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Abstract. With the fast development of e-commerce, there is a higher
demand for timely delivery. Logistic companies want to send receivers
a more accurate arrival prediction to improve customer satisfaction and
lower customer retention costs. One approach is to share (near) real-
time location data with recipients, but this also introduces privacy and
security issues such as malicious tracking and theft. In this paper, we
propose a privacy-preserving real-time location sharing system including
(1) a differential privacy based location publishing method and (2) loca-
tion sharing protocols for both centralized and decentralized platforms.
Different from existing location perturbation solutions which only con-
sider privacy in theory, our location publishing method is based on a real
map and different privacy levels for recipients. Our analyses and proofs
show that the proposed location publishing method provides better pri-
vacy protection than existing works under real maps against possible
attacks. We also provide a detailed analysis of the choice of the privacy
parameter and their impact on the suggested noisy location outputs. The
experimental results demonstrate that our proposed method is feasible
for both centralized and decentralized systems and can provide more pre-
cise arrival prediction than using time slots in current delivery systems.

Keywords: Privacy-preserving · Differential privacy · Location
privacy · Applied cryptography · Blockchain

1 Introduction

Today, e-commerce is playing an important role in people’s daily lives. According
to Statista, in 2020, more than two billion people made orders online, with over
$4.2 trillion in transactions. In e-retail, customers care about when they can
receive the products, which raises the demand for logistics. Logistic companies,
such as DHL, UPS, aim to minimize the delivery time while keeping packages safe
[4]. Meanwhile, logistic companies provide a time slot for delivery. Unfortunately,
these time slots usually span multiple hours, which reduces customer satisfaction
on many levels [1]. On some occasions, the delivery time is updated to a new date
and time due to transportation problems, causing frustrations and discomfort
from customers. The mismatch between the predicted and actual arrival time
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causes problems for both customers and companies. Customers need to wait
longer for the package. For companies, every delay adds to the cost of customer
retention rate, customer acquisition cost, and customer lifetime value [3].

One possible solution is to provide a more precise delivery prediction, e.g. by
offering real-time location data to help calculate the exact delivery time. Accord-
ing to Hublock, real-time location sharing systems are important and needed in
logistics to improve the transparency of logistics. As a result, companies can
improve customer satisfaction and lower the cost of retaining or acquiring cus-
tomers [13]. Besides, the system is useful for disputes and knowing the reason for
delays, and unburdening the customer service department [13]. It is already pos-
sible to see the use of real-time tracking, e.g., DHL offers a live tracking service
for selected shipments [6]. Unfortunately, sharing accurate locations introduces
security and privacy issues. According to [11,27], the accurate location of trucks
can be used for malicious tracking and theft. Imagine that a customer buys a
very cheap product, locates the truck carrying that product, and steals other
valuable packages in the same truck, resulting in economic damage [11,27].

Given that we want to improve customer satisfaction by providing a realis-
tic time of arrival and, at the same time, preventing potential theft, it is nec-
essary to provide technical solutions that achieve both goals. There are existing
approaches using generalization [15], adding dummy data [16], applying suppres-
sion [32], or using differential privacy [33] for publishing data with anonymity or
privacy concerns. The first three methods are not suitable for real-time location
sharing since they require the background knowledge of attackers and the whole
trajectory as input, which are not available in real-time tracking since the entire
trajectory is unknown when the truck is moving, and the adversary can carry out
different attacks (e.g. malicious tracking or theft) based on background knowl-
edge, such as the road map of the city. In contrast, differential privacy [7,8] adds
noise to the actual data and provides privacy guarantees, which is a strong candi-
date. Although there are existing approaches to publish location data with differ-
ential privacy [2,33,35,36], there is no work considering both real-time location
publishing and continuous trajectory privacy on a real map.

When the adversary holds real road maps, it is challenging to hide the tra-
jectory of a truck. Even though the noise is added to real trajectory points, the
published trajectory points are possibly up and down to the actual route, which
can be de-noised using a filter or analysis. Meanwhile, it is important to add
proper noise considering the road density. It is sufficient to add slight noise to
anonymize the road for a truck moving with high road density, such as in the city
centre. However, with the same noise, the actual trajectory is distinguishable if
the truck moves in an area with low road density, such as the countryside.

In this paper, we consider a network of logistic companies sharing location
data with their customers using a location sharing platform. For different privacy-
preservation needs and settings, protocols for centralized and decentralized plat-
forms are needed. On the one hand, large enterprises can build their own central-
ized solutions. On the other hand, decentralized solutions are needed for small
and medium-sized enterprises (SMEs), which occupy more than 90% of business
in Europe [5]. SMEs often share similar needs but lack the technical resources to
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build or digitize their own supply chains. A platform shared by SMEs is desired to
achieve the same functionality [34]. Blockchain is a candidate for the decentralized
solution since it is traceable, immutable and transparent [25].

For trajectory hiding and secure location sharing, we focus on cities for pack-
age delivery and omit motorways. Location data of the Truck is reported based
on regular intervals using the location sharing platform. The Sender and Receiver
of a package in the Truck can access that information, which is used for estimat-
ing the time of arrival or any other optimization purposes. Note that using only
the location perturbation algorithm cannot guarantee that the location is shared
in a privacy-preserving manner on the platform. In order to provide protection,
only the owner of a package and the corresponding delivery company should
know the location information. We achieve this goal with cryptographic tools.
Our proposal is effective regardless of the structure of the platform, which can
be centralized or distributed, e.g. utilizing blockchain technology.

In summary, our contributions are as follows:

– We present a privacy-preserving location sharing system for logistics, includ-
ing a location perturbation algorithm together with location sharing proto-
cols, for tracking packages in (near) real-time to provide more precise arrival
prediction than time slots. To the best of our knowledge, this is the first paper
that considers real road maps and attacks for location perturbation.

– To prevent potential theft, we use differential privacy and geo-
indistinguishability with different privacy levels for corresponding receivers.
Our concrete privacy analysis and proof indicate the proposed approach pro-
vides better trajectory privacy preservation under real road maps and possi-
ble attacks than existing works. The detailed experiments show how privacy
parameters are selected and how the utility remains in terms of arrival pre-
diction. Also, the run-time is in the order of nanoseconds, which is feasible
for real-time data sharing.

– To protect customers’ privacy and the commercial interest of logistic compa-
nies, our proposed protocols provide anonymity, unlinkability and auditability
in centralized and decentralized settings. Our experiments and analysis indi-
cate that the proposed platform is privacy-preserving and has less storage
cost than previous works. For feasibility, an Ethereum platform can process
∼ 450 trucks due to the underlying blockchain technology, which is sufficient
for average-sized cities even though the use of blockchain is not optimized.

Remark 1. The selection of platforms (blockchain) is not our focus since compa-
nies can build their own centralized or decentralized solutions according to their
needs with our proposed protocols.

2 Preliminaries

Differential Privacy. Differential privacy (DP) was raised by Dwork [7,8] to
protect individual privacy and better use the dataset. In Eq. 1, for neighbouring
datasets, the probability of whether the output belongs to O differs less than eε

with a small error factor δ, which hides the existence of any individual.
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Definition 1 ((ε, δ)-differential privacy). An algorithm A satisfies (ε, δ)-
differential privacy iff for neighbouring datasets D, D′ which only differ in one
record, and with any range O ⊆ range(A):

Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O] + δ . (1)

The Gaussian mechanism is a widely used mechanism to achieve (ε, δ)-
differential privacy [10], which adds noise as N (μ, σ) with μ = 0, σ2 =
2 ln(1.25/δ) · (Δ2)2/(ε2). δ is the small error, such as 10−5. Δ2 is the l2 sen-
sitivity.

Geo-Indistinguishability. Based on the definition of differential privacy,
Andrés et al. [2] define geo-indistinguishability to allow to provide location based
services (LBS) considering privacy within a radius r. In general, a mechanism
A satisfies ε-geo-indistinguishability iff for any radius r > 0, the user enjoys
εr-privacy within r, and the privacy level is proportional to r.

Definition 2 (geo-indistinguishability). An algorithm A satisfies ε-geo-
indistinguishability iff for any two different points x, x′:

dP(A(x),A(x′)) ≤ ε · d(x, x′) . (2)

d(·, ·) denotes the Euclidean distance. For two different points x, x′ s.t. d(x, x′) ≤
r, the distance dP(A(x),A(x′)) of corresponding distributions should be at most
l, and ε = l/r. Andrés et al. [2] present the Planar Laplace Mechanism which
satisfies ε-geo-indistinguishability. Assume u is the smallest distance unit, δθ is
the precision of the machine for angle θ, and rmax is the range within which the
mechanism satisfies ε-geo-indistinguishability. If q = u/rmaxδθ, we have ε from:

ε′ +
1
u

ln
q + 2eε′u

q − 2eε′u ≤ ε , (3)

where ε′ is the privacy parameter for C−1
ε′ (p). The noise is added to angle θ

and distance r in Cartesian coordinates. Cε′(r) shows the probability of any
random point between 0 and r. If p is uniformly selected from [0, 1), we can get
r = C−1

ε′ (p) = − 1
ε′

(
W−1

(
p−1

e + 1
))

where W−1 is the Lambert W function.

3 Security Requirements

Objectives. The objective is a secure and privacy-preserving location sharing
system for a number of trucks. On the one hand, the published location should
have privacy preservation and good utility for arrival prediction. On the other
hand, location data should be published using a privacy-preserving platform.
The platform only shares the location with Sender and Receiver, while no other
information is leaked. More precisely, other parties in the platform cannot access
the location of certain packages or link that package to a sender or a truck.

Set-up and Assumptions. There are three roles in the platform: Truck col-
lects GPS data and shares it on the platform every n minutes. n is based on the
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number of Trucks simultaneously in the platform (considering system capacity)
and how sparse the trajectory should be (considering privacy preservation). Only
Trucks can publish information on the platform. Sender and Receiver access
data from the platform, and each (Senderi, Receiveri) pair shares the same pack-
age information for package i. It is assumed that different companies share the
same platform to provide location-based services to customers. Each company
has several trucks but does not know the information of others. Moreover, we
assume the distance to the destination is correlated to the delivery time. Other
variables may also influence the estimate, including the characteristics of the
road network and the current traffic levels. These are not considered here.

Adversary Model. In package delivery, we assume Trucks always send the cor-
rect location data, which is automatically collected from sensors and shared on
the platform. Malicious drivers who can turn off the sensors are not considered.
Internal adversaries (Senders and Receivers) can only access information from
the platform. They try to misuse the available shared data from the platform to
carry out malicious actions such as theft or malicious tracking. External adver-
saries try to steal the location data from the platform without access. Meanwhile,
we assume the adversary has background knowledge of the truck, such as the
road map of the city. However, we do not consider a powerful adversary with
additional capacities, including surveillance cameras or drones. Such adversaries
are hard to protect against even if no location information is shared.

Attack Model. There are possible attacks on the location perturbation process
and the sharing platform. For location perturbation, adversaries try to re-identify
the actual location of trucks by de-noising the published location data (such as
using filters). With the identified location, adversaries can find the truck and
carry out theft or malicious tracking. For the sharing platform, (1) adversaries
try to find the linkage between customers and packages for malicious commercial
analysis, such as finding target customers for certain logistic companies. (2)
Adversaries try to get information about other packages. If adversaries know the
location of all packages, they can find the target truck with target packages.

4 Related Work

Location Privacy with DP. We consider DP-based location perturbation to
provide privacy guarantees while publishing trajectory data in real-time. Dwork
et al. [9] introduce the idea of event-level DP for DP under continual observation,
but it is not robust when events are coming continuously. The actual location
can be obtained by averaging the published location if the user stays in a certain
area for a long time. Kellaris et al. [21] proposed ω-event DP to protect the event
sequence occurring within ω successive timestamps by applying Laplace noise
and budget allocation method. Fang et al. [12] gave the idea of δ-neighbourhood
instead of the standard one. δ is a threshold for the generalized location point to
guarantee that it is close to the actual location. Also, Xiao et al. [35] proposed
δ-location set based differential privacy to account for the temporal correlations
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and protect the accurate location at every timestamp. The temporal correla-
tion is modelled through a Markov chain, and they hide the actual location in
the δ-location set in which location pairs are indistinguishable. However, a reli-
able transition matrix is difficult to be constructed in a real scenario [19]. Xiong
et al. [36] applied differential privacy to cluster and select location points, but the
whole trajectory is known before the perturbation. Andrés et al. [2] gave the def-
inition of geo-indistinguishability to allow location based services (LBS) to pro-
vide a service considering the privacy of individuals within a radius r. Also, the
planar Laplace mechanism is proposed, which satisfies ε-geo-indistinguishability.

Although many different works consider location privacy, there are no works
showing whether they can protect a real trajectory in a real use case with a real
map under a possible attack. For example, suppose the trajectory of a truck is
published and the adversary hold the background knowledge (e.g. the city map).
In that case, the adversary may infer the actual location of the truck if there is
only one road which the truck can pass around the published location.

Decentralized Supply Chains. Among decentralized solutions, blockchain
is potentially a disruptive technology for supply chains since it is traceable,
immutable, and transparent [25], with which the participants can trace the trans-
action. Maouchi et al. [22] proposed DECOUPLES, a decentralized, unlinkable,
and privacy-preserving traceability system for supply chains. In their design,
the PASTA protocol is proposed based on the stealth address to anonymize the
receiver of a transaction. Each product has a unique product ID (pID). The
receiver uses pID to generate a pair of tracking keys and sends the public key to
the sender. The sender uses the public key to calculate a one-time stealth address
as the receiver address, so only the receiver who owns the private key can track
the package. However, they only consider two parties, while three parties (Sender,
Truck, Receiver) are more common in real supply chains. This results in unneces-
sary one-time stealth addresses and more storage costs in real use.

Sahai et al. [26] proposed a privacy-preserving supply chain traceability sys-
tem based on a protocol using zero-knowledge proofs and cryptographic accumu-
lators. The proposed system provides unlinkability and untraceability, but only
two parties are considered. Sezer et al. [29] designed a traceable, auditable, and
privacy-preserving framework for supply chains using smart contracts. However,
package information is not encrypted, which leads to possible leakage.

5 Location Perturbation

5.1 Privacy Parameter Selection

In geo-indistinguishability, the privacy parameter ε controls how much noise is
added to the location data. If the same amount of noise is added all the time,
it is not large enough when the truck is far away from the destination and not
small enough when close to the receiver, which influences the utility. The correct
amount of noise should be added depending on the location of the truck. In the
city centre, there are many routes within a small radius r, and it is possible
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Algorithm 1: Location Perturbation
Input: Current location x, destination location f , previous angle θ0 = 0
Output: Sanitized version z of input x
1: Get ε using Equation 6.
2: Get ε′ using Equation 3.
3: θ ← AngleSelection(θ0), then set θ0 ← θ.
4: Uniformly select p ∈ [0, 1) and set r ← C−1

ε′ (p).
5: z ← x+ < r cos(θ), r sin(θ) >.
6: return z.

to hide the real route with less noise. However, when the truck is located far
away from the city centre, there are fewer alternative routes (consider a rural
area with fewer roads around). To hide the real route, the radius r needs to be
increased to include additional routes. Notice that we apply the distance to the
city centre as the second factor for privacy parameter selection in this paper.
Other factors, such as city density or road density, can also be used. We exclude
motorways between cities since it is practically not possible to hide the location
of a truck when there is only one road available.

With geo-indistinguishability where l = ε · r (l is the privacy level, ε is the
privacy parameter, and r is the radius). We can formulate l as:

l(x, fi) =

⎧
⎪⎨

⎪⎩

ls, if d(x, fi) is large
lm, if d(x, fi) is medium
ll, if d(x, fi) is small ,

(4)

where d(x, fi) is the distance between the location of truck x and receiver fi. A
smaller privacy level (stronger privacy guarantee) is applied when the truck is
far from the city centre, and l is larger to provide more precise arrival predictions
when the truck is close to the receiver. The function is only applied when the
delivery is scheduled for the next user i. Otherwise, l is set as ls.

Similarly, r is based on the distance di(x, c) between the truck (x) and the
city centre (c). r should be smaller when the distance is shorter, so we have:

r(x, c) =

⎧
⎪⎨

⎪⎩

rs, if di(x, c) is small
rm, if di(x, c) is medium
rl, if di(x, c) is large

(5)

εi(x, fi, c) = l(x, fi)/r(x, c). (6)

Here, the values of different parameters are chosen based on use cases. Dif-
ferent distance d and different privacy parameters ε should be defined based on
the scenario. The selection of parameters is further discussed in Sect. 8.

5.2 Angle Selection

In geo-indistinguishability, only the privacy of single location points is considered
without real road maps, as shown in Fig. 11. The adversary can infer the actual
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Fig. 1. An example output by PLε on a
real map. Blue: actual trajectory, red: pub-
lished, green: filtered. (Color figure online)

Fig. 2. An example output after the Angle
Selection is applied. Blue: actual trajec-
tory. Red: published. (Color figure online)

trajectory even if every location point is protected. With a median filter and
real maps, the adversary can achieve a trajectory close to the actual one (as
shown in Fig. 1). Although there are differences between the actual and published
trajectories, adversaries can identify the correct road using a real map.

In this paper, we consider the connection between different location points
by applying similar angles. Instead of uniformly selecting the new angle θ, we
apply the Gaussian mechanism [10] to add noise to the previous θ0, and

θ = θ0 + N (μ = 0, σ =
√

2 ln(1.25/δ) · Δ2/εa). (7)

We use εa as the privacy budget for the angle selection mechanism to distin-
guish it from the ε for geo-indistinguishability. With Eq. 7, we calculate the new
angle θ and round it into the range [0, 2π) (as Algorithm 2 in Appendix). The
process mitigates the filtering attack by misleading the adversary to a wrong
trajectory. We further analyze privacy protection in Sects. 7 and 8.

Here the angle θ of round ki is the input for round ki+1. We need the compo-
sition theorem to calculate the privacy parameter εa with k rounds. In general,
for k mechanisms Mi that all provide (ε, δ)-DP, the sequence of Mi(x) provides
(kεi, kδi)-DP [23]. By contrast, with the Gaussian noise, the scale is only O(

√
k).

Theorem 1. For real-valued queries with sensitivity Δ > 0, the mechanism
that adds Gaussian noise with variance (8k ln(e + (ε/δ))Δ2

2/ε2) satisfies (ε, δ)-
DP under k-fold adaptive composition for any ε > 0 and δ ∈ (0, 1] [20].

In Theorem 1, the variance for k-fold Gaussian mechanism is (8 ln(e+(ε/δ)) ·
k · Δ2

2/ε2) while for Gaussian mechanism is (2 ln(1.25/δ) · Δ2
2/ε2). If we set the

global privacy parameter as ε0, the privacy parameter for each round is at the
scale of (ε0/

√
k). In inverse, if each round is εa-DP, the angle selection algorithm

provides (
√

kεa, δ′)-DP where k is the number of rounds. The small error δ′ is
not further explored here, and we refer interested readers to [20].

6 Decentralized Location Sharing System

Initialization. With assumptions in Sect. 3, each Truck has an account
(address). Companies register valid addresses at shared certificate owners (CO).
The system only accepts data from valid addresses and can track data accordingly.
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Hiding Confidential Information. We encrypt the location data to provide
confidentiality. A truck can transport several packages with the same location.
Equation 6 implies only three possible location outputs. We apply AES-CBC to
encrypt the logistic data. Then, we use the public key kAa for Elliptic Curve Inte-
grated Encryption Scheme (ECIES) [30] to encrypt the symmetric keys. ECIES
is based on Diffie-Hellman, with data and recipients’ public keys as inputs.

Our Protocols. In PASTA [22] as in Sect. 4, for any specific package, Alice
and Bob need two tracking keys to track the same data. Our design overcomes
this shortcoming by sharing the same tracking key among them. Protocol 1
establishes a shared key based on the international standard ISO/IEC 11770-2-6
[18]. After the shared key is derived, a (Truck, Sender, Receiver) triplet shares the
same (pid, TKpid,Kb) and return the same keys (KAb = KBb = Kb, TKpidA =
TKpidB = TKpid) in Protocol 2. With Protocol 3, Truck generates a random r
and broadcasts the (R,P ) pair. Sender and Receiver calculate the stealth address
P ′ and find the match. The same record is shared with Receiver and Sender. In
theory, we save half storage than PASTA [22].

Alice (Sender) Bob (Receiver)
NB←−−−−−−−−−−−−−−−−−

{NA,NB ,IDB ,FAB1,FAB2}KAB−−−−−−−−−−−−−−−−−−−−−→
{NB ,NA,FBA1,FBA2}KAB←−−−−−−−−−−−−−−−−−

kAa ← f(FAB1,FBA1) kBa ← f(FAB1,FBA1)
kAb ← f(FAB2,FBA2) kBb ← f(FAB2,FBA2)

Protocol 1. Key establishment mechanism. IDi is the identity of i. NA is a
nonce. FAB , FBA are keying materials. f is the key derivation function. KAB is

the long-term key shared by Alice and Bob.

Charlie (Truck) Alice (or Bob)

IDA, IDB , pid
Request TKpidA and TKpidB−−−−−−−−−−−−−−−−−−−→

TKpidA ← Hs(pidkAa)G
KAb ← kAbG

TKpidA,KAb←−−−−−−−−−−−−−−−−−
if (TKpidA

?
= TKpidB

and KAb
?
= KBb) :

Protocol 3

Protocol 2. Matching function to check
whether Alice and Bob return the same

keys. TK is the tracking key, pid is
package id, Hs is a hashing function.

Charlie (Truck) Alice (or Bob)

r ∈R Zp, R ← rG
P ← Hs(rTKpid)G

+Kb

Broadcast (R,P )−−−−−−−−−−−−−−−−−−−→
Check each (R, P )
tkpid ← Hs(pidkAa)
P ′ ← Hs(tkpidR)G

+KAb

P ′ ?
= P

Protocol 3. Three-party stealth
address protocol. TK and Kb are

public shared keys. P is the stealth
address. r is the random nonce.

Extensions. The proposed protocols can be used for centralized platforms or
blockchain-based platforms. For centralized platforms, with Protocols 1, 2, the
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Fig. 3. Another example output by PLε.
Blue: actual, red: published, green: fil-
tered. (Color figure online)

Fig. 4. Another example output with
angle selection. Blue: actual, red: pub-
lished, green: filtered. (Color figure online)

encrypted location information can be shared. For blockchain platforms, the
certificate owner (CO) uses register transaction to control the validity of trucks.
Trucks use publish transaction to publish real-time location data. With the con-
tract, we can validate and trace the source of a transaction. For a register trans-
action, we verify the sender is a valid CO and the value is valid. For a publish
transaction, the contract checks the validity of the sender and the data.

7 Analysis

7.1 Security and Privacy Analysis

Location Perturbation. Section 2 includes different trajectory publishing
mechanisms, but most only consider differential privacy in theory, and all the
approaches do not consider a real map. There are existing works [17] showing
that a differentially private mechanism still suffers from attacks in real use cases.
In this paper, with assumptions in Sect. 3, we consider privacy under real maps,
showing that our proposed approach provides better privacy protection.

Figures 1, 2, 3 and 4 show example outputs from PLε and the proposed method
for two different trajectories. In Figs. 1 and 3, the filtered trajectory is close to the
actual, and it is predictable on which road the truck is moving. Although the tra-
jectory is in a large city, Paris, it is hard to hide from the actual. The basic idea of
our proposed angle selection approach is to mislead the adversary to a wrong tra-
jectory that is close to the actual one but not the same one. If the noise trends in
the same direction (e.g. south) as the actual trajectory, the adversary can identify
the wrong road. In Fig. 4, when the published trajectory is south to the real one,
it is more probable for the adversary to infer the wrong road. Moreover, we con-
clude Lemma 1, indicating that the proposed angle selection mechanism achieves
stronger privacy guarantees than randomly selecting angles.

Lemma 1. The angle selection mechanism can provide stronger privacy protec-
tion than randomized angle selection, considering trajectory hiding in real maps
under attacks (such as median filters).

Proof. Figure 5 shows an example trajectory with three location points
La0(x0, y0), La1(x1, y1), La2(x2, y2). Similarly, outputs with angle selection are
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Fig. 5. An example trajectory with three location points.

Ls0, Ls1, Ls2, and with random angles are Lr0, Lr1, Lr2. Ma01, Ms01, Mr01
are the midpoint for the first two location points (such as La0 and La1). We
can compare privacy protection levels between different approaches using two
metrics when a median filter is applied: (1) distance difference. Compare the
distance between the published location points (midpoints), for example, the
distance between Ma01 and Ms01 to the distance between Ma01 and Mr01.
(2) length of average vector differences. Compare the distance of aver-
age vector difference from Ma01Ma12 to Ms01Ms12 and from Ma01Ma12 to
Mr01Mr12. The average vector difference shows the distance difference among
the published trajectories (as the dotted lines) since the lines can intersect in
the middle. Here the average vector difference from Ma01Ma12 to Ms01Ms12 is
1
2 (

−−−−−−−→
Ma01Ms01 +

−−−−−−−→
Ma12Ms12).

Assume an adversary A knows the perturbation is generated from the Laplace
distribution. With the published location (Lpi) and the distance di ≥ 0, the
probability that A can identify the original location (Lai) can be calculated.
The probability of the guess distance d ≥ 0 equal the published distance di is:

p(d = di)∫ ∞
0

p(d)
=

1
b exp(−di

b )
∫ ∞
0

1
b exp(−d

b )
=

1
b

exp(−di

b
) (8)

where b is the scale and |d|, |di| ≥ 0. Equation 8 shows that a smaller distance
di means a higher probability of guessing the actual perturbation distance. The
adversary can draw a circle with a radius equal to the distance to infer the actual
location with a real road map. A circle with a larger radius can cover more roads,
so it is harder to locate the actual location and privacy is better protected.

In Algorithm 1, the perturbation for La0(x0, y0) is (r cos(θ), r sin(θ)), θ ∈
[0, 2π). The output is L0(x0 + r0 cos(θ0), y0 + r0 sin(θ0)). Similarly, we have La1

and L1. If the midpoint for L0L1 is M01, we have Ma01 and M01(x01, y01). For
distance difference, we have the distance d01 between Ma01 and M01 that

4 · d201 = (x01 − (x0 + x1))2 + (y01 − (y0 + y1))2

= (r0 cos(θ0) + r1 cos(θ1))2 + (r0 sin(θ0) + r1 sin(θ1))2

= r20 + r21 + 2r0r1 cos(θ0 − θ1).

(9)
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With the same amount of noise (the same r0, r1), we can maximize d01 when
θ0 = θ1. By the angle selection mechanism, θ0 has a higher probability of being
closer to θ1 than randomly selected, resulting in a larger d01 and stronger privacy
guarantee. Similarly, we have the average vector difference vd(xd, yd) as:

2vd =
−−−−−−→
Ma01M01 +

−−−−−−→
Ma12M12 (10)

We have 4xd = (r0 cos(θ0) + 2r1 cos(θ1) + r2 cos(θ2)) and 4yd similarly. We can
calculate the length of the average vector difference |vd| from 16|vd|2 as:

(r0 cos(θ0) + 2r1 cos(θ1) + r2 cos(θ2))2 + (r0 sin(θ0) + 2r1 sin(θ1) + r2 sin(θ2))2

= r20 + 4r21 + r22 + 4r0r1 cos(θ0 − θ1) + 4r1r2 cos(θ1 − θ2) + 2r0r2 cos(θ0 − θ2).
(11)

To maximize |vd|, we have θ0 = θ1 = θ2. The angle selection mechanism lets
every output θi similar to the previous angle θi−1, which results in a larger |vd|.

The proposed system achieves larger distance and vector differences under fil-
ter attacks with the same amount of added noise. With Eq. 8, the angle selection
mechanism provides stronger privacy guarantees than random selection.

The angle selection mechanism satisfies (
√

kεa, δ′)-DP for k rounds, which
means that angles are hidden among the range of [0, 2π) with privacy budget√

kεa. In Sect. 2, we assume location points are published every n minutes. Con-
sidering half-day delivery with six hours and n = 5, there are k = 72 rounds and√

k ≈ 8.5. With a total desired privacy budget εall, εa = εall/
√

k is for each round.
The noise is added to angles, so the output is probably beyond the range [−π, π).
This can lead to a random output angle with a small εa(< 1). To achieve higher
utility, we select a larger εa to output an angle with higher probability in the range
of [−π, π). With a larger εa, the adversary may infer that the perturbed angle is
related to the previous angle. Differential privacy (DP) has the strong assump-
tion that the adversary knows all other records in the dataset, but the adversary
never knows any output angle in our scenario. It is secure to select a larger εa,
such as εa = 5. Section 8 shows how we select εa. From the definition of DP, the
angle selection results in a larger privacy parameter than selecting uniformly, but
Lemma 1 illustrates it can provide stronger privacy guarantees against real adver-
saries with possible attacks. It is not sufficient to only consider privacy guaran-
tees based on the definition of DP. Instead, a stronger adversary with background
knowledge should be considered since this is non-negligible in real cases. Other
DP-based works [12,21,35] also consider location privacy similarly with analysis
only in theory or lines instead of a real map.

The privacy parameter selection function provides different privacy guaran-
tees based on distances under real maps. In a real use case, receivers only need
a more precise location when the truck is close. If the receiver is far away from
the city, there can be privacy leakage, and it is easy to identify the road of the
truck (since there might be only one route within a small radius). Meanwhile, the
delivery prediction error can be larger than hours when the package is far from
the receiver, but when the truck is within k km, the error should be minimized
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(to minutes). With the privacy parameter selection function, we can better pro-
tect the real location of trucks and provide a more precise arrival time prediction
when the truck is away or close to the receiver.

Table 1. Computational and storage analysis. NT , NL, NP : number of trucks,
encrypted location data, destined product information. kSE : key size (bits) for AES-
CBC. e, a, (p, r): size (bits) of encrypted data, address, stealth address.

Protocol Operation Truck Receiver/Sender On-Chain Storage

Protocol 1 Key Derivation – O(NP ) –

Protocol 2 Tracking Key Derivation – O(NP ) –

Protocol 3 Compute Stealth Address O(NP ) – –

Confidential Decryption O(eNP ) – –

Data Sharing Encryption – O(eNP ) –

Smart Contract Register O(NT ) – aNT

Operation Publish O(NL + NP ) – NLe + NP (kSE + (p, r))

Location Sharing System. Our encryption algorithm relies on the security of
AES-CBC and ECIES encryption functions. For Protocol 1, the international
standard ISO/IEC 11770 [18] guarantees Alice and Bob can securely exchange
key materials. The key derivation function PBKDF2 [24] guarantees only the
holders of key materials can generate the key k. The security and privacy of
protocol 2 are based on the assumption that SHA-3 is a cryptographically secure
hash function. If a probabilistic polynomial time (PPT) adversary A obtains the
private tracking key tkpidA

= Hs(pidkAa), A can not derive kAa or identity of the
owner since the hash function is one-way. The security and privacy of protocol 3
rely on ECDLP [14]: given two points P,Q ∈ E(Fp) where Q ∈< P >, finding a
k such that Q = kP is computationally infeasible. Meanwhile, protocol 3 holds
the property of anonymity and unlinkability (with proof in Appendix A.1).

Lemma 2. (Anonymity and unlinkability) A PPT adversary A can not derive
the receiver of a stealth address or distinguish the receiver of two different stealth
addresses in Protocol 3.

Remark 2. If an adversary aims to access 100 trajectories from multiple days
and trucks, he needs to send or receive 100 packages. Also, the 100 trajectories
will not follow the same routes since the receivers are not the same.

7.2 Performance Analysis

We analyze our protocols with a blockchain-based platform to show the feasi-
bility and performance since blockchain is a potentially disruptive technology
for supply chains [25]. We summarize the computation complexity and on-chain
storage in Table 1, showing that the computation complexity is linear with the
number of trucks or packages. Meanwhile, the proposed encryption method has
a lower storage cost than DECOUPLES [22] (with proof in Appendix A.2).
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The protocols can also be used for centralized platforms where the complexity
is only determined by Protocols 1, 2, which is less, but a trusted and reliable
centre is needed to avoid possible hardware failure or information leakage [31].

Fig. 6. Example output with ε = 0.01. Fig. 7. Example output with ε = 0.005.

Fig. 8. Example output
with ε = 0.0025.

Fig. 9. Example out-
put with ε = 0.001.

Fig. 10. Relation between the out-
put probability and ε when the angle
noise ni is 0.125π, 0.25π and 0.5π.

8 Experimental Evaluation

8.1 Location Perturbation

This subsection includes the selection of privacy parameters (ε, εa), and evalua-
tion (run time and distance difference). We use Python for implementation, with
Mac OS 11, 2 GHz Quad-Core Intel Core i5 CPU, 16 GB RAM.

Dataset. The GPS trajectory dataset (collected by GeoLife) [37] is used for
evaluations. Trajectories are collected by different GPS loggers and GPS phones
from 182 users, including 17,621 trajectories covering 1,292,951 kilometres. We
have evaluated our algorithms using different trajectories and we use each tra-
jectory to simulate one stop of the truck based on the map of Beijing.

Distance Metric. We use the Haversine formula as the error function to calcu-
late the distance difference between two location points. If ϕ and λ are latitudes
and longitudes, and r is the radius of the Earth, we have d((ϕ1, λ1), (ϕ2, λ2)) as
(Eq. 12):
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d = 2r arcsin

√

sin2

(
ϕ2 − ϕ1

2

)
+ cos ϕ1 · cos ϕ2 · sin2

(
λ2 − λ1

2

)
. (12)

ε (for ε-geo-indistinguishability) is selected by Eq. 6. We can define which dis-
tance is large, medium, or small based on city sizes. For example, inner, central,
and outer rings in cities define the distance to the centre. For the first run of
the algorithm, we need to scale the privacy level l with the output results using
different r. Table 2 shows the relation between r and the real distance difference,
so we can calculate l by multiplying the average distance and ε. When l ≈ 3.2,
the distance difference is approximately the same as r. We set lm = 3, ls = 1
(to better preserve location privacy by lowering ε) and ll = 5. Considering the
density of roads in a city, we can set r to contain at least n (such as 5) differ-
ent roads with different distances between the truck and city centre. Here we
set rm = 1000(m), rs = 400, rl = 2000 using the real road map of Beijing.
Figures 6, 7, 8 and 9 support that the proposed parameters work well in the
real map with different (l, r) pairs. For example, with l = 3, r = 400, we have
ε = 0.0075, whose output is similar to Figs. 6 and 7. If l = 1, r = 1000, we have
ε = 0.001 as shown in Fig. 9 with much larger noise. After defining parameters l
and r for the first time, the value of ε can be calculated in real uses.
εa (for angle selection) can be selected based on the probability of outputting
an angle ranging in (θ0 − ni, θ0 + ni) where ni ∈ [−π, π) is the output noise of
the Gaussian mechanism. We can draw the output probability in Fig. 10 using:

p(ni) =
∫ ni

−ni

1
σ
√

2π
e− x2

2σ2 dx

/∫ π

−π

1
σ
√

2π
e− x2

2σ2 dx (13)

where σ =
√

2 ln(1.25/δ)·Δ2/εa and Δ2 is the l2-sensitivity. With different ni,
the same εa results in a similar probability when εa > 4, so we can choose the
desired εa (such as 5) and control the probability (such as 0.7).

Distance Difference. Based on Eq. 12, we evaluate the average distance (the
distance between the actual location and the published one) and the average
distance error (the error for the calculation of the distance between the current
location to the destination) in Table 2. All experiments are performed 100 times
based on the dataset while the average is used. A smaller ε has a larger error,
meaning that the distance or the error is smaller when the truck is closer to the
receiver (small l) and the city centre (small r).

Run Time. The run time is around 10−8 seconds (< 1 μs). The proposed
algorithm can be applied to smart devices to sanitize location data in real-time.

Utility Analysis. Figures 6, 7, 8 and 9 and Table 2 illustrates the relation
between ε and the distance error. With a small ε = 0.0005, the average dis-
tance error is around 4.18 km. If the truck speed is at 50 km/h, considering
the distance error is the straight-line distance (without considering road maps),
the actual arrival time prediction error is around 5 to 10 min. However, for the
adversary, Table 2 shows that the distance difference is 6.43 km. Even if they
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know that the truck is within 6.43 km of the published location, they need to
check the circle area with a radius of r0 = 6.43 km to find the truck. With
our proposed angle selection mechanism, the adversary needs to check the roads
in πr20 = 129.9 km2 to find the truck, which is infeasible in practice. In Fig. 9
with ε = 0.001, the published location is several streets away from the original
location. The adversary cannot locate the truck even if they hold the road map.
Similarly, with a large ε = 0.01, the difference or error is only around 200 m,
which infers that the prediction error is within one minute. Figure 6 shows that
the published trajectory is close to the actual, but the angle selection method
can mislead the adversary to the south of the real trajectory. Moreover, a large
ε is only set when the truck is close to the receiver in the city centre.

Table 2. Average distance and average distance error in meters with different ε.

ε = l/r Avg. distance Avg. error ε = l/r Avg. distance Avg. error

0.0001 31661.92 27017.11 0.0005 6435.09 4180.74

0.001 3231.63 1963.17 0.003 1076.24 619.72

0.005 656.07 371.39 0.006 532.53 309.11

0.007 453.70 265.82 0.008 401.11 232.70

0.01 319.22 184.90 0.05 63.55 37.16

8.2 Location Sharing System

We implement and evaluate our protocols with Ethereum to test the feasibility of
our protocols. In real cases, enterprises can choose their own solutions based on
the proposed protocols. We use Rust for implementation and JavaScript VM to
deploy the smart contract. ChaChaRng is the pseudo-random number generator.
SHA-3 is the hash function. Curve25519 is the elliptic curve. AES-CBC is with a
128-bit key. All tests are with Win 10 Pro, 32GB RAM, and Intel Core i7-10700.

We evaluate the run time for our protocols (where S/R is Sender/Receiver):
(1) key derivation (S/R: 0.506 s), (2) generate TKpid (S/R: 0.438 ms), (3) gener-
ate stealth address P (Truck: 0.850 ms), and (4) generate user-computed stealth
address P ′ (S/R: 0.440 ms). The key derivation limits the performance. The off-
chain encryption includes (i) AES-CBC to encrypt the data and (ii) ECIES to
encrypt the symmetric keys. The run time for ECIES (0.295 ms) is much longer
than AES (172 ns) with NL = 20, NP = 100, which limits the performance. With
30 items and stealth addresses (512-bit), the average gas cost for our encryption
method is 2.398 × 106, which is less than DECOUPLES [22] (2.864 × 106).

The scalability relies on the proof of work consensus model. For every second,
Ethereum can process around 15 transactions [28], so our platform can publish
location data from 15 trucks. Assume the location data is sent every five minutes.
The platform can support 15×60×5 = 450 trucks, which is practical for SMEs.
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9 Conclusions

We propose a real-time privacy-preserving location sharing system consider-
ing real maps and possible filtering attacks. We improve the state-of-the-art
in two folds. Firstly, our proposed location publishing mechanism is feasible
in real applications. Based on our exclusive security and privacy argumenta-
tion and proof, the proposed angle selection algorithm can better protect the
privacy of trajectories than existing works. The experiments show the location
publishing method is fast and practical for real-time data processing, which
only needs nanoseconds. Secondly, our proposed location sharing protocols can
protect privacy-sensitive data using cryptographic constructions under central-
ized and decentralized settings. Our security analysis proves that the system is
privacy-preserving. With Ethereum, our proposal has lower storage costs com-
pared to the previous work [22]. It is feasible and can handle ∼450 trucks, a
reasonable amount for an average city. Companies can build their own solutions
using our protocols to improve.

A Deferred Proofs and Figures

A.1 Proof for Lemma 2

Lemma 2.(Anonymity and unlinkability) A PPT adversary A can not derive
the receiver of a stealth address or distinguish the receiver of two different stealth
addresses in Protocol 3.

Proof. Assume that a PPT adversary A holds a stealth address (P,R) and pid

and a list of tuples (TKi,pid
,Kbi

), A needs to compute P ′ = Hs(rTKi,pid
)G +

Kbi
) such that P ′ = P . To find such a P ′, A need to compute P − Kbi

=
Hs(rTKi,pid

)G. Because of the one-wayness of ECDLP, it is computationally
infeasible to compute the Hs(rTKi,pid

). And since A does not know the secret
value r, he can not contrust P ′ = Hs(rTKi,pid

)G + Kbi
) himself. Therefore, it

is infeasible for A to derive the receiver of (P,R).
Similarly, assume that A gets two stealth addresses (P1, R1) and (P2, R2),

A needs to distinguish the following two scenarios: (1) two stealth addresses
belong to the same receiver, and (2) two stealth addresses belong to two different
receivers. For scenario (1), A computes P1 − P2 as:

P1 − P2 = Hs(rTKpid1)G + Kb − (Hs(rTKpid2) + Kb)
= (Hs(rTKpid1) − Hs(rTKpid2))G
= xG for some unknown x.

(14)

Since the adversary A does not hold pid1, pid2 and r, (Hs(rTKpid1) −
Hs(rTKpid2)) is a secret value x for him. For scenario (2), A computes P1 − P2

as:
P1 − P2 = Hs(r1TKpid1)G + Kb1 − (Hs(r2TKpid2) + Kb2)

= (Hs(r1TKpid1) − Hs(r2TKpid2) + Kb1 − Kb2)G
= yG for any unknown y.

(15)
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The adversary A does not hold pid1, pid2, r1, r2, so (Hs(r1TKpid1) −
Hs(r2TKpid2) + Kb1 − Kb2)G is a secret for A.

In both scenarios, the adversary A can not derive the secret value. Given two
different stealth addresses, it is computationally infeasible for A to distinguish.

A.2 Proof of Lower Storage Cost

Lemma 3. The proposed encryption method has lower storage costs than
DECOUPLES [22].

Proof. The space cost for only using ECIES is SECIES = NP (e + (p, r)). To
compare the space cost of the encryption algorithm S and SECIES , we compute
S − SECIES as follows:

S − SECIES = NLe + NP (kSE + (p, r)) − NP (e + (p, r))
= (NL − NP )e + NP (kSE − e)

(16)

Fig. 11. An example output by PLε, and the filtered output of the sanitized trajectory.
The blue line shows the actual trajectory, the red line shows the published trajectory
by PLε, and the green line shows the filtered trajectory. (Color figure online)

Algorithm 2: AngleSelection
Input: Previous angle θ0, privacy parameter εa

Output: Output perturbed angle θ
1: Calculate the new angle θ using Equation 7.
2: Round θ into the range [0, 2π)
3: return θ
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Since many products share the same location, we have NL < NP < 0. If e > kSE ,
we get S − SECIES < 0 (the size of the encrypted data is larger than the size of
the symmetric key). Our encryption method requires less storage than ECIES.
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