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ABSTRACT 

Levees are small elevation ridges found on the edge between channels and shoals.  They are known to develop along river channels 
during floods and along channels in alluvial deep water fans. Levees in tidal environments such as the Waddenzee are less pronounced 
(with a typical height in the order of 10 cm) and may be recognized by the fact that they become dry earlier than the surrounding 
mudflats, due to their higher elevation and coarser material. Levees form an essential link in the morphological interaction between 
tidal channels and shoals, although their development is yet poorly understood and requires further research.  

We explore levee development by a process-based approach (Delft3D) both under highly schematized conditions and a realistic case 
study. The schematized approach concerns morphological development of a 2km long 100 m wide tidal channel with surrounding tidal 
flats. The levees develop during flood and further analysis shows the sensitivity to model parameters such as the diffusion coefficient, 
shoal width, grain size, and initial channel depth. The realistic case study concerns a tidal channel in a sub-embayment of San 
Francisco Estuary. 150 Years of bathymetric observations are coupled to a process-based morphodynamic modeling exercise 
explaining the levee development. Model results of the schematized setup and teh San Pablo Bay case have in common that major 
accreation of the levees and the channel slopes occurs during flooding conditions. 

 

 

INTRODUCTION 

Levees are small elevation, coarse material ridges found on the 
edge between channels and shoals. They are known to develop 
along river channels during floods [Adams et al., 2004, Rowland 
et al., 2009, Brierley et al, 1997], along channels in alluvial deep 
water fans during high turbidity flow events [Normark et al.,2002, 
Fildani et al., 2006, Straub and Mohrig, 2008], and along creek 
systems in salt marshes and mudflats during regular tidal forcing 
[Perillo and Iribarne, 2003, Temmerman et al., 2005, Wells et al., 
1990].  

Levees in tidal environments such as the Waddenzee are less 
pronounced (with a typical height in the order of 10 cm) and may 
be recognized by the fact that they become dry earlier than the 
surrounding mudflats, due to their higher elevation and coarser 
material. In a muddier environment Jaffe et al. [2007] report 
continuous measured narrowing of the tidal channel in San Pablo 
Bay over 150 years which may be interpreted as an expansion of 
the intertidal mudflats. Accretion takes place at the steep slope 
between channel and shoal, rather than at the edge of the shoal 
itself. It is not clear whether or not levee development and slope 
accretion are governed by similar processes and to what extent the 
sediment characteristics play a role in these types of channel shoal 
interaction.  

AIM AND METHODOLOGY 

Levee development forms an essential part in the 
morphodynamic interaction between channels and shoals although 
the governing processes are yet poorly understood and require 
further research. The aim of the current work is to investigate 

channel shoal interactions in more detail. Use is made of a 
process-based numerical model (Delft3D).  

Delft 3D solves the Reynolds averaged Navier Stokes 
equations, including the k- turbulence closure model, and applies 
a horizontal curvilinear grid with sigma layers for vertical grid 
resolution.  It allows for salt-fresh water density variations, 
separate formulae for mud transport and sand transport, and 
variations in bed composition and specification (for example, bed 
layers with different percentages of mud and sand and spatial 
variation of critical shear stress). The impact of wind and waves 
can be added, so that, for example, the effects of wind set up and 
increased shear stress due to waves are taken into account. The 
applied wave model is SWAN of which a detailed description and 
its application in Delft 3D can be found respectively at the SWAN 
homepage (http://vlm089.citg.tudelft.nl/swan/index.htm), Booij et 
al. (1999) and Lesser et al. (2004). For every hydrodynamic time 
step (1 minute in this case) the flow module calculates water 
levels and velocities from the shallow water equations. Based on 
these hydrodynamic conditions and the wind field, the wave 
module calculates a wave field every hour and adds wave induced 
shear stresses to the shear stresses calculated from the flow 
module. The wave field is considered to be constant during one 
hour. Sediment transport is calculated from the resulting flow field 
and the bed is updated based on the divergence of the sediment 
transport field [Roelvink, 2006].  
Our first step is to investigate channel shoal interaction under 
(very) schematized circumstances, i.e. by means of a 2 km long 
channel forced by tidal flow and additional sensitivity analysis on 
input parameters and processes. We will subsequently relate the 
outcome of the schematized model to a case study, i.e. San Pablo 
Bay, California, USA [Van der Wegen et al, 2010, 2011].  
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