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Abstract

HAADF-STEM tomography is a common technique for characterizing the three-dimensional morphology
of nanomaterials. In conventional tomographic reconstruction algorithms, the image intensity is assumed
to be a linear projection of a physical property of the specimen. However, this assumption of linearity is
not completely valid due to the nonlinear damping of signal intensities. The nonlinear damping effects
increase w.r.t the specimen thickness and lead to so-called “cupping artifacts”, due to a mismatch with
the linear model used in the reconstruction algorithm. Moreover, nonlinear damping effects can strongly
limit the applicability of advanced reconstruction approaches such as Total Variation Minimization and
discrete tomography.
In this paper, we propose an algorithm for automatically correcting the nonlinear effects and the sub-
sequent cupping artifacts. It is applicable to samples in which chemical compositions can be segmented
based on image gray levels. The correction is realized by iteratively estimating the nonlinear relationship
between projection intensity and sample thickness, based on which the projections are linearized. The
correction and reconstruction algorithms are tested on simulated and experimental data.

1. Introduction1

In materials science, electron tomography (ET)2

is commonly used to characterize the three-3

dimensional (3D) structural and compositional in-4

formation of nanomaterials. The 3D image is5

usually reconstructed from a tilt series of two-6

dimensional (2D) projections (projection images).7

The projection images should have a monotonic re-8

lationship between the measurement intensity and9

the integrated physical property of the specimen,10

which is referred to as the projection requirement11

in ET [1, 2]. Strictly speaking, the relationship12

should be linear, as most tomographic reconstruc-13

tion algorithms are based on a linear mathematical14

model – the line integral model. It assumes that15

the projection is a measurement of a physical prop-16

erty integrated along the projection orientation (see17

Chapter 3 in [3]). 1

High angle annular dark field (HAADF) scanning 2

transmission electron microscopy (STEM) is com- 3

monly used for ET [1, 4] under the implicit assump- 4

tion that the projection requirement can be ap- 5

proximately satisfied. The image intensity approx- 6

imates to be proportional to the mass-thickness 7

weighted by Z∼2, where Z is the atomic number [4]. 8

However, this approximation is not always valid. 9

One example is that when projections of a crys- 10

talline material are acquired at zone-axis orienta- 11

tions, fringes and large overall intensity differences 12

can be observed. Thus the tilts at zone-axis are 13

usually excluded from the tomographic reconstruc- 14

tion step [5]. Another example is that the image 15

intensity damps at high sample thickness due to 16

the multiple scattering events redirecting electrons 17

Preprint submitted to Elsevier October 19, 2017



outside the annular detector, which can occur in all1

projection orientations. While the zone-axis effects2

can be easily identified, intensity damping is not3

easily seen in individual projections. In this pa-4

per, we aim at addressing the nonlinear effects of5

intensity damping for tomographic reconstruction.6

The consequence of intensity damping appears as7

the cupping artifact in tomographic reconstruction:8

the gray levels in the center of the reconstructed9

sample are underestimated while overestimated on10

the exterior [6]. In Fig. 1(a), an example of the11

cupping artifact is given. It is a 2D cross section of12

an Au-Ag core-shell nanoparticle [7], reconstructed13

using the SIRT algorithm [8]. If we look at the14

line-profile of the 2D image (Fig. 1(b)), the curve15

appears in a concave “cup” shape, while ideally it16

should be flat. The cupping artifacts are caused by17

the strong damping effects of Au at large thickness,18

which is illustrated by the simulated relationships19

between measurement intensity and sample thick-20

nesses using the multislice simulation method [5] in21

Fig. 2. In this example, the linear approximation22

is only valid for thickness smaller than 8 nm due to23

the clear damping effect for larger thickness.24

It is important to correct the nonlinear effects25

and the subsequent cupping artifacts for three rea-26

sons. First of all, compositional analysis based on27

gray levels becomes difficult when the cupping arti-28

facts occur, as gray levels are not proportional any-29

more to density and atomic numbers. Second, mor-30

phological analysis based on segmentation of recon-31

struction images is hindered by the cupping arti-32

facts. Some straightforward segmentation meth-33

ods, e.g. Otsu’s method [9], require that for each34

chemical composition there should be one constant35

gray level. Third, the nonlinear effects limit apply-36

ing advanced reconstruction algorithms to address37

a critical issue of ET – the missing wedge artifacts38

caused by the limited tilt range of the sample. Al-39

gorithms such as total variation minimization [10]40

reduce the missing wedge artifacts by incorporating41

prior knowledge i.e. sparsity of the unknown sam-42

ple. Nevertheless, these algorithms have an even43

stronger requirement for the linear forward model44

which is inaccurate due to the nonlinear effects.45

Despite these shortcomings of using uncorrected46

data, there are few publications addressing the non-47

linearity issue in ET [5, 6]. Nonlinear effects are48

usually ignored or mitigated during image acquisi- 1

tion by increasing the inner angle of the HAADF 2

detector but at the cost of losing signal strength 3

[5]. An alternative to adjusting the acquisition pa- 4

rameters is to correct the measured data in a post- 5

processing step by linearizing the projection data, 6

provided that the incident beam intensity is known 7

[6]. The method described here requires only the 8

HAADF signal, consequently, it can be applied to 9

correct cupping artifacts in many existing datasets 10

acquired in a conventional manner. The mathe- 11

matical model of nonlinearity and the concept of 12

linearization in [6] are also used in this paper, which 13

will be explained in Section 2.1. 14

Here, we propose an iterative algorithm to au- 15

tomatically correct the nonlinear effects and the 16

cupping artifacts. It does not require the extra 17

measurement of the incident beam intensity as in 18

[6]. Instead, it automatically models the nonlinear 19

effects given the projection data. The algorithm 20

iteratively searches for the minimal distance be- 21

tween the acquired projections and the nonlinear 22

re-projections of chemical compositions by varying 23

the nonlinear model and the reconstruction image, 24

so as to estimate a nonlinear relationship between 25

the measured HAADF-STEM intensities and sam- 26

ple thickness for all chemical compositions. The 27

algorithm contains the following steps in every it- 28

eration: first a reconstruction image with contin- 29

uous gray levels is made; then the image is seg- 30

mented into several binary images, each of which 31

corresponds to a chemical composition; after that, 32

the nonlinear effects are modeled by minimizing the 33

projection distance; based on the model, the pro- 34

jection data is linearized at last. The concept of 35

iterative correction has been used to correct beam 36

hardening artifacts for X-ray computed tomogra- 37

phy, which is similarly caused by nonlinear intensi- 38

ties [11, 12, 13]. 39

Our approach is only applicable to samples con- 40

sisting of several chemical compositions with uni- 41

form densities, such as homogeneous or core-shell 42

particles. It is assumed that for these samples the 43

volumetric distributions of the compositions can be 44

approximated well by segmenting the reconstructed 45

image based on gray levels and that this segmen- 46

tation improves as the correction model applied to 47

the measured data becomes more accurate. In fact, 48

these kinds of samples are commonly studied in 49
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materials science. For example, the samples typi-1

cally studied in the context of discrete tomography2

[14, 15] match the requirements.3

In Section 2, the correction algorithm is ex-4

plained in detail. In section 3, we demonstrate5

how the nonlinear effects are corrected using this6

algorithm for real experimental data and phantom7

simulations.8

(a) (b)

Figure 1: (a): 2D slice of the SIRT reconstruction of an Au-
Ag nanoparticle. (b): Gray levels of the line-profile located
at the dash line of the 2D slice.

Figure 2: Normalized HAADF signal intensity w.r.t the
thickness of Au slabs mistilted 10 degrees from the [100]
zone axis about the <100> axis, simulated using the mul-
tislice method [5]. The accelerating voltage is 200 kV, the
convergence angle is 10 mrad and the detector angular range
is 50 - 250 mrad. The intensities are scaled by the incident
beam intensity. The red lines indicate the region where in-
tensity is approximately linear to thickness.

2. The Nonlinear Model and the Correction 1

Algorithm 2

2.1. The Nonlinear Model 3

To linearize the projections, we first need to 4

define a model that describes the nonlinear rela- 5

tionship mathematically. A precise mathematical 6

model is possible but does not fit as a subrou- 7

tine of the correction algorithm. The computation 8

of a sophisticated model, such as the one used in 9

multi-slice simulations which take into considera- 10

tion the multiple scattering of electrons [5], is ex- 11

tremely time-consuming and costly. Therefore, a 12

simple model is preferred here. 13

Here, we choose a model that has already been 14

used for describing the nonlinear relationship. In 15

[6, 16], it is illustrated we can assume that the 16

HAADF detector collects electrons complementary 17

to the electrons scattered to angles smaller than 18

its inner detector angle. The electrons can also be 19

scattered to angles beyond the outer detector angle, 20

but the proportion is negligibly small. By pragmat- 21

ically applying a simple Beer-Lambert description 22

of electron scattering we can state that the number 23

of electrons scattered to small angles pt decreases 24

exponentially to the sample thickness t along the 25

beam direction. The pt-t relationship is 26

pt = I0 exp(−
K∑
e

µet), (1)

where I0 is the incident beam intensity, e is the 27

index of chemical composition, K is the total num- 28

ber of chemical compositions, µe is the attenuation 29

coefficient of chemical composition e. Therefore, 30

the complementary HAADF signal intensity p at 31

sample thickness t is: 32

p = I0(1− exp(−
K∑
e

µet)) + pb, (2)

where pb is the bias signal, which is influenced by 33

the dark current, carbon grid, and possibly other 34

factors. 35

This mathematical model has been used to cor- 36

rect the cupping artifacts successfully in [6], which 37

is applicable only if the incident beam intensities 38

can be measured. An advantage of this simple 39
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model is that it can easily be transformed into a1

linear relationship by taking logarithms so that we2

can avoid solving nonlinear least-squared problems3

for tomographic reconstruction.4

In the practice of ET, a series of projections are5

taken at different angles. The image intensity of6

each pixel corresponds to the electrons scattered for7

an electron beam transmitting through the sample,8

which is called a line projection here. In total, there9

are M pixels for all the images. The image intensity10

of the ith pixel is now written as an entry pi in11

p ∈ RM . In addition, the space of reconstruction12

is a cubic volume partitioned into N voxels.13

We also assume the chemical compositions are14

not mixed and voxels are small enough to resolve15

every chemical composition, which means that in16

each voxel only one element is present. As stated in17

the introduction, this algorithm is applied to sam-18

ples with uniform density. Thus we assume that19

each chemical composition is either present (1) or20

absent (0) in each voxel. The distribution of chem-21

ical composition e is described by binary variables22

sej , where j = 1, . . . , N is the index of voxel.23

Now we define the nonlinear relationship in the24

discrete form. For pixel i, the corresponding sample25

thickness of chemical composition e is now written26

as the ray-sum
∑N

j=1 wijsej , where the factor wij27

is determined by the area of intersection between28

the ith line projection and the jth voxel. The rela-29

tionship between projection intensities and binary30

volumes are:31

pi = I0(1− exp(−
K∑
e=1

µe

N∑
j=1

wijsej)) + pb, (3)

where i = 1, . . . ,M .32

2.2. The Correction Algorithm33

The basis of the correction algorithm is to esti-34

mate the nonlinear relationship of Eq. 3 based on35

the reconstructed distributions of chemical compo-36

sitions. The procedures of the automatic correc-37

tion algorithm are given in the flowchart (Fig. 3).38

The correction is realized iteratively through the39

following steps: (1) make a reconstruction image40

based on the linear model from the projections; (2)41

segment the reconstruction into a series of binary42

images, one for each chemical composition; (3) esti- 1

mate the parameters of the nonlinear model in Eq. 2

3 given the projections and the binary images; (4) 3

reduce the nonlinearities in the projections through 4

a rescaling of the intensities based on the nonlinear 5

model. 6

Figure 3: Flowchart of the correction algorithm

Before we explain the steps explicitly, we estab-
lish an objective function which will be used to
guide the optimization in the correction algorithm.
We define it as the l2 norm of the distance between
the acquired projections and the re-projection of
binary images based on our nonlinear model:

C(I0, pb,µ,S) =

‖ p− I0(1− exp(−W
K∑
e=1

µese))− pb ‖22, (4)

where W = {wij}, µ = {µe} and S = {sej}. 7

We also define a stopping criterion. The cost 8

value at the rth iteration is denoted as the cr. The 9

loop is terminated if the cost is stable, which is 10

when the following criterion is met: 11

cr + cr−1

cr−2 + cr−3
> t, (5)

where 0 < t < 1 is a thresholding value. Note that 12

although we minimize the cost function in some 13

steps of the algorithm, the cost is not guaranteed 14

to reach a global minimum in the end. 15
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Step 1: Reconstruction1

As the first step, a reconstruction with continu-2

ous gray levels is made for determining the binary3

images in the next step. Though it is possible to4

reconstruct binary images directly using some dis-5

crete tomography algorithms (e.g. [14]), these algo-6

rithms will possibly not give better results than ba-7

sic algorithms given an inaccurate forward model.8

Thus, we choose to first make a reconstruction x9

with continuous gray levels based on a linear model10

and then segment the reconstruction into binary11

images S.12

The reconstruction is computed using the simul-13

taneous iterative reconstruction technique (SIRT)14

[8] which solves the following least-squares prob-15

lem:16

x∗ = argmin
x

‖ plin −Wx ‖22 . (6)

The widely used SIRT algorithm is chosen for its17

robustness to noise and its easy implementation.18

The input for this step is a set of “linearized”19

projections plin. For the first iteration, they are20

just the acquired projections. For the other itera-21

tions, they are adopted as the projections that have22

been rescaled in the previous iteration, which will23

be explained in Step 4.24

Step 2: Segmentation25

The binary images are then determined by seg-26

menting the reconstruction image x. As gray lev-27

els are related to atomic numbers, we segment the28

SIRT reconstruction by global thresholding. The29

thresholds for the segmentation are determined by30

solving the following optimization problem:31

S∗ = argmin
S∈S

C(I0, pb,µ,S). (7)

The solution of this problem is found by straightfor-32

ward (brute-force) sampling of the space of thresh-33

olds, each time evaluating the cost function. In34

practice, the thresholds are sampled from the min-35

imum to the maximum of gray levels of the SIRT36

reconstruction in Step 1.37

The first iteration is again an exception since pa-38

rameters have not yet been estimated and the ob-39

jective function cannot be computed. Thus, the40

above segmentation method is not applicable. In-41

stead, the thresholds are determined using Otsu’s42

method which finds optimal thresholds based on 1

the gray level histograms [9]. 2

Step 3: Nonlinear parameters estimation 3

Given the binary images, we can update the free 4

parameters of the nonlinear model I0, pb,µ by min- 5

imizing the objective function, which is a nonlinear 6

regression problem. This nonlinear regression prob- 7

lem is solved using the Nelder–Mead method [17]. 8

To improve the stability of the regression, the three 9

parameters are estimated separately and iteratively 10

in an inner loop: 11

For l = 1 : L

pb
l+1 = argmin

pb

C(I l0, pb,µl,S∗);

µl+1 = argmin
µ>0

C(I l0, pl+1
b ,µ,S∗);

I0
l+1 = argmin

I0>max(p)

C(I0, pl+1
b ,µl+1,S∗). (8)

here l is the iteration number of the inner loop. 12

The estimation algorithm requires initial parame- 13

ter values. In the experiments, we found that the 14

initial values have little influence on the conver- 15

gence result but proper initial values help to con- 16

verge faster. Since we know that the beam inten- 17

sity I0 should be at least the maximal image inten- 18

sity and that the attenuation coefficients µ and the 19

bias intensity pb are very small, we can start from 20

I10 = max(p), p1b = 0 and µ1 = 0, which were used 21

in all the experiments in the paper. 22

Step 4: Projection intensities rescaling 23

Given the parameters, we rescale the measured 24

projections p to reduce nonlinear damping effects 25

using: 26

p,
lin = log

I0 + pb − p

I0
, (9)

where p,
lin is the rescaled projections and is used 27

as the input data for Step 1. At the last iteration, 28

the rescaled projections are returned as the output 29

plin. These correspond to the linearly projected 30

sum of the attenuation coefficients. 31

3. Experiments and Simulations 32

We report the correction of cupping artifacts for 33

two sets of experimental data and three phantom 34
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simulations. The experimental data show strong1

nonlinear effects because the samples consist of2

thick metallic materials. Two phantom simulations3

resembling the experimental data were performed,4

as ground-truth is missing for quality assessment of5

the reconstruction image due to the lack of other6

measurement methods. In addition, a phantom of7

four chemical compositions was simulated to inves-8

tigate the robustness of the algorithm when more9

chemical compositions are present, as the experi-10

mental samples consist of only one or two chemical11

compositions.12

3.1. Experiments13

The first experimental sample is an assembly14

consisting of 16 Pt nanoparticles, each of which15

has a diameter of about 60 nm (Fig. 4(a)) [18]. It16

has only one chemical composition and a relatively17

more complex structure than the second sample.18

The second sample is a hetero-nanoparticle,19

which is an Ag nanoparticle with a diameter of ap-20

proximately 110 nm with an embedded Au octahe-21

dron [7]. It is studied as a case where the cupping22

artifacts reduce the image contrast between differ-23

ent chemical compositions. The specifications of24

data acquisition are listed in Table 1.25

This dataset has been used to investigate26

HAADF-EDS bimodal tomography (HEBT) in [7].27

In that study, the authors have noticed that the28

raw data had strong intensity damping which not29

only limited straightforward segmentation of the30

HAADF reconstructions but also undermined the31

validity of HEBT based on linear models. There-32

fore, in [7] the data has been linearized in the data33

preprocessing as mentioned in section 3.2 of [7].34

3.1.1. Results: Nanoparticle Assembly35

Fig. 5 (a) is the initial SIRT reconstruction,36

based on which a binary image (Fig. 5(c)) was seg-37

mented using Otsu’s method. Fig. 5 (b) and (d) are38

the reconstruction and the binary image acquired39

after applying the correction algorithm. To obtain40

morphological information which is difficult to ob-41

serve in the reconstruction images, we plotted their42

edges (Fig. 5 (e)) which are detected using a Sobel43

filter that depends on the derivatives of gray levels.44

(a) (b)

Figure 4: (a): 3D volume rendering of the Pt nanoparticle
assembly. (b): 3D volume rendering of the Au-Ag nanopar-
ticle.

In addition, the fidelity of the nonlinear regres- 1

sion for the nonlinear model was investigated. The 2

fitted nonlinear model w.r.t thickness is plotted in 3

Fig 6, where the thickness was computed as the 4

forward projection of the binary image after cor- 5

rection. The error bars indicate the mean intensi- 6

ties and the standard deviations of the projection 7

intensity. 8

Figure 6: The nonlinear damping model fitted for projection
signal intensity w.r.t. sample thickness of the nanoparticle
assembly. The error bars indicate mean intensities and the
standard deviations of the projection data.

3.1.2. Results: Au-Ag Core-shell Nanoparticle 9

For this experimental data, the SIRT reconstruc- 10

tions and segmented binary images before and after 11

correction are shown in Fig. 7. In addition, the line 12

profiles across the reconstruction images for some 13

6



Table 1: Data acquisition specifications.

specimen nanoparticle assembly core-shell nanoparticle
electron microscope Tecnai G2, FEI company Tecnai Osiris, FEI company
accelerating voltage 200 kV 120 kV
convergence angle 16 mrad 18 mrad

HAADF detector range 82-180 mrad 54-230 mrad
projection angles range −74o to 74o −75o to 75o

projection angle increment 2o 5o

iterations are plotted in Fig. 8 to demonstrate how1

gray levels evolve during a run of the correction2

algorithm.3

As discussed in the introduction, the nonlinear4

effects also hinder adopting prior knowledge to re-5

duce missing wedge artifacts. In this data, the pro-6

jections were only acquired from −75o to 75o. We7

thus compared reconstructions using advanced re-8

construction algorithms: total-variation minimiza-9

tion (TV-min) [10], discrete algebraic reconstruc-10

tion technique (DART) [14] and total variation reg-11

ularized DART (TVR-DART) [15], which incorpo-12

rate the prior knowledge of image sparsity, discrete13

gray levels and image sparsity combined with dis-14

crete gray levels respectively. The images recon-15

structed from the nonlinear projections and the cor-16

rected projections are given in In Fig. 9.17

Finally, we plotted the normalized residuals of18

the cost function w.r.t. iterations for the two ex-19

perimental data (Fig. 10). For the first and sec-20

ond experiments, the cost values converge to stable21

minimums after 16 and 12 iterations respectively.22

(a) (b)

(c) (d)

Figure 7: (a) and (b): SIRT reconstructions of the Au-Ag
nanoparticle from the nonlinear projections and corrected
projections. (c) and (d): Binary images segmented based on
the reconstruction images (a) and (b) respectively.

7



(a) (b)

(c) (d)

(e)

Figure 5: (a) and (b): SIRT reconstructions of the Pt
nanoparticle assembly from the nonlinear projections and
corrected projections respectively. (c) and (d): Binary im-
ages obtained by segmenting (a) and (b) respectively. (e)
Edges of reconstructions before (white) and after correction
(green).

Figure 8: Cross-section line profiles of the SIRT reconstruc-
tions of the Au-Ag nanoparticle at different iterations.

8



(a) (b)

(c) (d)

(e) (f)

Figure 9: (a)/(b), (c)/(d) and (e)/(f) are the TV-min,
DART and TVR-DART reconstructions of the Au-Ag
nanoparticle from projections before/after the correction re-
spectively.

Figure 10: The residuals of cost function (Eq. 10) w.r.t.
iterations for the two experimental datasets.

3.2. Phantom Simulations 1

First of all, two phantom simulations were made 2

resembling the two experimental datasets. Note 3

that the purpose of the simulation is not to vali- 4

date the nonlinear model, but to assess the quality 5

of nonlinear correction assuming the nonlinear for- 6

ward model is accurate once all model parameters 7

have been accurately obtained. For each sample, we 8

first applied the correction algorithm to the experi- 9

mental data to obtain binary images and nonlinear 10

forward models. Afterwards, projections were sim- 11

ulated by projecting the binary images based on 12

the nonlinear model. In addition, Gaussian noise 13

was added to the projections to make the simula- 14

tion more realistic. 15

The simulations provide ground-truth to quan- 16

tify the quality of reconstructions. Here, the error 17

metric is defined as the mean difference between the 18

reconstructed and the ground-truth binary images: 19

err =
1

K

K∑
e

N∑
j

‖ sej − gej ‖ /
N∑
j

gej , (10)

where {gej} are the ground-truth binary images. 20

The third phantom simulation, focused on the 21

correction for more than two chemical composi- 22

tions, was made using the same shapes as the 23

nanoparticle assembly phantom. What is different 24

is that instead of having one composition for all 25

particles, there are particles of four different com- 26

positions, each having a different atomic number. 27

Then projections were made by projecting the par- 28

ticles based on the nonlinear model. 29

3.2.1. Results of Simulations 30

The first phantom resembles the nanoparticle as- 31

sembly, whose contours are plotted in Fig. 11 (c) 32

and (d). Fig 11 (a) is the initial SIRT reconstruc- 33

tion before correction, based on which a binary im- 34

age (Fig. 1(c)) was segmented. Fig. 11 (b) and 35

(d) show the SIRT reconstruction and the binary 36

image after applying the correction algorithm. The 37

error metrics of the binary images are respectively 38

5% and 2% before and after correction. 39

The results of the second phantom simulation are 40

shown in Fig. 12, where (a) and (b) are the SIRT 41

9



reconstructions before and after correction respec-1

tively. The binary images in Fig. 12 (c) and (d)2

were segmented from the SIRT reconstruction im-3

ages. The ground-truth phantom is plotted using4

red and green contours for Au and Ag respectively.5

The error metrics of the binary images are respec-6

tively 56% and 1% before and after correction.7

(a) (b)

(c) (d)

Figure 11: (a) and (b): SIRT Reconstruction images of the
nanoparticle assembly phantom simulation before and after
the nonlinearity correction. (c) and (d): Binary images seg-
mented based on (a) and (b) respectively. The red contour
shows the shape of the phantom.

The third phantom simulation presents the case8

when four chemical compositions exist in the same9

phantom. The SIRT reconstruction images before10

and after correcting the nonlinearity are shown in11

Fig. 13 (a) and (b) respectively, while the corre-12

sponding binary images are given in Fig. 13 (c)13

and (d). The error metrics of the binary images14

are respectively 69% and 20% before and after cor-15

rection.16

3.3. Discussion17

In the initial reconstruction of the nanoparticle18

assembly (Fig. 5(a)), the artifacts appear, on one19

(a) (b)

(c) (d)

Figure 12: (a) and (b): SIRT reconstructions of the Au-Ag
nanoparticle phantom simulation before and after the non-
linearity correction. (c) and (d): Binary images segmented
based on (a) and (b) respectively. The red and green con-
tours show the shape of the phantoms of Au and Ag respec-
tively.

hand, as dark streaks elongated from the gaps be- 1

tween particles. On the other, they appear as un- 2

derestimated gray levels in the interior, for which 3

we see missing pixels in the binary image (Fig. 4

5(c)). 5

The correction algorithm successfully reduced 6

these artifacts and produced images easier to in- 7

terpret. The correction algorithm also changed 8

the morphology of the reconstruction image (Fig. 9

5(b)), as can be seen from the plot of edges. The 10

change may be due to the removal of the overes- 11

timated gray levels on the background. The plot 12

of fitting (Fig. 6) shows that the experimental 13

data matches our nonlinear model, demonstrating 14

a damping effect following the exponential rule. It 15

is also noticeable that the standard deviations de- 16

crease at large thickness, which can be explained by 17

noting that the errors introduced by segmentation 18

are relatively smaller at larger thickness. 19

In the initial SIRT reconstruction image of the 20

Au-Ag nanoparticle (Fig. 7(a)), the cupping arti- 21
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Table 2: Errors Metrics of Binary Images.

before correction after correction
nanoparticle assembly phantom 5% 2%
Au-Ag nanoparticle phantom 56% 1%

phantom of four chemical compositions 69% 20%

facts caused the loss of contrast between Au and1

Ag, even though Au and Ag have a large difference2

in atomic number. As a result, many pixels were3

misclassified in the binary images (Fig. 7(b)). The4

algorithm corrected the experimental data and en-5

hanced the contrast between Au and Ag. Demon-6

strated in Fig. 8, the contrast between Au(center)7

and Ag(outskirts) was enhanced step by step. At8

last, the Au and Ag particles were segmented cor-9

rectly based on gray levels.10

The Au-Ag nanoparticle should be suitable for11

incorporating prior knowledge to correct missing12

wedge artifacts. It contains two distinct compo-13

sitions with uniform densities, and thus the recon-14

struction image should be sparse and have constant15

gray levels. However, before the correction, incor-16

porating different variants of prior knowledge in the17

reconstruction actually appears to be detrimental18

to the image quality, as can be seen in Fig. 9. Espe-19

cially the tip of the Au particle was expanded. The20

expanded tip probably is a mixture of cupping arti-21

facts and missing wedge artifacts. After correcting22

the nonlinear effects, the linearized projection data23

was suitable for using the advanced algorithms as24

the reconstructions show.25

The first two phantom simulations show artifacts26

(in Fig. 11(a) and Fig. 12(a)) very similar to those27

from the experimental data, which indicates that28

the modeling of nonlinear effects is accurate. Both29

reconstructions after correction are free of these ar-30

tifacts, and are in good agreement with the ground-31

truth phantom, as the error metrics were reduced32

(Table 2).33

For the third simulation, we see cupping artifacts34

(Fig. 13(a)) with features observed in the previ-35

ous two cases. First, there are dark streaks and36

underestimated gray levels. Second, the contrast37

between different chemical compositions is blurred. 1

These artifacts were corrected after applying the 2

correction algorithm (Fig. 13(b)). 3

The segmented binary images after correction 4

(Fig. 13(d)) show a stack of different chemical com- 5

positions at the borders of some particles. How- 6

ever, these misclassified pixels are not caused by 7

the cupping artifacts, but due to the limitation of 8

the global thresholding [19]. The gray levels in the 9

reconstruction image are continuously dropping at 10

the borders. These pixels were classified into par- 11

ticles of smaller gray levels. Despite the imperfect 12

segmentation, the correction algorithm converged 13

to a result free from cupping artifacts, which also 14

indicates the good robustness of the algorithm. 15

4. Conclusion 16

In this paper, we proposed an iterative algorithm 17

to automatically correct the cupping artifacts in 18

tomographic reconstructions from HAADF-STEM 19

projections with nonlinearly damping intensities 20

using only the projection data. The correction is 21

based on modeling the nonlinear relationship be- 22

tween projection intensities and sample thickness 23

as an exponential function. 24

We showed that the algorithm is an effective tool 25

in achieving better tomographic reconstructions. It 26

successfully corrected the nonlinear damping effects 27

and the subsequent cupping artifacts in three cases 28

where one, two and four chemical compositions are 29

present respectively. The correction is useful for 30

improving the accuracy of morphological analysis 31

and compositional analysis for 3D nanostructures 32

and nanomaterials. In addition, users can benefit 33

from it in enhancing the Z-contrast between chem- 34

ical compositions as well as in facilitating incorpo- 35

rating prior knowledge to correct the missing wedge 36

artifacts. 37
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(a) (b)

(c)

(d)

Figure 13: (a) and (b): SIRT reconstructions of the phantom
simulation with four chemical compositions before and after
correcting the nonlinear effects. (c) and (d): Binary images
segmented based on (a) and (b) respectively. The colorful
contours show the shape of the phantom particles of four
different chemical compositions.

For limited data (e.g. with only a small range of 1

tilts), the correction algorithms may fail due to the 2

inaccurate segmentation caused by the dominant 3

missing wedge artifacts. Potentially, this issue may 4

be addressed by replacing SIRT and possibly the 5

segmentation step by an advanced reconstruction 6

algorithm (e.g. TVR-DART). However, it is still 7

an unsolved question how to automatically set the 8

parameters of the reconstruction algorithms, which 9

has to be done in each iteration of the correction 10

algorithm. 11

Note that the algorithm is only applicable to 12

samples consist of several chemical compositions 13

with homogeneous densities that can be segmented 14

based on images gray levels. This is because the 15

graylevel-based segmentation method fails easily 16

when the chemical compositions are mixed or have 17

similar atomic numbers. Moreover, this segmenta- 18

tion method is a global thresholding method. It 19

may lead to poor initial segmentation results and 20

consequently failed corrections when the cupping 21

artifacts are very strong. Consequently, the next 22

step of improving the algorithm is to incorporate 23

advanced segmentation methods or spectroscopic 24

techniques to determine the distributions of chem- 25

ical compositions. 26
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