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Introduction

Background of the project

In the Netherlands the available land is used raatemore intensively. Main corridors

of transport (roads and railroads) are part of uhgan area. In order to avoid the
negative influences of the corridors of transponbige, pollution, barriers for local

transport) many main corridors of transport will beilt in tunnels. The responsible

authorities have to decide whether dangerous gowysbe transported through these
tunnels. First, their attention focuses on the tgatd human beings in the tunnel.

However, also the integrity of the structure and #tonomic consequences of an
accident must be considered. For the last aspeotylkedge of the loading mechanism
and the structural response is required.

Nowadays the goods which are sensitive for expitoai@ transported along alternative
routes that exclude tunnels. These are mostly slecgrroads. The transport along
these alternative roads has many disadvantagds,asuthe safety along the route, the
air- and noise pollution along the road and thehéigransport costs. Therefore, it is
preferred to permit the transport of dangerous gottdtough tunnels. In case of
multiple use of space this leads to the questioat\ahe the possible consequences and
risks for buildings of structures above the tunnel.

In the Delft Cluster work package “Bijzondere Béiagen” (CT01.21) the conse-
quences of a BLEVEand a reduced BLEVE are considered. These phermhere a
low probability of occurrence, but might have immenconsequences. Therefore, a
deterministic consideration seems not possible.

The results of the work package must facilitate qoantitative risk analysis of the
phenomena, that support the authorities in thecisten of allowing transport of

dangerous goods through tunnels or not. The wockame focus is on the mechanical
description of the loading and the response. Howet@equires an interdisciplinary

approach, which integrates knowledge of risk anslysxplosion and evaporation of
liquefied gases, structural dynamics and soil dyoam

Project description
The project contains two main stream research:lines

1. Loading due to BLEVE. The BLEVE research is maiekgcuted in a PhD project
at Delft University of Technology. This part focgseon an improved
understanding and modelling of the BLEVE phenomenbNO Defense and
Safety will participate in this research line byraauction of practical mechanical
modelling of the vessel behaviour and creation pifetical engineering model for
BLEVE load prediction, based on the results of Btudy.

! BLEVE (Boiling Liquid Expanding Vapor Explosiong the phenomenon of an extremely fast evaporation
of liquefied gas that occurs after the containiegsel has failed. Blast waves are generated whéch a
comparable to the blast of an explosion.
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2. Dynamic Response of the structure-soil system umlé€fVE and a reduced
BLEVE loading. Here TNO Built Environment and Geiesces concentrates on
the structural part of the problem, whereas Deltamad Delft University of
Technology will take care of the soil response. TR@fense and Safety will
provide data on appropriate loads for realistiesas

The project is divided into the following work pades:

» L1: Mechanical aspects of the initiation of a BLEVE

e L2: Thermodynamic and gas dynamic aspects of a BEEV
* R1: Preliminary structural response

* R2: Soil behaviour

* R3: Full system response

» R4: Consequences for surroundings

This report is part of work package R3.

Work package R3

Work package R3 of the Delft Cluster project ‘Bijwlere Belastingen’ aims at the ‘full
system response’ of tunnels under the influencarofexplosion load. In this work
package finite element calculations were performmdigre the Thomassen tunnel was
elected as a benchmark. Besides the response tifrthel structure, also the response
of the surrounding soil was considered.

The study was conducted by TNO and Deltares. atdmas studied the dynamic
behaviour of the soil. The dynamic properties & Hoil were used by TNO to model
the entire system of the tunnel and the surroundailg The calculations of TNO were
performed with the finite element program LS-DYNWjth an advanced material

model for the tunnel and a simple material modelthe surrounding soil. The

calculations of Deltares were performed with tmitdi element program PLAXIS, with

a simple material model for the tunnel and an adedrmaterial model for the land.
This approach was chosen because there are napregwailable with good, advanced
material models for both the tunnel structure dedsurrounding soil.

The purpose of the work package R3 is to obtaintglan the possibilities to quantify
the overall response of the tunnel system (tuningld and surrounding soil) using
(advanced) numeric codes. Derived goals are obtaiclarity on the role of soil in the
response to the explosion load and preparing at dnagthodology for assessing
explosion-proof tunnels.

Scope of this report

This report describes the research on the dynamsponse and failure of the
Thomassen tunnel (formerly known as the Calanddlljrumder a blast explosion. A
full dynamic analysis is done using the expliaiite element code LS-DYNA. Chapter
2 gives a description of the finite element modéle results of the calculations are
presented in chapter 3. Finally, some conclusiors racommendations are given in
chapter 4.
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2.1

Analysis model description

Introduction

The dynamic behavior of the Thomassen Tunnel utidemfluence of a BLEVE load
was previously investigated using the finite eletmaogram DIANA and LS-DYNA,
see [1]. This previous research revealed that DIAAIK LS-DYNA are suitable
platforms for the modeling of high impact loadinigstructures, but implementation of
time-dependent reaction (strain rate dependendgssambiguous in DIANA than in
LS-DYNA. In addition, the program structure and gwution methodology (explicit
solver) of LS-DYNA are more suitable for dynamiclatdations than the program
structure and solution method (implicit solver) BfANA. For this reason, in the
present study LS-DYNA was used.

Previous calculations with LS-DYNA, see [2], onumnel without surrounding soil
have indicated that a BLEVE-load (maximum pres&ir@ kPa, pulse 12 kP gives
local damage in the middle wall of the tunnel. Wief of the reinforcement did not
occur. On this basis, it was concluded that no ajlawllapse occurs. As noted, the
surrounding soil was not included in this studync®i there are no programs available
with good, advanced material models for both tenél structure and the surrounding
soil, both LS-DYNA and PLAXIS are used to quanttfe full system response. In
PLAXIS a relatively simple model for the tunnelused. In LS-DYNA is a simplified
soil model is used. Finally the results are conghare

The calculations in LS-DYNA focus on the initialsgons. Long-term issues such as
rebound effects and the stability of the overatingl structure have not been studied.
The calculations are based on a conservative maxifBUEVE-load and a reduced
BLEVE-load. The reduction is based on research®BLEVE mechanism, see [3].

To predict the dynamic behaviour of the tunnelhbtite inertia and stiffness of the
surrounding soil are considered in the calculatiofise water above the tunnel is
modelled as a uniformly distributed load on thentin The inertia of the water is not
included in the calculations. Unpublished resufisvg that the inertia of the water does
not affect the results significantly.

The influence of the soil on the full system resgmis studied by a sensitivity study in
LS-DYNA. The following situations are considergd £ shear modulug{p = pressure
difference,l = pulse):

Soft soil G =5 MPa) and a reduced BLEVE-loakth(= 510 kpaj = 12 kPas);
Stiff soil (G = 150 MPa) and a reduced BLEVE-loagpE 510 kpaj = 12 kPas);
Soft soil G =5 MPa) and a maximum BLEVE-loati{= 1600 kpaj = 64 kPss);
Stiff soil (G = 150 MPa) and a maximum BLEVE-loadp(= 1600 kpa;l = 64
kPas).

PoODdE

In this chapter the tunnel geometry is outlinedséttion 2.2. The used mesh and the
boundary conditions are presented in section 2h@. Material properties are given in
section 2.4. Finally the loading is discussed ittiea 2.5.
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2.2 Geometry Thomassen tunnel

An overview of the geometry of the Thomassen tumnglven in figure 2.1.
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Figure 2.1: Geometry of the Thomassen tunnel
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The reinforcement is given in Figure 2.2. In thgufe the group names of the different
reinforcement sections are given, as well as teation of the rebars. The geometry
(cross sectional areas, length) and the concreter ¢o the rebars are given in table 2.1.
Shear reinforcement is not taken into account.
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Figure 2.2: Group names of the reinforcement inrfBemodel
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Table 2.1:  Reinforcement propertiés; represents the cross sectional areacnd
the concrete cover from the gravity centre of tfegars

Name | A (mm“m) | ¢’ (mm) | Length (m)
Walls

WWO01 1340 62 1.3
WWO02 2094 81 1.3
WWO03 1047 91 1.8
WWO04 2094 91 0.5
WWO05 3727 123 0.5
WWO06 4774 113 0.6
WWO07 7454 123 1.3
WWO08 8500 134 53
WWO09 11180 153 full height
WW10 8500 134 full height
Roof/ Floor

DWO01 7454 143 1.6
DWO02 2094 96 8.35
DWO03 5360 102 1.4
DWO04 13400 131 3.1
DWO05 2094 65 2.4
DWO06 7454 112 8.4
DWO07 2094 65 1.25
DWO08 2094 65 3.0
Rescue tube

DWO09 13400 65 1.35 (full roof width)
DW10 2094 131 1.35 (full roof width)

) excluding crossing reinforcement from the floottwé tunnel

2.3 Used mesh and boundary conditions

A 0,1 m thick section of the tunnel and the surding soil is modelled with two layers
of solids in the thicknes)(direction. In between the rebars are modelledh Wwiam
elements. Complete adhesion between rebars ams$ solassumed. The mesh is shown
in figure 2.3. The rebars are shown in figure 2.4.

I .
N

Figure 2.3: Solid mesh
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2.4

Figure 2.4. Rebars

To simulate a plain strain state, displacementghi out of plane direction are
prevented. Non reflecting boundaries are used athagperimeter to avoid spurious
reflections. For the lower boundary the verticalptficements are set to zero. For the
side boundaries the horizontal displacements ar® zero.

Material properties

In the analyses the concrete behaviour is modellsthg the material model

*MAT_Concrete_Damage_Rel3. This model generatesnthterial parameters based
on the compressive strength, which is set to 35.MF®ain rate hardening of concrete
in tension and compression is accounted for, udetg from literature. The concrete
behaviour is shown schematically in figure 2.5. Timaterial properties for are

summarised in table 2.2.

The reinforcement behaviour is modelled using then-Wises plasticity model
*MAT_PLASTIC_KINEMATIC with strain and strain ratéardening. The material
properties are summarised in table 2.3.

Finally the soil behaviour is modelled using the HwW&€oulomb model
*MAT_MOHR_COULOMB. The material properties are suamised in table 2.4.

fel — concrete Eeu &
under tension !
|
|
\

\

|

\ concrete under
j compression

cru (a) o ch (b)

€

Figure 2.5: Material model for concrete under tengia) and compression (b)

Table 2.2: Material properties concrete (concraength class B35)

Property Value

Young's modulus E. = 26500 N/mrh
compressive strength f, = 35 N/mnf
compressive failure strain | &, = 3,5%
tensile strength f, = 3,22 N/mm
tensile failure strain Eeru = 2,05%
mass 0= 2400 kg/m
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Table 2.3: Material properties reinforcement (skee8500)

Property Value

Young's modulus E<= 200000 N/mrh
strength f, = 530 N/mm
failure strain Eu=3,25%
contraction coefficient v=0,3

mass 0= 7850 kg/m

Table 2.4: Material properties soll

Property Value

shear modulus G = 5 N/mnf (soft soil) /G = 150 N/mn (stiff soil)
cohesion 1 kPa

angle of friction 30°

angle of dilatation 0°

contraction coefficient v=0,48

mass 0= 2000 kg/m

Loading

The loads are applied in two steps:

1. Static load (self weight, soil and water pressufe)avoid dynamic effects, the
static load is applied slowly using a ramp functimiween t = 0 and 0,2 sec.
This is done in combination with critical damping.

2. Blast load. The blast load is applied at t = 02, satil the end of the analysis,
without damping.

The static and blast load are shown in figure 2.6.
qv,=234 kN/m'

lc{v1=18'{ kN/m — l

qh,=209 kN/m'

qh,=255 kN/m'

qv,=187 kN/m’
Figure 2.6: Static and blast load
For the blast loading a reduced and a maximum BLEDAA is used. The numerical

data are given in table 2.5 and 2.6. A graph ofidlad as function of time is shown in
figure 2.7 and 2.8.
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Table 2.5: Reduced BLEVE-load

Time Pressure
[s] [kPa]

0 0
0.00001 513
0.02 130
0.08 30

0.15 0

Table 2.6: Maximum BLEVE-load

Time [s]

\\ A

Figure 2.8:

Time Pressure
[s] [kPa]
0 0
0.00001 1617
0.0328 410
0.1312 95
0.246 0
600
500 4
e J
a 400
=,
- 300 A
S
A 200 \\
100 \\
0 L ) ?
0 0.05 0.1 0.15
Figure 2.7: Reduced BLEVE-load
2000
1600 -
g \
~ 1200
©
© 800 4
o
—
400 .
0 ) )
0 0.05 0.1 0.15

Time [s]

Maximum BLEVE-load
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3

3.1

3.2

Analysis results reduced BLEVE

Introduction

In this chapter the results of the finite elememilgses for a reduced BLEVE-load are
presented. First, in section 3.2 the displacemeintise tunnel are discussed. In section
3.3 the concrete damage and strains are giverechioa 3.4 the reinforcement stresses
are presented. Finally, in section 3.5 the soiksstes, displacements, velocities and
accelerations are given.

Tunnel displacements
Figure 3.1 shows the nodes in the roof and float tave been used for analysing the

vertical displacements. Figure 3.2 shows the nadése walls that have been used for
analysing the horizontal displacements.

b x

Figure 3.1: Nodes used for analysing the vertitsdldcements

Y
b x
Figure 3.2: Nodes used for analysing the horizattisglacements

The vertical displacement histories of the roof &mel floor are presented in figure 3.3
and 3.4 for respectively soft and stiff soil. Tharikontal displacement histories of the
walls are presented in figure 3.5 and 3.6. Obstitatthe influence of the stiffness of
the soil is marginal for the behaviour of the tunaed that the soil properties are not
relevant, within the prescribed limits £5G < 150 MPa) for the soil stiffness. In case of
liquefaction of the sail, it is possible that th#fluence of the soil is larger for the
stability and eventual damage to the tunnel.
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The maximum vertical static displacement (due tH-weight and soil and water
pressure) for the roof and the floor is 5 mm. Whbea reduced BLEVE-load is
introduced, the roof of the right tunnel tube (whdre explosion is present) will move
upwards and the floor will move downwards. Forlgfetunnel tube there’s an opposite
response. The maximum vertical displacement forrdod and the floor during the
reduced BLEVE-load is about 10 mm. This is a dauplof the static displacement.
Furthermore after 1 sec an equilibrium occurs, whitamage in the roof and (to a lesser
extent) in the floor leads to a permanent displagerof the roof and the floor.

CONCRETE CUBE

0.015
/\/\Q A A 4 Nodeno.
L \/\//_‘\/‘\_/!
0.01 _A 87098
L B 154119
C 1874
0.005 D 18180
r B B B
b B
f= 0-
g c
5 L
g h 8
5 -0.005 )
] 2 D D
2 /
> 0.01 \ / \ W
L WW
-0.015
-0.02
0 0.2 0.4 0.6 0.8 1
Time

Figure 3.3: Vertical displacements of roof and floosoft soil for a reduced BLEVE
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f= u_
£ c B
& 0.005 I ° b ¢ g
e o
3 L
>

VAV AVASAYAVATA

-0.02

Time
Figure 3.4: Vertical displacements of roof and floostiff soil for a reduced BLEVE

The horizontal static displacements of the walle approximately 1 mm. After
applying the reduced BLEVE-load, the inner wall thre right tube will move in
direction of the escape tube. The maximum horiZodigsplacement of this wall is
reached after 0,1 sec and is approximately 150 Tima.horizontal displacements of the
other walls are relatively small (approximately Bjn
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Figure 3.5: Horizontal displacements of walls ift soil for a reduced BLEVE
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Figure 3.6: Horizontal displacements of walls iiff sbil for a reduced BLEVE
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3.3

Concrete damage and strains

The MAT_72R3 concrete material defines damage banmmeof a scalar parameter
which ranges between 0 (undamaged) and 2 (damadkinage occurs under
compression (plasticity) and under tension (cramimftion). The behaviour of the
reinforcement has no effect on the damage paranieiefurther noted that the damage
is not reversible (once damaged, remains damagledpite the fact that in case of
cyclic loads the concrete behaviour is reversible.

The damage caused by the permanent load is shofigune 3.7. The permanent load
causes some cracking in the roof and the flooreuadd above the inner walls. There’s
also some cracking in the midspan zones and aioteection between the roof and the
outer walls.

CONCRETE CUBE
Tme- 02 Fringe Levels
Contours of Effective Plastic Strain 20008400
max ipt, value
min=0, at elem §302 1.800e+00
max=1.96159, at elem# 263834

1600e+00

1.400e+00 _
1.2006+00 _

4.000e-01

2.000e-01
0.000e+00

Figure 3.7: Damage due to self-weight and soil\aater pressure

The evolution of the damage is shown in figure &8 3.9 respectively for soft and
stiff soil. In the first response, the effect oéthlast load is opposite to the permanent
load, causing bending of the roof in upward dittand bending of the floor in
downward direction. In the left tunnel tube thedbland the permanent load work in
same direction, thus increasing the bending dowdsvéor the roof and increasing the
bending upwards for the floor.

The most critical part is the inner wall of thelrigunnel tube. Already 0,03 sec after
the start of the blast, this wall is fully damag@&dcause the blast load is still present
then, there’s a possibility that parts of this waill hit the other inner wall, which may
lead to failure of the other inner wall too. Theit element analyses don't account for
this phenomenon.

Because the tunnel is modelled in 2D, it is unkn@war which length in longitudinal

direction the damage in the inner wall will occliris expected that the damage will
lead to a local collapse of the inner wall, butlwibt lead to a global collapse of the
tunnel lining. More research, for example with 3D@duls, is needed to verify this
expectation.
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Figure 3.8: Damage plots tunnel in soft soil faeduced BLEVE
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Figure 3.9: Damage plots tunnel in stiff soil foregluced BLEVE
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The concrete strains caused by the permanent loadshown in figure 3.10. The
maximum concrete strain in compression is 0,36%o,iclwhis lower than the
compressive failure strain of 3,5%o.
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Figure 3.10: Concrete strains due to self-weighitt sl and water pressure

The evolution of the concrete strains is shownigare 3.11 and 3.12 respectively for
soft and stiff soil. Att = 0.23 sec the concrete failure strain is reachest the full
height of the inner wall. The inner wall will cofise.

Observe that the differences between soft soilstiffdsoil are small.
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Figure 3.11: Concrete strains tunnel in soft smilef reduced BLEVE
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Figure 3.12: Concrete strains tunnel in stiff $oila reduced BLEVE
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3.4

Reinforcement stresses

The reinforcement stresses in the roof and ther five studied in the elements as
indicated in figure 3.13. The reinforcement stresse the walls are studied in the
elements as indicated in figure 3.14.

o : s

Y

B x

Figure 3.13: Beam elements used for analysingosiefnent stresses in roof and floor

e

Y

k_x
Figure 3.14: Beam elements used for analysingdiméarcement stresses in the walls

Figures 3.15 to 3.18 show the evolution of thefoecement stresses in the floor, roof
and wall reinforcement for soft and stiff soil.

The maximum reinforcement stress in soft soil ocs@trthe top of the floor of the left
tunnel tube and is equal to 155 MPa. The maximunfaeement stress in stiff soil
occurs at the bottom of the roof of the left tunindle and is equal to 220 MPa.

For a soft soil the maximum reinforcement stresthawalls occurs in the inner wall
and the inside of the outer wall of the right tuntoe and is equal to 100 MPa. For a
stiff soil the maximum reinforcement stress in Wedls occurs in the inner wall of the
right tunnel tube and is equal to 115 MPa.

Observe that no yielding of the reinforcement oscur
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Figure 3.15: Steel stresses in roof and floor cegdment in soft soil for a reduced
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Figure 3.16: Steel stresses in roof and floor oec€ment in stiff soil for a reduced
BLEVE
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Figure 3.17: Steel stresses in wall reinforcemesbit soil for a reduced BLEVE
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Figure 3.18: Steel stresses in roof and floor oetément in stiff soil for a reduced
BLEVE



TNO report | Full system response Thomassen tunnel under impact load using LS-DYNA 23 /46
(concept version 3)

3.5

Soil displacements, displacements, velocities andclerations

The soil displacements, velocities and accelerataye studied in the nodes as indicated
in figure 3.19. The distance between the nodesdS éh. The evolution of the soil
displacements, velocities and accelerations is shHovigure 3.20 to 3.22. Because the
results for soft and stiff soil are nearly the saomy the results for soft soil are shown.
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Figure 3.19: Nodes used for analysing the soil ldgments, velocities and
accelerations
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Figure 3.20: Soil displacements, velocities andekrations beneath the tunnel floor
for a reduced BLEVE
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Figure 3.21: Soil displacements, velocities ancekrations above the tunnel roof for a
reduced BLEVE
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4

4.1

4.2

Analysis results maximum BLEVE

Introduction

In this chapter the results of the finite elememlgses for the maximum BLEVE-load
are presented. First, in section 4.2 the displaogsnef the tunnel are discussed. In
section 4.3 the concrete damage and strains ag@.gin section 4.4 the reinforcement
stresses and strains are presented. Finally, troset5 the soil stresses, displacements,
velocities and accelerations are given.

Tunnel displacements

Figure 3.1 shows the nodes in the roof and float tfave been used for analysing the
vertical displacements. Figure 3.2 shows the nadése walls that have been used for
analysing the horizontal displacements.

The vertical displacement histories of the roof #melfloor are presented in figure 4.1
and 4.2 for respectively soft and stiff soil. Tharibontal displacement histories of the
walls are presented in figure 4.3 and 4.4.

The vertical displacement histories show very largeical displacements of the roof in

both tunnel tubes. These displacements are an afdemagnitude larger than the

displacements due to a reduced BLEVE-load. Thd tota rotates around the inner

walls. The roof in the right tunnel tube moves iset almost 2,5 m upward. Such large
displacements lead to mistrust of the results ef dhlculations. Normally, in such a

situation is a collapse occurred and/ or seconefiegts play a significant role. For this

reason it can be stated that the roof of each tallapses under the influence of a
maximum BLEVE-load.

Similar with the response to a reduced BLEVE-Iaaé, inner wall of the right tunnel
tube will move in direction of the escape tube. Tieximum horizontal displacement
of this wall is 0,5 m. From 0.3 sec after applicatiof the explosion, the remaining
walls deform substantially.
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Figure 4.2: Vertical displacements of roof and flan stiff soil for a maximum
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4.3

Concrete damage and strains

The evolution of the damage is shown in figure @ 4.6 respectively for soft and
stiff soil.

The inner wall is completely damaged after 0,01 afeblast load. Because the blast
load is still present then, there’s a possibillatt parts of this wall will hit the other
inner wall, which may lead to failure of the othiener wall too. The finite element
analyses don't account for this phenomenon.

At t = 0,3 sec the roof is fully damaged. Based on #rgel deformations and the
considerable amount of damage, it is very likelgtttihe tunnel structure will collapse
under the influence of a maximum BLEVE-load.
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Figure 4.5:

Damage plots tunnel in soft soil fanaximum BLEVE
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Figure 4.6: Damage plots tunnel in stiff soil fomaximum BLEVE

The evolution of the concrete strains is showrigare 4.7 and 4.8 respectively for soft
and stiff soil. Already at = 0.21 sec the concrete failure strain is reached the full
height of the inner wall. The inner wall will falDbserve that the differences between
soft soil and stiff soil are small.
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Figure 4.7: Concrete strains tunnel in soft saildfanaximum BLEVE
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Figure 4.8: Concrete strains tunnel in stiff soil & maximum BLEVE
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4.4

Reinforcement stresses and strains

The reinforcement stresses are studied in the elisnas indicated in figure 3.13 and
3.14. Figures 4.9 to 4.12 show the evolution ofréiaforcement stresses in the floor,
roof and wall reinforcement for soft and stiff soil

The maximum reinforcement stress in soft and stff occurs at the top of the roof of
the left tunnel tube and exceeds the vyield strergttb00 MPa. The maximum
reinforcement stress in the walls occurs at theidetof the outer wall of the left tunnel
tube and exceeds the yield strength.

Figures 4.13 to 4.16 show the evolution of the tidastrain in the reinforcement. The
maximum strain in the reinforcement is locatechattbp of the roof of the right tunnel
tube and is about 8%. Considering a failure stbgtween 7% and 10% (with a design
value of the failure strain of 3,5%), there’s agbdity that the reinforcement at the top
of the roof of the right tunnel tube will break.

As noted earlier, based on the large deformatithesconsiderable amount of damage,
the excess of the failure strain of the concretd exceeding the yield stress of the
reinforcement, it is very likely that the tunnelnstruction will collapse under the
influence of a maximum BLEVE-load.
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Figure 4.9: Steel stresses in roof and floor resdgment in soft soil for a maximum
BLEVE
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Figure 4.10: Steel stresses in roof and floor ceggment in stiff soil for a maximum
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Figure 4.11: Steel stresses in wall reinforcemesbiit soil for a maximum BLEVE
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Figure 4.12: Steel stresses in wall reinforcemestiif soil for a maximum BLEVE
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Figure 4.13: Plastic strain in roof and floor reirdement in soft soil for a maximum
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Figure 4.14: Plastic strain in roof and floor reirdement in stiff soil for a maximum
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Figure 4.15: Plastic strain in wall reinforcemamsbft soil for a maximum BLEVE
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Figure 4.16: Plastic strain in wall reinforcemamstiff soil for a maximum BLEVE
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4.5

Soil displacements, displacements, velocities andclerations

The soil displacements, velocities and accelerataye studied in the nodes as indicated
in figure 3.19. The distance between the nodesdS éh. The evolution of the soil
displacements, velocities and accelerations is shHovigure 4.17 to 4.19. Because the
results for soft and stiff soil are nearly the saomy the results for soft soil are shown.
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Figure 4.17: Soil displacements, velocities andekrations beneath the tunnel floor
for a maximum BLEVE
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Figure 4.18: Soil displacements, velocities ancekrations above the tunnel roof for a
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Figure 4.19: Soil displacements, velocities andebsrations next to the outer tunnel
wall for a maximum BLEVE
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5 Comparison results LS-DYNA and PLAXIS

The results of the LS-DYNA and the PLAXIS calcubtas show some differences. For
instance the upward displacement of the roof dueatoeduced BLEVE-load is
approximately 10 mm in the LS-DYNA calculation aabout four times larger in the
PLAXIS calculation.

The differences between the results of the caliculatin LS-DYNA and PLAXIS can
be explained by the following aspects:

1. Concrete model
a. LS-DYNA: damage model with strain rate hardening
b. PLAXIS: elasto-plastic model

2. Soil model
a. LS-DYNA: Mohr-Coulomb model (1-phase)
b. PLAXIS: hardening soil model (2-phase)

3. Water level
a. LS-DYNA: 11 m above tunnel
b. PLAXIS: 2 m above tunnel

4. Mesh size tunnel
a. LS-DYNA: 12 elements over roof height
b. PLAXIS: 1 element over roof height

The effect of the differences in material modelstexr level and mesh size on the
results remains questionable. Further researchetgessary, especially for a better
understanding of the soil behaviour.
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6

Conclusions and recommendations

From the present study the following conclusions loa drawn:

1. Areduced BLEVE-loadAp = 510 kPal| = 12 kPas) leads to local failure:
a. The inner wall of the tunnel tube, where the explogakes place, will
collapse within 0.03 sec;
b. Cracking occurs at the inside of the roof, flood avalls;
c. Cracking occurs at the outside of the roof andrfltai the connection
between the walls and at the connection betweemoitfeand the outside
walls).

2. A maximum BLEVE-load fp = 1600 kPal = 64 kPas) leads to overall failure:
a. The inner wall of the tunnel tube, where the explogakes place, will
collapse within 0.01 sec;
b. Yield and possible fracture of the reinforcemeatl¢o large deformations.

The differences in the dynamic behaviour of a tlimmesoft soil and a tunnel in stiff
soil are small. The differences are mainly visilleghe crack pattern. A soft soil gives
more cracks in the tunnel lining than a stiff s@ihe differences in results between soft
and stiff soil are limited and do not affect theclusions above.

The results of the calculations in LS-DYNA and PL&Xshow some differences. For
example, the upward displacement of the roof cabyeal BLEVE-II load is 10 mm in
LS-DYNA. The upward displacement in PLAXIS is abdour times larger. The
differences are particularly caused by defectshm material model for concrete in
PLAXIS (especially in the non-linear). To a lessgtent, also modelling aspects (e.qg.
element size) play a role.

The calculations have shown that a prediction @agiten of the dynamic behaviour of
a tunnel under impact load. The results show thathtehaviour is dominated by the
tunnel structure. Therefore, in designing BLEVEis&st tunnels there is a need for an
advanced material model for the tunnel lining. Sherounding soil must be included in
the model, however, within the prescribed limitee soil properties are not important.
A simple material model for the surrounding soil gefficient in this case. The
reliability of the material models for concrete endynamic conditions is not validated
in the present study. An experimental validatioretguired.
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