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Abstract 
 

There is great demand for an analysis method which can accurately describe the behaviour of 

unreinforced masonry structures subjected to a lateral load as there are many regions vulnerable to 

earthquakes in countries around the world, that have old unreinforced masonry buildings.  

The province of Groningen in the Netherlands is a good example of such an area. 

This behaviour is difficult to describe because of the composition of masonry with the interaction 

between the bricks and the mortar, and the brittle properties of the material resulting in convergence 

errors in common finite element analyses. 

This research investigates how the equivalent frame method in combination with a sequentially linear 

analysis can be used to model the behaviour of a façade of an unreinforced masonry structure, 

subjected to a lateral pushover load. The experimental data of the two-story building experiment at 

the University of Pavia is used to compare the results. 

Two different types of models are made, a continuum element model and a beam element model, 

with each two different modeling approaches, the three-zoned approach for the piers and spandrels 

and a uniform model. The three-zoned approach uses the bed joint tensile strength at the ends of the 

piers and spandrels, and the maximum tensile strength at the center of those element to simulate 

rocking and shear failure respectively. The most important results are listed below: 

i. The three-zoned approach in combination with a continuum model was able to accurately 

describe the failure mechanism of the façade and perform the analysis stable, with a maximum 

tensile strength adjusted to 𝑓𝑡𝑢 = 0.08 MPa. Shear failure in the piers was the dominant 

failure mode. As a lateral push-over load was used and not a cyclic load as in the experiment, 

the maximum load of the structure was for most displacements somewhat higher than in the 

experiment, but the maximum load was 150 kN in both cases. The displacement of 22 mm in 

the experiment was not reached, but a displacement of 10 mm. 

ii. The beam model analysis aborted early as a result of a reduction of the initial load factor. It 

was found that the fixed crack approach in combination with high shear forces in the structure 

resulted in a fixed crack coordinate system that was rotated from the beam axis. Principal 

stresses could exceed the strength of the material and wrong integration points were damaged 

reducing their strength severely. At this stage a maximum displacement of 5 mm is reached 

while the force is 165 kN, higher than in the experiment. The structure responds very brittle. 

iii. Shear stresses in the beam element model exceeded the strength of the material. Adding shear 

interfaces in an SLA will result in a more correct failure pattern.  

iv. For the beam model, a sensitivity check was done for the mesh size, fracture energy, number 

of saw-teeth and number of integration points. All values were accurate enough.  

v. A relation exists between an initial load factor reduction and the opening of a crack in the 

corresponding integration point that damages at an initial load factor reduction. This 

behaviour should be investigated further as this is not fully understood. 

vi. Crack closure errors were found in both models and resulted in some non-secant branches. 

This had no big influence on the result before the maximum load. 

In conclusion, the results of this thesis confirm the potential of the SLA to accurately approximate the 

behaviour of an unreinforced masonry structure as it was possible to run a stable analysis with accurate 

results for the continuum model. The beam model gave similar results in terms of forces and bending 

moments compared with an incremental iterative approach, but the analysis was aborted early. New 

developments like a rotating crack approach and shear interfaces will result in a more stable analysis 

as the right failure behaviour will be followed resulting in a more accurate load-displacement relation. 
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1. Introduction 
 

1.1 General introduction 
 

There are many old unreinforced masonry buildings in areas sensitive to earthquakes across Europe. 

Examples are Italy with its building heritage where recently an earthquake struck in central Italy during 

the summer of 2016. Closer to home is the province of Groningen in the Netherlands. Here, also many 

unreinforced buildings have been built and the danger of earthquakes still lingers.  

Even though the Dutch government recently declared that it will abort the gas extraction in Groningen 

before the year 2030, this will not stop the risks of earthquakes as the soil is already disturbed enough.  

During previous earthquakes, buildings have been damaged and cracks have developed. 

Currently, many engineers are busy modelling unreinforced masonry structures to investigate the 

strength damaged buildings have left and what forces they can withstand. As this concerns, very brittle 

materials and structures that have already been damaged, classical strength calculations are not 

applicable. Finite element calculations are often used to model the plastic post-peak behaviour, 

however these models have their own difficulties. Very brittle material behaviour is difficult to model 

in an incremental iterative approach as snap-back and snap-through behaviour often occur as a result 

of crack openings and material softening. A proposed solution to model this behaviour is a sequentially 

linear analysis. Generally speaking, this method loads a model with a load case that is proportionally 

scaled until the strength criterion is violated in an integration point. In this integration point, the 

stiffness is reduced a little bit with a stepwise degrading material law and the process is repeated until 

in theory all integration points are damaged. With this approach all analysis steps are linear elastic 

which evades convergence problems that occur in an incremental iterative approach. 

Different approaches can be used to model an unreinforced masonry structure dependent on the level 

of detail, calculation time and cost. In the second part of this research, the equivalent frame approach 

is used. This method simplifies the structure as a frame with flexible piers and spandrels and infinitely 

stiff corners. The idea behind this approach is that it simplifies the structure, reduces the calculation 

time while maintaining a certain level of accuracy. In this report, a smeared continuum model is used 

first in combination with a sequentially linear analysis and later a beam element model, following the 

equivalent frame approach, together with a sequentially linear analysis. For both analyses a two-

dimensional façade of an unreinforced masonry building is modelled. The goal of this research is to 

investigate the quality of the equivalent frame approach in combination with a sequentially linear 

analysis and compare the results with experimental data and the results of the continuum model in 

combination with a sequentially linear analysis. 

 

1.2 Structure of the report 
 

At the start of this thesis, a literature study was done to acquire the knowledge requested to do this 

investigation. The literature study focused on five subjects. First, more knowledge on masonry 

structures was needed. This included general characteristics, types of failure behaviour and different 

approaches to make a finite element model of a masonry structure. The second part focused on the 

finite element method. This to get more knowledge on element behaviour and the mathematics 

behind them. Concerning solution methods, this part explained nonlinear finite element solution 

methods. A distinction was made in geometric nonlinearity and material nonlinearity and a standard 

incremental iterative approach was explained together with the benefits and difficulties. This to 

explain the desire for a method which evades some of these difficulties. This is where the sequentially 

linear analysis comes into play, which is the third topic of the literature research. The basics behind 
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propagating damage and stepwise secant material laws is explained together with the algorithm 

behind the method. The current state of the art of the method is explained which includes new 

procedures by van de Graaf [1]. 

The next topic is about the equivalent frame method which will be used in this thesis. Also, the 

experiment at the University of Pavia which concerns a cyclic test on a two-story unreinforced masonry 

structure is discussed. The important results of the master thesis of Nobel [2], which can be seen as a 

prequel of this report, are shown. A final chapter explains the theory behind a Mindlin Beam element 

with fiber-section, using the research of Ferreira [3]. These elements will be implemented in Diana FEA 

by Pari amongst others to be applicable for an SLA. 

After the literature study, the model method of this research is explained. Here, the different models 

are shortly introduced and explained. Several models are used in this report and this short chapter can 

be seen as a reference.  

Later, the results of the research will be shown. This part is divided in the first part in which a model 

with continuum elements is investigated and a second part which focuses on a model with beam 

elements. For both models, first an introduction on a small structure is done to validate the element 

and method. Later, the full façade is modelled. For both the case with the continuum elements as for 

the beam elements an in-depth analysis is done on integration point level. 

Later, some improvements are implemented to achieve better results.  

 

1.3 Research question 
 

The question that this investigation tries to answer is formulated as: 

 

How can a sequentially linear analysis be used together with the equivalent frame approach to model 

a façade of an unreinforced masonry structure? 

 

To answer this question, several sub questions have to be investigated regarding masonry behavior, 

the equivalent frame method and the sequential linear analysis. 

After these questions has been answered, the following questions will be answered: 

 

How can a sequentially linear analysis be used in combination with a continuum model to model a 

façade of an unreinforced masonry structure? 

 

What are the differences between the results of the continuum model approach and the equivalent 

frame approach? 

 

First a continuum model is used as the results of this analysis are important to compare with the results 

of the equivalent frame approach. For both models, a sequentially linear analysis will be used and 

therefore differences between the two approaches can be related to the chosen model. 

For both models, an important question to answer is: 

 

How stable and accurate are the results of the model? 

 

The stability of the model can be qualified by the initial load factor of the sequentially linear analysis. 

The more this factor stays equal to one, the more the method is stable. The accuracy of the model will 

be judged by comparing the load-displacement diagram with the experimental data, by looking at the 

failure mode and the stresses and strains in the structure.  
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2. Literature Review 
 

This literature review contains five parts. Those four parts cover the essential knowledge to 

successfully do this research. The first part is a brief introduction on masonry buildings. The second 

part an explanation of the finite element method. The third part is about the sequential linear analysis. 

The fourth part is about the equivalent frame method and previous research in this area, especially 

the master thesis of W.L. Nobel. The fifth part is about the Mindlin beam elements used in the beam 

element model. 

 

2.1 Masonry buildings 
 

The invention of masonry was thousands of years ago. Mud was used as mortar and the bricks were 

just stones found in the area.  In time this developed with the invention of burned bricks and cement 

to more sophisticated structures. In the Netherlands, many buildings are built out of masonry. 

The province Groningen in the Netherlands suffers from earthquakes these days because of gas 

extraction. In Groningen, a giant gas field was found around 50 years ago. While this gas field gave the 

Netherlands wealth, around 248,5 billion euros in profits, it also resulted in 854 earthquakes from 1991 

till 2015 [4]. In 2016, the University of Groningen researched the consequences of the earthquakes 

and concluded that between 90.000 and 100.000 people have acknowledged damage to their houses, 

of which 25.000 people more than once [5]. 

This situation gives questions about the stability of the buildings in the province. With normal linear-

elastic calculations, many buildings will definitively fail according to those standards. However, 

nonlinear behavior of the structures gives them extra capacity to bear higher loads. This research 

focuses on masonry buildings, because there are many in that region. Another reason is that the 

difficult brittle and softening behavior with cracking and crushing of the wall is difficult to model with 

ordinary methods. To understand how the force distribution in a masonry wall works, the properties 

of the wall are examined in the next parts. 

 

2.1.1 General characteristics 
Although the building material is used for thousands of years, it is still used often nowadays because 

the technique is relatively simple. Important parameters that make masonry popular are: “its 

aesthetics, solidity, durability and low maintenance, versatility, sound absorption and fire protection” 

[6]. A major difference between masonry and other building materials is the homogeneity. For 

example, steel is a very homogeneous material and therefore relatively easy to model, especially 

because the isotropic and tensile behavior of steel is very similar to the compressive behavior. For 

concrete, there is a big difference in compressive behavior and tensile behavior. On structural scale it 

can be assumed isotropic and homogeneous. 

For masonry, the differences in strength of mortar and stone and the stone orientation make it 

heterogeneous an anisotropic (although in a macro model, it is assumed to be homogeneous).  

In general, masonry is modelled orthotropic with elastic properties. It can be split in the stones and 

the mortar. The interface between the mortar and the stones holds the parts together. Because stone 

and mortar both have relatively strong compressive strengths compared to tensile strengths, the 

material is strong in compression, but weak in tension. Therefore, masonry is often applied in walls, 

piers and in arcs. The brittle cracking behavior compared to the stiff elastic behavior make the failure 

occur without large deformations, which would occur using steel.  
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The differences in tensile and compressive strength make the material similar to concrete for uniaxial 

loading conditions. From experiments, the relation between the stresses and strains in the material is 

examined. It appears from experiments that the material relation between stress and strain in masonry 

can be modelled with a linear tensile curve and a parabolic compression curve.  

Figure 2.1 shows this behaviour for the relation 

between the stress in a material and the 

displacement in an axial test. The descending 

after the yield load shows the softening 

behaviour of the material. Because of the cracks 

that occur when the material yields, the 

material becomes damaged and therefore less 

stiff and less strong. This is the opposite 

behaviour one examines in structural steels 

where the branch ascends after the yield point 

resulting in hardening of the material, i.e. it 

becomes stronger. 

The crack energy is made visible with 𝐺𝑓, it is the 

surface below the stress-displacement curve. In 

other words, the energy needed to crack the 

material is far less than the energy needed to 

crush the masonry. In compression, after 

crushing, a higher force and strain can be taken 

by the masonry. In tensile failure, the strength 

rapidly decreases. 

 

In this research, walls are loaded in plane, therefore, no forces perpendicular on the wall are taken 

into account. The only forces on the wall are horizontal and vertical. In the case of a two-dimensional 

model subjected to an earthquake, this is a good assumption, because all the forces are also in plane.  

 

2.1.2 Mortar and Brick mortar bond 
The mortar is the paste between the bricks that holds them together. It gives the masonry wall strength 

and stability. It is a mixture of sand, water and in most cases Portland cement.  

There are many studies done on the brick-mortar bond. The behavior of the interface between brick 

and mortar is a result of the hydration products deposited on the brick surface and in the brick pores 

[7]. The initial moisture that is present in the bricks before the mortar is applied has an influence on 

the penetration of hydration products in the brick pores. It is a mechanical bond. Another influence is 

the increase of the bond strength when the compressive strength of mortar is increased, although the 

highest value is reached for a moisture saturation value around 80% [7].  

The bond between the bricks and the mortar is very important in a structure, because it transfers the 

loads through the structure.  

 

2.1.3 Modelling of masonry 
Different models can be made to model the behavior of masonry piers or walls. The modelling of 

masonry for computer simulations is important because it accurately describe the behavior of a 

masonry structure in loading conditions. This helps to understand the failure mechanisms that can 

occur and is needed to verify the designs that are made by engineers. Especially if the loading 

conditions become very complex or the structure, an appropriate model is essential. Another case in 

Figure 2.1; Tensile and Compressive uniaxial material model [28] 
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which accurate models and simulations are needed is the case presented in this thesis. Old structures 

are validated if they can still bear the load. This is the case when safety demands are changed in time 

and there is serious doubt if these old buildings, that maybe do not reach the demands that are 

required nowadays, are still strong enough. Hidden strength reserves can be found with the help of 

these types of models. The same holds for buildings that are damaged. For these buildings there can 

also be doubt whether they fulfill the requirements or not. Numerical analysis can also help in the 

serviceability limit state [6].  

There are three most common ways to model masonry. The first one is micro-modeling. In this model, 

the units, mortar and interfaces are modelled by discontinuous elements, with other material 

parameters. The different types of materials in the model are modelled as different materials. The 

interfaces between the bricks and the mortar have properties to accurately describe the crack/slip 

behavior between the mortar and the bricks. This type of modeling is very detailed and therefore 

accurate. It also has a downside. Because of the large number of elements and degrees of freedom, a 

lot of memory has to be stored to make calculations with this model. This increases the calculation 

time. A simplification of this model is simplified micro-modeling. The dimensions of the bricks are 

somewhat expended to make them adjacent. They are modelled with continuum elements. The mortar 

and interfaces are merged in interfaces between the expanded bricks. Average parameters are used 

for the interfaces, which reduces the accuracy of this model. Also, the dimensions of the bricks are 

larger and the dimensions of the mortar are different compared to reality. The bricks are expanded to 

keep the total geometry of the structure the same. The interfaces still have the same crack/slip 

behavior. The Poisson’s effect of the mortar is neglected. A third way to model the structure is with 

macro-modelling. In this model, all the bricks and mortar are merged into one continuum. The 

continuum is regarded anisotropic. A difficulty occurs when material parameters of the composite are 

assigned. Because the composite is made out of different materials with different behavior, the 

material parameters have to be found in experiments. The result is an orthotropic continuum with 

different material strength and elasticity in different directions. This model can be applied, because 

the interaction between the bricks and mortar is negligible when global failure is the scope [6]. 

Important to notice is that the type of model is dependent on the type of research. For detailed 

microscale failure, micro-modelling is probably more applicable, while for global failure macro-

modeling is probably the best choice.  

A different model called the equivalent frame method is applied in this research. This model will be 

discussed in later chapters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2.2; Different models for masonry. masonry (a), detailed micro-modeling (b); 
simplified micro-modelling (c); macro-modelling (d). [6] 
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2.1.4 Failure mechanisms of masonry 
As told before, the focus will lay on a two-dimensional model of a wall. Only in-plane forces are taken 

into account. Also, the out-of-plane deformations and bending because of eccentric loads or 

instabilities are neglected. As this research is on earthquake 

damages in masonry, the load condition can be represented as a 

wall which has a compressive dead load in vertical direction and is 

subjected to a horizontal lateral load at the top. The dead load 

represents the self-weight of the wall and the weight of the 

structure above the wall, the lateral load represents the 

monotonical load of the earthquake on the building.  

The stress state in the wall can be represented by Figure 2.3. There 

are shear stresses along and axial stresses on the masonry part. 

Many different failure types are possible because of the stone 

mortar pattern in masonry.  

 

On a small scale, there are three proposed failure criteria: a shear 

criterion, a tensile strain criterion and a compressive stress criterion. [8] 

The shear criterion is based on a Mohr-Coulomb frictional law. Slipping takes place when somewhere 

in the structure a critical shear strength 𝜏𝑐𝑟𝑖𝑡 is reached. In general, the law is given by: 

 

𝜏𝑐𝑟𝑖𝑡 = −𝜎𝑛𝑡𝑎𝑛𝜙 + 𝑐 (2.1.1) 

 

With 𝑐 a cohesion term [MPa], 𝜎𝑛 the normal force [MPa] and 𝜙 the friction angle [°]. 

 

The tensile criterion can be described according to [8] as an ultimate strain. First the orthotropic linear 

elastic relations can be described: 

 

𝜖𝑡 =
𝜎𝑡𝑡

𝐸𝑡
− 𝜈𝑛𝑡

𝜎𝑛𝑛

𝐸𝑛
  ;    𝜖𝑛𝑛 =

𝜎𝑛𝑛

𝐸𝑛
− 𝜈𝑡𝑛

𝜎𝑡𝑡

𝐸𝑡
  ;   𝛾𝑡𝑛 =

𝜏𝑛𝑡

𝐺
(2.1.2) 

 

 

In which a crack-oriented coordinate system is applied. In this coordinate system, the direction 𝑡 is 

tangential to the crack and the direction 𝑛 normal to the crack. The shear modulus 𝐺 can be described 

in different ways. It is common to describe the shear modulus as a constant factor 𝛽 times the initial 

shear modulus: 

𝐺 = 𝛽𝐺0 = 𝛽
𝐸0

2(1 + 𝜈0)
(2.1.3) 

 

According to [1], this can result in excessive stress-locking. This results in large stresses that are 

transferred through a crack that is open, which is not realistic. For small values of 𝛽 another proposal 

by [9] can be used to avoid this. This concerns a shear modulus based on the minima of the elastic 

moduli: 

 

𝐺𝑟𝑒𝑑 =
𝐸𝑚𝑖𝑛

2 (1 + 𝜈0
𝐸𝑚𝑖𝑛
𝐸0

)
(2.1.4)

 

With 𝐸𝑚𝑖𝑛 = min(𝐸𝑛 , 𝐸𝑡) 

 

Figure 2.3; Stress state in masonry [8] 
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The reduced Poisson’s ratios are described by: 

 

𝜈𝑡𝑛 = 𝜈0

𝐸𝑛

𝐸0

(2.1.5) 

𝜈𝑡𝑛 = 𝜈0

𝐸𝑡

𝐸0

(2.1.6) 

 

This reduction is necessary to prevent that a large strain in one direction results in a large strain in the 

orthogonal direction because of the Poisson’s ratio.  

 

The tensile crack can be found in the direction of the principal strain in the wall. The principal strain 

can be found by the general equation for plane stress cases: 

 

𝜖1 =
𝜖𝑛𝑛 + 𝜖𝑡𝑡

2
+

1

2
 √(𝜖𝑛𝑛 − 𝜖𝑡𝑡)

2 + 𝛾𝑡𝑛
2 (2.1.7𝑎) 

 

tan(2𝜃) =
𝛾𝑡𝑛

𝜖𝑡𝑡 − 𝜖𝑛𝑛

(2.1.7𝑏) 

 

Cracking occurs when somewhere in the material, the principal strain reaches the value 𝜖𝑢. 

 

Crushing occurs when the maximum compressive stress (the second principal stress), reaches the 

compressive strength. 

𝜎2 =
𝜎𝑛𝑛 + 𝜎𝑡𝑡

2
− √(

𝜎𝑡 − 𝜎𝑛

2
)
2

+ 𝜏2 ≤ 𝑓𝑐
′ (2.1.8) 

 

 

On a large scale, the common failure mechanisms of piers are the following: Rocking failure, shear 

sliding, diagonal cracking. [10] 

 

 

 

 

 

 

 

 

 

Rocking: The bed joint cracks. Therefore, the force has to be carried by the compressive part. This 

compressive part crushes as the compressive stress increases and the wall overturns.  

Shear sliding: A sliding plane develops because the horizontal shear resistance cannot withstand the 

lateral force. A horizontal tensile crack occurs in the bed joints. Sliding occurs for low vertical loads. 

Shear cracking: A diagonal zigzag pattern occurs between the bricks or through the bricks. This is 

dependent on the strength of the mortar, mortar-brick interface and the strength of the bricks.  

 

Figure 2.4; Failure mechanisms with lateral force; rocking (left), shear sliding (middle) and diagonal cracking (right) [2] 
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The rocking strength can be described with the help of Figure 2.5. The horizontal force for which 

rocking occurs can be described as: 

 

𝑉𝑟 =
𝐷2𝑡

𝐻0

𝑝

2
 (1 −

𝑝

𝜅𝑓𝑢
) (2.1.9) 

 

This relation comes from the equillibrium of moments. 𝑝 =
𝑃

𝐷𝑡
. The effective height 𝐻0 can be 

calculated from the boundary conditions of the wall: 

 

𝛼𝑣 =
𝑀

𝑉𝐷
=

𝐻0

𝐷
=

𝜓′𝐻

𝐷
3 (2.1.10) 

 

𝜅 simplifies the stress distribution at the toe as an equivalent rectangular distribution with.  

From 𝑃𝑒 = 𝑉𝐻0 the relation can be written as: 𝑉𝑟 =
𝑃𝑒

𝐻0
. With 𝑒 =

𝐷

2
 and 𝑃 = 𝑝𝐷𝑡. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because the diagonal cracking failure mechanism can be through mortar and stones, this is hard to 

describe. Especially because the parameters in vertical and horizontal direction are different. 

One approach from [10] is to assume that diagonal shear failure is attained when the principal stress 

at the center of the pier attains a critical value. This lead to the following relation: 

 

𝑉𝑑 =
𝑓𝑡𝑢𝐷𝑡

𝑏
 √1 +

𝑝

𝑓𝑡𝑢
(2.1.11) 

 

  

Figure 2.5; Rocking strength of a masonry wall load and dimension representation [10] 
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The strength 𝑓𝑡𝑢 is the conventional (maximum) tensile strength of masonry belonging to diagonal 

shear failure. This strength has to be determined by shear tests. 𝑏 is a parameter determined with the 

aspect ratio 𝐻/𝐷. This is however only applicable on walls that are fixed in both ends. Another 

approach is with a Mohr-Coulomb criterion: 

 

𝜏𝑢 = 𝑐 + 𝜇𝜎𝑣 (2.1.12) 

 

 

This lead to the following equation for the horizontal force: 

 

𝑉𝑑 = 𝐷𝑡𝜏𝑢 = 𝐷𝑡(𝑐 + 𝜇𝑝) = 𝐷𝑡 (𝑐 + 𝜇 
𝑃

𝐷𝑡
) (2.1.13) 

 

 

Where 𝑐 and 𝜇 are global strength parameters. 

 

The easiest way to describe the sliding mechanism is just the equation: 

 

𝑉𝑠 = 𝜇𝑃 (2.1.14) 

 

In which 𝜇 is the friction coefficient of the masonry. Cohesion is neglected in this case, because a crack 

already occurred.  
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2.2 The finite element method 
 

The finite element method is a computational method invented more than 60 years ago. In this period 

the first computers were developed. The method is used to calculate partial differential equations, for 

example in structural mechanics. The pioneers of the finite element method were structural engineers. 

The method is popular because it is a very good approximation of an analytical solution. The method 

divides the structure in a mesh of small elements. Different element types (linear, parabolic, cubic etc.) 

are available to accurately describe the displacements of the structure. In general, smaller elements 

result in convergence of the numerical solution to the analytical solution.  In the finite element 

method, the displacements and the forces are related with a stiffness matrix in the following equation: 

 

𝑲𝒂 = 𝒇 (2.2.1) 

 

An important step in a finite element analysis is to transform the governing equation into a weak form. 

The strong form of the equation is multiplied with a weight function and integrated over the volume. 

After the weak form is derived, the equation is discretized with a Galerkin method. An example is given 

in the derivation of the Timoshenko beam element: 

 

2.2.1 Timoshenko beam element 
The Timoshenko beam theory differs from the Euler-Bernoulli beam theory by taking the shear 

deformation into account. It is therefore also applicable for high beams in which shear deformation is 

dominant. With the help of Figure 2.6, the relation between the deformations and strains can be 

described. The derivation from [11] is followed. Cross-sections remain planar but not perpendicular to 

the deformed axis. 

The deformation of a point in the beam in x-direction 𝑠𝑥 and in y-direction 𝑠𝑦 can be described by: 

 

𝑠𝑥(𝑥, 𝑦) = −𝑦𝜙(𝑥)    ;    𝑠𝑦(𝑥, 𝑦) = 𝑣(𝑥) (2.2.2) 

 

The strain in the axial direction and the shear strain can be described by: 

 

𝜖𝑥𝑥 =
𝑑𝑠𝑥

𝑑𝑥
=  −𝑦

𝑑𝜙

𝑑𝑥
   ;        𝛾𝑥𝑦 =

𝑑𝑠𝑥

𝑑𝑦
+

𝑑𝑠𝑦

𝑑𝑥
= −𝜙 +

𝑑𝑣

𝑑𝑥
(2.2.3) 

 

  

Figure 2.6; Timoshenko beam model [11] (left). Shear deformation in beam element and equilibrium [11] (right) 
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From Figure 2.6 can be concluded that: 

 
𝑑𝑣

𝑑𝑥
= tan(𝛾𝑥𝑦) ≈ 𝛾𝑥𝑦 ;       

𝑑𝑉

𝑑𝑥
= −𝑞  ;       

𝑑𝑀

𝑑𝑥
= 𝑉 (2.2.4) 

 

This is true for small angles 𝛾. The second equation follows from vertical equilibrium. The third 

equation neglects quadratic terms, because they are relatively small. By using the relation between 

the shear force and the shear strain and the second equation from (2.2.3): 

 

𝑉 = 𝐺𝐴𝑠𝛾𝑥𝑦 = 𝐺𝐴𝑠 (
𝑑𝑣

𝑑𝑥
− 𝜙) (2.2.5) 

 

By applying Hooke’s law: 

 

𝜎𝑥𝑥 = 𝐸𝜖𝑥𝑥 = −𝐸𝑦
𝑑𝜙

𝑑𝑥
(2.2.6) 

 

 

 

 

 

 

 

 

From Figure 2.7, the moment 𝑀 on the cross section can be described by the axial stress: 

 

𝑀 = ∫𝑑𝑀 = ∫𝜎𝑥𝑥𝑦𝑑𝐴 = −∫𝐸𝑦2
𝑑𝜙

𝑑𝑥
 𝑑𝐴 = −𝐸𝐼

𝑑𝜙

𝑑𝑥
  𝑤𝑖𝑡ℎ 𝐼 = ∫𝑦2𝑑𝐴 (2.2.7) 

 

Now all the equations can be combined to derive the final two equations. Combining the last equation 

of (2.2.4), (2.2.5) and (2.2.7): 

 

−𝐸𝐼
𝑑2𝜙

𝑑𝑥2
− 𝐺𝐴𝑠 (

𝑑𝑣

𝑑𝑥
− 𝜙) = 0 (2.2.8) 

 

Combining the second equation of (2.2.4) and (2.2.5): 

 

𝐺𝐴𝑠 (
𝑑2𝑣

𝑑𝑥2
−

𝑑𝜙

𝑑𝑥
) = −𝑞 (2.2.9) 

 

To transform these equations in a weak form, the governing equations (2.2.8) and (2.2.9) are multiplied 

with a weight function and integrated over the volume. The distributed force 𝑞 is from here on written 

as 𝑓𝑦. To make the equations shorter, the derivations to x are written in subscript: 
𝑑𝑣

𝑑𝑥
= 𝑣,𝑥. The 

derivation from [12] is followed. 

 

−∫ θ̅𝐸𝐼θ,𝑥𝑥𝑑Ω − ∫ θ̅𝐺𝐴𝑠(𝑣,𝑥 − 𝜃)𝑑Ω
ΩΩ

= 0 (2.2.10) 

Figure 2.7; Relation stress and bending moment [11] 
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∫ �̅�𝐺𝐴𝑠(𝑣,𝑥𝑥 − 𝜃,𝑥)𝑑Ω
Ω

+ ∫ �̅�𝑓𝑦𝑑Ω
Ω

= 0 (2.2.11) 

 

After integration by parts: 

 

∫ θ̅,𝑥  𝐸𝐼θ,𝑥𝑑Ω
Ω

− ∫ �̅�
Γ

𝐸𝐼𝜃,𝑥𝑛 𝑑Γ − ∫ θ̅𝐺𝐴𝑠(𝑣,𝑥 − 𝜃)𝑑Ω
Ω

= 0 (2.2.12) 

−∫ �̅�,𝑥 𝐺𝐴𝑠(𝑣,𝑥 − 𝜃)𝑑Ω
Ω

+ ∫ �̅�
Γ

𝐺𝐴𝑠(𝑣,𝑥 − 𝜃)𝑛𝑥𝑑Γ + ∫ �̅�𝑓𝑦𝑑Ω
Ω

= 0 (2.2.13) 

 

The boundary conditions are given as: 

 

𝑣 = 𝑔𝑣    ;   𝜃𝑛 = 𝑔𝜃   ;    𝑚 𝑛 = 𝑇   ;    𝑞 𝑛 = 𝐹𝑦 (2.2.14) 

 

With 𝑇 a bending moment and 𝐹𝑦 a vertical force. The natural boundary conditions appeared in the 

weak form equation and can now be filled in: 

 

∫ θ̅,𝑥  𝐸𝐼θ,𝑥𝑑Ω
Ω

− ∫ θ̅𝐺𝐴𝑠(𝑣,𝑥 − 𝜃)𝑑Ω
Ω

+ ∫ �̅�
ΓM

𝑇 𝑑Γ = 0 (2.2.15) 

−∫ �̅�,𝑥 𝐺𝐴𝑠(𝑣,𝑥 − 𝜃)𝑑Ω
Ω

+ ∫ �̅�
ΓQ

𝐺𝐹𝑦 𝑑Γ + ∫ �̅�𝑓𝑦𝑑Ω
Ω

= 0 (2.2.16) 

 

Because the derivatives are of the first order, linear shape functions can be used. The variable 

displacements and rotations of (2.2.15) and (2.2.16) are discretized by a vector of shape functions and 

a vector which describes the nodal displacements. These nodal displacements are the displacements 

that are sought in a finite element scheme. 

 

𝑣 = 𝑵𝑣𝒂𝑒
𝑣  ;   𝜃 = 𝑵𝜃𝒂𝑒

𝜃  ;   �̅� = 𝑵𝑣𝒃𝑒
𝑣  ;   �̅� = 𝑵𝜃𝒃𝑒

𝜃 (2.2.17) 

 

The relation 𝑵,𝑥 = 𝑩 is used. By filling in these shape functions: 

 

∫ 𝑩𝜃𝑇
 𝐸𝐼𝑩𝜃𝑑Ω

Ωe

𝐚e
θ + ∫ 𝑵𝜃𝑇

𝐺𝐴𝑠𝑵
𝜃𝑑Ω 𝐚e

𝜃

Ωe

− ∫ 𝑵𝜃𝑇
𝐺𝐴𝑠𝑩

𝑣𝑑Ω 𝐚e
𝑣

Ωe

= −∫ 𝑵𝜃𝑇

ΓeM

𝑇 𝑑Γ (2.2.18) 

∫ 𝑩𝑣𝑇 𝐺𝐴𝑠𝑩
𝑣𝑑Ω 𝐚e

v

Ωe

− ∫ 𝑩𝑣𝑇 𝐺𝐴𝑠𝑵
𝜃𝑑Ω 𝐚e

θ

Ωe

= ∫ 𝑵𝑣𝑇

Γe,Q

𝐹𝑦 𝑑Γ + ∫ 𝑵𝑣𝑇𝑓𝑦𝑑Ω
Ωe

(2.2.19) 

 

Now this can be assembled in a matrix-vector representation: 

 

[𝒌
𝜃𝜃 𝒌𝜃𝑣

𝒌𝑣𝜃 𝒌𝑣𝑣
] [ 𝒂

𝜃

𝒂𝑣] = [
𝒇𝜃

𝒇𝑣
] (2.2.20) 

 

With: 

 

𝒌𝜃𝜃 = ∫ 𝑩𝜃𝑇
 𝐸𝐼𝑩𝜃𝑑Ω

Ωe

+ ∫ 𝑵𝜃𝑇
𝐺𝐴𝑠𝑵

𝜃𝑑Ω
Ωe

(2.2.21𝑎) 
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𝒌𝜃𝑣 = −∫ 𝑵𝜃𝑇
𝐺𝐴𝑠𝑩

𝑣𝑑Ω 
Ωe

(2.2.21𝑏) 

𝒌𝑣𝜃 = −∫ 𝑩𝑣𝑇 𝐺𝐴𝑠𝑵
𝜃𝑑Ω 

Ωe

(2.2.21𝑐) 

𝒌𝑣𝑣 = ∫ 𝑩𝑣𝑇
 𝐺𝐴𝑠𝑩

𝑣𝑑Ω 
Ωe

(2.2.21𝑑) 

𝒇𝜃 = −∫ 𝑵𝜃𝑇

ΓeM

𝑇 𝑑Γ (2.2.21𝑒) 

𝒇𝑣 = ∫ 𝑵𝑣𝑇

Γe,Q

𝐹𝑦 𝑑Γ + ∫ 𝑵𝑣𝑇𝑓𝑦𝑑Ω
Ωe

(2.2.21𝑓) 

 

As an example, with one-point numerical integration, the stiffness matrix looks like: 

 

𝑲 =

[
 
 
 
 
 
 
 

𝐸𝐼

𝐿
+

𝐺𝐴𝑠𝐿

4
−

𝐸𝐼

𝐿
+

𝐺𝐴𝑠𝐿

4

𝐺𝐴𝑠

2
−

𝐺𝐴𝑠

2

−
𝐸𝐼

𝐿
+

𝐺𝐴𝑠𝐿

4

𝐸𝐼

𝐿
+

𝐺𝐴𝑠𝐿

4

𝐺𝐴𝑠

2
−

𝐺𝐴𝑠

2
𝐺𝐴𝑠

2

𝐺𝐴𝑠

2

𝐺𝐴𝑠

𝐿
−

𝐺𝐴𝑠

𝐿

−
𝐺𝐴𝑠

2
−

𝐺𝐴𝑠

2
−

𝐺𝐴𝑠

𝐿

𝐺𝐴𝑠

𝐿 ]
 
 
 
 
 
 
 

(2.2.22) 

 

2.2.2 Nonlinear finite element method 
Structural behavior can roughly be divided in two categories: linear behavior and nonlinear behavior. 

Linear behavior is a simplified model of material behavior and a good approximation in the case of 

small deformations and rotations or infinitesimal strains, i.e. cases in which the relations between the 

stresses and the strains are linear. This also implies that on material level, no yielding may occur. In 

the case of linear elastic behavior, the stiffness matrix 𝑲, which describes the relation between the 

forces and the displacements, is constant. The result is that for every load in the linear elastic region, 

the corresponding displacement can be found instantly. Because of the latter, linear finite element 

analyses have very fast calculation times. Also, the principal of superposition can be used.  

In contrast to the linear relations in the linear finite element equations, the nonlinear finite element 

method is far more challenging. Nonlinearities have different causes. In structural mechanics, the most 

common ones are geometric nonlinearities and material nonlinearities. 

 

2.2.2.1 Geometric nonlinearity 

In the most common cases, the changes in geometry as a result of deformations are not taken into 

account in the relation between the deformations and the strains. This is often a valid approximation, 

because for most problems in civil engineering, the strains are small and therefore the use of complex 

relations between displacements and strains have almost no added accuracy, while they make the 

calculations far more difficult. There are often many examples for which this approximation does not 

hold. A well-known example is a cable structure, the geometry changes for different loading 

conditions. Also buckling of a column is a well-known example of nonlinear behaviour, where the 

deformations result in higher order forces, which change the force-displacement relations. 

Measurements to take these problems into account are different formulations of stresses and strains 

and to update these relations during loading. Commonly, the Green-Lagrange strain tensor is used 
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instead of the engineering strain. Also, stresses can be represented by the second Piola-Kirchhoff stress 

tensor which plots the stresses in the fibre direction instead of the Cauchy stress tensor.  

 

2.2.2.2 Material nonlinearity 

A material nonlinearity occurs when a material is loaded by its yield strength for some time. When this 

occurs, depending on the material, cracks and permanent deformations or rotations can occur. 

Material nonlinearities occur in the constitutive equations, which describe the behavior of the 

material, the stress-strain relations.  

Material behavior can be described by yield functions. Well-known yield functions are the Mohr-

Coulomb yield function for soils and the Von Mises yield function (Figure 2.8) for steel. A yield function 

gives a combination of principal stresses for which plasticity 

will occur. These combinations are bounded by the yield 

surface. Hardening and softening (cracking) of materials can 

be described by expanding and shrinking yield functions.  

Because the relation between stresses and strains changes in 

the case of plasticity, the stiffness matrix 𝑲 has to be 

updated during the calculation. The calculations are 

therefore done with an incremental approach. The load or 

displacement is added in small steps. 

The incremental approach is explained in the next section. 

 

2.2.2.3 Incremental iterative approach 

The easiest way to do an incremental procedure is to split the force of equation 2.2.1 in an internal 

part and an external part. In an equilibrium point the external load equals the internal load: 

 

𝒇𝑖𝑛𝑡
𝑡 = 𝒇𝑒𝑥𝑡

𝑡 (2.2.23) 

 

A load increment is applied: 

 

𝒇𝑒𝑥𝑡
𝑡+Δ𝑡 − 𝒇𝑒

𝑡 = Δ𝒇𝑒 (2.2.24) 

 

The current stiffness matrix, which is derived by linearizing the stress-strain relations in the equilibrium 

point, is used to calculate the corresponding displacement increment: 

 

Δ𝒂 = 𝑲−1(𝒇𝑒𝑥𝑡
𝑡+Δ𝑡 − 𝒇𝑖

𝑡) (2.2.25) 

 
After the load step, the new tangent stiffness matrix is calculated and the procedure continues.  
Unfortunately, this method has a downside that there is no control mechanism. Because the nonlinear 
stress-strain and displacement-strain relations are linearized, the solution with this algorithm, drifts 
away from the real solution (Figure 2.9). 

Figure 2.8; Von Mises Yield surface [27] 
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This can be overcome by adding iterations in the calculation procedure. A common way to do this is 
by using a Newton-Raphson procedure. The procedure is visible in Figure 2.10. 
In this way the error is calculated after every load step and a better estimation is made until the error 
is sufficiently small. This results in an accurate estimation of the load-displacement relation. 
 
The procedure starts with the displacement and force at the beginning from which the stress and strain 
are derived. The relation between the stress and the strain determines the tangent stiffness operator 
𝑲. A force increment is added from which the displacement increment is calculated: 
 

Δ𝒂𝟏 = (𝑲0)−1(𝒇𝑒𝑥𝑡
𝑡 + Δ𝒇𝑒𝑥𝑡 − 𝒇𝑖𝑛𝑡

0 ) (2.2.26) 

 
With the kinematic and constitutive relations, the strains and stresses are calculated from the 
displacement increments. 
The new stress is given as: 

 

𝝈𝟏 = 𝝈0 + 𝛥𝝈1 (2.2.27) 

 

With this stress, the new internal force in this load step is calculated. 

 

𝒇𝑖𝑛𝑡
1 = ∫ 𝑩𝑇𝝈𝟏𝑑𝑉

𝑉

(2.2.28) 

 

With the new found internal force, an equilibrium check can be done by calculating the difference 

between the internal force and the external force: 

 

𝒓𝟏 = 𝒇𝑒𝑥𝑡
𝑡 + Δ𝒇𝑒𝑥𝑡 − 𝒇𝑖

1 (2.2.29) 

 

First the new tangent stiffness operator is calculated with the new stresses and strains. After this, the 

new variation of the displacement is calculated: 

 

𝒅𝒂2 = (𝑲1)−1𝒓1 (2.2.30) 

 

The displacement increment is updated. From this increment the new strains and stresses are 

calculated: 

 

Δ𝒂2 = Δ𝒂1 + 𝒅𝒂2 (2.2.31) 

𝝈2 = 𝝈0 + Δ𝝈2 (2.2.32) 

 

Figure 2.9; Drifting tendency of a purely incremental approach [13] 
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From the new stresses the new internal force and unbalance is calculated: 

 

𝒇𝑖𝑛𝑡
2 = ∫ 𝑩𝑇𝝈𝟐𝑑𝑉

𝑉

(2.2.33) 

𝒓2 = 𝒇𝑒𝑥𝑡
1 + Δ𝒇𝑒𝑥𝑡 − 𝒇𝑖𝑛𝑡

2 (2.2.34) 

 

Now a convergence criterion is needed to determine if the solution is accurate enough. An often-used 

force convergence criterion is based on the 𝐿2-norm of the force vectors.  

 

‖𝒇𝑒𝑥𝑡 − 𝒇𝑖𝑛𝑡,𝑗‖2
≤ 𝜖 × ‖𝒇𝑒𝑥𝑡 − 𝒇𝑖𝑛𝑡,1‖2

(2.2.35) 

 

In words, convergence is reached when the difference between the 𝐿2-norm of the external force 

minus the internal force of iteration 𝑗 is smaller than a certain convergence tolerance 𝜖 times the 𝐿2-

norm of the external force minus the internal force of the first iteration. The convergence tolerance is 

commonly set on 𝜖 = 10−3. Important to notice is that the criterion is relative, as it is calculated on 

the unbalance of the first iteration. The accuracy of the first iteration is therefore important. Also, the 

value of the convergence tolerance is important. When the tolerance is too low, the solution is 

probably not accurate. A tolerance which is too high results in long calculation times with negligible 

increase in accuracy [13]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

In the regular Newton-Raphson iterative approach. The tangent stiffness matrix is updated every 

iteration. This is not necessary. There are different schemes in which the tangent stiffness matrix is 

updated only at the beginning of a load increment (Modified Newton-Raphson), or a scheme where 

the linear elastic tangent stiffness matrix is used in every load step. 

The advantage is that the tangent stiffness matrix does not have to be calculated every iteration, which 

saves calculation time at this point. A disadvantage is that the estimated displacement becomes worse 

which results in more iterations. Depending on the situation, it could reduce the calculation time. 

 

  

Figure 2.10; Newton-Raphson incremental iterative approach [13] 
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2.2.2.4 Difficulties in the incremental iterative approach 

While the incremental iterative approach seems robust, there are enough examples where issues 

occur and different solution techniques have to be used.  

An example of a situation where difficulties occur is in the case of snap-through behavior (Figure 2.11). 

The procedure explained in the previous section is force controlled as a force increment is added every 

load step. This results in a singular stiffness matrix and therefore divergence when a peak load is 

reached, because no intersection with the external force is found. This is of course, because there is 

none. A solution for this problem is by using a displacement-controlled analysis. The displacement 

vector is split into two parts, one part with displacements that have to be calculated and a part with 

displacements that have been assigned with a certain displacement. The tangent stiffness matrix is 

therefore also composed in four parts. Therefore, a smaller part of the stiffness matrix is used to 

calculate the wanted displacements, which leads to a better conditioned stiffness matrix. 

 

[
𝑲𝑓𝑓 𝑲𝑓𝑝

𝑲𝑝𝑓 𝑲𝑝𝑝
] [

Δ𝒂𝑓

Δ𝒂𝑝
] = −𝒇𝑖𝑛𝑡,0 (2.2.36) 

 

Δ𝒂𝑓,1 = −𝑲𝑓𝑓
−1(𝑲𝑓𝑝Δ𝒂𝑝 + 𝒇𝑖𝑛𝑡,0) (2.2.37) 

 

Although, the snap-through behavior can be calculated with this approach, the snap-back behavior of 

Figure 2.12 still results in a singular matrix and therefore divergence. This behavior can be calculated 

with the use of a path-following technique. The arc-length control technique is mostly used in this case. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11; Divergence for snap-through behavior [13] 

Figure 2.12; Divergence for snap-back behavior [13] 
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In an acr-length controlled analysis, instead of prescribing a force or a displacement, the norm of the 

increment in the load-displacement curve is prescribed (Figure 2.13). The size is chosen during the 

increment. The incremental external force is scaled with a load factor Δ𝜆𝑖. Equation (2.2.25) can be 

written as: 

 

𝛥𝒂𝑗+1 = 𝑲𝑖
−1(𝛥𝜆�̂�𝑒𝑥𝑡 + 𝒇𝑒𝑥𝑡

𝑡 − 𝒇𝑖𝑛𝑡,𝑗) (2.2.38) 

 

The displacement is cut in two parts, one part which is calculated from the initial forces. The second 

part is from the external load component. The total displacement vector can be calculated with 

equation (2.2.40). 

 

𝑑𝒂𝒋+𝟏
𝐼 = 𝑲−1(𝒇𝑒𝑥𝑡

𝑡 − 𝒇𝑖𝑛𝑡,𝑗) (2.2.39) 

 

𝑑𝒂𝑗+1
𝐼𝐼 = 𝑲−1�̂�𝑒𝑥𝑡 (2.2.40) 

 

𝑑𝒂𝑗+1 = 𝑑𝒂𝑗+1
𝐼 + Δ𝜆𝑗+1𝑑𝒂𝑗+1

𝐼𝐼 (2.2.41) 

 

In this analysis, the scalar load increment factor Δ𝜆 is an extra variable. It is calculated by using the 

Euclidean norm, which stays constant during the load step: 

 

Δ𝒂𝑗+1
𝑇 Δ𝒂𝑗+1 + 𝛽2Δ𝜆𝑗+1

2 �̂�𝑒𝑥𝑡
𝑇 �̂�𝑒𝑥𝑡 = Δ𝑙2 (2.2.42) 

 

In equation (2.2.42), the weight factor β and the length of the equilibrium path Δ𝑙 are user-specified.  

In this case, the arc length method uses a circular method to calculate the next load step. This can be 

simplified by linearizing the incremental displacement and the load factor. This is made visible in Figure 

2.13. 

 

Δ𝒂𝑗+1
𝑇 Δ𝒂𝑗+1 = Δ𝒂𝑗

𝑇Δ𝒂𝑗+1 (2.2.43) 

 

Δ𝜆𝑗+1
2 =  Δ𝜆𝑗Δ𝜆𝑗+1 (2.2.44) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.13; Circular and linearized constraint conditions [13] 
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Although the arc-length method can overcome snap-back behaviour. The incremental iterative 

approach is still very sensible for convergence errors. Great skills and practise are needed to find the 

correct results and validate that this is the case. Especially in the case of brittle materials, like masonry 

or concrete, several cracks can occur in a single increment. This can lead to drops in strength that even 

the arc-length method cannot calculate. The method is in those cases not very robust. Other proposals 

exist of different methods which are more robust. One example is the sequentially linear analysis which 

will be used in this research. In the next section, this method will be explained. 
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2.3 The sequentially linear Analysis 
 

Nonlinear numerical computations to calculate the strength of structures are popular. Especially in the 

case where the ultimate strength of for example old structures, that possibly do not meet the 

requirements we demand of structures these days, is investigated. In those cases, a nonlinear finite 

element analysis can possibly proof that a building which does not meet the requirements of the design 

codes is still strong enough. 

Naturally, a computational method must be reliable. The results should be correct and issues in the 

method must be avoided. A very popular method is an incremental iterative technique. In these 

methods, an increment is added to a parameter, for instance the load, and with the help of an iterative 

scheme, the corresponding displacements are found. Most of the times a Newton-Raphson scheme is 

used, like explained in the previous section.  Although these methods can give good results, they often 

suffer from convergence issues especially in the case of very brittle materials like concrete or masonry.  

These convergence issues mainly occur due to snap-through and snap-back behavior where the 

numerical method cannot follow the path, because of convergence issues on element level. These 

issues are occurring because of ill-conditioned matrices in post-peak behavior. This can lead to results 

that cannot be trusted. Users have to be very skillful to obtain sound results and different advanced 

techniques like the path finding technique arc-length control are required. 

A finite element technique that can avoid these convergence issues would be very helpful. 

In 2001, Rots [14] proposed a new technique as a solution to this problem. This technique is called the 

sequentially linear analysis (SLA). The basis of this technique is a stepwise degradation of the material. 

Instead of load increments, damage increments are taken. 

The load on the structure is scaled in a linear elastic calculation. In the first integration point were a 

limit point is reached, the stiffness is reduced with the help of a stepwise secant material law or saw-

tooth law. This is repeated again and again until in theory all integration points are totally damaged, 

but in practice, often a maximum number of steps is defined.  

 

2.3.1 Theory 
As told before, although there are good iterative incremental approaches, there is no method that is 

unconditionally stable. The reasons for this are mostly convergence issues with crack opening in 

concrete or masonry structures.  

The sequentially linear analysis procedure is based on the idea of reduced stiffness in the area where 

the material cracks. The reducing of the stiffness is automated 

in the procedure [1]. When an element reduces in stiffness 

due to a crack, the material has to redistribute the stresses, 

which results in a new situation. Only one element can be 

broken per cycle.  

 

A characteristic of the sequentially linear analysis is the 

stepwise secant material law. This material law is a stepwise 

approximation of the nonlinear constitutive relation between 

the stresses and strains in a material.  

  

Figure 2.14; A stepwise secant material law [1] 
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In a linear elastic material, the relation between the principle stresses and principle strains can be 

described by Hook’s law: 

 

𝜎 = 𝐸𝜖 (2.3.1) 

 

The reduced stiffness means that the elasticity of 

the material will decrease in a stepwise manner. 

This is visible in the figure above by the slopes of 

the saw teeth. The linear continous softening curve 

is approximated by the toothed material law. 

When the relation between the Young’s modulus 

and the strain is plotted, a relation like in Figure 

2.15 appears.  

In this graph, it is visible that for certain strain 

levels, the Young’s modulus drops in a stepwise 

manner. In this way, it approaches the nonlinear 

continious curve.  

The secant stiffness can be written as a degrading 

function with a discrete damage parameter: 

 

𝐸 = (1 − 𝑑)𝐸0 (2.3.2) 

 

With 𝑑 the damage parameter between 0 and 1, 𝐸0 the initial Young’s modulus.  

An important thing to notice is that the unloading is in a secant manner instead of in an elastic manner. 

According to Van de Graaf [1] this is not problematic for elasto-plastic materials in monotonic loading, 

because unloading occurs only locally.  

 

The procedure works by the following steps [14]: 

First the external load is added as a unit load, a critical element is found where the stress is closest to 

the yield strength. The critical global load is calculated by dividing the strength over the stress and 

multiplying that factor with the unit load. Calculate the displacement of this load. 

Reduce the stiffness of the critical element to the next step in the stepwise material law. 

Run the whole procedure again until a maximum number of steps has been passed. But other abort 

criterions are also possible, like a maximum deflection or when certain elements are cracked. Plot the 

results of the loads and displacements. 

In other procedures, the critical multiplier 𝜆 is calculated for every integration point as: 

 

𝜆𝑐𝑟𝑖𝑡;𝑖 =
𝑓𝑖
𝜎𝑖

(2.3.3) 

 

The smallest 𝜆𝑐𝑟𝑖𝑡 leads to the smallest critical load for which a crack appears and is therefore the 

multiplier sought. At that location, the damage will occur first. By following this algorithm, the 

procedure has an event-by-event strategy.  

 

  

Figure 2.15;Relation Young's modulus and strain [1] 
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2.3.2 Proportional and non-proportional loading 
To successfully run an analysis, a difference has to be made between proportional and non-

proportional loading. If loads are proportional, they increase and decrease with the same factor in 

every step. In a realistic situation, most loads are not proportional. For example, the self-weigh of a 

structure can often be regarded as constant, while the life load is variable. In a sequentially linear 

analysis, these load cases have to be held separate, because the load multiplier 𝜆  cannot be applied 

to all loads as this would result in proportional scaling. Several solutions of this problem are proposed 

in [1]. One of them will be explained here. 

Every analysis step begins with considering the initial non-proportional load with load multiplier 𝜆𝑖𝑛𝑖 

only. First 𝜆𝑖𝑛𝑖 is scaled until an integration point comes in a critical state. If this happens for 𝜆𝑖𝑛𝑖 < 1, 

critical points occur before the full initial load is applied. In this case, the non-proportional load is 

applied in a proportional way until the full initial load is applied (𝜆𝑖𝑛𝑖 = 1), then the second part starts. 

When 𝜆𝑖𝑛𝑖 ≥ 1 after the first step, no damage is initiated and the second part starts i.e. the initial load 

stage has ended. In the next part, the non-proportional load and the proportional load are combined 

with two different load multipliers: 𝜆𝑖𝑛𝑖 and 𝜆𝑟𝑒𝑓.  

In general cases the following equation can be stated: 

 

𝑭𝑐𝑟𝑖𝑡
𝑗

= 𝜆𝑖𝑛𝑖
𝑗

𝑭𝑖𝑛𝑖 + 𝜆𝑟𝑒𝑓
𝑗

𝑭𝑟𝑒𝑓    𝑤𝑖𝑡ℎ 𝜆𝑖𝑛𝑖
𝑗

= 1 𝑎𝑛𝑑 𝜆𝑟𝑒𝑓
𝑗

= 𝜆𝑐𝑟𝑖𝑡
𝑗 (2.3.4) 

 

Speaking in the global stress relations, the global stresses are calculated as a sum of the stresses as a 

result of the constant initial load and the stresses by the proportional load [15]. In plane stress 

conditions, this is relatively easy as a direct solution method is available for the principal shear stress: 

 

𝜎𝑥𝑥 = 𝜎𝑥𝑥,𝑐 + 𝜆 ∗ 𝜎𝑥𝑥,𝑣 (2.3.5𝑎) 

 

𝜎𝑥𝑥 = 𝜎𝑥𝑥,𝑐 + 𝜆 ∗ 𝜎𝑥𝑥,𝑣 (2.3.5𝑏) 

 

𝜎𝑥𝑦 = 𝜎𝑥𝑦,𝑐 + 𝜆 ∗ 𝜎𝑥𝑦,𝑣 (2.3.5𝑐) 

 

𝜎(1,2)(𝜆) =
1

2
(𝜎𝑥𝑥 + 𝜎𝑦𝑦) ± √

1

4
(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ 𝜎𝑥𝑦

2 (2.3.5𝑑) 

 

At a certain analysis step, a situation can occur that no critical load multiplier 𝜆𝑐𝑟𝑖𝑡
𝑗

 can be found. This 

is the case when the initial load already violates the yield criterion in this step. Two strategies can be 

applied at this point. The first strategy (a) reduces the proportional part to 0, and searches for a critical 

load multiplier for the initial load only. The second strategy (b) works in a different manner. This 

strategy involves temporarily solving the following equation: 

 

𝑭𝑐𝑟𝑖𝑡
𝑗

= �̅�𝑐𝑟𝑖𝑡
𝑗

𝑭𝑐𝑟𝑖𝑡
𝑗−1

+ �̅�𝑟𝑒𝑓
𝑗

𝑭𝑟𝑒𝑓 (2.3.6) 

 

With: 

 

�̅�𝑐𝑟𝑖𝑡
𝑗

= 1      𝑎𝑛𝑑    �̅�𝑟𝑒𝑓
𝑗

= 𝜆𝑐𝑟𝑖𝑡
𝑗 (2.3.7) 
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In this case, the new reference load is not scaled from the initial load, but directly from the last 

iteration. This has the result that the same ratio between the initial load and the proportional load is 

kept before applying the new reference load. The advantage will be explained later. 

When a failure point occurs without a fully applied initial load, the following conditions are adapted: 

 

�̅�𝑐𝑟𝑖𝑡
𝑗

= 𝜆𝑐𝑟𝑖𝑡
𝑗

      𝑎𝑛𝑑    �̅�𝑟𝑒𝑓
𝑗

= 0 (2.3.8) 

 

Now, the initial load and the reference load are scaled until a failure point occurs. Again, the difference 

in this method is that both the initial load and the proportional load are reduced with the same ratio 

as in the previous step. This is made visible in Figure 2.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The big advantage of the second method is that the ratio between the initial load and the proportional 

load stays the same. The first method has as disadvantage that in the situation that the initial load is 

reduced, cracks will occur because of this load only. These cracks can therefore occur at places which 

are not correct. Therefore, the second method is preferred. 

 

2.3.3 Stepwise secant material laws 
The improved band width ripple concept as derived by Van de Graaf [1] will be explained. This method 

is chosen, because it is the recommended method. The original idea of the band width ripple concept 

was found by Rots. In the figure below, the continuous softening curve is banded by two dashed lines. 

Figure 2.16; Visual explanation of the two double load multiplier strategies (a) and (b) for three analysis 
steps. Above are normal iterations, below iterations where the full initial load cannot be applied [1] 
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The band is shifted with 𝑝𝑓𝑡 to the positive and negative vertical direction. This band has therefore a 

width of 2𝑝𝑓𝑡. The material law can be set up by switching from the uplifted curve to the curve which 

is lifted down and back. First, the current stiffness 𝐸 is used to determine the intersection with the 

uplift curve. The corresponding strength and strain are calculated, 𝑓𝑡,𝑘
+  and 𝜖𝑘. From here, the lower 

bound is found: 

 

𝑓𝑡,𝑘
− = 𝑓𝑡,𝑘

+ − 2𝑝𝑓𝑡 (2.3.9) 

 

 

And from there the new stiffness is found: 

 

𝐸𝑘+1 =
𝑓𝑡,𝑘

−

𝜖𝑘

(2.3.10) 

 

This procedure is aborted when the stiffness 𝐸 becomes negative. For difficult not explicit softening 

tails, the strain can be calculated in an iterative way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This method is improved because there was still not a fracture energy invariant saw-tooth law.  

Especially for nonlinear softening curves, the triangles of the overpredictions and underpredictions are 

not equal.  

 

The improvement is in the fact that when the shifts are not equal but scaled, the net over and 

underprediction can be nil. In this approach, the upper curve is shifted with 𝑝1𝑓𝑡 and the lower curve 

with 𝑝2𝑓𝑡. Van de Graaf stated two requirements [1]: 

1. The area enclosed by the saw-tooth law (which represents the amount of dissipated energy) 

should be equal to the area enclosed by the base material law.  

2. The ultimate strain of the saw-tooth law should be equal to the ultimate strain of the base 

material law. 

 

The iterative procedure is explained below: 

First, the band width parameters 𝑝1 and 𝑝2 are estimated. After this, the teeth of the stepwise secant 

material law are calculated in the same manner as in the previous method.  

In the next step, the energy dissipation and the ultimate strain are calculated: 

 

Figure 2.17; Band width ripple concept with linear (left) and nonlinear (right) softening [1] 
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(
𝐺𝑓

𝐼

ℎ
)

∗

=
1

2
𝜖𝑁𝑝1𝑓𝑡 + ∑

1

2
 𝜖𝑘(𝑝1 + 𝑝2)𝑓𝑡

𝑁−1 

𝑘=1

(2.3.11) 

 

With the first term, the area of the last triangle and the second term, the area of the triangle couples. 

 

𝜖𝑢
∗ = 𝜖𝑁 (2.3.12) 

 

Now there is a final check, whether the energy dissipation is small enough: 

 

1 −

𝐺𝑓
𝐼

ℎ∗

𝐺𝑓
𝐼

ℎ

   <  𝜖𝑡𝑜𝑙 (2.3.13) 

(1 −
𝜖𝑢

∗

𝜖𝑢
)
2

+ (
𝜎𝑢

∗

𝑓𝑡
)
2

< 𝜖𝑡𝑜𝑙 (2.3.14) 

 

The rest of the algorithm makes use of the smeared crack model. In the smeared crack model, cracks 

are smeared out over the area that belongs to an integration point. Smeared cracking has the 

advantage that cracks can occur everywhere in the material. With a discrete crack model, the cracks 

are predefined with interface elements. For a smeared crack model, the direction of the crack is free. 

The direction of the crack is perpendicular to the direction of the principal tensile stress. 

A crack cooridnate system can be defined with crack axes 𝑛 and 𝑡. 𝑛 is the axis normal to the crack, 

while the 𝑡-axis is in the tangential direction. This coordinate system is fixed at that point, therefore 

this approach is called the fixed crack approach. 

Now plane stress conditions are used to derive the constitutive relations between stresses and strains: 

 

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

] =
𝐸0

1 − 𝜈0
2 [

1 𝜈0 0
𝜈0 1 0

0 0
1 − 𝜈0

2

] [

𝜖𝑥𝑥

𝜖𝑦𝑦

𝛾𝑥𝑦

] (2.3.15) 

 

The smeared crack model which will be used, is now derived according to [1]. 

A crack occurs when somewhere in the material, the principal stress 𝜎1 equals the tensile strength 𝑓𝑡. 

When the material cracks, the constitutive relations are changed to implement the reduced stiffness. 

Two augmented Young’s moduli tangential to the crack and perpendicular to the crack are introduced. 

Because the strains and stresses are also influenced by the Poisson’s ratio, this quantity has to be 

reduced as well.  

 

𝜈𝑡𝑛 =
𝜈0𝐸𝑛

𝐸0
        ;       𝜈𝑛𝑡 =

𝜈0𝐸𝑡

𝐸0

(2.3.16) 

 

The new constitutive relations become: 

 

[

𝜎𝑛𝑛

𝜎𝑡𝑡

𝜎𝑛𝑡

] =
1

1 − 𝜈𝑡𝑛𝜈𝑛𝑡
[

𝐸𝑛 𝜈𝑛𝑡𝐸𝑛 0
𝜈𝑡𝑛𝐸𝑡 𝐸𝑡 0

0 0 (1 − 𝜈𝑡𝑛𝜈𝑛𝑡)𝐺
] [

𝜖𝑛𝑛

𝜖𝑡𝑡

𝛾𝑛𝑡

] (2.3.17) 

 

Originally the shear modulus is represented as: 
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𝐺 = 𝛽𝐺0 = 𝛽
𝐸0

2(1 + 𝜈0)
(2.3.18) 

 

The shear modulus also has an augmented version. The reason is that in the fixed crack model, the 

principal directions can vary from the original direction at crack initiation. This can result in building 

shear stresses at the crack. The shear modulus is therefore represented as the result of the smallest 

Young’s modulus and Poisson’s ratio: 

 

𝐺 =
𝐸𝑚𝑖𝑛

2(1 + 𝜈min)
 (2.3.19) 

 

𝐸𝑚𝑖𝑛 = min(𝐸𝑛, 𝐸𝑡)     𝑎𝑛𝑑      𝜈𝑚𝑖𝑛 = min(𝜈𝑡𝑛, 𝜈𝑛𝑡) (2.3.20) 

 

 

A disadvantage of the smeared crack model is that the crack is a function of the element dimensions.  

The crack band width ℎ is an important parameter used in those relations. 

 

ℎ = √2𝐴      𝑜𝑟     ℎ = √𝐴 (2.3.21) 

 

This relation holds for linear and higher order elements respectively, with 𝐴 the area of the element. 

Along with the crack opening 𝑤, the crack extensional strain 𝜖𝑐𝑟 can be described as: 

 

𝜖𝑐𝑟 =
𝑤

ℎ
(2.3.22) 

 

The total strain can be described as the sum of the elastic strain and the crack strain: 

 

𝜖𝑘 = 𝜖𝑒𝑙 + 𝜖𝑐𝑟 (2.3.23) 

 

𝑤𝑖𝑡ℎ    𝜖𝑒𝑙 =
𝜎

𝐸0
 (2.3.24) 

 

Different relations between the crack stress and the crack strain can be set up. In [1], the linear, 

exponential and nonlinear relations are shown. Important points in those relations are the crack strain 

𝜖𝑐𝑟 = 0 when 𝜎 = 𝑓𝑡 and 𝜎 = 0 when 𝜖𝑐𝑟 = 𝜖𝑢
𝑐𝑟.  

 

Back to the improved band width model. The raised stress can be calculated with the strain from the 

equation above: 

 

𝑓𝑡,𝑘
+ = 𝐸𝑘𝜖𝑘 (2.3.25) 

 

This limit is compared with the limit from the saw tooth diagram: 

 

𝑓𝑡,𝑘
+ = 𝜎𝑘 + 𝑝1𝑓𝑡 (2.3.26) 

 

When the difference is smaller than a predefined tolerance, this strain is used to calculate the new 

stiffness: 
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𝐸𝑘+1 =
𝑓𝑡,𝑘

+ − Δ𝜎𝑘

𝜖𝑘

(2.3.27) 

with  

Δ𝜎𝑘 = {
(𝑝1 + 𝑝2)𝑓𝑡         if 0 ≤ 𝑘 < 𝑁

𝑝1𝑓𝑡            if 𝑘 = 𝑁
(2.3.28) 

 

2.3.4 Current state of the art, simulating brittle failure 
One of the last examples of studying the brittle failure of masonry walls and structures with a 

sequentially linear analysis is done by Anne van de Graaf in his PhD research in 2017 [1]. 

Among other numerical analyses, an analysis was performed on a masonry façade. The model is visible 

in Figure 2.18. A macro-modelling approach is applied with plane stress elements. The structure is 

subjected to self-weight, several nodal forces and a support settlement. The façade has a clamped 

support at the right corner and two vertical supports in the middle and at the left corner. 

First the self-weight and nodal forces are applied as a non-proportional load. Next, a settlement is 

applied the left support as a proportional load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first thing to mention is the importance of a criterion for the initial non-proportional load. In this 

example, there were 2478 steps needed before the non-proportional load was fully applied. This 

means that there were already many micro-cracks at the end of this load phase. The value of the load 

multiplier has to reach a value of 1 before the proportional load can be applied, because else the 

structure already failed because of the non-proportional load. In the case of proportional loading, the 

global load multiplier is of importance. Sometimes in the analysis, the program reduces the initial load 

because the structure is not able to bear the proportional load and the initial load at that time. With a 

reduction of the initial load, the next weakest integration point can still be found and after several 

Figure 2.18; Masonry facade model of Van de Graaf [1] 
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steps, the program can increase the initial load multiplier to a value of 1. However, this temporary 

reduction should not become too large and not for too many steps. For example, when the value of 

the global load multiplier 𝜆𝑔𝑙𝑜𝑏𝑎𝑙 < 0.3, the structure can be regarded as failed, because in the case of 

self-weight, the structure is not able to bear 0.3 of its own weight. 

Also, the number of saw-teeth and the mesh size attributes to this behavior.  

 

Another interesting type of behavior was found in the rightest pier of the lowest row. This pier behaved 

differently compared with other piers. In most piers, a crack opened and the crack width increased 

during the analysis. At this location, a crack opened, but closed after several analysis steps. The tension 

load that was previously in the pier, transformed into a compressive load. While this crack closure 

behavior is realistic in real life, it caused problems in the sequentially linear analysis procedure. The 

crack occurred because of the settlement of the support, the crack occurred because of a positive 

strain at that point in the cross-section. Several steps later, the positive strain is transformed into a 

negative strain which indicates compression and a crack closure. Because a crack occurred at this 

location, the damage variable was around the value of 1, which means that the stiffness is around 0. 

Therefore, the negative strain that occurred later, did not result in a compression stress, while that 

should be the case as a cracked cross-section can still transfer compressive stresses. Although the 

sequential linear analysis was able to give a robust simulation of the behavior of the structure, this 

crack closure problem has to be solved in order to make the behavior more accurate and realistic.  

 

2.3.4.1 New developments for non-proportional loading 

In section 2.3.3, an introduction was given to different types of non-proportional loading. As non-

proportional loading in a sequentially linear analysis is still difficult to handle, new techniques to solve 

this problem are briefly mentioned here. 

The techniques for SLA described early, all follow the classical load-unload (L-U) method. As explained 

before, in each analysis step, the structure is fully unloaded and reloaded. This is the case for the non-

proportional load and the proportional load. This method is simple and robust as every analysis step is 

separate. A disadvantage is that it implies that the structure distributes the unbalanced forces as a 

result of the damage very fast over the whole structure, while the material neighboring the crack has 

an infinitely slow relaxation time [16]. In reality it is often visible that damage in a structure leads to 

damage in neighboring elements due to load increase as a result of the initial damage. This can be 

missed by applying the L-U method as the structure is immediately unloaded. 

A different proposed solution for the use of non-proportional loading is suggested by Eliáš [17], which 

is called the force release (F-R) method. This is the opposing method of the L-U method as it forces the 

structure to redistribute the unbalanced forces (Δ𝜎(𝑆)) as a result of the crack, in the neighboring 

elements or nodes. 

Each time damage occurs, the unbalanced forces are added to the structure in the neighboring 

elements. It is possible that these elements are able to carry this extra force. Then the next step is 

initiated. If the neighboring elements are not able to carry the load, another element is damaged and 

the new unbalanced forces are added. This process will continue until all unbalanced forces have 

disappeared and new equilibrium is found. Neighboring elements can break sequentially as a result of 

this knock-on effect, which is often realistic. A downfall of this approach in that this method is unable 

to describe snap-back behaviour. It has been proven in by Eliáš et al. [17] that the solutions of the 

schemes L-U and F-R can be different even in the case of proportional loading. 

The F-R method and the L-U method are the extreme cases of a newer method called the general 

method, developed by Eliáš [16]. The general method is introduced as a method which combines both 

approaches. It introduces a parameter 𝜔 which can be set to find a balance between the L-U method 

and the F-R method. It is possible to simulate snap-back behaviour with this approach. 
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The unbalanced forces from the F-R method (Δ𝜎) are split up in two parts: 

 

Δ𝜎 = Δ𝜎(𝑆) + 𝜔Δ𝜎(𝐿) (2.3.29) 

 

In which Δ𝜎 is the external load, Δ𝜎(𝐿) is the external load increment and Δ𝜎(𝑆) are the unbalanced 

forces. When 𝜔 reaches high values for a positive or negative number, the redistribution is relatively 

slow compared to load changes [16].  

Figure 2.19 shows graphically the effect of the parameter 𝜔. When 𝜔 = 0. This means that the external 

load is kept constant and everything is redistributed. This is similar to the F-R method as all the residual 

forces are distributed in the neighboring elements. 

There exists a ratio for which the redistribution exactly finishes in the origin of the load-displacement 

coordinate system. This corresponds to point 𝐶. This is exactly the case in the L-U method, where the 

structure unloads every step. 

Further damage is not possible in this direction as the stresses decrease to zero for all integration 

points. The direction in this case is 𝜔(𝐶) = −𝛿𝐴/Δ𝛿(𝐿). The ratio between the current point in the load-

displacement graph and the current load.   

 

Currently, the research group of Pari, Rots and Hendriks developed a new method for non-proportional 

loading by reformulating the problem. The solution proposed should make it possible to do a non-

proportional sequentially linear analysis for a three-dimensional stress situation. Currently, this is 

further investigated. 

  

Figure 2.19; Possible directions of system response in force-deflection space during redistribution; Left: loading by a 
prescribed displacement, right: loading by a force. [16] 
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For plane stress situations it is easy to find the critical load multiplier as the global stresses can be 

constructed using relation (2.3.5𝑑). In a three-dimensional case, this is difficult as the eigenvalues of 

the stress tensor, with size (3𝑥3), are found using a cubic equation which cannot be solved directly. 

To solve this, the problem was reformulated as an optimization problem in [15]. The two-dimensional 

variant will be briefly described here. 

The normal stress on a plane is expressed as a function of the inclination of the plane to the reference 

axis with angle 𝜃 [15]. The load multiplier is a function of this angle (𝜆 = 𝑓(𝜃))  as a relation can be 

derived for the load multiplier as a function of the stresses on the rotated plane. 

When a minimum value of 𝜆(𝜃) is found, the corresponding value for 𝜃 will give the rotation to the 

cracked coordinate system (𝑛, 𝑡-coordinate system). As this function 𝜆(𝜃) is periodical, only one 

maximum and minimum can be found in every period which are the load factors corresponding to the 

largest positive stress and the largest minimum stress. These factors are found with an optimization 

algorithm with linear convergence and guaranteed stability.  

A single element test and a quasi-static pushover test on a masonry wall confirmed that this solution 

procedure is valid by comparing it with other non-proportional strategy tests. 

To extend this method to a three-dimensional case, some difficulties have to be solved. The 

optimization method will be with two variables which requires an advanced technique. Also, the 

reduction to one period is not possible, so it has to be made sure that the found maximum is a global 

maximum and not a local maximum [15].  
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2.4 Equivalent Frame Method 
 

The equivalent frame method is a model in which the computational time is reduced a lot compared 

to micro- and even macro-modelling. It is a simplification of structural components as an assemblage 

of numerically integrated beam elements.  

According to [2], the entire pier or spandrel is modelled as an inelastic element in which the sectional 

response is evaluated via a fiber discretization in which each fiber may follow a material uniaxial 

nonlinear stress-strain relation. Different types of these models are: Fiber Flexural Model (FFM) with 

a linear shear response (purely flexural response) and the Fiber Flexure – Lumped Shear model (FF-

LSM) in which the shear behavior is described as a nodal interface element placed between two nodes 

of adjacent elements. The shear behavior is modelled with an equivalent Coulomb-type criterion for a 

shear force limit. This chapter will mostly focus on the work done by Nobel [2] as this thesis will 

continue on his work.  

Important are the failure mechanisms of masonry piers as discussed in section 2.1.4: 

 

 

 

 

 

 

 

 

 

 

 

 

Rocking: Cracks start to propagate at the heel of the wall. Therefore, the force has to be carried by the 

compressive part, which is decreasing as cracks grow. This compressive part eventually crushes and 

the wall overturns.  

Shear sliding: A sliding plane develops because the horizontal shear resistance cannot withstand the 

lateral force. A horizontal tensile crack occurs in the bed joints. Sliding occurs for low vertical loads. 

Shear cracking: A diagonal zigzag pattern occurs between the bricks or through the bricks. This is 

dependent on the strength of the mortar, mortar-brick interface and the strength of the bricks.  

 

2.4.1 Theory of the model 
When a masonry building fails under seismic loading, a large part of the damage is situated in the piers 

and spandrels. The piers and spandrels are modelled as ideally elastic-plastic beam-column elements 

in which the chord rotation is limited. The joints are modelled infinitely stiff.  

The original idea was given by Magenes and Della Fontana in 1998. They introduced a simple frame 

model for a non-linear static pushover analysis and found satisfying results, with relatively little 

calculation time [18].  

Figure 2.20; Failure mechanisms with lateral force; rocking (left), shear sliding (middle) and 
diagonal cracking (right) [2] 
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With the total chord rotation 𝜃 as the sum of the 

flexural rotation 𝜙 and the shear deformation 𝛾: 

𝜃 = 𝜙 + 𝛾 

Which is limited to 0.5% for shear failure and to 1% 

for flexural failure [18].  

 

2.4.2 The different models 
Nobel uses three model approaches for the façade 

in his thesis: One isotropic continuum model and 2 

equivalent frame models. The continuum model is 

used to compare the results and calculation time of 

the two equivalent frame models. The continuum 

model has two categories. One of them with a 

three-zoned approach. In this way, cracking of the 

bed joint will probably take place in the top or bottom layer, while diagonal shear takes place diagonal 

over the element. 

Important to notice is the fact that although masonry is anisotropic in material points, it can be seen 

as isotropic in diagonal cracking. For his single wall tests, he uses two different continuum models. 

In the approach of Nobel, the two continuum models are the following: 

The first model has all piers and spandrels represented by finite plane stress elements with the same 

material properties, the Continuum Model (CM). The joint tensile strength is used as the critical 

strength. 

The second model has two extra layers with lower strength and lower fracture energy. This is done to 

approach the rocking failure of the piers and spandrels. In this model, the two extra layers are in the 

region where cracking along the bed joint probably will occur, and the original layer is in the region 

where diagonal cracking probably will occur. This model is called the Three Zoned – Continuum Model 

(TZ-CM). This continuum model is also used when modelling the façade.  

The flexural parts are modelled with the bed joint tensile strength, the joint fracture energy and the 

compression strength of masonry.  

In the continuum model, eight-node quadrilateral (CQ16M) plane stress elements are used. 

 

Secondly, the fiber flexural model only considers the global 

response of the structure. It uses the DIANA Class III Mindlin beam 

elements, which include flexural and shear deformation. This 

element class will be discussed in section 2.5. In this method, the 

entire element is an inelastic element contrary to the continuum 

model, therefore inelasticity can also occur in the element. It is 

also dependent on material parameters and not on empirical 

strength domains.  

However, the shear response is still linear elastic, therefore no 

diagonal cracking mode will take place [2]. The uniaxial behavior 

is governing for the flexural response. Therefore, the bed joints determine the material properties with 

a linear tension curve and a parabolic compression curve.  

 

Third the Fibre Flexure – Lumped Shear model will be discussed. 

In this model, the elements are modified to include shearing failure modes. In the previous elements, 

only linear elastic behavior was possible. A structural nodal interface is added to describe the relation 

Figure 2.21; Equivalent frame idealization of a multistory 
wall with openings [18] 

Figure 2.22; Stress strain relation of masonry 
bed joint [2] 
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between normal and shear tractions and normal and shear relative displacements within the interface 

[2].  

Two failure behaviors are added in the model. The tension model described earlier and the bilinear 

shear traction law. The model uses the interface element N4IF. 

 

 

 

 

 

 

 

 

 

 

 

Sliding shear failure is modelled with Coulomb friction (sliding of two surfaces), elastic perfectly plastic 

behavior. Because only one nodal interface describes the shear behavior of an element, the cohesion 

and friction angle are global strength parameters. This leads however to an overestimation because of 

weak head joints, a nonlinear shear stress distribution and a reduced section length because of tension 

cracks [2]. Corrections are: presence of weak head joints by Mann and Muller, include shear stress 

distribution effect by Magenes and Calvi, consider only the effective uncracked  

section length by Abrams.  

 

2.4.3 Two story masonry building 
The two-story masonry building experiment from the University of Pavia is an experiment performed 

by Magenes, Calvi and Kingsley [19] on a full scale two story masonry building. The experiment set-up 

is simplified in [2] to make a two-dimensional model. The 

experiment will be explained here because this building will 

be used to perform a sequentially linear analysis. 

The structure was built at the University of Pavia from typical 

building materials used in old Italian urban constructions like 

solid, fired clay bricks. The mortar is a mix of hydraulic lime 

and sand (1:3 volume). The building is loaded in plane with 

the door wall and the rear wall or windows wall (Figure 2.24). 

The building has two floors of steel I section beams. Two 

vertical loads of 248.4 kN and 236.8 kN are applied on the 

first and second floor respectively. The seismic load of an 

earthquake was simulated by four horizontal point loads on 

the floors of the building. Two on each side of the wall.  

It was found from tests with a shaking table that the four horizontal loads were almost equal for most 

experiments, because the behaviour of the structure was dominated by the flexible floors. The mass 

of the two floors and the peak acceleration were almost the same for the two floors which resulted in 

almost equal forces. The floors are pinned to the walls, therefore the loads on the walls are also almost 

equal [19]. 

In the experiment, the building was subjected to a cyclic load. Before cracking the pattern consists of 

a preliminary loading cycle followed by two cycles at the desired maximum displacement and one 

degradation cycle. After cracking, there will be two preliminary cycles, three maximum displacement 

cycles and two degradation cycles.  

Figure 2.23; Flexural response (left) and shear response (right) [2] 

Figure 2.24; Two story full scale building [19] 
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Found was, that the door wall was in practice an independent system from the windows wall and the 

two side walls. This was a result of the weak coupling of the flexible floor beams. The longitudinal force 

transfer through the floor was negligible [19].  

The results were shown in a force-displacement relation, in which the force was the shear in the base 

of the designated wall and the displacement, the horizontal displacement of the second floor.  

This relation is shown in Figure 2.25.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As noted in their report, it was remarkable that an unreinforced masonry structure did manage to 

achieve an ultimate displacement which was twice as large as the displacement at the peak load.  

The damage pattern was difficult. First, cracking occurred in the spandrels, especially on the first floor. 

These cracks stopped propagating however and the dominating failure mechanism was shear cracking 

in the central pier. Further in the analysis, also the exterior piers failed in shear. 

The shear failure in the central wall was in both diagonal directions while the shear failure in the 

exterior piers was in one direction, because of the overturning effect of the horizontal loads resulting 

in a combined rocking, shear dominated failure mode. 

 

2.4.4 Results 
Two tests are done in [2], a masonry wall is tested and a 2-story façade. The important results are 

summarized below. Because the focus lies on the equivalent frame approach, the continuum model 

results will not be discussed. 

 

2.4.4.1 Masonry Panel 

The first test is done on a single masonry pier. This to validate the model for one panel before applying 

it to a façade. In the test, a masonry pier is subjected to a constant vertical force. At the same time, a 

horizontal displacement is increased at the top. In real life this test was done at Delft University of 

Technology. The experimental data of that test is used to compare the results. The pier is discretized 

with two small beam elements, one at the top and one at the bottom, and five larger sized beam 

elements at the middle part of the beam. In the numerical simulation, the horizontal force is increased 

until failure occurs or an ultimate displacement is reached. A regular Newton-Raphson iteration 

scheme is used to solve the equations, with a combined force and displacement norm. 

Figure 2.25; Base shear in relation to the second-floor displacement, door wall [19] 
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In Figure 2.26, two alternatives are presented. The FFM model type a is the model described in the 

previous part. In FFM model type b, the bed joint fracture energy is slightly reduced in the top and 

bottom element, similar to the three-zoned continuum model.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.26; FFM model type a (left) and type b (right) [2] 

Figure 2.27; High wall model results [2] 
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For the high wall model (Figure 2.27) both FFM models are very similar to the experimental data. The 

high wall failed in rocking and therefore, the Fibre Flexural model is very capable of predicting the 

strength. 

In Figure 2.28 the results for the low wall experiment are showed. These results overestimate the 

capacity of the wall. The failure branch is also not found. This is because the FFM model is not able to 

reproduce the diagonal crack pattern as shear failure is not included, while the wall definitely failed in 

shear. Now the same wall is simulated with the Fibre flexural lumped shear model to introduce the 

shear failure mechanism. Different Coulomb friction criteria are implemented to investigate which 

criterion perform the best.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.28; Force displacement results for the low wall experiment [2] 
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2.4.4.2 Two-story masonry façade results 

This experiment is done on the building discussed in section Two story masonry building2.4.3. The 

results will be discussed here. 

The FFM model is set up by using 82 beam elements in the piers and spandrels, the same way as in 

section 2.4.4.1 with model FFM type a. The two constant 

loads on the floors 1 and 2 are: 

𝑝1 = 20.7 kN/m and 𝑝2 = 19,8 kN/m.  

At the left two tyings are made in Diana to mount a steel 

beam to both floors. This beam is loaded with a 

prescribed monotonic displacement. The analysis is 

therefore displacement controlled. 

 

To make a good comparison with the experimental 

results, a nonlinear curve should be extracted from the 

cyclic loading curve of the experiment. This is done by 

creating a contour around the peak values of the load 

and the associated displacements. 

 

First the analysis is performed with the FFM model. Here, 

the strength of the piers and spandrels are based on the 

joint tensile strength of the material. Not the maximum 

tensile strength. This results in a flexural response of the 

structure. Stiffness reductions and cracks occur in in the 

piers in this model. Almost no flexural damage was 

discovered in the spandrels. The peak strength was somewhat higher with FFM compared to the 

experimental results. An explanation can be that the material parameters and isotropic material model 

should be adjusted because it is not precise enough. A second explanation is the fact that a structure 

fails with a lower load in cyclic loading than in monotonic loading. In the experiment, cyclic loading is 

used which could give a lower peak load than in the FFM. The accuracy of the solution was nonetheless 

acceptable. The calculation time of FFM compared to the continuum model was less than one tenth.  

 

At last, the FF-LSM is used to make a calculation that includes shear failure parameters. In this model, 

66 beam elements are used and one interface element per pier or spandrel (10 in total). The boundary 

conditions are assumed as double fixed. Different shear failure criteria are used in different analyses.  

In general, the accuracy of the solution was increased, while maintaining the short calculation time. A 

negative effect was the occurrence of serious convergence problems. The conclusion drawn from this 

experiment was therefore that the fibre flexural model with lumped shear interfaces has many 

advantages in calculation time and simplicity while maintaining accuracy. However, the convergence 

problem that arose have to be solved to make this method more applicable.  

Figure 2.29; Fibre flexural model for the two-story 
building [2] 
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In Figure 2.30 the results for the different shear criteria are shown. Analysis 1 is the FFM analysis.  

The shear failure was most correctly described by the Magenes and Calvi criterion because it found 

the experimentally observed failure modes (shear failure in pier P2, pier P3 and in both spandrels on 

the first floor). The Abrams criterion did not find the correct response in pier P3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.30; Results of various FFM-LSM analyses with different shear criteria [2] 

Table 2.1; Different shear criteria for the FF-LSM [2] 
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The last analysis concerns analysis 3c (Figure 2.31) in which the Magenes and Calvi criterion is used 

with linear softening. By using this technique, the softening behavior was initiated, but the calculation 

could not continue because of convergence issues. The strength degradation started in pier P2.  

 

The most important conclusion drawn from this thesis is that the FF-LSM can accurately describe the 

rocking and shearing failure modes of a masonry wall, while reducing the calculation time with a tenth 

of the time of the continuum model. According to [2], the best way to use the beam model is by adding 

a small beam element at each and of each pier. This should be used next to an integration scheme with 

two Gaussian integration points along the bar axis and eleven fibre integration points over the area of 

the beam element. The choice of the failure criterion should be made carefully because not all criteria 

are even precise. 

In this thesis, the two-story building model is used combined with a sequentially linear analysis to try 

to solve the convergence problems that arose in this thesis. 

 

  

Figure 2.31; Force-displacement curves for different analysis [2] 
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2.5 Mindlin Beam elements (fiber-section model) 
 

To successfully apply the sequential linear analysis on the structure, the finite elements have to be 

applicable for this method. Common beam elements are not because the displacements and rotations 

are related directly to the moments and forces, while reduced stiffness has to be applied to the 

constitutive relations in a sequential linear analysis. Generally speaking, displacements are “assumed” 

in the nodes in finite element formulations. From these displacements, the strains in the integration 

points are calculated. With the constitutive relations, the stresses are calculated in the integration 

points. From these stresses the forces in the nodes are calculated. These forces are compared with the 

load on the structure. If the differences are sufficiently small, the displacements are accepted. When 

the solution is not precise enough, better displacements are proposed to fulfill the requirements.  

In a fiber section model, everything is calculated from the stress-strain relationship. This relationship 

is based on the material parameters and is therefore a more accurate starting point. 

 

2.5.1 Derivation of the fiber section model 
The fiber section beam model used in this thesis is derived by Ferreira [3]. Small changes are made by 

Pari to make this model suitable for a sequential linear analysis. The model of Ferreira uses a smeared 

crack approach with rotating cracks for tensile behaviour. It assumes a constant shear stress along the 

cross-section. In the constitutive relations, the compressive behaviour is modelled using a parabola, 

the tensile behaviour is linear elastic with a linear descending branch after cracking. In a sequentially 

linear analysis, these relations will be approached with a saw-tooth law. 

 

In a fiber section discretization, the cross-section of for instance a beam is divided in multiple fibers. 

The equilibrium, constitutive and compatibility equations of each fiber are derived and with it, the 

stresses and strains in the fibers are calculated. From these relations, the stiffness matrix is derived for 

incremental variations: 

 

(

Δ𝜎𝑥𝑥

Δ𝜎𝑧𝑧

Δ𝜏𝑥𝑧

) = (

𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

𝐷31 𝐷32 𝐷33

)(

Δ𝜖𝑥𝑥

Δ𝜖𝑧𝑧

Δ𝛾𝑥𝑧

) (2.5.1) 

 

Because the stress Δ𝜎𝑧 should be equal to 0, the following equation must hold: 

 

𝐷21Δ𝜖𝑥𝑥 + 𝐷22Δ𝜖𝑧𝑧 + 𝐷23Δ𝛾𝑥𝑧 = 0 (2.5.2) 

 

Also, the increment of the shear stress Δ𝜏𝑥𝑧 must be equal to the fixed shear stress given: 

 

Δ𝜏𝑥𝑧 = Δ𝜏∗ (2.5.3) 

 

From (2.5.1): 

 
Δ𝜏𝑥𝑦 = 𝐷31Δ𝜖𝑥𝑥 + 𝐷32Δ𝜖𝑧𝑧 + 𝐷33Δ𝛾𝑥𝑧 = Δ𝜏∗ (2.5.4) 

 

This leads to: 

 

Δ𝛾𝑥𝑧 =
Δ𝜏∗ − 𝐷31Δ𝜖𝑥𝑥 − 𝐷32Δ𝜖𝑧𝑧

𝐷33
 (2.5.5) 

 



56 
 

This can be substituted into equation (2.5.2) and rewritten: 

 

𝐷21Δ𝜖𝑥𝑥 + 𝐷22Δ𝜖𝑧𝑧 +
𝐷23

𝐷33

(Δ𝜏∗ − 𝐷31Δ𝜖𝑥𝑥 − 𝐷32Δ𝜖𝑧𝑧) (2.5.6) 

 

(𝐷21 −
𝐷23𝐷31

𝐷33
)Δ𝜖𝑥𝑥 +

𝐷23

𝐷33
Δ𝜏∗ + (𝐷22 −

𝐷23𝐷32

𝐷33
)Δ𝜖𝑧𝑧 = 0 (2.5.7) 

 
(𝐷33𝐷21 − 𝐷23𝐷31)Δ𝜖𝑥𝑥 + 𝐷23Δ𝜏∗ + (𝐷33𝐷22 − 𝐷23𝐷32)Δ𝜖𝑧𝑧 = 0 (2.5.8) 

 

Δ𝜖𝑧𝑧 =
(𝐷23𝐷31 − 𝐷33𝐷21)Δ𝜖𝑥𝑥 − 𝐷23Δ𝜏∗

𝐷33𝐷22 − 𝐷23𝐷32

(2.5.9) 

 

Now this expression is used to rewrite equation (2.5.5): 

 

Δ𝛾𝑥𝑧 =
Δ𝜏∗

𝐷33
−

𝐷31Δ𝜖𝑥𝑥

𝐷33
− (

𝐷32

𝐷33
)
((𝐷23𝐷31 − 𝐷33𝐷21)Δ𝜖𝑥𝑥 − 𝐷23Δ𝜏∗)

𝐷33𝐷22 − 𝐷23𝐷32

(2.5.10) 

 

𝐷33Δ𝛾𝑥𝑧 =
(𝐷33𝐷22 − 𝐷23𝐷32)Δ𝜏∗ − (𝐷33𝐷22 − 𝐷23𝐷32)𝐷31Δ𝜖𝑥𝑥

𝐷33𝐷22 − 𝐷23𝐷32
−

 
𝐷32((𝐷23𝐷31 − 𝐷33𝐷21)Δ𝜖𝑥𝑥 − 𝐷23Δ𝜏∗)

𝐷33𝐷22 − 𝐷23𝐷32

(2.5.11)

 

 

Δ𝛾𝑥𝑧 =
(𝐷32𝐷21 − 𝐷31𝐷22)Δ𝜖𝑥𝑥 + 𝐷22Δ𝜏∗

𝐷33𝐷22 − 𝐷23𝐷32

(2.5.12) 

 

Now all functions can be expressed in the parameters Δ𝜖𝑥𝑥 and Δ𝜏∗. 

Next, two equilibrium conditions need to be fulfilled within the fiber. Namely, the unbalance in the 

vertical stress 𝛿𝜎𝑧𝑧 should be 0 and the difference between shear stress Δ𝜏𝑥𝑧 and the fixed value Δ𝜏∗, 

defined as 𝛿𝜏𝑥𝑧, should be equal to 0. These parameters can be expressed with: 

 

(
𝛿𝜎𝑧𝑧

𝛿𝜏𝑥𝑧
) = (

𝐷22 𝐷23

𝐷32 𝐷33
) (

𝛿𝜖𝑧𝑧

𝛿𝛾𝑥𝑧
) (2.5.13) 

 

This can be rewritten to express 𝛿𝜖𝑧𝑧 and 𝛿𝛾𝑥𝑧 in terms of the other parameters: 

 

𝛿𝜖𝑧𝑧 =
𝛿𝜎𝑧𝑧 − 𝐷23𝛿𝛾𝑥𝑧

𝐷22

(2.5.14𝑎) 

𝛿𝛾𝑥𝑧 =
𝛿𝜏𝑥𝑧 − 𝐷32𝛿𝜖𝑧𝑧

𝐷33

(2.5.14𝑏) 

 

By combining these expressions: 

 

𝛿𝜖𝑧𝑧 =
𝐷33𝛿𝜎𝑧𝑧 − 𝐷23(𝛿𝜏𝑥𝑧 − 𝐷32𝛿𝜖𝑧𝑧)

𝐷22𝐷33

(2.5.15) 

 

 

Follows in: 
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𝛿𝜖𝑧𝑧 =
𝐷33𝛿𝜎𝑧𝑧 − 𝐷23𝛿𝜏𝑥𝑧

𝐷22𝐷33 − 𝐷23𝐷32

(2.5.16) 

 

This can be used in equation (2.5.14𝑏) and rewritten: 

 

𝐷33𝛿𝛾𝑥𝑧 = 𝛿𝜏𝑥𝑧 − 𝐷32

𝐷33𝛿𝜎𝑧𝑧 − 𝐷23𝛿𝜏𝑥𝑧

𝐷22𝐷33 − 𝐷23𝐷32

(2.5.17) 

 

𝐷33(𝐷22𝐷33 − 𝐷23𝐷32)𝛿𝛾𝑥𝑧 = 𝛿𝜏𝑥𝑧𝐷22𝐷33 − 𝛿𝜏𝑥𝑧𝐷23𝐷32 − 𝐷32𝐷33𝛿𝜎𝑧𝑧 + 𝐷32𝐷23𝛿𝜏𝑥𝑧 (2.5.18) 

 

𝛿𝛾𝑥𝑧 =
𝛿𝜏𝑥𝑧𝐷22 − 𝐷32𝛿𝜎𝑧

𝐷22𝐷33 − 𝐷23𝐷32

(2.5.19) 

 

Iteratively, convergence must be searched with the result: 𝛿𝜖𝑧𝑧 = 0 and 𝛿𝜏𝑥𝑧 = 0. This results in a 

stress 𝜎𝑧𝑧 with a value of 0. Therefore, the model can be reduced to: 

 

(

𝜎𝑥𝑥

0
𝜏𝑥𝑧

) = (
𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

𝐷31 𝐷32 𝐷33

)(

𝜖𝑥𝑥

𝜖𝑧𝑧

𝛾𝑥𝑧

) (2.5.20) 

 

Leads to: 

 

𝜖𝑧𝑧 = −
𝐷21

𝐷22
𝜖𝑥𝑥 −

𝐷23

𝐷22
𝛾𝑥𝑧 (2.5.21) 

 

And finally: 

 

(
𝜎𝑥𝑥

𝜏𝑥𝑧
) =

(

 
𝐷11 −

𝐷12𝐷21

𝐷22
𝐷13 −

𝐷12𝐷23

𝐷22

𝐷31 −
𝐷32𝐷21

𝐷22
𝐷33 −

𝐷32𝐷23

𝐷22 )

 (
𝜖𝑥𝑥

𝛾𝑥𝑧
) (2.5.22) 

 

This matrix is also known as the fiber stiffness matrix 𝑲𝑓𝑖𝑏𝑟𝑒. 

 

In the element formulation, the strains have to be derived from the degrees of freedom. There are 

three nodal displacements possible. Two translations and one rotation, 𝑎𝑖 = [𝑢𝑗 𝑤𝑗  𝜃𝑦,𝑗]𝑇. The 

relation between the strains and curvature in an integration point in the center of an element and the nodal 

displacements is: 

 

[

𝜖0

𝛾0

𝜒𝑦

] = [𝐵1 𝐵2] [
𝑎1

𝑎2
] , [𝐵𝑖] =

[
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥
0 0

0
𝜕𝑁𝑖

𝜕𝑥
𝑁𝑖

0 0
𝜕𝑁𝑖

𝜕𝑥 ]
 
 
 
 
 

(2.5.23) 

 

In this equation, 𝜒𝑦 is the curvature of the cross-section and 𝑁𝑖  are the shape functions. 
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The relation between the strains in the fibre and the strains and curvature in the center of an element 

is given by: 

 

[
𝜖𝑥𝑥

𝛾𝑥𝑧
]
𝑓𝑖𝑏𝑟𝑒

= 𝑻 [

𝜖0

𝛾0

𝜒𝑦

] ,   𝑻 = [
1 0 𝑧
0 1 0

] (2.5.24) 

 

The stiffness of the section is calculated by integrating the fibre stiffness over the cross-section: 

 

𝑲𝑠𝑒𝑐 = ∫𝑻𝑇𝑲𝑓𝑖𝑏𝑟𝑒𝑻𝑑𝐴 (2.5.25) 

 

A careful look is needed for the compatibility of the shear strain in the Timoshenko beam element 𝛾0 

and the shear strain on fibre level 𝛾𝑥𝑧 [3].  

The stiffness matrix of the element can be found by integrating the constitutive relation found in 

equation 2.5.4 over the length of the element while adding the finite shape function matrix 𝑩. 

 

𝑲𝑒𝑙𝑒𝑚 = ∫𝑩𝑲𝑠𝑒𝑐𝑩𝑑𝑥 (2.5.26) 

 

Each element has one Gauss Point in the middle of the element. 

 

 

 

 

 

 

 

  



59 
 

3. Modelling strategies 
 

Appendix C gives a tabular overview of the different models discussed here. Most importantly, the 

models can be distinguished in: 1. Continuum models or beam models, 2. Standard (uniform) models 

or three-zoned models. Combining these aspects give four categories.  

 

3.1 Continuum element models 
 

3.1.1 Pavia single wall 
For the single wall, a continuum model with the three-zoned approach and mesh size ℎ = 0.1 m is 

used (Figure 4.3). This model is analysed three times with only the lateral load (4.3.2), the lateral load 

and the vertical floor load (4.3.3) and with all loads (4.3.4) (lateral, vertical floor load, self-weight). A 

mesh size study is done (4.3.5) in which the requested mesh size is doubled and halved (Figure 4.8) 

 

3.1.2 Pavia façade 
The continuum models of the full façade are divided in two categories, the three-zoned continuum 

model in Figure 4.38 (3ZCM) and the normal continuum model which uses the bed joint tensile strength 

of the material as the tensile failure strength for the full piers and spandrels (CM). The default 3ZCM 

with mesh size ℎ = 0.4 m is first analysed with only floor load and lateral load (4.4.2), then with all 

loads (4.4.3) (lateral, vertical floor load, self-weight). Then again, the mesh size is doubled and halved 

to do a mesh sensitivity study (4.4.3). Then for the continuum model (CM). A mesh sensitivity study is 

done with requested mesh sizes ℎ = 0.1 m, ℎ = 0.2 m and ℎ = 0.4 m (4.4.4). The in-depth analysis of 

section 4.4.6 is done on the default CM with mesh size 0.25 m.  

In section 4.4.7.1, Both for the default 3ZCM with ℎ = 0.4 m and default CM with ℎ = 0.25 m, the 

flexural parts with bed joint tensile strength are made of triangular elements to get a better aspect 

ratio. In section 4.4.7.2, four new models are made to do a parameter study on the reference tensile 

strength 𝑓𝑡𝑢.  Model a which is equal to the default 3ZCM with ℎ = 0.4 m. Model b which is model a 

but with mesh size ℎ = 0.2 m. Model c which is the default CM with ℎ = 0.25 m but 𝑓𝑡𝑢 of the 

midsections of the piers and spandrels changes. Model d which is the default CM, but the midsections 

of the piers 𝑓𝑡𝑢 is changed.  

 

3.2 Beam element models 
 

For the beam model (Figure 5.3), two approaches are used. First Nobel’s FF model [2] which is a one 

zone beam model which uses the bed joint tensile strength as the tensile strength of the wall. 

Therefore, this model focusses on the rocking or flexural failure properties. Then, the three-zoned 

equivalent frame model (3ZEF) with three requested mesh sizes ℎ = 0.2 m, ℎ = 0.1 m and ℎ =

0.05 m. Then for the mesh size of ℎ = 0.1 m, the number of integration points over the width is 

changed. The default mesh of ℎ = 0.1 m is used for the in-depth analysis of section 5.5. For the default 

beam model mesh, the applied mesh size is the size of the elements of the mid-sections. The flexural 

ends of the piers are divided in 8 elements, and the flexural ends of the spandrels in 6 elements. From 

this, the number of elements in the flexural parts for the different mesh sizes can be derived as they 

are scaled with the same ratio to the mesh size of the piers. Several improvements are suggested in 

section 5.6, where the default 3ZEF with mesh size ℎ = 0.1 m is used as a basis. The constitutive law 

is changed 5.6.1, a prestress with proportional loading is applied 5.6.2, the fracture energy is increased 

5.6.3, the number of saw teeth is changed 5.6.4.   
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4. Continuum model with SLA  
 

4.1 Introduction 
 

This chapter is about the investigation with continuum elements. The chapter starts with general 

information on the Pavia building, the model and parameters (4.2). After this is explained, the analyses 

will be discussed. The first task is to get familiar with an SLA procedure and to identify if the procedure 

works in general. Several simulations are done, first a single wall will be tested under a lateral load 

(4.3). Three different approaches are used to investigate the robustness of the method, a model where 

only the lateral load is applied. A model with floor weight, but without self-weight and at last a model 

with all forces included, self-weight, floor load and lateral load. The size of the mesh is also tested and 

a closer look is taken to critical integration points and the stress-strain relations. An in-depth analysis 

is done on outstanding results, this includes for example initial non-proportional load reductions and 

strange branches that are not secant. Also, the model is tested again with the new Diana version 

released later during this research. 

Later the full façade of the Pavia building is tested while subjected under a lateral pushover load (4.4). 

In this case, two models are used, a three-zoned model and a one zone-model. The different models 

are discussed and the results are compared with the results of the incremental iterative analysis using 

the equivalent frame method and the results of the Pavia experiment.  

Later, possible improvements are suggested and tested. This is done to make the analysis more stable 

and therefore get better results. 

Important to notice is that for all the damage plots given, the damage in this version of Diana can be 

tensile or compressive. No distinction is made in the plots. As the tensile strength of the material used 

is much lower as the compressive strength, almost all damage visible in the plots is tensile damage. 

The damage is defined as: 𝐷 = 1 −
𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙
. 
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4.2 General information  
 

4.2.1 Properties and model considerations 
The most important investigation is considering a continuum two-dimensional model of the Pavia 

house façade. The model is made with plane stress elements. The dimensions of the façade are given 

in Figure 4.1. For the continuum model, the dimensions of the piers and spandrels are shown in Table 

4.1. The corners and center connections are also given. The following abbreviations are used: Corner 

floor 1 (CF1), Middle floor 1 (MF1), Corner floor 2 (CF2), Middle floor 2 (MF2). The equivalent frame 

idealization is the equivalent frame model used by Nobel [2].  

 
Table 4.1; Geometry of the piers and corners in the continuum model 

Pier Label 𝐷 𝑡 ℎ 

[mm] [mm] [mm] 

P1, P3 1150 250 2145 

P2 1820 250 2145 

P4, P6 1150 250 1235 

P5 1820 250 1235 

S1 940 250 1690 

S2 940 250 1365 

CF1 1150 250 1690 

MF1 1820 250 1690 

CF2 1150 250 1365 

MF2 1820 250 1365 

 

All the supports are modelled as clamped supports with a hinged support at the most left node in a 

pier and the other nodes attached with a tying to this one. This will result in a full clamped support for 

all the nodes at the bottom row. In this model, the three-zone approach will be used with a height of 

one twentieth of the pier or spandrel at both sides. This value is estimated from the model of Nobel. 

The constant load on the first and second floor is determined as: 𝑓1 = 20.7 N/mm and 𝑓2 =

19.8 N/mm. The monotonic pushover load has a unit value, this load is scaled as the proportional load 

in the analysis. 

 

Figure 4.1; Geometry of the door façade [2] 
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After the geometry, the loads and the support, the material parameters are determined. Two model 

considerations are used for the façade: the “standard continuum model” (CM) or one zone continuum 

model and the “Three zoned continuum model” (3ZCM). In the standard continuum model, all 

elements in a pier or spandrel have the same properties based on the flexural failure behaviour. The 

bed joint tensile strength is used as the tensile strength of the material as this is assumed as the 

governing failure mechanism. In the three-zoned continuum model, the piers and spandrels are 

divided in a flexural part at the ends with the bed joint tensile strength and a shear part which uses 

the maximum tensile strength 𝑓𝑡𝑢 based on a diagonal shear test. Nobel [2] made this distinction of 

three zones which gave improved results in his analysis for the incremental iterative approach.  

The different parts of the façade are: the midsection of the piers, the edges of the piers, the midsection 

of the spandrels, the edges of the spandrels and the connections. All elements are modelled as plane 

stress elements (𝜎𝑧𝑧 = 0).  

In Table 4.2, the material parameters are given for the Pavia façade. The reference masonry tensile 

strength was not available in the original Pavia house test, it was determined in [2] as:  

𝑓𝑡𝑢 = 0.14 MPa by empirical testing.  

 

 

 

Further, different strength properties are given to the elements for the 3ZCM. They are listed below in 

Table 4.3. In the standard model (CM), the flexure properties are adapted.  

 

 

 

Table 4.2; Material parameters Pavia house [2] 
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Table 4.3; Parameters for the different parts 

Part Behavior Strength [Mpa] Fracture energy [N/mm] 

Pier midsection Shear 𝑓𝑡𝑢 𝐺𝑓−𝑡𝑢
𝐼  

Pier end section Flexure 𝑓𝑗𝑡 𝐺𝑓−𝑗𝑡
𝐼  

Spandrel midsection Shear 𝑓𝑡𝑢 𝐺𝑓−𝑡𝑢
𝐼  

Spandrel end section Flexure 𝑓𝑡𝑠 𝐺𝑓−𝑡𝑢
𝐼  

 

 

4.2.2 Element type and SLA parameters 
In the continuum model analysis, a linear quadrilateral plane stress element will be used. The chosen 

element is called Q8MEM by Diana FEA. More detailed information can be found in the User’s Manual 

of Diana FEA [20]. The linear element is chosen for its simplicity. It has four nodes and two degrees of 

freedom per node. The displacement polynomials can be expressed as: 

 

𝑢𝑖(𝜉, 𝜂) = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜂 + 𝑎3 𝜉 𝜂 (4.2.1) 

 

The strains of the element are formulated as the derivatives of the displacements to the global 𝑥-

coordinate or 𝑦-coordinate respectively. For example, the strain in 𝑥-direction 𝜖𝑥𝑥 is written as: 

 

𝜖𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
= 𝑎1 + 𝑎3𝑦 (4.2.2) 

 

In this equation, the isoparametric formulation (𝜉, 𝜂)-coordinates are 

mapped to the (𝑥, 𝑦)-coordinates. From this equation, it is visible that 

the strains in 𝑥-direction are constant in 𝑥-direction and vary linear in 

𝑦-direction, vice versa for the strains in 𝑦-direction. By default, a 

constant shear strain over the element is used.  

 

For the sequentially linear analysis the tensile and compressive strength 

parameters and fracture energy parameters are as given in Table 4.2 

and Table 4.3. The 𝛽-factor used to calculate the shear modulus according to (2.3.17). The reason this 

equation is used over (2.3.18) is because the current version of Diana FEA only supports this equation. 

In this model: 𝛽 = 0.01. The 𝑝-factor from (2.3.8) is used. This has the risk of a difference in energy 

between the saw-tooth curve and the real curve like explained in 2.3.3. Also, the ultimate strain can 

be somewhat different. In this case, Diana does not yet support the new equation where the 𝑝1-factor 

and 𝑝2-factor are solved iteratively. In this model 𝑝 = 0.1.  

The maximum number of saw-teeth is limited by 𝑁 = 50.  

  

Figure 4.2; Q8MEM [20] 



64 
 

4.3  Continuum model introduction - Single wall test 
 

4.3.1 Overview 
First the program is tested for a single pier of the Pavia house, the left pier of the bottom row and the 

3ZCM are chosen. The load will be applied in steps. First only the lateral load, later also the floor load 

and finally the full load will be applied including the floor load, self-weight and lateral load. 

The results will be discussed and some interesting results will be examined. 

In this part, the same three-zoned approach is used as in [2], i.e. the outer elements will have the bed 

joint tensile strength. The inner elements have the maximum tensile strength, dominant for shear, 𝑓𝑡𝑢 

and 𝐺𝑓−𝑡𝑢
𝐼 . The pier will be subjected to its dead weight load and a distributed load 𝑞, because of the 

weight of the floors above. The factor 
1620

1150
 is the part of the floor load that is taken by this pier. 

  

𝑞 =
(19.8 + 20.7) ∗ 1620

1150
= 57.05 N/mm (4.3.1) 

 

The model is shown in Figure 4.3. A mesh size of ℎ = 0.1 m is used.The top of the wall is fixed vertically 

with the left top corner, because it is attached to the first floor in the real structure. A proportional 

horizontal force acts on the left top corner of the wall. In the final analysis, the vertical load will be 

applied first. Next, the horizontal load will be scaled in a sequantially linear procedure. This is done in 

7000 damage steps. 

The mesh is scaled that the aspect ratio is equal to 1. This to get the best results for the continuum 

elements. When the displacements of the wall are mentioned, the horizontal displacement of the node 

in the top right corner is meant. When the force is mentioned, it refers to the total horizontal lateral 

load on the structure. This should be equal to the sum of the horizontal reaction forces following 

horizontal force equilibrium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.3; Single pier Pavia model, only 
flexural (left) and flexural and shear 
(right) 
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4.3.2 Only lateral load 
First, an analysis is done with only the lateral load. The resulting force-displacement diagram is shown 

in Figure 4.4. The force-displacement diagram shows the typical shivering contour familiar in an SLA. 

These local force reductions are the result of the method used in a sequentially linear analysis. Often, 

when there is a critical integration point found, other integration points are also very close to a critical 

stress as explained in [1]. When the damage is applied and the force is redistributed these points have 

almost no capacity left. The new critical integration point can only be found by reducing the load a 

little. This results in small unloading and reloading steps across the curve. At the end of the curve, the 

structure unloads with a big step. This is because the structure cannot bear the load for some steps 

and restores it later. A point of discussion should be made here. In reality, a structure cannot reduce 

the load for some steps to find equilibrium. Especially when this continues for some steps, one could 

say that the structure has failed, especially in a case where the vertical load only includes self-weight. 

Naturally, a structure should always be able to carry the full weight. In this case, only the first 4000 

steps are shown in Figure 4.4. In the next steps, the load was recovered and reduced very often, similar 

to the last step. After this, the displacements grew rapidly, while the force was almost nil. Therefore, 

the conclusion was drawn that the structures had failed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4; Force displacement diagram - only lateral load 
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4.3.3 Single wall without self-weight 
The second model includes the vertical force at the top of the wall. This represents the load of the 

floors above the wall, in other words the 𝑞 from equation (4.3.1). Again, the three-zoned model with 

flexural parts and shear parts is used here. The analysis is done in 7000 steps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the first 2800 steps, only once in 25 steps the results are saved for post-processing to reduce the 

size of the output files, which can be quite big. The results are shown in Figure 4.5 and Figure 4.6. It is 

clear that this wall follows the rocking failure mode because the highest tensile stresses and therefore 

the damages start in the bottom left and top right 

corner. The other damage in the top left corner is 

caused by the load, which is applied over there. The 

combination of the vertical and horizontal force 

results in a higher total lateral load. For masonry, 

the tensile strength is lower than the compressive 

strength. Therefore, elements will fail earlier in 

tension than compression. The vertical weight on 

the wall acts as some kind of prestress, loading the 

wall in compression. This results in a higher lateral 

load for which the elements will fail in tension. 

Remarkable is the part after the maximum load. 

The displacements are reducing but not secant. 

There is even a negative displacement visible in 

some steps. This is of course not true in reality and 

these steps are investigated later in the analysis of 

the full house as it also occurs there. Please note 

that the part with displacements larger than 

50 mm are analysis steps where the full vertical load cannot be applied. Therefore, these steps are not 

relevant as the structure should be regarded as failed. The principal strains show a similar view as the 

damage. Tensile cracks occur in the left toe of the wall and the top right corner.   

Figure 4.6; Damage to stiffness - Analysis step 3831 

Figure 4.5; Load-displacement curve single wall without self-weight, first 4500 damage steps 
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4.3.4 Single wall with self-weight 
In this part, the single wall is tested and all loads are active, i.e. floor loading, self-weight and the lateral 

load. In this analysis, the results are not stable. In some stages the structure moves to the left, which 

is of course not realistic. The load-displacement diagram is shown in Figure 4.7. To make the method 

easier to apply in practice, not every analysis step should be selected in the results. If the results of 

every analysis step are saved, it decreases the workability because the analysis is much slower and the 

result files become very large. In Figure 4.7, two results files of the same structure are compared. The 

left figure is from an analysis which gives only output once in 25 damage steps. The right figure gives 

an output value for all steps: 

 

Comparing the two concludes that the most important global results are captured in the case with 

output once in 25 steps, but some outliners are missed or smaller. Although these results are important 

to examine, they are not important for the global result. This justifies the choice for reduced results to 

improve the speed of the analysis and post-processing. 

 

The maximum load on the structure is significantly higher in this case than in the case without the self-

weight and floor load. This is again because the compressive stress of the weight works as some kind 

of prestress on the structure. The structure is more likely to fail in tension over compression. Because 

of the material properties of masonry, the weight has a positive contribution to the resistance of the 

wall.  

 

A careful look at the results is needed, because not everything is valid. For example, the analysis step 

where the displacements are in the opposite direction of the load. This is visible in the load-

displacement graph by the part that is left of the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7; Load displacement single wall total load case; left results once in 25 steps, right all results 
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4.3.5 Mesh size study 
In this part, the wall is modelled with a coarse mesh and a fine mesh to investigate if differences occur. 

 

 

The total result of the coarse mesh is shown in Figure 4.9. The result is quite good until the method 

becomes unstable. The structure unloads not secant to the origin and displaces negative. For the fine 

mesh, the structure does not reach the maximum value as in the previous examples. The element on 

which the lateral force acts is fully damaged early in the analysis and is seriously deformed. This 

damage results that between damage step 876 and 901 the structure cannot bear the initial load, 

visible in the reductions to the origin. 

 

While in general cases in a finite element analysis the results improve if the mesh size is smaller, this 

does not seem the case here. The results for the coarse mesh and the fine mesh were both acceptable 

until the initial load factor reduced, ignoring the outliers. When some elements of the fine mesh were 

damaged, the structure was not able to carry the full vertical load and the force immediately dropped. 

This already happened for small loads and resulted in the structure failing for in the early stages of the 

analysis. 

 

  

Figure 4.8; Three meshes, from left to right: fine, standard, coarse 
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A graph is made (Figure 4.12) in which the initial load 𝜆𝑖𝑛𝑖 is shown during the analysis for the fine 

mesh. Between damage step 876 and 901, the load factor is reduced to almost 0.4. The structure 

recovers itself in the next steps, only to drop the initial load again later. This part can be seen in the 

load-displacement relation as the reductions to the origin and back. In this case, some elements close 

to the point of load application misbehaved and failed, resulting in the end of the sequentially linear 

analysis. Extreme deformations for these elements were observed.  

 

Figure 4.9; Load-displacement curves; Coarse mesh (up) and Fine mesh (down) 
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The big drop in the initial load graph corresponds with the step in which the proportional load reduces 

to a value of 2.031 kN (Figure 4.9). Every time the initial load factor drops, the load combination of 

the previous analysis step is scaled. This means that not only the lateral load reduces when the initial 

load factor reduces, but also the vertical load. The advantage is that ratio between the lateral load and 

the vertical load stays constant, the disadvantage is that the vertical force reduces and an unrealistic 

situation occurs as the vertical load from weight would never reduce in reality. If this is only for a few 

analysis steps it can be seen as a redistribution of the load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10; 𝜆𝑖𝑛𝑖 during analysis; Coarse mesh 

Figure 4.11; 𝜆𝑖𝑛𝑖 during analysis; Standard mesh 
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The results of the previous three analyses are combined in one overview (Figure 4.13). The coarse 

mesh gave results which indicate that the structure can absorb relatively much energy before the 

analysis fails, while the fine mesh was only able to describe the elastic part. For the coarse mesh, a 

relatively large displacement was achieved, while the analysis was still stable. 

 

 

 

 

 

 

 

  

  

Figure 4.12; 𝜆𝑖𝑛𝑖 during analysis; Fine mesh 

Figure 4.13; Load displacement comparison 
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4.3.6 Investigation on negative displacements and not secant branches 
To get a better understanding, the standard mesh model is investigated around the unstable points to 

find the cause of this behavior. By taking a closer look at a small part of the graph (Figure 4.14) it is 

visible that the unloading is not secant to the origin. In all steps, the vertical reaction force of stays 

constant (76.499 kN), therefore there is no reduction of the initial load, which therefore cannot be 

the cause of this.  

The real cause of this behaviour could be a crack closure problem as explained in section 2.3.4. To 

investigate this, parts of the structure should be examined in detail.  

 

First, step 516 is investigated further. In this step, there is a large reduction of the load multiplier.  

In step 515, the load multiplier is 25790 N which reduces to 23440 N in step 516. The displacement 

reduces from 0.957 mm to 0.833 mm for those steps. These load reductions are visible in Figure 4.14 

by the linear line segments branching from the load displacement curve. In the next three steps, the 

load increases to the level before the load decrease. The failure in steps 515 and 516 are tensile 

failures in element 7, integration point 2. This element is located in the lowest row of the structure, 

the sixth element from the left and has nodes 21, 10, 11, 20 (Figure 4.3). 

 

Three plots are shown below, first two plots in which the stress states in the different analysis steps 

are shown (Figure 4.15 and Figure 4.16) and a third one with the damage levels (Figure 4.17). From the 

data, the boundaries for the principal stresses are found. The minimum principal stress 𝜎1,𝑚𝑖𝑛  =

 −1.08 ∗ 106 N/mm2, the maximum principal stress: 𝜎1,𝑚𝑎𝑥 =  1.24 ∗ 105 N/mm2. The change in 

sign of the principal stresses is important. Therefore, two diagrams are shown per damage step. The 

left diagram shows only the elements in compression and the right diagram shows only the elements 

in tension. In this way, the change from compression to tension or vice versa is clearly visible.  

Figure 4.14; Closer look at a part of the curve without secant unloading to the origin 
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Figure 4.15; Step 515 Load 25789 N 

Figure 4.16; Step 516 Load 23444 N 
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A crack closure problem can only occur in an element that is 

cracked or damaged. Figure 4.17 shows those elements. 

Damage has only occurred in the first six elements counted 

from the left in the bottom row, the last five elements counted 

from the left in the top row and around the point where the 

force is applied. Comparing Figure 4.15 and Figure 4.16, only 

the fifth element counting from the right of the top row 

changes from tension to compression. This is element 245 in 

the finite element mesh.  

 

 

 

 

 

 

 

Below in Figure 4.18, the stress state of the first principal stress is given for both elements, which 

confirms this more clearly. 

 

Another step with a big reduction is step 577. In this step, the load reduces from 26244 N in step 576 

to 23259 N in step 577. Also, the displacement reduces from 0.999 mm to 0.831 mm in those steps. 

The boundaries for the first principal stress are: 𝜎1,𝑚𝑖𝑛 = −1.10 ∗ 106 N/mm2 and 𝜎1,𝑚𝑎𝑥 = 1.27 ∗

105 N/mm2. 

 

Below in Figure 4.19 and Figure 4.20 are again the stress states, this time in step 576 and step 577 for 

the first principal stress 𝜎1: 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18; Stress state in element 245, step 515 (left) and step 516 (right) 

Figure 4.17; Damage level in damage step 
515 
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This time there are not many changes in the damaged elements for the first principal stress. The same 

figures are made for the second principal stress 𝜎2. The minimal value of the second principal stress: 

𝜎2,𝑚𝑖𝑛 = −2.30 ∗ 106 N/mm2 and the maximum value of the second principal stress: 𝜎2,𝑚𝑎𝑥 = 3.49 ∗

104 N/mm2. 

In Figure 4.21 and Figure 4.22, the stress states are shown. In Figure 4.23, the damage of the structure 

is visible.  

 

Figure 4.20; Stress state damage step 577 

Figure 4.19; Stress state damage step 576 
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For the second principal stress 𝜎2, there are differences. The 

differences are in element 10 and element 244. 

From Figure 4.21 and Figure 4.22 can be seen that two damaged 

elements go partly from tension to compression. The third 

element from the left in the bottom row (element 10) and the 

ninth element from left in the top row (element 244). Especially 

element 10 is severely damaged and has an almost zero stiffness. 

 

 

 

 

Figure 4.22; Stress state damage step 577 

Figure 4.21; Stress state damage step 576 

Figure 4.23; Damage in damage step 515 



77 
 

Below, element 10 is shown in Figure 4.24. In damage step 576, one step before the reduction. The 

element is fully loaded in tension. The highest value in the lower left corner (3.50 ∗ 10−2 N/mm2). In 

the next damage step (step 577), the element is in compression in the right part of the element. This 

element is fully damaged (damage level = 1.0).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In element 244, the stress state in step 576 shows an element which is half in compression and half in 

tension. In step 577, the stress has reduced which result in a different stress state with different parts 

in compression, and more severe. Only the top part is still in tension. This element is not fully damaged, 

but the damage is high (approximately 0.8).  

 

In both cases, step 516 and step 577, damaged elements changed from being in tension to 

compression. This combined with the fact that both elements were previously only damaged in tension 

results in the following line of reasoning: The elements were previously damaged because of tensile 

failures in the integration points. According to the sequentially linear analysis, the stiffness of those 

elements is reduced according to the saw-tooth law. However, when these elements change from 

tension to compression, the crack closes in reality because of the compressive stresses resulting in an 

adherent part which can transfer compressive stresses with the initial stiffness. In the sequential linear 

analysis procedure, this stiffness is reduced which results in a wrong stiffness and consequently strains 

which are too high, which leads to wrong displacements. Although a solid conclusion cannot be drawn 

yet, there is an indication this is the reason of the unstable unloading behavior which was encountered 

before. The conclusion is not solid yet, because crack closure behavior is detected at these unrealistic 

loading steps, but it has not been proved that this is also the cause, also the contour plot and stresses 

and strains in the nodes give a quick overview of the full structure but are not precise enough because 

the stresses and strains are calculated in the integration points of the elements and then extrapolated 

Figure 4.24; Stress state in element 10, step 576 (left) and step 577 (right) 

Figure 4.25; Stress state element 244, step 576 (left) and step 577 (right) 
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to the nodes and over the element. The analysis is done again later with the new developed version of 

Diana FEA and a self-written MATLAB code is used to analyze the structure on crack-closure behaviour 

in the integration points. The values of the stresses and strains in the integration points are saved in a 

tabula file during the analysis and are examined later. 

 

Now the negative displacements are examined. The negative 

displacements take place between damage steps 2652 and 

2708. Again, the same method as before is used in which the 

change from tension to compression and vice versa is showed. 

At damage step 2651, one step before the negative 

displacement. The structure is damaged as shown in Figure 

4.26. The damage has propagated further from the previous 

diagram. This is more than 5000 further and therefore, the 

structure is badly damaged. Almost the whole upper and 

lower row of elements is fully damaged.  

First the first principal stress is examined, 𝜎1. 

The maximum stress in the structure: 

 𝜎1,𝑚𝑎𝑥 = 3.61 ∗ 105 N/m2, the minimum stress in the 

structure: 𝜎1,𝑚𝑖𝑛 = −1.05 ∗ 106 N/m2. These stresses are 

again the boundaries of the diagram.  

 

Both stress states are shown in Figure 4.27 and Figure 4.28: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26; Damage step 5651, Damage level 

Figure 4.27; Damage step 2651 Load factor 33963 
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Again, damaged material has almost no stiffness. When it is loaded in compression after damaged in 

tension, the damage to the stiffness stays the same, therefore large strains are occuring which result 

in false results. The stress state of the elements of the bottom row is showed in Figure 4.29.  

 

 

In the previous cases, only one or two elements went from tension to compression. In this case, there 

are five fully damaged elements which go from tension in damage step 2651 to compression in 

damage step 2652. The same line of reasoning can be followed, in this case with that much damaged 

elements that the strains became so big that the displacement is reversed. This case shows even 

clearer that this behaviour is not realistic and results in wrong results. 

The nodal stress and strain values of the principal stresses and strains are shown below extrapolated 

from an integration point in element 2. As expected, the strain decreases at step 2652. However, the 

principal stress changes from tensile to compressive, which is remarkable for the first principal stress, 

as this should always be the highest of the three. Given that the stress in the third direction 𝜎𝑧𝑧 = 0 

by definition in a plane stress approach, this should not be possible.  

 

 

 

 

 

 

Figure 4.29; Analysis step 2651 left, and Analysis step 2652 right 

Figure 4.28; Damage step 2652, load 27321 
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Table 4.4; Principal stress and strain in element 2 node 6 

To show the error in stiffness when the curve 

switches from tension to compression (or vice 

versa), a stress-strain plot is made from the 

stress 𝜎𝑦𝑦 and the strain 𝜖𝑦𝑦 in a node nearby 

an integration point of element 12. This is the 

element in the corner left below. The stress 𝜎𝑦𝑦 

is chosen in stead of the principal stress 

because this stress does not change direction 

and the principal stress could because of 

redistribution and the initiation of a second 

crack. This as a result of the fixed crack 

approach. In this element, the crack should 

develop horizontally and therefore for the 

major part of the analysis, this could be 

regarded as the direction in which the damage 

occurs. Again these stresses and strains are 

extrapolated by Diana to the nodes. These are 

not the real stresses and strains in the 

integration points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stress and strain around step 2640 − 2660 

step Strain 𝜖1 [−] Stress 𝜎1 [N/m2] 

2640 0.000644 25684.09 

2641 0.000644 25690.69 

2642 0.000645 25727.24 

2643 0.000649 25862.67 

2644 0.00065 25871.37 

2645 0.000651 25919.51 

2646 0.000651 25900.98 

2647 0.000652 25930.04 

2648 0.000652 25933.43 

2649 0.000655 26045.73 

2650 0.000667 26400.47 

2651 0.000664 26285.9 

2652 0.000277 −36139.5 

2653 0.000231 −32275.1 

2654 0.000113 −15739.2 

2655 0.000111 −15541 

2656 0.00011 −15374.4 

2657 0.000109 −15057.2 

2658 0.000109 −15092.5 

2659 0.000108 −14930.8 

2660 0.000119 −16196.6 

Figure 4.30; Stress (𝜎𝑦𝑦)- strain (𝜖𝑦𝑦) curve extrapolated to node of element 12 
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The maximum strength reduces like expected when the material damages (Figure 4.30). The change 

from tension to compression occurs at analysis step 2652 when the structure moves to the left. Here 

this point is loaded in compression. In the compressive zone, the graph has the same tangent as where 

it left the tensile zone. In reality the stiffness in compression has not reduced and the stiffness should 

be the same it was initially. 

 

From the results can be concluded that the necessary addition of the self-weight and vertical load 

results in unprecise output for some steps. The first reason for this is the added complexity caused by 

the initial compression because of the self-weight and floor load. This is of course essential because 

these loads should be present in the model. From literature follows that the non-proportional loading 

scheme is still difficult to apply.  

Also, a first indication of a crack closure error appeared. Figure 4.31 shows this behaviour for an 

integration point. In this example damage occurs because the tensile strength is violated. This results 

in a reduction of the stiffness showed in diagram a. When the structure is reloaded in compression, 

the program uses the reduced stiffness to make the calculation. In diagram b, the compressive strength 

is reached, but the strain is too large. This leads to wrong displacements and incorrect results. 

 

4.3.7 In-depth analysis 
During the period of this research, new developments have been made and Diana version 10.2 was 

released. The analysis of the single wall (3ZCM) with self-weight and the floor load is repeated with 

the goal to compare the results of the new Diana version with the previous one and to give a more 

solid proof that crack-closure problems indeed occur during the analysis. The model used is the one 

with a mesh size of ℎ = 0.1 m. This model had a good tradeoff between analysis time and accuracy. 

First the load-displacement relation is examined. Again, with the displacement of the top right corner 

of the wall and the proportional push-over load as the variables. 

 

The result is shown in Figure 4.32. The previous result is not shown, because it was very similar to this 

one, which would make the figure less clear. Compared with the previous analysis, this one is far more 

stable. There are a few reductions visible, only the reduction around a displacement of  

𝑑 ≈ 2.5 mm is the result of a reduction of the initial load factor (Figure 4.33). This reduction is secant 

to the origin. The other reduction at 𝑑 ≈ 1.3 mm is not the result of a reduction of the initial load 

factor, neither is it the result of successive failures in the same integration point. It is therefore 

Figure 4.31; Crack closure error [25] 
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probably a redistribution of the forces in the structure. As this reduction is secant to the origin, no 

further attention is given to this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Something to highlight is the reduction at analysis step 2428. The force and displacement both reduce 

from 𝑑 = 3.44 mm and 𝐹 = 33.928 kN  in analysis step 2427 to 𝑑 = 1.81 mm and 𝐹 = 30.698 kN in 

step 2428. In step 2429, the load and displacement increase back to 𝑑 = 3.01 mm and 𝐹 =

33.073 kN. This is not the result of a reduction of the initial load factor as 𝜆𝑖𝑛𝑖 = 1 in all three steps. 

This result is important, because the unloading is not secant to the origin. To investigate this behaviour, 

an analysis is done which saves the strains, stresses and the damage of all integration points of all 

elements in analysis steps 2426, 2427, 2428 and 2429 in a text file. A program is written with the use 

of MATLAB which stores this information (damage, strains and stresses) in one big matrix (Appendix 

A). Afterwards it can be searched for crack closure behaviour, i.e. integration points that are damaged 

in which the strains and simultaneously the stresses change sign between two analysis steps. Between 

analysis steps 2426 and 2427 the stresses and strains did not change sign. Between 2427 and 2428 

Figure 4.33; Initial load factor during Diana 10.2 analysis of single wall 0.1 m mesh 

Figure 4.32; Force-displacement diagram Single wall push over, Diana 10.2 results 
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the stresses and strains changed sign in many integration points and between analysis step 2428 and 

2429 the elements with big reductions changed back. The elements and integration points in which 

important changes occurred were: Element 248 integration point 1 and integration point 3 and 

element 249 integration point 1. Changes also appeared in element 4, 7 and 245, but the stresses 

changed to relatively small values which have no big effect, because the strains will also be small. 

 

The strains and stresses are viewed in the 𝑥, 𝑦-coordinate system, with strains 𝜖𝑥𝑥 and 𝜖𝑦𝑦 and stresses 

𝜎𝑥𝑥 and 𝜎𝑦𝑦. Later a plot is given for the principal direction. For this element the principal directions 

gave a clear view. For all diagrams shown below, the graph starts with the first analysis steps in the 

compressive region after which it moves to the tensile region. 

The change of sign in stresses and strains in element 248 integration point 1 is visible in 𝑥-direction. 

The relation between the strain 𝜖𝑥𝑥 and stress 𝜎𝑥𝑥 during the analysis will be shown in Figure 4.34. 

The crack closure error occurs when the strain jumps from 5.21 ∗ 10−4 to −2.7 ∗ 10−4 and back. It 

crosses the origin and enters the compressive zone with the same stiffness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In element 248 integration point 3, the reduction is visible in both the 𝑥-, and 𝑦-direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34; 𝜖𝑥𝑥 and 𝜎𝑥𝑥 during the analysis in element 248 integration point 1 
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In integration point 3, the crack closure error occurs in the same stage as in integration point 1.  

Both integration points lay on the same horizontal distance.  

The branch to the negative side is bigger when the stresses and strains are shown in the 𝑥-direction. 

 

The last error occurs element 249 integration point 1, shown in Figure 4.36. 

Again, the graph does not cross the origin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.36; 𝜖𝑦𝑦 and 𝜎𝑦𝑦 during the analysis in element 249 integration point 1 

Figure 4.35; Principal stress and strain in element 248 integration point 3 
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As the stresses and strains in these steps are relatively high, the result of these wrong results is the 

reduction in Figure 4.32. For this integration point, the stresses and strains are shown for the global 𝑦-

direction, because at some stage, the principal direction changes for this element disturbing the plot.  

 

In Figure 4.37, the location of elements 248 and 249 is shown. These elements are in the top row of 

the wall and are damaged because of the flexural failure mode starting from the lower left and the top 

right corner. 

  

Figure 4.37; Location of element 248 (right) 
and 249 (left) 
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4.3.8 Conclusion 
In this chapter, a single wall was tested to get familiar with the sequentially linear analysis and to verify 

if the method works. First an analysis with only a pushover load was performed. This analysis showed 

a load-displacement curve with softening after the peak load was reached. The analysis method was 

able to describe the snap-through behaviour without difficulties. At the end of the analysis, a major 

load decrease was observed. At that stage it was concluded that the wall had failed. 

Next, an analysis was performed in which a constant floor load was added at the top of the wall. The 

maximum load increased much as a result of the weight acting as a prestress on the wall, making it 

possible to withstand a higher push-over load. This analysis had some difficulties. When the structure 

unloads, this was not secant to the origin in the first part of the post-peak behaviour. In some steps, 

the displacements were even negative. The failure pattern was flexural as tensile damage occurred in 

the bottom left and top right corner which propagated to the center. As the problems that occurred in 

this analysis were similar to the analysis with self-weight, the cause of this behaviour is investigated in 

there. 

When self-weight was included, even more unstable analysis steps occurred. The global behaviour was 

almost perfect elastic-plastic behaviour (no hardening or softening), with a small elastoplastic part at 

the transition. The instability of some analysis steps is shown by an abrupt huge decrease in force, 

negative displacements and unloading not secant to the origin. First the mesh sensitivity is examined 

with a coarse mesh in which the mesh size is doubled and a fine mesh in which the mesh size is divided 

by two. Although the elements of the coarse mesh were quite large, the result was acceptable. After 

the peak, there is a small decrease in load. At some time, it is not possible to apply the full initial load 

factor and the structure can be regarded as failed. Before this happens, the structure has a 

displacement around 40 mm. Therefore, the structure can be regarded as relatively ductile. The fine 

mesh showed the complete opposite behaviour. After the elastic branch, the structure immediately 

failed because of instability of some elements at the load application point and the load is decreased 

along the same branch. Remarkable was that the reduced mesh size did not improve the results but 

made them worse because of local instabilities. 

Next, the unstable analysis steps in the standard mesh were investigated to find the cause of this 

behaviour. First, the structure was globally examined at these analysis steps by looking at the contour 

plot and some nodal approximations of the stresses and strains in the elements. This resulted in an 

indication that there could be crack closure errors in the analysis. In a later stage of the investigation, 

the analysis was repeated with the new Diana 10.2 version. In this analysis, the number of unstable 

steps was greatly reduced and also the negative displacements were not present anymore. There were 

however still some steps in which the initial load factor reduced and where the structure unloads not 

secant to the origin. A self-made MATLAB program was used, developed in the first place for the beam 

element analysis, which searched all the integration points of the structure for crack-closure errors 

around those critical analysis steps. In the case of the initial load factor reduction, no crack closure 

behaviour was found. However, in the analysis step where the structure did not unload secant to the 

origin, crack closure errors were found in many integration points. There were three significant errors; 

in element 248 integration point 1 and integration point 3 and element 249 integration point 3. These 

were significant because the strains and stresses were big in these integration points. This results in 

big errors by applying a wrong stiffness which differs from the neighboring undamaged elements. 

There was definitely a relation between the non-secant branches in the load-displacement diagram 

and the errors found. However, as this only occurred for some steps and the program was able to 

recover quite fast, this did not affect the total solution. Globally, the analysis was very stable and the 

results were promising. 
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4.4  Pavia house 
 

4.4.1 Introduction 
This part is about the analysis of the door wall of the Pavia house using continuum elements. Again, 

the two model approaches (CM) and (3ZCM) will be used. First the analysis is again build stepwise with 

first only the floor load and the lateral load (4.4.2). Later self-weight is included (4.4.3) and a mesh size 

study is done for both the three-zoned model as the standard continuum model. A comparison is made 

between the results of the continuum model and the incremental iterative approach of Nobel [2] 

(4.4.5).  

Again, an in-depth analysis is done with the improved version of Diana FEA (4.4.6). Initial load factor 

reductions are investigated and the possibilities of crack openings. Further, non-secant branches are 

investigated and the behaviour of the piers. Finally, some possible improvements are suggested and 

tested (4.4.7). The results will be discussed and conclusions will be drawn to conclude this chapter 

(4.5).  

 

4.4.2 3-zone Pavia house without self-weight  
Here, the full house will be analysed using the sequentially 

linear analysis technique. In this model, the corners which are 

purple in Figure 4.38 have the same material properties as the 

middle of the piers (strength 𝑓𝑡𝑢 and fracture energy 𝐺𝑓−𝑡𝑢
𝐼 ). 

The vertical loads (𝑓1 and 𝑓2) are distributed over the floors. At 

the left side of the floors, two loads are applied, each with a 

force of 0.5 N. These loads are scaled in the SLA procedure. In 

the load-displacement diagrams, the load axis always shows 

the total horizontal load. This is the value of the load 

multiplier, because two loads are applied with a value of 0.5 N 

each. 

Important to remember is that the flexural failure elements in 

the piers and spandrels could have a bad aspect ratio when 

the mesh size decreases, this can result in bad element 

behaviour. A smaller element size also leads to an exponential 

increase of the calculation time, and more analysis steps as there are more integration points to 

damage before the structure fails. 

The vertical load does not result in a critical point in the structure, therefore no failure occurs in the 

building before the lateral load is applied. 

The first damage occurs in the bottom of the middle pier, followed by the bottom of the right pier, 

both from the left side. This damage propagates in these elements until the left corner at the bottom 

of the left pier damages continued by the top right corner of the first pier. These damages continue to 

grow which result in a tilt of the house to the right. Next, the right pier of the second floor starts to 

crack at the left bottom followed by damages at the bottom left and top right corner of the left and 

middle pier of the second floor. Figure 4.40 shows analysis step 1176 in which the load is still increasing 

(𝐹 = 91.2 kN; 𝑑 = 3.4 mm) and analysis step 2900, around the point where the maximum load is 

reached (𝐹 = 118.9 kN; 𝑑 = 8.6 mm). After this point, the program calculates a huge drop in load in 

which the structure definitely has failed. Damage continues, but with a much smaller load. 

Figure 4.38; Pavia house façade model 
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The load displacement diagram of the Pavia façade can be found in Figure 4.39. Not all the 20,000 

steps are shown in this figure, because the load continued to be relatively small, with unrealistic high 

displacements after the initial load factor had reduced. Even before the big drop after the maximum 

load, the structure already had three big unloadings.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40; Damage - Damage step 1176 (load 91214 N) (l) and damage step 2900 (load 118930 N) (r) 

Figure 4.39; Load displacement diagram Continuum Model (20,000 steps) 
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Just after the big drop after maximum load, the damage is shown in Figure 4.42. This point corresponds 

with the drop of the initial load factor whereafter it cannot return to the value 1. The failure occurs 

when the right spandrel on the first floor is fully damaged over the height. The failure can be regarded 

as shear failure as the elements are damaged over the full height and the displacements are similar to 

vertical shearing elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.42; Damage - Damage step 4150 (load (90855) 

Figure 4.41; 𝜆𝑖𝑛𝑖 during analysis; Pavia house Continuum elements no self-weight 
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4.4.3 3-zone Pavia House with self-weight, mesh sensitivity 
In the next case, the Pavia house will be analysed with self-weight included.  

 

In this case, the same thing happened as in the example with the single wall. The structure loads to a 

maximum load value, but instead of increased deformations and a reduced load, the structure unloads 

approximately along the same branch. Because the full vertical load cannot be applied anymore, the 

analysis prematurely stops. A possible solution can be to change the mesh size like in section 4.3.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First a coarse mesh is applied in which the required mesh size is doubled. The result is a very coarse 

mesh with two elements over the width of the pier. This means that the width is described by four 

integration points in width. Surprisingly, the results are still acceptable. The analysis is able to continue 

until the displacement has reached 𝑑 = 12 mm. Comparing the result with the load-displacement 

Figure 4.44; 𝜆𝑖𝑛𝑖  during analysis standard mesh Pavia façade  

Figure 4.43; Load-displacement diagram of the Pavia house all loads included 
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diagram of the experiment and the equivalent frame model of Nobel, the results are acceptable. The 

structure follows a different failure mechanism than in the experiment. The analysis is relatively stable 

as only one big load reduction occurs before failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now the structure is modelled by making the mesh size twice as small. The disadvantage of the three-

zoned model is that in this case, the flexural zones become very shallow and long. This could lead to 

large aspect ratio which could influence the analsyis. This is a consequence of using rectangular 

elements. If the mesh size is reduced that much that the elements in the flexural zones are accurately 

scaled, the mesh size in the shear parts also reduces and the number of elements is far too big to make 

the calculation. A solution is using triangular elements for the flexural parts, this will be experimented 

later. Looking at the results, they still seem fair. The same failure mode occurs as for the other meshes, 

which is not equal to the failure mode in the experiment. The load-displacement diagram is however 

still accurate although the high aspect ratio. 

Figure 4.46; 𝜆𝑖𝑛𝑖 during analysis; Pavia house Continuum elements coarse mesh 

Figure 4.45; Load-displacement diagram Full house with coarse mesh 
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Figure 4.48; 𝜆𝑖𝑛𝑖  during analysis fine mesh Pavia façade  

Figure 4.47; Load-displacement diagram Pavia facade fine mesh 
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4.4.4 One zone (standard) continuum model CM 
In this section, the pavia façade will be modelled with the standard continuum model CM. In this 

model, all elements in one spandrel or pier have the same (flexural failure) properties as the tensile 

strength is based on the bed joint tensile strength of the masonry. This is done, because the shear 

strength in the 3ZCM was too high to force shear failure in the piers. Therefore all piers failed flexural, 

which is not in line with the experiment. Again three different meshes are made, fine, standard and 

coarse, with mesh sizes of 0.1 m, 0.2 m and 0.4 m. Again, the load-displacement curve is shown 

together with the initial load factor during the analysis. The damage in the structure is also made 

visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.50; 𝜆𝑖𝑛𝑖 during analysis fine mesh CM Pavia façade  

Figure 4.49; Load-displacement curve; CM fine mesh 30000 steps 
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Surprisingly, the number of initial load reduction has increased a lot compared to with the standard 

model. Very often, the analysis had to reduce the load to distribute the forces in the structure. Ignoring 

that, the load-displacement diagrams show maximum loads that are smaller than in the three-zoned 

continuum model analyses. As the lower flexural tensile strength is used for all sections, this was 

expected. Like in the case with the 3ZCM, the fine mesh uses far more analysis steps to go through the 

full simulation than the standard model. The coarse model uses even less steps.  

 

 

Figure 4.52; 𝜆𝑖𝑛𝑖 during analysis standard mesh CM Pavia façade 

Figure 4.51; Load-displacement curve; CM standard mesh 
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One important thing that can be concluded from these analyses is that there is severe unloading 

compared to the 3ZCM. If an analysis should be aborted for a significant reduction of the initial load 

factor as this indicates failure, this model would be aborted in an early stage of the analysis. An 

important difference is the type of failure. In the 3ZCM, the lower piers failed in rocking and the right 

spandrel of the first floor failed in shear. In the CM analysis at the bottom piers, the left pier fails in 

rocking and the middle and right pier fail because of a diagonal shear crack (Figure 4.55), the other 

Figure 4.54; 𝜆𝑖𝑛𝑖  during analysis coarse mesh CM Pavia façade 

Figure 4.53; Load-displacement curve; CM coarse mesh 
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parts of the façade were almost not damaged in the early stages of the analysis. Only the left corner 

of the first floor had damage propagating from the lower right corner.  

 

 

 

In section 4.4.5, the results of the two different model approaches will be compared with the 

experimental results. 

In the 3ZCM, the maximum total lateral load reaches a value around 150 kN. In the CM model it 

reaches a maximum value of almost 120 kN. A significant difference. This difference is also a result of 

the lower strength in the shear sections of the cross-section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.55; Damaged integration points CM fine mesh 
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4.4.5 Comparison with experiment and incremental equivalent Frame method 
When comparing the results of the continuum model analysed using the sequentially linear analysis 

with the results from experimental data and the three-zoned continuum model used in [2] the focus 

will lay on the failure mode observed in all models and the maximum load versus displacement. 

 

Comparing the failure mode of the sequentially linear analysis and the experimental data, in both 

situations a flexural failure mode occurs in the left pier of the bottom row. In the SLA, the middle pier 

of the bottom row only suffers from flexural failure, while the experimental data shows a diagonal 

shear crack. Later in the analysis, a shear crack also occurs in the right pier of the bottom row in the 

experimental data, but this is not visible because this point is not reached in the SLA due to unloading. 

The SLA shows in several analyses a vertical shear failure in the right spandrel of the first floor as the 

next developed crack. In the experiment, the shear cracks in the spandrels are horizontal and not 

vertical.   

The three-zoned continuum model in [2] shows also flexural damage in the left and middle pier of the 

bottom row. Here, the shear failure in the middle and right pier of the first row is similar to the crack 

of the experiment. 

 

To compare the load, the total horizontal force on the building is compared together with the 

displacement of the top floor for all three meshes of the continuum model. All three analyses follow 

the same curve. In the beginning of the analysis. The standard mesh unloads early in the analysis. The 

other two are able to continue. It was already shown that the analysis was quite accurate in respect of 

the load-displacement relation. 

 

 

 

 

 

 

 

 

Figure 4.56; Load-displacement diagram comparison 
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In Figure 4.57, The models are compared with the experimental results. In terms of damage in the 

structure, the CM gave the best failure mode. The shear in the middle and right pier are correctly 

observed, the left pier starts with rocking in the experiment. In the experiment this pier showed also 

shear failure later. In the second floor and above, almost no damage is found excluding the damage in 

the corners of the windows. The 3ZCM showed vertical shear failure in the right spandrel of the first 

floor. The bottom piers all fail in rocking, while the experiment showed shear failure in the middle and 

right pier. The maximum load is approximated better in the 3ZCM. Here, it has a value around 150 kN 

just a little bit higher than in the experiment. The CM predicts a maximum load of almost 120 kN, 

which is too low. Moreover, the experiment had a cyclic loading pattern, while the analysis was just 

lateral. Probably, the maximum force in the experiment would be even higher when a lateral pushover 

analysis had been done. Concluding, the 3ZCM was not accurate in the case of the right failure 

mechanism, it did predict the load relatively accurate. The CM predicted the right failure mechanisms 

in the bottom piers. However, the total load was too conservative. In this aspect the 3ZCM performed 

better.  

Figure 4.57; Strains 3ZCM (left top), Damage CM (left bottom), Experiment (middle) and 3-zoned model from [2] 
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4.4.6 In-depth analysis 
Like in the case with the single wall, also in this, case the model is tested again with the new Diana 

version. The case standard continuum model (CM) is chosen because that case gave the best results 

speaking about the failure mode. All elements are quadrilateral and all elements have the flexural 

properties based on the bed joint tensile strength of the masonry. The mesh size used has an input 

value of size ℎ = 0.25 m. This results in a mesh with 9 elements in the height of the first-floor pier and 

5 elements in its width. The quality of the mesh is good, with an aspect ratio almost equal to 1 and all 

elements approximately of the same size. 

Comparing the results of the analysis with the experimental data, the approximation appears to be 

quite good. Concerning the lateral load versus the displacement, there is only a difference in the part 

between 5 mm and 17 mm. In the experiment, the load increases to 140 kN and back to 120 kN in 

that part, while the load in the SLA stays around 120 kN. In both cases a maximum stable deformation 

was found at approximately 𝑑 = 22 mm.  

When the damage pattern of the experiment is examined, the damage starts in the first-floor spandrels 

followed by the middle bottom pier and afterwards the left and right bottom pier. Some flexural 

damage occurs in the first and second floor piers, but the shear damage is more dominant. In the 

experiment the left bottom pier has a bottom left to top right shear pattern, the right pier a bottom 

right to top left shear pattern. The middle bottom pier has diagonal shear cracks in both directions. 

In the SLA, the shear cracks at the bottom develop from the start even for smaller displacements (𝑑 =

2.7 mm) than observed in the experiment (𝑑 = 11.4 mm). The middle pier at bottom level shows 

shear damage from the bottom right to the top left corner. The right bottom pier follows the same 

shear behaviour as in the experiment. The left bottom pier fails flexural in the SLA. The spandrels on 

the first floor stay undamaged while these were damaged a lot in the experiment. Some of the smaller 

damages in the experiment on the second-row piers are also visible in the SLA. 

Concluded, the load pattern is relatively accurately described. The SLA misses the increasing and 

decreasing part of the load-displacement diagram of the experiment between 𝑑 = 5 mm and 𝑑 =

17 mm, but approximates the structure better than the three-zoned continuum model with an 

incremental iterative approach in [2].  

  

Figure 4.58; Pavia facade with 0.25m mesh in Diana 10.2 
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4.4.6.1 Crack openings 

Like in previous cases, the initial load factor is reduced during some analysis steps (Figure 4.59). Some 

reductions are relatively big, with only 40% capacity left.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

The integration point which is damaged when the load is reduced is investigated to find if there is a 

relation between the reduction and the damage. For example, a crack opening can have a relation with 

a load reduction as the opening of the crack results in a redistribution of forces. This can load to the 

structure being not able to carry the full load in the next analysis steps. The first load reduction happens 

at analysis step 2779. In this analysis step, the initial load factor 𝜆𝑖𝑛𝑖 reduces from 1 to 0.39. The 

structure was not able to carry the vertical load and therefore only approximately 40% of the previous 

load case is applied to the structure. The damage in analysis step 2779 occurs in integration point 4 of 

element 275. To investigate this integration point, the stresses and strains of this point during the 

analysis are gathered. In an elastic situation, the stresses and strains in an integration point follow 

Hooke’s law for isotropic, linear elasticity. As this model uses the plane stress approach (𝜎𝑧𝑧 = 0), the 

stress and strain tensor only consist of two axial quantities and one shear quantity. This relation can 

be described as: 

 

[

𝜖𝑥𝑥

𝜖𝑦𝑦

𝛾𝑥𝑦

] =
1

𝐸
[

1 −𝜈 0
−𝜈 1 0
0 0 2(1 + 𝜈)

] [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

] (4.4.1) 

 

To make an estimate of the crack width, the elastic strain in every analysis step is estimated using the 

relation above and the axial stresses. This is of course an assumption, because in a sequentially linear 

analysis all analysis steps are linear. Strictly speaking, there is no elastic and plastic strain as all steps 

are linear elastic with a reduced Young’s modulus. In this approach, the elastic strain is subtracted 

from the total strain in that analysis step to retain a fictitious crack strain: 

 

𝜖𝑒𝑙 + 𝜖𝑐𝑟𝑎𝑐𝑘 = 𝜖𝑡𝑜𝑡𝑎𝑙 (4.4.2) 

 

This fictitious crack strain is multiplied with the element size to calculate the estimated crack width in 

the element. 

 

𝑤𝑐𝑟𝑎𝑐𝑘 = 𝜖𝑐𝑟𝑎𝑐𝑘 ∗ ℎ (4.4.3) 

 

Figure 4.59; Initial load factor during the analysis. Continuum model with Diana 10.2 



101 
 

For element 275 integration point 4 the estimated crack width is shown in Figure 4.60.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimated crack is negligible before step 2779. After the damage in analysis step 2779, the crack 

strain starts to develop. Crack initiation is found at the integration point where damage occurred 

during reduction of the initial load factor. The next major reduction occurs at analysis step 3500. In 

this step, the load reduces to 0.24 as a result of damage in element 264 integration point 1.  

This is shown in Figure 4.61. Again, a crack initiates during the same analysis step the load reduces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, when the reduction at analysis step 4280 is examined, the crack at corresponding element 

283 and integration point 2 is already present. This crack initiated at analysis step 3418 when the 

integration point was damaged for the first time. In this analysis step, the initial load was fully applied. 

This was also the case for element 290 integration point 3. The load reduces together with a damage 

Figure 4.60; Estimated crack width during analysis of element 275 integration point 4. Crack growth after initial load 
reduction in step 2779 

Figure 4.61; Estimated crack width during analysis of element 264 integration point 1. Crack growth occurs after 
the initial load factor has reduced 
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increment in analysis step 2937, but a crack already grew in this integration point together with the 

first damage occurring in analysis step 2922.  

In conclusion, it is highly likely that initial load factor reductions share a relation with crack openings 

in the corresponding damaged integration point of the element as this is shown for several load 

reductions. However, in some cases, a crack had already opened and therefore this was not visible as 

the crack already existed. Probably, the reductions are the result of the analysis unable to cope with 

the abrupt change of the element due to crack opening and the associated redistributions. This 

however gives no explanation in the case of a load reduction when a crack has already opened, because 

the crack width stayed the same. 

 

4.4.6.2 Crack closure errors 

During the analysis, especially in elastoplastic part (displacements between 2.5 mm and 6 mm) the 

structure unloads several times. Some of these unloading branches are not secant to the origin and 

are therefore investigated to see if crack closure errors occur like in the case of the single wall. Below 

in Figure 4.62 is a part of the load-displacement graph shown between analysis steps 1000 and 2500 

and part of a line connecting the origin with the graph. The reductions are not parallel with the orange 

secant line between the origin and the curve as would be expected in an SLA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four intervals of analysis steps with reductions are checked for crack closure errors: 1103-1106, 2088-

2091, 2477-2480 and 2777-2780. They are shown in Figure 4.63. Interval 2777-2780 is secant to the 

origin, the other three are not. The same program from 4.3.7 is used to check all the integration points 

in these three intervals for crack closure errors. For the intervals 2088-2091, 2477-2480 and 2777-

2780, no crack closure errors are found. For interval 1103-1106, a crack closure error is found 

between step 1104 and 1105 (reduction of load) and between steps 1105 and 1106 (increases back). 

The error is found in element 41 integration point 1 and integration point 3.  

 

 

 

 

 

 

 

Figure 4.62; Unloading not secant to the origin in continuum model Pavia house 0.25m mesh 
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Element 41 is the most bottom-left element of the bottom right pier. The stress-strain relation of 

integration point 1 is shown below. This relation very similar to the stress-strain relation of integration 

point 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The integration points are shown for the 𝑦-direction because they are sought in this coordinate system. 

As the principal stress always follows the biggest stress direction, negative values for a certain direction 

are often not visible as the principal direction rotates and other positive stresses are larger. As this 

element is located in the left corner in a flexural zone, the principal direction will be in the 𝑦-direction 

during flexural damage as the crack propagates in 𝑥-direction. 

 

  

Figure 4.64; Stress-strain relation in y-direction of element 41 integration point 1 step 1-5620 

Figure 4.63; Intervals with reductions for crack closure investigation 
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The integration point starts in compression as a result of the non-proportional load on the pier because 

of the self-weight and the floor load. The starting point of the stress-strain diagram has a stress  

𝜎𝑦𝑦 = −0.323 MPa and strain 𝜖𝑦𝑦 = −0.000227. The Young’s modulus is estimated by calculating 

the gradient of this relation: �̂�0 = −
323000

−0.000227
= 1.423 ∗ 103 MPa. Note that the Poisson effect is not 

taken into account in this hand calculation. This value is close to the Young’s modulus given as input 

for the model: 𝐸0 = 1.41 ∗ 103 MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Damage 

Figure 4.65; Damage and crack closure error at step 1105 
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Visible in Figure 4.65 is the fact that every time this integration point damages, it branches to another 

linear relation. Ideally, one would expect a relation like Figure 2.14, in which the unloading would be 

in line with the saw teeth. A possible explanation of this behaviour is that this behaviour is only possible 

in the case of a fixed principal direction in the integration point. In this case, a fixed crack approach is 

used while the principal direction changes drastically according to Figure 4.66. Globally, the unloading 

is in line with the expected saw tooth curve (Figure 4.64). 

This principal direction is calculated by looking at the extreme values of the rotated stiffness matrix 

from the 𝑥, 𝑦-coordinate system to a �̅�, �̅�-coordinate system, �̅� = 𝑹𝚺𝑹𝑇 with: 

 

𝚺 = [
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦𝑦
]   ,   𝑹 = [

cos(𝛼) sin(𝛼)

−sin(𝛼) cos(𝛼)
] 

 

by taking the derivative of the axial stress component to the angle 𝛼 and setting this to zero. 

 
𝜕�̅�𝑥𝑥

𝜕𝛼
= 0 (4.4.4) 

 

Elaborating this expression, these extreme values i.e. the principal values are found for an angle: 

 

tan(2𝛼) =
2𝜎𝑥𝑦

𝜎𝑥𝑥 − 𝜎𝑦𝑦

(4.4.5) 

 

This angle 𝛼 is also known as the principal direction 𝜃𝑝 [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.66; Principal direction of element 41 integration point 1 during analysis 
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On a global level, the strains as a result of the crack closure error at analysis step 1104 are relatively 

small. By taking a closer look at Figure 4.64, some big crack closure errors are detected around analysis 

step 3000. Below (Figure 4.67), the initial stiffness is shown together with the stiffness at the crack 

closure error. This illustrates the difference in strain between the real behaviour (blue line) and the 

behaviour in the analysis. If the initial stiffness was used as the behaviour would have been in reality, 

a stress of −86750 N/m2 would have let to a strain of 𝜖0 =
−86750

1.423∗109 = −6.097 ∗ 10−5.The ratio 

between the current stress 
𝜖𝑦𝑦

𝜖0
=

−6.097∗10−5

−1.719∗10−4 = 2.8. This is a huge difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.67; Initial stiffness and stiffness at crack closure around analysis step 3030 
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4.4.6.3 Toe crushing investigation 

Further in the analysis, the initial vertical load is reduced often. A reason for this could be crushing of 

the toe of a wall. In reality when an unreinforced masonry wall 

fails flexural, cracks start to propagate at the heel of the wall. 

Because this part is damaged and loaded in tension, the 

remaining part of the wall has to take the vertical load. As 

cracks propagate, this section becomes smaller. At a certain 

stage, the toe of the wall starts to crush, because almost all of 

the vertical force is taken by a small section and the stress in 

this part exceeds the compressive strength. This results in toe 

crushing and the wall crumbles under its own weight. This 

behaviour can be the reason that the vertical load cannot be 

fully applied as this is a consequence of it.  

Before the data can be analysed, some strains and stresses 

have to be calculated to compare them with the data. 

In Figure 4.69, the constitutive relation for the 

tensile and compressive curve are given. The 

tensile curve uses a linear relation and the 

compressive curve a parabolic relation. 

Important to know is that cracking occurs for 

stresses larger than the plastic strain 𝜖𝑝 

corresponding to the tensile strength of 𝑓𝑡.  

The relation until that state is linear elastic 

and therefore, the plastic strain can be 

calculated by: 

 

𝜖𝑝 =
𝑓𝑡
𝐸0

(4.4.6) 

 

And the ultimate strain by: 

 

𝜖𝑢 =
2𝐺𝑓

𝐼

ℎ𝑓𝑡
(4.4.7) 

 

For the compressive region. The maximum compressive stress 𝑓𝑐 is reached at strain 𝛼𝑐. This strain is 

calculated as: 

 

𝛼𝑐 =
5

3

𝑓𝑐
𝐸0

= 5𝛼𝑐/3 (4.4.8) 

 

The ultimate compressive strain at which softening is completed can be calculated as: 

 

𝛼𝑢 = 𝛼𝑐 −
3

2

𝐺𝑐

ℎ𝑓𝑐
(4.4.9) 

 

 

 

 

Figure 4.68; Failure mechanisms with lateral 
force; rocking [2] 

Figure 4.69; Constitutive relations. Linear tensile relation (left). Parabolic 
compressive relation (right)  [22] 
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The calculated parameters are shown in Table 4.5. Only the parameters independent of the mesh size 

ℎ are shown. The dependence of the mesh size is a characteristic of a smeared crack approach. 

 
Table 4.5; Stresses, strains and parameters of the constitutive relations 

 

 

 

The damage, strains and stresses will be given for five different analysis steps. These steps are 

16, 421, 2776, 5326 and 8611. The place in the load-displacement curve at those steps is shown in 

Figure 4.70. 

 

 

 

 

 

 

  

Parameter 𝐸0 [MPa] 𝑓𝑡 [MPa] 𝑓𝑐  [MPa] 𝜖𝑝 [−] 𝛼𝑐  [−] 

Value 1410 0.04 −3.0 2.84 ∗ 10−5 −3.55 ∗ 10−3 

Figure 4.70; Location of the analysis steps in the load-displacement curve 
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To investigate the phenomenon of toe crushing, the bottom row of all three piers is investigated. For 

every pier, the vertical strains and stresses in the integration points of the lowest row of elements are 

monitored during the analysis. First the left pier is analysed. 

The elements inspected are 137 up to and including 141. In the analysis, the first load reduction is in 

analysis step 2785.  

 

 

 

 
 

 

 

 

In Figure 4.71 an overview is given of the damage, strain 𝜖𝑦𝑦 and stress 𝜎𝑦𝑦 over the bottom row of 

the left pier. Four steps in the analysis are chosen, namely steps: 16, 421, 2776 and 5326. Step 16 is 

at the start of the analysis, in step 421 the damage has propagated, but the structure can carry the 

vertical load. In step 2776 The load vertical has already reduced and in step 5326 the structure is 

failing. 

In step 16, the behaviour is almost linear elastic. There is some damage in the left side of the pier. The 

stresses are almost compressive over the whole area, except the left part, which is in tension. In 

analysis step 421, a large part of the pier is damaged. A crack has developed from the left as strains 

are above the crack strain. At the left side of the pier, the cross-section is almost fully damaged, 

therefore no stresses can be taken in that part. The neutral point shifts to the right compared to step 

16. 

Figure 4.71; From left to right, damage, strain 𝜖𝑦𝑦 and stress 𝜎𝑦𝑦 over the bottom row of the left pier. From top to 

bottom analysis steps: 16, 421, 2776 and 5326.  



110 
 

Step 2776 shows that the damage occurs almost everywhere in the cross-section. Only the integration 

point far to the right is still undamaged, all the other integration points are almost fully damaged. The 

neutral point has shifted more to the right and the compressive stresses have increased. In step 5326, 

Almost all integration points are loaded in tension. The strains have increased much. The part which 

can take the compressive forces has reduced 

to a very small band on the right side. The 

vertical load cannot be fully applied in this 

stage.  

Figure 4.72 and Figure 4.73 show the damage 

and principal stress-strain relation of element 

141 integration point 2. This element is 

located at the left side of this pier. Damage 

builds up in the early stages of the analysis and 

the principal stress-strain relation follows the 

saw-tooth law accurately. 

 

In conclusion, the damage, strains and stresses in the bottom row of the left pier clearly show the 

expected behaviour concerning rocking of a wall. Cracks propagated from the tensile side and the 

neutral point shifted to the compressive side. During the analysis, this process continued until almost 

the whole cross-section was cracked with tensile strains. A small part remained intact and still takes 

some compressive stresses, as the area is very small, the left pier has almost no vertical load carrying 

capacity left. Toe crushing can however not be concluded as the compressive strain in the integration 

points in compression do not reach strains belonging to the post-peak parts of the parabola. The strains 

are not even close as the post-peak part is reached with strains smaller than −3.55 ‰.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.72; Damage in element 141 integration point 2 

Figure 4.73; Principal stress-strain relation of element 141 integration point 2 
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For the middle pier, the overview of damage, strain and stress is given in Figure 4.74. 

 

 

 

 

 

Here, the damage develops differently. Again, cracks start to grow from the left side of the pier early 

in the analysis. However, tensile damage is also occurring right of the center of the middle pier.  

This damage is propagating in a different direction then the 𝑦𝑦-direction as the stresses 𝜎𝑦𝑦 in those 

integration points are in compression. This damage is a result of the shear failure mode propagating in 

the middle pier. This shear crack develops at that location. Again, the vertical stresses in crack do not 

exceed the tensile strength of 0.4 MPa. Toe crushing is not reached, as the compressive strain is far 

below the plastic compressive strain. 

 

 

 

  

Figure 4.74; From left to right, damage, strain 𝜖𝑦𝑦 and stress 𝜎𝑦𝑦 over the bottom row of the middle pier. From top to 

bottom analysis steps: 16, 421, 2776 and 5326.   
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Figure 4.75 shows the damage, strains and stresses in the bottom row of the right pier. 

 

 

 

 

 

 

The right pier shows similar behaviour as the middle pier. From the left, tensile cracks propagate 

belonging to a rocking failure mechanism. Right from the center, damage occurs because of diagonal 

shear failure in the pier. The tensile stresses do not exceed the tensile strength of the material.  

The compressive strain limit for the maximum compressive strength is reached in step 8611 for 

element 42 integration point 3. By checking the principal stress-strain relation for this integration 

point, the reason why the strains reach this limit is because of a crack closure error, which incorrectly 

increased the strain. The stiffness is damaged and because this damaged stiffness is kept in 

compression, the strains are too large.  

 

 

  

Figure 4.75; From left to right, damage, strain 𝜖𝑦𝑦 and stress 𝜎𝑦𝑦 over the bottom row of the right pier. From top to 

bottom analysis steps: 16, 2776, 5326 and 8611 
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4.4.7 Possible improvements 
In this section, the different suggested improvements of the continuum element model will be 

explained and discussed. It debates different model approaches. 

 

4.4.7.1 Three zones triangular sections 

In this model, the small elements at the ends of the piers and spandrels are modelled with small 

triangular elements. These elements are chosen because a finer mesh in the ends of the piers and 

spandrels is advised compared to the middle of the piers. Quadrilateral elements will have a bad aspect 

ratio which could give unreliable results or a too fine mesh which increases the calculation time 

dramatically. Again, two approaches in material parameters are done. In the first approach, the ends 

of the piers and spandrels are modelled with the bed joint tensile strength and fracture energy 

belonging to rocking of the wall, while the middle is modelled with the maximum shear strength and 

fracture energy belonging to shear failure. In the second approach, the whole piers and spandrels have 

the bed joint tensile strength and fracture energy as strength parameters. 

 

Below in Figure 4.76, the load-displacement curve is given for the first approach. The maximum load 

is very similar to the experimental value. The analysis is however not very stable, because the initial 

load factor drops very often (Figure 4.77). The maximum displacement is around 𝑑 = 13 mm. 

  

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.77; 𝜆𝑖𝑛𝑖 during analysis, 3-zoned model triangular element ends 

Figure 4.76; Triangular elements at the ends, 3-zoned continuum model 
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The failure mode is similar to the other three-zone models. The bottom piers fail in flexural failure, 

while the right spandrels fail in shear. After this, the right pier at bottom level also develops shear 

damage. This damage develops vertical in this model, instead of diagonal in the experiment. 

 

The results of the second approach are shown in Figure 4.78. The analysis continuous until the end of 

the experiment and even further while being able to carry the full load, although the initial load 

reduces often. The unloading branches happen when the initial load factor reduces. The failure mode 

of this model is flexural failure in the left pier of the bottom row and shear failure in the middle and 

right pier. This is the similar to the experiment. In general, the triangular elements did not improve the 

results. The failure modes were similar as were the load-displacement diagrams. Only the second 

approach stood out as it reached relatively large displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.79; 𝜆𝑖𝑛𝑖  during analysis, triangular element ends, flexible parameters 

Figure 4.78; Load-displacement diagram triangular ends, flexible parameters 
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4.4.7.2 Variation in tensile shear strength 

It is peculiar to see that in the continuum model, the best results come from the model which should 

be less accurate. The three-zoned approach is used to make a distinction between the flexural failure 

at the ends and the shear failure over the height in an unreinforced masonry wall. Unwillingly, this 

model results in a different failure mode namely dominating flexural failure instead of shear failure. 

The previous approximation in which the flexural strength of the wall is chosen for all sections is not 

fully correct as the shear strength of a wall is higher. Therefore, it is expected that the maximum load 

should be higher, as the strength is higher in reality. An uncertain value is the reference tensile strength 

𝑓𝑡𝑢. This factor was not given in the Pavia experiment and is estimated: 𝑓𝑡𝑢 = 0.14 MPa. 

This is based on the relation of this parameter with the brittle shearing failure mode [2]. In the 

experiment, this failure mode happened for a displacement 𝑑 = 11.4 mm. A rapid decrease in force 

was observed in the three-zoned continuum model of Nobel with this value for 𝑓𝑡𝑢. As this value is 

empirically chosen and not based on a solid explanation, it is advisable to perform a parameter 

sensitivity study on this factor. Especially because this factor has a big influence on the shear failure 

mode, which was not present in the piers for the 3ZCM. 

Four different model configurations are used in this study, shown below in Figure 4.80.  

  

 

 

 

 

  

Figure 4.80; Four models to investigate the influence of the shear strength. From left to right, top to 
bottom: (a) Original Pavia model; (b) Sophisticated Pavia model; (c) Aspect ratio = 1 pier and 
spandrels; (d) Aspect ratio = 1, only the piers reduced 

a 

d c 

b 
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Model a uses the same mesh as the original Pavia model from chapter 4.4. Model b uses a finer mesh. 

The reason is to improve the aspect ratio of the element, while maintaining the ratio of that one 

twentieth of the total height of a pier is the height of the flexural zone. The difficult tradeoff in this 

model is that a finer mesh increases the number of elements greatly, which also increases the number 

of integration points. In an SLA, this means that the time for each analysis step will increase because 

of the greater number of elements slows the calculation, while also the number of analysis steps 

increases because more integration points need to be damaged to collapse the structure. A finer mesh 

in the flexural zones will also result in a finer mesh in the shear zones. Otherwise long oddly shaped 

triangular elements are needed to connect the nodes which are also not accurate.  

Model c uses the model of chapter 4.4.6 which relatively accurately described the failure pattern. The 

strength of the elements is manually augmented after the mesh is generated. Model d is equal to 

model c with the only difference that the tensile strength is only augmented in the piers, while the 

spandrels still have the joint tensile strength. This model is used because in model c, the vertical load 

could not be applied without damage in the spandrels as a result of the self-weight due to the lower 

properties. The flexural strength of the spandrels is estimated much higher (six to eight times higher), 

than for the piers. As the damage should be a result of the lateral load and not the vertical load, this 

model offers a solution. As the real structure has lintels above the openings in the wall, this assumption 

is just. The advantage of model c and d is that the aspect ratio of the elements is very good. A downside 

is that especially in the spandrels, the flexural zone is large compared to the shear zone. However, a 

finer mesh will result in calculation times that takes many hours, which is not practical. For all models, 

five different values for 𝑓𝑡𝑢 are chosen: 0.04 MPa, 0.06 MPa, 0.08 MPa, 0.11 MPa and 0.14 MPa. 

 

To analyze the results, an overview is given of the load-deformation curve. The curve is shown as long 

as the vertical load can be fully applied. Steps in which the structure is unloaded are also present, but 

only if the structure was able to take the full load later in the analysis. The failure pattern is also 

investigated to see if the structure fails flexural or in shear. 

 

Model a 

This model starts with damage at the bottom of the spandrels as a result of bending of the spandrels 

by the vertical load (floors and self-weight). Damage occurs because of the lower strength of the 

spandrels. The damage is followed by vertical shear in the right spandrels and shear in the middle and 

right pier and flexural damage in the left pier. The same behaviour is found for 𝑓𝑡𝑢 = 0.06 MPa and 

𝑓𝑡𝑢 = 0.08 MPa. Interesting to see is the fact that the left corner at floor 1 and the top left corner start 

to damage diagonally. Damage starts from the bottom right corner of this element, similar to the 

experiment.  

The results of 𝑓𝑡𝑢 = 0.11 MPa  and 𝑓𝑡𝑢 = 0.14 MPa are different as only the right bottom pier fails in 

shear in a later stage, after the right spandrels have failed and the other piers fail flexural. The main 

damage occurs because of vertical shear in the right spandrels. Similar to the results of the original 

3ZCM model as the same parameters are used. As expected, the maximum load increased as the 

strength was higher, although this influence was limited. The big difference was the failure pattern. 

For low strengths, the middle and right pier failed in shear and the left pier flexural. This is more 

accurate than for higher values in which the right spandrels fail in vertical shear. Low values of the 

shear strength result in damage because of the vertical weight on the spandrels. This is not wanted 

nor realistic as the structure would be designed to carry the vertical load.  
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Model b 

During the analysis with 𝑓𝑡𝑢 = 0.04 MPa, it is not possible to apply the full vertical load. The analyses 

with 𝑓𝑡𝑢 = 0.08 MPa and 𝑓𝑡𝑢 = 0.11 MPa fail almost immediately after the vertical load is partly 

applied. The model of 𝑓𝑡𝑢 = 0.08 MPa starts with bending damage in the spandrels because of the low 

strength in this region. Later, the right spandrel at the first floor fails and the second-floor spandrel at 

the right cracks, followed by shear damage in the middle and right pier of the bottom floor. 𝑓𝑡𝑢 =

0.14 MPa shows similar behaviour as in the previous analysis, i.e. shear failure in the right spandrels 

and flexural damage in the piers.  

 

 

 

 

 

 

 

Figure 4.81; a: Different shear strengths for the original Pavia facade model, legend values are in [𝑃𝑎]. 
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In conclusion, the finer mesh resulted in the fact that three of the five analyses failed as a result of the 

vertical force. Oddly, the analysis with 𝑓𝑡𝑢 =  0.06 MPa could be executed, while two analyses with 

higher strengths could not. The failure pattern was wrong for both analyses, with too weak spandrels 

for the first, and a shear strength that is too high for the second.  

 

Model c 

For 𝑓𝑡𝑢 = 0.04 MPa, the vertical force cannot be fully applied. For 𝑓𝑡𝑢 = 0.06 MPa, 𝑓𝑡𝑢 = 0.08 MPa 

and 𝑓𝑡𝑢 = 0.11 MPa the results are similar to the original Pavia model (modal a). The spandrels are too 

weak in the first two models which result in severe damage at those locations followed by shear in the 

middle and right pier. The model with 𝑓𝑡𝑢 = 0.14 MPa has piers that are too strong, which result in 

flexural damage only. Important to see is that the displacements have increased for this model. The 

results could be better if the spandrels were uncoupled from the variating shear strength. This would 

mean that the spandrels would not fail in bending and shear in the center as happened in the previous 

analyses because of the reduced shear properties. Therefore, model d is made. 

 

 

 

  

Figure 4.82; b: Different shear strengths. Pavia model with finer mesh, legend values are in [𝑃𝑎]. 
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Model d 

In the final model, the full spandrels have the same properties as in their ends. This to avoid damage 

in the first analysis steps and too early vertical shear failure because of the vertical load. Important to 

see is that the analyses with 𝑓𝑡𝑢 = 0.04 MPa and 𝑓𝑡𝑢 = 0.08 MPa are very stable. There are almost no 

initial load reductions and the SLA characteristic reductions are clearly visible. With increasing strength 

in the spandrels, the damage focusses on diagonal shear in the middle and right pier. Again, the left 

corner of the first floor starts to crack. The left bottom pier fails flexural. Not surprising, a higher shear 

strength results in a higher maximum load. The higher the shear strength, the later shear occurs in the 

piers. For 𝑓𝑡𝑢 = 0.14 MPa, there is no shear in the piers (only the pier most to the right at the end of 

the analysis) and the failure is dominated by flexural damage in the piers. As the ends of the piers are 

more damaged, the structure cannot carry the vertical load and the initial load factor reduces very 

often.  

 

  

Figure 4.83; c: Lower shear strength model of Pavia facade with aspect ratio equal to 1, legend values are in [𝑃𝑎]. 
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Figure 4.84; d: Lower shear strength model of Pavia facade, aspect ratio =1 and only piers are reduced, legend values are 
in [𝑃𝑎]. 
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In Figure 4.85, the damage pattern is given for analysis 

step 5941 in the model with 𝑓𝑡𝑢 = 0.08 MPa. Shear 

diagonals are progressing in the middle pier as in the left 

corner of the first floor. Also, a vertical, slightly diagonal 

crack propagates in the right pier of the first floor.  

 

 

 

 

 

 

 

 

In conclusion, in model a, b and c the strength of the 

spandrels and the piers were both reduced as a result of the reduced shear strength. This resulted for 

low shear strengths in the right failure pattern in the piers, but damage in the spandrels as a result of 

the vertical load. For high values, the piers were too strong which resulted in an incorrect failure 

pattern. Especially in the fine mesh, the analysis could not continue because of the first situation as 

the vertical load could not be applied. Model d offered a good trade-off. This model had a good aspect 

ratio and the spandrels were not influenced by the decreasing shear strength. This resulted in a stable 

analysis, especially for the value: 𝑓𝑡𝑢 = 0.08 MPa. This value gave a stable analysis with almost no 

reductions in load, the failure pattern was among one of the most accurate, with shear failure in the 

piers. The result came very close to the experimental data of the Pavia experiment. It was somewhat 

higher, which can be explained by the fact that the Pavia experiment included cyclic testing of the 

house. With a cyclic load, a lower load is needed to fail the structure. The maximum displacement of 

the house was 𝑑 = 10.04 mm, which is only halve of the maximum displacement in reality. Another 

important thing that can be concluded is that a relation seems to exist between the failure pattern and 

the reductions of the initial load factor. With higher 𝑓𝑡𝑢, the piers failed in rocking failure which consist 

of severe damages along the top and bottom of the piers, while for lower 𝑓𝑡𝑢 the shear failure was 

more dominant, which also included damage over the bottom of the piers as visible in Figure 4.85, but 

not at the top. For higher 𝑓𝑡𝑢 and flexural failure, the load reductions are more severe for all four 

models, with reductions to values were almost no load was left. As with flexural failure, a larger part 

of the bottom and top of the piers is damaged, it is more difficult to apply the vertical load as the 

strength of those elements is reduced. The load has to reduce more often to redistribute the load 

resulting in a less stable analysis. Especially the fact that the top of the middle and right pier does not 

damage over the width contributes to this mechanism as the load can still be transferred vertically to 

the remaining undamaged part of the bottom row. 

 

 

 

  

Figure 4.85; Damage pattern in the Pavia facade 
for 𝑓𝑡𝑢 = 0.08 𝑀𝑃𝑎. Analysis step 5941 
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4.5 Conclusion 
 

In this chapter, several analyses are done on a continuum model of the Pavia house. First, the three-

zoned approach (3ZCM) of Nobel [2] is used and a standard approach (CM) in which the bed joint 

tensile strength is used in all piers and spandrels of the model. Although the single wall performed best 

by using the three-zoned approach, the Pavia façade showed a different result. In the three-zoned 

approach, the piers started to fail flexural together with shear failure in the right first floor spandrel. 

In the standard approach, shear failure occurred in the middle and right pier of the first floor together 

with flexural failure in the left pier. In reality the façade failed with shear failure in all three piers, in 

the middle pier in two diagonal directions. In terms of maximum load, the standard CM model 

estimated the maximum load below the experimental value. The lateral load increased to 120 kN at a 

displacement of 3.5 mm which was similar to the results of the experiment. In the simulation, the load 

stayed constant until the structure failed at a displacement of approximately 22 mm. In the 

experiment, the façade also failed at a displacement of 22 mm, but the load increased to 150 kN and 

decreased back to 120 kN. The 3ZCM estimated the load somewhat higher than in the experiment 

(160 kN), which can be explained by the fact that the experiment used cyclic loading instead of a 

pushover load. The displacements were smaller for the 3ZCM, most analyses reached a maximum 

displacement around 10 mm. 

During the analysis, the initial load factor reduced to values between 0.4 and 0.6 or even lower. These 

reductions are quite severe, although the program was able to recover relatively quick from those 

reductions. A relation was sought between the reductions of the initial load factor and crack 

propagation in the integration point that was damaged. An approximation was used in which the 

current strain in an integration point was split in an elastic part using the stress, Poisson’s ratio and 

the initial stiffness and a remaining plastic part. This plastic part was multiplied with the element length 

to estimate a crack width. This method showed an increase in crack width in the analysis step after the 

load factor had reduced. For example, in element 275 integration point 4, the crack width began to 

increase after the initial load was reduced in this integration point in the previous step. This behaviour 

was also found for other integration points which were damaged in the same analysis step as the initial 

load factor reduction. In some cases, a crack started to grow after this reduction, while in other cases 

a crack had already grown and no increased crack width was found. More importantly, the damage, 

strain and stress over the width of the bottom row of the bottom left pier was investigated. In this 

overview, it became clear that the tensile damage and crack opening from the left pier shifted the 

neutral line to the right. Further in the analysis, more integration points were damaged as the crack 

propagated. As a result of this, the vertical load in this pier was carried by a decreasing part of the pier. 

The compressive stresses in this part grew. At a certain moment, the pier was not able to transfer the 

vertical load as only one integration point over the entire width was still undamaged. The left pier had 

no vertical load capacity left as the area over which the compressive load was transferred was very 

small. The phenomenon toe crushing was not found as the compressive strains were far below the 

strains corresponding to post-peak behaviour in the compressive material relation. 

In the analysis, many non-secant branches were found, especially in the elastoplastic region of the 

load-displacement curve. These intervals are checked for crack-closure errors in which the stress and 

strain reversal from tension to compression or vice versa happens with a reduced stiffness. In reality, 

a tensile damaged cross-section would have a recovered stiffness back to the initial value when loaded 

in compression due to crack closure, making it possible to transfer compressive stresses through the 

section. As these errors can result in unrealistic high strains, it is important to get an overview. Three 

non-secant branches were investigated and one secant branch for confirmation, where no crack 

closure error was found. From the three investigated non-secant branches, only for the interval in 

analysis step 1103-1106 crack closure errors were found in the left most element of the bottom row 
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of the right pier in analysis steps 1104-1105 and in steps 1105-1106. By looking at the stresses and 

strain in that analysis step one can conclude that the error is relatively small as the strains are not that 

big in this analysis step. By looking at the stress-strain relation in Figure 4.64 another error was found 

around analysis step 3000. This error was more severe as the integration point was further damaged 

making the difference between the current stiffness and the initial stiffness larger. A hand calculation 

was made to estimate the ratio between the current strain and the strain expected in reality. The 

current strain was a factor 2.8 larger. In the bottom of the right pier, a large crack closure error was 

found which resulted in a compressive strain close to the plastic limit. The fact that non-secant 

branches exist is however not only the result of crack closure errors. This is supported by the fact that 

for the other two investigated intervals, no crack closure errors were found. The fact that a non-

proportional loading method is used also results in non-secant branches. Although these branches are 

disturbing as they give false results, there is no indication that they have a big influence in the global 

result in this analysis in the Diana 10.2 version. This version showed improved results in not-secant 

branches which were present together with negative displacements in the previous version. 

A parameter sensitivity study was done on the reference tensile strength 𝑓𝑡𝑢, the parameter that 

describes the shear behaviour of the mid-sections of the piers and spandrels. Four different models 

were made and for each model, five different values for 𝑓𝑡𝑢 were implemented. Upon decreasing the 

value for 𝑓𝑡𝑢, the piers started to fail in shear, which described the failure pattern of the experiment 

better. Model d offered the best results in combination with the shear strength of the piers reduced 

to 𝑓𝑡𝑢 = 0.08 MPa. Model d used the bed joint tensile strength for the full spandrels as the lower 𝑓𝑡𝑢 

in the spandrels would mean that the spandrels were not able to carry the floor load.  

This analysis was very stable with only a few reductions and estimated the maximum load just a bit 

higher than the experimental data. Unfortunately, the analysis stopped for a displacement of 10 mm, 

which is half the distance of the experiment. It was found that the flexural failure modes in all piers 

corresponding to higher values for 𝑓𝑡𝑢, resulted in a more unstable analysis as both the bottom row 

and top row of the piers were damaged. Vertical forces were reduced to low values very often. With 

lower values for 𝑓𝑡𝑢, the damage was more similar to the experiment, but also the vertical load could 

be carried easier as horizontal damage did not occur at the top of the middle and right pier. The vertical 

force could still be transferred. 

In general, the original 3ZCM showed an acceptable load-displacement diagram but had the wrong 

failure mechanism. In this experiment, a reduced value for 𝑓𝑡𝑢 = 0.08 MPa gave better results in terms 

of the failure mechanism and stability of the analysis. Unfortunately, the analysis aborted at a 

displacement of 10 mm, because the vertical load could not be carried by the structure anymore. 
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5. Fiber beam model with SLA 
 

5.1 Introduction 
 

In this chapter, the door wall of the Pavia house is modelled with beam elements according to the 

equivalent frame method. A sequentially linear analysis is performed to model the failure mode of the 

structure. The equivalent frame method could increase the speed of the analysis because the structure 

is simplified with beam elements, while the accuracy should not be reduced much compared with the 

continuum elements. This chapter will contain several parts. After the general parameters, elements 

and dimensions of the model are explained (5.2), a short introduction with a simple three-point 

bending test is performed to test the new element (5.3). Then the fibre flexural model (FFM) of Willem 

Nobel is used to do an incremental iterative finite element analysis. This model is then made applicable 

for a sequentially linear analysis. The results of the SLA will be compared with the incremental iterative 

analysis results. Both the standard one zone equivalent frame (1ZEF) which is the FFM as the three-

zoned equivalent frame model (3ZEF) are used (5.4). Again, an in-depth analysis is performed on initial 

load factor reductions and non-secant branches (5.5). Later several improvements are suggested (5.6): 

Mesh sensitivity, increased integration points over the width, a model that can only fail in tension, a 

proportional loading scheme for which the vertical load is used to prestress the structure, a parameter 

sensitivity study on fracture energy and an increased number of saw teeth. Finally, the reaction forces 

and internal bending moments in the piers are examined (5.7) and conclusions are drawn (5.8). 

Again, important to notice is that for all the damage plots given, the damage in this version of Diana 

can be tensile or compressive. No distinction is made in the plots. As the tensile strength of the material 

used is much lower as the compressive strength, almost all damage visible in the plots is tensile 

damage. The damage is defined as: 𝐷 = 1 −
𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙
. 

 

5.2 General information and parameters 
 

Beam elements are used to model the façade in this chapter. New developments in the Diana software 

make it possible to do a sequentially linear analysis on a beam element model. 

The piers and spandrels in the façade will be modelled by flexible beam elements, while the corners 

will be stiff. Failure is therefore occurring in the beams and spandrels. The dimensions of the different 

parts of the beam model are shown in Figure 5.1 and Table 5.1. The beam elements are all rectangular 

in cross-section. The width (𝐷) is the in-plane dimension of the rectangular cross-section while the 

thickness (𝑡) is the out-of-plane dimension of the rectangular cross-section. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.1; Geometry of the door façade [2] 
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Table 5.1; Dimensions of the beam element model 

Pier Label 𝐷 𝑡 𝑙𝑣𝑒𝑟 𝑙ℎ𝑜𝑟 

[mm] [mm] [mm] [mm] 

P1, P3 1150 250 2477 − 

P2 1820 250 2145 − 

P4, P6 1150 250 1899 − 

P5 1820 250 1235 − 

S1 1680 250 − 940 

S2 1375 250 − 940 

CF1 900 250 1026 575 

MF1 900 250 1690 1820 

CF2 1150 250 350.5 575 

MF2 1820 250 682.5 1820 

 

The beam element used is CL9BE. This curved class-III beam element has three nodes and is a 2-

dimensional element. The degrees of freedom in the nodes are the two displacements 𝑢𝑥 and 𝑢𝑦 and 

the rotation 𝜙𝑧. As the elements have three nodes, the interpolation polynomials are quadratic. They 

are defined in the local 𝜉, 𝜂-coordinate system along the beam axis (𝜉-axis): 

 

𝑢𝑥(𝜉) = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜉
2 (5.2.1𝑎) 

𝑢𝑦(𝜉) = 𝑏0 + 𝑏1𝜉 + 𝑏2𝜉
2 (5.2.1𝑏) 

𝜙𝑧(𝜉) = 𝑐0 + 𝑐1𝜉 + 𝑐2𝜉
2 (5.2.1𝑐) 

 

As the strains are the derivatives of the displacements. The strains vary linearly along the center line 

of the beam. Again, the different parts of the façade will have their own strength parameters. The 

parameters are shown below in Table 5.2: 

 
Table 5.2; Parameters of the beam element model 

  Piers Spandrel f1 Spandrel f2 Corners 

𝐸0 [MPa] 1.41 ∗ 103 1.41 ∗ 103 1.41 ∗ 103 2.0 ∗ 108 

𝜈0 [−] 0.2 0.2 0.2 0 

𝜌 [kg/m3] 1800 1800 1800 1600 

𝑓𝑡 [MPa] 0.04 0.32 0.26 − 

𝐺𝑓,𝑡 [N/m] 5.0 20.0 20.0 − 

𝑓𝑐 [MPa] 3.0 3.0 3.0 − 

𝐺𝑓,𝑐 [N/m] 1.0 ∗ 104 1.0 ∗ 104 1.0 ∗ 104 − 

 

The three piers at the bottom floor are connected to the foundation with clamped supports, no 

rotations or deformations are allowed. For the non-proportional load, the self-weight of the structure 

is included together with a distributed load 𝑓1 = 20700 N/m on the first floor and 𝑓2 = 19800 N/m 

on the second floor which represents the weight of the floor carried by this part.  
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5.3 Beam model introduction – Three-Point bend test 
 

Like in the case with continuum elements when a wall was tested first. In this case, a simple three-

point bending test is performed to validate if the elements are able to describe the behaviour and the 

results are acceptable.  

The beam has a length of 2.05 m. The cross-section has a width of 0.12 m and a height of 0.15 m. At 

the point load, a notch is applied. At that section, the beam has a height of 0.09 m.  

Other properties are the Young’s modulus 𝐸 = 1.6 ∗ 1010 N/m2, Poisson’s ratio 𝜈 = 0.15, the mass 

density 𝜌 = 2.5 ∗ 103 kg/m3, tensile strength 𝑓𝑡 = 3.78 Mpa and the fracture energy  

𝐺𝑓 = 300 N/m. Again, the shear modulus is one hundred times smaller than the Young’s modulus and 

the 𝑝-factor of the saw-tooth law is: 𝑝 = 0.1. Only the elements of the notch are modeled with a tensile 

strength. The other elements are linear elastic. The size of the notch is from  

𝑥 = 1.0 m until 𝑥 = 1.05 m. The notch is modeled with 8 elements, the other parts have 50 elements 

each. Eleven integration points are used over the width, two over the length of an element.  

 

The results are shown in Figure 5.2. The maximum displacement is around 2.5 mm. The plastic 

behaviour shows increasing displacements for a slightly increasing force. At a displacement of 

approximately 2.5 mm, the force drops and the displacements also reduce a bit. There is some snap-

back behaviour which the program describes without any problems. The initial load factor stays 1 for 

the entire analysis. Therefore, this analysis is very stable. This is also the reason why the analysis ends 

before the force has decreased totally. The remaining force at the end of the analysis is the self-weight 

on the structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.2; Above the load-displacement diagram of the three-point 
bending test. Below, the initial load factor during the analysis 
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The estimated plastic lower limit based on a full cross-section with height ℎ = 0.15 m can be 

determined from the elastic moment distribution. The bending moment at 𝑥 =
1

2
𝑙 can be determined 

by: 

 

𝑀1
2
𝑙
=

1

8
𝑞𝑙2 +

1

4
𝐹𝑙 (5.3.1) 

 

with  

 

𝑞 = 𝜌 ∗ 𝑔 ∗ 𝑏 ∗ ℎ   ;    𝑔 = 9.81 m/s2 (5.3.2) 

 

Parameter 𝑞 is the distributed load over the cross-section from the self-weight. The moment at which 

cracking occurs can be determined by: 

 

𝑀𝑐𝑟 = 𝑓𝑡𝑊𝑧𝑧 (5.3.3) 

 

with  

 

𝑊𝑧𝑧 =
1

6
𝑏ℎ2 (5.3.4) 

 

Using (5.3.1) the force 𝐹 at which the first crack occurs can be determined. This gives 𝐹𝑐𝑟 = 2867 N 

and is a lower limit for the plastic limit. 

 

An upper limit can be calculated by assuming a plastic hinge in the center of the cross-section with 

plastic moment 𝑀𝑝. Then the equation of virtual work of the work by the forces and moments can be 

used to calculate an upper limit [21]: 

 

𝛿𝑊 = ∑𝐹𝑖𝛿𝑢𝑖 + ∑𝑀𝑗𝛿𝜃𝑗 = 0 (5.3.5) 

 

Using: 

 

𝑀𝑝 =
𝑏𝑑2

4
𝑓𝑡 (5.3.6) 

 

Gives: 

 

𝐹𝑝 =
4𝑀𝑝

𝑙
− 𝑞𝑙 (5.3.7) 

 

This gives an upper limit of 𝐹𝑝 = 4074 N. In Figure 5.2, the maximum force is between these limits. 

Although, it should be said that the cross-section is somewhat weaker because of the notch. 
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5.4  Pavia house - First analyses with One zone and Three zone model 
 

The fibre flexural model is shown below in Figure 5.3. The same mesh is applied as in [2].The spandrels 

are modelled with 8 beam elements, the outer piers with 24 beam elements, the middle piers with 10 

beam elements and the corners with 15 elements. In this model the load is applied by loading the 

fictitious bar at the left with a proportional horizontal load of 1 N in the sequentially linear analysis 

and a proportional displacement in the incremental iterative approach. Different amounts of 

integration points have been used in the analysis. Later an overview will be given in which the results 

with different integration points are compared. Eleven integration points are used in the result further 

in this chapter. The 11 integration points are distributed over the thickness to increase the precision. 

Two rows are used over the length. Nobel [2] does not uses his three-zone approach in his fibre flexural 

model. All the piers and spandrels have the bed joint tensile strength 𝑓𝑗𝑡 as tensile strength.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The load-displacement curves of both this analysis and the incremental iterative analysis are shown in 

Figure 5.4. The results are very different for the same model. While the incremental approach has a 

slight increase in load bearing capacity when plasticity is initiated, and keeps a sort of constant 

maximum load for large deformations, the sequentially linear analysis reaches a higher maximum load, 

but immediately unloads 75% of the maximum load afterwards. Afterwards, the deformations can 

increase but with a low load and reduced vertical weight. 

 

 
 

 

 

 

Figure 5.3; Fibre flexural model used in [2] 
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The value of the initial load multiplier is shown in Figure 5.5. At step 986, the maximum non-

proportional load cannot be born by the structure. This step coincides with the peak load in Figure 5.4. 

After this step, the load is not recovered and the structure can already be regarded as failed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.5; Initial load multiplier SLA analysis original beam model 

Figure 5.4; Load-displacement diagram SLA and Incremental iterative analysis of the original fibre flexural model 
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The highest strains in the piers first develop at the top of pier P1. When the maximum load is reached, 

the damage develops at the bottom of pier P3 (element 39), which 

eventually reaches a state where the element deforms intensively, 

which is unrealistic. Element 39 has three nodes and bends double in 

its middle node after the peak load. An attempt to resolve this by using 

a finer mesh did not work. For all attempts with the one zone 

equivalent frame (1ZEF) somewhere locally an element misbehaved 

like in Figure 5.6, which ruined the analysis. Therefore, this model is not 

used anymore and the three-zoned approach (3ZEF) is used. In this 

model the distinction will be made in flexural parts and shear parts. 

 

With the three-zoned approach, the analysis is able to continue a bit 

longer. Below in Figure 5.7, the damage in the structure is shown after 

failure. The damage starts from the beginning of the analysis in the left 

pier. This pier starts in compression in the first analysis steps as a result of the vertical load, but as the 

lateral load increases, the left end of the pier is loaded in tension and damage rapidly propagates. Not 

only the left pier damages, also the middle pier and the right pier. Especially the right pier starts to 

bend to the right. At this stage, the full load can still be applied. As the left pier is fully damaged, the 

right spandrel on the first floor starts to bend as is visible in the figure. The connections between the 

flexural parts of the spandrels and the shear part of the spandrel are damaged the most. These are 

elements 208 and 214. At this stage the initial load factor reduces and is not able to recover. The 

analysis continues and slowly the upper spandrel on the right side starts to bend. When this element 

is kinked the analysis ends.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.6; Unrealistic deformation 
of element 39 

Figure 5.7; Damage in the left pier, right first floor spandrel and top right spandrel for the three-
zoned beam model 
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The next analyses will have a finer mesh with respectively a requested element length of 0.2 m, 0.1 m 

and 0.05 m. This as an attempt to prevent the analysis from failing in an early stage. 

The results can be found in Figure 5.8 together with the results of the incremental iterative approach 

and the experimental data. 

For the element length of 0.2 m, 0.1 m, the results of these models are almost equal to the incremental 

iterative approach until a deformation of 5 mm. A finer mesh leads to a somewhat higher peak load. 

After the deformation of 5 mm, the load reduces and the structure is only able to resist an average of 

60% of the initial load. The failure mode consists large shear deformation in the right first floor spandrel 

together with bending failure in the top floor spandrel and left bottom pier. Decreasing the mesh size 

is no effective way to achieve better results as the result were similar before the initial load factor 

reduced. 

 

  

Figure 5.9; Initial load factor during analysis for 3ZEF with a mesh size of 0.1 m 

Figure 5.8; 3-Zone model, mesh of 0.2 m, 0.1 m and 0.05 m 
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When the number of integration points is changed over the width, there is no clear difference. Every 

analysis fails after reaching the peak load. Again, the load-displacement relation shows very brittle 

behaviour. It is not possible to carry more load and increase the displacements, because the vertical 

load cannot be applied. Maximum displacements with full vertical load are 5 mm for all three analyses. 

Because eleven integration points over the width is the most accurate version mathematically 

speaking, this is adapted in all the analyses further in this chapter. For more information about the 

integration schemes of the Simpson rule, the Diana manual can be consulted [22]. 

 

 

 

 

 

  

Figure 5.10; Variation in the number of integration points over the width 
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5.5 In-depth analysis 
 

5.5.1 Initial load factor reductions 
Like in the case with plane stress elements, the initial load factor 𝜆𝑖𝑛𝑖 has some large drops while the 

structure cannot necessarily be defined as failed. As an example, the initial load factor during the 

analysis of the beam element analysis with a 3-zone model and 0.1 m mesh is given in Figure 5.11. 

From this figure can be seen that in between analysis step 2000 and 2556 the initial load factor drops 

several times but recovers again to a unit value. This opens a debate about whether the structure 

should be regarded as failed or not. Looking beyond that debate, the reason why this happens in the 

first place is investigated in this section.  

In section 0, it is explained that there are in general two ways of reducing the load when the full initial 

non-proportional load cannot be reached. The initial load itself can be reduced and the proportional 

load is zero in that analysis step, or the previous load case can be scaled with an additional load factor. 

The latter was preferred because this resulted in a similar stress-strain ratio in the material while the 

first method would load the structure in a different way, in this case only vertically. This would lead to 

a different stress distribution and therefore a different type of failure as one would expect.  

As expected, the reduction between the current vertical load and the previous vertical load one step 

before is equal to the reduction of the initial load factor. For example, in step 2071, the initial load 

factor has reduced from 1 to 0.464401. The reduction of the horizontal load is from 167.968 kN in 

step 2070 to 78.005 kN in step 2071, which is the same ratio. 

 

First, the output file in which the logging of the analysis is saved is used. In all steps where the initial 

load factor reduces between step 2000 and 2556, the damage propagates in element 208 and 214.  

Until step 2396, the big reductions happen while damage propagates in element 208. From step 2396 

until step 2556, the reductions are mostly because of damage in element 214. Elements 208 and 214 

are found in the right spandrel of the first floor. Figure 5.12 shows this spandrel. The corresponding 

nodes of the element are colored red. The middle node of the element will provide results for the 

current element only, because the nodes at the end of an element are shared with the neighboring 

element. These nodes are node 421 for element 208 and node 427 for element 214.  

Figure 5.11; 𝜆𝑖𝑛𝑖 during analysis: Beam model 3 zones, 0.1 𝑚 mesh 
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To get a better understanding of the behaviour of these elements, the relations between the stresses 

and the strains in these elements are examined. First the principal strains in the element are 

investigated. However, as the model is two dimensional. The stresses and strains in the third dimension 

are zero by definition. It is expected that the stress in the local axial direction (𝜎𝑥𝑥) will be larger than 

the normal stresses over the height of the cross-section (𝜎𝑦𝑦) as this stress is zero by definition in the 

fibre beam approach. For the principal stresses, there will be a non-zero value for the stresses 𝜎1 and 

𝜎3 because of Poisson’s ratio and the fact that the principal stresses can rotate. As there is always a 

zero valued principal stress perpendicular to the façade, the result will be that the first principal stress 

𝜎1, which is also the largest, will be tensile, the second principal stress 𝜎2 will be zero and the third 𝜎3 

will be compressive and therefore negative. When the stresses in an element change, the direction of 

the principal stresses will change. To take a closer look at crack closure behaviour, the axial stresses 

give a better view as they are fixed. However, the Cauchy stress tensor is defined in the initial 

coordinate system, which means that differences may arise when a member rotates substantially.  

 

From step 3402, the stress state switches from tensile to compressive in many integration points like 

element here in element 208. In Figure 5.13, the stress-strain relation is given for integration point 1. 

Only once in 20 analysis steps the results were reported to reduce calculation time and memory. After 

some time, the stress and strain changes sign from tension to compression. However, the stiffness in 

this integration point was already reduced fully. This results in a compression stiffness which is 

incorrect. The strains become too large because of the reduced stiffness which leads to incorrect 

displacements for that analysis step. 

 

 

 

 

 

  

208 214 

Figure 5.12; Element 208 and 214 in the right spandrel of the first floor 

Figure 5.13; Stress-strain behaviour in element 208 integration point 1, Tension to compression 
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5.5.1.1 Damage, strain and stress distribution over the width 

In Figure 5.14, the damage, strain and stress are shown for analysis steps 1, 16, 421, 2551 and 3706 

for element 46. These results will be discussed on the next page. 

 

 

 

 

 

The location of the different steps in the load-displacement curve is shown in Figure 5.16. 

In the first analysis step, only the weight is applied. Therefore, the element has a constant compressive 

stress over its width. In the next steps, the proportional load is applied and the relation is linear elastic 

in most integration points. Element 46 is one of the first elements which is damaged and therefore 

some damage has propagated at the tension side. Because the tensile strength is far lower than the 

compressive strength, the damage propagates from that side through the cross-section. In step 421, 

the damage has propagated further. Strangely, the tensile strength is exceeded in many integration 

points in this analysis step. The tensile strength of element 46, 𝑓𝑡 = 0.04 MPa, the stress in integration 

point 15, 𝜎𝑦𝑦 = 0.196 MPa. The principal stress is even higher:  

𝜎1 = 0.249 MPa, more than six times the tensile strength. By looking at the other analysis steps, the 

tensile strength is also exceeded in different integration points. 

 In step 2551, a large part of the section is damaged. Because the weight of the top floor still has to be 

transferred through the cross-section, the compressive stress has a high peak value at the compressive 

side, especially because the undamaged cross-section is very small. Also, because the cross-section is 

almost fully damaged at the tension side and the stiffness is reduced, there is almost no tensile stress 

transferred in that region. The strains in the cross-section stay linear during the whole analysis. 

Comparing the strains in the later steps, with the first steps, it is evident that a large crack has occurred 

Figure 5.14; Damage, strain 𝜖𝑦𝑦 and stress 𝜎𝑦𝑦 in element 46, analysis steps: 1, 16, 421, 2551, 3706 
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at that side. Because almost the whole cross-section is damaged and the strains are far above the 

plastic limit, All the stresses have to be transferred through a small area of the cross-section. Looking 

at the compressive stresses and strains, the post peak value at the compressive constitutive relation is 

not reached, because the strains are far below 𝛼𝑐.  

 
Table 5.3; Stresses, strains and parameters of the constitutive relations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 𝐸0 [MPa] 𝑓𝑡 [MPa] 𝑓𝑐  [MPa] 𝜖𝑝 [−] 𝛼𝑐  [−] 

Value piers  1410 0.04 −3.0 2.84 ∗ 10−5 −3.55 ∗ 10−3 

Value spandrel (208) 1410 0.14 −3.0 9.929 ∗ 10−5 −3.55 ∗ 10−3 

Figure 5.15; Damage, strain 𝜖𝑥𝑥 and stress 𝜎𝑥𝑥 in element 208, analysis steps: 1, 16, 421, 2551 and 3706 
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Figure 5.15 shows the damage, strain and stress in element 208 at analysis step 1, 16, 421, 2551 and 

3706. Again, the stress-strain distribution is linear in the beginning. Because this element is situated in 

a spandrel, the element is already bended in the first analysis step under the self-weight of the building. 

Interesting to see is the damage accumulating in integration point 19. This is the fourth integration 

point from the right. The damage starts to grow from analysis step 2041. Here, the full vertical load is 

applied and the structure and this point is just before (30 steps) the vertical load cannot be applied 

anymore. The strain is linear over the cross-section and the stress somewhat linear with plasticity at 

the tensile end. However, a tensile failure occurs in integration point 19 while this point is loaded in 

compression in the global coordinate system (𝜎𝑥𝑥 = −0.1324 MPa). The principal stresses in that 

integration points are 𝜎1 = 0.1537 MPa and 𝜎3 = −0.2861 MPa. The damage is propagating in this 

integration point, while there are other neighboring integration points with higher principal stresses. 

Like integration point 17, 𝜎1 = 0.2922 MPa and integratiron point 18, 𝜎1 = 0.2628 MPa. Again, these 

stresses are far above the tensile strength (𝑓𝑡 = 0.14 MPa). An overview of the same behaviour for the 

analysis steps before load reductions in which neighboring integration points have higher stresses is 

given in Table 5.4. 

  

Figure 5.16; Location of analysis steps 16, 421 and 2551 in load-displacement curve 
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Table 5.4; Principal stress 𝜎1 in the integration points before load reductions. Higher stresses in neighboring integration 
points. Stresses are given in [𝑃𝑎]. Damaged integration point is marked in red. 

steps 2070 2145 2257 2505 2556 

Dam. IP 208 int 9 208 int 10 208 int 11 214 int 13 214 int 12 

intp 𝜎1 [Pa] 𝜎1 [Pa] 𝜎1 [Pa] 𝜎1 [Pa] 𝜎1 [Pa] 

1 1.37E+05 1.34E+05 1.35E+05 6.91E+04 6.76E+04 

2 1.69E+05 1.68E+05 1.36E+05 8.52E+04 8.31E+04 

3 1.65E+05 1.65E+05 1.65E+05 1.09E+05 1.06E+05 

4 2.06E+05 2.09E+05 2.00E+05 2.45E+05 2.36E+05 

5 2.87E+05 2.39E+05 2.74E+05 2.79E+05 2.68E+05 

6 2.97E+05 3.04E+05 3.48E+05 2.73E+05 2.62E+05 

7 2.64E+05 2.70E+05 3.09E+05 2.77E+05 2.65E+05 

8 1.99E+05 2.02E+05 2.31E+05 2.46E+05 2.34E+05 

9 1.54E+05 1.80E+05 1.64E+05 2.21E+05 2.10E+05 

10 1.20E+05 1.54E+05 1.40E+05 2.03E+05 1.92E+05 

11 9.63E+04 1.24E+05 1.54E+05 1.85E+05 1.75E+05 

12 1.52E+05 1.44E+05 1.35E+05 1.23E+05 1.54E+05 

13 1.85E+05 1.77E+05 1.66E+05 1.54E+05 1.32E+05 

14 1.87E+05 1.78E+05 1.71E+05 1.74E+05 1.54E+05 

15 2.51E+05 2.38E+05 2.36E+05 2.27E+05 2.54E+05 

16 2.47E+05 2.82E+05 2.85E+05 2.58E+05 2.88E+05 

17 2.70E+05 3.06E+05 3.13E+05 3.04E+05 2.75E+05 

18 2.43E+05 2.74E+05 2.81E+05 2.52E+05 2.79E+05 

19 2.25E+05 2.07E+05 2.13E+05 2.24E+05 2.03E+05 

20 1.07E+05 1.25E+05 1.34E+05 2.04E+05 1.90E+05 

21 8.65E+04 1.01E+05 1.09E+05 1.88E+05 1.78E+05 

22 7.17E+04 8.29E+04 9.04E+04 1.74E+05 1.67E+05 

 

Looking at the principal stresses and strains, they have a linear relation before the first damage at step 

2041. After this step, the principal stress increases to a value of 0.2436 MPa. This while, the tensile 

criterion is set on 0.14 MPa. It is possible that the principal tensile strength is somewhat higher than 

the tensile strength criterion as a result of the way the saw tooth relation is constructed. As explained 

in section 2.3.3, the softening curve is shifted up and down with a factor 𝑝. The maximum strength 

becomes somewhat higher. An increase like in this example is however not because of that reason. 

After three steps, the stress-strain relation becomes linear again with a different stiffness. The tangent 

of this linear relation is higher than it was before the damage. This means that the structure has a 

higher stiffness after the damage in this integration point, which contradicts the effect of the damage. 

When the value of the modulus of elasticity is calculated, this does not coincide with the given value. 

The given value of the modulus of elasticity: 𝐸0 = 1.410 ∗ 103 MPa. 

Taking into account Poisson’s ratio. The modulus of elasticity can be calculated with the constitutive 

relations: 
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[

𝜖1

𝜖2

𝜖3

] =
1

𝐸0
[

1 −𝜈 −𝜈
−𝜈 1 −𝜈
−𝜈 −𝜈 1

] [

𝜎1

𝜎2

𝜎3

] (5.5.1) 

 

Because all principal stresses and strains are available from the calculation and the model used is two 

dimensional. The modulus of elasticity can be calculated with two equations. 

 

𝐸1 =
𝜎1 − 𝜈𝜎3

𝜖1

(5.5.2𝑎) 

𝐸3 =
𝜎3 − 𝜈𝜎1

𝜖3

(5.5.2𝑏) 

 

For the first equation, the modulus of elasticity has a value of approximately:  

𝐸1 ≈ 1.225 ∗ 103 MPa. For the second equation, the average is approximately: 

𝐸3 ≈ 1.191 ∗ 103 MPa.  

 

In the Diana model, the decrease of the Poisson’s ratio upon damage from equation (2.3.16) is not 

yet included. When an integration point is damaged, the Poisson’s ratio is set to zero. 

When the stiffness is calculated from for the damaged integration point in Figure 5.17. The stiffness 

can be calculated with Poisson’s ratio set to zero: 

𝐸1 ≈ 1.451 ∗ 103 MPa and 𝐸3 = 1.261 ∗ 103 MPa. This explains for a part, why the stiffness seems to 

increase as the linear relation becomes steeper. However, both values are not accurate for the 

undamaged and damaged cross-section.  

Analysis step 3706 shows that the cracks in this spandrel have closed. There are compressive strains 

visible. The stress in this part is however still very small as the integration points were damaged in 

tension. The reduced stiffness remains when the load in the integration point is reversed from tension 

to compression. This is an example of a crack closure error as in reality, the material would have the 

initial stiffness upon load reversal. 

  

Figure 5.17; Principal stress-strain behaviour element 208 integration point 19. Steps 1-2070 
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The damage, vertical strain 𝜖𝑦𝑦 and vertical stress 𝜎𝑦𝑦 distribution over the width of the bottom row 

of the other piers will examined in this part. Below in Figure 5.18 the distribution for the middle pier is 

given and in Figure 5.19, the distribution for the right pier. 

 

 

 

 

 

 

 

 

  

Figure 5.18; Damage, 𝜖𝑦𝑦 and 𝜎𝑦𝑦  of the bottom row of the middle pier for analysis steps 16, 421 and 2551 

Figure 5.19; Damage, 𝜖𝑦𝑦 and 𝜎𝑦𝑦  of the bottom row of the right pier for analysis steps 16, 421 and 2551 
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The location of the different analysis steps is shown in Figure 5.16. Again, the stresses exceed the 

strength of the material. Concluding: For all three piers, the occurring damage confirms the 

expectations that the piers will crack at the left side. This is similar to the continuum model. As the 

beam model can only fail in bending and not in shear, the expected shear failure visible in the beam 

model is not present here. For the piers, the tensile stresses exceed the tensile strength of the material 

in the global and principal directions. The reason for this is the high shear stress in the cross-section. 

This high shear stress rotates the principal direction while the governing crack direction is along the 

axis of the element. With a fixed crack approach, the principal stresses grow and can be larger than 

the stresses in neighboring elements, as the fixed crack coordinate system has the boundary for the 

strength of the material. As a result of this for the spandrel, damage propagated in an element which 

did not have the highest stress in the spandrel. This resulted in an incorrect damage pattern and 

disturbs the analysis. For all piers, toe crushing did not happen as the strains were far below 𝛼𝑐 

meaning that the stresses and strains were still before the maximum compressive strength. 

 

5.5.1.2 Crack openings 

Because the current version of Diana does not include crack width calculations for a sequentially linear 

procedure, this has to be estimated from the strain and known parameters like in the continuum 

model. 

Because a smeared crack model is used, the cracks are not 

predefined and can occur everywhere in the mesh. When the 

tensile stress exceeds the tensile strength, a crack occurs 

perpendicular to this direction. The crack is influenced by different 

factors, like the tensile strength 𝑓𝑡 of the material and the fracture 

energy 𝐺𝑓. In a smeared case like this, the crack band width ℎ is also 

of importance. This is the length over which the crack is smeared 

out. This length is for example influenced by element type and 

element size.  

In this case, the tension softening curve is linear which gives the 

relations shown in Figure 5.20. Of course, this stress-strain relation 

is approximated with the saw-tooth relation during the analysis. 

From this figure, the relations of yield strain 𝜖𝑝 and the ultimate strain 𝜖𝑢, and other material 

parameters can be derived: 

 

𝜖𝑝 =
𝑓𝑡
𝐸0

(5.5.3) 

 

As the gradient of the elastic branch is the initial modulus of elasticity 𝐸0. And for the ultimate strain: 

 

𝜖𝑢 =
2𝐺𝑓

𝐼

ℎ𝑓𝑡
(5.5.4) 

 

An important parameter is the fracture energy divided by the crack band width 𝐺𝑓
𝐼/ℎ , which can be 

seen as the fracture energy available in the element, i.e. the area under the linear tension softening 

curve. The crack band width ℎ is dependent on the element type. For linear two-dimensional elements, 

this width is ℎ = √2𝐴, for higher order two-dimensional elements ℎ = √𝐴. With 𝐴, the area of the 

element. For a beam element its default is the length of the element calculated as  

ℎ = 𝑉/�̅�. The volume of the element divided by the average cross-sectional area [22].  

Figure 5.20; Fracture energy and 
ultimate strain, smeared crack model 
[22] 
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When the plastic strain is reached, cracks will occur and therefore the strain can be formulated by 

adding an elastic component and a plastic or crack component. 

 

𝜖 = 𝜖𝑒𝑙 + 𝜖𝑐𝑟 (5.5.5) 

 

In this formulation, the elastic part is determined by Hooke’s law: 

 

𝜖𝑒𝑙 =
𝜎

𝐸0

(5.5.6) 

 

The initial elasticity 𝐸0 is used, because the reduction in elasticity in the sequentially linear analysis is 

already included in the stress 𝜎 which is influenced by the current modulus of elasticity. In the 

continuum model, stresses in both directions had to be used to take into account the Poisson effect. 

In the case of beam element CL9BE, this is not necessary because the stresses in 𝑦-direction and 𝑧-

direction are set to 0 by definition for the used element [3]. Only the axial stress in the length of the 

element remains.  When the damage is fully developed i.e. equal to 1, the stress in the material will 

be reduced to zero. Therefore, the elastic strain in the material will also disappear. All strains left are 

only determined by the crack strain 𝜖𝑐𝑟. This crack strain can be described as a function of the crack 

opening displacement 𝑤 and the crack band width described above ℎ.  

 

𝜖𝑐𝑟 =
𝑤

ℎ
(5.5.7) 

 

In the finite element results, the crack opening can be estimated by calculating the elastic strain from 

the stress, subtracting this from the total strain and multiply the answer with the crack band width. 

In 𝑥-direction, this gives: 

 

𝑤𝑥𝑥 = (𝜖𝑥𝑥 −
𝜎𝑥𝑥

𝐸0
) ∗ ℎ (5.5.8) 

 

Of course, this is an approximation only to give an indication of the crack opening. In a sequentially 

linear analysis, the structure is unloaded and reloaded every analysis step making all the steps linear 

elastic, hence the name sequentially linear analysis. 

 

Examining the graph of Figure 5.11, the first reductions occur in the intervals step 2071 till 2075, 2146 

till 2165,  2258 till 2404 and 2506 till 2517. The next reduction starts at step 2557 and the structure 

is hereafter not able to recover. 

 

Looking at the output file, the damage in step 2071 till 2075 develops in integration point 9 of element 

208. The left side of the right spandrel on the first floor. In the top graph of Figure 5.21, the steps until 

step 2070 are shown. The integration point is undamaged, which results in a linear stress-strain 

relation. At step 2070, first damage occurs and the integration point is damaged with  

𝑑 = 0.1821. At step 2071, the non-proportional load cannot be applied fully. Therefore, the load is 

reduced. A reduction till 46,44% of the previous analysis step is needed, visible in the second graph of 

Figure 5.21. In this analysis step, again integration point 9 of element 208 is damaged, after this step  

𝑑 = 0.3317. Next, the load is increased in 5 analysis steps until the initial load multiplier 𝜆𝑖𝑛𝑖 has 

reached a value of 1. In these steps, integration point 9 is still damaged every step. When 𝜆𝑖𝑛𝑖 = 1 in 
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step 2076, the damage 𝑑 = 0.7062. The second graph of Figure 5.21 shows this reloading in the 

almost horizontal part.  

Interesting to see is the increase of the principal stress 𝜎1 between steps 2070 and 2071.  

The tensile limit is reached in analysis step 2070 and the load factor reduces in step 2071 to 0.4644. 

However, the principal stress increases from 𝜎1,2070 = 0.1537 MPa to 𝜎1,2071 = 0.2002 MPa. The 

tensile limit; 𝑓𝑡 =  0.14 MPa. The fact that the principal stress is higher than the stress limit can be 

explained in the way the saw-tooth relation is build. By adding the 𝑝-factor times the tensile strength, 

the tensile stress can be higher than the strength. This does however, not explain the difference 

between 𝑓𝑡 =  0.14 MPa and 𝜎1,2071 = 0.2002 MPa, which is a result of the fixed crack approach as 

explained in the previous chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The crack width is estimated by applying (5.5.8) on the data. The principal direction is however 

differently orientated. In the global coordinate system, integration point 9 is in compression while the 

first principal stress violates the tensile criterion in the principal directions.  

In theory, this angle can be found with: 

 

Figure 5.21; Stress-strain relation in element 208 integration point 9. Elastic in step 1-2070. 
Load reduction and reloading between step 2071 and 2075 
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tan(2𝜃𝑝) =
2𝜏𝑥𝑦

𝜎𝑥𝑥 − 𝜎𝑦𝑦

(5.5.9) 

 

Element CL9BE does not have an axial stress in the direction perpendicular to its axis as a result of the 

fibre beam formulation. Therefore equation (5.5.9) cannot be used. 

Because the model uses a fixed crack approach, the crack will be fixed in direction. The principal 

stresses can however change every analysis step. Therefore, giving a crack width on the basis of the 

principal direction will not be accurate because of the change in direction. Calculating a width in the 

uniaxial direction of an integration point will also not be accurate, because some integration points 

will be in compression, which will give a negative crack width, while the damage is tensile. However, 

this gives an idea of the increasing fictitious crack strain compared with the fictitious elastic strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interesting to see is that the first small jump from negligibly small 𝑤 = −3.00 ∗ 10−9 m to 𝑤 =

−4.387 ∗ 10−6 m happens in analysis step 2071. When the initial load factor is reduced, a crack 

rapidly starts to grow in integration point 9 of element 208. 

The change from negative to positive is because of the crack closure reported earlier. This is however 

far after the vertical load cannot be applied fully.  

 

  

Figure 5.22; Crack width estimate during analysis element 208 integration point 9 
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The same story can be written for analysis steps 2146 till 2165. In step 2145 the first damage in 

integration point 10 of element 208 occurs. In analysis step 2146, the load reduces to 35.97%. This 

is recovered in step 2166, but meanwhile the element is damaged to 𝑑 = 0.8457. Other integration 

points and elements are also damaged during these steps. Again, the graphs (Figure 5.23) show an 

elastic relation between analysis step 1 and 2144. Unloading after damage has occurred (step 2145) 

and reloading with an increasing strain for an almost constant stress.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The load reduction between step 2258 and 2404 is initiated with successive steps of damage in 

element 208 integration point 11. The reduction between analysis step 2506 and 2517 is initiated 

with damage in element 214 integration point 13.  

  

Figure 5.23; Stress-strain relation in element 208 integration point 10. Elastic in step 1-2144. Load 
reduction and reloading between step 2145 and 2165 
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Below (Figure 5.24) an overview is given for the damage cracks in integration points 9, 10 and 11 of 

element 208. For all three points, the crack opens after the initial load factor reduces and at the same 

time a damage increment occurs in the corresponding integration point. There appears to be a relation 

between the opening of a crack and the reduction of the initial load factor. Like explained before, the 

opening of a crack will result in a redistribution of the forces in the structure. In all cases, where an 

integration point is damaged and the non-proportional load is reduced, a crack opens in the step after 

the damage. The load is lower and as it cannot be fully applied on the cracked cross-section. The load 

redistributes in the next analysis step and the full vertical load can be applied again.  

Important to notice is that cracks open when the initial load factor is reduced, but the opposite is not 

necessarily true. Crack openings are also observed while the initial load can be fully applied in the next 

analysis steps. As the vertical non-proportional load is also applied on the spandrels which bend, the 

opening of cracks here could also result in an initial load reduction because the force has to be 

redistributed in the spandrels.  

  

Figure 5.24; Crack opening for different integration points of element 208. Cracks open at the time the initial load factor 
reduces. Damage increases in the corresponding integration point 
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5.5.2 Crack closure problems 
Stress changes from compression to tension and vice versa occur often during the analysis. Sometimes 

even early in the analysis, especially in the nodes which are close to the center of the cross-section. An 

example is given in the case of integration point 6 of element 208. In the beginning of the analysis, this 

integration point is loaded in compression speaking in terms of the axial component (𝜎𝑥𝑥). In analysis 

step 433, this integration point is loaded in tension. This is not problematic because this integration 

point is undamaged in that step and therefore, the original tensile stiffness is used. In section 5.5.1.1 

it was shown how the strain distribution changes during the analysis. For example, a sections damages 

at the tensile side and therefore the neutral point in terms of strain shifts more to the compressive 

side. Some points which were compressive first, will become tensile after this shift. Another example 

is in the case of a load reversal. For element 208, the strain distribution was reversed during the 

analysis because of large displacements. When as a result of this, stresses also change from 

compression to tension and vice versa a crack closure problem can occur. This will happen when the 

integration points which change from tension to compression or compression to tension were already 

damaged before this change. An example is given for integration point 9 of element 208. The relation 

between the strain 𝜖𝑥𝑥 and the stress 𝜎𝑥𝑥 is shown in Figure 5.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This integration point is loaded in compression in the first part of the analysis. The integration point is 

damaged by tensile stresses following the output file of the analysis. After analysis step 3382, the 

stress varies from compressive to tensile. However, as the stiffness is already reduced, the tensile 

stress is calculated with a reduced stiffness.  

In reality this crack would close and therefore should be able to transfer compressive stresses. The 

tensile stiffness of the integration point should therefore be higher than the reduced version used 

here. 

 

  

Figure 5.25; Stress-strain relation in element 208 integration point 9. Crack closure problem. 



148 
 

5.5.3 Integration point stress-strains during analysis 
Not all integration points give the smooth stress-strain relations that where determined beforehand 

in the saw-tooth law. Previously shown was the relation in Figure 5.13 in which the saw-tooth law was 

very clear. Integration point 11 of element 208 shows this relation less clear. This is the because of big 

load reductions and sudden high damage propagation in this integration point. 

 

First, a high peak value for the compressive stress in this integration point is reached. This point is at 

analysis step 2258 just before the step in which the initial load factor has a big reduction. In the next 

analysis steps, the damage in this integration point increases from no damage to 90.2% damage. The 

fact that this reduction takes place in 12 analysis steps, results in the large, almost instant change in 

stiffness for this integration point from relatively stiff to very weak. Later in the analysis a crack closure 

error occurs. Although this change in stiffness is very rapid and abrupt, the results in stress-strain 

behaviour are according to the theory implemented in the method. Therefore, this behaviour is 

expected. In the next example, this is less clear. Integration point 6 is examined, again by looking at 

the stress-strain behaviour during the analysis for the axial direction. 

  

Figure 5.26; Stress-strain relation in element 208 integration point 11 



149 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The point 1 refers to the step where the first damage occurs. This damage results in a crack in this 

integration point. The principal tensile direction is parallel to the axial direction but has a different 

angle. This integration point is located at the center in the width of the element. 

The parts indicated with 2 are the parts in which the initial load factor reduces. This is visible by the 

big decrease in loads. Because the principal direction in this element change often, these decreases 

are not secant to the origin. The part at point 3 is a load increase after a load reduction. Again, this is 

not secant to the origin. The principal stresses and strains also give a disturbed stress-strain relation. 

 

 

  

Figure 5.27; Stress-strain behaviour, element 208 integration point 6. Top figure shows whole analysis, bottom figure 
until analysis step 2312 

1 
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5.6 Improvement techniques 
 

Two approaches have been done at this point. The model with continuum elements and the model 

with beam elements. The differences between the results of those approaches will be summarized 

here based on several properties. 

The first property is the ability to simulate the experimental load-displacement curve as accurate as 

possible. With respect to the maximum load, the continuum model was far more accurate than the 

beam model. The continuum element model had maximum load values between 120 kN and 160 kN, 

the most stable analysis was found with a maximum displacement of 10 mm and a maximum load of 

150 kN. The experimental data had a peak load of 150 kN, but the largest part of the curve was around 

120 kN. On the other hand, the experimental curve was made based on the outer bound of the cyclic 

loading results, while the simulation is based on a push over analysis. Therefore, it should be expected 

that the maximum load of the push over analysis is somewhat higher as in general buildings fail with a 

lower maximum load in a cyclic experiment compared with a pushover load.  

The beam element model is at this stage not able to give an accurate description of the load-

displacement behaviour of the structure. The maximum load achieved while the initial non-

proportional load is applied is at a displacement of 5 mm. In this stage, the structure is still in the 

elastic-plastic region of the load displacement diagram. At this stage the right spandrel on the first-

floor damages rapidly which results in a big reduction of the initial load. After this, the structure is only 

able to carry 80% of the initial load. Peak values of the horizontal load are higher compared with the 

continuum model. The beam model reaches peak loads of 180 kN or even 200 kN. 

With respect to the robustness of the method, the number of times the initial load factor was not 

reached is taken into account. Comparing this, the standard continuum model showed more 

reductions than the beam model for most analyses. This was especially the case when the mesh 

became smaller. The model was however able to redistribute the forces and recover the full initial 

load. The beam model had a different pattern. It had a long part in which the full initial load was applied 

until a critical damage point was reached. After this point the initial load was only recovered a few 

times before the structure finally failed. On the other hand, as the beam model did not reach the region 

of large displacements, it could be that the model would suffer from load reductions in that stage as 

well. As most reduction in the continuum model happened in the elastoplastic region, which is just 

reached in the beam model. 

As the beam model was still in the elastic-plastic part at this stage and not in the plastic part like in the 

continuum model simulation, the continuum model is able to keep the full initial load further in the 

analysis, although with more reductions for finer meshes. With the increased parameters and mesh 

type for the continuum model, the analysis became very stable and the load was maintained with just 

some small reductions until a deformation of 10 mm.  

Another thing that happened often in the continuum models and was almost not present in the beam 

models was unloading which was not secant to the origin with the old version of Diana FEA. For the 

old version, negative displacements were found for the continuum model, which disturbed the load-

displacements relation. This is greatly reduced in the analyses done with the new version to a level 

where it only happens a few times, without much influence in the global result. 
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In terms of failure mode, the continuum model was more accurate. The most important failure mode 

in reality was of course the shear failure in the piers. The continuum model was able to describe this 

behaviour rather precise for the middle and right pier. Shear interfaces cannot yet be implemented in 

a sequentially linear analysis and therefore, the beam elements where only able to fail in bending. As 

expected, this led to a higher maximum load.  

The failure mode in the beam element case was tensile failure in the left bottom pier, combined with 

bending failure in the right spandrel of the first floor followed by bending failure of the right spandrel 

of the second floor. From Figure 5.18 and Figure 5.19 it was visible that the middle and right pier do 

not damage that much at the support.  

In the next paragraph, several improvements are suggested to increase the precision of the model.  
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5.6.1 Only tensile failure 
As masonry is relatively weak in tension compared to compression, it can be assumed that the damage 

will mostly occur because of reaching the tensile strength of the material. Expected is that only in the 

case of large load redistribution, the structure will start to fail in compression. As this behaviour is 

expected post-peak, an assumption could be made by fictitiously increasing the compressive strength 

of the material, demanding the structure to fail in tension. With this assumption, crack-closure errors 

which are present in SLA are not totally evaded, because although no compressive failure is allowed, 

the modulus of elasticity is still reduced for the compressive behaviour. The compressive parabolic 

constitutive relation is changed in a linear elastic constitutive relation. No compressive strength is 

given and therefore the structure cannot fail in compression and will be infinitely linear elastic. The 

third principal stress is shown for the structure in the contour plot below for analysis step 2441. The 

step with a maximum lateral load. This contour plot shows that the maximum compressive strength is 

only violated in the infinitely rigid corners. Therefore, the structure is not likely to fail in compression, 

which supports the assumption to simplify the constitutive model with a linear tensile failure relation 

and an infinite linear elastic compressive relation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the analysis is repeated with this simplified constitutive law. It is possible for the program to 

retain the full initial load after the first peak (Figure 5.30).   

The first part of the analysis until the peak load is identical to the default model, after the peak load 

the load is reduced as the structure is not able to carry the full load. In this part, roughly analysis step 

2500 until 6700, the same damage occurs as in the default model, i.e. major damage in the right first 

spandrel followed by bending in the right second-floor spandrel. There is a small difference as the 

severe deformations in the right first floor spandrel in the default model were developing both on the 

left and right side (element 208 and element 214) while in the tensile failure model, the deformations 

are on the right side of the spandrel in element 214 only (Figure 5.31).   

 

 

 

Figure 5.28; Third principal stress with at the analysis step with maximum lateral load 
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After these damages and deformations have occurred, the structure is able to retain the full vertical 

load. This happens at a deformation 𝑑 = 15.95 mm. At this stage, the deformations are increasing 

while the lateral load stays constant; 𝐹 = 167.675 kN. The failure pattern stays the same until a 

deformation 𝑑 = 52.29 mm. At this stage, the load again reduces and the left piers slowly start to 

bend as the left first floor corner starts to rotate counterclockwise until the left bottom pier breaks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30; Initial load factor for infinite linear elastic compression 

Figure 5.29; Load-displacement diagram. Pavia facade with linear elastic compression and the default model 
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The simplification of the constitutive model has not resulted in a more stable analysis as the initial load 

factor still reduced after the peak load was reached. This part of the analysis was very similar to the 

default model. Changes appeared after the right first-floor spandrel and the right second floor spandrel 

were severely deformed. In the default analysis, the structure would fail entirely while in this case, the 

structure was able to recover to the full non-proportional load from which the deformations could 

increase. From the peak load, the stresses concentrate in the right first floor spandrel. When the 

spandrel deforms severely, this section unloads and the stress concentration is shifted to left edge of 

the right second floor spandrel.  This part is bending until the stress concentration shifts to the right 

edge of this spandrel and the middle pier first floor pier. Every time a part fails, the stresses shift to 

another part, which takes over the load and the damaged part is able to unload. The question is 

whether this is realistic or not as the large deformations in the beam model are prevented by the floors 

and the height of the spandrels. Therefore, this behaviour is not likely. Also, by looking back at the 

previous observations. By making the material infinitely strong in compression, the vertical load is 

easier to bear as the piers have infinite compression strength. Therefore, the failure of the piers by 

vertical compressive strengths is evaded. The reason that no violation of the compressive strength was 

noticed in Figure 5.28 does not mean that this does not influence the analysis. First the vertical non-

proportional load is applied, when this is not possible, most likely because of a violation of the 

compressive criterion in the piers, the full previous analysis step is scaled and failure can occur in a 

different part of the structure.  

 

 

  

Figure 5.31; Stable analysis step 11501. Large displacements while the spandrels are already severely damaged 
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5.6.2 Proportional with prestress  
This is an approach which tries to reduce the difficulty of the non-proportional approach by making 

some assumptions. 

The non-proportional load is skipped and a prestress, which would be the resulting stresses of the non-

proportional load is applied to the piers. This prestress is applied by increasing the tensile strength of 

the section. This approach is developed by Belletti et al. [23]. First, an overview is given of the relative 

vertical reaction force in the supports during the analysis (Figure 5.32). In analysis step 1, only the 

vertical load is applied. The vertical force in the right and left pier is equal and the vertical reaction 

force in the middle pier is almost twice the value of the other piers. The relative vertical reaction force 

in the different piers changes during the analysis. As the lateral load increases, the compression in the 

left pier changes in tension. This results in an increase of the compressive force in the right pier as the 

total sum of the forces should remain the constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a first attempt, the forces in the piers after the first load are used to calculate the corresponding 

vertical stresses in the piers by dividing the vertical forces by the cross-section, shown in Table 5.5.  

 

 

 

 

 

 

 

 

These stresses are added to the tensile capacity of the sections. For example, the end of a pier, first 

had a tensile strength 𝑓𝑡 = 0.04 MPa. This tensile strength is increased with the compressive stress as 

a result of the vertical load of the structure. The strength of pier 1 becomes:  

𝑓𝑡,𝑝𝑟𝑒 = 0.390 MPa. Note that the different piers now have different tensile strengths as the prestress 

is different for every pier. 

 

 

 

 

 

1st analysis step: 𝑅𝑣  [N] 𝐴 [m2] 𝜎𝑦𝑦 [N/m2 ] 

Pier 1 −100744.7 0.2875 −350416.483 

Pier 2 −185653.7 0.4625 −401413.315 

Pier 3 −100744.7 0.2875 −350416.483 

Figure 5.32; Vertical reaction force in the piers during the analysis 

Table 5.5; Stress in the piers, analysis step 1 
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Visible in Figure 5.33 are three peaks. These peaks correspond with the failure in the three piers. In 

the first peak, the left pier damages and fails. Next, the middle pier takes the most stress and fails 

followed by the third peak. The results are poor and this can be explained by the fact that the 

compressive stress from the initial load is assumed constant during the full analysis, while Figure 5.32 

clearly shows the change in the reaction forces. In this approach, when the left pier is damaged, it is 

still assumed that a prestress force of the initial load is applied there, while in reality this compressive 

force is redistributed to the other piers increasing their strength. This effect is neglected in this 

approach [1]. 

An improvement is suggested by taking an average value of the reaction force during the analysis and 

transfer this average force into a stress which is used as a prestress for the piers. The result is shown 

in Figure 5.34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.33; Load-displacement diagram. Vertical reaction force stresses of the first analysis step are 
used as prestress 
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Again, three peaks are visible. This time the first peak is smaller than before as the average vertical 

reaction force in the left pier is very small. The force in that pier is sometimes even tensile. This results 

in a lower capacity of this pier. The capacity of the second pier is somewhat higher and the capacity of 

the third pier has increased much. Both are because of a higher vertical reaction force in these piers. 

Shown in Figure 5.35 is the behaviour of the first pier. Typical SLA behaviour is observed for this pier.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Like in the previous case, the structure does not fail as a system, but more as three separate piers. In 

conclusion this method evades the problem of the reduction of the initial load factor but is not an 

applicable solution to the problem as the structure cannot be seen as a system, but more as three 

separate piers, which is not a correct representation. The assumption included in this method that the 

compressive stresses in the piers as a result of the vertical load stay approximately equal during the 

analysis is poor and not valid in this case as the loads change during the analysis. This was shown in 

Figure 5.32. 

 

Figure 5.34; Force-displacement diagram. Average vertical reaction force stresses are used as prestress 

Figure 5.35; Overview of step 1-1475 of the load-displacement diagram using the average 
stresses of the vertical reaction forces. Typical SLA behaviour is visible. 
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5.6.3 Increasing the fracture energy 
The next variation will be an increase in crack energy. The standard value for the crack energy was 

𝐺𝑓−𝑡𝑢
𝐼 = 20 N/m for the parts with shear failure, 𝐺𝑓−𝑗𝑡

𝐼 = 5 N/m for the parts in flexural failiure and 

𝐺𝑓−𝑚 = 10000 N/m for the compressive fracture energy. These values will be increased with the 

following factors: 10, 100, 1000 and 106. Below are the results of the different analyses. 

 

As expected from theory, the peak load is higher when the fracture energy increases. The maximum 

peak value is already reached for a multiplication factor of 10, the peak load does not increase for 

higher multiplication factors. After the peak load, all analyses showed a large reduction of the load as 

a result of the initial load factor reduction. The differences in fracture energy appeared after the 

attempt to increase the load back to an initial load factor of 1. The higher the fracture energy, a larger 

part of the load is retained. With a higher fracture energy, the structure can dissipate more energy. 

However, a limit is reached for a fracture energy multiplication factor of 100. When a higher 

multiplication factor is chosen, the load does not increase. 

In conclusion, the increase in fracture energy resulted in a higher peak load but was not useful in 

maintaining an initial load factor of 1 after the peak load. Differences were visible in post-peak 

behaviour as a higher part of the load was retained when the fracture energy was higher. However, a 

limit was reached for a multiplication factor of 100. 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.36; Variation in crack energy for the three-zoned beam model 
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5.6.4 Increasing the number of saw teeth 
The next possibility to increase the accuracy of the solution is increasing the number of saw teeth.  

To accomplish this, the 𝑝-factor (2.3.3) is reduced from the original value; 𝑝 = 0.1. The two new values 

are 𝑝 = 0.05 and 𝑝 = 0.025. The algorithm used to make the saw-tooth law has the result that the 

reductions will be large in the early stages and small at the end. In the default case with a 𝑝-factor of 

0.1, the first damage increment reduces the stiffness with 18%, where the last while the last step 

reduces the stiffness with 0.02%. The standard 𝑝-factor of 0.1 has 31 saw-teeth.  

An increased number of saw-teeth can make the calculation more precise as the damage propagates 

in smaller steps. On the other hand, the calculation time will increase, because more steps are needed 

for the same damage to occur.  

 

The result is shown in Figure 5.37. All three cases show a similar behaviour, after the elastic part the 

elastoplastic part starts with already many initial load factor reductions. The load is not able to recover 

fully and the analysis continues with increasing and decreasing initial load factors which makes the 

load-displacement curve look irregular. From literature [1] it is known that 30 saw-teeth is in general 

accurate enough. Results of this chapter confirm this as the result is not improving.  

 

 

 

 

 

 

 

 

  

Figure 5.37; Variation in the number of saw-teeth for the three-zoned beam model 
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5.7 Bending moment distribution in beam model 
 

5.7.1 Horizontal and vertical reaction force 
Earlier in 5.6.2, an overview was given of the horizontal reaction forces during the analysis. These 

forces were shown relative to the total vertical force as there were analysis steps in which the total 

load reduction factor was reduced. In this part it became clear that the left pier initially took a part of 

the vertical force. This part decreased rapidly as a result of the damage in this pier. Because of this, the 

other piers contributed more. It would be interesting to look at the distribution of the horizontal 

reaction force as well. The bending moments between the piers and the bending moments internally 

could provide interesting information on how the structure resists the load.  

 

Below (Figure 5.38), an overview is given of the relative vertical reaction force in the three piers and 

the horizontal reaction force. The relative reaction force is calculated by dividing the reaction force in 

a pier by the sum of the reaction forces of all three piers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Like in the case of the vertical load, also for the horizontal load, the contribution of the left pier reduces 

during the analysis. This because severe damage propagates fast in this pier from the start of the 

analysis. Where for the vertical load, the right pier took most from the left pier. For the horizontal load, 

the middle and right pier both take a part. Around step 3200, an increase is visible for the middle pier, 

while a sudden decrease is visible for the right pier. In these steps, the right spandrel deforms severely. 

Figure 5.38; Relative vertical (top) and horizontal (bottom) reaction force in the supports 



161 
 

The middle pier cannot transfer forces to the right pier through the first-floor right spandrel and 

therefore the force in the support increases for the middle pier. From the same line of reasoning it can 

be concluded that the force decreases in the right pier support.  

 

5.7.2 Bending moments in the supports 
The lateral load is applied at both floors. Therefore, it is expected that a counterclockwise moment will 

occur in all three supports. Because the middle pier is wider, the support of this pier will most likely 

have the largest bending moment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.39 indeed shows that this is correct. The middle pier takes 60% of the total bending moment 

and this increases during the analysis. The contribution of the left pier again decreases because of the 

damage that propagates in this pier. Before the structure fails, the maximum bending moment of the 

middle pier is around 178 kNm.  

 

 

  

Figure 5.39; Reaction moment of the three supports of the piers (up). Relative 
contribution of each pier (down) 
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5.7.3 Internal normal forces and shear forces 
Below, the normal forces and shear forces in the structure are shown at analysis step 2551. This  

analysis step has the largest force on the structure while applying the full vertical non-proportional 

load. These results can be compared with the result of Nobel for a displacement of 5 mm. Figure 5.41 

shows the default 3ZEF model. Figure 5.42 and Figure 5.43 are the results of the only tensile failure 

model of section 5.6.1. The results at analysis step 2551 are the same for those models. This was 

expected as the load-displacement curve was similar until this point (Figure 5.29). Important to see in 

these graphs are the shear forces in the piers. For the middle pier for example, a quick hand calculation 

shows that the shear strength should be exceeded if shear failure was possible. 

The shear force in the middle pier 𝑄𝑦 = −123 kN. The cross-sectional area of this pier is 1.820 ∗

0.25 = 0.455 m2. This gives a shear force 𝜏 =
123∗103

0.455∗106 = 0.270 MPa. The shear strength of this pier 

𝑓𝑡𝑢 = 0.14 MPa. For the right pier, the shear strength would also be exceeded. 

The right pier has a shear force of 𝑄𝑦 = −60.1 kN and a cross-sectional area 𝐴 = 1.15 ∗ 0.25 =

0.2875 m2. The shear force will be: 𝜏 =
60.1∗103

0.2875∗106 = 0.209 MPa > 0.14 MPa.  

In the right first-floor spandrel: 𝑄𝑦 = 81.3 kN. The cross-sectional area 𝐴 = 0.94 ∗ 0.25 = 0.235 m2. 

The shear force: 𝜏 =
81.3∗103

0.235∗106 = 0.235 MPa > 0.14 MPa.  

Comparing the shear forces with the model of 

Nobel in Figure 5.40, it appears the forces are 

very similar. The shear forces in the spandrels 

are in both models around 80 kN. Only the 

middle and right pier of the bottom row are 

somewhat different as Nobel has a shear force 

of 105 kN in the middle pier and 52.2 kN in the 

right pier and this model has a shear force of 

123 kN in the middle pier and 60.1 kN in the 

right pier. The differences are small especially 

considering that in the FFM of Nobel, the 

flexural elements are not used and only the 

shear strength. The 3ZEF uses the strength of 

the bed joint tensile strength at the ends of the 

piers and spandrels. 

The reduction in strength of the right pier of the bottom row in the analysis with only tensile failure 

follows from Figure 5.43, these forces are transferred to the middle pier. The right first floor spandrel 

cannot transfer the forces anymore.  

 

 

 

 

 

  

Figure 5.40; Shear forces in the FFM of Nobel, 𝑑 = 5.76 𝑚𝑚. [2] 
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Figure 5.42; Linear compressive analysis, analysis step 2551. Normal and shear forces 

Figure 5.41; 3ZEF, analysis step 2551. Normal and shear forces 

Figure 5.43; Linear compressive analysis, analysis step 6801. Normal and shear forces 
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5.7.4 Internal bending moments 
A first attempt to extract the internal bending moments from the analysis was done by adding a 

command in the analysis file to register them. This failed however for every non-supported node, 

because this function is not yet implemented in the program. All bending moments except the three 

of the supports were of the order 10−10 Nm, which is practically zero. 

This problem is solved by making an approximation of the internal bending moment from the axial 

stress in the element. A MATLAB program is developed, the full code is shown in Appendix B. A 

summary will be presented here. 

 

Every beam element has two rows of eleven integration points over its width. The width of the element 

is 𝑤𝑙 = 𝑤𝑟 = 1.15 m for the left and right pier and 𝑤𝑚 = 1.82 m for the middle pier.  

For every analysis step, the stress distribution over the width of the element can be determined. By 

taking the axial stresses 𝜎𝑦𝑦 in the 

integration points as output from 

the analysis and distribute them  

over the width of the element. The 

width of the element is divided in 

ten parts with eleven nodes. 

In chapter 2.2.1 the Timoshenko 

beam theory was derived. In this 

chapter, the bending moment in 

the cross-section was derived 

from the axial stress-distribution 

[11]. 

Equation (2.2.7) was derived 

which holds this relation. This 

relation is repeated below for the 

axis of the element in the 𝑦-direction.  

The bending moment in a cross-section can be determined by taking the axial stress in a cross-section, 

multiplying this with the distance from the central line and integrating it over the area of the cross-

section. 

 

𝑀 = ∫𝑑𝑀 = ∫𝜎𝑦𝑦𝑦𝑑𝐴 (5.7.1) 

 

There is however no closed form analytical expression for the distribution of the axial stresses as the 

data comes from a numerical finite element analysis which approximates the results. Therefore, a 

numerical approximation is needed. The trapezoidal rule is used to approximate the integral of (5.7.1) 

in a numerical approach using a Riemann sum.  

 

Figure 5.45 shows this approach in practice. The stresses over the width of the cross-section are divided 

in small trapezoids between the estimated integration point locations. They are assumed to be spread 

with a constant interval over the width of the cross-section. Because the distance 𝑦 in (5.7.1) is 

independent of the area of the cross-section in this approximation, this can be excluded from the 

integral. The area of every trapezoid can be calculated by applying the general formula: 

 

∫𝜎𝑦𝑦𝑑𝐴 =
1

2
ℎ(𝑏1 + 𝑏2)𝑡 (5.7.2) 

Figure 5.44; Stress state 𝜎𝑦𝑦 over the cross-section of an element. Stresses in 

the integration points are used 
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in which ℎ is the height of the trapezoid, i.e. the distance between the two parallel sides, 𝑡 is the 

thickness in the other direction and 𝑏1 and 𝑏2 are the lengths of the parallel sides.  

In this example, the distance ℎ between the parallel sides is the length of the interval over the width. 

This is the estimated distance between the integration points. The width of the cross-section of the 

left pier 𝑤𝑙 = 1.15 m. Divided over eleven nodes, the length of the interval is ℎ =
𝑤𝑙

10
= 0.115 m.  

The lengths 𝑏1 and 𝑏2 are the stresses in the integration points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The distance 𝑦 in (5.7.1) is the distance between the center of gravity of the trapezoid and the center 

of the cross-section. The center of gravity of the trapezoid is approximated as if it was a rectangle, i.e. 

halfway the interval (
1

2
ℎ). This approximation is better the more the trapezoids are shaped like a 

rectangular. If the trapezoid become triangular like in the interval [−0.23;−0.115] the center of 

gravity is more at a distance 
1

3
ℎ from the longest side and the approximation becomes less accurate. 

In Figure 5.45, the green dots represent the approximated center of gravity on the 𝑥-axis of the 

corresponding trapezoidal.  

 

In an algorithm, the approximation of the bending moment in the cross-section can be described as: 

 

𝑀 = ∑
1

2
(𝑥𝑖+1 − 𝑥𝑖)(𝜎𝑦𝑦,𝑖 + 𝜎𝑦𝑦,𝑖+1) ∗ −

1

2
(𝑥𝑖 + 𝑥𝑖+1)𝑡

10

𝑖=1

(5.7.3) 

 

in which 𝑥𝑖 is the coordinate of the integration points on the 𝑥-axis. The fact that the distance is 

negative is a consequence of the chosen coordinate system in which a clockwise rotation is regarded 

negative. The program uses this equation to estimate the bending moments in the beams of all three 

piers. The results are stored in a matrix in which every row represents the data from an integration 

point and every column is an analysis step. The first column consists of the estimated 𝑦-coordinates of 

the rows of integration points. In general, several assumptions are made. For example, the locations 

of the integration points over the width are estimated. Errors in these distances influence the lever 

Figure 5.45; Trapezoidal rule to numerically integrate the axial stress 
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arms of the bending moments and are linear errors. Errors of the order; 𝑂(ℎ). Also, the assumption is 

done to approach the stress pattern with a set of trapezoids. This assumption is however quite 

accurate as the stress pattern itself is calculated in eleven integration points, which is quite accurate. 

Like mentioned before, the assumption to estimate the center of gravity of a trapezoid at 
1

2
ℎ is a good 

assumption when the trapezoids are more rectangular like (𝑏1 ≈ 𝑏2), than triangular.  

To make an estimation of the error, the bending moments at the supports are compared with the 

bending moments in the lowest integration points. Also, an in theory more accurate approach is used 

in which the center of gravity of the trapezoid is determined precise. The equation is for the center of 

gravity is changed in: 

 

𝑥𝑐 =
ℎ

3

𝑏 + 2𝑎

𝑏 + 𝑎
(5.7.4) 

 

with 𝑏 the long parallel side of the trapezoid. Implemented in the equation: 

 

𝑀 = ∑
1

2
(𝑥𝑖+1 − 𝑥𝑖)(𝜎𝑦𝑦,𝑖 + 𝜎𝑦𝑦,𝑖+1) ∗

1

3
(𝑥𝑖+1 + 𝑥𝑖) ∗

2𝜎𝑦𝑦,𝑖+1 + 𝜎𝑦𝑦,𝑖

𝜎𝑦𝑦,𝑖+1 + 𝜎𝑦𝑦,𝑖
∗ 𝑡

10

𝑖=1

(5.7.5) 

 

The estimated error is shown in the following figures: 

 

 

 

 

 

 

 

 

 

The error is calculated as the ratio of the approximated bending moment over the nodal bending 

moment: 

 

𝜖 = 1 −
�̂�𝑧

𝑀𝑧,𝑛𝑜𝑑
(5.7.6)  

Figure 5.46; Estimated error of the bending moments in the supports 
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Note that the lowest row of integration points is not at the same location as the lowest node. 

Therefore, the nodal value is expected to be even higher than the bending moment in the lowest row 

of integration points. Following this, even for a perfect approximation, a small positive error is 

expected beforehand. The error in the left pier becomes very big after analysis step 2000. A possible 

explanation is the total damage of the cross-section except the rightest integration point. This results 

in a strange stress-state with almost zero values for the other integration points, while the rightest 

integration point has a huge stress. As the pier damaged, the arm of the bending moment has reduced 

in reality as the support is badly damaged. In this model, the bending moment is still calculated from 

the center line as if the support was still intact. This leads to big errors. 

For the other piers, the error is very small. It is also visible that the method with the real center of 

gravity is more accurate than the method with the average center of gravity. Although the differences 

are not that big.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.47 shows the bending moment over the height of the left and middle pier. As expected, a 

counter clockwise bending moment at the bottom and a clockwise bending moment at the top of the 

pier. At the toe of the middle pier, the bending moment is estimated at 𝑀𝑧 = 82.2 kNm.  

An animation is made to show the change in bending moments during the analysis. The shape stays 

more or less the same for the entire analysis before failure. Only the values change with respect to the 

lateral load.  

  

Figure 5.47; Bending moment 𝑀𝑧 in left and middle pier over the 
height. Analysis step 301 
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Comparing the magnitude of the bending moments in this analysis with the results found by Nobel for 

his beam model the magnitude is result is in the same order. Figure 5.48 shows the magnitude of the 

bending moments and axial forces in the members at a displacement of 5 mm. At this moment, the 

bending moment in the middle pier is around 1.22 ∗ 108 Nmm. In the beam model with SLA, the 

bending moment fluctuates in the analysis steps between 1.2 ∗ 105 Nm and 1.5 ∗ 105 Nm. There is 

however still a small bending moment in the left pier, while this is not the case in the model of Nobel. 

The bending moment for the right pier is more difficult to read from his results. It is approximately 

6.59 ∗ 107 Nmm. In the SLA, it is around 5.0 ∗ 104 Nm. This is somewhat lower, but in the SLA, the 

left pier also contributes to the resisting bending moment which explains this. 

Considering the axial forces in the structure, the model of Nobel has a relatively small tensile force in 

the left pier, a force around 1.50 ∗ 105 N in the middle pier and a force of 2.19 ∗ 105 N in the right 

pier. In the sequentially linear analysis, the force in the left pier is still compressive but also relatively 

small and almost neglectable. The force in the middle pier is around 1.5 ∗ 105 N and the right pier has 

a vertical axial force of 2.2 ∗ 105 N. This is very close to the results of Nobel. The displacement of 5 mm 

is around analysis step 2000 (Figure 5.49).  

 

 

 

 

 

 

 

 

  

Figure 5.48; Bending moments and axial forces in the members at a displacement of 5 mm [2] 

Figure 5.49; Absolute vertical reaction force in the piers 
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5.8 Conclusion 
 

With the implementation of the sequentially linear analysis for beam element models, it was possible 

to use the equivalent frame approach combined with a sequentially linear analysis. First, two different 

approaches were tried. Both approaches used the same types of models from Nobel’s research. The 

first model only used the bed joint tensile strength for of the piers and spandrels of the structure for 

those elements. The results of this model were very poor as local failure early on prevented the analysis 

to continue. The three-zoned approach was used in which the ends of the elements had properties 

based on the bed joint tensile strength of the masonry and the center of the piers and spandrels the 

maximum tensile strength of the masonry, which corresponds with shear failure. With this model it 

was possible to perform the analysis without local defects. Although the analysis was able to continue 

for a long time, the initial load factor was reduced early in the analysis. At this stage, the displacement 

of the second floor was only 5 mm. The mesh size and the number of integration points were changed, 

but this did not improve the results. 

An analysis was done to investigate why the initial load factor reduced early in the analysis. First the 

damage, strain and stress in the integration points at the bottom of the left pier were investigated. It 

was found that the tensile strength of the elements was validated in several integration points for both 

the axial direction of the element as the principal direction. Even a fully damaged integration point was 

able to reach high stresses. This was however a result of the fixed crack approach used in this model 

in combination with high shear forces. Stresses are able to build in the global and principal direction 

as the tensile strength criterion is defined in the fixed cracked coordinate system. This can have a 

negative effect as tensile damage started to propagate in an integration point in the center of the 

element as a result of this. For element 208, a stress-strain relation was found in which the stiffness 

seemed to increase after damage as a result of the Poisson’s ratio which is set to zero when the 

integration point is damaged. By calculating the modulus of elasticity from the stresses, there was 

however a deviation from the input value. 

Secondly, an indication was found that an initial load factor reduction shares a relation with the 

opening of a crack in an element. The strain was divided in a fictitious elastic strain and a fictitious 

plastic strain. When an initial load factor reduction occurred, the fictitious plastic strain in the 

corresponding integration point started to grow in the next analysis step. This was shown for several 

integration points. A possible theory is that the redistribution of the forces because of the damage in 

the integration point results in a stage where the full vertical load cannot be applied. This crack opening 

was often found in the spandrels, again in element 208. As the vertical load is also applied on the 

spandrels this is also of influence there. A relation between crack closure errors and the reduction of 

the initial load factor was investigated and it was concluded that there is none. Crack closure errors 

occurred in the analysis and resulted in odd results for some analysis steps but did not have a negative 

effect on the analysis. Significant errors were found far after load reduction. 

Several improvement techniques were tried to make sure that the model would continue the analysis 

with a full initial load factor for a longer time. The most interesting technique was changing the 

parabolic constitutive relation of the compressive behaviour with an infinite linear elastic relation. 

With this method, the analysis was able to continue for a long time. The behaviour was however not 

realistic because the compressive strength of the piers was overestimated. 

Another possible improvement used the approach by Belletti et al. [23], which includes prestressing 

the structure with the stresses resulting from the non-proportional load. With this approach, the 

structure responded not as one system, but as three piers failing consecutive. Also, the assumptions 

implemented in this approach that the stresses as a result of the non-proportional load do not change 

during the analysis is not valid in this case. 
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Other possible improvements included increasing the fracture energy of the material, which showed a 

higher energy dissipation for a higher fracture energy. The initial load factor was however still reduced 

and not retained. Also, increasing the number of saw-teeth was not effective. The results were almost 

similar concluding that the used number of saw-teeth was accurate enough.  

At the end of this chapter, reaction forces of the model were evaluated together with the internal 

bending moments in the piers. From the vertical reaction forces could be concluded that the 

contribution of the left pier to carry the vertical non-proportional load disappears early in the analysis. 

This force is taken by the right pier. The contribution for the horizontal reaction force of the left pier 

also reduces. This force is mainly redistributed to the middle pier. 

Looking at the shear forces, the results were very similar to the shear forces in the FFM model of Nobel. 

When the shear stresses as a result of the shear forces were calculated, they appeared to be far above 

the shear strength. This was checked for the middle pier, right pier and right first floor spandrel. For 

example, in the middle pier, the stress 𝜏 = 0.270 MPa while the strength is 𝑓𝑡𝑢 = 0.14 MPa. As the 

beam model can only fail in tension along its length, shear damage cannot initiate. By looking at the 

continuum model and the experimental data, shear failure is the most important failure mode in the 

structure. Shear strength criteria are therefore essential in this model to give a good approximation. 

The middle pier takes the largest bending moment as it has the largest width. The bending moment of 

the left pier is reduced during the analysis as a result of the damaged cross-section. 

A MATLAB program is written to approximate the internal bending moments in the piers as this is not 

yet implemented in the new Diana FEA version for beam elements in a sequentially linear analysis.  

The MATLAB program uses a numerical approximation to calculate the integral of the stresses over the 

cross-section. A trapezoidal rule is used combined with a Riemann sum. The results are very accurate 

for the right and middle pier, and for the left pier until analysis step 2000. Comparing the results with 

the bending moments and axial force in the model of Nobel, the results are similar. Only the 

contribution of the bending moment of the right pier is larger in the model of Nobel and the bending 

moment of the left pier is nil. While in the SLA, the left pier is still able to contribute to the total bending 

moment. This contribution is not accurate as a large arm is assumed in the approximation which is not 

present anymore as a result of the damage. 
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6. Conclusions 
 

The goal of this research was to study how the sequentially linear analysis could be used to model an 

unreinforced masonry structure. To investigate this, two approaches have been used to simulate the 

façade of the cyclic experiment at the University of Pavia in Italy, a continuum model and the 

equivalent frame method, for both categories a standard uniform approach is used and a three-zoned 

approach. 

 

6.1 Standard (uniform) model - Three-zoned approach 
 

The three-zoned approach showed better results for both models. For the continuum model, only the 

rocking failure mechanism was visible in the first analyses with the three-zoned approach. With a 

parameter sensitivity check for the maximum tensile strength 𝑓𝑡𝑢 it was shown that a tensile strength 

of 0.08 MPa in the piers results in an accurate failure pattern for the piers similar to that of the 

experiment. This failure pattern is a combination of rocking in the left pier and shear failure in the 

middle and right pier of the first floor. The middle and right pier have some rocking damage at the heel 

of the wall. Keeping in mind that the load was cyclic in the experiment, mirroring the damage as a 

result of load reversal in the model would give a very accurate representation of the damage and 

failure mode in the experiment, diagonal shear in both outer piers and diagonal shear in both 

directions of the middle pier. The damage in the top of the spandrels which was visible in the 

experiment was not present in the model. This damage initiated at the start of the experiment and 

occurred mostly in these regions because there was no vertical stress applied here as these regions 

were above the floor and the joint shear strength was therefore less than in other parts of the wall 

[19]. The three-zoned approach resulted in the correct material strength at the right place as the bed 

joint tensile strength was used in the rocking failure mode at the ends and the maximum tensile 

strength in the shear failure mode in the middle of the element. This was not the case for the standard 

uniform model. For the beam models, the uniform model suffered from local unstable elements. As 

the focus laid on the three-zoned model, this was not investigated further and only the three-zoned 

model was used in the rest of the investigation.  

 

6.2 Continuum element model- Beam element model 
 

At this stage, the three-zoned continuum model performs better than the beam element model.  

The 3ZCM is able to give an accurate description of the load-displacement diagram of the experiment 

until a deformation of 10 mm and a force of 150 kN. This is somewhat higher than the experimental 

values, which can be explained by the difference in load application. The results of section 4.4.7.2 

showed for all models that a shear failure mode resulted in a more stable analysis than a rocking failure 

mode as the initial load factor was less constant and had larger drops for the latter. In rocking, cracks 

start to grow horizontally over the wall, also reducing the vertical load carrying capacity in an SLA, 

resulting in initial load factor drops. As shear damage initiates from the center, this failure mode is less 

sensitive to load factor drops as the sides are still undamaged.  

The beam model was not able to reach displacements larger than 5 mm, just in the elastoplastic part 

of the load-displacement curve. At this stage the vertical load could not be carried and the analysis 

could not continue. A parameter sensitivity check was performed for the mesh size, number of saw-

teeth, fracture energy and the number of integration points over the width. It was concluded that 

these values were not affecting the analysis results and were accurate enough. The reaction forces on 

the structure and the internal bending moments in the piers were monitored and compared with the 
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incremental iterative results. It was concluded that the forces were almost identical. The bending 

moment distribution was similar. The bending moments were somewhat higher in the left pier and 

lower in the right pier in the SLA. In terms of load distribution, the incremental iterative approach and 

the SLA were similar. With a hand calculation it was verified that the shear stresses in middle and right 

pier and the spandrels are higher than the maximum strength 𝑓𝑡𝑢. As the beam elements can only fail 

in bending, the shear failure which was observed in the continuum model was not present here.  

 

6.3 SLA-performance 
 

The SLA performed very good in the continuum models as it was able to accurately describe the load-

displacement curve of the experiment. In the end, the number of initial load reductions was limited. 

The stress-strain relations showed that the saw-tooth law was followed accurately and that the 

ultimate strain was reached in multiple integration points. The SLA was able to retain the initial load in 

most cases after initial load reductions. The damage-strain-stress overviews showed accurate damage 

propagation in the piers. The parabolic constitutive law was not tested as this stage was not reached 

in the analyses performed in this investigation. In the beam model, the analysis aborted early, while 

an incremental iterative approach was able to reach displacements of 25 mm and a maximum load of 

175 kN. An in-depth analysis was performed and several important results were found: 

i. For the beam element approach, it was found that the principal stress in several integration 

points exceeded the strength of the material. This was a result of the implemented fixed crack 

model. The high shear stresses in this structure rotated the crack coordinate system from the 

beam axis. As the strength criterion is set in this direction and the coordinate system is fixed, 

the principal stresses are able to build when the principal direction rotates from the crack 

coordinate system, exceeding the tensile strength. Following this, other integration points 

with lower stresses were damaged which resulted in damage in wrong integration points. This 

disturbs the analysis and is a reason why the initial load factor could not be applied as the 

strength of these integration points is reduced severely. A rotating crack approach would help. 

It can be confirmed by looking at the stresses and strains in the fixed crack coordinate system 

that the saw-tooth law is followed accurately. 

ii. The modulus of elasticity was calculated from the principal stresses and strains and a small 

deviation from the initial value was found for the beam element model. This was also the case 

for undamaged integration points. This was correct in the continuum model. It is not 

investigated why this happens for the beam model. 

iii. There is a relation between an initial load factor reduction and the opening of a crack in the 

corresponding integration point that damages at an initial load factor reduction. This occurred 

in the continuum model and the beam model. A possible explanation is that cracks initiate a 

redistribution of stresses which result in a temporary vertical load reduction. This behaviour 

was only observed at some crack openings. To understand this properly, this should be 

investigated further.  

iv. Crack closure errors were present in both models and can result in non-secant branches in the 

load-displacement curve. This did not lead to big errors in the early stages of the analysis. 

However, when post-peak behaviour is reached, this can result in large errors.  

The results of this thesis confirm the potential of the SLA to accurately approximate the behaviour of 

an unreinforced masonry structure as it was possible to run a stable analysis with accurate results for 

the continuum model. The beam model analysis gave accurate results in terms of forces and bending 

moments similar to the results of an incremental iterative approach but aborted in an early stage. New 

developments in a rotating crack approach and shear interfaces will result in a more stable analysis as 

the right failure behaviour will be followed.  
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7. Recommendations 
 

Some recommendations for future investigations are listed below in order of importance: 

i. The fixed crack approach resulted in difficulties for this model as shear stresses were able to 

build far above the tensile strength which resulted in incorrect damage propagation. A rotating 

crack formulation could prevent this. With this implementation, it should be possible to 

describe the post-peak behaviour of the structure and hopefully come close to the 

experimental data and fulfill the potential of this modeling technique to reduce the 

computational effort while keeping the result accurate.  

ii. As the equivalent frame approach uses beam elements only, the only possible failure mode is 

failure in bending. With respect to that, it would be interesting to see further developments in 

the direction of shear interfaces in the piers and spandrels of the beam model. As it was 

demonstrated that the shear stresses are above the maximum shear strength, this failure 

mode will definitely be active in the middle and right pier and the spandrels. The thought is 

that these shear interfaces will result in a different failure mode for the beam element which 

will possibly result in a more stable analysis, as shear failure in the piers gave more stable 

results in the case of a continuum model. 

iii. The relation between the reductions of the initial load factor and the opening of a crack in the 

corresponding integration points which was observed should be investigated further. The 

opening of a crack results in a redistribution of the forces which could result in a temporary 

drop of the initial load factor. The precise mechanism behind this and why this occurs with 

some cracks while it did not happen with others is still unknown. 

iv. SLA could be implemented for three-dimensional beam or shell elements to investigate the 

behaviour of unreinforced masonry buildings further in a full three-dimensional model. This is 

not possible at this stage. In this model, the behaviour of floors should be investigated 

thoroughly as they have an important function in connecting the walls and transferring forces 

together with the out of plane bending behaviour of the floors themselves. A modelling 

approach to make an appropriate equivalent frame model from a three-dimensional building 

will also be a challenge. 

v. In this analysis, the effect of lintels on the structure was neglected. In the experiment, the 

openings in the wall have lintels. The lintels will prevent a vertical crack in the spandrels and 

could therefore be added to the finite element model to make it more complete.  
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Appendices 
 

Appendix A 
 

Matlab program to find crack closure errors: 

 
clc 
close all 

  
a=Stressstrain; 
b=Damage; 

  

nelements=538; 
nintp=4; 
steps=4; 
nsteelelements = 0; 

  
Datad=zeros((nelements-nsteelelements)*nintp,1+4*steps); 
k=1; 

  
% Damage part 

  
for k = 1:nintp 
    s=k; 
    for l=1:length(b) 
        if k == 1 
            if b(l,2) == 1 && b(l,3)>=0 
                Datad(s,1)=b(l,3); 
                s=s+nintp; 
                if s >(nelements-nsteelelements)*nintp 
                    break 
                end 
            else 
            end 
        else 
%             if k==2 
                if b(l,1) == k 
                    if b(l,3)>=0 
                        disp(l); 
                    else 
                        Datad(s,1)=b(l,2); 
                        s=s+nintp; 
                        if s>(nelements-nsteelelements)*nintp 
                            break 
                        end 
                    end 
                end 
%             else 
%                 if b(l,1) == k && (b(l-1,1)==k-1) 
%                     Datad(s,1)=b(l,2); 
%                     s=s+nintp; 
%                     if s>(nelements-nsteelelements)*nintp 
%                         break 
%                     end 
%                 end 
%             end 
        end 
    end 
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end 

  
Data=zeros(nelements*nintp,1+4*steps); 
Data=Datad;       

  
% Stress-strain part 

  
for k = 2:1:nintp 
    s=k; 
    for l=1:1:length(a) 
        if a(l,1) == k 
            if s <= nintp*nelements 
                Data(s,2)=a(l,2); 
                Data(s,3)=a(l,3); 
                Data(s,4)=a(l,5); 
                Data(s,5)=a(l,6); 
                s=s+nintp; 
            elseif s>nintp*nelements && s<= 2*nintp*nelements 
                Data(s-nintp*nelements,2+steps)=a(l,2); 
                Data(s-nintp*nelements,3+steps)=a(l,3); 
                Data(s-nintp*nelements,4+steps)=a(l,5); 
                Data(s-nintp*nelements,5+steps)=a(l,6); 
                s=s+nintp; 
            elseif s>2*nintp*nelements && s<=3*nintp*nelements 
                Data(s-2*nintp*nelements,2+2*steps)=a(l,2); 
                Data(s-2*nintp*nelements,3+2*steps)=a(l,3); 
                Data(s-2*nintp*nelements,4+2*steps)=a(l,5); 
                Data(s-2*nintp*nelements,5+2*steps)=a(l,6); 
                s=s+nintp; 
            elseif s>3*nintp*nelements 
                Data(s-3*nintp*nelements,2+3*steps)=a(l,2); 
                Data(s-3*nintp*nelements,3+3*steps)=a(l,3); 
                Data(s-3*nintp*nelements,4+3*steps)=a(l,5); 
                Data(s-3*nintp*nelements,5+3*steps)=a(l,6); 
                s=s+nintp; 
            end 
        end 
    end 
end 
f=0; 
s=1; 
for i = 8:length(a) 
    if a(i,2)>-1 && a(i,2)<1 
        f=f+1; 
        f=mod(f,nintp); 
        if f==1 
            if s <= nintp*nelements 
                Data(s,2)=a(i,2); 
                Data(s,3)=a(i,3); 
                Data(s,4)=a(i,5); 
                Data(s,5)=a(i,6); 
                s=s+nintp; 
            elseif s>nintp*nelements && s<= 2*nintp*nelements 
                Data(s-nintp*nelements,2+steps)=a(i,2); 
                Data(s-nintp*nelements,3+steps)=a(i,3); 
                Data(s-nintp*nelements,4+steps)=a(i,5); 
                Data(s-nintp*nelements,5+steps)=a(i,6); 
                s=s+nintp; 
            elseif s>2*nintp*nelements && s<=3*nintp*nelements 
                Data(s-2*nintp*nelements,2+2*steps)=a(i,2); 
                Data(s-2*nintp*nelements,3+2*steps)=a(i,3); 
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                Data(s-2*nintp*nelements,4+2*steps)=a(i,5); 
                Data(s-2*nintp*nelements,5+2*steps)=a(i,6); 
                s=s+nintp; 
            elseif s>3*nintp*nelements 
                Data(s-3*nintp*nelements,2+3*steps)=a(i,2); 
                Data(s-3*nintp*nelements,3+3*steps)=a(i,3); 
                Data(s-3*nintp*nelements,4+3*steps)=a(i,5); 
                Data(s-3*nintp*nelements,5+3*steps)=a(i,6); 
                s=s+nintp;   
            end 
        end 
    end 
end 

     

  
% search for Crack closure faults 

  
for l = 1:length(Data) 
    ep=0; si=0; 
    if (Data(l,2) < 0 && Data (l,6) > 0) || (Data(l,2) > 0 && Data (l,6) < 

0) || (Data(l,3) < 0 && Data (l,7) > 0) || (Data(l,3) > 0 && Data (l,7) < 0) 
        if (Data(l,4) < 0 && Data (l,8) > 0) || (Data(l,4) > 0 && Data (l,8) 

< 0) || (Data(l,5) < 0 && Data (l,9) > 0) || (Data(l,5) > 0 && Data (l,9) < 

0) 
            if Data(l,1)>0 
                disp(l); disp('step 1103-1104'); disp('Crack closure in 

element'); disp(ceil(l/nintp)); disp('integration point'); 

disp(mod(l,nintp)); 
            end 
        end 
    end 
    if (Data(l,2+4) < 0 && Data (l,6+4) > 0) || (Data(l,2+4) > 0 && Data 

(l,6+4) < 0) || (Data(l,3+4) < 0 && Data (l,7+4) > 0) || (Data(l,3+4) > 0 && 

Data (l,7+4) < 0) 
        if (Data(l,4+4) < 0 && Data (l,8+4) > 0) || (Data(l,4+4) > 0 && Data 

(l,8+4) < 0) || (Data(l,5+4) < 0 && Data (l,9+4) > 0) || (Data(l,5+4) > 0 && 

Data (l,9+4) < 0) 
            if Data(l,1)>0 
                disp(l); disp('step 1104-1105'); disp('Crack closure in 

element'); disp(ceil(l/nintp)); disp('integration point'); 

disp(mod(l,nintp)); 
            end 
        end 
    end 
    if (Data(l,2+8) < 0 && Data (l,6+8) > 0) || (Data(l,2+8) > 0 && Data 

(l,6+8) < 0) || (Data(l,3+8) < 0 && Data (l,7+8) > 0) || (Data(l,3+8) > 0 && 

Data (l,7+8) < 0) 
        if (Data(l,4+8) < 0 && Data (l,8+8) > 0) || (Data(l,4+8) > 0 && Data 

(l,8+8) < 0) || (Data(l,5+8) < 0 && Data (l,9+8) > 0) || (Data(l,5+8) > 0 && 

Data (l,9+8) < 0) 
            if Data(l,1)>0 
            disp(l); disp('step 1105-1106'); disp('Crack closure in 

element'); disp(ceil(l/nintp)); disp('integration point'); 

disp(mod(l,nintp)); 
            end 
        end 
    end 
end 
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Appendix B 
 

Matlab program to calculate the moments in the piers: 

 
clc 
close all 

  
a=Stressstrainleft; 
b=Stressstrainmiddle; 
c=Stressstrainright; 

  
nelementsl=29;          %elements in left pier 
nelementsm=25;          %elements in middle pier 
nelementsr=29;          %elements in right pier 
nintp=22;               %number of integration point 
widthl=1.15;            %width of left pier 
widthm=1.82;            %width of middle pier 
widthr=1.15;            %width of right pier 
heightl=2.477;          %height of left pier 
heightm=2.145;          %height of middle pier 
heightr=2.477;          %height of right pier 
thickness=0.25;         %thickness of the facade 
lelementsstart=18;      %lowest element of left pier 
melementsstart=47;      %lowest element of middle pier 
relementsstart=72;      %lowest element of right pier 

  
%Left pier 

  
lines=zeros(100,2); 
lines(1,1)=1; 
lines(1,2)=1; 

  
Data=zeros(nelementsl*nintp,5); 

  
k=30; 
s=2; 

  
for k=30:1:length(a) 
    if a(k,3) > 10 
        lines(s,1)=k; 
        lines(s,2)=a(k,3); 
        s=s+1; 
    end 
end 
lines(length(lines)+1,1)=length(a); 

  
% Stress-strain part 

  
k=1; 
s=1; 

  
seq1=1:nintp; 
seq1=repmat(seq1,1,nelementsl); 
seq1=seq1'; 

  
seq2=-widthl/2:widthl/(nintp/2-1):widthl/2; 
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seq2=repmat(seq2,1,nelementsl*2); 
seq2=seq2'; 

  
Momentsl=zeros(nelementsl*2,length(lines)); 
o=2; 
d=1; 
for d=1:length(lines)-1 
    Data=zeros(nelementsl*nintp,5); 
    for k = 1:1:nintp 
        s=k; 
        for p=lines(d,1):1:lines(d+1,1) 
            if a(p,2) == k 
                    Data(s,4)=a(p,4); 
                    s=s+nintp;             
            end 
        end 
    end 
    Data(:,2)=seq1; 
    Data(:,3)=seq2; 
    %calculating moments 
    for m = 1:nintp/2:length(Data) 
        for n=0:nintp/2-2 
            Data(m+n,5)=(1/2*(Data(m+n,4)+Data(m+n+1,4))*(Data(m+n+1,3)-

Data(m+n,3))*(Data(m+n+1,3)+Data(m+n,3))/2)*thickness; 
        end 
        Data(m+n+1,5)=sum(Data(m:m+n,5)); 
    end 
    Momentsl(1:nelementsl*2,o)=Data(nintp/2:nintp/2:end,5); 
    o=o+1;     
end 
Momentsl(:,1)=flipud((1:nelementsl*2)'*heightl/(nelementsl*2)); 
Momentsl=sortrows(Momentsl,1); 

  
%Middle pier 

  
lines=zeros(100,2); 
lines(1,1)=1; 
lines(1,2)=1; 

  
Data=zeros(nelementsm*nintp,5); 

  
k=30; 
s=2; 

  
for k=30:1:length(b) 
    if b(k,3) > 10 
        lines(s,1)=k; 
        lines(s,2)=b(k,3); 
        s=s+1; 
    end 
end 
lines(length(lines)+1,1)=length(b); 

  
% Stress-strain part 

  
k=1; 
s=1; 

  
seq1=1:nintp; 
seq1=repmat(seq1,1,nelementsm); 



181 
 

seq1=seq1'; 

  
seq2=-widthm/2:widthm/(nintp/2-1):widthm/2; 
seq2=repmat(seq2,1,nelementsm*2); 
seq2=seq2'; 

  
Momentsm=zeros(nelementsm*2,length(lines)); 
o=2; 
d=1; 
for d=1:length(lines)-1 
    Data=zeros(nelementsm*nintp,5); 
    for k = 1:1:nintp 
        s=k; 
        for p=lines(d,1):1:lines(d+1,1) 
            if b(p,2) == k 
                    Data(s,4)=b(p,4); 
                    s=s+nintp;             
            end 
        end 
    end 
    Data(:,2)=seq1; 
    Data(:,3)=seq2; 
    %calculating moments 
    for m = 1:nintp/2:length(Data) 
        for n=0:nintp/2-2 
            Data(m+n,5)=(1/2*(Data(m+n,4)+Data(m+n+1,4))*(Data(m+n+1,3)-

Data(m+n,3))*(Data(m+n+1,3)+Data(m+n,3))/2)*thickness; 
        end 
        Data(m+n+1,5)=sum(Data(m:m+n,5)); 
    end 
    Momentsm(1:nelementsm*2,o)=Data(nintp/2:nintp/2:end,5); 
    o=o+1;     
end 
Momentsm(:,1)=flipud((1:nelementsm*2)'*heightm/(nelementsm*2)); 
Momentsm=sortrows(Momentsm,1); 

  
%Right pier 

  
lines=zeros(100,2); 
lines(1,1)=1; 
lines(1,2)=1; 

  
Data=zeros(nelementsr*nintp,5); 

  
k=30; 
s=2; 

  
for k=30:1:length(c) 
    if c(k,3) > 10 
        lines(s,1)=k; 
        lines(s,2)=c(k,3); 
        s=s+1; 
    end 
end 
lines(length(lines)+1,1)=length(c); 

  
% Stress-strain part 

  
k=1; 
s=1; 
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seq1=1:nintp; 
seq1=repmat(seq1,1,nelementsr); 
seq1=seq1'; 

  
seq2=-widthr/2:widthr/(nintp/2-1):widthr/2; 
seq2=repmat(seq2,1,nelementsr*2); 
seq2=seq2'; 

  
Momentsr=zeros(nelementsr*2,length(lines)); 
o=2; 
d=1; 
for d=1:length(lines)-1 
    Data=zeros(nelementsr*nintp,5); 
    for k = 1:1:nintp 
        s=k; 
        for p=lines(d,1):1:lines(d+1,1) 
            if c(p,2) == k 
                    Data(s,4)=c(p,4); 
                    s=s+nintp;             
            end 
        end 
    end 
    Data(:,2)=seq1; 
    Data(:,3)=seq2; 
    %calculating moments 
    for m = 1:nintp/2:length(Data) 
        for n=0:nintp/2-2 
            Data(m+n,5)=(1/2*(Data(m+n,4)+Data(m+n+1,4))*(Data(m+n+1,3)-

Data(m+n,3))*(Data(m+n+1,3)+Data(m+n,3))/2)*thickness; 
        end 
        Data(m+n+1,5)=sum(Data(m:m+n,5)); 
    end 
    Momentsr(1:nelementsr*2,o)=Data(nintp/2:nintp/2:end,5); 
    o=o+1;     
end 
Momentsr(:,1)=flipud((1:nelementsr*2)'*heightr/(nelementsr*2)); 
Momentsr=sortrows(Momentsr,1); 

  
%Animation left pier 

  
y=Momentsl(:,1); 
line([0 0],[0 heightl]) 
for t=2:length(Momentsl) 
    x=Momentsl(:,t); 
    plot(x,y) 
    hold on 
    line([0 0],[0 heightl],'Color','black') 
    xlim([-30000 30000]) 
    ylim([0 heightl]) 
    hold off 
    drawnow 
    pause(0.1) 
end 

  
%Animation middle pier 

  
y=Momentsm(:,1); 
line([0 0],[0 heightm]) 
for t=2:length(Momentsm) 
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    x=Momentsm(:,t); 
    plot(x,y) 
    hold on 
    line([0 0],[0 heightm],'Color','black') 
    xlim([-250000 100000]) 
    ylim([0 heightm]) 
    hold off 
    drawnow 
    pause(0.1) 
end 

  

  
%Animation right pier 

  

y=Momentsr(:,1); 
line([0 0],[0 heightr]) 
for t=2:length(Momentsr) 
    x=Momentsr(:,t); 
    plot(x,y) 
    hold on 
    line([0 0],[0 heightr],'Color','black') 
    xlim([-80000 60000]) 
    ylim([0 heightr]) 
    hold off 
    drawnow 
    pause(0.1) 
end 
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Appendix C 
 

The meshes below belong chapter 3. Modelling strategies. The requested mesh size ℎ is used for the 

mesh size of the piers. 

 

  

 

    

    

  

Other different meshes for the sensitivity analysis are made by changing the requested mesh size ℎ to 

the size mentioned in the section. 

Wall h=0.1 m Wall h=0.05 m Wall h=0.2 m 3ZCM h=0.4 m 

CM h=0.4 m CM h=0.2 m CM h=0.1 m 3ZCM h=0.8 m 

CM h=0.25 m Triangular h=0.2 m Model b h=0.2 m Model d h=0.25 m 

1ZEF Nobel (FF 

model) 
3ZEF h=0.1 m 


