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Abstract

Because of the lack of a significant increase of productivity in the last 20
years we are still in a huge need for increasing the return a company derives
from its software development effort. Model-Driven Engineering (MDE) aims to
raise the level of abstraction in application modeling and increase automation in
application development, thereby increasing the productivity in software devel-
opment.
The Model-Driven Architecture tries to define an MDE approach, but is mainly
focused on technical variability and lacks formalism. Other approaches, using
Domain-Specific Languages, do not define a process or framework at all. Re-
search in this area is focused on language engineering and multi-modeling. Liter-
ature on formalizing MDE is focused on defining the concepts and assets needed
to construct an MDE framework. We only know one attempt on formulating an
end-to-end (from business model to IT implementation) MDE approach, but the
resulting framework does not have a theoretical foundation.
Concluding we can state that no end-to-end MDE approach exists describing
abstraction layers, models, modeling languages, and transformations, based on
a formal, theoretical foundation. This thesis presents an MDE approach based
on a sound theoretical foundation, providing end-to-end guidance to refine and
transform an organization model into an IT system supporting that organization.
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Chapter 1

Introduction

Since the beginning of programming people are striving to increase the productivity of
programming languages. From Assembler to BASIC productivity has increased with
about 400% [86]. However, after that first leap productivity has not increased that
much. The average productivity in Java is only 20% better than in BASIC. Why was
the first leap so big, and how can we achieve it again today?

In this chapter we will answer these two questions and explain that a Model-Driven
Engineering (MDE) approach can support the next leap in productivity (1.1). We
shortly describe the existing MDE approaches used in practice (1.2) and how scien-
tific literature tries to formalize these approaches (1.3). We identify a clear gap in this
research, leading to the formulation of our research goal (1.4) and research approach
(1.5). We conclude this chapter with an overview of the structure of this report (1.6)
and a reading guide (1.7).

1.1 Increasing productivity

A main success factor of BASIC over Assembler was the step up to a next level of
abstraction. The second success factor was that each line in BASIC could be auto-
matically translated into Assembler. Because of the lack of a significant increase of
productivity in the last 20 years (see [86]) we are still in a huge need for increasing
the return a company derives from its software development effort. That is exactly the
reason why MDE is getting more and more attention.

MDE aims to raise the level of abstraction in program specification and increase
automation in program development [14]. The idea promoted by MDE is to use models
at different levels of abstraction for developing systems [43], thereby raising the level
of abstraction in program specification. An increase of automation in program devel-
opment is reached by using executable model transformations. Higher-level models
are transformed into lower level models until the model can be made executable using
either code generation or model interpretation.

The underlying motivation for MDE is to improve productivity. This benefit is
delivered in two basic ways [12]:

1. By improving the short-term productivity of developers. That is, by increasing
the value of primary software artifacts in terms of how much functionality they
deliver. MDE delivers this benefit by specifying a software artifact at a higher
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1.2 MDE approaches Introduction

abstraction level and by providing automatic transformations from this specifi-
cation to an executable artifact.

2. By improving the long-term productivity of developers. That is, by reducing
the rate at which primary software artifacts become obsolete. To do so, soft-
ware artifacts should become less sensitive for changes in personnel (by spec-
ifying models using domain-specific abstractions), requirements (by providing
automated transformations from a model of these requirements to a software
artifact), development platforms (by storing models in an interchangeable for-
mat), and deployment platforms (by specifying software artifacts in a platform
independent way).

1.2 MDE approaches

Different approaches exist trying to fulfill the goals of MDE. The best known approach
is the Model-Driven Architecture (MDA) [71]. The MDA defines models at different
abstraction levels and states that transformations are needed between these models.
The main focus of the MDA is on technical variability, i.e. modeling systems in a plat-
form independent way and providing automatic transformations to platform dependent
models. Although the MDA also defines a computation independent abstraction level,
computation independent models are not used a lot in practice.

The main problem of the MDA is the lack of formalism. In books and literature
on MDA no formal model of the concepts exists [41]. The layers of abstraction pre-
sented in the MDA are not defined in a formal way too. No theory exists to determine
whether a model is platform independent or dependent with respect to a certain plat-
form definition. While every model in the MDA is specified using UML, no difference
in modeling language abstraction exists between the models at the different MDA ab-
straction layers.

The strong coupling between the MDA and other OMG standards like UML and
MOF also leads to a lack of formalism in the modeling languages, leading to vague-
ness, confusion, and debate. Atkinson and Kühne point at a couple of problems with
the UML meta-model structure [11]. Besides that, a formal language definition is more
than just a meta-model [60].

Because of the strong focus of MDA on UML, a lot of the model-driven approaches
in current practice are not following the MDA. These approaches are focusing on
domain-specific abstractions to reach a higher level of abstraction in program spec-
ification. In most cases these approaches are referred to as Domain-Specific Modeling
(DSM), i.e. using multiple small models defined in different Domain-Specific Lan-
guages (DSLs). This leads to the use of multiple small languages, tailored to a specific
domain.

Although DSM and DSLs are successfully used in industry nowadays [63], no
formal framework exists describing what kind of models, languages, and model trans-
formations are needed to successfully implement an MDE approach. Research in this
area is mainly focused on language engineering (see for example [68, 98, 48]) and
multi-modeling (see for example [49, 50, 28, 19, 18, 100]). The main results in the
field of DSM at the moment are:

2



Introduction 1.3 Formalizing MDE

• DSLs providing abstractions on programming languages like Java and C#,
thereby increasing developer productivity, and,

• DSLs for very specific domains (e.g. insurance or pension applications) which
are directly transformed into an executable programming language, thereby en-
abling domain experts to be involved in the development process because the
design freedom is restricted and the notation is familiar.

1.3 Formalizing MDE

In literature several attempts to formalize MDE have been made. A couple of re-
searchers (e.g. Favre [41], Kühne [61], Thirioux et al. [94]) focus on formalizing the
concepts of MDE, i.e. they define the concepts used in MDE: model, meta-model and
transformation. This work is useful to understand what MDE is, but it does not tell
how to use MDE to build software systems. A framework or process is needed, ex-
actly describing the sequence of models to be developed, and how to derive a model
from another one at the abstraction level immediately above it [43]. Fondement and
Silaghi [43] define the assets needed to construct such a framework.

An approach, providing end-to-end guidance and assistance to refine and transform
business models created by business experts into IT models and then to IT implemen-
tation, is still missing. The only attempt, we know about, into this direction is the
recent work of Anaby-Tavor et al. [8]. In their work they define an MDE approach
consisting of four different type of models: requirement models, enterprise models,
execution models, and IT governance models. They also define the kind of transforma-
tions involved. They illustrate their work with an example build around an insurance
information system scenario, with choices for concrete modeling languages and the
mappings between the models.

Although the work of Anaby-Tavor et al. is a good example of an end-to-end MDE
approach aimed at fulfilling the goals described in section 1.1, it still lacks a formal
foundation. They just use a model for each phase of a service engineering process,
there is no link to a formal theory describing what models to use and why.

1.4 Research goal

As we have seen in section 1.1 MDE aims to raise the level of abstraction in application
modeling and increase automation in application development. As discussed in section
1.2, the MDA tries to define an MDE approach, but is mainly focused on technical
variability and lacks formalism. We have also seen that the most used approach in
industry, DSM, does not define a process or framework at all. Research in this area
is focused on language engineering and multi-modeling. Literature on formalizing
MDE is focused on defining the concepts and assets needed to construct an MDE
framework. We only know one attempt on formulating an end-to-end (from business
model to IT implementation) MDE approach, but the resulting framework does not
have a theoretical foundation.

Concluding we can state that no end-to-end MDE approach exists describing ab-
straction layers, models, modeling languages, and transformations, based on a formal,

3



1.4 Research goal Introduction

theoretical foundation. Hence we formulate our research goal as follows:

Design an MDEE approach based on a sound theoretical foundation, pro-
viding end-to-end guidance to refine and transform an organization model
into an IT system supporting that organization.

We use the term Model Driven Enterprise Engineering (MDEE) to refer to an outline
of the assets (e.g. models, languages) needed to define a model of an organization and
the assets (e.g. transformations) needed to refine and transform that model until an IT
system supporting that organization is constructed. In other words: the assets needed
to describe, refine, and transform business models created by business experts into IT
models and then to IT implementation.

The MDEE approach has to be based on a sound theoretical foundation underpin-
ning the needed process steps, models, languages, and transformations. We base our
MDEE approach on a theoretical foundation obtained from enterprise ontology [34].

In order to achieve the research goal, a number of research questions can be for-
mulated:

1. What are the requirements for an MDEE approach?

a) What is MDE?

b) What is MDEE?

c) What stakeholders are involved with MDEE?

d) What are the goals of these stakeholders?

e) What requirements can be extracted from these goals?

2. How can enterprise ontology provide a sound theoretical foundation for an
MDEE approach?

a) What is enterprise ontology?

b) How is enterprise ontology related to MDEE?

3. How can an MDEE approach be designed with use of enterprise ontology?

a) What abstraction layers are needed?

b) What models are needed?

c) What refinements and transformations are needed?

Because of the broad subject the following constraints apply to this research:

• The resulting MDEE approach will be focused on a top-down approach. Al-
though it is necessary in practice to combine a top-down approach with a
bottom-up approach to incorporate existing IT systems in the resulting imple-
mentation, we leave this as future work.

4



Introduction 1.5 Research approach

• To specify the needed models we will use existing modeling languages as much
as possible. If no modeling language exists fulfilling our needs we need to define
a custom language (e.g. by specializing an existing language). In such cases
we define the basic elements of the language, we do not provide a full formal
language definition.

• The end result of the MDEE approach needs to be an executable implementation
model. We do define this model and explain how to execute it. However, we do
not specify a full example including all needed details to execute it. We also do
not implement the needed technology to execute the implementation model.

1.5 Research approach

Our research is focused around the construction of an artifact, an MDEE approach. In
our research approach we follow the guidelines for design-science research described
by Hevner et al. [51]:

1. Design as an artifact. The product of our research is a viable artifact in the form
of the description of an approach, i.e. a description of the process steps and the
artifacts to produce.

2. Problem relevance. Because of the lack of a significant increase of productivity
in software development in the last 20 years we are still in a huge need for
increasing the return a company derives from its software development effort in
both building new software and changing existing software. As we have seen
MDE can increase productivity, but no formal approach exists describing how
to reach that goal. Our research will provide a formal MDE approach providing
end-to-end guidance to refine and transform an organization model into an IT
system supporting that organization.

3. Design evaluation. Within the scope of our research we can not execute a rigor-
ous evaluation. We will show the applicability of the resulting MDEE approach
with a running example (i.e. the example grows along with the research and
explanation of our MDEE approach).

4. Research contributions. We base our research on the theoretical foundation of
enterprise ontology. The combination of MDE and enterprise ontology has not
been researched before. As we have shown no formal MDE approach exists
providing end-to-end guidance to refine and transform an organization model
into an IT system supporting that organization. We refer to section 9.1 for a
complete overview of all contributions.

5. Research rigor. The construction of the MDEE approach will be done using the
formal foundation of the Ψ-theory of enterprise ontology [34].

6. Design as a search process. This is beyond the scope of this research.

7. Communication of research. We follow this guideline by producing a concise re-
search report, readable for both technology-oriented and management-oriented
audiences.
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1.5 Research approach Introduction

Our research approach consists of several phases, each phase resulting in concrete
results. We distinguish the following phases:

1. Formulation of research goal. The result of this phase is this chapter.

2. Research the requirements of an MDEE approach. The result of this phase is an
explanation of the assets of an MDEE approach and their relations.

3. Research enterprise ontology. The result of this phase is a description of en-
terprise ontology and a description how an MDEE approach can be based on
enterprise ontology.

4. Design MDEE approach. The result of this phase is the actual MDEE approach
based on the research performed in the previous phases.

5. Evaluate MDEE approach. Evaluate the constructed approach with a real-life
example. The result of this phase is a set of example artifacts created following
the MDEE approach.

6. Write thesis report. This phase results in a research report.

An overview of the research phases, the deliverables, and the applicable guidelines is
shown in Table 1.1.

Research phase Deliverable Guideline
Formulation of research
goal

Thesis proposal Problem relevance,
Research contributions

Research MDEE
requirements

Explanation of MDEE
approach concepts and
their relations

Research rigor

Research enterprise
ontology

Description of enterprise
ontology and a
description how the
MDEE approach can be
based on enterprise
ontology

Research rigor

Design MDEE approach MDEE approach Design as an artifact
Evaluate MDEE
approach

Application of the
approach on an example
case

Design evaluation

Write thesis report Research report Communication of
research

Table 1.1: Research phases
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1.6 Report structure

This report consists of nine chapters. We will give a short description of each chapter.

Chapter 1 describes the background, motivation, objective, scope, and approach of
this research.

Chapter 2 gives an overview of the related work which also focuses on describing
approaches guiding the transformation and refinement of organization models
into a working IT system.

Chapter 3 explains the theory of Enterprise Ontology in detail.

Chapter 4 gives a formal definition of MDE and MDEE and describes the require-
ments for an MDEE approach.

Chapter 5 describes the organization model and the reverse engineering step produc-
ing the organization model.

Chapter 6 describes the service specification model and the function design step pro-
ducing this model based on the organization model.

Chapter 7 gives a description of the business component construction model and the
construction design step producing this model. The previously produced models
in the MDEE approach are the input for the construction design step.

Chapter 8 defines the business component implementation model and the engineer-
ing step producing this model. The previously produced models in the MDEE
approach are the input for the engineering step. This chapter also describes the
implementation step by describing how to implement the business component
implementation model on technology.

Chapter 9 concludes this report with an overview of the contributions, an evaluation
of the MDEE approach, the conclusions of this research, and a description of
what we see as future work.
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1.7 Reading guide

Table 1.2 presents the reading guide for this thesis.

If you are interested in... you should read:
... a quick overview of the resulting MDEE approach Section 9.2
... an overview of the contributions of this research Section 9.1
... the background, objective, scope and approach of this research Chapter 1
... the used scientific foundation for the MDEE approach Chapter 3
... a formal definition of MDE and MDEE Section 4.1
... an overview of the requirements for MDEE approaches Section 4.6
... how to model organizations in MDEE Chapter 5
... how to identify and specify services in MDEE Chapter 6
... how to identify and specify components in MDEE Chapter 7
... how to implement IT systems without programming Chapter 8
... an evaluation of the MDEE approach Section 9.3
... what work still has to be done Section 9.4

Table 1.2: Reading guide
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Chapter 2

Related work

The goal of this research is to design an approach to MDEE based on a sound theoreti-
cal foundation, providing end-to-end guidance to refine and transform an organization
model into an IT system supporting that organization. In this chapter we present re-
lated work focusing on frameworks that describe how to transform an organization
model into an IT implementation.

Most existing methodologies are centered around the idea of service orientation.
Two methodologies cover the whole development process, namely the methodology of
Papazoglou and Van den Heuvel [82], and SOMA [10]. Terlouw [93] concludes that
both methodologies do not describe all phases very thoroughly. Both methodologies
do not specify formal models and automated transformations between these models.

As our research is focused on Model-Driven Engineering (MDE) we only see
methodologies using formal models and automated transformations as related work.
We have found three works describing a model-driven approach covering the devel-
opment process from organization model to IT system. We first describe the Model
Driven Architecture (MDA) (2.1), followed by the Business to IT Transformation
Framework (2.2) and the Model Driven Service Engineering Process (2.3).

2.1 Model Driven Architecture

The term MDA was first mentioned in 2000 in an OMG whitepaper [87]. Based on this
whitepaper OMG members decided to form an architecture team to produce a more
formal statement of MDA. This formal but still incomplete definition of the MDA
was presented in 2001 in the document "Model Driven Architecture - A Technical
Perspective" [78]. OMG members voted to establish the MDA as the base architecture
for their organization’s standards in late 2001. In 2003 a more detailed definition of
MDA, presented in the document “MDA Guide Version 1.0.1” [71], was adopted by
the members of the OMG.

The MDA provides a framework for software development that uses models to
describe the IT system to be built. The system descriptions that these models provide
can be expressed at various levels of abstraction, with each level emphasizing certain
aspects or viewpoints of the system [66].

The MDA defines three levels of abstraction called Computational-Independent
Model (CIM), Platform-Independent Model (PIM) and Platform-Specific Model
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(PSM). Each of these levels focuses on different concerns of the software system being
developed. The CIM models the IT system in an independent way to that of any com-
putational system, that is, it makes up either a domain model, or a requirements model,
etc. The PIM models the IT system from a computational viewpoint but independent
of any underlying platform, and the PSM models the IT system for a specific platform.

Amaya et al. [7] and Kent [58] extend the MDA with additional dimensions, like
system aspects and subject areas. Each model (CIM, PIM, and PSM) is split into
different aspect models to improve the use of MDA for complex systems. However,
they do not specify the needed elements for each dimension. They, for example, do not
state what aspects are needed to successfully model a complex IT system supporting
an organization.

2.2 Business to IT Transformation Framework

Stein, Kühne, and Ivanov [88] have conducted an extensive literature research in the
field of model-driven business to IT transformations. They conclude that the reviewed
works only cover a subset of the different criteria and present a new framework pro-
viding the building blocks of business to IT transformations from a practical point of
view.

Mens and Van Gorp [67] distinguish between horizontal and vertical transforma-
tions. A horizontal transformation is a transformation where the source and target
models reside at the same abstraction level. A vertical transformation is a transforma-
tion where the source and target models reside at different abstraction levels. Accord-
ing to Stein, Kühne, and Ivanov [88] most approaches for business to IT transforma-
tions follow a horizontal transformation strategy. A horizontal transformation starting
with an abstract business process model results in an abstract orchestration model re-
quiring significant refinement efforts to make it executable. An alternative horizontal
transformation strategy is to start from a more detailed business process model (i.e. a
process model augmented with technical details). This will result in a more detailed
orchestration model which is directly executable. However, this forces the business
analyst to think in terms of executable business processes.

Due to the previous arguments, Stein, Kühne, and Ivanov [88] formulate the fol-
lowing axiom, which forms the basic assumption for their business to IT transforma-
tion framework:

Business process models must be platform independent and a platform
specific IT implementation must be derived through a vertical transforma-
tion strategy.

Business process models can for example be defined in the Business Process Model-
ing Notation (BPMN) [72] or Event-driven Process Chains (EPC) [57]. A platform
specific IT implementation can for example be specified in the Business Process Exe-
cution Language (BPEL) [70].

Consecutively they come to the following consequences and requirements for their
framework:
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• The business process model should not contain any platform specific details,
e.g. references to webservice interfaces defined in the Web Service Description
Language (WSDL) [23].

• Source models should be restricted to a subset, which can be unambiguously
transformed.

• Full code generation is desirable but not achievable.

• Target models should be comprehensible for human users (i.e. users which have
experience with the language of the target model).

• The framework should use iterative development processes through change de-
tection, change visualization, and merge functionalities (i.e. if the same model
is changed by different users it should be possible to merge these changes into
one version).

Figure 2.1: Business to IT transformation framework [88]

Figure 2.1 exhibits the general business to IT transformation framework [88]. The
framework shows three different model perspectives: process, data, and interaction.
These perspectives reduce cognitive complexity at design time [88]. The framework
also presents two abstraction levels, the business level and the IT level, which are
related with vertical transformations.

2.3 Model Driven Service Engineering Process

Anaby-Tavor et al. [8] define a model driven service engineering process aimed at pro-
viding a methodology giving end-to-end guidance and assistance to refine and trans-
form business models created by business experts into IT models and then to IT imple-
mentation. A service engineering process is a sequence of activities: analysis, strategy
design, development, and deployment, done in this order to produce a services system
[8].

Figure 2.2 presents the methodology in three layers. The upper layer shows the
service engineering process, the middle layer describes the models supporting each
phase of the service engineering process, and the bottom layer describes the aspects of
the services system that the models affect. Anaby-Tavor et al. follow the definition of
a services system given by Zang et al. [102] which states that a services system is a
6-tuple: <Inputs, Outputs, Goals, Transformation, Components, Sensors>.

In the analysis phase the system requirements are analyzed and modeled. In the
next phase a strategy design is conducted to describe the static and dynamic aspects of
the services system. Static enterprise models define the components’ black box view.
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Figure 2.2: The Model Driven Service Engineering Process [8]

The components collaborate using services, this forms the first step of the dynamic
modeling of the enterprise. During the development phase detailed executable data is
added leading to execution models describing the control flow of the activities of the
services. Finally, sensors use IT management models to oversee the deployment of the
services system.
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Chapter 3

Enterprise Ontology

As we have shown in the previous chapter, a formal, theoretical foundation for MDE
is needed. In this chapter we explain why enterprise ontology is ideal for providing
such a foundation (3.1). We also explain the basic notions of enterprise ontology (3.2)
and its four axioms (3.3), resulting in its central Organization Theorem (3.4).

3.1 Why Enterprise Ontology?

Enterprise ontology is focused on the essence of the operation of an organization,
meaning that it is fully independent of the (current) realization and implementation
of the organization. The theory that underlies the notion of enterprise ontology as
presented by Dietz [34] is called the Ψ-theory [30]. Dietz uses this theory to construct
a methodology providing an ontological model of an organization, i.e. a model that
is coherent, comprehensive, consistent, and concise, and that only shows the essence
of the operation of an organization model. This methodology is called Design and
Engineering Methodology for Organizations (DEMO).

DEMO has been widely accepted in both scientific research and practical appli-
ance. It has been used as a base for formalizing enterprise architecture and governance
[54, 53, 32] and for formalizing the splitting and allying of enterprises [77]. Further
research has extended DEMO by constructing an ontological model of an information
system supporting the enterprise model (the BCI-3D method) [4]. More recently enter-
prise ontology has been used to construct a formal framework for service specification
[47]. An extensive ten year study executed with 28 projects concluded that DEMO is
a good method for the fast (re)design of organizations [69].

Since the Ψ-theory provides a very sound theoretical foundation for a layered view
on organizations and how to distinguish these layers, this theory provides us with a
formal foundation for an MDEE approach providing end-to-end guidance to refine
and transform an organization model into an ICT system supporting that organization.

3.2 The notion of System and Model

Two important notions in enterprise ontology are the notion of System and the notion
of Model. While we use these notions when explaining the axioms and theorems of
enterprise ontology, we will first explain these notions.
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Two different system notions exist, the teleological and the ontological system
notion [34]. The teleological system notion is concerned with the function and the
(external) behavior of a system. This notion is identical to one of the model types that
are applied to systems, the black-box model. We will explain the notion of model in
the remainder of this section.

According to Dietz [34] the ontological system notion is the only true system no-
tion. In this notion something is a system if an only if it has the following properties
[34]:

• Composition: a set of elements of some category (physical, social, biological,
etc.).

• Environment: a set of elements of the same category; the composition and the
environment are disjoint.

• Production: the elements in the composition produce things (e.g., goods or ser-
vices) that are delivered to the elements in the environment.

• Structure: a set of influence bonds among the elements in the composition, and
between them and the elements in the environment.

The composition, the environment, and the structure, are collectively called the con-
struction of the system [34]. The collective activity of the elements in the composition
and the environment is called the operation of the system [34].

For the notion of model in enterprise ontology Dietz reuses the definition of model
given in [9], which states:

Any subject using a system A that is neither directly nor indirectly inter-
acting with a system B, to obtain information about the system B, is using
A as a model for B.

In general, three categories of systems can be distinguished: concrete systems, sym-
bolic systems, and conceptual systems. The following relationships among these sys-
tems are exhibited in Figure 3.1 [34]: imitation, a concrete model of a concrete sys-
tem; conceptualization, a conceptual model of a concrete system; implementation, a
concrete model of a conceptual system; conversion, a conceptual model of a concep-
tual system; formulation, a symbolic model of a conceptual system; interpretation, a
conceptual model of a symbolic system; and transformation, a symbolic model of a
symbolic system.

Two fundamental different types of models can be distinguished: the white-box
model and the black-box model [34]. The white-box model is a direct conceptualiza-
tion of the ontological system definition, it captures the construction and the opera-
tion of a system, while abstracting away from implementation details. The white-box
model can be seen as the construction perspective on a system and is adequate for the
purpose of building or changing a system [34].

The black-box model only takes the interactions between the composition and the
environment into account. A black-box model of a system can be made and used
without knowing its construction and operation. The black-box model can be seen as
the function perspective on a system and is adequate for the purpose of using a system
[34].
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Figure 3.1: The model triangle [34]

3.3 The four axioms of Enterprise Ontology

The overall goal of the Ψ-theory is to extract the essence of an organization from its
actual appearance. It presents four axioms that help to achieve this goal [34].

The operation axiom tells us that the implementation independent essence of an
organization is that it consists of subjects fulfilling actor roles. A subject fulfilling a
certain actor role is called an actor. Actors constitute the operation of an organization
by performing two kinds of acts: production acts and coordination acts.

By performing production acts (P-acts for short) the subjects contribute to bringing
about the goods and/or services that are delivered to the environment of the organiza-
tion [34]. The results of P-acts are production facts (P-fact for short), which can be
divided into material (something is manufactured, stored or transported) and immate-
rial (decisions or judgments) facts.

By performing coordination acts (C-acts for short) subjects enter into and comply
with commitments towards each other regarding the performance of production acts
[34]. A C-act is performed by one actor, the performer, and directed to another actor,
the addressee. C-acts consist of an intention (e.g. request, promise, question, asser-
tion) and a proposition (the performer proclaims the fact and the associated time the
intention is about) and result in coordination facts (C-facts for short).

Figure 3.2: Graphical representation of the operation axiom [34]

A graphical representation of the operation axiom is presented in Figure 3.2. As
visualized, P-acts have effect in the so-called production world (P-world for short),
C-acts have effect in the coordination world (C-world for short). The state of a world
at a particular point in time is the set of facts created up to that point of time [34]. The
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creation of a fact of some type is a state transition in one of the two worlds.
The transaction axiom tells us that C-acts are performed as steps in universal pat-

terns, called transactions. This axiom reveals universal socionomic patterns of coor-
dination that hold for all organizations [34]. The standard pattern of a transaction is
shown in Figure 3.3. A white box represents a C-act type and a white disk represents
a C-fact type. A gray box represents a P-act type and a gray diamond a P-fact type.

Figure 3.3: The standard pattern of a transaction [34]

Two actors are involved in a transaction, the initiator and the executor. A transac-
tion evolves in three phases: the order phase (O-phase for short), the execution phase
(E-phase for short), and the result phase (R-phase for short) [34].

In the O-phase the initiator and executor work to reach an agreement about the
intended result of the transaction, i.e., the P-fact the executor is going to create as well
as the intended time of creation [34]. As shown in Figure 3.3 the initiator starts the
transaction by requesting something from the executor. The C-fact ’rq’ is created and
the executor can either decline the request (after which the initiator can request again
or quit the transaction) or accept the request by promising to deliver the requested
P-fact (the C-fact ’pm’ is created).

In the E-phase, the P-fact agreed upon in the O-phase is actually brought about by
the executor [34]. The gray box and diamond in Figure 3.3 reflect this phase.

A transaction ends with the R-phase in which the initiator and the executor work
to reach an agreement about the P-fact that is actually produced, as well as the actual
time of creation (which may both differ from what was agreed upon in the O-phase).
Only if this agreement is reached the P-fact will come into existence [34]. In figure
3.3 this phase starts when the executor states that the delivery of the P-fact has been
done (C-fact ’st’ is created). The initiator can either reject (after which the executor
can state again or stop the transaction) or accept (thereby ending the transaction). The
result of a successful transaction is the creation of a P-fact.
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The composition axiom tells us how P-facts are interrelated. It states that every
transaction is enclosed in some other transaction, or is a customer transaction of the
organization under consideration, or is a self-activation transaction [34]. According
to Dietz this axiom provides the basis for a well-founded definition of the notion of
business process. Which states [34]:

A business process is a collection of causally related transaction types,
such that the starting step is either a request performed by an actor role in
the environment (external activation) or a request by an internal actor role
to itself (self-activation).

The distinction axiom tells us that actors exert three basic human abilities: performa,
informa, and forma. Through the distinction axiom a substantial reduction of com-
plexity and diversity is achieved, regarding both the coordination and the production
in an organization [34].

Figure 3.4: Summary of the distinction axiom [34]

The forma ability concerns the form aspects of communication and information
[34]. As shown in Figure 3.4 communicative acts at the forma level are about uttering
(speaking, writing) and perceiving (listening, reading). Production acts at the forma
level are datalogical in nature, meaning that they store, transmit, copy, destroy, etc.
information.

The informa ability concerns the content aspects of communication and informa-
tion [34]. Communicative acts at the informa level express thoughts (formulating) or
educe thought (interpreting). Production acts at the forma level are infological in na-
ture, meaning that they reproduce, deduce, reason, compute, etc. information. Note
that on this level we deal with communication and information while fully abstracting
from the form aspects. Figure 3.4 summarizes the different acts on this level.

The performa ability concerns the bringing about of new, original things, directly
or indirectly by communication [34]. As can be seen in Figure 3.4 communicative
acts at the performa level are about exposing or evoking commitment. Production
acts at this level are ontological in nature, meaning that they decide or judge about
something. The performa ability is considered as the essential human ability for doing

17



3.3 The four axioms of Enterprise Ontology Enterprise Ontology

business of any kind [34]. This additional layer is important as it explains and clarifies
the organizational notions of collaboration and cooperation, as well as notions like
authority and responsibility.

Figure 3.5: The process of performing a coordination act [34]

In order to successfully perform a C-act (as presented before in the operation ax-
iom) the communicative acts at all three levels have to be performed, as visualized in
Figure 3.5. The performer (P) has to expose his commitment to the addressee (A) to
perform the C-act, i.e., P and A have to come to a social understanding. The only way
to gain that understanding is by reaching an intellectual (or semantic) understanding.
P has to express his thoughts, while A has to educe this thoughts and to confirm that
she has (intellectually) understood P’s information. P can only express a thought by
formulating it in a sentence in some language, and by uttering it in some form, such as
speaking or writing. A, on the other hand, can only educe the thought by listening or
reading it. So, another level of understanding is needed, called significational (or syn-
tactic) understanding. Lastly, we of course need some physical exchange of data, i.e.,
the field of (tele)communication technology. Dietz assumes the condition of correct
physical transmission to be included in the forma condition [34].

We can make the similar distinction between the three levels of abstraction on the
production side. Examples of acts on each level are mentioned before and summarized
in Figure 3.4. Transactions having an ontological P-act as result are called ontological
transactions. Infological transactions, i.e., transactions having an infological P-act as
result, are considered to be a matter of realization of the ontological transactions [34].
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Infological transactions only reproduce or derive knowledge that is needed by the on-
tological actors. Datalogical transaction, i.e., transactions having an datalogical P-act
as result, are in their turn, considered to be a matter of realization of the infological
transactions. They only care for the storage and retrieval, the copying, and the trans-
mission of documents containing information that is needed by the infological actors
[34].

3.4 The Organization Theorem

In the previous section we have presented the four axioms of enterprise ontology. As
stated before they all serve the overall goal of the Ψ-theory to extract the essence of
an organization from its actual appearance. The operation axiom abstracts the im-
plementation independent essence of an organization to actors, acts and facts. The
transaction axiom brings another reduce in complexity by combining acts in universal
patterns holding for each organization. The composition axiom brings us the notion
of business process and lastly the distinction axiom reduces complexity even more by
providing a distinction between acts on different layers of human ability.

The organization theorem combines the benefits of these axioms into one concise,
comprehensive, coherent, and consistent notion of enterprise [34]. This theorem states
that the organization of an enterprise is a heterogeneous system that is constituted as
the layered integration of three homogeneous systems: the B-organization (from Busi-
ness), the I-organization (from Intellect), and the D-organization (from Document)
[34]. We call these three systems the aspect systems of the (total) organization. Figure
3.6 visualizes the organization theorem and shows us that the D-organization supports
the I-organization, which supports the B-organization. The coordination parts of these
three systems are similar, they only differ in the kind of production: the production of
the B-organization is ontological, the production in the I-organization is infological,
and the production in the D-organization is datalogical.

Figure 3.6: Representation of the organization theorem [34]

Dietz draws a clear distinction between the realization and the implementation of
an organization. By the realization of an organization he means the thorough integra-
tion of the three aspect organizations. The implementation of an organization is the
making operational of the organization’s realization by means of technology [34].

19



3.4 The Organization Theorem Enterprise Ontology

The integration of the three aspect organizations is established through the lay-
ered nesting of them. As said before a system in some layer supports the system in
the next higher layer, e.g., the D-organization supports the I-organization, which sup-
ports the B-organization. Controversily, a system in some layer uses the system in
the next lower layer [34]. When a layer supports another layer its function supports
the construction of the other layer, e.g., the function of the I-organization supports
the construction of the B-organization. The distinction of the function perspective (F)
and the construction perspective (C) provides a more elaborated view on the layered
integration of organizations and is visualized in Figure 3.7.

Figure 3.7: The layered integration of an organization [34]

As said before, Dietz defines the implementation of an organization as the making
operational of the organization’s realization by means of technology. He refers to
the possible ways of implementation of actor roles, C-acts, and P-acts as actor role
technology, coordination technology, and production technology [34].

Figure 3.8 shows how an organization is related to an ICT system. As exhib-
ited production and coordination technology consist of different kinds of applications,
B-applications, I-applications, and D-applications, supporting the B-organization, I-
organization, and D-organization respectively.

Since we see a lot of ICT related technology to support human actors, the question
is to what extend it is possible to replace these human actors and use ICT instead of
humans to implement the organization. Let’s look at coordination acts, production
acts, and actor roles respectively.

The process of performing a coordination act involves exchange of information on
several levels (recall Figure 3.5). These levels can be fulfilled by ICT in the following
way [34]:

• Physical exchange: can very well be implemented with hardware.

• Formative exchange: can be implemented by D-applications (see the examples
mentioned before).

• Informative exchange: this means that ICT systems have to establish intellectual
understanding. This can be faked by making information systems interoperable
using formal languages instead of natural languages.
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Figure 3.8: Organization and ICT system [34]

• Performative exchange: the main question for this level is, could one hold ma-
chines responsible, in the real social sense? According to Dietz this is not possi-
ble. However, it is possible to use the same trick as with informative exchange,
but then there would no longer be any distinction between the two levels. This
is happening a lot in modern integrated systems. Dietz sees the confusion about
responsibilities, data ownership, etc. as a result of this lack of distinction.

Production acts on the different levels can be fulfilled by ICT in the following way
[34]:

• D-organization: P-acts on this level are storing, transporting, copying, etc. of
documents. If these documents are digital, lots of applications exist doing these
jobs.

• I-organization: P-acts on this level are the computing or deducing of new knowl-
edge from existing knowledge. With use of formal languages, in particular, of
algorithmic languages, this can be supported by ICT systems.
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• B-organization: P-acts on this level are original actions, like making decisions
or judgments. According to Dietz it is principally impossible to have machines
perform such actions.

Actor roles can not be taken over completely by ICT systems because of the perfor-
mative exchanges in which they inevitably participate, and because of the ontological
production acts they have to perform. As we concluded before, both things cannot be
performed by ICT systems [34].

Regarding D-actor roles and I-actor roles the conclusion is that almost all of
their acts can be taken over by ICT systems, only the responsibilities for the well-
functioning of the systems are human roles [34]. B-actor roles on the other side can
only be implemented with human resources [34].

Hence B-applications in the sense that they take over acts at the ontological level
of an organization cannot really exist. Numerous ICT applications seem to be ’real’ B-
applications, like Business Process Management Systems and ERP systems. However,
they are just I-applications, but Dietz gives them the separate status of B-application
in order to distinguish them from the pure (I-organization supporting) I-applications.

So, B-applications are precisely what Figure 3.8 displays: B-organization support-
ing ICT applications. The only difference with I-applications is that the results of their
calculations are taken as ’real’ decisions or judgments. According to Dietz this is ac-
ceptable as long as it is fully clear who is responsible for making these decisions or
judgments [34].
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Chapter 4

Model Driven Enterprise
Engineering requirements

Before we are going to define a formal MDEE approach based on the theory of enter-
prise ontology presented in the previous chapter, we need to get a better understanding
of the requirements for MDEE. In this chapter we perform an in-depth requirements
analysis after we first define MDE formally (4.1) and give some background explana-
tion about MDE (4.2). We start our requirements analysis with an actor analysis (4.3).
Based on this analysis we research two subjects in more detail: modeling complex sys-
tems (4.4) and implementing complex systems (4.5). This chapter is concluded with
an overview of the requirements for an MDEE approach (4.6).

4.1 Model-Driven Engineering

In section 3.4 we have seen how the organization theorem classifies software as an
ICT system. While MDE is not tied specifically to ICT systems, we can see MDE as
an approach for developing systems. System development is the bringing about of a
new system or of changes to an existing system [31]. The system development process
comprises all activities that have to be performed in order to arrive at an implemented
system [31]. Such a development process can be described by the Generic System
Development Process (GSDP) as introduced in [32] and exhibited in Figure 4.1.

The GSDP always concerns two systems, the object system (i.e. the system which
is going to be developed) and the using system (i.e. the system that is going to use the
functionality of the object system). The GSDP can be divided into four sub processes:
reverse engineering, designing, engineering, and implementation.

While in a lot of cases no construction model of the using system is available, we
need to reconstruct these higher level models from the implementation model. This
process is known as reverse engineering.

The design process is split into function design, which starts from the construction
of the using system and ends with a functional (black-box) model of the object system,
and construction design, which starts with the function of the object system and ends
with a construction (white-box) model of the object system.

The engineering of a system is the activity in which the highest level construc-
tion model is converted into lower level models until the implementation model is
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Figure 4.1: The generic system development process [31]

constructed. Dietz defines the highest level construction model as the ontology of a
system, i.e. a model of the construction of a system that is completely independent of
the way in which it is implemented [31].

Implementing a system means assigning technological means to the constructional
elements in the implementation model [31]. In case of an implementation model ex-
pressed in a programming language, the implementation is the compilation of that
model to a specific platform. Once a system is implemented it can be put into opera-
tion.

The last part of the GSDP, as exhibited in Figure 4.1, is the architecture. Dietz uses
the prescriptive notion of architecture, in contrast to the descriptive notion of architec-
ture. The descriptive definition defines architecture as ’blue-prints’, for example the
definition of Zachman [101] which states: ”Architecture is that set of design artifacts,
or descriptive representations, that are relevant for describing an object, such that it
can be produced to requirements as well as maintained over the period of its useful
life”. Dietz states that this definition already has a name: system ontology [31]. He
therefore adopts the prescriptive notion of architecture which he defines as [32, 31]:

Theoretically, architecture is the normative restriction of design freedom.

Practically, architecture is a consistent and coherent set of design princi-
ples.

In the GSDP, architecture is split into functional principles guiding the function design
and constructional principles guiding the construction design.
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So, what is MDE? As stated before in section 1.1, MDE aims to raise the level of
abstraction in program specification and increase automation in program development
[14]. The idea promoted by MDE is to use models at different levels of abstraction for
developing systems [43]. The basic set of concepts in MDE are models, metamodels,
and transformations [41]. Combining these ideas with the GSDP, our definition of
MDE is:

MDE is a system development process consisting of:

• five main steps:

– reverse engineering,

– function design,

– construction design,

– engineering, and

– implementation.

• a number of formal models produced in each step. At least the following models
are needed:

– a construction model of the using system (produced in the reverse engi-
neering step),

– a functional model of the object system (produced in the function design
step),

– a construction model of the object system (produced in the construction
design step), and

– an implementation model of the object system (produced in the engineer-
ing step).

• a set of mostly automated transformations connecting the models.

Following the GSDP an MDE process can contain iterations between steps. As stated
in our research goal (section 1.4) we focus on an MDE process starting with an organi-
zation model and producing an implementation model which can be implemented on
ICT technology. Mapping this on the GSDP we see that the using system is an orga-
nization. The object system is an ICT system supporting that organization. We refer
to this process as Model Driven Enterprise Engineering (MDEE), i.e. MDE applied to
Enterprise Engineering.

In the remainder of this chapter we will research the requirements for an MDEE
approach. In the remainder of this thesis we will define an MDEE approach fulfilling
these requirements.

4.2 MDE background

Before analyzing the requirements in detail we want to explain some common terms
and definitions used in the realm of MDE. We first take a look at modeling languages.
After that we explain model transformation and the implementation of models.
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An MDE framework has to specify the modeling language for each used model.
A language for defining specific types of models, is mostly called a Domain-Specific
Language (DSL) in contrast to a General Purpose Language (GPL). A DSL can be
defined as [29]:

A DSL is a programming language or executable specification language
that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain.

In practice also non-executable modeling languages are considered as DSL. The do-
main specificity of a language is a matter of degree. Any language has a certain scope
of applicability, but some of them are more focused than others. Languages can be
compared using levels based on the number of language statements needed for imple-
menting a function point1. This results in a table ranging from low level languages
like natural language, machine language and assembly to high level languages which
are targeted at a very specific domain [86]. Although the difference between a GPL
and a DSL is a matter of degree, mostly only the more focused languages are consid-
ered as a DSL, such as BNF, HTML or SQL. Other examples of often used DSLs are
the Business Process Modeling Notation (BPMN) [72], Event-driven Process Chains
(EPC) [57], and Object Role Modeling (ORM) [45]. As the difference between GPL
and DSL is a matter of degree, which is not well-defined, we will just use the term
modeling language in the remainder of this thesis. If needed, we separately specify the
domain of the modeling language.

A sound language description contains an abstract syntax, one or more concrete
syntax descriptions, mappings between abstract and concrete syntax, and a description
of the semantics [60]. The abstract syntax defines the concepts of a language and their
relationships. The concrete syntax defines the physical appearance of language. For
a textual languages this means that it defines how to form sentences. For a graphical
language this means that it defines the graphical appearance of the language concepts
and how they may be combined into a model. The semantics describe the meaning of
a sentence or model specified in some language. In the context of MDE this means
that the semantics of a model describe what the effect is of implementing that model.

In MDE the process of building IT systems is one of transforming high-level mod-
els into executables (considered as yet other models) [14]. Transforming a model into
another model means that a source model is transformed into a target model based on
some transformation rules.

As model transformation is a critical component in the MDA [71] the OMG has
been working on a model transformation standard for a while. In 2007 the final spec-
ification of the Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi-
cation [76] has been released. This specification, better known as QVT, defines meta-
models for defining model transformation languages. The resulting languages can
transform source models into target models where the source and target models may
conform to an arbitrary MOF [74] metamodel. The transformation language itself is
also a model and conforms also to a MOF metamodel.

1A function point is a unit of measurement to express the amount of business functionality an infor-
mation system provides to a user. Function points are the units of measure used by the IFPUG Functional
Size Measurement Method.
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Figure 4.2: Transformation example

A formal definition of transformation is given by Dietz [34]. He states that a trans-
formation is a symbolic model of a symbolic system (recall Figure 3.1 in section 3.2).
Let’s consider the example shown in Figure 4.2. A business process is an implementa-
tion of a conceptual system, the process model. This process model can be formulated
with different diagrams. Diagram 1 can for example be a flow chart, while Diagram
2 can be a DEMO process diagram. A transformation can be defined between these
two diagram. They are both a formulation of the same conceptual system, but they are
expressed in different modeling languages. Using a set of transformation rules a flow
chart can be transformed into a DEMO process diagram and back.

A transformation can be executed by an IT system or human resources. The first
implementation is referred to as an automated transformation, the latter as a manual
transformation. As stated before, one of the goals of MDE is to automate system de-
velopment. Hence the goal is to have automated transformation as much as possible.
This is of course only possible if all information needed to execute the transformation
is available formulated in formal models. In the example mentioned before the trans-
formation from a flow chart to a DEMO process diagram can only be automated if the
flow chart contains additional information, e.g. is an action datalogical, infological,
or ontological. The transformation from a DEMO process diagram to a flow chart can
easily be automated, because no information needs to be added.

The goal of transforming models is to eventually come to an executable format,
i.e. a model that can be implemented on technology. In current practice this exe-
cutable format is most often source code, i.e., the model expressed in a programming
language. However, it is also possible to construct engines, directly executing higher
level models. So, in principle we can distinguish between:

• Code generation: the act of generating source code (in a programming language
like Java or C#) from a model. This can be done in various ways, for example
by using templates and rewrite rules or by constructing a metamodel of a pro-
gramming language and defining formal transformations from the metamodel of
the model to the metamodel of the programming language.
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• Model execution: the direct execution of a model on an engine, as defined by the
semantics of the model. No transformations are defined, the engine is a generic
software program parameterized by the model.

In case of code generation we can consider source code as just another model (the
implementation model). Hence, we still need model execution, albeit on a low level.
The problem with this approach is that a model expressed in source code becomes part
of the MDE process, meaning that we need to specify very detailed transformations.
That’s why we prefer technology consisting of engines executing higher level mod-
els. In the remainder of this thesis we will focus on model execution as the way to
implement models on technology.

Figure 4.3: MDE overview

Figure 4.3 exhibits the concepts explained in this section. For readability purposes
it only shows the last part of MDE, the engineering of a construction model into an
implementation model. The full MDE process also contains the transformation from
the construction model of the using system to the functional model of the object sys-
tem and the transformation of this functional model to the construction model of the
object system. Even the part visualized in Figure 4.3 can be extended with multi-
ple transformations between construction models before the implementation model is
created.

As shown in Figure 4.3, a construction model is specified in a modeling language,
which on its turn is specified in a meta language. Recall that a language description
consists of an abstract syntax, concrete syntax, and semantics. The construction model
can be transformed into an implementation model using a transformation, specified
with transformation rules influenced by design principles. These rules are specified
in some transformation language. As we explained in this section the implementation
model is implemented by executing it on an engine. While the transformation is guided
by design principles, the implementation model and the engine both conform to these
design principles. A consistent set of design principles is often referred to as archi-
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tecture (as explained in section 4.1), which becomes important when implementing
complex systems. In section 4.5 we will research this subject in more detail.

4.3 Actor analysis

In section 4.1 we have seen the elements of MDE and we introduced MDEE. In this
section we perform a short actor analysis. We will analyze the actors involved with
MDEE and look at what they expect from an MDEE approach based on their goals.

Regarding roles in MDE, Aagedal and Solheim [1] distinguish between two main
groups of roles: the meta team and the project team. The meta team defines the MDE
approach and the project team uses this approach to develop the IT system. While we
are specifying an MDE approach as part of this thesis, we focus on the users of such
an approach, the project team.

Aagedal and Solheim [1] distinguish three roles in the project team: application
designer, system analyzer, and system tester. However, these roles are not based on
a formally defined MDE process. In our MDE definition in section 4.1 we defined
five steps which are part of the MDE process: reverse engineering, function design,
construction design, engineering, and implementation. As MDEE focuses on an or-
ganization as using system and an IT system as object system, we can indicate the
following roles:

• Business analyst: performs the reverse engineering step, i.e. a business analyst
creates an organization model for a given organization.

• Function designer: performs the function design step, i.e. a function designer
creates a model of the function of the IT system based on an organization model.
This role can be compared to what is called a requirements engineer in some
companies.

• Construction designer: performs the construction step, i.e. a construction de-
signer creates a model of the construction of the IT system based on the func-
tional model. This role can be compared to what is called a software architect in
some companies.

• Software engineer: performs the engineering step, i.e. a software engineer cre-
ates an implementation model of the IT system based on the construction model.
He can use multiple models in between these two models if needed. In principle
he adds all technical details needed to come to an executable model.

• Technology expert: performs the implementation step, i.e. a technology expert
implements the implementation model on technology. This means he configures
the engines needed to execute the implementation model. This role can be split
in multiple roles depending on the number and kind of engines used. In practice
this role is often combined with the role of software engineer.

Note that one person can fulfill multiple roles. It depends on the size of the project
team how the roles are spread among the team members. It is possible to add the role
of quality engineer or system tester, as mentioned by Aagedal and Solheim, but we
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assume this role is contained in the software engineer and technology expert role. We
leave detailed research into the quality aspects of an MDE approach for future work.

Besides the actors directly using the process the following actors are indirectly
involved with the MDEE approach:

• Business owner: the business owner is the one paying for the resulting IT sys-
tem. The business owner is affected by the alignment of the resulting IT system
with his business processes, the time-to-market of an IT system, and of course
the total costs of an IT system.

• End-user: the users of the resulting IT system are affected by the effectiveness
of the MDEE approach. Aspects like quality, robustness, and fit-for-use are
important for someone using the IT system.

Table 4.1 shows an overview of the identified actors, along with their goals, present or
expected situation, causes for that situation, and courses of solutions. With ”Present
or expected situation” we mean a situation in which no model-driven approach is
used. The organization and functional model are often non-formal and the construc-
tion model does not exist. The implementation model is manually specified with a
low-level programming language.

The actor analysis exhibited in Table 4.1 shows that to fulfill the needs of the
different actors an MDEE approach should at least use formal models and mostly
automated transformations between these models. Both needs are fulfilled by MDEE
by definition (see the definition of MDEE in section 4.1).

Another important need is to use high-level models. With high-level we mean
that the models are as abstract as possible and do not include every tiny implemen-
tation detail. This leads to the requirement that an MDEE approach should be able
to execute high-level implementation models. As explained in section 4.2 this asks
for technology (engines) being able to execute high-level models. In order to come
to more detailed requirements we also need to answer the question how complex sys-
tems can be modeled with high-level, formal models. We will answer this question in
section 4.4.

The last requirement which can be derived from the actor analysis is that an MDEE
approach should use an architecture guiding the transformations to implementation
models in such a way that they result in easy to change applications with separated
business logic and infrastructure code. In section 4.5 we will research what architec-
ture an MDEE approach should use to support the implementation of complex systems.

4.4 Modeling complex systems

Organizations are very complex systems consisting of lots of actors and transactions.
Hence, an ICT system supporting such an organization may also be very complex (see
for example [84]). The question we try to answer in this section is how we can create
an abstract representation (i.e. high level model) of such a system which makes the
designing and engineering of that system more intellectually in control.

As shown by Hessellund, Czarnecki, and Wasowski [49] large and complex sys-
tems can be accurately abstracted by the use of multiple DSLs. They state that in

30



Model Driven Enterprise Engineering requirements 4.4 Modeling complex systems

In
te

re
st

s
/g

oa
ls

Pr
es

en
to

re
xp

ec
te

d
si

tu
at

io
n

C
au

se
s

C
ou

rs
es

of
so

lu
tio

ns

B
us

in
es

s

ow
ne

r

IT
sy

st
em

s
ca

n
be

bu
ild

fa
st

,w
ith

hi
gh

qu
al

ity
,

an
d

at
lo

w
co

st
s

w
he

n

th
ey

ar
e

ne
ed

ed
.

IT
sy

st
em

co
ns

tr
uc

tio
n

is
tim

e

co
ns

um
in

g
an

d
co

st
s

a
lo

to
fm

on
ey

[8
4]

.

B
ui

ld
in

g
an

d
ch

an
gi

ng
an

IT
sy

st
em

in
vo

lv
es

a
lo

to
f

lo
w

-l
ev

el
m

an
ua

lw
or

k,
w

hi
ch

co
st

s
a

lo
to

ft
im

e
an

d

le
ad

s
to

bu
gs

.

A
ut

om
at

io
n

in
bu

ild
in

g
IT

sy
st

em
s

an
d

th
e

us
e

of
an

ar
ch

ite
ct

ur
e

w
hi

ch
en

co
ur

ag
es

to
bu

ild
ea

sy
to

ch
an

ge
IT

sy
st

em
s.

E
nd

-u
se

r
T

he
IT

sy
st

em
re

al
ly

su
pp

or
ts

th
e

da
ily

w
or

k.

T
he

da
ily

pr
oc

es
s

ha
s

to
be

ad
ap

te
d

to
th

e
IT

sy
st

em
in

st
ea

d
of

th
e

ot
he

r

w
ay

ar
ou

nd
.

A
bi

g
ga

p
ex

is
ts

be
tw

ee
n

pr
og

ra
m

m
in

g
la

ng
ua

ge
s

an
d

bu
si

ne
ss

re
qu

ir
em

en
ts

w
hi

ch
is

fil
le

d
w

ith
al

lk
in

ds
of

m
an

ua
lt

ra
ns

la
tio

ns
,l

ea
di

ng
to

in
su

ffi
ci

en
ci

es
.I

ta
ls

o

co
st

s
a

lo
to

ft
im

e
to

bu
ild

an
d

ch
an

ge
ap

pl
ic

at
io

ns
,i

n

th
e

m
ea

n
tim

e
th

e
bu

si
ne

ss
re

qu
ir

em
en

ts
m

ay
ha

ve

ch
an

ge
d.

M
od

el
bu

si
ne

ss
re

qu
ir

em
en

ts
m

or
e

fo
rm

al
an

d
us

e
a

hi
gh

er
le

ve
lp

ro
gr

am
m

in
g

la
ng

ua
ge

to
re

du
ce

th
e

ga
p

be
tw

ee
n

th
e

bu
si

ne
ss

re
qu

ir
em

en
ts

an
d

im
pl

em
en

ta
tio

n
an

d
to

en
ab

le
(p

ar
tly

)a
ut

om
at

ed

tr
an

sf
or

m
at

io
ns

.U
se

an
ar

ch
ite

ct
ur

e
w

hi
ch

en
co

ur
ag

es
to

bu
ild

ea
sy

to
ch

an
ge

IT
sy

st
em

s.

R
ev

er
se

en
gi

ne
er

To
ca

pt
ur

e
th

e
es

se
nc

e

of
an

or
ga

ni
za

tio
n

w
ith

a
m

od
el

ea
sy

to
re

ad

an
d

us
e

by
fu

nc
tio

n

de
si

gn
er

s.

O
rg

an
iz

at
io

ns
ar

e
be

co
m

in
g

to
o

co
m

pl
ex

to
un

de
rs

ta
nd

an
d

ca
pt

ur
e

w
ith

m
od

el
s.

O
rg

an
iz

at
io

ns
ar

e
of

te
n

tr
ea

te
d

w
ith

a
bl

ac
k-

bo
x

ap
pr

oa
ch

[3
1]

.M
od

el
in

g
te

ch
ni

qu
es

ar
e

no
tb

as
ed

on
a

w
el

l-
fo

un
de

d
th

eo
ry

an
d

do
no

tc
ap

tu
re

th
e

or
ga

ni
za

tio
n

in
a

co
he

re
nt

,c
om

pr
eh

en
si

ve
,c

on
si

st
en

t,

an
d

co
nc

is
e

w
ay

[3
4]

.

U
se

th
e

D
E

M
O

m
et

ho
do

lo
gy

to
re

ve
rs

e
en

gi
ne

er
an

or
ga

ni
za

tio
n.

Fu
nc

tio
n

de
si

gn
er

To
de

si
gn

IT
sy

st
em

s

re
al

ly
su

pp
or

tin
g

th
e

da
ily

w
or

k
w

ith
in

an

or
ga

ni
za

tio
n.

T
he

fu
nc

tio
n

de
si

gn
er

ca
nn

ot
m

ee
t

bu
si

ne
ss

w
is

he
s

an
d

ex
pe

ct
at

io
ns

.

Sy
st

em
re

qu
ir

em
en

ts
ar

e
de

fin
ed

ba
dl

y
[2

2]
.

N
o

fo
rm

al
m

od
el

is
us

ed
to

sp
ec

if
y

th
e

fu
nc

tio
n

of
an

IT
sy

st
em

an
d

no
au

to
m

at
ic

tr
an

sf
or

m
at

io
ns

ex
is

ts

be
tw

ee
n

or
ga

ni
za

tio
n,

fu
nc

tio
na

l,
an

d
co

ns
tr

uc
tio

na
l

m
od

el
.H

en
ce

,a
ga

p
ex

is
ts

be
tw

ee
n

th
es

e
m

od
el

s.

U
se

a
fo

rm
al

fu
nc

tio
na

lm
od

el
an

d
de

fin
e

(p
ar

tly
)

au
to

m
at

ed
tr

an
sf

or
m

at
io

ns
be

tw
ee

n
th

e
or

ga
ni

za
tio

n

m
od

el
an

d
th

e
fu

nc
tio

na
lm

od
el

an
d

be
tw

ee
n

th
e

fu
nc

tio
na

lm
od

el
an

d
th

e
co

ns
tr

uc
tio

na
lm

od
el

.

C
on

st
ru

ct
io

n

de
si

gn
er

To
ha

nd
le

th
e

co
m

pl
ex

ity
of

IT

sy
st

em
s

an
d

ke
ep

th
em

ea
sy

to
bu

ild
an

d
ea

sy

to
ch

an
ge

.

E
nt

er
pr

is
e

so
ft

w
ar

e
ha

s
be

co
m

e
to

o

co
m

pl
ex

to
be

ef
fe

ct
iv

e
[8

4]
.

A
cc

or
di

ng
to

C
yn

th
ia

R
et

tig
[8

0]
th

is
si

tu
at

io
n

co
m

es

fr
om

a
pr

ol
if

er
at

io
n

of
co

m
pl

ex
ity

in
so

ft
w

ar
e

co
de

.I
t

is
es

tim
at

ed
th

at
fo

re
ve

ry
25

%
in

cr
ea

se
in

co
m

pl
ex

ity

in
th

e
ta

sk
s

to
be

au
to

m
at

ed
,t

he
co

m
pl

ex
ity

of
th

e

so
ft

w
ar

e
so

lu
tio

n
its

el
fr

is
es

by
10

0%
.

U
se

hi
gh

-l
ev

el
co

ns
tr

uc
tio

n
m

od
el

s
ab

st
ra

ct
in

g
aw

ay

fr
om

im
pl

em
en

ta
tio

n
de

ta
ils

.L
in

k
th

es
e

m
od

el
s

w
ith

au
to

m
at

ed
tr

an
sf

or
m

at
io

ns
to

th
e

ac
tu

al

im
pl

em
en

ta
tio

n.
U

se
an

ar
ch

ite
ct

ur
e

en
co

ur
ag

in
g

re
us

e
of

au
to

no
m

ou
s

bu
ild

in
g

bl
oc

ks
.

So
ft

w
ar

e

en
gi

ne
er

To
tu

rn
hi

gh
-l

ev
el

m
od

el
s

an
d

re
qu

ir
em

en
ts

in
to

a

w
or

ki
ng

IT
sy

st
em

.

B
ui

ld
in

g
or

ch
an

gi
ng

IT
sy

st
em

s
is

cu
m

be
rs

om
e

an
d

in
vo

lv
es

lo
w

-l
ev

el

re
pe

tit
iv

e
w

or
k.

B
us

in
es

s
lo

gi
c

is
in

te
rw

ov
en

w
ith

in
fr

as
tr

uc
tu

re
co

de
.

T
he

cu
rr

en
tly

av
ai

la
bl

e
te

ch
ni

qu
es

fo
rs

of
tw

ar
e

en
gi

ne
er

in
g

in
vo

lv
e

lo
w

-l
ev

el
pr

og
ra

m
m

in
g

la
ng

ua
ge

s.

U
se

a
hi

gh
er

le
ve

lp
ro

gr
am

m
in

g
la

ng
ua

ge
s.

U
se

an

ar
ch

ite
ct

ur
e

w
hi

ch
se

pa
ra

te
s

th
e

bu
si

ne
ss

lo
gi

c
fr

om

th
e

in
fr

as
tr

uc
tu

re
co

de
.U

se
an

d
re

us
e

bu
ild

in
g

bl
oc

ks
.

Te
ch

no
lo

gy

ex
pe

rt

To
co

nfi
gu

re
th

e

im
pl

em
en

ta
tio

n
so

th
at

th
e

re
su

lti
ng

IT
sy

st
em

is
re

lia
bl

e
an

d
sc

al
ab

le
.

Fe
w

IT
pr

oj
ec

ts
tr

ul
y

su
cc

ee
d

[2
2]

.

V
er

si
on

s
of

te
ch

no
lo

gy
fo

llo
w

ea
ch

ot
he

rf
as

ta
nd

ar
e

of
te

n
in

co
m

pa
tib

le

w
ith

pr
ev

io
us

ve
rs

io
ns

.

A
m

on
g

ot
he

rs
:b

ad
ly

de
fin

ed
sy

st
em

re
qu

ir
em

en
ts

,u
se

of
im

m
at

ur
e

te
ch

no
lo

gy
,s

lo
pp

y
de

ve
lo

pm
en

tp
ra

ct
ic

es

[2
2]

.

U
se

a
w

el
l-

de
fin

ed
m

et
ho

do
lo

gy
,m

at
ur

e
te

ch
no

lo
gy

an
d

lin
k

th
e

im
pl

em
en

ta
tio

n
w

ith
au

to
m

at
ed

tr
an

sf
or

m
at

io
ns

to
fo

rm
al

re
qu

ir
em

en
ts

m
od

el
s.

Ta
bl

e
4.

1:
A

ct
or

an
al

ys
is

31



4.4 Modeling complex systems Model Driven Enterprise Engineering requirements

complex projects multiple DSLs are usually necessary in order to cope with different
concerns. In other terms: multiple domain-specific models (DSMs), specified in dif-
ferent DSLs are needed to accurately abstract complex systems. Warmer and Kleppe
[100] advocate the use of many small, loosely-coupled models, because they are eas-
ier to handle and improve readability in comparison with a single, monolithic model.
Dietz [34] also states that for keeping models of complex systems manageable the
technique of constructional or functional (de)composition is often applied.

So, complex systems can be decomposed in multiple smaller systems. In the same
way, the model of that system can be decomposed in multiple DSMs. A model consist-
ing of several DSMs is often referred to as a multi-model. While these DSMs model
different system aspects, they can be notated in different languages, thereby enabling
the use of very specific languages.

In literature multi-modeling is defined as the act of combining diverse models,
which can be done in two ways [19]:

• Hierarchical multi-modeling: hierarchical compositions of distinct modeling
styles are combined to take advantage of the unique capabilities and expres-
siveness of the distinct modeling styles.

• Multi-view modeling: distinct and separate models of the same system are con-
structed to model different aspects of the system.

If we refer to multi-modeling we mean multi-view modeling as defined above. While
in multi-modeling a complete system is described using multiple interdependent
DSMs, the integration of these DSMs is needed to synthesize the described system.

Because complex systems ask for a lot of DSMs to model them, it is important
to structure or categorize these models. We call all the models together modeling a
system, the modeling space of that system. One way to structure the modeling space
is to categorize model perspectives. The MDA does so by distinguishing between
Platform Independent Models (PIMs) and Platform Specific Models (PSMs). A more
generic way to categorize perspectives is to identify the orthogonal criteria which can
be used to distinguish between one perspective and another. These criteria can be
thought of as different dimensions in an n-dimensional space, and a perspective is then
at the intersection of different positions along those axes [58]. To make this more
clear, we will look at the different types of dimensions and an example with multiple
dimensions and models based on the intersection of these dimensions.

The MDA presents the platform specific/platform independent dimension which,
in principle, is an example of the more general abstract/concrete dimension. In this di-
mension we can only talk about whether a model is abstract (or platform independent)
with respect to some other model. It depends on the viewpoint whether a model is plat-
form independent or platform specific (abstract or concrete), but whenever a model is
platform specific it must include all details needed for implementation [71].

Kent [58] defines two additional categories of dimensions. The first category con-
tains various dimensions of concern. The first dimension of concern comes from the
distinction of models on the base of the subject area they belong to. Different users of
an IT system may have different viewpoints on that system, focusing on a subset of the
system features. For example, the part of the IT system dealing with customers, or the
part of the IT system concerned with processing orders. The second dimension of con-
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cern enumerates aspects of an IT system. Examples of aspects are data, presentation,
concurrency control, security, distribution and error handling.

The second category of dimensions is about organizational issues. The dimensions
in this category include authorship, version (as in version and configuration control),
location (in case the system development is distributed across sites) and stakeholder
(such as business expert or programmer) [58].

In IT system development projects it is necessary to determine the important di-
mensions for a particular project. In most projects authorship and versioning will be
important, but other dimensions need the identification of points of interest, like which
subject areas play a role and which system aspects are of importance. Another impor-
tant decision is the levels of abstraction to be used in the process and which stakehold-
ers are involved (for which understandable models have to be made). When building
models in a system development process, each model can be placed at an intersection
of the dimensions.

Dimension Possible positions
Abstract/Concrete CIM, PIM, PSM
Subject areas order entry, customer portal, back-end administration, ...
Aspects data, presentation, security, business rules, workflows, ...
Stakeholders domain expert, programmer

Table 4.2: Example dimensions for a software development project

For the sake of concreteness, Table 4.2 shows some example dimensions and their
possible positions. Examples of models for the dimensions presented in Table 4.2 are:

• A Computation Independent Model (CIM) of the workflows of the order entry
part of the IT system aimed at a domain expert.

• A Platform Independent Model (PIM) of the data of the back-end administration
part of the IT system aimed at a domain expert.

• A Platform Specific Model (PSM) of the security of the customer portal part of
the IT system aimed at a programmer.

The various dimensions at an intersection play an important role in the choice for a
modeling language for that particular model. The modeling language is, for example,
influenced by the subject area, the stakeholders and the level of abstraction.

As we have seen in this section, creating a high level representation of a complex
system asks for multi-models. Hence, we can can extend the requirements for an
MDEE process as follows: an MDEE process should define the needed multi-models,
including their dimensions and aspect models.

4.5 Implementing complex systems

In section 4.3 we have concluded that an MDEE approach needs to define an architec-
ture guiding the transformations to implementation models. As we explained in section
4.1, we follow the prescriptive notion of architecture, meaning that we see architecture
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as a consistent and coherent set of design principles. In this section we research what
architecture we need to fulfill the needs of the actors of MDEE as explained in section
4.3. This means the architecture should:

• enable to build complex systems in such a way that they are easy to change.

• encourage the reuse of autonomous building blocks.

• ensure the separation of business logic and infrastructure code.

The concept of Service-Oriented Architecture (SOA) aims at designing an IT system
in such a way that it aligns with the business (i.e. the using system) and that it can be
effectively assembled and reconfigured in response to changing business requirements
[37]. From a prescriptive notion of architecture, SOA can be defined as a consistent and
coherent set of design principles that need to be taken into account in the development
process of services [93]. Erl [36] provides an overview of these principles.

The implementation of a set of services is mostly referred to as a component. So,
a component can be seen as an IT-asset implementing one or more services. Theoret-
ically a component is not linked to any environment. A more practical definition is
given by Szyperski [89]: "A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to composition by third parties". A
business component provides a set of services out of a given business domain through
well-defined interfaces and hides its implementation [42].

The Service Component Architecture (SCA) [79], an industry standard for SOA,
makes the same distinction between components and services. Within the SCA, a
component consists of a configured piece of implementation providing some business
function. An implementation can be specified in any technology, including other SCA
composites. The business function of a component is published as a set of services.

While we are defining an MDEE process for developing an IT system support-
ing an organization, the architecture part of our framework can be based on SOA.
Examples of functional principles guiding the function design are given by Erl [36].
The result of using these principles is that the functional model of the object system
consists of service specifications. Examples of constructional principles guiding the
construction design are the principles behind the SCA. We can define the highest level
construction model of the object system as a set of business components.

Using such an architecture enables to build complex IT systems which are still easy
to change in response to changing business requirements. This architecture also sep-
arates business logic and infrastructure code and encourages the reuse of autonomous
building blocks. Hence, we can conclude this section by adding the following re-
quirement: an MDEE process should define an architecture. This architecture should
specify both functional and constructional principles. As we have seen in this section,
SOA is a good out-of-the-box candidate fulfilling the needs of the actors involved in
MDEE.
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4.6 Conclusion

In this chapter we gave a formal definition of MDE and we called MDE applied to
Enterprise Engineering MDEE. We also researched the background of MDE, its ac-
tors and their problems and needs, and the requirements for an MDEE approach. The
conclusion of this chapter is that an MDEE approach should consist of five main steps:
reverse engineering, function design, construction design, engineering, and implemen-
tation. In each step a formal model will be produced, at least the following models are
needed:

• A construction model of the using system (produced in the reverse engineering
step). As the using system is an organization, this model is an organization
model. The model needs to be based on enterprise ontology.

• A functional model of the object system (produced in the function design step).
As seen in section 4.5 complex systems may be implemented using a SOA.
In a SOA the function of a system is described with services. That’s why the
functional model of the object system is a service specification model.

• A construction model of the object system (produced in the construction design
step). In a SOA the services may be implemented with so-called components
(see section 4.5), hence the construction model of the object system is a business
component construction model.

• An implementation model of the object system (produced in the engineering
step). This model should be directly executable on technology (i.e. engines).
We call this model a business component implementation model.

Figure 4.4 exhibits the basic elements of an MDEE approach. In the remainder
of this thesis we will define an MDEE approach consisting of these elements. Each
model in this MDEE approach should comply to the following requirements:

• It should be defined in a formal modeling language. For each language the
abstract syntax, concrete syntax, and semantics need to be specified.

• To accurately abstract large and complex systems it needs to be a multi-model.
For each multi-model the dimensions and aspect models need to be specified.

• It needs to be derived from the previous models in the MDEE approach with
mostly automated transformations.

The resulting MDEE approach fully complies to the formal definition of MDE given
in this chapter and will fulfill the needs of its actors.
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Figure 4.4: Engineering an ICT system supporting an organization
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Chapter 5

An Enterprise Ontology based
Organization Model

Now the theory of enterprise ontology (Chapter 3) and the requirements for an MDEE
approach (Chapter 4) are clear, we are going to define the elements of our MDEE
approach with use of enterprise ontology. In this chapter we look at the first model,
the organization model. We first explain how the organization model can be split into
multiple aspect models (5.1), what these models specify and how to come to these
models (5.2). We then introduce the Protector case (5.3) and construct an example
organization model for this case (5.4).

5.1 Organization multi-model

In chapter 3 we have seen that an organization can be considered as a layered in-
tegration of three subsystems: the B-organization, the I-organization, and the D-
organization. The distinction between these layers is formally defined with the dis-
tinction axiom (see section 3.3). For the purpose of (re)designing the essence of an
organization only a model of the B-organization is needed as shown in DEMO [34].
However, if we want to use a model of the organization for the purpose of building
an ICT system supporting that organization, we also need the information of the I-
organization and the D-organization.

The integration of the three aspect organizations is established through the lay-
ered nesting of them. When a layer supports another layer its function supports the
construction of the other layer, e.g., the function of the I-organization supports the
construction of the B-organization and the function of the D-organization supports
the construction of the I-organization. The integration of these layers is established
through the cohesive unification of the human being [34, 31].

De Jong [26] explains this integration in more detail. He introduces the concept
of shaping, i.e. an actor shapes into an actor of another aspect organization to be the
initiator of a transaction in that aspect organization. A transaction in another aspect
organization cannot be directly initiated because the initiator of a transaction must be
from the same category as the executor of the transaction [20]. Hence, a B-actor needs
to shape into an I-actor to request information from the I-organization. Shaping is
possible by the cohesive unification of the human being, i.e. a human being can fulfill

37



5.1 Organization multi-model An Enterprise Ontology based Organization Model

the actor roles of each aspect organization.
Due to the number of actors in an organization a full model of the organization can

become quite big and complex. Dietz uses the approximate proportions 1:4:7 for the
number of actor roles in respectively the B-, I-, and D-organization [34]. This means
that if we start with 100 actor roles in the B-organization model (which is not that
much in practice), we end up with 500 actor roles in the B+I-organization model, and
1200 actor roles in the B+I+D-organization model.

As we have seen in section 4.4 a possible dimension for categorizing models is
the system aspect dimension. In the DEMO approach the B-organization is modeled
with four different aspect models [34]. The B-organization model can thus be seen as
a multi-model consisting of a:

• Construction model: the construction model specifies the construction of the
organization, i.e. the identified transaction types and associated actor roles, as
well as the information links between actor roles and information banks;

• Process model: the process model specifies the transaction pattern for each
transaction type, as well as the causal and conditional relationships between
transactions. In principle the process model models the coordination part of an
organization (C-acts and the state and transition space of the C-world);

• State model: the state model specifies the state space of the P-world, i.e. the
object classes, fact types, result types, and the ontological coexistence rules;
and

• Action model: the action model specifies the action rules that serve as guidelines
for the actors in dealing with their agenda. In other words: the action rules guide
the actors in what act to perform based on the current state of the C- and P-world.

The same aspect models can be used for the I-organization and D-organization. This
means that a model of an organization consists of twelve aspect models categorized
by two dimensions: the aspect dimensions and the distinction dimension. Table 5.1
shows an overview of the aspect models and what part of the organization they model.

Construction Process State Action
B B-transactions,

B-actor roles
Coordination,
ontological
P-acts

Objects and facts
used in the
B-organization

Action rules for
B-actors

I I-transactions,
I-actor roles

Coordination,
infological
P-acts

Objects and facts
used in the
I-organization

Action rules for
I-actors

D D-transactions,
D-actor roles

Coordination,
datalogical
P-acts

Objects and facts
used in the
D-organization

Action rules for
D-actors

Table 5.1: Aspect models of an organization

The construction model of the B-organization models B-transactions (i.e. trans-
actions with ontological P-acts) and B-actor roles (i.e. actor roles executing B-
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transactions). In the same way the construction model of the I-organization models
I-transactions and I-actor roles, and the construction model of the D-organization mod-
els D-transactions and D-actor roles.

The process model of the B-organization models the coordination part of an or-
ganization, i.e. the details of a transaction and the relationships between transactions.
It also models what P-acts are executed in each transaction. The process models of
the different aspect organizations only differ in the type of P-acts they model. Actors
always have to reach significational, intellectual, and social understanding using ap-
propriate coordination acts. This means that the process models of the I-organization
and D-organization are of the same nature (i.e. they consist of the same C-acts) as the
process model of the B-organization. They only differ in the type P-acts executed as
part of the process.

The state model, defines the objects and facts used within an organization. For the
B-organization only the objects and facts used or referred to on the ontological level
are modeled. The state model of the I-organization will be a more detailed model, e.g.
more objects and properties are specified and facts of the I-organization are added. As
the D-organization is datalogical in nature, the state model for the D-organization only
defines the format for recording and retrieving data.

The last aspect model, the action model, models the action rules of an organiza-
tion. For the B-organization this means that it defines how the B-actors deal with their
agenda, i.e. how they order their ’to do’ list. The same holds for the I-organization and
D-organization.

5.2 Reverse engineering

In order to come to an organization model the first step of our MDEE approach needs
to be executed: reverse engineering. Reverse engineering (i.e. how to come from an
organization to an organization model) consists of three analysis and three synthesis
steps [34]:

1. The Performa-Informa-Forma Analysis. In this step all available pieces of
knowledge (i.e. documentation about the enterprise) are divided in three sets,
according to the distinction axiom.

2. The Coordination-Actors-Production Analysis. The Performa items are divided
into C-acts/result, P-acts/results, and actor roles, according to the operation ax-
iom.

3. The Transaction Pattern Synthesis. The results so far, are clustered in transaction
patterns, according to the transaction axiom. Next, for every transaction type,
the result type is correctly and precisely formulated. The Transaction Result
Table can now be produced.

4. The Result Structure Analysis. Based on the composition axiom, the transactions
are related to each other.

5. The Construction Synthesis. For every transaction type, the initiating actor
role(s) and the executing actor role are identified, based on the transaction ax-
iom.
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6. The Organization Synthesis. A definite choice has to be made as to what part of
the construction will be taken as the organization to be studied and what part will
become its environment. The Actor Transaction Diagram can now be produced.

With these six steps the basis for a correct and complete set of aspect models of an
enterprise ontology is produced. The other aspect models of the B-organization can
now be produced. The aspect models of the I- and D-organization can be produced
in the same way. However, instead of only using documentation of the enterprise
as input, the models of the B-organization also function as input for modeling the I-
organization and the models of the I-organization function as input for the modeling the
D-organization. In the remainder of this chapter we will show the result of executing
the reverse engineering step on an example case.

5.3 Introducing the Protector case

As a running example for this chapter and the next chapters we use the Protector case
also used in [90, 93]. Protector is an insurance company selling three types of life
insurance products:

• Term life insurance: protects the beneficiaries of the policy from the financial
damage they suffer in case the insured dies during the policy term.

• Pension insurance: can be seen as an insurance that protects the insured from
a large income loss if he reaches his pension age or that protects his life part-
ner and young children from large income loss after the insured (would have)
reached his pension age in case of the insured’s death.

• Capital sum insurance: an insurance for building up capital. When the end date
of the policy is reached, then the benefit will be paid in a single payment. This
product type is, for instance, suitable for saving money to pay off a mortgage.

Protector offers multiple products of each type and sells these products to companies
(collectively) or individual persons (individually). We use the word policy for the indi-
vidual policy as well as for a participation in a collective contract. An insurance policy
has an insurant, one or more insured, and one or more beneficiaries. The insurant is an
organization or person that is responsible for the payment of the premium of a policy.
The insurant is the client of Protector. The insured is a person who is the ‘insured
object’. The beneficiary is a person who receives a payment if the insurant has a right
to a benefit according to the product rules of a policy.

Protector reinsures policies if they cause a high risk. This means that a part of
the insured amount is insured by the reinsurer in order to spread the risk. A reinsurer
can be a ‘regular’ insurance company or an insurance company that is specialized in
insuring insurance companies. Sometimes reinsurance is legally obligatory, sometimes
it is a choice made by Protector itself.

We will use the individual policy part of the Protector case to explain our MDEE
approach.
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5.4 Example organization model

Let’s apply the theory explained in this chapter to the protector case. We will first
show the aspect models for the B-organization (i.e. the ontological models) following
DEMO. After that we show some example models for the I- and D-organization (i.e.
the infological and datalogical models). For the latter we use the same DEMO diagram
types as we use to express the ontological models.

Ontological construction model

Figure 5.1: ATD for Protector [90]

The construction model (CM) of an organization specifies its composition, its en-
vironment, and its structure. DEMO specifies this model with an interaction model
(IAM) consisting of an Actor Transaction Diagram (ATD) and a Transaction Result
Table (TRT). Figure 5.1 shows the ATD for the individual policy part of Protector,
exhibiting the actor roles and transactions. Table 5.2 shows the corresponding TRT,
exhibiting the transaction types and their result types.

A potential individual policy holder can request a quotation for a product (T04)
with or without getting an advice first (T01). After the promise of the policy binder
(T05), the policy underwriting (T27) is requested. The policy underwriter checks if
the risk is acceptable and optionally requests reinsurance of the policy (T16). If rein-
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Transaction Result type
T01 Product advising product advice adv is created
T04 Policy quotation policy pol is quoted
T05 Policy binding policy pol is bound
T06 Premium payment premium is paid for policy pol for

premium period per
T07 Voluntary deposit voluntary deposit is made for policy pol
T16 Reinsurance of policies policy collection pco is reinsured for per
T17 Reinsurance premium payment reinsurance premium is paid for policy

collection pco for period per
T26 Commission payment commission com is paid
T27 Policy underwriting underwriting for policy pol has been done

Table 5.2: TRT for Protector [93]

surance is necessary and the reinsurer (CA06) states, the policy underwriter (A27) is
finished and states. If no reinsurance is needed the policy underwriter directly states
and in the same way A27 is finished and states. Now the policy can be bound and the
policy binder (A05) states. If the potential individual policy holder (CA03) accepts, the
policy binder request premium payment to the insurant (T06) and optionally requests
a voluntary deposit (T07) from the policy holder and commission payment (T26) to
the agent (according to the commission agreements made).

Ontological process model

object class, fact type, or result type process steps (transactions)
PRODUCT ADVICE T01
PRODUCT T01
COMMISSION T04, T26
POLICY T04, T05, T07, T16, T27
BENEFICIARY T04, T05
INSURED T04, T05, T16, T27
INSURANT T04, T05, T06
POLICY COLLECTION T16, T17
INSURANCE PREMIUM T05, T06, T27

Table 5.3: IUT for Protector [90]

The process model (PM) of an organization is a specification of the state space and
transition space of the C-world, i.e. the set of lawful or possible or allowed sequences
of states in the C-world. The process model is expressed with a Process Structure
Diagram (PSD) and an Information Use Table (IUT). Figure 5.2 (DEMO 3 notation)
exhibits the PSD, Table 5.3 shows the IUT. The IUT lists the object classes used in
each process step.
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Figure 5.2: PSD for Protector [90]

In the previous section we have explained the policy binding process in detail.
The PSD shows some extra information. It shows at what moment, i.e. in the order,
execution, or result phase, and in which order transactions are triggered. Furthermore,
the PSD exhibits the multiplicity of the relations between transactions. Note that we do
not take dissent and cancellation patterns into account, these are left for future work.

Let’s look at the example in Figure 5.2. T01, T04, and T17 are independent trans-
actions. All other transactions are directly or indirectly enclosed in T05. In the execu-
tion phase of T05, T27 is triggered exactly once. T16 is optionally triggered once in
the execution phase of T27. In the result phase of T05, T06 is at least triggered once,
T07 is triggered zero or more times, and T26 is optionally triggered once.
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Ontological state model

Figure 5.3: OFD for Protector

property type object class scale
insurance_max_sum PRODUCT EURO
commission_fee COMMISSION EURO
date_of_birth INSURED JULIAN DATE
period_premium INSURANCE PREMIUM EURO

Table 5.4: OPL for Protector

The state model (SM) is denoted in an ORM-based language called World Ontol-
ogy Specification Language (WOSL) [33] and models object classes, the fact types,
and the result types. The SM is expressed in an Object Fact Diagram (OFD) and an
Object Property List (OPL). Figure 5.3 shows the OFD for the Protector case, which
is a part of the OFD shown in [90]. We have only taken the part relevant for our case.
Table 5.4 shows the OPL, exhibiting some example properties.

As exhibited in Figure 5.3 the central object is a policy. A policy has an insurant,
one or more insured, and one or more beneficiaries. The insurant is an organization
or person that is responsible for the payment of the insurance premium of a policy.
The insurant is the client of Protector. The insured is a person who is the ‘insured
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object’. The beneficiary is a person who receives a payment, the insurance benefit, if
the insurant has a right to a benefit according to the product rules of a policy.

A policy offers insurance according to the rules of a product. A product can be
advised by an agent, which is entitled a commission for selling a certain policy. A
policy collection containing multiple policies can be reinsured.

Ontological action model

The action model (AM) is specified with a pseudo-algorithmic language. In the re-
mainder of this section we present the action rules for the protector case, grouped on
actor role.
Action rules for actor role A05:

If the policy binder (A05) has promised to bind a policy to an insured for a certain
insurance premium, he requests policy underwriting (T27).

on promised T05(Policy, Insured, InsurancePremium) with policy(new Policy) = Po
request T27(Policy, Insured, InsurancePremium)

no

If the potential individual policy holder (CA03) accepts the policy binding, the
policy binder requests premium payment (T06) according to the insurance premium.

on accepted T05(Insurant, InsurancePremium)
request T06(Insurant, InsurancePremium)

no

If the potential individual policy holder (CA03) accepts the policy binding and
a commission agreement exists for the agent who advised the policy to the potential
individual policy holder, the policy binder requests commission payment.

on accepted T05(Policy, Commission)
if <commission agreements exists for Policy> -> request T26(Commission)
fi

no

If the potential individual policy holder (CA03) accepts the policy binding and a
voluntary deposit agreement exists with the policy holder, the policy binder requests
the payment of that deposit.

on accepted T05(Policy, Beneficiary, Insured, Insurant)
if <voluntary deposit agreement exists> -> request T07(Policy)
fi

no
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Action rules for actor role A27:

The policy underwriter (A27) checks whether the risk for a policy for an insured
is acceptable or not. If the risk is acceptable he promises to underwrite the policy. If
the risk is not acceptable the policy underwriter declines.

on requested T27(Policy, Insured, InsurancePremium)
if <risk is acceptable> -> promise T27(Policy, Insured, InsurancePremium)
not <risk is acceptable> -> decline T27(Policy, Insured, InsurancePremium)
fi

no

If the policy underwriter (A27) has promised, he checks if reinsurance is necessary.
Protector reinsures policies if they cause a high risk. This means that a part of the
insured amount is insured by the reinsurer in order to spread the risk. If reinsurance is
necessary the policy underwriter requests the reinsurance of policies (T16), if not he
continues executing T27.

on promised T27(Policy, Insured, PolicyCollection, InsurancePremium)
if <reinsurance is necessary> -> request T16(Policy, Insured, PolicyCollection)
not <reinsurance is necessary> -> execute T27(Policy, Insured, InsurancePremium)
fi

no

Infological and datalogical construction model

Transaction Result type
T01 product advising product advice adv is created
T30 formulate personal details personal details are defined for person per
T31 compose product information product composition prc is created
T60 record personal details person per is recorded
T61 retrieve product data products pro are retrieved

Table 5.5: TRT for ’product advising’

We express the infological and datalogical construction model in a single diagram.
This gives a good insight in the shaping relations between actor roles, which are de-
picted with dashed arrows. It should, however, be noted that for bigger diagrams with
lots of connected transactions within the same aspect organization, it can be more suit-
able to split the construction model for the I- and D-organization.

Let’s look at two example diagrams for the protector case. Figure 5.4 shows the
ATD for the I- and D-transactions needed to support the B-transaction ’product advis-
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Figure 5.4: CM on B, I, and D level of ’product advising’

Transaction Result type
T05 policy binding policy pol is bound
T32 combine policy request with existing
information

policy pol is related to existing
information (e.g. personal details, policy
quotation, etc.)

T62 retrieve personal details personal details prd is retrieved
T63 retrieve product advice product advice adv is retrieved
T64 retrieve policy quotation policy quotation pqu is retrieved
T65 retrieve commission agreement commission agreement cag is retrieved
T66 record policy binding policy pol is recorded

Table 5.6: TRT for ’policy binding’

ing’ (T01). T30 and T31 are I-transactions, T60 and T61 are D-transactions. Table 5.5
shows the TRT for ’product advising’.

When a potential individual policy holder requests a product advice, the execu-
tor of the product advising transaction, A01, will need information to create such an
advice. A01 therefore shapes into the I-actor A30 and requests the potential policy
holder to formulate his or her personal details, needed in order to make a suitable ad-
vice. Once this information is received A30 asks for suitable products based on these
personal details. A31, the information reproducer, therefore shapes into a D-actor,
A62, in order to receive the data for multiple products. When all information is avail-
able A01 decides which products he advices to the potential individual policy holder.
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Figure 5.5: CM on B, I, and D level of ’policy binding’

After giving the advice the related advice information, including the personal details
of the potential individual policy holder, are stored for future use. A01 does so by
shaping into D-actor A60 via I-actor A35.

Figure 5.5 shows the ATD for the I- and D-transactions needed to support B-
transaction ’policy binding’ (T05). T32 is an I-transaction, T62 till T66 are D-
transactions. Note that we only exhibit the I- and D-transactions needed to sup-
port T05, we do not show the I- and D-transaction needed to support the other B-
transactions. The TRT is exhibited in Table 5.6.

If a potential individual policy holder requests a policy binding, the policy binder
needs to lookup the existing information for this person. He does so by shaping into an
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I-actor, A32, and requests all policy binding information from A33, which shapes into
D-actor A64. A64 retrieves all available information, i.e. personal details, optionally
an earlier given product advice, the policy quotation, and optionally a commission
agreement. After the policy is bound, A05 shapes into D-actor A69 (via A34) to store
the policy binding information. How A05 deals with the other B-transactions was
explained before when talking about the ontological construction model.

Infological and datalogical process model

As the goal of the process model is to show the possible states in the C-world and how
they relate, we express the infological and datalogical process model with a diagram
for each B-transaction. We show example diagrams for the two B-transactions for
which we also created an ATD in the previous section: ’product advising’ and ’policy
binding’. Remember that transactions initiated across aspect organizations are initiated
by an actor shaping into another actor.

Figure 5.6 exhibits the process diagram for ’product advising’. As visualized, once
product advising (T01) is promised, the potential individual policy holder is asked to
formulate his or her personal details (T30). After that, applicable products are retrieved
(T61) and composed (T31). Once an advice is created it is stored (T60) and stated to
the requester.

Figure 5.6: BPD on I, and D level for ’product advising’

Figure 5.7 exhibits the process diagram for ’policy binding’. As visualized, once
policy binding (T05) is requested all previously recorded information is retrieved (T62
- T65) and combined with the policy binding request (T32). After the policy is bound,
the policy binding is recorded (T66).

The combined IUT for both process diagrams is shown in table 5.7.
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Figure 5.7: BPD on I, and D level for ’policy binding’

object class, fact type, or result type process steps (transactions)
PERSON T30, T60, T62
PRODUCT COMPOSITION T31
PRODUCT T61, T31
PRODUCT ADVICE T63, T32
POLICY QUOTATION T64, T32
COMMISSION AGREEMENT T65, T32
POLICY T66, T32

Table 5.7: IUT for ’product advising’ and ’policy binding’

Infological and datalogical state model

The infological state model defines additional object classes and properties. Figure
5.8 shows an example OFD for the infological state model. It contains a part of the
ontological state model, extended with the object class policy quotation and the result
type R30. We only added the classes and result types needed for the product advising
and policy binding processes. The associated OPL is shown in Table 5.8.

property type object class scale
price POLICY QUOTATION EURO
expire_date POLICY QUOTATION JULIAN DATE
start_date POLICY JULIAN DATE
percentage_fee COMMISSION AGREEMENT NUMBER
date_of_birth PERSON JULIAN DATE

Table 5.8: Infological OPL for Protector

The additional properties of Person are defined in T30 when the policy binder asks
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Figure 5.8: Infological OFD for Protector

the potential individual policy holder for additional information. A policy quotation is
applicable to its associated product and contains the details for a quoted policy.

The datalogical state model only defines the format for recording and retrieving
data, it does not add content. Example format properties are the language, the storage
format, and format validations (like the maximum length of a property).

Let’s look at two example object classes: personal details and policy quotation.
Personal details are retrieved from a person on a paper form. The form is specified
in dutch and archived in a file. A policy quotation is stored in a database in a table
named policy_quotation with a column for each property. The table has two additional
columns, one with a unique identifier (a number) and one with the unique identifier of
a row in the product table (to link the quotation to a product).

Infological and datalogical action model

The infological and datalogical action model contain the same kind of rules as the
ontological action model. The only difference is that they are applied to I- and D-
transactions instead of B-transactions. So, I- and D-action rules describe under what
conditions an actor role requests, promises, states, or accepts transactions. However,
due to the fact that B- I- and D-transactions are different, the conditions in the action
rules in the different aspect organizations also differ. I-action rules are focused on the
content and D-action rules on the form of input data.

Action rules for I-actor role A30:

The information interpreter (A30) accepts the personal details formulated by the
potential individual policy holder (CA03) if all properties are specified.
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on stated T30(Personal Details)
if <all properties of Personal Details are specified> -> accept T30(Personal Details)
not <all properties of Personal Details are specified> -> decline T30(Personal De-

tails)
fi

no

If the information interpreter (A30) accepts T30 (formulate personal details), he re-
quests to compose product information (T31) from the information reproducer (A31).

on accepted T30(Personal Details)
request T31(Personal Details)

no

Action rules for D-actor role A70:

The policy binding recorder (A70) can only record the given policy if the property
start_date is in the right date format.

on requested T66(Policy)
if <start_date(Policy).format = ’MM-DD-YYYY’> -> promise T66(Policy)
not <start_date(Policy).format = ’MM-DD-YYYY’> -> decline T66(Policy)
fi

no
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Chapter 6

An Enterprise Ontology based
Service Specification Model

Our MDEE approach aims to design and engineer an IT system supporting an organi-
zation. The organization (the using system) is going to use the IT system (the object
system). In the previous chapter we have defined the organization model, describing
the highest level construction model of the organization. The next step is to design
the function of the IT system based on the information in the organization model. As
explained in Chapter 4 the functional (or black-box) model of the object system is
a service specification model. In this chapter we research the elements of this func-
tional model (6.1). We also define the function design step of our MDEE approach, i.e.
how to identify what services we need in order to support a given organization model
(6.2). This chapter is concluded with an example service specification model for the
Protector case (6.3).

6.1 Service multi-model

Before thinking about how the functional model of an ICT system can be specified
with a service specification model, we need to define what a service is. Terlouw and
Albani [92] define the notion of service in a precise way, based on the Ψ-theory (see
section 3.1):

A service is a universal pattern of coordination and production acts,
performed by the executor of a transaction for the benefit of its initiator,
in the order as stated in the standard pattern of a transaction. When im-
plemented it has the ability to get to know the coordination facts produced
by the initiator and to make available to the initiator the coordination facts
produced by itself.

Note that a service is not equal to a transaction. A transaction includes all acts of
the initiator and the executor, the service concept emphasizes more on the executor
part. Everything of the standard transaction pattern is part of the service except for the
coordination acts (request, quit, reject, and accept) of the initiator.

This definition of service is very generic and, according to Terlouw and Albani
[92], it holds for both human actors and IT systems. Furthermore it can be used to
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describe all three kinds of production acts, i.e. datalogical, infological, and ontological
acts.

Looking at the service specification model, we can say that it consists of service
specifications. The service specification model should describe the function of the
ICT system under development (the object system) in terms of the organization (the
using system). Hence, the service specification model should describe the services
that support the organization. Our MDEE approach should derive the needed services
from the organization model. This process should be automated as much of possible
to make our MDEE approach really model-driven.

The first thing to consider while doing so is the size of the service specification
model. As explained in chapter 5 the organization model can become quite big and
is therefore treated as a multi-model consisting of multiple aspect models. We should
specify the service specification model as a multi-model too for the same reasons. We
can use the same dimensions as for the organization model: the distinction dimension,
based on the distinction axiom, and the aspect dimension.

The distinction dimension consists of ontological, infological, and datalogical ser-
vices. This compares to the service layers Terlouw distinguishes [91]. The aspect
dimension is more complicated to define. Although in practice all kinds of service tax-
onomies are used (see for example [24, 35, 52]), none of them is based on a scientific
theory. We therefore stick to the distinction between human and IT services made by
Terlouw and Albani [92].

IT Human
B Ontological IT services Ontological human services
I Infological IT services Infological human services
D Datalogical IT services Datalogical human services

Table 6.1: Aspect models of the service specification model

The resulting multi-model consists of six aspect models conforming to the six
service types defined by Terlouw and Albani [92]. As depicted in Table 6.1 we have
the following service layers on the distinction dimension:

• B-services, they support B-transactions and are provided to B-actors

• I-services, they support I-transactions and are provided to I-actors or B-actors
(via shaping)

• D-services, they support D-transactions and are provided to D-actors or I-actors
(via shaping)

On the aspect dimension we have the following distinction:

• IT-services, they assist human actors in their activities. The actor role providing
an IT service to the initiator of a transaction is an IT system.

• Human-services, they are provided by human beings.
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Figure 6.1: The Generic Service Specification Framework [92]

Terlouw and Albani [92] have defined a service specification framework based on
the Ψ-theory (which is also the basis for enterprise ontology). Figure 6.1 exhibits this
framework, which is split into four parts. For calling a service basically three things
need to be known to the service consumer: who provides the service (service executor),
which production act is to be performed by the provider (service production), and how
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to interact with the service executor (service coordination). Additionally the service
consumer needs to now what he gets for which price (contract options) [92].

We use this service specification framework as a template to describe the services
in our service specification model. This means that the service specification multi-
model consists of six service types, all described with the service specification template
presented in Figure 6.1. In the remainder of this chapter we will explain the template
in more detail and describe how to derive a service specification from the organization
model.

6.2 Function design

As explained in section 4.6 the step between organization model and service specifica-
tion model is function design. During function design the service specification model
is specified with the organization model as starting point. We can define this process
with a set of rules which, if specified in a formal language, can be mostly automated.

In section 4.5 we have explained that for implementing complex ICT systems our
MDEE approach need to comply to the principles of SOA. Hence, following [93]
the function design step in which we identify services can be called service-oriented
function design (SoFD). Terlouw [93] lists some existing SoFD methods (or methods
covering SoFD): BCI-3D [4], the Business Element Approach [65], the Goal-Driven
Approach [62], SOAF [38], the methodology of Papazoglou and Van den Heuvel [82],
and SOMA [10].

BCI3D is focused on component identification and the services provided by com-
ponents to other components. Hence, it is more about the construction of an ICT
system and less about its function. We will take BCI3D into account when talking
about construction design in Chapter 7. The Business Element Approach is based on
business processes and information objects, but it lacks a clear, formal definition of
these two concepts [93]. The Goal-Driven Approach aims to identify services directly
from the goals of an enterprise using a Goal Service Graph. This approach is very sub-
jective and informal [93]. SOAF, the methodology of Papazoglou and Van den Heuvel,
and SOMA do not specify a very detailed service identification approach or refer to
other approaches.

While we need a formal service identification method using our enterprise ontol-
ogy based organization model as input, none of the existing methods can be used.
Terlouw and Albani [92] describe in their example how they use parts of the organi-
zation model to specify the different elements of the service specification framework.
Hence, we can base our service identification rules on their description.

First the transactions need to be selected which are going to be supported by the
object system, i.e. the ICT system to build. For each transaction a service needs to be
specified. The relation between a transaction and a service is not defined in detail yet.
For now we assume a one-to-one relationship following the definition of a service
given in the previous section. However, note that it can be possible that multiple
services support one transaction. Hence, more research is needed into this relation.
Based on our assumption, we can say that each service describes what coordination
and production acts the executor of the transaction provides to the initiator. After all
needed services are identified, they need to be specified using the Generic Service
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Specification Framework.

Service specification item Derivation rule
Actor Role The executor of the transaction. If the executor is an IT

system humans have the final responsibility. This
information can be derived from the ATD.

Contact Information Not available in the organization model.
Production Act The name of the transaction in the ATD.
Production Information Used Add each information element from the IUT associated

with the transaction.
Production Fact The result type of the transaction, specified in the TRT.
Production Kind Corresponds with the type of transaction: ontological

(B), infological (I), or datalogical (D).
Production World Semantics Describe the elements of the OFD related to the

production information and production fact and their
relations.

Preconditions The action rules associated with the transaction
defining on what conditions the promise act is executed.

Postconditions The action rules associated with the transaction
defining on what conditions the accepted act is
executed.

Coordination Acts The coordination acts of the executor of the transaction
defined in the BPD.

Coordination Kind Not available in the organization model. IT or Human.
Protocol Not available in the organization model.
Location Not available in the organization model.
Quality Not available in the organization model.
Price Not available in the organization model.

Table 6.2: Service specification rules

As we have seen in Figure 6.1 the service executor area of concern consist of an
actor role and contact information. The actor role specifies the role of the actor that
takes final responsibility of the service. The actor role can be derived from the ATD of
the organization model. Contact information is not available in the organization model
and needs to be added. This information can be used to contact the executor.

The service production area of concern focuses on the actual value that the ser-
vice executor offers to the service initiator. The production act can be derived from
the ATD. The information needed in order to execute the actual production act can be
derived from the IUT. The execution of a production act results in a production fact,
which is specified in the TRT. The production kind defines the kind of service based
on the type of production act, i.e. ontological, infological, and datalogical. The pro-
duction kind corresponds with the type of the transaction (B, I, D) supported by the
service. The production world semantics provide a common knowledge and under-
standing about the semantics of the service. These semantics can be derived from the
OFD. The pre- and postconditions state production facts that should always hold prior

57



6.3 Example service model An Enterprise Ontology based Service Specification Model

to and after the execution of the service respectively. These conditions can be derived
from the Action Model.

The service coordination area of concern aims at giving the consumer of the service
all information required for successful communication with the provider. Therefore the
coordination acts need to be described, which can be done based on the BPD. Informa-
tion for the coordination kind, protocol, and location is not available in the organization
model and need to be added manually. The coordination kind defines whether this ser-
vice is a human or IT service (as explained in section 6.1). The protocol defines the
rules governing the syntax, semantics and synchronization of communication, while
the location defines where the service consumer can access the service.

The last area of concern, the contract options, provides information on the price
quality combination. This information also needs to be added manually because it is
not available in the organization model.

Table 6.2 exhibits the previously described service specification rules which de-
scribe how to specify a service with the organization model as input. The input for
service specification is the transaction supported by the service. Based on the trans-
action the needed information can be derived from the organization model, except for
contact information, coordination kind, protocol, location, quality, and price. Informa-
tion for these items is not available in the organization model and needs to be added
manually.

So, the SoFD step of our MDEE approach consists of:

• Service identification: define a service for each transaction in the organization
model. Categorize them using the distinction and aspect dimension.

• Service specification: specify each identified service using the service specifica-
tion framework.

6.3 Example service model

Let’s look at our running example, starring the Protector case, to see what the ser-
vice specification model looks like in practice and how to execute the service-oriented
function design step. We have identified the services needed to support the product
advising part of Protector (see Figure 5.4 for the associated organization construction
model) exhibited in Table 6.3.

IT Human
B ProductAdvising
I ComposeProductInformation FormulatePersonalDetails
D RecordPersonalDetails,

RetrieveProductData

Table 6.3: Identified services for the ’product advising’ part of Protector

As shown in Table 6.3 we have identified a service for each transaction in the orga-
nization model. We also categorized them using the distinction and aspect dimension.
Each B-transaction is supported by a B-service, an I-transaction by an I-service, and a
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D-transaction by a D-service. As the ProductAdvising and FormulatePersonalDetails
services can not be fully automated, they are classified as human services. The Pro-
ductAdvising service supports the human actor ’product advisor’ in his task to create
a product advice for the potential individual policy holder. The FormulatePersonalDe-
tails service lets the human actor ’potential individual policy holder’ formulate his
personal details. How the interaction of human actors with services is implemented
will be described in detail in Chapter 8.

ProductAdvicing
Actor Role A01: product advisor
Contact Information University Street 1A

8291 BN Insurancetown
555-492022
productadvising@protectorinsurances.com

Production Act T01: product advising
Production Information Used PRODUCT ADVICE, PRODUCT
Production Fact R01: product advice adv is created
Production Kind ontological (B)
Production World Semantics the creator of PRODUCT ADVICE adv is AGENT age

the advised product in PRODUCT ADVICE adv is
PRODUCT pro
POLICY pol offers insurance according to the rules of
PRODUCT pro

Preconditions -
Postconditions -
Coordination Acts the standard transaction pattern
Coordination Kind Human
Protocol Call the product advisor, he will ask some questions

and create an advice. The advice is also send by post.
Location 555-492022
Quality The maximum response time in 90% of the calls is 5

minutes. In most cases you need to make an
appointment to get the advice, which can in 90% of the
cases be planned within 2 days.

Price Free

Table 6.4: Service specification of the ProductAdvising service

Table 6.4 shows the complete service specification for the ProductAdvising ser-
vice. The specification is made using the service specification rules presented in sec-
tion 6.2. No pre- and postconditions are specified because no action rules exist in the
organization model associated with transaction T01 (the transaction supported by the
ProductAdvising service). However, an example post condition could be that the re-
sulting product advice is aimed at the personal details of the potential individual policy
holder.

Table 6.5 shows the service specification for the RecordPersonalDetails service.
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RecordPersonalDetails
Actor Role A61: personal details recorder,

Responsible human: A01: product advisor
Contact Information University Street 1A

8291 BN Insurancetown
555-492022
productadvising@protectorinsurances.com

Production Act T60: record personal details
Production Information Used PERSON
Production Fact person per is recorded
Production Kind datalogical (D)
Production World Semantics Personal details are defined for PERSON per

PERSON per is the BENEFICIARY of pol
PERSON per is the INSURED of pol

Preconditions on requested T60(Personal Details)
if <complete(Personal Details)> -> promise

T60(Personal Details)
not <complete(Personal Details)> -> decline

T60(Personal Details)
fi

no
Postconditions -
Coordination Acts The standard transaction pattern
Coordination Kind IT
Protocol SOAP
Location http://mdm.protector.com/RecordPersonalDetails
Quality The response time of this service is always less than

200ms
Price -

Table 6.5: Service specification of the RecordPersonalDetails service

As exhibited a precondition exists defining that the service only can be executed if the
given personal details are complete (i.e. all attributes are filled). The implemented co-
ordination acts by this service are the ones defined by the standard transaction pattern,
as explained in section 3.3.

We also identified the services needed to support the policy binding part of Pro-
tector (see Figure 5.5 for the associated organization construction model) exhibited in
Table 6.6. Following the described service identification method in the previous sec-
tion we have a service for each transaction in the organization model. In the policy
binding part the only human service is the PolicyBinding service. This service can not
be fully implemented using an IT system, because the acts of the supported transaction
are ontological. As explained in section 3.4 ontological acts can not be automated and
need human involvement. Table 6.7 shows the complete service specification for the
PolicyBinding service.
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ICT Human
B PolicyBinding
I CombinePolicyReqInfo
D RecordPolicyBinding,

RetrievePersonalDetails,
RetrievePolicyAdvice,
RetrievePolicyQuotation, Re-
trieveCommissionAgreement

Table 6.6: Identified services for the ’policy binding’ part of Protector

PolicyBinding
Actor Role A05: policy binder
Contact Information University Street 1B

8291 BN Insurancetown
555-492023
policybinding@protectorinsurances.com

Production Act T05: policy binding
Production Information Used PRODUCT ADVICE, PRODUCT
Production Fact R05: policy pol is bound
Production Kind ontological (B)
Production World Semantics POLICY pol is bound for a term of PERIOD per

PERSON per is the beneficiary of POLICY pol
PERSON per is the insured of POLICY pol
PARTY par is the insurant of POLICY pol

Preconditions -
Postconditions -
Coordination Acts the standard transaction pattern
Coordination Kind Human
Protocol Make an appointment with the policy binder to meet

face-to-face.
Location University Street 1B

8291 BN Insurancetown
555-492023
policybinding@protectorinsurances.com

Quality In 90% of the cases an appointment can be planned
withing 1 week.

Price Free

Table 6.7: Service specification of the PolicyBinding service
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Chapter 7

A Business Component
Construction Model

The service specification model specifies all the services needed to support the orga-
nization model. The service specification model is a black-box model, modeling the
function of the object system. The next model in our MDEE approach is the business
component construction model, it describes the construction of the object system. In
this chapter we will first research the elements of such a model (7.1). After that we ex-
plain how to define the business component construction model based on the previous
models (7.2). We finish this chapter with an example business component construction
model starring the Protector case (7.3).

7.1 Construction multi-model

The services in the service specification model describe the function of the object sys-
tem. The construction model needs to describe the construction of the object system,
i.e. the different components of the object system and their interaction relationships
[34]. As we have seen in section 4.5, a component implements a set of services. A
business component implements a set of services within a certain business domain.
The idea behind business components is to design them in such a way that they can be
reused within the same domain and possibly across domains.

Figure 7.1: Component scenario 1

The way the object system is composed from business components can differ. Ba-
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sically two scenario’s can be identified, depicted in Figure 7.1 and Figure 7.2. In sce-
nario 1 services are grouped in components based on their relations, no matter what
type of services they are. Hence, components in such a scenario exist of B-, I-, and
D-services.

Figure 7.2: Component scenario 2

In scenario 2 we distinct between B-, I-, and D-components, publishing B-, I-,
and D-services respectively. In this scenario the services are first grouped based on
their production kind. After that they are grouped in components based on their rela-
tionships.

The choice between scenario 1 an 2 often depends on human choice and the ex-
isting IT landscape. While there is no ’best approach’, we do not restrict our MDEE
approach to one scenario. Within the MDEE approach one can choose the best fitting
component design. We will explain in the next section how this choice can be made
during the business component identification step.

Depending on the chosen scenario a business component construction model
should be specified. This model consists of component specifications which spec-
ify what components exist, what services they provide, what services they consume
(i.e. their references to services of other components), and what information objects
they contain.

All services defined in the service specification model need to be grouped in com-
ponents. In our service model we have made a distinction between human services and
IT services. Although human services are provided by human beings, in most cases
part of a human service is supported by an IT system. For example, the resulting fact
(of a service execution) is registered in an IT system or the request for the human ser-
vice is issued via a task list provided by an IT system. Hence, we also need to group
human services in components. What part of these human services is implemented by
IT is an implementation decision, which is left for the implementation model described
in Chapter 8. So, we do take human services into account when executing the business
component identification step.

Grouping information objects into components has two purposes. First, the group-
ing of information objects in components is important for the component identification
step. As information objects have relations among each other they will influence the
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component identification step (see section 7.2). They will therefore influence the way
D-services are grouped in components. D-services do not have dependencies among
each other, they only have dependencies on information objects. Second, the group-
ing of information objects in components can say something about where instances of
these information objects are stored. In Chapter 8 we will explain this subject in more
detail.

The diagram we use to express the business component construction model is a
UML component model [75]. We use the UML component notation because it is the
most used, standardized component notation and it describes most of the elements we
need to express (e.g. components, provided and consumed services, component rela-
tions). Figure 7.3 shows the UML notation we use to express the business component
construction model. As exhibited provided services are expressed using a line ending
in a circle, consumed services are expressed with a dashed line. Information objects
have to be added as documentation because they are not part of the official notation.
In section 7.3 we will show a full example diagram.

Figure 7.3: Business component specification

Until now we have focused on the part of the object system supporting the produc-
tion of the organization. The service specification model describes the function of the
object system, i.e. what services are published by the object system to support produc-
tion acts in the organization model. The service specification model also describes a
part of the coordination involved in calling a service, it defines for each service what
coordination acts are supported and what protocol and location are involved. However,
it does not say anything about interactions among services and in what order services
need to be called. We see the interaction among services as part of the construction of
the object system. Hence, the business component construction model needs a coordi-
nation part modeling these interactions.

As each service supports a transaction, we first analyze the relations between trans-
actions before we come to a service coordination model. According to Dietz [34] (as
explained in Chapter 3), every transaction is either:

• enclosed in some other transaction,

• is a transaction initiated by an actor from the environment of the enterprise,

• or is a self-activation transaction.

While we also take the I- and D-organization into account we can add another type of
transaction:
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• a transaction supporting (i.e. needed for the implementation of) a transaction in
another aspect organization.

For example, for executing a B-transaction the executor of this transaction, a B-actor,
needs to shape into an I-actor to initiate an I-transaction. So, in principle transactions
can be enclosed in some other transaction in two different ways: within the same aspect
organization (defined by action rules) or across aspect organizations (defined by actor
shaping).

We can translate these two types of enclosed transactions in terms of services. The
first type of enclosing transactions, transactions enclosed in some other transaction in
the same aspect organization, can be translated into a sequence of service calls. We
call such a sequence of service calls an orchestration [91]. In the organization model
the relation among transactions is shown in the construction model and detailed in the
process model and action model. The action model contains all the information of
the construction and process model and adds more details. The action rules define the
relations among transactions in detail with additional conditions. Hence, these action
rules can be translated into service orchestrations defining in what order services are
called and on what conditions.

The second type of enclosing transactions, transactions initiated across aspect or-
ganizations, can be translated in a service call from a service consumer to a service
provider on another service layer. A service whose implementation calls other ser-
vices is defined as composite service. Hardjosumarto [47] defines a composite service
based on enterprise ontology as follows:

A composite service is a service from which the creation of the production
fact depends on the creation of production facts from underlying services.
After the composite service promises the service consumer to create the
production fact, it requests the underlying services. If the composite ser-
vice has accepted the production fact from the underlying services, it cre-
ates its own production fact and presents this to the service consumer.

For example, a B-service calls one or more I-services to fulfill its task. From a com-
posite service perspective we can say that in this case the B-service is the composite
service, the I-services are service parts needed to implement the composite service.
So, the implementation of the composite service depends on service calls to service
parts (i.e. underlying services).

Transaction enclosing types Transactions related
through

Service interactions

Within the same aspect
organization

Action rules Orchestration

Across aspect organizations Actor shaping Service parts are called by
the implementation of the
composite service

Table 7.1: Service interaction types
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Table 7.1 shows an overview of the different service interaction types based on the
different transaction enclosing types. As exhibited we distinguish between orchestra-
tions and composite-part relationships. Orchestrations coordinate sequences of service
calls within the same service layer, thereby implementing a business process. Figure
7.4 shows an example orchestration. Each activity in the process calls one service,
thereby creating a sequence of service calls. An orchestration is defined using the
UML activity diagram notation [75]. We use this notation because it is standardized
and defines the basic elements for defining flow diagrams. The coordination part of the
business component construction model consists of a set of such orchestrations. These
orchestrations reflect business processes and thus need to be flexible because they have
to be adapted as fast as possible when the organization wants to change.

Figure 7.4: Orchestration

Composite-part relationships, on the other hand, are much less flexible. The con-
nection between a composite and its parts is relatively strong because parts are not just
triggered, they are an essential part of the implementation of the composite. One com-
posite is implemented by one or more parts on another ("lower") service layer. While
the composite-part relationship is part of the service implementation, it is not modeled
in the business component construction model. In the business component construc-
tion model we only define for each component for each of it’s published services what
service dependencies it has, i.e. what services are needed to implement it. All these
services together are the consumed services of a component (see Figure 7.3). The def-
inition of the implementation and at what points the consumed services are called will
be described in the business component implementation model (see Chapter 8).

Concluding we can say that the business component construction model is a multi-
model consisting of the following aspect models:

• Component diagram: models all components and their relations, expressed in
the UML component diagram notation. For each component we define:

– Provided services: the services grouped in the component. In the diagram
the service names are used, they refer to the service specifications in the
service specification model.

– Information objects: the information objects grouped in the component.
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– Consumed services: the services needed for the implementation of the
component (i.e. needed for the implementation of the published services
of the component).

• Service orchestrations: models sequences of service calls on the same service
layer, expressed in the UML activity diagram notation. A service orchestration
supports a business process.

7.2 Service-oriented construction design

As explained in section 4.6 the step between service specification model and busi-
ness component construction model is construction design. In section 4.5 we have
explained that for implementing complex ICT systems our MDEE approach needs to
comply to the principles of SOA. Hence, following [93] the construction design step
in which we identify components can be called service-oriented construction design
(SoCD).

During construction design the business component construction model is spec-
ified using the organization model and service specification model as starting point.
As function design consists of service identification and service specification, con-
struction design consists of component identification and component specification. In
addition we also have to define the service orchestrations. This means that the SoCD
step in our MDEE approach consists of the following steps:

• Service orchestration design

• Business component identification

• Business component specification

As we explained in the previous section, service orchestrations are based on the action
rules defined in the organization model. The action rules define in what order and on
what conditions transactions are executed. Another part of the organization model, the
process model, gives an overview of a subset of this information in a more readable
way. From the service specification model we can derive the relations between services
and transactions.

In principle a service orchestration is created for each process definition. Each
transaction in the process model will be translated into an activity in the service or-
chestration representing a service call to the service supporting the transaction. If the
action rule defining the relation between two transactions contains conditions, these
conditions have to be added to the service orchestration as decisions in the flow. We
will show an example services orchestration and how we derived it from the organiza-
tion model and service model in section 7.3.

The service orchestration design step is based on two assumptions:

• Each transaction is supported by exactly one service. We have made this as-
sumption in section 6.2.

• In section 5.4 we stated that dissent and cancellation patterns are outside the
scope of this thesis.
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Both assumptions affect the way service orchestrations are modeled. The first assump-
tion means that we always have exactly one invoke activity for each transaction. The
second assumption means that we always assume that a transaction will be promised,
stated, and accepted. This means we do not need additional decisions and service calls
in our service orchestrations to handle the cancellation patterns. Although we need
these assumptions for scoping our work, we will evaluate the impact and possible di-
rections for future research in the evaluation of our MDEE approach (section 9.3).

After the service orchestrations are derived from the organization model and ser-
vice specification model the business component identification step is executed. Two
types of business component identification exist: forward identification, i.e. identi-
fying business components from requirements models, and reverse identification, i.e.
identifying components from existing software [99]. We focus on forward identifi-
cation, in which the Cohesion-Coupling based Clustering Analysis Methods [99] ob-
tained widespread attention. In these methods researchers try to cluster business mod-
els according to the ’high cohesion and low coupling’ principle. The basic idea is to
transform business models into a weighted directional graph, in which business ele-
ments are nodes and the relations between these elements are edges. The key difficulty
in these methods is the calculation of the dependency strength for each edge, which is
often based on predefined values for the different dependency types.

Example methods following this approach are presented in [55] and [40]. BCI3D,
mentioned before in section 6.2, also follows this approach. We use BCI3D for the
business component identification step of our MDEE approach because it is general
enough to be used for all kinds of models and its usefulness for identifying business
components based on DEMO models has already been shown in [5, 4].

BCI3D aims at grouping functions and their corresponding information objects
into business components using clustering algorithms [6]. The input for the cluster-
ing algorithms in BCI3D can be an organization model based on DEMO as shown in
[5, 4]. After setting weights for the different relationship types between transactions,
between object classes and transactions, and between object classes, the algorithms
can determine the optimal clustering of transactions and information objects in com-
ponents.

Our approach slightly differs from the method shown in [5, 4], because we also
take the I- and D-organization into account and we already have specified a service
model. However, most of the mappings between the organization model and the input
of BCI3D can be used in the same way. The input for BCI3D consists of a set of tables
which are transformed in a graph. After that the clustering algorithms can be executed
and a set of business components is calculated.

Table 7.2 exhibits the first part of the set of input tables and how they can be
formulated based on the organization model and the service model. The actor table
lists the actors and what services they provide and consume. The extern table lists the
external components and their shortcuts for reference from other tables. The io table
lists all information objects, their shortcuts, and optionally the external component
they are part of. Last, the fun table lists all services, their shortcuts, and optionally the
external component they are part of.

Table 7.3 exhibits the second part of the set of input tables and how they can be
formulated based on the organization model. The ioio table lists the relations among
information objects, the funfun table lists the relations among services, and the iofun

69



7.2 Service-oriented construction design A Business Component Construction Model

Table Column Explanation Derivation rule
actor actor actor name Name of actor in the Construction

Model of the organization model
shortcut shortcut for graph

visualization
-

performs shortcut of functions this
actor consumes and provides

Take each transaction from the
Construction Model associated with
the actor. Search for the service
supporting the transaction in the
service model. Lookup the shortcut
for the service in the fun table.

extern extern external components Name of external actor in the
Construction Model.

shortcut shortcut for graph
visualization

-

io io the name of the information
object (object class or result
type)

Name of object class in the State
Model of the organization model or
the name of a result type from the
TRT.

shortcut shortcut for graph
visualization

-

is part of
external
component

optionally the name of an
external component

If the executor of the transactions
retrieving and storing this information
is an external actor, the shortcut of the
associated external component from
the extern table needs to be added.

fun function function name Name of service in the service model.
shortcut shortcut for graph

visualization
-

is part of
external
component

optionally the name of an
external component

If the executor of the transaction
supported by this service is an
external actor, the shortcut of the
associated external component from
the extern table needs to be added.

Table 7.2: BCI3D input table derivation rules, part 1

table lists the relations between information objects and services. Note that in the
funfun table both service relation types (as explained in the previous section) are used
to define the relationships between functions. From the service orchestrations it can
be derived which services are called after each other. From the process model (part of
the organization model) it can be derived which services are called by which service
implementation (i.e. composite-part relationships). This relationship is based on the
shaping relations between actors in the organization model and shown in the process
model by relations between transactions in different aspect organizations.
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Table Column Explanation Derivation rule
ioio io-io shortcut of information

object
-

related-to the information objects
this object is related to

List the related objects based on the
information in the State Model.

part-of the information object
this object has a
whole-part relationship
with

List the appropriate objects based on the
information in the State Model. The choice
between related-to and part-of needs to be
made manual, because this information isn’t
specified in the State Model.

evolution-
of

shortcut of the
information object this
object is a specialization
of

If this object is a derived statum type the
element it is derived of should be listed.
This information can be derived from the
State Model which contains four types of
derivation: partition, aggregation,
specialization, and generalization.

state-of shortcut of the
information object this
object is a state of

If the information object is a factum type
(defined in the State Model), the object it is
associated with should be put here.

funfun fun-fun shortcut of function -
standard
(1..1)

the functions always
triggered once by this
function

The services always called once after the
execution of this service (can be derived
from the service orchestrations) or by the
implementation of this service (can be
derived from the process model)

optional
(0..1, 0..n)

the functions optionally
triggered by this function

The services optionally / conditionally
called after the execution of this service (can
be derived from the service orchestrations)
or by the implementation of this service (can
be derived from the process model)

frequent
(1..n)

the functions triggered
one or more times by this
function

The services called one or more times after
the execution of this service (can be derived
from the service orchestrations) or by the
implementation of this service (can be
derived from the process model)

notify the functions notified by
this function

The services called asynchronously (notify)
after the execution of this service (can be
derived from the service orchestrations)

iofun io-fun shortcut of information
object

-

create the functions in which
this object is created

The services in the service model having
this object as production fact or the
production fact is a state of this object.

use the functions in which
this object is used

The service in the service model having this
object included in their production
information used field.

Table 7.3: BCI3D input table derivation rules, part 2
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While BCI3D handles multiple relationship types between functions (i.e. standard,
optional, frequent, notify) which can all get different dependency strengths, we can
precisely define the dependency strength for the different service relationships.

Figure 7.5 shows the full business component identification approach. After the
tables are filled based on the organization model, service model and service orches-
trations (defined previously in the construction design step), a graph is created with
information objects and functions (in our case services) as nodes and the defined rela-
tions as edges. After a weight is specified for each type of relation, a starting solution
(decomposition of the graph) is generated using a start algorithm (e.g. the greedy graph
partitioning algorithm [56]). Next an improvement algorithm (e.g. the Kernighan and
Lin graph-partitioning algorithm [59]) improves this starting solution to an optimal
solution. As explained in [16], multiple algorithms can be chosen. The result is an
optimal decomposition of the given graph into sub graphs with high intern costs and
low extern costs, i.e. components with high cohesion and low coupling.

Figure 7.5: Business Component Identification

In section 7.1 we distinguished between two different scenario’s to group services
in components. In scenario 1 the component identification step is executed once with
all services and information objects as input. In scenario 2 the component identifica-
tion step is executed three times. With B-services as input leading to B-components,
with I-services as input leading to I-components, and with D-services and information
objects as input leading to D-components.

After executing the business component identification step, the components need
to be specified. As stated in the previous section a component is described by the ser-
vices it provides, the information objects it contains, and the services it consumes. The
provided services and information objects are a direct result of the component identifi-
cation step, i.e. in the identification step we have grouped the services and information
objects in components. Consumed services are also a result of the component iden-
tification step. However, not each edge in the graph output of BCI3D is a consumed
service. In the BCI3D output three different relations between components can be
distinguished:

• Relations between information objects (io-io): these relations have been used to
identify the optimal component arrangement. They are not part of the interface
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of a component because information objects do not use each other. It can happen
that the relation between information objects needs to be defined and stored, but
that’s always done at the service level.

• Relations between services and information objects (fun-io): these relations
mean that a service uses an information object. These relations are used by
BCI3D to identify the optimal components but they do not define the consumed
services of a component. Information objects can be created and used by ser-
vices without storing them into a datastore. If they are stored into or retrieved
from a datastore an explicit call to a D-service exists. So, a fun-io edge means
the services need to know the definition of the information object, it does not
mean the service calls a D-service for storing or retrieving the information ob-
ject. Such relations are defined as fun-fun relations.

• Relations between services (fun-fun): only these relations are used to define
the consumed services of a component. However, as explained before only the
composite-part relations are consumed services. Other service relations are de-
fined in the orchestration model.

The end result of the service-oriented construction design step is a business component
construction model consisting of a component diagram and a set of service orchestra-
tions. This model is described in detail in the previous section.

7.3 Example construction model

Let’s execute the construction design step for the Protector case to make things a bit
more clear. In section 7.1 we have shown two possible scenario’s for constructing a
business component construction model. In this section we will show an example for
each scenario based on the Protector case. In scenario 1, all services are grouped in
components based on their relationships. Hence we have components containing B-,
I-, and D-services (see Figure 7.1). In scenario 2 we make a distinction between three
types of components, B-components, I-components, and D-components, containing
respectively B-, I- and D-services (see Figure 7.2).

Example based on scenario 1

The first construction design step is to design the service orchestrations. We will exe-
cute this step for the policy binding process in the B-organization shown in the process
model in Figure 5.2 (part of the organization model). We will explain how elements
of the organization model (the process model and action model for the policy binding
part of the organization) can be transformed into the service orchestration exhibited in
Figure 7.6.

The policy binding process starts when a potential individual policy holder re-
quests a policy binding (transaction T05). This means the service orchestrations starts
with invoking the service supporting transaction T05 (we refer to the service in the
orchestration with the shortcut T05).

After T05 has been promised, transaction T27 is requested. This is described in
the following action rule from the organization model (described in section 5.4):
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Figure 7.6: Service orchestration for the policy binding process

on promised T05(Policy, Insured, InsurancePremium) with policy(new Policy) = Po
request T27(Policy, Insured, InsurancePremium)

no

As no condition is specified in this action rule we do not include a decision in the
service orchestration, we add an activity invoking service T27. Once transaction T27
is requested the following action rule is triggered:

on requested T27(Policy, Insured, InsurancePremium)
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if <risk is acceptable> -> promise T27(Policy, Insured, InsurancePremium)
not <risk is acceptable> -> decline T27(Policy, Insured, InsurancePremium)
fi

no

As shown in the action rule a condition is defined checking if the risk is acceptable,
if so the process continues, otherwise the process stops. Hence, we need to add a
decision to the service orchestration performing the same check.

If the process continues, i.e. transaction T27 is promised, the following action rule
is triggered:

on promised T27(Policy, Insured, PolicyCollection, InsurancePremium)
if <reinsurance is necessary> -> request T16(Policy, Insured, PolicyCollection)
not <reinsurance is necessary> -> execute T27(Policy, Insured, InsurancePremium)
fi

no

Again we see a condition in the action rule, this time checking if reinsurance is
necessary. We add a decision to the service orchestration checking if reinsurance is
necessary, if so service T16 will be invoked, if not the orchestration continues without
invoking T16.

Looking at the process diagram in Figure 5.2 we see that the execution phase of
transaction T05 has been completed. The result is stated to the potential individual
policy holder. As dissent and cancellation patterns are outside the scope of this thesis
we assume that the result always will be accepted. This means that the following action
rules will be triggered:

on accepted T05(Insurant, InsurancePremium)
request T06(Insurant, InsurancePremium)

no

on accepted T05(Policy, Beneficiary, Insured, Insurant)
if <voluntary deposit agreement exists> -> request T07(Policy)
fi

no

on accepted T05(Policy, Commission)
if <commission agreements exists for Policy> -> request T26(Commission)
fi

no

As all three action rules are triggered at the same moment we add a fork to the
service orchestration. This means that we can define a parallel flow for each action rule
listed above. The first action rule does not contain a condition, hence we just add an
activity to invoke service T06 as the most left flow. For the second action rule we add a
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Table Relationship Weight
ioio related-to 5

part-of 10
evolution-of 10
state-of 5

funfun standard (1..1) 15
optional (0..1, 0..n) 5
frequent (1..n) 17
notify 2

iofun create 15
use 10

Table 7.4: BCI3D relationship weights for scenario 1

decision checking if a voluntary deposit agreement exist, if so service T07 is invoked,
otherwise the flow continues without invoking T07. The third action rules contains a
condition, hence we add a decision checking if a commission agreement exists, if so
service T27 will be invoked, otherwise the flow continues without invoking service
T27. The resulting orchestration for the policy binding process is exhibited in Figure
7.6.

The second construction design step is component identification. Following the
process described in section 7.2 we have created the BCI3D input tables based on the
organization model and the service model, which we used as input for the BCI3D tool
described in detail in [16]. Table 7.4 shows the weights we used for each type of
relation. The choice for these weights are quite arbitrary. In practice these weights are
based on experience and tuning of the result.

Using the greedy graph partitioning algorithm [56] for generating a start solution
and the Kernighan and Lin graph-partitioning algorithm [59] for improving the solu-
tion, BCI3D generated the result shown in Figure 7.7a. We have used the transaction
numbers as shortcut to refer to service names. As exhibited in Table 7.7b we have iden-
tified two components, component 1 and 2, corresponding with respectively the ’policy
binding’ and ’product advising’ parts of the organization model. Note that using other
weights will lead to other components, for example more and smaller components.

The final construction design step is component specification, leading to the com-
ponent diagram shown in Figure 7.8. Table 7.7b already exhibited the provided ser-
vices, information objects, and consumed services for each component. Because the
composite-part relationship is rather strong the components do not have consumed ser-
vices. Each service consumed by another service (i.e. a composite-part relationship) is
put in the same component (by BCI3D) as the consuming service. Figure 7.7a shows
edges between the two components, but these are all fun-io or io-io relationships. As
explained in section 7.2 these relationships do not translate into consumed services.
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(a) BCI3D output

Component 1 Provided services T05, T06, T32, T27, T66, T62, T63, T64,
T65, T26, T07

Information objects R05, R32, R27, R06, R62, R63, R64, R65,
R66, R04, R18, R26, R07, R17, Insurance
Premium (InPre), Policy (Pol), Insured
(Ins), Policy Quotation (Pqo), Policy
Collection (Pco), Period (Per), Agent
(Age), Commission (Com), Insurance
Benefit (InBen)

Consumed services -
Component 2 Services T01, T31, T30, T60, T61

Information objects R01, R31, R30, R60, R61, Product Advice
(Adv), Insurant (Inst), Person (Pers),
Product Composition (Prc), Product (Pro),
Party (Par), Beneficiary (Ben)

Consumed services -
(b) Component specification

Figure 7.7: Identified components for scenario 1
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Figure 7.8: Component diagram for scenario 1
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Example based on scenario 2

The different scenario’s only affect the arrangement of services and information ob-
jects in components. The service orchestrations are the same for both scenario’s. This
means the service orchestration exhibited in Figure 7.6 is also part of the business
component construction model for scenario 2.

The business component identification step is different for scenario 2. We created
a set of BCI3D input tables for each type of component, i.e. we executed the compo-
nent identification process for B-components, I-components, and D-components. All
information objects and result types are part of D-components because on the D-level
the data is transported an stored. The B- and I-level make use of D-services to access
the information objects and result types.

For identifying the D-components we have created BCI3D input tables containing
all D-services, information objects, and result types, and their relationships. We have
used the same weights as for scenario 1 (see Table 7.4) which resulted in the BCI3D
output exhibited in Figure 7.9a representing the five D-components shown in Table
7.9b. Because D-services do not have relations among each other in our scenario, the
arrangement in components is fully based on the relationships between the information
objects. D-services also do not have consumed services, because their implementation
does not call other services. D-services are only used by other services (B- and I-
services).

It is notable that component 1 is much bigger than the other ones. This is because
we did not identify all D-services, we have only identified the ones needed in the ’prod-
uct advising’ and ’policy binding’ part of the organization model. So, all information
objects not connected to any service are put in component 1 because of their relations
among each other.

Component 1 Provided services T30, T31, T32
Information objects -
Consumed services T61, T62, T63, T64, T65

Table 7.5: Identified I-component for scenario 2

On the I-level we only have three I-services: T30, T31, T32. Because they do
not have relationships among each other they can be arbitrary grouped in components.
In this scenario (i.e. scenario 2) shaping relations between services (i.e. relations
between services supporting different aspect organizations) do not play a role because
we identify B-, I-, and D-components separately. If we put the three I-services in one
component, we can specify that component as exhibited in Table 7.5. The consumed
services are the services needed for the implementation of the provided services (T30,
T31, T32). This can be derived from the infological and datalogical construction model
exhibited in Figure 5.4 and Figure 5.5. The shaping relations between actors indicate
a composite-part relationship between the services supporting the related transactions
(as explained in section 7.1).
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(a) BCI3D output

Component 1 Provided services T60, T62, T66
Information objects R60, R32, R07, R17, R31, R06, R18, R05,

R62, R66, R30, R27, Person (Pers), Party
(Par), Beneficiary (Ben), Insured (Ins),
Insurant (Inst), Product (Pro), Policy (Pol),
Policy Collection (Pco), Insurance
Premium (InPre), Product Composition
(Prc), Period (Per), Agent (Age),
Insurance Benefit (InBen)

Consumed services -
Component 2 Provided services T63

Information objects R63, R01, Product Advice (Adv)
Consumed services -

Component 3 Provided services T64
Information objects R64, R04, Policy Quotation (Pqo)
Consumed services -

Component 4 Provided services T65
Information objects R65, R26, Commission (Com)
Consumed services -

Component 5 Provided services T61
Information objects R61
Consumed services -

(b) Component specification

Figure 7.9: Identified D-components for scenario 2
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(a) BCI3D output

Component 1 Provided services T05, T06, T27, T07, T26
Information objects -
Consumed services T32, T66

Component 2 Provided services T01
Information objects -
Consumed services T30, T31, T60

(b) Component specification

Figure 7.10: Identified B-components for scenario 2

Identifying B-components is a bit more interesting for this scenario because the
identified B-services have different types of relations among each other. However,
due to our small example the component arrangement stays quite straightforward. We
have again executed the process described in section 7.2 to translate the organization
model and service model into BCI3D input tables. Using the weights presented in
Table 7.4 BCI3D identified the components as exhibited in Figure 7.10a and Table
7.10b. We again see that the components correspond with the ’policy binding’ and
’product advising’ part of the organization model. Note that for component 1 only
the consumed services of the provided service T05 are defined and not the consumed
services of the other provided services (T06, T27, T07, T26), because only that part of
the organization model has been specified in detail as example in section 5.4.

The final component diagram for scenario 2 is shown in Figure 7.11. As ex-
hibited we have three layers of components: B-components, I-components, and D-
components. Each component consumes the provided services of components on
lower layers.

We have shown an example component diagram for two different scenario’s. Al-
though these examples exhibit the use of the construction design step of our MDEE
approach, they are to small to draw conclusions regarding the applicability of the dif-
ferent scenario’s. As this applicability also depends on the existing IT landscape we
leave the question when to use which scenario for future research.
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Figure 7.11: Component diagram for scenario 2
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Chapter 8

An executable Implementation
Model

In the previous chapters we have described the function design step and the construc-
tion design step of our MDEE approach. These steps have resulted in a service spec-
ification model and a business component construction model. The main question for
this chapter is how we can turn these models into an executable model, thereby leading
to the end result of our MDEE approach: a working software application. To come to
this result we have to describe the last two steps in our MDEE approach, engineering
and implementation.

In this chapter we first explain how we can construct an executable model (8.1).
This executable model, the business component implementation model, consists of
component implementations. Therefor we research how to implement a component
containing the service orchestrations (8.2). We also research how to define the imple-
mentations for the different service types, together forming the implementation of the
other components (8.3, 8.4, and 8.5). We also need to define the SCA configurations
needed to deploy the components.

After the full business component implementation model has been defined, we
will explain how this model can be derived from the previous models in our MDEE
approach, i.e. the engineering step (8.7). Implementing the business component im-
plementation model means executing it on engines. We will cover the needed engines
briefly and explain how to derive the input for these engines from the business compo-
nent implementation model (8.8). This chapter is concluded with an example business
component implementation model based on the Protector case (8.9).

8.1 How to come to an executable model?

The combined service specification model and business component construction model
give a complete high-level model of an IT system. It is high-level because a lot of de-
tails are not fully specified yet. The question at hand is how we can transform this
model into a model which can be implemented on technology, i.e. a model which
is executable on engines. This means that additional implementation details need to
be specified. What specific details are needed depends on the used engines. How-
ever, what engines we need depends on the architecture and the way the models are
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structured.
As explained in section 4.5 our MDEE approach follows the architecture principles

of SOA. The service oriented paradigm is, at its core, a model of distributed software
components, built around the idea of multi-protocol interoperability and standardized
component contracts [25]. The functional model and the constructional model of the
object system therefore respectively model services and components. In the previ-
ous Chapter we have seen that the business component construction model consists of
service orchestrations and a component diagram. Each component in the component
diagram is defined by its provided and consumed services and the information ob-
jects it contains. Each provided service refers to a service specification in the service
specification model.

In section 4.5 we have defined that a component has a contractually specified in-
terface and that it can be deployed independently. In Chapter 7 we have seen that the
contract of a component defines its provided and consumed services. The question
is how we can engineer such component descriptions into an executable component.
Bachman et al. [13] give an overview of the technical elements needed for Component-
Based Software Engineering (CBSE) including the elements needed to deploy a com-
ponent. The two main elements needed to deploy components are a component model
and a component framework [13]:

• A component model is the set of component types, their interfaces (i.e. contract),
and, additionally, a specification of the allowable patterns of interaction among
component types. In principle component models specify the design rules that
must be obeyed by component implementations.

• A component framework provides a variety of runtime services to support and
enforce the component model (e.g. communication services, security services,
etc.). In many respects component frameworks are like special-purpose operat-
ing systems, although they operate at much higher levels of abstraction. Com-
ponents are deployed on a component framework.

Example component models are Sun Microsystems’ Enterprise JavaBeans (EJB) [27],
Microsoft’s COM+, OMG’s CORBA Component Model (CCM) [73], and OASIS’
SCA (described before in section 4.5). Both CCM and SCA are vendor-independent
industry standards. However, the SCA is more recent and has the ability to ’bind’
legacy components or services, accessed normally by technologies like for example
EJB and CORBA. We will therefore target the SCA as the component model for our
MDEE approach.

Based on the previous we can say that we need the elements exhibited in Figure
8.1 to make our business component construction model executable. We need a com-
ponent framework implementing the SCA standard. On this component framework a
component can be deployed. A component consists of a contract and an implementa-
tion and is specified according to the SCA standard.

In the SCA a component consists of a configured piece of implementation provid-
ing some business function. An implementation can be specified in any technology
(e.g. Java, .Net, other SCA components, WS-BPEL). The business function of a com-
ponent is published as a set of services. The implementation can have dependencies on
the services of other components, the SCA calls these dependencies references. Im-
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Figure 8.1: Component implementation

plementations can also have properties which are set by the component (i.e. they are
set in the XML configuration of a component).

So, the component contract shown in Figure 8.1 consists of the definition of ser-
vices, references, properties, and it points to an implementation. All component con-
tracts together form the component model. The communication among components
is implemented by the component framework. Most SCA implementations support
multiple communication protocols.

Although the component implementation in SCA can be in any technology, in our
MDEE approach we want to have a model-driven implementation. As explained in
section 4.1 this means that the implementation consist of a model which can be exe-
cuted (i.e. interpreted) on an engine. Hence, as exhibited in Figure 8.1, a component
implementation consists of a component implementation engine and a component im-
plementation model.

Figure 8.2: Service layers and the distinction between Human and IT services
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The implementation of a component can be seen as a combination of the imple-
mentations of the services provided by that component. If we look at the implemen-
tations of the different service types we can distinguish between three different im-
plementation types. These types are based on the observation shown in Figure 8.2.
This Figure shows the three service layers (B, I, and D) and the distinction between
human and IT services. The intention of the curve is to give an idea of the approximate
proportions of human and IT services in each layer.

B-services support ontological transactions. As explained in section 3.4 ontolog-
ical acts cannot be fully automated. Hence, B-services are almost always human ser-
vices. I-services can be automated and thus are mostly IT services. However, some
of them can be human services. See for example the identified I-service Formulate-
PersonalDetails shown in table 6.3, which is a human service. D-services are almost
always IT services, in some rare cases D-services can be human services. For example
a human sends a letter to a customer. Transmitting a message is a D-service, which is
in this case not automated by IT technology.

We can group service types with similar implementations, thereby reducing the
number of different service implementation types. The implementation of human ser-
vices whether they are B-, I-, or D-services will be the same. They have to represent a
task for a human and capture the resulting fact. IT service implementations on B and
I level are also the same. Based on some data a calculation or decision needs to be
made. As D-service implementations only store or retrieve data they differ from the
other IT-services. That’s why we distinguish between IT service implementations and
data service implementations.

Based on the previous we can make a distinction between the following service
implementation types:

• Human service implementations: providing an implementation for almost all
B-services and maybe a few I-services and D-services.

• IT service implementations: providing an implementation for almost all I-
services and maybe a few B-services.

• Data service implementations: providing an implementation for all D-IT-
services.

Besides component specifications (including the service specifications) the business
component construction model also contains service orchestrations. Hence, we
also need to define how these orchestrations are implemented. While we target a
component-based runtime environment each part of the IT system is represented by
one or more components, meaning that service orchestrations also need to be executed
as a component implementation. Such an ’orchestration component’ consists of the
same elements as the other components, i.e. a contract (defining the provided services
and references to other services) and an implementation consisting of an engine and
an implementation model (see Figure 8.1). Each service orchestration will become a
provided service, the service calls from the orchestrations to the provided services of
other components will become the references of the orchestration component.

Concluding we can answer the question how to come to an executable model. To
come to an executable model based on the previous models in our MDEE approach
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(i.e. the service specification model and the business component construction model)
we need to define:

• the contract, engine, and implementation model of the orchestration component.
We will do this in section 8.2.

• the contract, engine, and implementation model of each component defined in
the business component construction model. This means that we need to define
human service implementations (we will do this in section 8.3), IT service im-
plementations (we will do this in section 8.4), and data service implementations
(we will do this in section 8.5).

• the engineering step of our MDEE approach, i.e. how to derive the SCA com-
ponent model and the previously listed contracts and implementation models
(together forming the business component implementation model) from the ser-
vice specification model and business component construction model. We will
do this in section 8.6 and 8.7.

• the implementation step of our MDEE approach, i.e. how to execute the imple-
mentation model on engines. We will do this in section 8.8.

8.2 Implementing the orchestration component

As shown in the previous section a deployed component consists of a contract and an
implementation. The contract is an SCA component description. The implementa-
tion consists of an engine executing an implementation model. The implementation
model should describe the service orchestrations in such a way that they can directly
be executed on an orchestration engine. To research the needed implementation model
and engine for a service orchestration we assume that we have a component consisting
of one service orchestration. In section 8.7 we will explain how to combine multiple
service orchestrations in one component.

In the business component construction model we used a UML activity diagram to
express the service orchestrations. An example service orchestration has been exhib-
ited in Figure 7.6. As an UML activity is not directly executable we need to translate
the service orchestration expressed in this language to an executable language. The
example in Figure 7.6 and the description of the service orchestration model part of
the business component construction model in section 7.1 show that an executable
language for the implementation of the orchestration needs to support:

• Sequential and parallel flows.

• Decision points in these flow.

• Activities to invoke other services.

Several standards exist for describing service interactions. However, for orchestrating
services the Web Services Business Process Execution Language (WS-BPEL) [70] is
embraced by the industry as vendor-independent standard [83] and almost all commer-
cial engines nowadays support this standard.
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It is possible to use WS-BPEL to define an executable service orchestration. The
language effectively defines a portable execution format for business processes that
rely exclusively on web service resources and XML data [70]. All three points men-
tioned above are supported by WS-BPEL. WS-BPEL contains, among others, the fol-
lowing activities:

• Invoke: the invoke activity is used to call web services offered by service
providers.

• Receive and Reply: the receive activity waits for incoming messages. The cor-
responding reply activity sends a response back.

• if : the if activity provides conditional behavior and consists of an ordered list of
one or more conditional branches. The first branch whose condition holds true
is taken, and its contained activity is performed.

• Sequence: a sequence activity contains one or more activities that are performed
sequentially, in the lexical order in which they appear within the sequence ele-
ment.

• Flow: the flow activity provides concurrency and synchronization. A flow ac-
tivity contains one or more activities that are performed concurrently.

These are the basic activities needed to model a service orchestration using WS-BPEL.
We can quite straightforwardly translate a UML activity diagram into a WS-BPEL
specification, thereby constructing the implementation model which is executable on a
WS-BPEL engine (we will describe this process in detail in section 8.7, in section 8.9
we will show an example). Hence, the component implementation for the orchestration
component consists of an implementation model specified in the WS-BPEL language
and executed on a WS-BPEL engine.

The last part we need to define to deploy and run the orchestration component is
the component contract. As explained in the previous section a component contract
is an SCA component configuration consisting of services, references, and properties.
The SCA configuration points to the implementation of the component, which is in
this case a WS-BPEL process. In SCA, both services and references correspond to
WS-BPEL’s concept of partner link. A partner link in WS-BPEL represents both a
consumer of a service provided by the business process and a provider of a service to
the business process. A WS-BPEL invoke activity, for example, points to a partner
link which points to a service provided by another party.

In order to use a WS-BPEL process as a component implementation we need to
define a service or reference for each partner link in the WS-BPEL process. Figure
8.3 exhibits how a service is connected to a WS-BPEL receive and reply activity via
a partner link. Invoke activities are connected to references. The SCA Client and
Implementation Model Specification for WS-BPEL [80] describes in detail how an
SCA component configuration can be defined for a WS-BPEL process. In our case
we can say that each service orchestration in the orchestration component will lead
to a service in the SCA configuration and each invoked service by any of the service
orchestration will lead to a reference.

88



An executable Implementation Model 8.3 Implementing human services

Figure 8.3: A WS-BPEL process as SCA component implementation [80]

8.3 Implementing human services

In section 8.1 we have seen that one of the service implementation types is the human
service. This implementation type implements all human services specified in the ser-
vice specification model, which will, in practice, mostly be B-services. To research
the needed implementation model and engine for a human service we assume that we
have a component consisting of one human service. This means we can reason about
the implementation of a Human service as a component implementation, i.e. we can
define an SCA component description (i.e. the component contract), an engine, and
an implementation model for this component. In section 8.7 we will explain how the
implementations of multiple services can be combined in one component implemen-
tation, depending on the component arrangement chosen in the business component
construction model described in Chapter 7.

We will first research what implementation model and corresponding engine we
need to implement a human service. Although human services are provided by human
beings, parts of the service implementation can be automated. Different choices can
be made regarding the parts implemented by IT technology. We will focus on an
implementation model automating human services as much as possible.

Figure 8.4 exhibits the standard transaction pattern with a human service consumer
and a human service provider. The coordination acts (e.g. request, promise, state, and
accept) are executed by these human beings. However, the production act, actually
creating the requested production fact, can be supported by an IT system. The IT
system can present a task to the human service provider describing what he needs to
do to produce the production fact. The resulting fact is registered in the IT system.
The IT system can also provide the connection to the I- and D-services needed to
implement the human service. As shown in Figure 8.4, once the result is promised, the
service provider requests a task from the IT system. Requesting a task means claiming
an existing task or creating a new task. If the task has been completed the service
provider states the result and the consumer can accept the result.
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Figure 8.4: The transaction pattern and human tasks

Human tasks, provided by an IT system (as shown in Figure 8.4), are services
’implemented’ by people, they allow the integration of humans in service-oriented
applications [2]. A human task has two interfaces, an interface to IT systems and an
interface to people.

The IT interface exposes the service offered by the task to the IT system. This
service can thus be triggered from within the IT system, for example from a service
orchestration. Triggering a task service means creating a human task and putting it in
the inbox of the associated user(s). The IT interface is bi-directional, meaning that a
task can also access IT services (e.g. I- and D-services) to request information needed
to fulfill the task.

The human interface allows people to deal with tasks, for example to query for
human tasks waiting for them (e.g. using a task inbox), and to work on these tasks.
In principle the ’human part’ of a task describes what people should do to fulfill the
task. A human task has people assigned to it. These assignments define who should
be allowed to play a certain role on that task. Human tasks may also specify how
task data is rendered on graphical user interfaces of different devices. The information
needed to describe and fulfill a task can be requested from the IT system using I- and
D-services.

As far as we know the only standard in the field of human tasks is the WS-
HumanTask specification [2]. This specification describes tasks in a standard way
in which they are directly executable on an engine. WS-HumanTask is part of the
BPEL4People [3] extension of WS-BPEL and supported by most WS-BPEL engines.

The main element of WS-HumanTask is a Human Task which is described by the
following mandatory elements:

• name: uniquely identifies the task.

• interface: specifies the operation used to invoke the task (i.e. the IT interface of
the task). Invoking a task means creating an instance of it. The needed data is
specified with XML Schema [95, 17] (within the WSDL [23] definition of the
interface) and needs to be provided in the input message when invoking the task.

• peopleAssignments: defines which people or roles are assigned to the task.
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• presentationElements: definition of the user interface elements needed to allow
users to deal with their task (i.e. the human interface of the task).

• outcome: defines the business result of the task.

• deadlines: defines the timeouts and escalations for the task. Timeouts and es-
calations allow the specification of a date or time before which the task must
reach a specific state. A distinction is made between a start deadline (specifies
the time until the task must start) and a completion deadline (specifies the due
time of the task).

As shown in Chapter 5 B-transactions are supported by I-transactions and D-
transactions via the shaping of actors. In Chapter 6 we have seen that in the same
way B-services are supported by I- and D-services. We defined the relationship be-
tween a service whose implementation depends on other services as a composite-part
relationship.

Figure 8.5: Human service invoke pattern

The implementation of a human service always depends on IT or data services.
This is reflected by the definition of a Human Task given before. When a Human Task
is invoked via its interface, input data needs to be provided. The outcome of a task
also needs to be stored using IT or data services. Figure 8.5 exhibits the basic pattern
executed when a human service provider claims or creates a task. First one or more
IT or data services are invoked. The data retrieved from these services is used as input
data for the Human Task invoke. After the Human Task has been completed one or
more IT or data services are called with the output of the Human Task as input, i.e. the
outcome of the task is stored using IT or data services.

The pattern described in Figure 8.5 is the basis for the human service implemen-
tation model. While the WS-HumanTask standard is part of BPEL4People which is
an extension of WS-BPEL we can define this implementation model using these exe-
cutable languages. The following elements need to be defined:
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• WS-BPEL process: a process containing invoke activities for calling IT or Data
services.

• People activity: an additional activity in the WS-BPEL process for invoking the
Human Task. The people activity can be used if the BPEL4People extension is
included in the WS-BPEL process.

• Human task: definition of the human task following the WS-HumanTask stan-
dard.

The result is a WS-BPEL process which can directly be executed on a WS-BPEL
engine supporting BPEL4People. Hence, the component implementation for a com-
ponent containing a single human service consists of a WS-BPEL process running on
its associated engine. The SCA contract of the component can be defined in the same
way as described in section 8.2 (i.e. it can be derived from the process definition).

8.4 Implementing IT services

To research the needed implementation model and engine for an IT service we make
the same assumption as in the previous section, i.e. that we have a component con-
sisting of one IT service. This means we can reason about the implementation of an
IT service as a component implementation, i.e. we can define an SCA component de-
scription (i.e. the component contract), an engine, and an implementation model for
this component.

We will first research what implementation model and corresponding engine we
need to implement an IT service. Several SCA specifications exist describing how
to implement a component. One of them is to use WS-BPEL for defining the imple-
mentation [80]. We used that approach to implement the orchestration component.
To implement a component providing a human service we used an extension of WS-
BPEL, BPEL4People. Other SCA specifications include the SCA Java Component
Implementation [81]. This specification defines how to implement a component using
Java.

The default way to define SCA component implementations is to use Java. How-
ever, as we explained in Chapter 4, MDE aims to improve productivity in software
development by raising the level of abstraction and automation. Luoma et al. [63]
have researched over 20 real-world cases in which MDE is applied with use of DSLs
(see section 4.4), they call these approaches Domain-Specific Modeling. They con-
clude that in all cases, Domain-Specific Modeling had a clear productivity influence
due to its higher level of abstraction: it required less modeling work, which could often
be carried out by personnel with little or no programming experience.

In principle, visual languages (as opposed to textual ones) would often be ideal to
use as domain-specific notations. For a large number of problem domains there exists
a natural and intuitive visual representation of artifacts in these domains. Practitioners
in these fields have been using these notations for a long time, which reduces training
costs and lowers the barriers to the acceptance of a new language [39]. Visual lan-
guages are often graph-based, the vertices denote activities, while the edges show the
relations between the activities. The notion of an activity is alike in all workflow-like
languages, i.e., an activity is atomic and corresponds to a logical unit of work [96].
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Based on the previous we can say that we can use a graph-based language for
defining the implementation of IT services in a way fulfilling the goals of our MDEE
approach (i.e. defining the implementation on a higher abstraction level, more automa-
tion by using executable modeling languages, and a higher productivity by enabling
domain experts without programming experience to define the implementation). How-
ever, the full definition of such a language, including it’s abstract syntax, concrete
syntax, and semantics, is outside the scope of this thesis. We will define the basic
structure and some example activities to show the idea.

The requirements for the language we need are as follows:

• We need to be able to define a flow including decision points.

• We need to be able to invoke other IT services or data services to support
composite-part relations between services (as explained in section 7.1).

• We need to be able to define how the production fact is created. While IT ser-
vices support I-transactions, production acts supported by IT services are info-
logical in nature, meaning that they reproduce, deduce, reason, compute, etc.
information (see the distinction axiom in section 3.3). Hence, we need to have
activities in our language to manipulate information, to execute calculations, to
evaluate conditions based on information, and to validate the content of infor-
mation.

We can take WS-BPEL as starting point for our language. WS-BPEL is easy to visu-
alize graphically and it contains activities for defining a flow (e.g. the sequence and
flow activity), to invoke services (e.g. the invoke, receive, and reply activities), and
activities describing decision points or conditions (e.g. the if activity). However, for
actually manipulating data or to do calculations WS-BPEL needs to invoke a service
providing that functionality. As explained before we want to have an executable imple-
mentation model without further refinements. Hence, we need to specialize WS-BPEL
to come to a language which includes the needed activities and is directly executable.
This is a same kind of specialization as the BPEL4People extension we used to define
the implementation of human services. The difference is that no industry standard ex-
ists for the specialization we need and we thus have to define this WS-BPEL extension
ourselves.

While we need to be able to define how the production fact is created, we need to
add the following activities to WS-BPEL:

• Validate: used to validate the content of input based on a set of validation rules.
The definition of this activity contains a list of data attributes to check and a
validation rule for each attribute (e.g. a regular expression).

• Calculate: used to do mathematical calculations. The definition of this activity
contains a mathematical expression consisting of data attributes and operators.

• Change: used to change information objects. The definition of this activity
contains an input object and a list of changes. A change consists of the attribute
to change and an expression describing the new value.
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With these activities in addition to the activities already defined in WS-BPEL we have
a language to define the implementation model of IT services. In section 8.9 we will
show an example IT service implementation model.

While we defined our own language to specify the implementation model, we also
need to define our own engine to execute the implementation model. However, the IT-
service implementation language is a specialization of WS-BPEL. This means we can
create an engine by specializing a WS-BPEL engine. Multiple open source WS-BPEL
engines exists which can be used as starting point. We leave the actual implementation
of such an engine for future work.

The contract for a component containing a single IT service, i.e. the SCA compo-
nent configuration, can again be derived from the WS-BPEL process. The services and
references defined in the contract can be derived from the invoke, receive, and reply
activities in the WS-BPEL process as described in section 8.2.

8.5 Implementing data services

Data service implementations only differ from IT service implementations in the kind
of activities they execute. While data services support D-transactions, production acts
supported by data services are datalogical in nature, meaning that they store, transmit,
copy, and destroy data (see the distinction axiom in section 3.3). Hence, to define the
implementation model of data services we need a language able to describe these kinds
of activities. As with IT services we can extend WS-BPEL. However, instead of the
validate, calculate, and change activity used for the IT service implementation model
we need the following activities in addition to the WS-BPEL activities:

• Validate: used to validate the format of input based on a set of validation rules.
The definition of this activity contains a list of data attributes to check and a
validation rule for each attribute (e.g. a regular expression).

• Create: used to create objects. The definition of this activity only contains the
type of information object to create.

• Retrieve: used to read objects from data sources. The definition of this activity
contains a query, i.e. the language string used to query data sources for the
requested information.

• Store: used to store changed objects. The definition of this activity contains an
input object, which is the object to store.

• Delete: used to delete objects. The definition of this activity contains an input
object, which is the object to delete.

With these activities in addition to the activities already defined in WS-BPEL we have
a language to define the implementation model of data services. However, we also
need information about the data structure for actually creating, retrieving, storing, and
deleting data. The implementation of a data service can execute requests on a database
for manipulating data, but that database need to be configured with a database schema
defining the structure of the data.
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In the organization model the state model (modeling the information objects, their
attributes, and their relations) has been defined using a language based on ORM [45]
(see section 5.1). As Halpin and Proper show in [46] ORM can directly be used to
define optimized database structures. Hence, we do not need to define additional infor-
mation in the data service implementation model, we can directly derive the database
schema from the state model. As shown by Vermolen and Visser [97] it is even possible
to handle data structure changes over time while preserving the data in the database.
The data stored in the database according to the database schema can be evolved auto-
matically following the changes in the model.

Based on the previous we see that we need to define a custom engine to execute
the data service implementation model. As with IT services this engine can be a spe-
cialization of a WS-BPEL engine. In addition to this engine we also need a Database
Management System (DBMS) to create, retrieve, store, and delete data. We leave the
implementation of the custom engine for future work. We do not need to implement a
DBMS while there exist multiple DBMS products which are used a lot and in practice
mostly already available within organizations.

In section 8.9 we will show an example data service implementation model. In
section 8.7 we will explain in more detail how to derive a database schema from the
state model.

8.6 Defining the SCA configuration

In the previous sections we have seen the different elements of the business component
implementation model. We also briefly described an SCA component configuration,
assuming we had one service or service orchestration per component. In this section
we will first define the SCA component configuration in detail including its XML syn-
tax. Afterwards we will explain that we need to define SCA composite configurations
to define a component implementation for a component providing multiple services.

Figure 8.6: SCA component configuration template

Figure 8.6 exhibits an example SCA component XML configuration template. The
root element defines the component which is identified with an unique name. The
implementation element defines the type of implementation for the component. In
our case we always use the WS-BPEL implementation type as defined in the SCA
Client and Implementation Model Specification for WS-BPEL [80]. The specification
defines that the implementation element should contain a process attribute containing
the name of the process used as implementation. As all implementations described
in the previous sections (i.e. a service orchestration, human service, IT service, and
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data service) are based on WS-BPEL each of them can be described with the SCA
BPEL implementation type. The SCA BPEL specification also describes in detail how
to derive the service and reference elements from the WS-BPEL process. We have
described this process before in section 8.2 and Figure 8.3.

The service element in the XML configuration contains a name, which can be de-
rived from the business component construction model (i.e. the name of the provided
service of the component). The service element contains an interface element which
points to the definition of the interfaces specified in the Web Service Description Lan-
guage (WSDL) [23]. Although multiple service elements can be defined, only one is
needed because each component only represents a single WS-BPEL process imple-
menting a service orchestration, human service, IT service, or data service.

Each service invoked from a service orchestration or from the implementation of a
service will lead to a reference in the component configuration. As shown in Figure 8.6
the reference element contains a name attribute which points to the name of another
service. For internal services, i.e. services in the same SCA domain, no binding infor-
mation (i.e. location and protocol details) needs to be specified, the runtime ensures
that services can find and communicate with each other. For services used by external
parties the binding information can be specified in the runtime environment.

Until now we assumed that each component contained a single service orches-
tration or a single service. However, in the previous chapter we have seen that the
business component construction model can contain components providing multiple
services. Hence, we need to define the SCA configuration for such components.

Figure 8.7: SCA component with composite as implementation

The default way in SCA to combine multiple implementations in one component is
to use an SCA composite as component implementation. An SCA composite is used to
assemble SCA elements in logical groupings. It is the basic unit of composition within
an SCA Domain [79]. An SCA composite contains a set of components, services, ref-
erences and the wires that interconnect them, plus a set of properties which can be used
to configure components. Figure 8.7 exhibits an example component configuration us-
ing an SCA composite as implementation. The component, named component1, uses
composite1 as implementation and it provides the services s1 and s6. Its implemen-
tation depends on the services s3, s4 and s5, which are defined as references. We did
not specify the full WSDL definitions of the service interfaces because they do not add
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anything to our example.

Figure 8.8: Example SCA composite configuration

Figure 8.8 exhibits the example configuration for composite1. It groups three com-
ponents (c1, c2, and c3) each providing a single service and each implemented by a
WS-BPEL process. As shown a composite also has services and references just as
components. The services provided by a composite are promoted component services.
For example, service s1 is the service s1 from component c1 promoted to the compos-
ite level. The same holds for references. In this way a subset of services and references
of the included components will become external. As shown in the example in Fig-
ure 8.8 not all services and references are promoted. Component c1 has a reference
referring to service s2 provided by component c2. So, components grouped within
a composite can refer to services provided by other components or to services pro-
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vided by another composite. In the latter case the reference needs to be promoted and
becomes a reference of the composite.

An SCA composite is not necessarily used to implement an SCA component. In-
stead of using an SCA composite to define the implementation of a higher-level com-
ponent it can also be directly deployed on an SCA framework.

8.7 Engineering

Now the full business component implementation model has been defined we will
describe the engineering step of our MDEE approach, which defines how to derive the
business component implementation model from the business component construction
model.

In section 8.2 we have shown how a single service orchestration can be imple-
mented using an SCA component with a WS-BPEL process as implementation. In
section 8.6 we have seen that SCA components can be grouped in SCA composites,
thereby defining the implementation of a higher level component. Although we will
now assume that all service orchestrations defined in the business component construc-
tion model will be grouped in one component, they can also be grouped in multiple
components based on specific implementation needs.

Based on the previous we can formulate the engineering step of our MDEE ap-
proach for the coordination part of our model as follows:

• Transform each service orchestration in the business component construction
model into a WS-BPEL process. Sequential activities will become a sequence
activity in WS-BPEL, activities defined in parallel will become part of a WS-
BPEL flow activity. Each activity defined in the service orchestration will be-
come a WS-BPEL invoke activity, each decision will become an if activity. Ad-
ditional information needs to be added to the WS-BPEL process such as the
precise definition of inputs and outputs of invoke activities and how the output
of one activity can be used as the input for another activity.

• Generate an SCA component configuration for each WS-BPEL process. This
configuration will contain one service for calling the process and a reference for
each invoke activity in the process. We have described this in more detail in
section 8.2.

• Generate an SCA composite configuration containing all generated SCA com-
ponent configurations. For each component configuration the service elements
are added as promoted service to the SCA composite, each reference element is
added as promoted reference to the SCA composite.

The resulting SCA composite represents the orchestration component and can directly
be deployed on an SCA framework, i.e. it is directly executable.

The components defined in the business component construction model also need
to be translated to deployable SCA composites. In the sections 8.3, 8.4, and 8.5 we
have seen the implementation model and SCA component configuration for human,
IT, and data services respectively. We have defined these implementations assuming
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that each component only contained a single service. In the business component con-
struction model, however, a component can contain multiple services. Therefore we
need to group the SCA components representing a single human, IT, or data service
into SCA composites.

Based on the previous we can formulate the remaining part of the engineering step
of our MDEE approach as follows.

For each component in the business component construction model:

• Create an SCA composite.

• Create an SCA component within the composite for each provided service by
the component.

• Define the SCA configuration and implementation of that SCA component based
on the type of service. We will describe this process in detail for each service
implementation type in the remainder of this section.

• Promote each SCA component service to a service of the SCA composite.

• Promote each reference which does not refer to a service provided by an SCA
component available within the composite to a reference of the SCA composite.
If an SCA composite, for example, contains an IT service which implementation
uses a data service which is part of the same SCA composite, than this reference
can stay internal, i.e. it does not have to be part of the interface of the SCA
composite. References to services provided by other SCA composites need to
be part of the interface, i.e. they have to be promoted to a reference of the
composite itself.

Figure 8.9: SCA composite example visualized

Let’s consider an example component providing three services: s1, s2, and s6.
Service s1 is an IT service which implementation invokes service s2 and service s3.
Service s2 is a data service which implementation invokes service s4. Service s6 is a
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human service which implementation invokes service s5. Following the engineering
step described above we come to the SCA composite visualized in Figure 8.9.

As exhibited the SCA composite contains three SCA components (c1, c2, and c3)
each providing one service. All these services, s1, s2, and s6, are promoted to a service
of the SCA composite. References s4, s5, and s6 are examples of promoted references.
The wire between reference s2 of component c1 and service s2 of component c2 is an
example of an internal reference. This means reference s2 of component c1 does not
have to be promoted to a reference of the SCA composite.

So, following the steps listed above the full business component implementation
model can be specified. Each resulting SCA composite can directly be deployed on an
SCA framework and as soon as its references are available its provided services can be
called. In the remainder of this section we will define in more detail how to derive the
implementation model for each service implementation type. In section 8.9 we will
provide an example implementation model for each service implementation type.

For human service we need to create a WS-BPEL process including a people ac-
tivity invoking a Human Task (as described in section 8.3). Besides the people activity,
the WS-BPEL process contains an invoke activity for each service which needs to be
called to retrieve the information needed as input for the Human Task. The process
also contains an invoke activity for each service needed to store the outcome of the
Human Task. What services need to be invoked can be derived from the shaping re-
lations in the organization model, i.e. each service supporting a transaction requested
via shaping by the executor of the transaction supported by this human service need to
be invoked by the implementation of this service. The SCA component configuration
for a human service implementation contains an implementation element referring to
the WS-BPEL process, one service representing the human service, and a reference
for each service invoked by the WS-BPEL process.

The Human Task definition itself can be derived from the previous models as fol-
lows:

• name: the name of the service as specified in the service specification model.

• interface: WSDL definition of the IT interface of the task. Can be the same for
each human service depending on the used engine.

• peopleAssignments: the actor role of the service as specified in the service spec-
ification model.

• presentationElements: can be a manually defined interface or automatically gen-
erated based on the outcome. In the latter case standardized interface elements
are used for each possible attribute type of the information object defined as
outcome.

• outcome: the production fact of the service as specified in the service specifica-
tion model.

• deadlines: can be derived from the quality attribute of the service as specified in
the service specification model.

We can summarize the engineering step for a human service with the following steps:
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• Create a WS-BPEL process with one people activity calling a Human Task.

• Define the Human Task according to the WS-HumanTask standard. Derive each
element from the other models in our MDEE approach as described above.

• Add invoke activities to the process for each service invoked to retrieve the data
needed as input for the Human Task.

• Add invoke activities to the process for each service invoked to store the outcome
of the Human Task.

• Create an SCA component configuration representing the human service.

In section 8.4 we have described the implementation of an IT service. We defined
a custom language based on WS-BPEL to describe the implementation model. This
language contains three activities in addition to WS-BPEL: validate, calculate, and
change. The complete implementation model for an IT service consists of a process
defined using this language and an SCA component configuration. The engineering
step for an IT service can be defined as follows:

• Create a process using the custom language.

• Add an invoke activity for each service invoked by the IT service. This can be
derived from the shaping relations in the organization model in the same way as
described previously for human services.

• Model how the production fact is created using the validate, calculate, and
change activities. These activities need to be placed before or after invoke activi-
ties depending on the needed input and output data of each activity. For example,
a calculate activity needs data as input and hence needs to follow an invoke ac-
tivity providing this data as output. The calculate activity can be followed by an
invoke activity with the result of the calculation as input.

• Create an SCA component configuration representing the IT service. Its im-
plementation element will refer to the process, its service element describes the
provided IT service, and it will contain a reference for each invoked service.

For data services we have also defined a custom language based on WS-BPEL. Hence,
the engineering step should describe how to derive a process defined in this language
from the previous models in our MDEE approach. As explained in section 8.5 we also
need to have a database to store and retrieve data to make the implementation of data
services executable. The structure of this database can be based on the state model in
the organization model. For now we assume that we transform the state model in a
single database structure which is used by all data services. It is also possible to use
multiple databases on different locations. Goethals [44] describes and evaluates data
storage options in a service-oriented environment (i.e. where the data is stored and
who stores it) in more detail. The combination of his work and our MDEE approach
is left for future work.

The database structure can be derived from the state model. McCormack, Halpin,
and Ritson [64] have developed and described an approach to transform ORM models
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to a relational database schema. Basically the following steps are needed (translated
to the ORM based language used to define the state model):

• Create a table for each information object and result type.

• Create a column for each attribute of the information object.

• Each relation transforms to a crosstable or foreign key (column with identifier
to the row of another table depending on the type of relation).

If the database is generated, the engineering step for a data service can be defined as
follows:

• Create a process using the custom language.

• Model how the production fact is created using the validate, create, store, re-
trieve, and delete activities. For example, the input of a data service is an in-
formation object. The first activity validates if the format of the input data is
correct. If the input data is correct then a second activity stores the information
object in the database.

• Create an SCA component configuration representing the data service. Its im-
plementation element will refer to the process, its service element describes the
provided data service. The reference to a database is not part of the SCA stan-
dard and needs to be configured in the SCA framework in a vendor-specific way.

In this section we have seen how we can create an executable implementation model
based on the previous models in our MDEE approach. We first described how to
create an SCA composite representing the orchestration component. Afterwards we
explained how to create an SCA composite for each component defined in the business
component construction model.

8.8 Implementation

In the previous sections we described the business component implementation model
and how to derive it from the previous models in our MDEE approach. The business
component implementation model is specified using graphical modeling languages. In
this section we will explain how the business component implementation model can
be executed, i.e. how to implement this model on engines.

While the business component implementation model consists of SCA compos-
ites, we need an engine executing these composites. As explained in section 8.1 we
call such an engine a component framework. Several component frameworks imple-
menting the SCA standard exist, among them the open source Tuscany project1.

For SCA frameworks the basic unit of deployment is a so-called SCA contribution.
This is an archive file containing all information needed to run an SCA composite. It
contains the configuration for the SCA composite and the configuration for each SCA
component. These configurations are defined in XML files as prescribed by the SCA

1http://tuscany.apache.org/
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standard. An SCA contribution also contains the implementation of the SCA compo-
nents. An SCA framework can configure and execute these implementations using the
SCA configuration files. However, the framework should support the provided type
of implementation. If the implementation, for example, is defined in Java, the frame-
work should be able to execute Java class files. If the implementation is defined in
WS-BPEL the framework should contain a WS-BPEL engine.

As we explained in the previous sections we use custom-defined languages to spec-
ify the implementation of SCA components. This gives us the ability to derive part of
the implementation from the previously defined models in our MDEE approach and the
remaining part can be specified using a high-level graphical language. The downside
is that we need to provide custom engines to execute these implementation models.
We can provide these engines by extending the SCA framework or by including the
engine in the SCA contribution.

The SCA aims to be interoperable among all kind of implementation types. That
is why almost all SCA frameworks provide extension mechanisms to provide engines
for custom implementation types. However, each SCA framework has its own way
to enable the addition of extensions. This means that we do not target a standardized
framework anymore, we need to provide extension implementations for each frame-
work we want to deploy SCA composites generated by our MDEE approach on.

The second way to provide custom engines, including the engine in the SCA con-
tribution, is much more flexible. The basic idea is to define the implementation of an
SCA component as a Java implementation, because that is the default implementation
type and thus supported by each SCA framework. This Java implementation is just
a small wrapper which starts the custom engine and let it execute the implementa-
tion model. Each service call is redirected to the engine instead of handled by Java
code. The advantage of this approach is that the SCA contributions generated by our
MDEE approach can be executed on each SCA framework. Another advantage is that
each contribution can contain another version of the engine. In practice this will be
necessary because the custom language, and thus the custom engine, will evolve over
time. However, this is also a drawback of this approach. If the engine need to be up-
dated each SCA contribution need to be updated instead of one extension of the SCA
framework.

Which of these two approaches to use depends on multiple factors, a lot of them
non-technical. While we leave the actual implementation of our MDEE approach as
future work, we also leave this question open for future research.

Concluding we can say that the implementation step of our MDEE approach con-
sists of:

• Transforming all configurations and models into a XML files which can be in-
terpreted by the engines.

• The bundling of these files in SCA contributions.

• Deploying the SCA contributions on an SCA framework.

The following engines are needed to execute the result of our MDEE approach:

• An SCA framework for deploying the SCA contributions and the wiring of all
SCA composites and SCA components.
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• A WS-BPEL engine for executing the service orchestrations.

• A WS-BPEL engine with WS-HumanTask extension for executing human ser-
vice implementations.

• A WS-BPEL engine with an extension defining a validate, calculate, and change
activity for executing IT service implementations.

• A WS-BPEL engine with an extension defining a validate, create, retrieve, store,
and delete activity for executing data service implementations.

• A DBMS configured with the generated database schema to create, retrieve,
store, and delete data.

8.9 Example implementation model

We will conclude this chapter by showing some example parts of the business com-
ponent implementation model. We will show an example implementation model for a
service orchestration, a human service, an IT service, and a data service. We will also
show an example SCA composite implementing a component described in the busi-
ness component construction model. We have drawn the WS-BPEL processes for the
service implementation models with a trial version of ActiveVOS Designer2.

In section 7.3 we have shown an example service orchestration for the policy bind-
ing process in Figure 7.6. Figure 8.10 exhibits the implementation model expressed in
WS-BPEL for this service orchestration. We created this implementation model fol-
lowing the engineering step described in section 8.7. We described the service orches-
tration in detail in section 7.3. The only difference worth mentioning is that instead of
the start and end activity used in the UML activity diagram, the WS-BPEL contains
a receive activity waiting for the incoming message triggering the process and a reply
activity sending a message back.

2www.activevos.com
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Figure 8.10: Implementation model of the policy binding service orchestration
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Figure 8.11 exhibits an example implementation of human service T01 (Produc-
tAdvicing). All activities in the WS-BPEL process are placed in a sequence activity,
denoting that they are executed in sequential order. The first activity, a receive, waits
for incoming messages. Once T01 is triggered the receive activity receives the incom-
ing message and the engine executes the next activity, an invoke activity which invokes
the IT interface of human service T30 to retrieve the personal details from the potential
individual policy holder. A task will be created for the associated actor role and once
the task is completed the result will be returned to the invoking party (in this case the
implementation of T01). After that the process implementing service T01 can proceed
with invoking IT service T31 which returns the needed product information to create
a product advice. Once this information is received the people activity CreateProduc-
tAdvice is executed which create the CreateProductAdvice task which is described
with the following WS-HumanTask elements:

• name: CreateProductAdvice.

• interface: WSDL interface with portType ’createAdvice’ and operation ’advice’.
The input message for this operation contains a PERSON object containing the
personal details of the potential individual policy holder and a PRODUCTCOM-
POSITION object containing the relevant information of the relevant products.

• peopleAssignments: product advisor (A01).

• presentationElements: graphical user interface containing a task description for
the product adviser including the personal details and product information.

• outcome: product advice is created (R01).

• deadlines: the start deadline is five minutes, the completion deadline two days.

Note that we did not provide the full WS-HumanTask XML specification for the Cre-
ateProductAdvice task. We described the mandatory elements of the task in an infor-
mal way to explain them. A complete executable specification of the implementation
model and testing it on appropriate engines is left for future work.

After the CreateProductAdvice task is completed the people activity is finished.
The next activity in the process exhibited in Figure 8.11 invokes data service T60 to
store the outcome of task. The process finishes with a reply activity which sends a
message back to the sender of the incoming message received by the receive activity.
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Figure 8.11: Implementation model of human service T01
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Figure 8.12 exhibits the implementation of IT service T31 (ComposeProductIn-
formation). The implementation process starts with a receive activity waiting for an
incoming message. This message should contain a PERSON object containing the
personal details of the potential individual policy holder. While service T31 has a
composite-part relationship with service T61 (as we can derive from the shaping re-
lations in Figure 5.4) its implementation contains an invoke activity invoking service
T61. This service returns the relevant products based on the given personal details.

The next activity in the process, the for each activity, takes the resulting list of
products as input and executes the activities in the scope it contains for each product.
A scope provides the context which influences the execution behavior of its enclosed
activities. So, for each product the CalculateProductInformation activity will be exe-
cuted. This activity is a calculate activity (see section 8.4) and calculates the price of
a product based on the personal details of the potential individual policy holder. This
activity is configured with a mathematical expression like for example:

product.policy.insurancePremium.price + product.policy.commission.price +
100

person.age
We just created a mathematical expression as example, this is not a realistic way to

calculate the costs of a certain insurance product for a given potential individual policy
holder. As exhibited we add the price of the INSURANCEPREMIUM associated with
the POLICY associated with the PRODUCT to the price of the COMMISSION as-
sociated to the POLICY associated to the PRODUCT. Furthermore we add the result
of 100 divided with the age of the given PERSON. Once the price for each product
has been calculated the service returns the results to the invoking party with the reply
activity.
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Figure 8.12: Implementation model of IT service T31
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Figure 8.13: Implementation model of data service T61
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Figure 8.13 exhibits the implementation of data service T61 (RecordPersonalDe-
tails). As shown the process waits for an incoming message using the receive activity.
This message should contain a PERSON object containing the personal information of
the potential individual policy holder. The ValidateFormat activity is a validate activ-
ity (see section 8.5) and it validates the format of the incoming PERSON object. This
activity is configured with, for example, the following validation rules:

• Attribute age should be greater than 0.

• Attribute name should apply to the following regular expression: [a-zA-Z ]+

This list can of course be extended with all kinds of validation rules each attribute of
the PERSON object should comply to. If the format is valid the CreatePerson activity
executes a query on the database to insert a new PERSON object, i.e. it will execute an
SQL insert query (depending on the type of database) to insert a record in the PERSON
table. So, CreatePerson is a create activity (see section 8.5) configured with a specific
query.

Figure 8.14: Example component implementation

We have shown an example implementation model for a service orchestration, a
human service, an IT service, and a data service. We will finish this section by showing
an example SCA composite implementing the I-component of the business component
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construction model for scenario 2, shown in Figure 7.11. Figure 8.14 exhibits a visual
representation of this composite, which we created following the engineering step of
our MDEE approach as described in section 8.7. As exhibited the component provides
three services (T30, T31, and T32) and has references to five services (T61, T62, T63,
T64, and T65). Each provided service is implemented with an SCA component, as
explained in detail in this chapter. T30 is a human service, T31 and T32 are IT services.
We have shown example implementation models for both service types previously
in this section. The SCA composite shown in Figure 8.14 can be implemented on
technology following the implementation step of our MDEE approach described in
section 8.8. This will result in a working IT system directly supporting the organization
(as described by the organization model) with its provided services.
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Chapter 9

Conclusions

We started this research with a set of requirements for an MDEE approach. Our goal
was to design an MDEE approach fulfilling these requirements. The DEMO method-
ology provided us with a formal ontological organization model and a description of
the reverse engineering step to start the design of the MDEE approach with. We have
described a complete MDEE approach turning such an ontological organization model
into a working IT system with use of multiple steps and models in between. In this
Chapter we will explain what we contributed (9.1) and we will draw some conclusions
(9.2). We will also evaluate our research (9.3) and give an overview of what we see as
future work (9.4).

9.1 Contributions

This report contributes by giving a formal definition of MDE. We also applied MDE to
Enterprise Engineering, thereby defining an MDEE approach. This MDEE approach
is founded on the theory of enterprise ontology and is the first attempt of combining
the theory of enterprise ontology and MDE. The presented MDEE approach is the
first formal end-to-end approach describing how to model an organization and how to
transform and refine that model until an executable model of an IT system has been
defined.

The DEMO approach focuses on the ontological model of an organization for the
purpose of (re)designing the essence of an organization. We extended DEMO by pro-
viding a well-founded model-driven approach to implementing an ontological model
of an organization. We did this by combining the work on enterprise ontology and
DEMO [34, 31], the work on modeling the I- and D-organization [26], the work on en-
terprise ontology based service specification [91, 93, 92], the work on BCI-3D [5, 4, 6],
and a lot of theory on MDE and DSL approaches.

The organization model could be partly based on DEMO. We described this model
(and all other models) from an MDE perspective, i.e. we described it as a multi-model.
While only a first research paper on the integration aspects between the B-, I-, and
D-organization [26] was available during our research, we had to define what aspect
models we needed to model the I- and D-organization, how these models are expressed
and how they are related to each other and the aspect models of the B-organization.

For the service specification model we could fully rely on the work of Albani and

113



9.2 Conclusions Conclusions

Terlouw [91, 93, 92]. We contributed by describing the service specification model as
a multi-model and fitting it into our MDEE approach. We also contributed an example
service specification for each service type based on a real-life case.

The business component construction model has also been defined based on en-
terprise ontology. We contributed by defining this model including different types of
components and service orchestrations. For the component identification step we used
BCI-3D, which we slightly adapted to take the previously defined services into ac-
count. The other parts of the construction design step, service orchestration design
and component specification, have been defined by ourselves.

The last part of the MDEE approach, the business component implementation
model and the engineering and implementation step, is an important contribution in
the field of MDE. We have shown that it is possible to implement components and
service orchestrations based on high-level models derived from the previously defined
models in the MDEE approach. The implementation fully complies to the principles
of SOA and provides autonomous components which are easy to scale and reuse.

Concluding we can state that we contributed by describing a formal and complete
MDEE approach by combining existing research, filling the gaps in this research, and
extending this research with our own research, especially in the field of MDE. We also
contributed by providing a full example following our MDEE approach based on a
real-life case.

9.2 Conclusions

We started this research with the following main research goal:

Design an MDEE approach based on a sound theoretical foundation, pro-
viding end-to-end guidance to refine and transform an organization model
into an IT system supporting that organization.

In order to achieve the research goal, a number of research questions have been formu-
lated. The first question, what are the requirements for an MDEE approach, has been
answered in Chapter 4. We have defined MDE formally based on the GSDP. We also
listed the requirements for an MDEE approach based on a short actor analysis. The
requirements for an MDEE approach are:

• an MDEE approach should consist of five main steps: reverse engineering, func-
tion design, construction design, engineering, and implementation.

• In each step a formal model will be produced, at least the following models are
needed: an organization model, a service specification model, a business com-
ponent construction model, and a business component implementation model.

• Each model in this MDEE approach should comply to the following require-
ments:

– It should be defined in a formal modeling language. For each language the
abstract syntax, concrete syntax, and semantics need to be specified.
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– To accurately abstract large and complex systems it needs to be a multi-
model. For each multi-model the dimensions and aspect models need to be
specified.

– It needs to be derived from the previous models in the MDEE approach
with mostly automated transformations.

The second question, how can enterprise ontology provide a sound theoretical foun-
dation for an MDEE approach, has been answered by describing enterprise ontology
in detail in Chapter 3. Since enterprise ontology provides a very sound theoretical
foundation for a layered view on organizations, its supporting IT systems, and how to
distinguish these layers, this theory provides us with a formal foundation for an MDEE
approach providing end-to-end guidance to refine and transform an organization model
into an IT system supporting that organization.

The third question, how can an MDEE approach be designed with use of enter-
prise ontology, has been answered in the Chapters 5, 6, 7, and 8. In these chapters
we researched and defined the steps and models of our MDEE approach. Figure 9.1
exhibits an overview of the resulting MDEE approach.

The first step in our MDEE approach starts with interviews and the documentation
of an organization and results in an organization model. Using service identification
a set of services is identified which are needed to support this organization. These
services are specified in the service specification step, resulting in a service specifica-
tion model. Service identification and service specification together form the function
design step of our MDEE approach.

The next step in our MDEE approach is construction design. As shown in Figure
9.1 this steps consists of two parallel tracks. Service orchestrations are derived from
the previous models based on a set of derivation rules. Another set of derivation rules
defines how to derive BCI3D input tables from the previous models. The component
identification step, implemented with BCI3D, identifies a set of components based on
these tables. The identified components are specified in the component specification
step. The model created in the construction design step is a business component con-
struction model and consists of service orchestrations and a component diagram.

In the engineering step the business component construction model is transformed
and refined into a business component implementation model. As exhibited in Figure
9.1 this is done by defining an implementation for the orchestrations, human services,
IT services, and data services. These implementations are combined into SCA com-
posites which form the business component implementation model. This final model
can be implemented by executing it on engines, resulting in a working IT system.

As enterprise ontology is a way of thinking, different modelers create the same
model for the same organization. This means our MDEE approach has a stable basis.
While our MDEE approach is also model-driven and consists of steps which are partly
automatable the quality of the resulting IT system can be very high depending on the
quality of the MDEE approach itself. In other words: as the IT system is derived
automatically (for a big part) from the organization model and the organization model
is stable because of the underlying theory, the quality of the IT system can be ensured
by improving the quality of the MDEE approach itself.
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Figure 9.1: Overview of the MDEE approach
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In our definition of MDE the automation of transformations is an important aspect.
Hence, the question is to what extend the steps in our MDEE approach are automat-
able. The steps in our MDEE approach consist of two parts: a transformation part and
a refinement part. The transformation part is defined with derivation rules and specifies
what elements of the output model can be directly derived from the input model. This
part can be fully automated with model transformations. The refinement part describes
what additional elements have to be added to produce the output model. In this part de-
cisions have to be made about what elements to add and how they are modeled. These
decisions can be ’hard-coded’ in transformations, thereby also automating this part of
an MDEE step. However, a part of the decisions will always stay human decisions.
The more an MDEE approach is tailored to a specific domain (e.g. the approach is
only applicable to insurance companies), the more decisions can be taken beforehand
and thus ’hard-coded’ in automated transformations.

Because a significant part of the steps in our MDEE approach can be automated and
the implementation model (which is directly executable) is defined in a much higher
level language than currently existing programming languages, we can conclude that
our approach fully complies to the definition of MDE. As our MDEE approach also
complies to the requirements listed before it will fulfill the needs of its actors. Our
MDEE approach does raise the level of abstraction in program specification and it
increases the automation in program development. Hence, our MDEE approach can
finally deliver the increase in productivity we are waiting for quite some years.

Concluding we can state that we succeeded in designing an MDEE approach based
on a sound theoretical foundation, providing end-to-end guidance to refine and trans-
form an organization model into an IT system supporting that organization. As we have
shown with our running example, starring the Protector case, our MDEE approach is
applicable to real-life cases. However, due to the limited scope of our research there
are some research limitations. We will evaluate our research including its limitations
in the next section.

9.3 Evaluation

The research goal we started our research with, design an MDEE approach based on
a sound theoretical foundation, providing end-to-end guidance to refine and transform
an organization model into an IT system supporting that organization, was quite ambi-
tious. We have succeeded in this ambition, but due to the limited scope of our research
and the broad subject we could not specify every aspect of our MDEE approach in
detail. Hence, our research was limited on the following points:

• The MDEE approach is a top-down approach. Although it is necessary in prac-
tice to combine a top-down approach with a bottom-up approach to incorporate
existing IT systems in the resulting implementation, we have left this as future
work. We did, however, define two possible scenario’s for component identi-
fication in Chapter 7, which can be used as a starting point for incorporating
existing systems into our MDEE approach. With use of the right scenario (or a
mix of scenario’s) existing systems can also be modeled as components.

• To specify the needed models we have used existing modeling languages as
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much as possible. If no modeling language existed fulfilling our needs we did
define a custom language (e.g. by specializing an existing language). We only
defined the basic elements of the language, we did not provide a full formal
language definition.

• The end result of our MDEE approach is an executable implementation model.
We did define this model and explain how to execute it. However, we did not
specify a full example including all needed details to execute it. We also did
not implement the needed technology to execute the implementation model. We
have only shown that it is possible to directly execute the implementation model
and we gave some first ideas about implementing the needed technology to do
so.

Our MDEE approach combines a lot of research subjects, some of them still work
in progress, which has made our work more difficult. Both the research in modeling
the I- and D-organization and enterprise ontology based service specification are still
running. The first paper touching the subject of modeling the I- and D-organization
[26] was published during the time we worked on our research. The same holds for the
paper describing the enterprise ontology based service specification framework [92].
We did take this research into account, but future changes in these works, some of them
already available when finishing our research, need to be incorporated in our MDEE
approach accordingly.

As a lot of information is derived from the organization model it is of utmost
importance that this model is correct and stable. For the DEMO models of the B-
organization this has been proved. More work on the I- and D-level is needed to prove
that these models are also stable like the models of the B-organization.

In the organization model as defined as part of our MDEE approach, the models
of the I- and D-organization are presented in a combined model to show the shaping
relations between the actors. However, while transactions in the I-organization can be
(re)used by multiple B-actors and transactions in the D-organization can be (re)used by
multiple I-actors, it can be useful to model a single ATD for each aspect organization.
This will give more insight in the coherence of the different I- and D-transactions.

It is also possible to skip the models of the I-organization and the D-organization.
In that way only B-services are identified and the decision how to support these ser-
vices is deferred to the construction part of our MDEE approach. However, this means
that less functionality of the IT system is specified in terms of the using system and
more decisions are made in the construction phase of the system development process.
This means less automation in the development process and less (explicit) alignment
between the organization and the resulting IT system.

Our MDEE approach can be used to create IT systems just supporting a part of
the organization. In such cases the organization model will only model a part of the
organization (e.g. a department) and all actors outside this part of the organization will
be considered as external actor.

The service orchestrations in our MDEE approach are quite readable because we
did not take cancellation and dissent patterns into account. If cancellation and dissent
patterns are added the orchestrations can become cumbersome. If so, it can be more
convenient to use a rule approach instead of an orchestration approach. In such a rule
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approach no service orchestrations are defined but each action rule in the organiza-
tion model is supported by a separate system rule. These rules can be executed on a
rules engine. Each service execution will lead to a couple of events (e.g. requested,
promised, stated, accepted) which are send to the rules engine. Based on these events
and the applicable rules additional services will be requested. This approach is more
flexible but also more difficult to read because business processes are spread amongst
multiple, separately defined rules.

In our MDEE approach reuse at runtime is only done at the service level. B-, I-,
and D-services can easily be reused. However, in programming languages like Java all
kinds of lower level implementation elements are reused. We see it as an advantage that
runtime reuse is limited to services with well-specified interfaces thereby reducing the
number of dependencies. Reuse of lower level implementations elements (i.e. parts of
service implementations like GUI parts or calculations) is however possible at design
time by using a central model repository and appropriate tooling which enable the
reuse of model parts.

We see tool support as an essential element for the success of our MDEE approach.
An integrated tool is needed supporting the full MDEE approach. This tool needs to
be able to check the syntax of each model, enable the visual definition of models,
and support and automate the MDEE steps as much as possible. All models need to
be saved in a central repository to enable consistency checking between all models.
Using the automated transformations between models the tool should propagate the
changes in one model to all associated models.

Tool support is also necessary to make it easy to change IT systems build using our
MDEE approach. In our research we mainly focused on building new IT systems, but
the real advantage of MDE will come up when maintaining and changing applications.
MDE improves the long-term productivity of developers by reducing the rate at which
primary software artifacts become obsolete. To do so, our MDEE approach makes
the resulting IT systems less sensitive for changes in personnel (by using high-level
models which are easy to understand), requirements (by providing partly automated
transformations from the organization model to executable models), and deployment
platforms (the executable models are as high-level as possible and mostly specified in
broadly supported industry standards).

9.4 Future Work

As we stated in the previous section our research had a limited scope. We therefore
could not specify every aspect of our MDEE approach in detail. The main research
limitations as described in the evaluation are also the main subjects for future research.
Future research should hence focus on incorporating existing IT systems in the MDEE
approach. This means the service identification step needs to be extended by iden-
tifying the existing systems and the services they provide. This will also affect the
component identification step: existing services are already grouped in components.
We already presented two different scenario’s for component identification. Future
work should research which scenario can be best used in what situation.

Future research should also focus on more extensive research into the details of the
needed modeling languages. For each language the abstract syntax, concrete syntax,
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and semantics needs to be defined [60]. Defining the semantics of the modeling lan-
guages of the implementation model (i.e. how language elements behave when they
are executed) leads to the last research limitation which should be tackled in future re-
search, that is, the needed engines need to be implemented and a full working example
needs to be constructed.

We did evaluate our MDEE approach with a single example case. More validation
of our MDEE research is needed with more case studies in different domains. The
cases should also be bigger (i.e. more services) to validate if the approach can handle
such cases and if the models stay well-organized. The MDEE approach should also
be validated with all involved actors. Does our approach really fulfill the needs of all
actors in all cases?

Another important point to research in future work is how actors should use our
MDEE approach. This research should answer questions like: what actors should
perform what step in what order? How can actors verify if their models are correct?
In close relation to the last question are the quality aspects of an MDEE approach. It
should be researched how techniques like model validation [15], model checking [21],
and model-based testing [85] can be used in combination with our MDEE approach.

The architecture part of our MDEE approach has not been described in detail.
We referred to the work of Earl [36] as the principles of our architecture. Future
work could be done researching the completeness of these principles and validating
our MDEE approach against these architecture principles.

More research is needed on the implementation of transformations. We described
each MDEE step with informal derivation rules. Future research should define each
MDEE step as a formal, executable model transformation. For example in a language
like QVT [76].

Future work should also focus on including dissent and cancellation patterns (as
defined in enterprise ontology [34]) in our MDEE approach. It can also be researched if
another part of enterprise ontology, information links and banks (modeled in the Actor
Bank Diagram), can be included in MDEE. Goethals [44] describes and evaluates data
storage options in a service-oriented environment (i.e. where the data is stored and
who stores it) from a more technical perspective. The combination of his work and the
fact banks in enterprise ontology can be a useful addition to our MDEE approach.

One of the engines we used to execute the implementation model is a component
framework. As we explained a component framework provides a variety of runtime
services to support and enforce the component model (e.g. communication services,
security services, etc.). Future work is needed to research if the policies in the compo-
nent framework and model like security can be derived from the organization model.
Future work should also decide on how to provide custom engines, using component
framework extensions or by including them in the components themselves.

Last, but definitely not least, tools supporting our MDEE approach should be im-
plemented. We see tool support as an essential element for the success of our MDEE
approach.
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