of the shape of the signal, but it
is often applied for want of something better. Fitting some kind of model
function through the truncated signal or through its distorted Fourier
transform is only applicable if the model function is physically realistic.

The more general method presented here leaves the truncated signal
unchanged by predicting only the behaviour of the signal tails lost by
truncation. If the Fourier transform exists the ideal signal and its tails can
be described by an infinite asymptotic power series derived from the
Fourier integral of an ideal signal (see chapter 2).

In practice the observed signal contains the ideal signal with background
and noise. Because the observed signal is a sampled signal only a
restricted number of terms of the asymptotic power series and the
background can be estimated by fitting such series to measured parts of
the observed signal tails (see chapter 4).

An estimation of the background can be made and the predicted tails can
be added to the truncated signal upto a predetermined range as
discussed in section 4.5. This implies that the correction is performed in
real space (procedure 1). Alternatively the corrections for the
contributions of the predicted tails and for the estimated background can
be added to the distorted Fourier transform of the truncated signal
(procedure 2) (see chapter 2). The differences between the two
procedures mentioned are discussed in detail in section 4.5.







Procedure 1 has a disadvantage: the increase of computer time and
memory storage needed for the calculation of the Fourier transform.
However, the rather complicated calculation of the corrections of the
Fourier transform needed in procedure 2 can be avoided. This procedure
has the advantage that the distorted and corrected Fourier transform are
both available; a disadvantage is the large sampling distance in Fourier
space.

In X-ray diffraction the problem of truncation of line profiles has been
discussed and treated by various authors. E.g. Wilkens & Hartmann

(1963) estimated the hook effect caused by truncation by assuming a 1/x2
behaviour of the profile tails. Young, Gerdes & Wilson ( 1967) studied the
propagation of the truncation error in the Fourier coefficients. Zocchi
(1980) suggested the use of the first derivative of the cosine transform
modified by an oscillatory factor. Langford (1982) proposed a truncation
correction within the variance method of analysis also based on the 1/x2
behaviour of the profile tails.

The basic concept of a diffraction line profile and its range have been
discussed by Delhez, Keijser, Mittemeijer & Langford (1986). If a
truncated line profile is interpreted as a truncated 'component line
profile' (as defined in the paper mentioned) procedure 2 can be applied
as is shown by examples of simulated line profiles (chapter 6). For a
truncated 'total intensity distribution' procedure 1 is possible. In this
report only procedure 2 is studied and tested with simulated 'component
line profiles'.
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Fig. 2.1 Schematic picture of a) an ideal signal fj(x) as a continuous function of x b) the
ideal signal fj(x) with background fbg(x) ¢) the sampled ideal signal with

background d) the observed signal as sampled signal which contains the ideal
signal with background and noise.
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2. MATHEMATICAL BASIS

An ideal signal f(x) is defined here as a continuous function of x (see Fig.

2.1a). Besides this ideal signal a continuous background contribution
fpg(x) can be present (see Fig. 2.1b). Because of the necessity of
numerical calculations and for requirements of the observation technique
the ideal signal with background is sampled at usually equidistant values
(see Fig. 2.1c). However in practice measurements always include moise'.
The observed signal fopg(n) (see Fig. 2.1d) is therefore a sampled signal

which contains the ideal signal with background and noise.

For the estimation of the effect of truncation of a signal the first condition
is a general mathematical description for an ideal signal componrent
including its tails which extend to —e and + «. An example of such a
signal component Ioqm as a function of hg is given in Fig.2.2. The
treatment given below does not imply the condition that the signal has
only positive ordinate values.

The Fourier transform pair belonging to the signal component is given by

(=]

Icom (h3-) =K [ Feom() expl2ritthz-D] dt (1a)
Feom® =% | lcom(ha-D expl-2nitthg-D] dhg-)  (1b)

where Ioom (h3-) = intensity of the signal as a function of the
dimensionless variable hg with reference point I, Foom(t) = Fourier

transform of signal component, t = dimensionless Fourier space variable
and K is a proportionally constant.

Real Space

When Icom(hg-D is a real function and if the Fourier transform Fgopm(t)

exists Eq.(1a) can be written as :

(=]
F (t)
Icom (h3-) = 2K j 2—%‘
0

7ih3-D d expl2rit(hg-1)] (2)




Fig. 2.2 Schematic picture of an ideal signal component Ioom as a function of a
dimensionless variable h3 with reference point /. No background present.

N
A-ay, A Ay,

3

Fig. 2.3 Schematic picture of the ideal signal I;. The lost part of the signal I} is shaded.
At is half of the truncation range.
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With
Feom(t) = Acom(t) + iBeom (t) (3)

and the conditions that Agom(t), Beom(t) and all their derivatives AlD)(t)

and B(n)(t) are zero for Itl — e« the following asymptotic power series
can be derived for thg-lI>0 by repeated integration by parts (see

Erdélyi, 1956 for an extensive discussion):

-a(1)(0) .\ A3)(0) _ A(8)(0) |
(2m)2(h3-02 * (2m)4(h3-0% ~ (2m)B(hz-06

B2 __BWo
(2r)3(h3-)3  (2x)5(h3-)5

+2K [ (4)

Cheary & Grimes (1972) already used this type of formula in the field of
X-ray diffraction.

In compact notation:

— Cok - Com+1
leomha-) = 2 (512K * X “og-1)2me] (5a)
where
Kk Al2k- 1)(0)
= 2K(=-1 NS k=1,2,3,...

and (2m)
m

com+1=2K(~ 1)1 B20) ,m = 1,2,38,... (5¢)

(2n)2m+1

The even coefficients cgi describe the symmetric part and the odd
coefficients comy4+1 describe the asymmetric part of the signal

component with respect to reference point [.

Truncation of the signal component and removal of estimated background

will cause a loss of a part of the signal (see Fig 2.3). The truncation points
l+Aty and | —-A¢r are chosen symmetrically with respect to the

reference point [.







Because Eqgs.(5abc) describe the complete signal component they can also
be used for the description of the tails of the signal lost by truncation:

E C2m+1

| Tog-p2m+] hg- U2 Agr (6a)
m=

-  Cok
IlOSt h3 l) Z h3 l AR

with 2 Aty = truncation range.

In practice usually background is estimated by interpolating linearly
between the intensities at both truncation points. This overestimates the
background compared to the estimate using the procedure proposed
here by the cross-hatched area of Fig 2.3. This can be described with:

N c2m+1
Ilost(h3-0=k2 ——_EAt 5k + (h3-] 2 “r’;f,rl . 1hg-ll <Ay (6D)
=1 Btr

Fourier space

By calculating the Fourier transform of Egs. (6ab) a general formula for
the Fourier transform of the lost parts of the signal component for
discrete values of t and for integer values of t'is obtained (see Appendix

Q):

2 < c2k '
Alpstt) = 0 + R 2 Sk T %k(t) (7a)
k=1 Atr
2 « _ 2k 2 1 cok
Alost(0) = — +T D — (7b)
K21 a2k K (2 2k-1 5 _2k-1
2 (-t & come1 2 (rt") c2m+1 X ml(t)
Blostl) = - & - -~ 2m K > 2m (7c)
K ot 20 Ay K Z 5m
Blost(0) = 0 + 0 (74)

where t' = 2A¢r. t and oi(t) or oy, (t) are tabulated functions as defined in
Appendix R and depend only on k or m and t', not on Agr.







The first terms on the right-hand side of Egs. (7abcd) are the
contributions of the part of the signal component lost due to wrong
estimation of background and the second terms are the contributions of
the lost tails of the signal. In practice we have to change from the
continuous Fourier transform to the discrete Fourier transform (DFT),
because of the necessity of numerical calculations.Then the following
relationship holds:

e t'
T 2A¢y

t (8)

Here t' takes integer values only. Eq.(8) implies that the range of the
discrete Fourier transformation is taken equal to the truncation range
2Atr.
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Fig. 3.1 Schematic picture of normalized Fourier coefficient curve with a negative initial

curvature (hook effect).
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3. EFFECTS OF TRUNCATION

In the following the effects of truncation will be discussed for the field of
X-ray diffraction pattern analysis. It is obvious that the truncation problem
occurs in many research field and it is in particular important when using
Fourier analysis.

In X-ray diffraction the words 'line profile' or 'profile' are commonly used

instead of the word 'signal'. The symbols used in chapter 2 have a more

specific meaning in X-ray diffraction. The function I;gm(hg-) is a

component of the total intensity distribution in reciprocal space along a

[00]] direction, where the dimensionless variable hg is defined obeying
2ag sin®

3= (9)

with ag = the lattice parameter in the [00]] direction, 6 = half of
diffraction angle 26 and A = X-ray wavelength (Delhez, Keijser,
Mittemeijer & Langford, 1986).

Truncation introduces errors in profile characteristics including the
Fourier coefficients. These errors are propagated to the size- and strain
parameters derived from the Fourier coefficients (e.g. Delhez, Keijser,
Mittemeijer & Langford, 1988).

In experimental Fourier coefficient curves often a negative initial
curvature is observed (see Fig 3.1). This so-called hook effect causes a
serious error in average column length and physically impossible negative
fractions of column length in the column length distribution occur (e.g.
Young, Gerdes & Wilson, 1967).

Truncation is not the only possible cause of the hook effect, it can be also
due to strain present in the sample. Existing simple correction methods
- for the observed hook effect are therefore dangerous (Delhez, Keijser &
Mittemeijer, 1982).

For the case of pure size broadening a 1/ (h3-l)2 behaviour of the profile
tails can be deduced. Assuming this behaviour Wilkens & Hartmann
(1963) estimated the hook effect caused by truncation and found a good
agreement between observed and calculated hook effect in the case







where size broadening is dominant, but the agreement was less
satisfactory in the case of both size and strain broadening.

Delhez, Keijser, Mittemeijer & Langford (1986) defined a 'total intensity
distribution' and a 'component line profile' with respectively 1/ sinzn'h3
and 1/(hg-)2 behaviour of the profile tails for the case of pure size
broadening (Appendix T). A description of the effect of truncation on the
determination of the average column length is deduced in the paper

mentioned.
However, the 1/(h3-l)2 behaviour of the tails in the 'component line

profile' approach is only the first term of the asymtotic power series Eq.
(4). Probably a similar statement can be made for the 1/ Sinzith3 behaviour
of the tails in the 'total intensity distribution' approach, but a direct
derivation of the analogue of the asymptotic power series has not been
found yet.

Related to the truncation problem in X-ray diffraction pattern analysis the
following new ideas are presented:

- Eq.(4) holds for the complete profile and therefore for
both tails at the same time

- describe the profile tails with as many terms of Eq. (4) as
can be calculated with sufficient accuracy

- the odd terms enable a description of the asymmetric
part of the profile

- the origin can in principle be chosen arbitrarily

- the limitation to profiles with only size broadening can
be dropped.
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4. CORRECTION FOR TRUNCATION IN PRACTICE

4.1 Estimation of coefficients €2k and ¢2m+1

In chapter 2 the lost parts of the ideal signal (Egs. 6ab) and the
mutilation of its discrete Fourier transforms (EQs. 7abcd) are described.
These descriptions are exact when ail coefficients c2k and com+1 (& M=
1,2, 3, ..) of Eq. (5a) are known. In principle the information for
determining these coefficients is included in the truncated part of the
ideal signal. However, in practice the observed signal contains the ideal
signal with packground and noise. Because the observed signal is @
sampled signal only a limited number of coefficients €2k and com+1 €an
be estimated with sufficient accuracy.

In this investigation a least-squares procedure -using the %2 figure-of-
merite function- i8 applied to determine these coefficients. %2 is defined
in Appendix K: it is the sum of the ratios of the squared differences
between measured and fitted intensities and the squared standard
deviations of the measured intensities.

o w.rav diffractometry the standard deviation in the observed intensities

. amber of counts (provided
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Method 1 Direct fitting to the observed signal
A restricted number of terms of the asymptotic series (5a) and the
background are estimated with a least-squares fitting procedure by fitting:

lfit(ha-D = cg + c1(h3-]) + § 2k _ . % 2mil ()
1 0 K=1 m (h3_02m+1

m=1
to measured parts at the signal tails (see Fig. 4.1).
Because Eq. (5a) holds for the ideal signal as a whole, Eq. (10) can be
fitted to both sides of the observed signal simultaneously.

Method 2 Variation of truncation rahge

From the observed signal data the integral intensity can be calculated as a
function of the truncation range.

The integral intensity of the observed signal contains a background
contribution of 2cyA'tr when assuming the background to be linear (see
Appendix S). A limited number of terms of the asymptotic series (7b)
with the background contribution are estimated with a least-squares
fitting procedure by fitting:

A opsA'ty) = A'j - 2 % 1 2k L ocoAy (11)
obslAtr) = A - — ) - oltr
&y 2k=1 a2k 1

to the sampled integral intensity A*obs(A'tr) (see Fig. 4.2). This formula is
deduced in Appendix S. With Eq. (11) only the even coefficients cgj and
Co can be estimated. The odd coefficients cgmy,,.1 and ¢1 can be

estimated with an analogous formula for the first moment (see Appendix
S).

Also the maximum intensity or the integral breadth can be used to
determine the coefficients cg) and co9m 41 (see Appendix S for
references). This method is closely related to the truncation correction of
the well-known variance method of analysis in X-ray powder diffraction
(Wilson, 1962). The truncation correction as discussed by Langford

(1982) contains only one term of the asymptotic series and is applied in
combination with removal of the estimated background. Eq. (11) shows
that the preceding removal of the background is not necessary.

12







Obviously both methods are equivalent, because the same observed data
points are used for determining the coefficients coi and cgm 1. With
method 1 both symmetry and asymmetry at the signal and further
background level and slope can be estimated by fitting just one equation.

With method 2 symmetry and asymmetry are seperated. The even
coefficients coj) and ¢y have to be estimated with e.g the integral

intensity and the odd coefficients cgmp+1 and ¢y with e.g. the centroid.

Disadvantage of the fitting procedure of both methods is that the basis
functions are non-orthogonal i.e. the basis functions are too much alike.
Variance and covariance of the estimated coefficients will increase
drastically with increasing number of coefficients to be estimated.

The set of even basis functions is however orthogonal with respect to the
set of odd functions. So symmetry and asymmetry contributions are well
separable. Other factors limiting the number of coefficients estimated will
be discussed in the next section.

In the following the direct fitting method (method 1) is adopted as
standard procedure for estimation of background and coefficients coj

and com+ 1. The truncation variation method (method 2) will not be
treated further.

4.2. Maximum number of estimated coefficients cgj and c2m+1

In least-squares fitting the number of estimated parameters must always
be less than the number of data points. So the maximum number of
coefficients coik and com+1 of Eq. (6a) which can be estimated depends
on the number of data points present in the fitranges (see Fig. 4.1). It is
clear that a large truncation range and a small sampling distance both
increase the number of data points. The fitranges should be chosen as
large as possible. The outer boundaries of the fitranges a and d (see Fig.
4.1) can be taken equal to the truncation points -Ap tr and Ap tr. The
inner boundaries b and c (see Fig. 4.1) should be optimized, because more
terms of the asymptotic series are needed for an accurate description (Cf.
Appendix U) of data points near the origin where the asymptotic series
diverges.

Increasing the accuracy of the observed data points also increases the
number of parameters that can be calculated with sufficient accuracy. In
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X-ray diffraction a higher accuracy can be achieved by increasing the
counting time. Because in practice the total measurement time is limited
a special counting strategy (e.g. longer counting time for the higher
intensities) has to be adopted. This will not be discussed further.

4.3. Choice of origin and truncation points

A symmetric truncation with respect to the origin must be achieved,
because of the required calculation of the discrete Fourier transform and
the correction for truncation. For optimum use of the measured data the
origin should be chosen at the middle of the measurement range.
However, this will generally not be optimum choice for the least-squares
fitting procedure, because it can be shown that a significant change in the
position of the origin leads to a change in the number of terms of the
asymptotic series (5a) needed for a sufficiently accurate description of
the signal tails (see Appendix U). Therefore the choice of the origin

should be optimized within the least-squares fitting procedure. After
finding the optimum origin and the estimation of the coefficients cgy and

com+1 the truncation points are generally asymmetric with respect to
the origin (see Fig. 4.3). Because of the restriction of symmetric
truncation for calculating the discrete Fourier transform and the
correction for truncation, new truncation points A¢r and - A¢yr must be
chosen. We have two possibilities (Cf. Fig. 4.3).
Possibility 1 Choice of Ay equal to the length of the shorter tail
This implies further truncation causing a loss of information.
Possibility 2 Choice of A¢r equal to the length of the longer tail.
This implies an extrapolation with Eq. (10).
Possibility 1 is not to be preferred because of the loss of information. This
will result in a sampling distance in Fourier space larger than for
possibility 2. Therefore possibility 2 is recommended.

14
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4.4 Removal of background

Before evaluation of the signal, e.g. calculation of the Fourier transform,
the estimated background has to be removed. If one of the methods
described in section 4.1 is applied the background cq + ¢ (hg-)) is
removed without causing "horizontal" truncation i.e. overestimation of the
occurring background as discussed in chapter 2.

Therefore when applying Eqs (7abcd) for correcting the discrete Fourier
transform for lost tails only the second terms on the right-hand side have
to be used. It is remarked that the first terms on the right-hand side of
Eqgs. (7abcd) can be used for a "negative correction" to approximate the
situation of both overestimated background and lost tails due to
truncation (Vermeulen, 1988-0711a).

4.5 Calculation of the corrected DFT

Two different procedures for calculating the corrected discrete Fourier
transform (DFT) will be discussed. For both procedures the estimated
background has to be removed after the tail fitting procedure as
discussed in section 4.4.

Procedure 1 Adding tails

The predicted tails are added to the truncated signal upto the
predetermined range (I-1/2,l+1/2) as discussed for X-ray profile analysis
in Appendix T. The range of the corrected signal will be larger by a factor
5-50 than the range of the truncated signal. This will result in a DFT with
a smaller sampling distance in Fourier space and with less distortion than
for the DFT of the truncated signal (Vermeulen, 1988-0726a, 0923a,
Appendix W).

However, because of the lbng tails added a considerable increase in the
number of data occurs leading to an increase in computation time and
memory usage needed for calculation and storage of the DFT. This aspect
has not been studied yet.

Procedure 2 Correction of the distorted DFT

The discrete Fourier transform of the truncated signal is calculated and
corrected for lost tails. The mathematics of the correction for lost tails is
discussed in chapter 2: the second terms on the right-hand side of the

15







Egs. (7abcd) can be used for correcting the distorted DFT (see also
section 4.4). Because the range of the signal is unchanged this will result
in a DFT with a relatively large sampling distance in Fourier space but
with only a little distortion remaining (Vermeulen, 1988-0726a, 0923a,
Appendix W). This procedure is correct for signals with tails extending to
- oo and +oo . The computer time and memory usage needed for
calculating the corrections are negligible provided that a table with the o-
functions is available. These functions are very difficult to calculate (see

Appendix R).
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5. BRIEF DESCRIPTION OF THE PROGRAM

For the application of the method explained in the previous chapters a
computer program -written in Fortran-77 and provisionally called MAGIC-
has been developed. The five main stages of the program will be discussed
shortly (see Fig. 5.1).

Stage 1 Generation of simulated diffraction data and determination of the
lost part of the profile.

In accordance with the previous chapters all available profiles are of the
‘component line profile' type which implies that a profile extends form

- to + oo (Cf. Appendix T). The profile functions used describe the size
broadening in X-ray diffraction. A linear background is added to the
calculated profile and the effect of counting statistics is simulated. Details
of the calculation of the profile data, background and counting statistics
are discussed in Appendix G.

Then an origin for the tail fitting procedure is chosen and the generated
profile is truncated from —A¢, to Aty (see section 4.3). The origin chosen
automatically becomes the origin for the discrete Fourier transformation
and 2A¢r becomes the range of the discrete Fourier transformation.
Moreover symmetical truncation is required for the application of Egs.
7abcd to correct the DFT for truncation.

For simplicity of programming the fitting ranges at the extremeties of the
simulated profile are chosen to be of equal length and the ranges are
therefore symmetically with respect to the origin chosen.

With the X2 least-squares fitting procedure discussed in section 4.1 Eq.
(10) is fitted to the intensity data in the ranges selected. This implies the
calculation of a goodness-of-fit parameter along with the estimation of the
coefficients cg) and cgm41 and background level and slope (Cf. stage 3).
Standard deviations of the intensity data are used for the calculation of X2
and of the goodness-of-fit (Cf. Appendix K). These standard deviations are
estimated as the square root of the number of counts (Cf. section 4.1).
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Stage 2 Calculation of the corrections for the lost part of the profile to be
added to the DFT.

The corrections of the DFT for the lost part of the profile are calculated
according to Egs. 7abcd using the a-functions as defined in Appendix R.
Because these functions are problem-independent (i.e. independent of the
truncation point Aty they have to be calculated only once.

The corrections are split into two contributions (i) the corrections of the
DFT for the lost part of the profile due to overestimation of the
background ("horizontal" truncation) and (ii) the corrections for tails lost
due to truncation ("vertical" truncation). These contributions are
described by the first and second terms on the right-hand sides of Egs.
(7abcd) respectively.

Stage 3 Removal of the background

The estimation of the background is made in the fitting procedure of stage
1. This way of removing the background implies that no overestimation of
the background ("horizontal" truncation) occurs (Cf. section 4.4).

Stage 4 Discrete Fourier transformation of the truncated profile and
calculation of the corrected DFT.

For the fast calculation of the DFT a so-called mixed-radix routine is used
(Singleton, 1969). The calculated DFT (i.e. of the only vertically truncated
profile) is corrected by adding the corrections calculated in stage 2. Only
the corrections for tails lost due to truncation ("vertical" truncation) have
to be added (see stage 3).

It is of interest to compare e.g. the average column length obtained from
(a) the DFT calculated using the present method

(b) the analytical Fourier transform

(c) the DFT calculated with the usual way of removing the background (i.e.
subtracting of a straight line background between the profile extremeties).
The values of the analytical Fourier transform of the simulated line profile
are calculated at the same t'-values as dictated by the calculated DFT (see
Appendix G).
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In case (c) the background is taken too high ("horizontal" truncation). The
contribution to the DFT caused by this overestimation of the background
(cross-hatched area in Fig. 2.3) is calculated in stage 2. By subtracting this
contribution from the DFT of the only vertically truncated profile the DFT
of case (c) can be estimated (Cf. Eq. 7 and the text below it).

Stage 5 Quantities obtained from the DFT's
The three DFT's mentioned above and their moduli are used for the

calculation of the average column length and the column length
distribution as discussed in Appendix H.
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Fig. 6.1 Typical example of the simulated intensity data (squares) and fitted tails (solid line).
Only the intensity data in the fit ranges (only in this figure: 12wl < (h3-/) < 16wl) are
shown. Cauchy line profile with linear background. Fitted numbers of even terms
(N) and odd terms (M) of the asymptotic series: (N, M) =2,1.




6. TEST OF THE PROCEDURE

The method as described in the previous chapters is tested with the
program MAGIC in three steps. First it is tested if the x2 fitting procedure
yields the correct parameter values with simple profiles for which the
asymptotic series (coik-values) and the Fourier transform are known
analytically. The next step is to test the method with complex profiles for
which the asymptotic series (cok-values) is not known, but the Fourier
transform and physical characteristics are calculable. In this step also the
effect of counting statistics is studied using 10 different simulations. The
third step tests the use of the goodness-of-fit parameters Q ("average"
misfit) and R ("systematic misfit") for the optimization of the fit procedure
to find the best model (i.e. the appropriate number of terms of the
asymptotic series), the best origin position and the 'best' inner boundary
of the fit range.

The parameter values given in Table 1 are used for all simulated intensity
data in the experiments discussed below. For a typical example of the
simulated intensity data and fitted tails see Fig. 6.1. In all experiments the
background cq + ¢ (hg-0) is fitted simultaneously with the asymptotic

series.

Intensity counts at top 10000
profile half width at half maximum (w) 10w

I(hg-0) sampling distance 0.1w
Background level [counts at top] ~ ¢o 100
co + ¢1(h3-1) slope [counts/w] cl 2.0

Table 1  Parameters values applied for simulated intensity data. These values are used
for all profile functions: Cauchy, Gaussian and the two size-broadened profiles
(Cf. Appendix G).
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Step 1 Test with profiles for which the asymptotic series and the Fourier
transform are known analytically

A Cauchy function line profile cannot be interpreted as a size-broadened
profile, because the physical interpretation of the column length
distribution function PN3 of these profiles is not clear. However, a Cauchy
profile provides a very useful test, because the DFT, the average area-
weighted column length <N3>g5, the column length distribution function
PN3 and the coefficients coi of the asymptotic series, are all known.
Numerical data for the simulations performed are explained in Appendix
G.

The simulations show that for large (hg-)-values only the first term of the
asymptotic series (5a) will describe the tails of the profile sufficiently
accurate (see Al = 5.0...15.0 in Table 2) as expected. More terms are
needed for lower (hg-l)-values (see Table 3) because (i) in this (Cauchy)
case the 1/ (h3-l)2 behaviour suffices only for fitting ranges impractically
far from the origin and (ii) the counting statistics will mask the behaviour
of the tails (see |A¢rl = 17.5 and 20.0 in Table 2).

| Ay | 50w 75w 100w 125w 150w 17.5w 20.0 w
cg 7292 9267 9199 9917 10778 9167 12452
Aco 48 200 475 928 1595 2512 3713
<Ng>a.cor 149.8 1251 120.1 113.2 1063 112.4 96.6
<N3>g th 134.7 122.4 1165 113.1 106.3 109.2  108.1

Table 2 Fit results of Cauchy line profile with different truncation point |A¢!| and with
fixed length of fit ranges (3.5 w) at both sides of the profile. The theoretical
value of coefficient ¢y is 10000. Acy is the standard deviation of fitted coefficient
¢2. Only the first term of the asymptotic series and a linear background is fitted
(N,M = 1,0; Cf Table 3). <N3>p cor is the average column length as calculated
with the corrected DFT, <N3>j 1, is the average column length as calculated

with the theoretical Fourier transform with the same sampling distance as the
DFT.
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If the fit procedure gives accurate values of the cgj-values the tails are
described correctly and the corrected DFT will yield reliable values for the
average column length <Ng>4 cor (see Table 3). For this (Cauchy) case the
accuracy of the coefficient cg is of most importance and can only be
reached when more terms of the asymptotic series are fitted.

The order of magnitude of the corrections for truncation is (largest first)
(i) correction for wrong estimation of background ("horizontal" truncation)
(i) correction for lost tails due to truncation ('vertical" truncation) with
only co/ (h3-l)2 (iii) correction for lost tails with higher order terms of the
asymptotic series. This is shown by the average column lengths <N 3>a, h
+ v» <N3>3 v and <N3>5 cor in comparison with <Ng>, ¢ in Table 3. The
value of <Ng>g th is not equal to <N3>4 of the ideal profile (100 for this
Cauchy case), because of the relatively coarse sampling in Fourier space.

(N,M) (1,0) 2,1 (3,2) (4,3) (5,4)

o 2326 116.1 898 743 - 785
co 7292 9421 10100 10614 10443

cq - -5791 -9982 -15016 -12667

c6 - - 6697 24532 10986

c8 - - - -20308 13621

C10 - - - - -30416

Aco 48 160 423 1021 2373
<N3>3 h+v 243.0 231.6 230.2 229.7 229.7
<N3>a v 184.0 170.0 167.2 165.7 166.1
<N3>3 cor 149.8 136.7 134.0 132.2 132.7
<N3>ath 1347
Table 3 Fit results of Cauchy line profile with different numbers of even terms (N) and

odd terms (M) of the asymptotic series. Truncation point Ay and inner
boundary of fit range are fixed at 5.0 w and 1.5 w respectively. The theoretical
cok-values are: cg = 100, ¢ = 10000, ¢4 = -10000, cg = 10000, cg = -10000
and c1() = 10000. <N3>, v+ is the average column length of the "horizontal"
and "vertical" truncated profile, <N3>, y, is the average column length of the
only "vertical" truncated profile.
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The Gaussian line profile cannot be interpreted as a size-broadened
profile, because the column length distribution function Png does not
exist. As a consequence, the average column length <N3>5 does not exist
either. Here <N3>, is only used as a scaling factor, because <N3>, is
related to the breadth of the profile. Because theoretically all coefficients
are zero, problems are expected in fitting the asymptotic series. This is
shown in Table 4. Note that negative values of the background level cg or
the coefficients cg of the first term of the asymptotic series are impossible
if the profile represents an X-ray diffraction line profile.

(N,M) (1,0) (2,1) (3,2) (4,3) (5,4)
o  -101 157 212 131 68
co 2864 -2047 -3498 -745 1899
Table 4 Values of ¢ and ¢ for a Gaussian line profile with different numbers of

even terms (N) and odd terms (M) of the asymptotic series. Truncation

point Ay and inner boundary of fit range are fixed at 5.0 w and 1.5 w
respectively. The level of the background (cp) should be 100 (see Table 1)
and the value of ¢ 0.
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Fig. 6.2 Column length distribution of (a) Cauchy line profile (b) size-broadened line profile
with <N3>, = 42.Dots: calculated from the sampled theoretical transform.
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Fig. 6.3 Colﬁrrrrn-{ length distributioi; of size broadened line profile with <N3>, = 210. Dots:

calculated from the sampled theoretical Fourier transform.
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Step 2 Test with profiles for which the asymptotic series is not known,
but the Fourier transform and physical characteristics are calculable.

Two size broadened profiles with different column length distribution
have been used. The column length distribution of the profile with average
area-weighted column length <N3>5; = 42 resembles the shape of the
distribution of the Cauchy profile. The difference between these two
distributions for small column length <N3>, is negligible, because of the
coarse sampling (see Fig. 6.2). It is therefore expected that the results for
these two profiles show only small differences (see Table 5). The column
length distribution of the size broadened profile with average column
length <N3>4 = 210 is not comparable with the distribution of the Cauchy
profile. However, serious problems like those for the Gaussian profile are
not expected (see Fig. 6.3).

(N, M) (1,0) (2,1) (3,2) (4,3) (5,4)

co 7645 9883 10788 10815 8782
Aco 49 160 422 1021 2362

<N3>a3 cor 51.9 47.4 46.3 46.2 48.3
<N3>ath a86
Table 5 Results of size-broadened profile (<N3>, = 42) with different numbers of even

terms (N) and odd terms (M) of the asymptotic power series. Truncation point

A and inner boundary of fit range are fixed at 5.0 w and 1.5 w respectively.
The theoretical value of ¢ is not known. The value of <N3>3 th is not equal to
<N3>, =42, because of the coarse sampling, in Fourier space.
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The values obtained for the average column length shown in Table 6 are
quite satisfactory when compared with the 'theoretical' value. The column
length distributions calculated with the corrected DFT's show
improvefnent on the column length distribution as calculated with the
distorted DFT (see Fig. 6.4). With increasing numbers of even terms (N)
and odd terms (M) of the asymptotic series the theoretical column length
distribution (Cf. Fig. 6.3) is approximated more accurate. However,
overcompensation occurs at (N,M) larger than (3,2).

(N, M) (1,0) (2,1) (3,2) (4,3) (5,4)

co 6533 5931 4588 3645 3271
Aco 43 135 351 844 1945
<N3>3, cor 190.7 - 197.8 211.4 221.5 225.5
<Nz>ath 2125
Table 6 Results of size-broadened profile (<N3>, = 210) with different numbers of

even terms (N) and odd terms (M) of the asymptotic power series. Truncation
point A¢ and inner boundary of fit range are fixed at 5.0 w and 1.5 w
respectively. The theoretical value of ¢y is not known. The value of <N 3>ath
is almost equal to <N3>, = 210, because "coarse" sampling in Fourier space
has negligible effect for this column length distribution.
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The effect of counting statistics on the value of the fitted coefficient co is
studied with 10 simulations (see Table 7). The mean value and the
standard deviation are calculated. For (N,M) = (1,0) this standard deviation
is comparable with Acg of the fitting procedure. However, with increasing
number of terms (N,M) of the asymptotic series both values increase, but
Acg increases faster than the standard deviation of the 10 simulations.

One can speculate that the non-orthogonality of the asymptotic series
causes (i) the overcompensation reported for the column length
distribution above and (ii) the difference of Acg and the standard deviation
of the 10 simulations. Decrease of the number of degrees of freedom
probably causes the increase of the standard deviation and Acg.

(N, M) (1,0) (2,1) (3,2)
6540.7 6236.0 4402.3
6442.7 6083.3 4500.6
6503.7 5961.7 4306.6
6459.3 6038.0 4700.0

co 6530.2 6115.1 4144.7
6463.7 6088.0 4429.3
6516.6 6151.3 4389.1
6550.9 5953.3 4379.5
6459.6 6034.3 4047.6
6533.3 5931.2 4587.9

mean 6500.1 6059.2 4388.8

st.dev + 40.1 + 95.7 +192.5

Acg 428 1357 3533

Table 7 Effect of counting statistics on fitted coefficient ¢y of 10 simulations of the

size-broadened profile (<N3>, = 210) with different numbers of even terms
(N) and odd terms (M) of the asymptotic series. Typical values of Acy

(standard deviation calculated with the variance-covariance matrix of the X2
fitting procedure) are given in the last row.
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Step 3 Optimization of the fit.

In chapter 4 it has already been mentioned that the fit can be optimized
with respect to choice of origin, fit ranges and number of terms of the
asymptotic series. A criterion is required for finding the "best" fit. The
goodness-fo-fit parameters Q and R -briefly explained in Appendix K- can
be used as a measure for the "average” and "systematic" misfit respectively.
If both parameters exceed their threshold values, then the fit is accepted,
else another origin, fit range or number of terms have to be chosen.

The use of the goodness-of-fit parameters Q ("average" misfit) and R
("systematic" misfit) is demonstrated first.

The values and interpretation of Q and R are given in Table 8 for the
experiments of Table 6 and Fig. 6.4 where the number of terms of the
asymptotic series has been increased. The first fit accepted (according to
the goodness-of-fit parameters Q and R) is for (N,M = 3,2) which gives the
best results for average column length (Cf. Table 6) and column length
distribution (Cf. Fig. 6.4).

(N, M) (1,0) (2,1) (3,2) (4,3) (5,4)
Q <0.001 0.025 0.210 0.200 0.431
questionable maybe believable believable believable
acceptable
R 0.798 1.007 1.120 1.224 1.345
systematic no syst. lucky lucky lucky
misfit misfit event event event
fit
acceptable ? no no yes yes yes
Table 8 Values and interpretation (Cf. Appendix K) of the goodness-of-fit parameters
Q ("average" misfit) and R (systematic misfit) belonging to the tests of Table 6
and Fig. 6.4,

27







However, the subsequent fits show also acceptable goodness-of-fit
parameters Q and R, but the results are less satisfactory.
Overcompensation occurs: the corrected average column length and
column length distribution approximate the ideal values with decreasing
accuracy. Therefore it seems advisable either to stop the increase of
number of terms of the asymptotic series (N,M) at the first acceptable fit
or to add other checks to ensure convergence.

The influence of the choice of the fit range is demonstrated in Table 9 by
changing the inner boundary of the fit range using a constant value of the
outer boundary At = 5.0 w. Only fits with an inner boundary larger than or
equal to 1.8 w are acceptable. For an inner boundary of 1.0 w an increase
of number of terms to (N,M) = (4.3) gives also an acceptable fit (see
Table 10).

inner 1.0w 1.1w 1.2 w 1.3 w 14w 1.5 w
boundary
Q <0.001 0.013 0.096 0.147 0.258 0.210
R 0.858 0.990 1.103 1.185 1.199 1.199
fit
acceptable? no no no yes yes yes
<N3>g cor 195.5 199.3 204.1 207.4  212.3 211.4
<N3>ath 2125
Table 9 Results of goodness-of-fit parameters Q and R and average column length

<N3>, of size-broadened profile (<N3>, = 210) with different inner boundary
of fit range and fixed number of terms: (N,M) = (3,2). The outer boundary of

fit range is equal to A | = 5.0 w.
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The influence of the choice of origin (Cf. Appendix U) is shown by a shift
of the origin (see Table 11). The fit with origin shift -0.2 w is not
acceptable, but increase of number of terms to (N,M) = (4.3) gives an
acceptable fit as can be seen in Table 12.

(N, M) (1,0) 2,1 (3,2) (4,3)
Q <0.001 <0.001 <0.001 0.186
R 0.263 0.502 0.858 1.172
fit
acceptable? no no no yes
<N3>a cor 1997 1845 1955 209.1
<Ng>atn 2125

Table 10 Results of goodness-of-fit parameters Q and R and average column length
<N3>, of size-broadened profile (<N3>, = 210) with different number of

terms (N,M) of the asymptotic series and with fixed inner boundary of fit
range: 1.0 w. The outer boundary of fit range is equal to [Al = 5.0 w.
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Q 0.073 0.130 0.210 0.359 0.395
R 1.117 1.161 1.199 1.054 1.037
fit
acceptable? no yes yes yes yes
<N3>a cor 206.0 208.9 211.4 2155 ¢ 212.1
<N3>ath 2125
Table 11 Results of goodness-of-fit parameters Q and R and average column length

<N3>; of size-broadened profile (<N3>, = 210) with different choice of origin
and with fixed number of terms (N,M) = (3,2) of the asymptotic series.

(N, M) (1,0) (2,1) (3,2) (4,3)
Q <0.001 0.002 0.073 0.248
R 0.201 0.924 1.117 1.25
fit
acceptable? no no no yes
<N3>a.cor 1909 1931 206.0 221.3
<N3>ath 2125

Table 12 Results of goodness-of-fit parameters Q and R and average column length
<N3>, of size-broadened profile (<N3>, = 210) with different number of

terms (N,M) of the asymptotic series and with fixed choice of origin
(shift = - 0.2 w).
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7. CONCLUSIONS

For many types of truncated signals extending from —eo to +oo it holds

that:

II1.

For an accurate correction for truncation more than one term of the

C.
. . 0o i .
asymptotic power series E i=2 Z (where cj are constants and x is

the distance from the chosen origin of the signal) is required in
general.

Both tails and the background can be estimated simultaneously using
an appropriate least-squares fitting procedure.

These two main conclusions have a number of consequences. Below those
that hold in particular for the field of X-ray diffraction are given.

Ia

Ib

Ic

Id

Because the asymptotic power series holds for the complete signal,
it describes both tails at the same time.
The asymmetry of the signal is described by the odd terms. This
implies that:
(i) the origin can in principle be chosen arbitrarily
(ii) the limitation to signals which have a 'centre' of symmetry
(in X-ray diffraction e.g. size-broadened profiles) can be dropped.
The correction proposed for truncation takes into account:
(i) wrong estimation of background level (and slope) (‘horizontal'
truncation)
(ii) the intensity lost by truncation of the tails of the profile
(‘vertical' truncation) using the asymptotic power series
These contributions are of the same order of magnitude. The
importance of the higher order (i>2) terms of the asymptotic power
series becomes most clear when trying to determine the
crystallite size (column length) distribution (Cf. Fig. 6.4).
The discrete Fourier transform values of a truncated profile can be
corrected using truncation-range independent o-functions (Cf.
Chapter 2).
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IIa

Ilc

II1.

IIla

IIIb

It is possible:

(i) to test the compatibility of a model (in the present case the
asymptotic power series plus a straight line) with 'measured’
intensities (the measured parts of the tails of the line profile
plus background) using the goodness-of-fit parameters Q
(average' misfit) and R ('systematic' misfit),

(ii} to find the model parameters and their error estimates.

In this investigation a X2 fitting procedure is applied for these
purposes.

The terms of the asymptotic series are non-orthogonal functions

which means interdependence between the model parameters in

the fitting procedure. Only the set of even terms and the set of odd
terms are orthogonal, allowing separation of symmetry and

asymimetry .

From the tests of the method performed using simulated intensity
data it follows that:

The values of the goodness-of-fit parameters Q and R vary

between acceptable and unacceptable values for different numbers of
terms of the asymptotic power series used or for different positions
of the origin. This indicates that the optimum (usually small) number
of terms and the optimum origin position can be identified.
However, more checks are required.

The method has been proven to be successful for the correction of
truncated Cauchy line profiles and specified size broadened line
profiles. However, problems are expected and noticed when the
signal has a purely Gaussian shape. For such a signal the asymptotic
series only virtually exists, because all coefficients are zero.

32







8. SUGGESTIONS FOR FURTHER RESEARCH

. The power of the %2 fitting method used will increase markedly if the
asymptotic power series can be written as a combination of orthogonal
functions (Cf. Conclusion IIb).

. Additional checks for the acceptability of the results of the fitting
method should be developed (Cf. Conclusions Illa).

. The truncation correction according to method 1 of section 4.1 should
be programmed and tested.

For a component line profile the tails can be added upto the range

(I- -l—,l + -1—) to obtain the required sampling distance in Fourier space.
2 2 p

For the tails outside the range mentioned procedure 2 of section 4.5
(correction of the distorted DFT) can be used.

. The merits of incorporating the Ky-doublet into the model to be fitted
(Vermeulen, 1988-0614a, 0616ab.) should be investigated.

. The merits of transforming from the asymptotic power series from a
(hg-]) scale to a 26-scale (including Ky-doublet and angle-dependent
Lorentz-polarization factor) (Vermeulen 1988-0617a, 0622ab, 0902ab.)
should be investigated. The importance of this translation is that only
then counting statistics can be taken into account, because the
transformation from an equidistant 26-scale to an equidistant (hg-0
scale requires an interpolation mutilating the counting errors.

. It is possible to calculate an asymptotic power series for the 'total
intensity distribution' (Delhez, Keijser, Mittemeijer & Langford, 1986)
by summing the contributions of all 'component line profiles' of the hs
reciprocal lattice row (Vermeulen, 1988-0728a, 0811a, 1989-0102ab).
The series obtained holds at least for size-broadening. The

computer program MAGIC requires only minor changes to allow the use
of 'total intensity distribution' asymptotic power series, for x2 fitting
purposes.

. No asymmetric profiles have been tested so far. The simulation of
profiles that include strain broadening can provide asymmetric

profiles.
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APPENDIX G
Brief description of the simulation of truncated signals

Four signals (line profiles) of the 'component line profile' type are available
in the present version of the computer program MAGIC: Cauchy, Gauss,
'Laue’ and certain size-broadened line profiles. A survey of the definitions
of these line profiles and their transforms is given in table G1.

The data constituting a simulated line profile are generated by choosing a
type of line profile, the truncation point At and the desired sampling

distance of the truncated profile. The maximum (h3-]) range generated is
fixed at (A¢r+w) and the sampling distance is fixed at 0.1 w. For all values
of this array of (hg-]) values (-Aty—w, Agr+w) I(hg-D) is calculated using the
line profile description chosen. Then a linear background is added: I'(hg-)
= I(hg-]) + co + c1 (h3-)). Finally counting statistics is simulated as follows.
Each value of I'(hg-1) is chosen as the mean value of a Poisson distribution
and with the use of a random number generator one value I"(hg-0) from
this distribution is chosen: I"(hg-]) is I'h3-) including counting statistics.

In fact the program uses a "normalized" abscis and ordinate. For details

about these normalizations and use of arrays in the program see
Vermeulen (1989-0116a). The profile generated at (-At—w, Aqr+w) is

truncated to (-Atr, Aty) after the choice of origin of the truncated profile.
The surplus intensities are required, because the origins can differ to
investigate the effect of a shift of origin.

To be able to compare for the 'same' simulated profile (including counting
statistics) the effects of various tail lengths and sampling distances, parts
of the tails can be removed and other sampling distances (multiples of the
original) can be chosen. |
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Fig. H.1 Schematic picture of the real part of the DFT A(t) versué t'.
The average area-weight column length <N3>, follows from the t'-axis intercept of
the tangent to the A(t") curve at t'=0.

Py,

column length. Solid line: sampled at integer values of N3 (or t). Dots and dashed

line: sampled at integer values t', plotted at corresponding t values.
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APPENDIX H

The calculation of <N3>q and PN3 Jor size-broadened profiles.

The average area-weighted column length <N3>5 and the column length
distribution Png are both calculated from the real part (cosine) of the

discrete Fourier transform (DFT) values A(t). The apparent average
column length follows from (Cf. Warren, 1969) (see Fig. H.1):

_ A['=0)
<N3>a _A(t'=0) —A(t'=1) . t1'101'1'1’1 (Hl)

where thorm = (2Atr)_1 (Atr = truncation point).

The normalization factor tporm is necessary because in the program the
DFT values at t' values are used instead of those at t values, with

t=1t". (2Atr)_1 (Cf. chapter 2). Eq. (H1) gives a too large value of <N3>,
when tyorm>1, which is usually the case in practice.

The column length distribution is calculated with the second differences

of A(t) weighted such that ) ;103: 1 Png =1 (Cf. Young, Gerdes &

Wilson, 1967)

, CA(t'+1) - 2A(t) + Alt'-1)
p(N3=t -tnorm) - A(t'=0) —A(t'=1) (Hz)

The column length distribution calculated with Eq. (H2) is not
determined at the integer values of N3 or t but at the values t' with the

same normalization factor as mentioned above. This will cause a loss of
detail especially for line profiles with small average column length as
illustrated for the case in Fig H.2.
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APPENDIX K
The goodness-of-fit parameters @ and R

The goodness-of-fit parameter Q is used as a statistical estimator of the
"average” migsfit. Q is equal to the value of the incomplete gamma function

for V/2 and X2 /2. v is the number of degrees of freedom:

v=N-M (K1)
(here N = number of fit data points, M = number of estimated parameters
aj ...apyp) and %2 is defined as

N —flx;:ay...anm)
2 Yi-IXj.aj...ap) y9 (K2)
=3 o ]

i=1

(xi, yi,» o = abscis, ordinate and standard deviation of ordinate of the i-th
data point respectively; f(xj; aj...ap;) = value of the fitted function for x;
and estimated parameters ay ...app). The least squares procedure

minimises the value of 2.

The exact description of the calculation and interpretation of Q with the
incomplete gamma function is given by Press et.al., 1986. The value
obtained for Q can be interpreted as follows:

if 0.0 <Q@<0.001 questionable model

if 0.001 <Q<0.1 fit may be acceptable
if 0.1 <@<09 fit believable
if 09 <Q@<1.0 fit "too good".

The goodness-of-fit parameter R is used as a statistical estimator of the
"systematic" misfit. The value of R -also called the successive differences
scatter test- is calculated with (Thijsse, 1988 ab):

1=1
(di41 - dp)?
1 N-1
R=5N —f S N (K3)
NY di-(Y 4y)?
i=i i=1
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. — f(xi:a7...an)
with dj = 2 ‘0 1M (K4)
i

The parameter R is normally destributed with a mean expected value of
1.0 and a standard deviation of:

N-2
°R="\ N2_1

(K5)

The threshold value of R for accepting the "systematic" misfit is 1.0 times the
standard deviation oR less than the mean expected value of 1.0.

The value obtained for R can be interpreted as follows:

R <1.0-o0R : systematic misfit
1.0-op < R <1.0 : no systematic misfit
1.0 < R <1.0+o0oR : good result
1.0+oRp < R : "lucky event".
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APPENDIX Q
Calculation of the discrete Fourier transform of the lost part of the profile.

The Fourier transform of the lost part of the profile can be calculated from
the intensity distribution Ij5g¢ (h3-) given by Egs. (6ab) of chapter 2:

2
Flostlt) = ¢ fllost (h3-Dexp[-2rithg-1)] d(hz-D (Q1)
(6]

With
Flost()= Ajpst(t) + iBjggst(t) (Q2)

it can easily be obtained that (Vermeulen, 1988-0525a,0705a)

Atr
2 - _C2k
AlOSt = R_ J. 2 ?E COSs 27511(1‘13-0 d(hs-l) +
0 k=1 r

+% j Z —-Cz—kzﬁ-cos 2nt(hg-) d(hg-) (Q3a)
Ay K=1 (hg-0)

2 +1
Blostlt) = - & j (h3-) Z 2m 77 sin 2nt(hg-) d(hg-D +
mel

o]

2 T = com+1 ‘
"k ] X Gapmer  sin2nthgd dibg-)  (Q8b)
Atr =1 3

Two cases of each integral of Eqs (Q3ab) will be considered: for t=0 and
for t£0. Because numerical calculations the discrete Fourier transform is
required a change from the Fourier transform to the discrete Fourier
transform will be performed with the substitution:

tl

t =
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where t' takes integer values only and 2A¢; is the range of the discrete

Fourier transformation equally taken to the truncation range.

Alost(t) 1St integral of Eq. (Q3a)

For the case t=0 this integral reduces to

Aty
2 & C2k 2 < c2k
z > 5K J dhg-) =% > - - (Q5)
K=18tr"" o K=1 Ag2E L

For the case t#0 this integral becomes:
o i cok AJ.tr omt(ha-D dfha-D ) i Cok Sin2rntAty (Q6)
= —5% cos 2nt(hg- 3-0) =%
K][{=1 Atr2 0 Kk=1 Ater 2mt

After substitution of Eq. (@8) this becomes zero:

2 2 Cok sin r«t' _

=3 0 (Q7)
K — '
k=1 Atr2k 1 nt

Alost(t) 2nd_integral of Eq. (Q3a)

For the case t=0 this integral reduces to

2 & T dhs-) 2 & cok
i 2%k | T—7PF R (Q8)
Kkgl Ajr (hg-1)2 Kk§1 2k-1 4, 2k-1

For the case t#0 this integral becomes after substitution of Eq. (Q4):

,(h3-]
5 o o COS Tt A¢
X X cok | s — dhg-) (Q9)
K=1 Ay 137D
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The integral of Eq. (Q9) can not be solved analytically. For convenience we
introduce a function oy(t) as defined in appendix R which is independent

of Aty. Then Eq. (Q9) becomes:

- Cok ,
N ok(t') (Q10)

k=1 Ay

NN

Blost.(t) 15¢ integral of Eq. (Q3b)

For the case t=0 this integral reduces to zero. For the case t£0 this
integral becomes :

o Atl‘

2 C2 1 .

"X 2 7omz | (h3-D sin 2nt(hg-) d(hz-) (Q11)
m=1 tr 0O

which can be integrated by parts yielding:

b Com+1 1

2m+2 (27Ct)

2
e At 5 [sin 2ntAty = 2ntA¢r cos 2ntAtr] (Q12)
m=1 r

Substitution of Eq. (Q4) gives for the discrete Fourier transform:

_2 (= DL 2 comyg (Q13)

Bjost (1) 279 integral of Eq. (Q3b)

For the case t=0 this integral reduces also to zero. For the case t£0 the
integral becomes:

2 & T sin 2nt (hs-)
% X com+1 | s d(hs-0 (Q14)
m=1 Atr (h3-0
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Integration by parts yields

9 £ ¢ sin 2ntA < cos 2nt(ha-10)
2y 2m+1 [ tr j 3 dhs-p |

+ (2=t
2m A 2m ( )At (h3_l)2m
r

Substitution of Eq. (Q4) gives for the discrete Fourier transform:

, (h3-)
9 & comel [ sinnt'  owt' o cos nt At
m+ [ r
_2 4 d(hs-D]

Atr

The integral of Eq. (Q16) is also found in Eq. (Q9).
So Eq. (Q16) becomes:

2 .« Coam+l am(t)
- K (TCt) 2 A 2m 2m
m=1 tr

where & q(t) is defined in Appendix R.

4]

(Q15)

(Q16)

(Q17)







APPENDIX R
The so-called a-functions

In this report a function ok(t') is defined (Vermeulen, 1988-scriptie):

hg-0)
oo COS it A
\ - t
alt) = A2t | o _l)2kr d(hs-0) (R1)
Atr 3

with k and t' are positive integers, (hg-J) and A¢ have been defined in

chapter 2. The integral of Eq. (R1) cannot be solved analytically but can
be reduced to a function of the Sine integral for which series expansions
are known. However accurate calculation of the Sine integral is very
difficult (see Appendix V for details).

Two cases of Eq. (R1) will be considered for k=1 and k > 1.

For the case k=1 Eq. (R1) reduces to

,(h3-)
oo COsTt
¥ Aty
a1t)= Ay | 5 — d(hg-) (R2)
tr
Integrating by parts:
o Sin nt'--(—k-l—g:g
' ' ' Aty
ay(t)= cos nt' - nt' | G dbs-D (R3)
Atr
This becomes:
' i
o1(t) = ) - at' [ = -si(t)] (R4)
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where

nt'
sint) = | Sl;”‘ dx (R5)
0

is the Sine integral (Abramowitz & Stegun, 1968, p.p. 231-232)
For the case k>1 a recursion formula can be deduced by integrating by
parts twice in the same way as with Eq. (R2):

cosmt (hs-0
o (t,)_cosnt'_ ~mt'sinnt’ _Atrzk_z(nt')z JC:O Atr dha-]  (R6)
K 0k-1 T (2k-1)(2k-2) ~ (2k- 1)(2k-2) A (h3-p2k-2 3
r
Using the definition (R1) for k-1 gives:
t' N2
-1 (mt')
() = A ak-1 (t) (R7)

(2k-1) (2k-1)(2k-2)

From the equations (R7) and (R4) follows that oi(t) is independent of
Aty and is determined completely by the values of k and t'.
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APPENDIX S

Variation of truncation range

In the following the formula for the integral intensity as function of the
truncation range will be deduced.

E
The integral intensity Aj or the zeroth cosine Fourier coefficient A(O) of

an ideal signal Ij (h3-0) is defined as:

Ap= | 1 (h3-D dihg-D (1)

&
The integral intensity A, is often used as one of the signal characteristics

in practice, but cannot be calculated with Eq. (S1) because Ij(hg-) is not

known. However, for the part of the integrated intensity of the ideal
signal lost due to truncation at A'ty we have the description (Cf. Eq. 7b):

'A'tr <]
Aost0) = [ Tjth3-D dthg-D + [ Li(h3-) dihg-]
T A'ty
- 1 Cok
=2 > (S2)
k"-—'-l 2k—1 (Avtr)Zk"l

which is a function of the truncation point A'yp.

Further, the integrated intensity of the observed signal can be calculated
with:

* Aty
Aops B'tr) = _[ Iobs (h3-0) d(hs-))
~A'ty
* Aty
=A; = Alost(0) + _[ {cotc1(hg-} d(hg-) (S3)
= A'tr
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-assuming the background to be linear- which is also a function of the
truncation point A'ty.
Substitution of Eq. (S2) in Eq. (S3) gives:

* b

' 1 C2k
Agps Atr) =A ;-2

2k-1 (A'tp)2k-1

+ 20 A'tr (S4)

M=

1

where ¢ is the background level at the origin.
With Eq. (S4) a limited number of coefficients coi of the asymptotic
s

series, the background level and the integrated intensity A ; of the ideal

signal can be estimated with a least-squares fitting procedure.
Analogously it can be deduced for the n-th moment:

Min= | (h3-0"hz-D dihg-) (S5)
Aty n «° n
Miost,n = | (h3-D"li(hg-) d(hg-) + | (h3-D"Ij(h3-) d(h3-D
- A'tr
(S6)
with (Cf. Eq. 5a):
C2m+1
li(hg-) = Z TE m2=‘l (h3_02m+1 (S7)

Then the n-th moment of the observed signal can be calculated with

* Atr
M ohs,n B'tr) = j (h3-)"ops(hs-D) d(hg-)
—A'tr
* A'ty
=M, = Miost,n + J (hg-)®{co+cq (hg-D)} dlhs-)
—A'tr

(S8)
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With the first moment a formula for the centroid can be derived. The
variance is related to the second moment.

Further also the maximum intensity and integral breadth can be
calculated as functions of the truncation range (Vermeulen, 1988-0221a,
0530a, 0602a, 0602b, 0602c).
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Fig. T.1 Schematic picture of the intensities Itor and Iom -the 'total intensity distribution’

and the 'component line profile' respectively- as a function of the dimensionless
variable h3 with node / (previously called reference point).
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APPENDIX T
Concept of a diffraction line profile and its range

In the field of X-ray diffraction pattern analysis Delhez, Keijser,
Mittemeijer & Langford (1986) regarded the 'total intensity distribution'
as a series of 'component line profiles' (see also Fig. T.1):

Itot(hg) = 3 Icom (h3-D (T1)

[=— o0

For applying Fourier analysis and development of recipes for the
extrapolation of the tails of the measured truncated line profile it can be
considered either as part of the total intensity distribution (approach 1)
or as part of a component line profile (approach 2). A summary of the two
approaches is given below.

Approach 1 The total intensity distribution in reciprocal space along a
[00]] direction is given by:

2

o sin“tNghg
Iiotthg) = K ——— T2
tot(h3 N32=‘1 PNg ol nznh3 (T2)

where h3=(2a3sin6) / A (ag=lattice parameter in [00]] direction) 8=half of
diffraction angle 26, A = X-ray wavelength and pN3=fraction of columns of

length -perpendicular to the 00l plane- N3 (whole number) unit cells
5 N3=1 PN3 =1) and K is a proportionally constant.

Clearly the function is periodic with period from -1/2 to +1/2 and
peaks for integer values of hg (see Fig. T.1).
With this approach the tails can be approximated with

Ctot

Itotthg) = —5—— hg—1/2 (T3)
sin“rhg

where Ctot is a constant.Fourier analysis implies a series development
within the range [[-1/2, I+ 1/2].

47







Approach 2. The component line profile is given by

o 2
sin~7N3(h3-)
Icom (h3-) = K PN
E e

(T4)
which is not periodic in hg, has only an absolute maximum at hg=[ and

entends from - « to +o . With this approach the tails can be
approximated with

Ccom
(h3-l)2

Icom(hS'l) = (h3 "l)—>°0 (TS)

where Ceom 1S a constant.

Fourier analysis implies a Fourier transformation within the range
[—OO , +oo ]°

Both approaches hold only for the case of pure size broadening. The
constants C¢ot and Ceom have to be determined by a fitting procedure.
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APPENDIX U
The influence of a change of origin

Suppose the tails of an ideal signal can be approximated with sufficient
accuracy by:

(h3-)2

I(h3-) (U1)

which is the first term of the asymptotic series (5a). Changing the origin
from |l tol' with I'=1+ & Eq. (Ul) becomes

I(hg-148) = —2—— (U2)

(h3-1+8)2

The right-hand side of this equation can be expanded as an asymptotic

series:
(=] Cy,t
co k'+1
(hg-1+5)2 kz.=1 (hg-1)E+1

From Eq. (U3) it can be deduced (Vermeulen, 1988-0429a) that c'9=c9g,
c'g=-23c9, c'4=38202 etc. and

' =) k'(—S)kl_ 1 )
Ithg-1+8) = cg Y, Ak T (U4)
k'=1 3-

To obtain an equation for I(hg-l]) we substitute I'= 1 + § yielding

(=] kl(_s)k'_l

I(hS'l) = C9 T
ké]_ (h3~l—8)k +1

(U5)

Clearly the value of coefficient cg of the first term remains unchanged

and new terms compensate the change of origin:
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o9 kl(_s)k'_’l

co
—=— tC
(h3-18)2 = 2 b

I(h 'l) = 7
S o (hg-1-3)K+1

(U5)

When Eq. (U5) is reduced to a finite number of terms an error Al(hg-0) is
introduced. The first neglected term can be used as estimate of this
error. So reducing Eq. (U5) to the first term leads to an error of

-20

Al(h3-l) = co m (U6)

which is obviously systematic.
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APPENDIX V
Calculation of the Sine integral

The Sine integral has to be (re)calculated numerically because existing
tables and algorithms are not sufficiently accurate for the present
purpose. A very considerable loss of significant decimals occurs in the
recursive calculation of the o functions (see Appendix R) by applying Eq.
(R7). The minimum number of significant decimals in Si(zn) and the o
functions should be sufficient to obtain an accuracy better than 1% for all
o values.

For the Sine integral the following convergent series expansion exists
(Abramowitz & Stegun, 1968, p 232):

, < (- DlEn)2ka
Si(en) = l_zo CHDEED] (Vi)

Eq. (V1) seems to be an easily computable series. For values of the
product nn less than 1 the absolute values of subsequent terms decreases
and the value of Si(rn) can be obtained by direct summing until the
desired accuracy is reached. However, in the present case the values of
the product nn are greater than 1 -because n is a whole number- and the
infinite series is still convergent, but it starts with terms that strongly
increase in absolute value. The largest terms are many orders of
magnitude larger than the value of Si(nn) which is about n/2. This will
cause loss of significant decimals after the decimal point, because only a
restricted number of digits are available for describing each term.

For large values of the product nn there also exists an asymptotic series
expansion of the Sine integral (Abramowitz & Stegun, 1968, p 244):

N
Sifan) = 5 - (mll) [1-(

21 41 ]

)2 + )4—... (V2)

nn

This series is divergent. However, it is suitable for numerical calculation
(Erdélyi, 1956) because the series starts convergently. The best
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approximation of the sum is reached by summing only the "convergent"
terms i.e. until the term with the smallest value is reached.

Obviously at a certain value of the product nn the asymptotic series (V2)
has to be used instead of the series (V1) because it provides a higher
accuracy in numerical calculation of the Sine integral. Whether (V1) or
(V2) is used in the numerical calculation, is based on an estimation of the
number of significant decimals after the decimal point.

In the program the asymptotic series (V2) itself is not explicitly used for
calculating the Sine integral because the asymptotic series (V2) can be
combined with the equations (R4) and (R7) of Appendix R. This results in
an asymptotic series for the a functions. Then the o functions can be
calculated directly and the separate calculation of the Sine integral is not
necessary. The asymptotic series for the o functions have the same
properties as the one for the Sine integral. For more details see
Vermeulen (1988-1027a).
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APPENDIX W
Corrections of the DFT for truncation

Many computer routines for the fast calculation of the discrete Fourier
transform (see e.g.. Brigham, 1974) require a number of data equal to a
power of 2. Because the measured number of data is rarely equal to such a
number adding zeros is common practice to extend the number of data to
the required number. However, "jumps" in the extended data set are
introduced leading to an oscillatory distortion of the DFT. Adding dummy
values having more plausibility instead of zeros is suggested (e.g.
Bracewell, pp 374-376).

Adding data implies a change of period from NAs to N'As (As = sampling

distance in "measurement" space, N'=KN with K>1) which leads to a

1 1
h f th ling dist in Fourier s e fi t . Th
change o e sampling distance i urier space from NAs (o) N'As e

smaller sampling distance suggest more detail, but in fact only N of the N'

samples are genuine.

The influence of adding separately tail "length" and tail information on
the calculated discrete Fourier transform (DFT) is considered in Fig. W1
(Cf. Vermeulen 1988-0923a). This makes it possible to show the
differences between the two procedures for calculating the corrected
DFT.

Procedure 1 Adding tails
Tail information and tail "length" are both added to the truncated signal.
The corrected signal has a period of NAs and sampling distance of the

1
corrected DFT is ,
N'As

Procedure 2 Correction of the distorted DFT
Values of the truncated signal is calculated and corrected for lost tail
information using Egs. 7abcd. Now the period of NAs is unchanged

because no tail "length" is added and the corrected DFT keeps a sampling

1
distance —.
NAs
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1
The ch f ling dist f) t
e change of sampling distance from s ©° KNAs

be achieved with an interpolation procedure (see Fig. W.1) For K=2 the
midpoint sine interpolation formula can be used (see Bracewell, 1978 p.
427). Derivation of analogous interpolation formulae for other integer

values of K must be possible, but this has not yet been investigated
(Vermeulen, 1988-0725a).

can in principle also

54







*

REFERENCES

Abrawowitz, M. & Stegun. [.A. (1968)
Handbook of Mathematical Functions
New York: Dover Publications

Bracewell, R.N. (1978)
The Fourier Transform and its Applications.
Tokyo: McGraw-Hill Kogakusha

Bringham, E.O. (1962)
The Fast Fourier Transform
Englewood Cliffs, N.J.: Prentice-Hall

Bromwich, T.J. (1926)
Introduction to the Theory of Infinite series
London: Macmillan Co.

Cheary, RW. & Grimes, NW. (1972)
The Application of Truncated Integrated Intensity to the Analysis of
Broadened X-ray Diffraction Lines.
J. Appl. Cryst. (5). 57-63

Delhez, R., Keijser, Th. H. de & Mittemeijer, E.J. (1982)
Determination of Crystallite Size and Lattice Distortions through
X-ray Diffraction Line Profile Analysis.

Recipes, Methods and Comments
Fresenius Z. Anal. Chem. (312), 1-16

Delhez, R., Keijser, Th. H. de, Mittemeijer, E.J. & Langford, J.I. (1986)
Truncation in Diffraction Pattern Analysis.
I. Concept of a Diffraction Line Profile and its Range.
J. Appl. Cryst. (19). 459-466

Delhez, R., Keijser, Th.H. de, Mittemeijer, E.J. & Langford, J.I. (1988)
Size and Strain Parameters from Peak Profiles:

Sense and Nonsense
Aust. J. Phys. (41), 213-227

55







Erdélyi, A. (1956)
Asymptotic Expansions
New York: Dover Publications

Langford, J.I. (1982)
The Variance as a Measure of Line Broadening:
Corrections for Truncation, Curvature and Instrumental Effects.
J. Appl. Cryst. (15) 315-322

Press, W.H. Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. (1986)
Numerical Recipes
The Art of Scientific Computing
Cambridge: Cambridge University Press

Singleton, R.C. (1962)
An Algorithm for Computing the Mixed Radix Fast Fourier
Transform.
IEEE Trans. on Audio and Electroacoustics AU 17, 93-103

Thijsse, B.J. (1988a)
Curve Fitting
Internal paper
Delft Techn. Univ.

Thijsse, B.J. (1988b)
Private Communication

Vermeulen, A.C. (1988-1989)
Internal Reports, Delft Univ. Techn.

Warren, B.E. (1969)

X-ray Diffraction
Reading, Mass.: Addison Wesley

56







¥*

Wilkens, M. & Hartmann, R.J. (1963)
Zur Interpretation der Ergebnisse der Warren-Averbach-Analyse
von Debye-Scherrer-Linien.
Z. Metallk., (54), 676-682

* Wilson, A.J.C. (1962)
On Variance as a Measure of Line Broadening in Diffractometry.
I. General Theory and Small Particle Size.
Proc. Phys. Soc. Londen, (80), 286-294

*

Young, R.A., Gerdes, R.J., & Wilson, A.J.C. (1967)
Propagation of Some Systematic Errors in X-ray
Line Profile Analysis.

Acta Cryst. (22). 155-162

*

Zocchi, M. (1980)
An Improved Method for the Determination of Microstructural
Parameters by Diffraction-Profile Fourier Analysis
Acta Cryst. (A36), 162-170

57







INTERNAL REPORTS

Vermeulen, 1988-

scriptie Algemene oplossing voor het truncatieprobleem in de
Rontgendiffractie lijnprofielanalyse
A.C. Vermeulen, februari 1988

0221a De verandering van de maximale intensiteit bij de truncatie
variatie methode

0429a Invloed van foute oorsprong op machtreeks

0525a Fout door beperken reeks bij een asymmetrisch profiel Iy(s)

0530a Correctie van centroide

0602a Bepaling maximale intensiteit en integrale breedte m.b.v.
truncatievariatie

0602b Bepaling centroide m.b.v. truncatievariatie

0602c Halfwaardebreedte & asymmetrie

0614a Fitten op ag-verbrede lijnprofiel

0616a Keuzepunten
0616b og-strategieén versie 1
0617a  LP-factor meefitten

0622a R-factor
0622b Rg omschrijven naar 6-schaal

0705a De discrete Fourier getransformeerd van Iy(s) voor een
asymmetrisch profiel versie 2

0711a Verwijderen van ondergrond

0725a "Sinc-interpolation”

0726a Comparison of two methods for adding of tail information

0728a Poster 'Total' versus 'Component'

0810a De kristallietgrootte verdelingsfunctie van Cauchy-profiel

0811a Het Cauchy-profiel in de 'total' & 'component' benadering

0818a Correction of D version 3

0902a ag-verbrede lijnprofiel als asymptotische machtreeks op 6-
schaal versie 2

0902b Asymptotische machtreeks op 6-schaal

0923a Poster 3-d figuur

1004a De constante K

58







Vermeulen 1989-

0102a

0102b

0l116a

De asymptotische machtreeks in de 'total intensity distribution'-
benadering volgens het sommatieprincipe

Op zoek naar de asymptotische machtreeks in de 'total
intensity'-benadering

Description of the component line profiles and their theoretical
Fourier transforms version 2

59







