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SUMMARY 

A general description has been developed for the tails of signals which 

extend form - © o to + © o . To correct for the (inevatable) truncation of 

measured line profiles the asymptotic power series X r = 2 ^ (where cj 

are constants and x is the distance form the chosen origin) is used. The 

correction procedure works either i n real space or in Fourier space. The 

latter procedure adds corrections to the (distorted) discrete Fourier 

transform of the truncated signal yielding a corrected Fourier transform 

without the characteristic distortions. This makes further analysis of the 

Fourier transform possible i n terms of size (distribution) and strains. 

The corrections proposed for truncation takes into account: 

(I) wrong estimation of background ("horizontal" truncation) 

(II) lost tails due to truncation ("vertical" truncation). 

A computer program has been written for developing and testing the 

procedure. 

The Cauchy, Gaussian and two size-broadened line profiles 

-signals related to the field of X-ray diffraction- are simulated and used as 

test cases. 

The results are quite satisfactory for the Cauchy line profile and the two 

size-broadened line profiles. Typical errors of the average column length 

(crystallite size) of 50-100 % without correction are reduced to I - 1 0 % 

after applying the correction. Negative fractions -physically Impossible- of 

column lengths in the column length distribution no longer occur. 
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1. INTRODUCTION 

It is known that truncation of signals heavily distorts their Fourier 

transforms. The interpretation of these Fourier transforms wi l l yield 

unreliable data. Unfortunately i n many practical cases truncation is 

unavoidable due to overlap wi th other signals or the signal continues 

outside the possible measurement range. Then i t is useful to estimate the 

lost part of the signal or the mutilation of its Fourier transform. 

Other ways to treat truncated signals exist, e.g. the use of window 

functions to smooth the discontinuity of the signal caused by truncation. 

This kind of smoothing implies changing of the shape of the signal, but i t 

is often applied for want of something better. Fitting some kind of model 

function through the truncated signal or through its distorted Fourier 

transform is only applicable i f the model function is physically realistic. 

The more general method presented here leaves the truncated signal 

unchanged by predicting only the behaviour of the signal tails lost by 

truncation. If the Fourier transform exists the ideal signal and its tails can 

be described by an infinite asymptotic power series derived f rom the 

Fourier integral of an ideal signal (see chapter 2). 

In practice the observed signal contains the ideal signal wi th background 

and noise. Because the observed signal is a sampled signal only a 

restricted number of terms of the asymptotic power series and the 

background can be estimated by fitting such series to measured parts of 

the observed signal tails (see chapter 4). 

An estimation of the background can be made and the predicted tails can 

be added to the truncated signal upto a predetermined range as 

discussed in section 4.5. This Implies that the correction is performed i n 

real space (procedure 1). Alternatively the corrections for the 

contributions of the predicted tails and for the estimated background can 

be added to the distorted Fourier transform of the truncated signal 

(procedure 2) (see chapter 2). The differences between the two 

procedures mentioned are discussed in detail i n section 4.5. 
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Procedure 1 has a disadvantage: the increase of computer time and 

memory storage needed for the calculation of the Fourier transform. 

However, the rather complicated calculation of the corrections of the 

Fourier transform needed in procedure 2 can be avoided. This procedure 

has the advantage that the distorted and corrected Fourier transform are 

both available; a disadvantage is the large sampling distance in Fourier 

space. 

In X-ray diffraction the problem of truncation of line profiles has been 

discussed and treated by various authors. E.g. Wilkens & Hartmann 

(1963) estimated the hook effect caused by truncation by assuming a l / x 2 

behaviour of the profile tails. Young. Gerdes & Wilson (1967) studied the 

propagation of the truncation error i n the Fourier coefficients. Zocchi 

(1980) suggested the use of the first derivative of the cosine transform 

modified by an oscillatory factor. Langford (1982) proposed a truncation 

correction wi thin the variance method of analysis also based on the 1 / x 2 

behaviour of the profile tails. 

The basic concept of a diffraction line profile and its range have been 

discussed by Delhez, Keijser, Mittemeijer & Langford (1986), If a 

truncated line profile is interpreted as a truncated 'component line 

profile' (as defined i n the paper mentioned) procedure 2 can be applied 

as is shown by examples of simulated line profiles (chapter 6), For a 

truncated 'total intensity distribution' procedure 1 is possible. In this 

report only procedure 2 is studied and tested wi th simulated 'component 

line profiles'. 
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Fig. 2 . 1 Schematic picture of a) an ideal signal fi(x) as a continuous function of x b) the 
ideal signal fi(x) with background fbg(x) c) the sampled ideal signal with 
background d) the observed signal as sampled signal which contains the ideal 
signal with background and noise. 
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2 . MATHEMATICAL BASIS 

An ideal signal f [{x) is defined here as a continuous function of x (see Fig. 

2.1a). Besides this ideal signal a continuous background contribution 
fbg(x) can be present (see Fig. 2.1b). Because of the necessity of 

numerical calculations and for requirements of the observation technique 

the ideal signal wi th background is sampled at usually equidistant values 

(see Fig. 2. Ic). However i n practice measurements always include 'noise'. 

The observed signal fobs^^) (see Fig. 2. Id) is therefore a sampled signal 

which contains the ideal signal wi th background and noise. 

For the estimation of the effect of truncation of a signal the f irst condition 

is a general mathematical description for an ideal signal component 

including its tails which extend to - o o and + ©o. An example of such a 

signal component Icom as a function of is given i n Fig.2.2. The 

treatment given below does not Imply the condition that the signal has 

only positive ordinate values. 

The Fourier transform pair belonging to the signal component is given by 
oo 

Icom (hS-O = K ƒ Fcom(t) exp[27Elt(h3-Q] dt (la) 
- oo 

oo 

com (t) = ^ J Icom(h3-I) exp[-27tit(h3-Q] d{h3-0 (lb) 

where Icom (^3-0 = Intensity of the signal as a function of the 

dimensionless variable h3 wi th reference point I FcomW = Fourier 

transform of signal component, t = dimensionless Fourier space variable 

and K Is a proportionally constant. 

Real Space 

When Icom(h3-0 is a real function and i f the Fourier transform FcomW 

exists Eq.(la) can be writ ten as : 

Icom (h3-0 = 2K ƒ d expI27clt(h3-01 (2) 
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Fig. 2 . 2 Schematic picture of an ideal signal component 1^0^ as a function of a 
dimensionless variable h3 with reference point /. No background present. 

Fig. 2 .3 Schematic picture of the ideal signal!{. The lost part of the signal Ijost is shaded. 

Atj- is half of the truncation range. 
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With 

Fcom(t) = Acorn (t) + iBcomW (3) 

and the conditions that AcomW. BcomW and all their derivatives A(n)(t) 

and B(ri)(t) are zero for I t l -> ©o the following asymptotic power series 

can be derived for Ih3- [ l>0 by repeated integration by parts (see 

Erdélyl ,1956 for an extensive discussion): 

r n - . n 7K r " - A ( I ) ( 0 ) A(3)(O) A(5) (O) 
Icom (h3-9 - 2K \^^^2^^^_i^2 [2n)Hh^-l)^ " (2;t)6(h3-Q6 

^OK r B(2)(0) B(4)(0) 
W ) 3 ( h 3 - [ ) 3 - (27c)5(h34)5 ^ • ' ' 

Cheary & Grimes (1972) already used this type of formula in the field of 

X-ray diffraction. 

In compact notation: 

I c o m ( h 3 - n (h3- [ )2k + J . ^ (h3-[)2m-Hl 

where 

and 

(5a) 

, A ( 2 k - l)(o) 
C 2 k = 2 K ( - 1 ) ^ ^ . . ^ . J I .k = 1.2 .3,. . . (5b) 

C 2 m - H = 2 K ( - 1 ) « ^ + 1 ^^l^^^^^^i ,m = 1.2 .3.. . . (5c) 

The even coefficients C 2 k describe the symmetric part and the odd 

coefficients C 2 m + 1 describe the asymmetric part of the signal 

component wi th respect to reference point I . 

Truncation of the signal component and removal of estimated background 

wi l l cause a loss of a part of the signal (see Fig 2.3). The truncation points 

14-Atr and I - Atr are chosen symmetrically wi th respect to the 

reference point I . 
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Because Eqs.(5abc) describe the complete signal component they can also 

be used for the description of the tails of the signal lost by truncation: 

Ilost(h3-Ö= S £ ( K ^ I S H T T • ' h 3 - n > A t r {6a) 
k = l m = l 

wi th 2 Atr = truncation range. 

In practice usually background is estimated by interpolating linearly 

between the intensities at both truncation points. This overestimates the 

background compared to the estimate using the procedure proposed 

here by the cross-hatched area of Fig 2.3. This can be described with: 

I lost(h3-0= £ + (h3-0 I / ^ W l . l h 3 - l l < A t r (6b) 
k = l ^ t r m = l ^ t r 

Fourier space 

By calculating the Fourier transform of Eqs. (6ab) a general formula for 

the Fourier transform of the lost parts of the signal component for 

discrete values of t and for integer values of t' Is obtained (see Appendix 

Q): 

2 ^ o 2 k 
Alost(t) = 0 + K I , 2 k - 1 «k(t ' ) (7a) 

k = l ^ t r 

Blost(O) = 0 + 0 (7d) 

where t' = 2Atr. t and ak(t') or ani(t') are tabulated functions as defined in 

Appendix R and depend only on k or m and t'. not on A^r-
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The first terms on the right-hand side of Eqs. (7abcd) are the 

contributions of the part of the signal component lost due to wrong 

estimation of background and the second terms are the contributions of 

the lost tails of the signal. In practice we have to change f rom the 

continuous Fourier transform to the discrete Fourier transform (DFT), 

because of the necessity of numerical calculations .Then the following 

relationship holds: 

t = r f - (8) 
2Atr 

Here t' takes integer values only. Eq. (8) implies that the range of the 

discrete Fourier transformation is taken equal to the truncation range 

2Atr. 
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Alt') 

n loooif e f f e c t 

Fig. 3.1 Scliematic picture of normalized Fourier coefficient curve with a negative initial 

curvature (hook effect). 
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3. EFFECTS OF TRUNCATION 

In the following the effects of truncation wi l l be discussed for the field of 

X-ray diffraction pattern analysis. It is obvious that the truncation problem 

occurs i n many research field and i t is in particular important when using 

Fourier analysis. 

In X-ray diffraction the words 'line profile' or 'profile' are commonly used 

instead of the word 'signal'. The symbols used in chapter 2 have a more 

specific meaning i n X-ray diffraction. The function Icom(h3"0 Is a 

component of the total intensity distribution in reciprocal space along a 

[OOZ] direction, where the dimensionless variable h3 is defined obeying 

2a3 sine 
h3 = \ (9) 

wi th a3 = the lattice parameter in the [OOQ direction, 6 = half of 

diffraction angle 20 and X = X-ray wavelength (Delhez, Keijser, 

Mittemeijer & Langford, 1986). 

Truncation introduces errors In profile characteristics including the 

Fourier coefficients. These errors are propagated to the size- and strain 

parameters derived f rom the Fourier coefficients (e.g. Delhez, Keijser, 

Mittemeijer & Langford, 1988). 

In experimental Fourier coefficient curves often a negative ini t ial 

curvature Is observed (see Fig 3.1). This so-called hook effect causes a 

serious error i n average column length and physically Impossible negative 

fractions of column length i n the column length distribution occur (e.g. 

Young, Gerdes & Wilson, 1967). 

Truncation is not the only possible cause of the hook effect, It can be also 

due to strain present i n the sample. Existing simple correction methods 

for the observed hook effect are therefore dangerous (Delhez, Keijser & 

Mittemeijer. 1982). 

For the case of pure size broadening a l / (h3-0^ behaviour of the profile 

tails can be deduced. Assuming this behaviour Wilkens & Hartmann 

(1963) estimated the hook effect caused by truncation and found a good 

agreement between observed and calculated hook effect in the case 
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where size broadening is dominant, but the agreement was less 

satisfactory in the case of both size and strain broadening. 

Delhez, Keijser. Mittemeijer & Langford (1986) defined a 'total intensity 

distribution' and a 'component line profile' wi th respectively l/sin^Tchs 

and l / (h3-02 behaviour of the profile tails for the case of pure size 

broadening (Appendix T). A description of the effect of truncation on the 

determination of the average column length is deduced i n the paper 

mentioned. 
However, the l / (h3-02 behaviour of the tails i n the 'component line 

profile' approach is only the f irst term of the asymtotic power series Eq. 
(4). Probably a similar statement can be made for the l/sln27ch3 behaviour 

of the tails i n the 'total intensity distribution' approach, but a direct 

derivation of the analogue of the asymptotic power series has not been 

found yet. 

Related to the truncation problem in X-ray diffraction pattern analysis the 

following new ideas are presented: 

- Eq.(4) holds for the complete profile and therefore for 

both tails at the same time 

- describe the profile tails wi th as many terms of Eq. (4) as 

can be calculated wi th sufficient accuracy 

- the odd terms enable a description of the asymmetric 

part of the profile 

- the origin can i n principle be chosen arbitrarily 

- the limitation to profiles wi th only size broadening can 

be dropped. 
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, C 0 R K E C n O N FOR TRUNCATION m P K A C r l C E 

4.1 Estfmatton of coejflcients C2k -nd C 2 m . l 

„ u t i J i o n ot its discrete ^"^^^^^^c^S^^^^-^^ ^ ^ k and C 2 m . l l " . m= 
These descriptions are exact when ,rfonnaUon for 
1 2 3 . . . . - ) o f E q a 5 a ) arc known i n pnncip^ ^^^ „ ^ ^ , 

^ . c : — , these eoemcients . — ^ ^ ^ ^ ^ , e a l 

Ideal Signal. However, m P ~ ' ^ ^ ^ ^ ^ „ 3 , a,e observed sigrral is a 

:-̂ eCr̂ r̂ar.r̂ ^̂  ol coCelcnts c . . . d . . . 

be estimated wi th sufficient . , 3 i ng the f^ure-of-



f ^ — ^ M ranc 

Schematicpictureofthemeasuredpartsa-bandcdofth • , 
fitting. ^ °f *e signal tails used for 

An,tr = truncation point at negative side of signal 

Ap,tr - truncation point at positive side of signal. 



Method 1 Direct fitting to tiie observed signal 

A restricted number of terms of the asymptotic series (5a) and the 

background are estimated wi th a least-squares f i t t ing procedure by fit t ing: 

N C O I , M p 
. f l t (h3-0 = CO . c i ( h 3 - « . £ ^ ^ . ^ j - ^ , 10 , 

to measured parts at the signal tails (see Fig. 4.1). 

Because Eq. (5a) holds for the ideal signal as a whole, Eq, (10) can be 

fitted to both sides of the observed signal simultaneously. 

Method 2 Variation of truncation range 

From the observed signal data the integral Intensity can be calculated as a 

function of the truncation range. 

The Integral intensity of the observed signal contains a background 
contribution of 2cqA\y when assuming the background to be linear (see 

Appendix S). A limited number of terms of the asymptotic series (7b) 

wi th the background contribution are estimated wi th a least-squares 

f i t t ing procedure by fi t t ing: 

N 

A*obs(A'tr) = A*i - 2 X " " I k - l + ^CoA'tr ( 1 1 ) 
k = l ^ ( A ' t r ) ^ ^ 

to the sampled Integral Intensity A*obs(A'tr) (see Fig. 4 .2) . This formula is 

deduced in Appendix S, With Eq. (11) only the even coefficients C 2 k and 

CQ can be estimated. The odd coefficients C 2 m + 1 and c i can be 

estimated wi th an analogous formula for the first moment (see Appendix 

S), 

Also the maximum intensity or the integral breadth can be used to 

determine the coefficients C 2 k and C 2 m + 1 (see Appendix S for 

references). This method is closely related to the truncation correction of 

the well-known variance method of analysis i n X-ray powder diffraction 

(Wilson. 1962). The truncation correction as discussed by Langford 

(1982) contains only one term of the asymptotic series and is applied in 

combination wi th removal of the estimated background. Eq. (11) shows 

that the preceding removal of the background is not necessary. 
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Obviously both methods are equivalent, because the same observed data 

points are used for determining the coefficients C 2 k and C 2 m + 1 - With 

method 1 both symmetry and asymmetry at the signal and further 

background level and slope can be estimated by fi t t ing Just one equation. 

With method 2 symmetry and asymmetry are sep crated. The even 

coefficients C 2 k and CQ have to be estimated wi th e.g the integral 

intensity and the odd coefficients C 2 m + 1 and c i wi th e.g. the centroid. 

Disadvantage of the f i t t ing procedure of both methods is that the basis 

functions are non-orthogonal i.e. the basis functions are too much alike. 

Variance and covariance of the estimated coefficients wi l l Increase 

drastically wi th increasing number of coefficients to be estimated. 

The set of even basis functions is however orthogonal wi th respect to the 

set of odd functions. So symmetry and asymmetry contributions are well 

separable. Other factors l imiting the number of coefficients estimated wi l l 

be discussed in the next section. 

In the following the direct f i t t ing method (method 1) Is adopted as 

standard procedure for estimation of background and coefficients C 2 k 

and C2m-f-1 • The truncation variation method (method 2) wi l l not be 

treated further. 

4,2. Maximum number of estimated coefficients C2k and C2m+1 

In least-squares f i t t ing the number of estimated parameters must always 

be less than the number of data points. So the maximum number of 

coefficients C 2 k and C 2 m + 1 of Eq, (5a) which can be estimated depends 

on the number of data points present in the fitranges (see Fig, 4,1), It is 

clear that a large truncation range and a small sampling distance both 

increase the number of data points. The fitranges should be chosen as 

large as possible. The outer boundaries of the fitranges a and d (see Fig, 

4,1) can be taken equal to the truncation points - A ^ . t r and Ap tr- The 

inner boundaries b and c (see Fig, 4,1) should be optimized, because more 

terms of the asymptotic series are needed for an accurate description (Cf, 

Appendix U) of data points near the origin where the asymptotic series 

diverges. 

Increasing the accuracy of the observed data points also increases the 

number of parameters that can be calculated with sufficient accuracy. In 
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X-ray diffraction a higher accuracy can be achieved by Increasing the 

counting time. Because in practice the total measurement time is limited 

a special counting strategy (e.g. longer counting time for the higher 

intensities) has to be adopted. This wi l l not be discussed further. 

4.3. Choice of origin and truncation points 

A symmetric truncation wi th respect to the origin must be achieved, 

because of the required calculation of the discrete Fourier transform and 

the correction for truncation. For optimum use of the measured data the 

origin should be chosen at the middle of the measurement range. 

However, this wi l l generally not be optimum choice for the least-squares 

fi t t ing procedure, because i t can be shown that a significant change i n the 

position of the origin leads to a change in the number of terms of the 

asymptotic series (5a) needed for a sufficiently accurate description of 

the signal tails (see Appendix U). Therefore the choice of the origin 

should be optimized wi th in the least-squares f i t t ing procedure. After 

finding the optimum origin and the estimation of the coefficients C 2 k and 

C 2 n i + 1 the truncation points are generally asymmetric w i t h respect to 

the origin (see Fig. 4.3). Because of the restriction of symmetric 

truncation for calculating the discrete Fourier transform and the 

correction for truncation, new truncation points A^j- and - A^r must be 

chosen. We have two possibilities (Cf. Fig. 4.3). 
Possibility 1 Clioice of A^r equal to the length of the shorter tail 

This implies further truncation causing a loss of information. 
Possibility 2 Choice of Atr equal to the length of tlie longer tail. 

This implies an extrapolation wi th Eq, (10). 

Possibility 1 is not to be preferred because of the loss of information. This 

wi l l result i n a sampling distance in Fourier space larger than for 

possibility 2 . Therefore possibility 2 is recommended. 
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U s 

Fig. 4.3 Schematic picture of asymmetric trancation 

a) with trancation points A^^^ and Ap̂ tr where lA^^tr' < ^^p,tr^' 

b) Afr chosen equal to A^ t̂r implying further trancation 

c) Afr chosen equal to Ap t̂j- implying extrapolation. 
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4.4 Removal of background 

Before evaluation of the signal, e.g. calculation of the Fourier transform, 

the estimated background has to be removed. If one of the methods 

described in section 4.1 is applied the background CQ + c^ (h3-0 is 

removed without causing "horizontal" truncation i.e. overestimation of the 

occurring background as discussed i n chapter 2. 

Therefore when applying Eqs (7abcd) for correcting the discrete Fourier 

transform for lost tails only the second terms on the right-hand side have 

to be used. It is remarked that the first terms on the right-hand side of 

Eqs. (7abcd) can be used for a "negative correction" to approximate the 

situation of both overestimated background and lost tails due to 

truncation (Vermeulen, 1988-0711 a). 

4.5 Calculation of the corrected DFT 

Two different procedures for calculating the corrected discrete Fourier 

transform (DFT) wi l l be discussed. For both procedures the estimated 

background has to be removed after the tail f i t t ing procedure as 

discussed i n section 4.4. 

Procedure 1 Adding tails 

The predicted tails are added to the truncated signal upto the 

predetermined range ( i - l / 2 , i + l / 2 ) as discussed for X-ray profile analysis 

in Appendix T. The range of the corrected signal wi l l be larger by a factor 

5 - 5 0 than the range of the truncated signal. This wi l l result i n a DFT with 

a smaller sampling distance in Fourier space and wi th less distortion than 

for the DFT of the truncated signal (Vermeulen. 1988-0726a, 0923a, 

Appendix W). 

However, because of the long tails added a considerable increase in the 

number of data occurs leading to an Increase in computation time and 

memory usage needed for calculation and storage of the DFT. This aspect 

has not been studied yet. 

Procedure 2 Correction of the distorted DFT 

The discrete Fourier transform of the truncated signal is calculated and 

corrected for lost tails. The mathematics of the correction for lost tails is 

discussed in chapter 2; the second terms on the right-hand side of the 

15 





Eqs. (7abcd) can be used for correcting the distorted DFT (see also 

section 4.4). Because the range of the signal is unchanged this wi l l result 

i n a DFT with a relatively large sampling distance in Fourier space but 

wi th only a little distortion remaining (Vermeulen, 1988-0726a, 0923a, 

Appendix W). This procedure is correct for signals wi th tails extending to 

- oo and + oo. The computer time and memory usage needed for 

calculating the corrections are negligible provided that a table wi th the a-

functions is available. These functions are very difficult to calculate (see 

Appendix R). 
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5. BRIEF DESCRIPTION OF THE PROGRAM 

For the application of the method explained in the previous chapters a 

computer program -written i n Fortran-77 and provisionally called MAGIC-

has been developed. The five main stages of the program wi l l be discussed 

shortly (see Fig. 5.1). 

Stage 1 Generation of simulated diffraction data and determination of tlie 

lost part of the profile. 

In accordance wi th the previous chapters all available profiles are of the 

'component line profile' type which implies that a profile extends form 

- oo to + oo (Cf Appendix T). The profile functions used describe the size 

broadening i n X-ray diffraction. A linear background is added to the 

calculated profile and the effect of counting statistics is simulated. Details 

of the calculation of the profile data, background and counting statistics 

are discussed in Appendix G. 

Then an origin for the tail f i t t ing procedure is chosen and the generated 

profile is truncated f rom -A^r to Atr (see section 4.3). The origin chosen 

automatically becomes the origin for the discrete Fourier transformation 

and 2Atr becomes the range of the discrete Fourier transformation. 

Moreover symmetical truncation is required for the application of Eqs. 

7abed to correct the DFT for truncation. 

For simplicity of programming the f i t t ing ranges at the extremeties of the 

simulated profile are chosen to be of equal length and the ranges are 

therefore symmetically wi th respect to the origin chosen. 

With the least-squares fi t t ing procedure discussed i n section 4.1 Eq. 

(10) is fitted to the Intensity data in the ranges selected. This implies the 

calculation of a goodness-of-fit parameter along wi th the estimation of the 

coefficients C 2 k and C2ni+1 and background level and slope (Cf stage 3). 

Standard deviations of the intensity data are used for the calculation of 

and of the goodness-of-fit (Cf Appendix K). These standard deviations are 

estimated as the square root of the number of counts (Cf section 4.1). 
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stage 2 Calculation of the corrections for the lost part of the profile to be 

added to the DFT. 

The corrections of the DFT for the lost part of the profile are calculated 

according to Eqs. 7abcd using the a-functions as defined in Appendix R. 

Because these functions are problem-independent (i.e. independent of the 
truncation point Atr) they have to be calculated only once. 

The corrections are split into two contributions (1) the corrections of the 

DFT for the lost part of the profile due to overestimation of the 

background ("horizontal" truncation) and (ii) the corrections for tails lost 

due to truncation ("vertical" truncation). These contributions are 

described by the first and second terms on the right-hand sides of Eqs. 

(7abcd) respectively. 

Stage 3 Removal of the background 

The estimation of the background is made in the f i t t ing procedure of stage 

1, This way of removing the background implies that no overestimation of 

the background ("horizontal" truncation) occurs (Cf section 4.4). 

Stage 4 Discrete Fourier transformation of the truncated profile and 

calculation of the corrected DFT. 

For the fast calculation of the DFT a so-called mixed-radix routine is used 

(Singleton, 1969). The calculated DFT (i.e. of the only vertically truncated 

profile) is corrected by adding the corrections calculated in stage 2. Only 

the corrections for tails lost due to truncation ("vertical" truncation) have 

to be added (see stage 3). 

I t is of interest to compare e.g. the average column length obtained from 

(a) the DFT calculated using the present method 

(b) the analytical Fourier transform 

(c) the DFT calculated wi th the usual way of removing the background (i.e. 

subtracting of a straight line background between the profile extremeties). 

The values of the anal3rtlcal Fourier transform of the simulated line profile 

are calculated at the same t'-values as dictated by the calculated DFT (see 

Appendix G). 
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In case (c) the background Is taken too high ("horizontal" tmncation). The 

contribution to the DFT caused by this overestimation of the background 

(cross-hatched area in Fig. 2.3) is calculated in stage 2. By subtracting this 

contribution from the DFT of the only vertically truncated profile the DFT 

of case (c) can be estimated (Cf. Eq. 7 and the text below it). 

Stage 5 Quantities obtained from tfie DFTs 

The three DFT's mentioned above and their moduli are used for the 

calculation of the average column length and the column length 

distribution as discussed i n Appendix H. 
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Fig. 6.1 Typical example of the simulated intensity data (squares) and fitted tails (solid line). 
Only the intensity data in the fit ranges (only in this figure: I2wl < (hyl) < 16wl) are 

shown. Cauchy line profile with linear background. Fitted numbers of even terms 

(N) and odd terms (M) of the asymptotic series: (N, M) = 2,1. 



6. TEST OF THE PROCEDURE 

The method as described in the previous chapters is tested wi th the 

program MAGIC i n three steps. First i t is tested i f the %^ f i t t ing procedure 

yields the correct parameter values wi th simple profiles for which the 

asymptotic series (c2k"values) and the Fourier transform are known 

analytically. The next step is to test the method wi th complex profiles for 

which the asymptotic series (C2k-values) is not known, but the Fourier 

transform and physical characteristics are calculable. In this step also the 

effect of counting statistics is studied using 10 different simulations. The 

third step tests the use of the goodness-of-fit parameters Q ("average" 

misfit) and R ("systematic misfit") for the optimization of the f i t procedure 

to f ind the best model (i.e. the appropriate number of terms of the 

asymptotic series), the best origin position and the 'best' inner boundary 

of the f i t range. 

The parameter values given i n Table 1 are used for all simulated intensity 

data i n the experiments discussed below. For a typical example of the 

simulated intensity data and fitted tails see Fig. 6.1. In all experiments the 

background CQ + c j (h3-0 is fitted simultaneously wi th the asymptotic 

series. 

Intensity 

profi le 
Kha-O 

counts at top 10000 

half width at half maximum (w) 1.0 w 

sampling distance 0.1 w 

Background 

CQ + c i (h3- l ) 

level [counts at top] 

slope [counts/w] 
«̂ 0 
Cl 

100 

2.0 

Table 1 Parameters values applied for simulated intensity data. These values are used 
for all profile functions: Cauchy, Gaussian and the tv̂ 'o size-broadened profiles 
(Cf Appendix G). 
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step 1 Test with profiles for which the asymptotic series and the Fow ler 

transform are known analytically 

A Cauchy function line profile cannot be interpreted as a size-broadened 

profile, because the physical interpretation of the column length 

distribution function pjyj^ of these profiles is not clear. However, a Cauchy 

profile provides a very useful test, because the DFT, the average area-

weighted column length <N3>a, the column length distribution function 

pjvjg and the coefficients C 2 k of the asymptotic series, are all known. 

Numerical data for the simulations performed are explained i n Appendix 

G. 

The simulations show that for large (ha-Q-values only the f irst term of the 

asymptotic series (5a) wi l l describe the tails of the profile sufficiently 

accurate (see I A^r I = 5.0 ...15.0 in Table 2) as expected. More terms are 

needed for lower (ha-Q-values (see Table 3) because (1) i n this (Cauchy) 

case the ^/(ha-Q^ behaviour suffices only for f i t t ing ranges impractically 

far f rom the origin and (ii) the counting statistics wi l l mask the behaviour 

of the tails (see I Atr I = 17.5 and 20.0 in Table 2). 

I Atr I 5.0 w 7.5 w 10.0 w 12.5 w 15.0 w 17.5 w 20.0 w 

C 2 7292 9267 9199 9917 10778 9167 12452 

Ac2 48 200 475 928 1595 2512 3713 

<Na>a,cor 149.8 125.1 120.1 113.2 106.3 112.4 96.6 

<Na>a,th 134.7 122.4 116.5 113.1 106.3 109.2 108.1 

Table 2 Fit results of Cauchy Une profile with different truncation point \A^\ and with 
fixed length of fit ranges (3.5 w) at both sides of the profile. The theoretical 
value of coefficient C2 is 1(X)00. Ac2 is the standard deviation of fitted coefficient 
02- Only the first term of the asymptotic series and a linear background is fitted 
(N,M = 1,0; Cf Table 3). <N3>a,cor is the average column length as calculated 
with the corrected DFT, <N3>â th is the average column length as calculated 
with the theoretical Fourier transform with the same sampUng distance as the 
DFT. 
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If the f i t procedure gives accurate values of the C2k-values the tails are 

described correctly and the corrected DFT wi l l yield reliable values for the 

average column length <N3>a,cor (see Table 3). For this (Cauchy) case the 

accuracy of the coefficient C2 is of most importance and can only be 

reached when more terms of the asymptotic series are fitted. 

The order of magnitude of the corrections for truncation is (largest first) 

(1) correction for wrong estimation of background ("horizontal" truncation) 

(ii) correction for lost tails due to truncation ("vertical" truncation) wi th 

only C 2 / ( h 3 - 0 ^ (iii) correction for lost tails wi th higher order terms of the 

asymptotic series. This is shown by the average column lengths <N3>a h 

+ V' <N3>a.v and <N3>a,cor in comparison wi th <N3>a,th in Table 3. The 

value of <N3>a,th is not equal to <N3>a of the ideal profile (100 for this 

Cauchy case), because of the relatively coarse sampling in Fourier space. 

(N.M) (1,0) (2.1) (3,2) (4,3) (5,4) 

Co 232.6 116.1 89.8 74.3 78.5 

C2 7292 9421 10100 10614 10443 

C4 - -5791 -9982 -15016 -12667 

C6 - - 6697 24532 10986 

C8 - - - -20308 13621 

ClO - - - - -30416 

AC2 48 160 423 1021 2373 

<N3>a.h+v 243.0 231.6 230.2 229.7 229.7 

<N3>a,v 184.0 170.0 167.2 165.7 166.1 

<N3>a,cor 149.8 136.7 134.0 132.2 132.7 

<N3>a,th 134.7 

Table 3 Fit results of Cauchy line profile with different numbers of even terms (N) and 
odd terms (M) of the asymptotic series. Truncation point and inner 
boundary of fit range are fixed at 5.0 w and 1.5 w respectively. The theoretical 
C2k-values are: CQ = 100, C2 = 10000,04 = -10000, = 10000, eg = -10000 
and CIO = 10000. <N3>â vH-h is the average column length of the "horizontal" 
and "vertical" truncated profile, <N3>â v is the average column length of the 
only "vertical" truncated profile. 
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The Gaussian line profile cannot be interpreted as a size-broadened 

profile, because the column length distribution function Pf^^ does not 

exist. As a consequence, the average column length <N3>a does not exist 

either. Here <N3>a is only used as a scaling factor, because <N3>a is 

related to the breadth of the profile. Because theoretically all coefficients 

are zero, problems are expected in f i t t ing the asymptotic series. This is 

shown in Table 4. Note that negative values of the background level C q or 

the coefficients C 2 of the first term of the asymptotic series are impossible 

i f the profile represents an X-ray diffraction line profile. 

(N.M) (1,0) (2,1) (3.2) (4.3) (5.4) 

Co - 1 0 1 157 212 131 68 

C 2 2864 -2047 -3498 -745 1899 

Table 4 Values of Cq and C2 for a Gaussian line profile with different numbers of 
even terms (N) and odd terms (M) of the asymptotic series. Truncation 
point Ajj. and inner boundary of fit range are fixed at 5.0 w and 1.5 w 
respectively .The level of the background (cq) should be 100 (see Table 1) 
and the value of C2 0. 
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6.2 Column length distribution of (a) Cauchy line profile (b) size-broadened line profile 
with <N3>a = 42.Dots: calculated from the sampled theoretical transform. 

6.3 Column length distribution of size broadened line profile with <N3>a = 210. Dots: 

calculated from the sampled theoretical Fourier transform. 
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step 2 Test with profiles for which the asymptotic series is not Jcnown, 

but the Fourier transform and physical characteristics are calculable. 

Two size broadened profiles wi th different column length distribution 

have been used. The column length distribution of the profile wi th average 

area-weighted column length <N3>a = 42 resembles the shape of the 

distribution of the Cauchy profile. The difference between these two 

distributions for small column length <N3>a is negligible, because of the 

coarse sampling (see Fig. 6.2). It is therefore expected that the results for 

these two profiles show only small differences (see Table 5). The column 

length distribution of the size broadened profile wi th average column 

length <N3>a = 210 is not comparable wi th the distribution of the Cauchy 

profile. However, serious problems like those for the Gaussian profile are 

not expected (see Fig. 6.3). 

(N,M) (1.0) (2,1) (3.2) (4.3) (5.4) 

C 2 7645 9883 10788 10815 8782 

A C 2 49 160 422 1021 2362 

<N3>a.cor 51.9 47.4 46.3 46.2 48.3 

<N3>a.th 48.6 

Table 5 Results of size-broadened profile (<N3>a = 42) with different numbers of even 
terms (N) and odd terms (M) of the asymptotic power series. Truncation point 

and inner boundary of fit range are fixed at 5.0 w and 1.5 w respectively. 
The theoretical value of C2 is not known. The value of <N3>â th is not equal to 
<N3>a = 42, because of the coarse sampling, in Fourier space. 
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6.4 Column length distribution of size-broadened profile (<N3>a = 210) (a) distorted 

due to truncation with average column length: <N3>a4ist = 320.7 (b)...(f) 

corrected with increasing numbers of even terms (N) and odd terms (M) of the 

asymptotic series (Cf Table 6). Dashed line: theoretical column length distribution 

(Cf Fig. 6.3). 
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The values obtained for the average column length shown in Table 6 are 

quite satisfactory when compared wi th the 'theoretical' value. The column 

length distributions calculated wi th the corrected DFT's show 

improvement on the column length distribution as calculated wi th the 

distorted DFT (see Fig. 6.4). With increasing numbers of even terms (N) 

and odd terms (M) of the asymptotic series the theoretical column length 

distribution (Cf. Fig. 6.3) is approximated more accurate. However, 

overcompensation occurs at (N,M) larger than (3,2). 

(N.M) (1.0) (2,1) (3,2) (4,3) (5,4) 

C 2 6533 5931 4588 3645 3271 ~ 

A C 2 43 135 351 844 1945 

<N3>a,cor 190.7 197.3 211.4 221.5 225.5 

<N3>a,th 212.5 

Table 6 Results of size-broadened profile (<N3>a = 210) with different numbers of 
even terms (N) and odd terms (M) of the asymptotic power series. Truncation 
point Afj. and inner boundary of fit range are fixed at 5.0 w and 1.5 w 
respectively. The theoretical value of C2 is not known. The value of <N3>a th 
is almost equal to <N3>a = 210, because "coarse" sampling in Fourier space 
has negligible effect for this column length distribution. 
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The effect of counting statistics on the value of the fitted coefficient C 2 is 

studied wi th 10 simulations (see Table 7). The mean value and the 

standard deviation are calculated. For (N,M) = (1.0) this standard deviation 

is comparable wi th Ac2 of the f i t t ing procedure. However, wi th increasing 

number of terms (N,M) of the asymptotic series both values increase, but 

Ac2 increases faster than the standard deviation of the 10 simulations. 

One can speculate that the non-orthogonality of the asymptotic series 

causes (i) the overcompensation reported for the column length 

distribution above and (ii) the difference of Ac2 and the standard deviation 

of the 10 simulations. Decrease of the number of degrees of freedom 

probably causes the increase of the standard deviation and Ac2. 

(N.M) (1,0) (2,1) (3.2) 

6540.7 6236.0 4402.3 
6442.7 6083.3 4500.6 
6503.7 5961.7 4306.6 
6459.3 6038.0 4700.0 
6530.2 6115.1 4144.7 
6463.7 6088.0 4429.3 
6516.6 6151.3 4389.1 
6550.9 5953.3 4379.5 
6459.6 6034.3 4047.6 
6533.3 5931.2 4587.9 

mean 6500.1 6059.2 4388.8 

St.dev. ± 40.1 + 95.7 +192.5 

AC2 42.8 135.7 353.3 

Table 7 Effect of counting statistics on fitted coefficient C2 of 10 simulations of the 
size-broadened profile (<N3>a = 210) with different numbers of even terms 
(N) and odd terms (M) of the asymptotic series. Typical values of Ac2 

(standard deviation calculated with the variance-covariance matrix of the %̂  
fitting procedure) are given in the last row. 
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step 3 Optimization of the fit. 

In chapter 4 i t has already been mentioned that the f i t can be optimized 

wi th respect to choice of origin, f i t ranges and number of terms of the 

asymptotic series. A criterion is required for finding the "best" f i t . The 

goodness-fo-fit parameters Q and R -briefly explained in Appendix K- can 

be used as a measure for the "average" and "systematic" misfit respectively. 

If both parameters exceed their threshold values, then the f i t is accepted, 

else another origin, f i t range or number of terms have to be chosen. 

The use of the goodness-of-fit parameters Q ("average" misfit) and R 

("systematic" misfit) is demonstrated first . 

The values and Interpretation of Q and R are given i n Table 8 for the 

experiments of Table 6 and Fig. 6.4 where the number of terms of the 

asymptotic series has been increased. The f i rs t f i t accepted (according to 

the goodness-of-fit parameters Q and R) is for (N,M = 3,2) which gives the 

best results for average column length (Cf. Table 6) and column length 

distribution (Cf. Fig. 6.4). 

(N.M) (1.0) (2,1) (3,2) (4.3) (5.4) 

9 <0.001 0.025 0.210 0.200 0.431 

questionable maybe believable believable believable 
acceptable 

R 0.793 1.007 1.120 1.224 1.345 

systematic no syst. lucky lucky lucky 

misf i t misf i t event event event 

f i t 

acceptable ? no no yes yes yes 

Table 8 Values and interpretation (Cf Appendix K) of the goodness-of-fit parameters 
Q ("average" misfit) and R (systematic misfit) belonging to the tests of Table 6 
and Fig. 6.4. 
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However, the subsequent fits show also acceptable goodness-of-fit 

parameters Q and R, but the results are less satisfactoiy. 

Overcompensation occurs: the corrected average column length and 

column length distribution approximate the ideal values wi th decreasing 

accuracy. Therefore i t seems advisable either to stop the increase of 

number of terms of the asymptotic series (N,M) at the first acceptable f i t 

or to add other checks to ensure convergence. 

The influence of the choice of the fit range is demonstrated in Table 9 by 

changing the inner boundary of the f i t range using a constant value of the 

outer boundary A^r = 5.0 w. Only fits wi th an inner boundaiy larger than or 

equal to 1.3 w are acceptable. For an inner boundary of 1.0 w an increase 

of number of terms to (N,M) = (4.3) gives also an acceptable f i t (see 

Table 10). 

inner 1.0 w 1.1 w 1.2 w 1.3 w 1.4 w 1.5 w 

boundary 

Q <0.001 0.013 0.096 0.147 0.258 0.210 

R 0.858 0.990 1.103 1.185 1.199 1.199 

f i t 

acceptable? no no no yes yes yes 

<N3>a,cor 195.5 199.3 204.1 207.4 212.3 211.4 

<N3>a,th 212.5 

Table 9 Results of goodness-of-fit parameters Q and R and average column length 
<N3>a of size-broadened profile (<N3>a = 210) with different inner boundary 
of fit range and fixed number of terms: (N,M) = (3,2). The outer boundary of 
fit range is equal to lA .̂ I = 5.0 w. 
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The influence of the choice of origin (Cf. Appendix U) is shown by a shift 

of the origin (see Table 11). The f i t wi th origin shift -0.2 w is not 

acceptable, but increase of number of terms to (N,M) = (4.3) gives an 

acceptable f i t as can be seen in Table 12. 

(N,M) (1.0) (2,1) (3,2) (4.3) 

Q <0.001 <0.001 <0.001 0.186 

R 0.263 0.502 0.858 1.172 

f i t 

acceptable? no no no yes 

<N3>a,cor 199.7 184.5 195.5 209.1 

<N3>a,th 

Table 10 Results of goodness-of-fit parameters Q and R and average column length 
<N3>a of size-broadened profile (<N3>a = 210) with different number of 
terms (N,M) of the asymptotic series and with fixed inner boundary of fit 
range: 1.0 w. The outer boundary of fit range is equal to lA ĵ-l = 5.0 w. 
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origin shif t -0.2 w -0.1 w 0 0.1 w 0.2 w 

Q 0.073 0.130 0.210 0.359 0.395 

R 1.117 1.161 1.199 1.054 1.037 
f i t 

acceptable? no yes yes yes yes 

<N3>a,cor 206.0 208.9 211.4 215.5 ~2~12TÏ 

<N3>a,th 212.5 

Table 11 Results of goodness-of-fit parameters Q and R and average column length 
<N3>a of size-broadened profile (<N3>a = 210) with different choice of origin 
and with fixed number of terms (N,M) = (3,2) of the asymptotic series. 

(N,M) (1.0) (2.1) (3,2) (4,3) 

9 <0.001 0.002 0.073 0.248 
R 0.201 0.924 1.117 1.25 

f i t 

acceptable? no no no yes 

<N3>a,cor 190.9 193.1 206.0 221.3 

<N3>a.th 212.5 

Table 12 Results of goodness-of fit parameters Q and R and average column length 
<N3>a of size-broadened profile (<N3>a = 210) with different number of 
terms (N,M) of the asymptotic series and with fixed choice of origin 
(shift = - 0.2 w). 
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7. CONCLUSIONS 

For many types of truncated signals extending f rom -oo to +00 i t holds 

that: 

I . For an accurate correction for truncation more than one term of the 

asymptotic power series ^ ^ (where ci are constants and x is 

the distance f rom the chosen origin of the signal) is required in 

general. 

I I . Both tails and the background can be estimated simultaneouslv using 

an appropriate least-squares f i t t ing procedure. 

These two main conclusions have a number of consequences. Below those 

that hold i n particular for the field of X-ray diffraction are given. 

Ia Because the asymptotic power series holds for the complete signal, 

It describes both tails at the same time. 

Ib The asymmetry of the signal is described by the odd terms. This 

implies that: 

(i) the origin can i n principle be chosen arbitrarily 

(11) the limitation to signals which have a 'centre' of symmetry 

(in X-ray diffraction e.g. size-broadened profiles) can be dropped. 

Ic The correction proposed for truncation takes into account: 

(i) wrong estimation of background level (and slope) ('horizontal' 

truncation) 

(ii) the intensity lost by truncation of the tails of the profile 

('vertical' truncation) using the asymptotic power series 

These contributions are of the same order of magnitude. The 

importance of the higher order (i>2) terms of the asymptotic power 

series becomes most clear when trying to determine the 

crystallite size (column length) distribution (Cf. Fig, 6.4). 

I d The discrete Fourier transform values of a truncated profile can be 

corrected using truncation-range independent a-functions (Cf, 

Chapter 2), 
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I la It is possible: 

(i) to test the compatibility of a model (in the present case the 

asymptotic power series plus a straight line) wi th 'measured' 

intensities (the measured parts of the tails of the line profile 

plus background) using the goodness-of-fit parameters Q 

('average' misfit) and R ('systematic' misfit), 

(i i) to f ind the model parameters and their error estimates. 

In this investigation a f i t t ing procedure is applied for these 

purposes. 

l i e The terms of the asymptotic series are non-orthogonal functions 

which means interdependence between the model parameters in 

the f i t t ing procedure. Only the set of even terms and the set of odd 

terms are orthogonal, allowing separation of symmetry and 

asymmetiy . 

I I I . From the tests of the method performed using simulated intensity 

data i t follows that: 

I l i a The values of the goodness-of-fit parameters Q and R vary 

between acceptable and unacceptable values for different numbers of 

terms of the asymptotic power series used or for different positions 

of the origin. This indicates that the optimum (usually small) number 

of terms and the optimum origin position can be identified. 

However, more checks are required. 

I l l b The method has been proven to be successful for the correction of 

truncated Cauchy line profiles and specified size broadened line 

profiles. However, problems are expected and noticed when the 

signal has a purely Gaussian shape. For such a signal the as3miptotic 

series only virtually exists, because all coefficients are zero. 
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8. SUGGESTIONS FOR FURTHER RESEARCH 

1. The power of the %^ f i t t ing method used wi l l increase markedly i f the 

asymptotic power series can be written as a combination of orthogonal 

functions (Cf. Conclusion lib), 

2. Additional checks for the acceptability of the results of the f i t t ing 

method should be developed (Cf. Conclusions Ilia). 

3. The truncation correction according to method 1 of section 4.1 should 

be programmed and tested. 

For a component line profile the tails can be added upto the range 

(Z - 2'^ + 2^' to obtain the required sampling distance In Fourier space. 

For the tails outside the range mentioned procedure 2 of section 4.5 

(correction of the distorted DFT) can be used. 

4. The merits of incorporating the Koc-doublet into the model to be fitted 

(Vermeulen, 1988-0614a. 0616ab,) should be Investigated, 

5. The merits of transforming from the asymptotic power series from a 
(h3-0 scale to a 2e-scale (including Ko^-doublet and angle-dependent 

Lorentz-polarization factor) (Vermeulen 1988-0617a. 0622ab, 0902ab.) 

should be Investigated. The Importance of this translation Is that only 

then counting statistics can be taken into account, because the 

transformation from an equidistant 2e-scale to an equidistant 

scale requires an interpolation mutilating the counting errors. 

6. It is possible to calculate an asymptotic power series for the 'total 

Intensity distribution' (Delhez. Keijser. Mittemeijer & Langford. 1986) 

by summing the contributions of all 'component line profiles' of the 

reciprocal lattice row (Vermeulen, 1988-0728a. 0811a. 1989-0102ab). 

The scries obtained holds at least for size-broadening. Hie 

computer program MAGIC requires only minor changes to allow the use 

of 'total intensity distribution' asymptotic power series, for f i t t ing 

purposes. 

7. No asymmetric profiles have been tested so far. The simulation of 

profiles that include strain broadening can provide asymmetric 

profiles. 
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APPENDIX G 

Brief description of tlie simulation of tmncated signals 

Four signals (line profiles) of the 'component line profile' type are available 

in the present version of the computer program MAGIC: Cauchy, Gauss, 

'Laue' and certain size-broadened line profiles. A survey of the definitions 

of these line profiles and their transforms is given i n table G l . 

The data constituting a simulated line profile are generated by choosing a 

type of line profile, the truncation point Atr and the desired sampling 

distance of the truncated profile. The maximum (ha-Q range generated is 

fixed at (Atr+w) and the sampling distance is fixed at 0.1 w. For all values 

of this array of {h^-D values (-Atr-w, Atr+w) I(h3-0 is calculated using the 

line profile description chosen. Then a linear background is added: r(h3-i) 

= I(h3-0 + Co + Cl (h3-0. Finally counting statistics is simulated as follows. 

Each value of r(h3-0 is chosen as the mean value of a Polsson distribution 

and wi th the use of a random number generator one value I"(h3-Q from 

this distribution is chosen: I"(h3-Q is r(h3-0 including counting statistics. 

In fact the program uses a "normalized" abscis and ordinate. For details 

about these normalizations and use of arrays i n the program see 

Vermeulen (1989-0116a). The profile generated at ( -At f -w, Atr+w) is 

truncated to (-Atr, ^tr) after the choice of origin of the truncated profile. 

The surplus intensities are required, because the origins can differ to 

investigate the effect of a shift of origin. 

To be able to compare for the 'same' simulated profile (including counting 

statistics) the effects of various tail lengths and sampling distances, parts 

of the tails can be removed and other sampling distances (multiples of the 

original) can be chosen. 
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Fig. H. 1 Schematic picture of the real part of the DFT A(t') versus t'. 

The average area-weight column length <N3>a follows from the t'-axis intercept of 

the tangent to the A(t') curve at t'=0. 

PW3 

0 

Fig. H.2 Schematic picture of column length distribution pj^j^ of profile with small average 

column length. Solid line: sampled at integer values of N3 (or t). Dots and dashed 

line: sampled at integer values t', plotted at corresponding t values. 
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APPENDIX H 

The calculation of <iV3>Q and ppj^for size-broadened profiles. 

The average area-weighted column length <N3>a and the column length 
distribution p-^^ are both calculated f rom the real part (cosine) of the 

discrete Fourier transform (DFT) values A(t'). The apparent average 

column length follows f rom (Cf. Warren, 1969) (see Fig. H. 1): 

A(t '=0) 

^ ^ 3 ^ ' ' = A ( t = 0 ) - " A ( f = l ) • I H I ) 

where tnorm = (2Atr)~'^ (Atr = truncation point). 

The normalization factor tnorm Is necessary because in the program the 

DFT values at t' values are used instead of those at t values, with 

t = t' . (2Atr)~-^ (Cf. chapter 2). Eq. (HI) gives a too large value of <N3>a 

when tnorm> 1 - which is usually the case in practice. 

The column length distribution is calculated wi th the second differences 

of A(t') weighted such that ^ ^^=1 PN3 = 1 (Cf. Young, Gerdes & 

Wilson, 1967) 

, , A(t'+1) - 2A(t') + A ( t ' - l ) 
p(N3=f. tnorm) = A( f=0 ) - A ( f =1) ^ ^ ^ l 

The column length distribution calculated wi th Eq. (H2) is not 
determined at the integer values of N3 or t but at the values t' wi th the 

same normalization factor as mentioned above. This wi l l cause a loss of 

detail especially for line profiles wi th small average column length as 

illustrated for the case in Fig H.2. 
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APPENDIX K 

The goodness-of-Jit parameters Q and R 

The goodness-of-fit parameter Q is used as a statistical estimator of the 

"average" misfit. Q is equal to the value of the incomplete gamma function 

for and v is the number of degrees of freedom: 

V = N - M ( K l ) 

(here N = number of f i t data points, M = number of estimated parameters 

a i ...a]v[) and is defined as 

X 
2 ^ ^ [ y i - f (x i : a i -aM) p . (K2) 

1=1 ^1 

(xi, Yi. Oi = abscis, ordinate and standard deviation of ordinate of the i- th 

data point respectively; fixj; ai...a-^) = value of the fitted function for x j 

and estimated parameters a^ .. .a^). The least squares procedure 

minimises the value of X^. 

The exact description of the calculation and interpretation of Q wi th the 

incomplete gamma function is given by Press et.al., 1986. The value 

obtained for Q can be interpreted as follows: 

i f 0.0 < Q < 0.001 questionable model 

if 0.001 < Q < 0.1 f i t may be acceptable 

i f 0.1 < Q < 0.9 f i t believable 

i f 0.9 < Q < 1 . 0 f i t "too good". 

The goodness-of-fit parameter R is used as a statistical estimator of the 

"systematic" misfit . The value of R -also called the successive differences 

scatter test- is calculated wi th (Thijsse, 1988 ab): 

1=1 

S ( d i + l - d i ) 2 

1 N - 1 

^ = 2 ^ N ^ N (K3) 

i = i 1=1 
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with d j = 
y i - f ( x i ; a i . . . a M ) 

(K4) 

The parameter R is normally destributed wi th a mean expected value of 

1.0 and a standard deviation of: 

^R 
• 4 

N-2 
N ^ - 1 (K5) 

The threshold value of R for accepting the "systematic" misf i t is 1.0 times the 
standard deviation GJ^ less than the mean expected value of 1.0. 

The value obtained for R can be interpreted as follows: 

R < 1.0 - OR 

1.0 - OR < R < 1.0 

1.0 < R < 1.0 + OR 

1.0 + OR < R 

systematic misfit 

no systematic misfit 

good result 

"lucky event". 
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APPENDIX Q 

Calculation of the discrete Fourier transform of the lost part of the profile. 

The Fourier transform of the lost part of the profile can be calculated from 
the intensity distribution Ijogt (hs-Q given by Eqs. (6ab) of chapter 2: 

oo 
2 

Flost(t) = K J Ilost(h3-0exp[-27ci(h3-Z)] d(h3-Q (Ql ) 
o 

With 

Fiost(t)= Aiost(t) + iBiost(t) (Q2) 

i t can easily be obtained that (Vermeulen, 1988-0525a,0705a) 

2 ^ t r oo 

Alost(t) = K J S cos 27it(h3-0 d(h3-0 + 
o k = l ^ t r 

~ oo 
2 1 -

K J S — — ^ c o s 27it(h3-0 d(h3-0 (Q3a) 
Atr k = l (h3-i) 

2 ^ t r CO ^ 1 

Blost(t) = " K J (h3-0 X , 2 ^ + 2 27ut(h3-0 d(h3-0 + 
o m = l ^ t r 

2 r ^ ^ 2 m + l 
- K J X , n 2 m + l sin 27ct(h3-0 d(h3-Q (Q3b) 

Atr m = l 

Two cases of each integral of Eqs (Q3ab) wi l l be considered: for t=0 and 

for t^O. Because numerical calculations the discrete Fourier transform is 

required a change f rom the Fourier transform to the discrete Fourier 

transform wi l l be performed with the substitution: 
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where t' takes integer values only and 2Atr is the range of the discrete 

Fourier transformation equally taken to the truncation range. 

Alost (t) 1^^ integral of Eg. fQ3a) 

For the case t=0 this integral reduces to 

2 Z C 2 k . 2 ^ C 2 k 
K X J d ( h 3 - i ) = ^ I . 2 k - 1 (95) 

k = l ^ t r o k = l 

For the case t^O this integral becomes: 

l i 3 , T cos 2 . t , h 3 - ö d,h3-0 4 S 3 ^ 2 ^ (Q6) 
k = l ^ t r O k = l ^ t r -^^^ 

After substitution of Eq. (Q8) this becomes zero 

2 ^ C 2 k sin Tüt 
= 0 (97) 

Aiost(t) 2nd integral of Eq. fQSa) 

For the case t=0 this integral reduces to 

2 ~ 7 m3±_ 2 " 1 C 2 k 

For the case t^O this integral becomes after substitution of Eq. (Q4): 

.,(h3-0 
^ 00 cos Tit 

r 
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The integral of Eq. (Q9) can not be solved analytically. For convenience we 
introduce a function ay,{t') as defined in appendix R which is independent 
of Atr. Then Eq. (Q9) becomes: 

2 ~ C 2 k 

K , \ . 2 k - 1 " k ( t ) (QIO) 
k = l ^ t r 

B w J t L l ^ ^ . integral of Eo. fQ3b) 

For the case t=0 this integral reduces to zero. For the case tj^O this 
integral becomes : 

2 ^ C 2 m + 1 
~ K E 7 2 ^ + 2 ƒ (ha-O sin 27ct{h3-0 d(h3-0 ( Q l l ) 

m = l ^ t r o 

which can be integrated by parts yielding: 

_ 2 V ^ 2 m + l 1 r , 
K ^^^2m+2 J ^ ^ ^ ism 27i;tAtr - 27ctAtr cos 27ctAtrJ ^g^g) 

Substitution of Eq. (Q4) gives for tiie discrete Fourier transform: 

2 ( - 1 ) ^ ' + ^ ^ C 2 m + 1 

i n f ) J^^ A^2m (913) 

Bins tJ tL2"d integral of Eg. fQ3b) 

For tiie case t=0 this integral reduces also to zero. For the case t̂ Ô the 
Integral becomes: 

_ ^ V f sin 27tt (ha-O 
K L C 2 m + 1 J n 2 m + l d(h3-0 (Q14) 

m = l Atr *̂  
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Integration by parts yields 

2 ^ com + i r sin 27itAfr . cos 27it(hQ-0 , 
_ ^ 2 m I A. 2 m 

+ (2Kt) J , 2 m d(h3-^) J (915) 

Atr 

m = l ^ t r " " ' A ; i^3-ir 

Substitution of Eq, (94) gives for the discrete Fourier transform.: 

oo COS nt'——— 
2 V - C 2 r n + i r sinTtt' Tit' . ^ t r 

m = l " t r " t r 
r 

The integral of Eq, (Q16) is also found i n Eq, (99). 

So Eq. (916) becomes: 

^ f ^ ^ 2 m + l a m(t') 
^ (^t) 2 . A 2 m 2m 

m = l ^ t r 

(917) 

where cXm(t') is defined in Appendix R. 
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APPENDIX R 

The so-called a-functions 

In this report a function a\^{V) is defined (Vermeulen, 1988-scriptie): 

, . (h3 -ö 

oo cos Ttt 

ak(t') = A t r ^ k - l ƒ 2k" dCha-ï) ( R l ) 

wi th k and t' are positive integers, (ha-Q and Atr have been defined in 

chapter 2. The integral of Eq. (Rl) cannot be solved analytically but can 

be reduced to a function of the Sine integral for which series expansions 

are known. However accurate calculation of the Sine integral is very 

diff icul t (see Appendix V for details). 

Two cases of Eq. (Rl) wi l l be considered for k = l and k > 1. 

For the case k = l Eq, (Rl) reduces to 

(ha-0 
oo COSTCt 

ai( t ' )= Atr ƒ ,^ ,̂ 2"" d{ha-0 (R2) 
Atr ^^3-0 

Integrating by parts: 

,(h3-0 
00 sin Tit 

A f i ai( t ' )= cos Tit' - Tit' ƒ ih^-l) d(ha-l) (R3) 

Atr 

This becomes: 

ai ( t ' ) = (-1)^' - Tit' [ J -S i (Tit ' ) ] (R4) 
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where 

Ttt' 

Si(7cf) = J ^ dx (R5) 
O 

is the Sine integral (Abramowitz & Stegun. 1968, p.p. 231-232) 

For the case k > l a recursion formula can be deduced by integrating by 

parts t w i c e i n t h e same way as w i t h Eq. (R2): 

Jh3-0 
9 k - 9 , ^9 oo C O S T l t ' — — — 

, a cosTit' Tct'sinTct' A t r ^ ^ ^{ntT ^ Atr 

' ^ l ^ ^ ' ^ = i ï r r " ( 2 k - l ) ( 2 k - 2 ) " ( 2 k - l ) ( 2 k - 2 ) J •(h3-02k-2 ^^^S'O (R6) 

Using the definition (Rl) for k-1 gives: 

= (iïïrT)-jid^ÉriT«k-i I f ) (R7) 
From the equations (R7) and (R4) follows that ak(t') is independent of 

Atr and is determined completely by the values of k and t'. 
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APPENDIX S 

Variation of truncation range 

In the following the formula for the integral intensity as function of the 

truncation range wi l l be deduced. 
* 

The integral intensity A^ or the zeroth cosine Fourier coefficient A(0) of 

an ideal signal I j [h^-tj is defined as: 

oo 

A*i= J I i (hs-O d(h3-[) (S l ) 

The integral intensity A^ is often used as one of the signal characteristics 

in practice, but cannot be calculated wi th Eq. (Sl) because Ii(h3-0 is not 

known. However, for the part of the integrated intensity of the ideal 
signal lost due to truncation at A'tr we have the description (Cf. Eq. 7b): 

-A'tr 

Aiost(O) = ƒ Ii(h3-0 d(h3-l) + ƒ Ii(h3-0 d(h3-0 

A'tr -oo 

oo 

= 2 E 2 k - 1 (S2) 
k ~ l ( A ' t r ) ^ ^ - ^ 

which is a function of the truncation point A'tr-

Further, the integrated intensity of the observed signal can be calculated 

wi th : 

A obs (A'tr) = 1 lobs (h3-Q d(h3-0 
-A ' t r 

A'tr 

= A i - Aiost(O) + ƒ {Co+ci(h3-0} d(h3-Q (S3) 

- A ' t r 
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-assuming the background to be linear- which is also a function of the 
truncation point A'^r-

Substitution of Eq. (S2) in Eq. (S3) gives: 

* * N 1 COk 
Aobs (A'tr) = A i - 2 — j ^ - ^ . 2Co A ' t , (S4) 

where CQ is the background level at the origin. 

With Eq. (S4) a limited number of coefficients C 2 k of the asymptotic 
* 

series, the background level and the Integrated intensity A ^ of the ideal 

signal can be estimated wi th a least-squares f i t t ing procedure. 

Analogously i t can be deduced for the n-th moment: 

oo 

M*i,n= ƒ ( h3 - ÏP l i (h3 -0 d(h3-ï) (S5) 
- oo 

Miost,n = ] ^ f h 3 - 0 n i i ( h 3 - 0 d(h3-0 + "(h3-0 '^ l i (h3-0 d(h3-Q 

A'tr 

(S6) 

wi th (Cf. Eq. 5a): 

Then the n-th moment of the observed signal can be calculated wi th 

Atr 

M obs,n (A'tr) = ƒ ( h3 -ö" lobs (h3-0 d(h3-0 

-A ' t r 

Vr 
= M^^- M i o s t n + ] {h3-I)n{co+ci(h3-[)} d(h3-i) 

-A ' t r 

(S8) 
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With the first moment a formula for the centroid can be derived. The 

variance is related to the second moment. 

Further also the maximum intensity and integral breadth can be 

calculated as functions of the truncation range (Vermeulen, 1988-0221 

0530a, 0602a, 0602b, 0602c). 
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Fig. T. 1 Schematic picture of the intensities Ijot and Icom "the 'total intensity distribution' 

and the 'component line profile' respectively- as a function of the dimensionless 

variable h3 with node / (previously called reference point). 
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APPENDIX T 

Concept of a diffraction Une profile and its range 

In the field of X-ray diffraction pattern analysis Delhez, Keijser, 

Mittemeijer & Langford (1986) regarded the 'total intensity distribution 

as a series of 'component line profiles' (see also Fig. T. 1): 

oo 

Itot(h3) = X Icom (ha-O ( T l ) 
i=-oo 

For applying Fourier analysis and development of recipes for the 

extiapolation of the tails of the measured truncated line profile i t can be 

considered either as part of the total intensity distribution (approach 1) 

or as part of a component line profile (approach 2). A summary of the two 

approaches is given below. 

Approach 1 The total intensity distribution in reciprocal space along a 

[001] direction is given by: 

, , ^ sin^TcNshQ 
Itot(h3) = K X PN3 . 2 U (T2) 

N3^1 sm^7üh3 

where h3=(2a3Sine) / X (a3=lattice parameter i n [001] direction) e=half of 

diffraction angle 29. X = X-ray wavelength and p]vj3=fraction of columns of 

length -perpendicular to the 001 plane- N3 (whole number) unit cells 

( X N3=l PN3 =1) and K is a proportionally constant. 

Clearly the function is periodic wi th period from 1-1/2 to 1+1/2 and 
peaks for integer values of h3 (see Fig. T.1). 

With this approach the tails can be approximated wi th 

Itot(h3) = • ^2°u 113^1/2 (T3) 
sin^7üh3 

where Ctot is a constant.Fourier analysis implies a series development 

wi thin the range [ i - 1/2 . 1+ 1/2]. 
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Approach 2. The component line profile is given by 

n xr ? sin^^Nglhg-Q 
Icom (h3-0 = K X PN3 ^2,^ n2 (T4) 

N 3 = l ^ (hs-i j 

which is not periodic i n h^, has only an absolute maximum at ha=I and 

entends from - oo to + oo. With this approach the tails can be 

approximated w i t h 

Icom(h3-0 = (h3 - 0 ^ - (T5) 

where Ccom is a constant. 

Fourier analysis implies a Fourier transformation wi th in the range 
[-00 , +oo]. 

Both approaches hold only for the case of pure size broadening. The 
constants Ctot and Ccom have to be determined by a f i t t ing procedure. 
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APPENDIX U 

The infLuence of a change of origin 

Suppose the tails of an ideal signal can be approximated wi th sufficient 

accuracy by: 

Khs-O = ^ ( U l , 

which is the first term of the asymptotic series (5a). Changing the origin 
f rom [ to I' wi th 1=1+ 5 Eq. (Ul) becomes 

I(h3-r+5) = , (U2) 
(h3-r+5)2 

The right-hand side of this equation can be expanded as an asymptotic 

series: 

C 2 ^ ^ k ' + l 
;2 " X ru„ n k ' + l (U3) (h3-r+5)^ (h3-n^ 

From Eq. (U3) i t can be deduced (Vermeulen, 1988-0429a) that c '2=C2, 

c'3=-25c2, c'4=35^C2 etc. and 

k ^ l ( h3 -ö ' 

0= k ' f -5V 
I{h3-r+5) = C2 X ' V ' + l (U4) 

To obtain an equation for I(h3-0 we substitute I' = 1+ b yielding 

v ' f _ 5 ) k ' - l 

Clearly the value of coefficient C 2 of the first term remains unchanged 

and new terms compensate the change of origin: 
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C O ^ k ' ( _ 5 ) k ' - l 
I(hQ-[) = o + C O y v . ^ T (U5) 

When Eq. (U5) is reduced to a finite number of terms an error AI(h3-0 is 

introduced. The first neglected term can be used as estimate of this 

error. So reducing Eq. (U5) to the first term leads to an error of 

= C2 (U6) 

which is obviously systematic. 
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APPENDIX V 

Calculation of the Sine integral 

The Sine integral has to be (re)calculated numerically because existing 

tables and algorithms are not sufficiently accurate for the present 

purpose. A very considerable loss of significant decimals occurs i n the 

recursive calculation of the a functions (see Appendix R) by applying Eq. 

(R7). The minimum number of significant decimals in Si(7un) and the a 

functions should be sufficient to obtain an accuracy better than 1% for all 

a values. 

For the Sine Integral the following convergent series expansion exists 

(Abramowitz & Stegun, 1968, p 232): 

e-r . ? ( - 1 ) W ) ^ ^ + 1 
= X ( 2 [+ l ) (2 [ - f l ) ! ( V I ) 

1=0 

Eq. (VI) seems to be an easily computable series. For values of the 

product Tin less than 1 the absolute values of subsequent terms decreases 

and the value of Si(Tin) can be obtained by direct summing unt i l the 

desired accuracy is reached. However, i n the present case the values of 

the product Tin are greater than 1 -because n is a whole number- and the 

Infinite series is still convergent, but i t starts wi th terms that strongly 

Increase In absolute value. The largest terms are many orders of 

magnitude larger than the value of Sl(Tin) which is about T I / 2 . This wi l l 

cause loss of significant decimals after the decimal point, because only a 

restricted number of digits are available for describing each term. 

For large values of the product Tin there also exists an asymptotic series 

expansion of the Sine integral (Abramowitz & Stegun, 1968, p 244): 

^ Tin (Tin)^ ( T i n ) ^ ' 

This series is divergent. However, i t is suitable for numerical calculation 

(Erdél}^, 1956) because the series starts convergently. The best 
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approximation of the sum is reached by summing only the "convergent" 

terms i.e. un t i l the term with the smallest value is reached. 

Obviously at a certain value of the product nn the asymptotic series (V2) 

has to be used instead of the series (VI) because i t provides a higher 

accuracy in numerical calculation of the Sine integral. Whether (VI) or 

(V2) is used i n the numerical calculation, is based on an estimation of the 

number of significant decimals after the decimal point. 

In the program the asymptotic series (V2) itself is not explicitly used for 

calculating the Sine Integral because the asymptotic series (V2) can be 

combined w i t h the equations (R4) and (R7) of Appendix R. This results i n 

an asymptotic series for the a functions. Then the a functions can be 

calculated directly and the separate calculation of the Sine integral is not 

necessary. The asymptotic series for the a functions have the same 

properties as the one for the Sine Integral. For more details see 

Vermeulen (1988-1027a). 
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Fig. W. 1 
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APPENDIX W 

Corrections of the DFT for truncation 

Many computer routines for the fast calculation of the discrete Fourier 

transform (see e.g.. Brigham, 1974) require a number of data equal to a 

power of 2. Because the measured number of data is rarely equal to such a 

number adding zeros is common practice to extend the number of data to 

the required number. However, "Jumps" in the extended data set are 

introduced leading to an oscillatoiy distortion of the DFT. Adding dummy 

values having more plausibility instead of zeros is suggested (e.g. 

Bracewell, pp 374-376) . 

Adding data implies a change of period f rom NAs to N'As (As = sampling 

distance in "measurement" space, N'=KN wi th K>1) which leads to a 

change of the sampling distance i n Fourier space from to ——. The 
NAs N As 

smaller sampling distance suggest more detail, but in fact only N of the N' 

samples are genuine. 

The influence of adding separately tail "length" and tai l information on 

the calculated discrete Fourier transform (DFT) is considered in Fig. W l 

(Cf. Vermeulen 1988-0923a). This makes i t possible to show the 

differences between the two procedures for calculating the corrected 

DFT. 

Procedure 1 Adding tails 

Tail information and tail "length" are both added to the truncated signal. 

The corrected signal has a period of NAs and sampling distance of the 

corrected DFT is —7—. 
N'As 

Procedure 2 Correction of the distorted DFT 

Values of the truncated signal is calculated and corrected for lost tall 

information using Eqs. 7abed. Now the period of NAs is unchanged 

because no tall "length" is added and the corrected DFT keeps a sampling 

distance — 
NAs 
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The change of sampling distance from —— to — — - can i n principle also 
NAs KNAs 

be achieved wi th an interpolation procedure (see Fig. W. 1) For K=2 the 

midpoint sine interpolation formula can be used (see Bracewell, 1978 p. 

427). Derivation of analogous interpolation formulae for other integer 

values of K must be possible, but this has not yet been investigated 

(Vermeulen, 1988-0725a). 
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