<]
TUDelft

Delft University of Technology

Adinda: A knowledgeable, Browser-Based IDE

van Deursen, A; Mesbah, A; Cornelissen, SGM; Zaidman, AE; Pinzger, M; Guzzi, A

DOI
10.1145/1810295.1810330

Publication date
2010

Document Version
Accepted author manuscript

Published in
Companion Proceedings of the 32nd International Conference on Software Engineering (ICSE NIER)

Citation (APA)

van Deursen, A., Mesbah, A., Cornelissen, SGM., Zaidman, AE., Pinzger, M., & Guzzi, A. (2010). Adinda: A
knowledgeable, Browser-Based IDE. In K. Fisler (Ed.), Companion Proceedings of the 32nd International
Conference on Software Engineering (ICSE NIER) (pp. 203-206). ACM.
https://doi.org/10.1145/1810295.1810330

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/1810295.1810330
https://doi.org/10.1145/1810295.1810330

Delft University of Technology
Software Engineering Research Group
Technical Report Series

Adinda: A Knowledgeable,
Browser-Based IDE

Arie van Deursen, Ali Mesbah, Bas Cornelissen,
Andy Zaidman, Martin Pinzger, Anja Guzzi

Report TUD-SERG-2010-005

%
TUDelft SE[p@

TUD-SERG-2010-005

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: This paper is a pre-print of:

Arie van Deursen, Ali Mesbah, Bas Cornelissen, Andy Zaidman, Martin Pinzger, and Anja Guzzi. Adinda:
A Knowledgeable, Browser-Based IDE. In Proceedings of the ICSE New Ideas and Emerging Results Track,
ACM Press, 2010.

(© copyright 2010, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

SE

Van Deursen et al. Adinda: A Knowledgeable, Browser-Based IDE

Adinda: A Knowledgeable, Browser-Based IDE

Arie van Deursen
Delft University of Technology
Arie.vanDeursen@tudelft.nl

Andy Zaidman
Delft University of Technology
a.e.zaidman@tudelft.nl

ABSTRACT

In practice, many people have to work together to develop and
maintain a software system. However, the programmer’s key tool,
the Integrated Development Environment (IDE), is a solo-tool, serv-
ing to help individual programmers understand and modify the sys-
tem. Such an IDE does not leverage the knowledge other team
members may have of the design and implementation of the sys-
tem. We propose to resolve this problem by exploring, experimen-
tally, new ways of inferring knowledge from past IDE-interactions,
and of maximizing collaboration among developers. Our approach,
called ADINDA, revolves around transforming the IDE into a set of
integrated services, accessible via a web browser, and enriched with
Web 2.0 technologies. Such services will not only help developers
perform traditional IDE tasks, but also facilitate the required infor-
mal communication and collaboration needs of software develop-
ment projects. In this paper, we report on our vision, approach and
challenges for building ADINDA, and initial results.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms

Programming Environments

Keywords

IDE, Web 2.0, collaboration, interaction mining

1. INTRODUCTION

Software engineering is a team sport: sometimes hundreds of
professionals collaborate to devise, build, evaluate, and later mod-
ify a software system [16]. But the programmer’s key tool, the
Integrated Development Environment (IDE), is a soloist tool. It
primarily helps individual programmers to be more effective dur-
ing the classical edit-compile-run cycle [17]. However, it does not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE *10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

TUD-SERG-2010-005

Ali Mesbah
Delft University of Technology

a.mesbah@tudelft.nl

Martin Pinzger
Delft University of Technology
m.pinzger@tudelft.nl

Bas Cornelissen
Software Improvement Group
Amsterdam, The Netherlands

b.cornelissen@sig.nl

Anja Guzzi
Delft University of Technology
a.guzzi@tudelft.nl

help in answering important questions developers might have such
as: Which of my team mates worked on this piece of code before?
What other parts has this person changed in the past? How many of
the co-developers are working on the project code at this moment?
Who is modifying what part of the system? Can I get real-time
feedback on the changes they are making to the code?

While answers to these developer questions may be available in
the minds of certain team members, the underlying knowledge is
often left implicit, and unavailable to other team members. Most of
the reasoning leading to a particular piece of code gets lost, leaving
only the new code itself as result of a complex program compre-
hension process.

This leads to a number of research hypotheses. The first is that
making the knowledge leading to code modifications explicit, and
sharing it among all team members, will lead to a significant in-
crease in productivity and software quality.

Our second hypothesis is that a large part of this knowledge
can be inferred automatically from data collected by developer
tools. This requires that the IDE monitors developer activity, stores
this information in a shared repository, and uses it to support co-
developers.

Our third hypothesis is that engineers themselves can help make
such knowledge available, and that light-weight knowledge-sharing
techniques can minimize the time used for this activity. In the do-
main of the Web 2.0 [13], mechanisms such as tagging, micro-
blogging, and virtual presence have gained immense popularity.
These could be integrated into the development environment, which,
combined with the aforementioned knowledge collecting capabil-
ities, would make it significantly easier for developers to stay in-
formed of the activities of other team members.

To evaluate these hypotheses, we are constructing a research pro-
totype of a development environment, codenamed ADINDA, incor-
porating automated knowledge collection and sharing support.

2. THE ADINDA VISION

To facilitate knowledge collection and sharing among different
users, we propose a radical restructuring of the traditional IDE,
transforming it into a set of cooperating services. Thus, ADINDA
comprises a (thin) client connected to a range of different services
for conducting developer tasks such as compiling, editing, testing,
as well as collaboration-related services, such as task management,
joint editing, tagging, social networking, data mining, and knowl-
edge sharing. The centralized services collect all sorts of informa-
tion concerning the actual development activities of all team mem-
bers, and use this to assist individual developers.

When combining this approach with Web 2.0 technologies such
as AJAX [10], the opportunity of a fully browser-based IDE emerges,

Van Deursen et al. Adinda: A Knowledgeable, Browser-Based IDE

Browser

Server

1
DOM
event = i
i > J"Aupdate Engine

Browser
WorkSpac

A DOM

DoM event -
:».,_‘ Ajax
YT Engine
Figure 1: Delta-communication and synchronization in

ADINDA.

not only offering collaboration and assistance benefits to the IDE,
but also universal access and configuration sharing.

3. RESEARCH CHALLENGES

In order to realize the vision of such a knowledgeable develop-
ment environment, the following research challenges have to be
faced:

3.1 Integrated Software Development Services

The construction of the ADINDA core itself requires addressing
a wide variety of challenges. The key to building a browser-based
IDE lies in designing a server that can be used to create, store,
manipulate, compile, test, and share programs interactively.

Client/server interaction. The client/server architecture we
envision for ADINDA is illustrated in Figure 1. A sketched scenario
in Figure 1 is when a developer Bob changes, for instance, a Java
class in the browser. The delta changes are then propagated to the
server, where the corresponding class file is updated accordingly,
compiled, and the compilation message is returned to the browser.
The main architectural question is concerned with what program
representation the client and server should use. We are investigat-
ing whether the browser’s Document Object Model (DOM) can be
reused to represent programs as Abstract Syntax Trees (ASTs), to
exchange only modified program text and corresponding AST sub-
trees between client and server.

Change propagation. Figure 1 depicts how the changes made
by Bob are propagated to Alice via ADINDA server’s synchroniza-
tion unit. The server-based approach opens up possibilities for mul-
tiple users working together on a single resource. In the specific
context of using the browser as an IDE, we are investigating real-
time synchronization methods that offer the best support for collab-
orative editing. Interesting questions that emerge include: whether
the client/server delta-communication should be based on client
pull or server push to increase data coherence? How does network
latency influence the synchronization process? How should con-
flicts be resolved? Can text-based merge algorithms be extended
to tree or graph-based merge algorithms? Which update strategy is
the most efficient and convenient to developers?

Versioning method. Traditional version control systems op-
erate at the file level and involve an update-edit-commit cycle [6].
The server-based nature of ADINDA opens up possibilities for much
finer version control methods. The challenge here is finding the
best granularity level (e.g., abstracter levels than text or lines, or
methods, classes, models, or even process steps [8]) and time frame
(e.g., after each edit, each save, automatic or explicit) for commit-
ting changes into the repository. The interesting question is how
such a versioning approach can support task and user awareness,

SE

providing, e.g., the possibility to follow all changes made by par-
ticular developers or replay changes made by a different developer.

3.2 Communication and Collaboration

On the Internet, new forms of informal communication have
emerged in what has become known as Web 2.0 [13]. Technolo-
gies such as wikis, micro-blogging, tags, and feeds help us orga-
nize, manage, and categorize web content in an informal and col-
laborative way. We believe Web 2.0 collaboration concepts and
techniques can be applied to support the required informal commu-
nication and collaboration needs of software development projects.

Cost-effective tagging strategies in software development.
Tags are surprisingly simple, yet effective, and their use on the In-
ternet has been subject to various studies [12, 1]. Tags are starting
to become part of software development tools: in IBM’s Jazz [5],
for example, work items can be tagged, and its use in practice has
recently been investigated by [15]. The questions that we are fo-
cusing on include: What information are developers willing to tag?
Should tags be attached to entities such as work items (as in IBM
Jazz), or are free format hash-tags in comments (as in Yammer or
Twitter) more appropriate? Does the usefulness of tagging depend
on the team size? What tagging tool support (e.g., tag completion,
renaming, versioning, following, managing) is required? To what
extent can tags help programmers categorize and find the informa-
tion they are looking for? At what source code level should tags be
applied (e.g., class files, methods, statements, ...)?

Micro-blogging for traceability purposes. A major issue in
software engineering is requirements traceability, aimed at track-
ing which requirements are responsible for a particular design de-
cision, code fragment, test case, etc. Micro-blogging, best known
via Twitter, offers a light-weight mechanism to inform others of
“what you are doing.” Our main concern here is finding new ways
in which micro-blogging can facilitate coordination and communi-
cation during software development.

In addition, software development is a highly dynamic activity,
and as software evolves, features are completed, code is refactored,
methods are modified or discarded, and bugs are fixed. This rises
the question of: What implications does this evolution have for
user-created data such as tags or micro-blog posts?

Active Participation. A method that has been applied success-
fully in modern Web 2.0 news websites such as Digg! and Reddit?
is allowing the registered users to vote (up or down) and comment
on the posted news items, rendering them more, or less prominent
on the website. In addition, to encourage active participation users
can earn reputation points depending on the quality and quantity of
their activities. For example, a user of the StackOverflow? website
is awarded 10 reputation points for receiving an ‘up’ vote on an an-
swer given correctly to a question posted by someone else. Thus,
users are motivated to contribute and improve their reputation. A
question that arises is how such concepts of voting and reputation
building can be applied to software development for encouraging
developers to participate in, for instance writing good documenta-
tion (which is always a challenge) and answering other developers’
questions.

3.3 Interaction Mining

The server-based setup of ADINDA enables the tracking of all
developer activities: the server can collect knowledge concerning
who opened certain files and in which order, which classes were

nttp://digg.com
Znttp://www.reddit . com
3http://stackoverflow.com

TUD-SERG-2010-005

Van Deursen et al. Adinda: A Knowledgeable, Browser-Based IDE

often inspected or modified together, and so on. With this knowl-
edge in hand, the system is capable of making recommendations
that help developers be more effective. Taking advantage of the
wealth of developer activity data available on the ADINDA server
involves addressing the following research questions:

Tracking activities. The server-based setup permits the collec-
tion of all sorts of data on developer activity. Which user activities
should be tracked and stored? What data-model should be used
for this purpose? Which activities (when traced) are likely to yield
meaningful information? At what level of abstraction and aggrega-
tion should the activities be recorded?

Understanding code dependencies. Understanding code de-
pendencies is a prerequisite for many software engineering tasks,
and many faults are due to inadequate understanding of such de-
pendencies. Code dependencies can be both explicit (e.g., method
calls) and implicit (being, e.g., part of a larger design pattern).

The search for hidden dependencies, particularly those that cross-

cut the primary modularization, is an active area of research. Commit-

level repository mining has been applied for these purposes as well
[4], but interaction mining at the fine-grained level of individual ed-
its is a more promising direction that warrants further investigation.

Recommend programming code inspection. A significant
part of programming is spent on program comprehension and code
navigation. In Web 2.0 systems such as LinkedIn or Digg, users are
guided through the application by means of advice such as “View-
ers of this profile also viewed ...”. [18] have applied data mining
techniques to provide similar behavior based on commits stored in
the source control system.

Is it beneficial to come up with such advice based on stored edit-
ing behavior? How useful are such recommendations? How can
the IDE be extended so that it can distinguish between successful
trails (actually leading to the desired insight or program change) or
unsuccessful ones (paths that were explored, but did not help in the
task at hand)?

Team members’ knowledge and activities. Finding the right
developer to conduct a certain task in the project is an important
research question for software engineers: For instance, to assist
teams in spotting the best developer to fix a certain bug, [2] pro-
pose to analyze each developer’s past activities in the bug tracking
repositories. By tracking all user activities in ADINDA, we can go
much further and analyze interaction patterns between the devel-
opers. Key questions that emerge include: Who is working on or
looking at which parts of the system? What have they been do-
ing exactly? Which of the team members has knowledge about the
code a developer is working at? Who has made most of the changes
in this particular file?

4. APPROACH AND INITIAL RESULTS

To address the range of challenges listed, we have conducted a
number of experiments. Our main activity is to implement an initial
prototype of ADINDA as discussed below. Furthermore, in order to
be able to conduct early experiments, we are implementing Eclipse
plugins to try out some of our ideas in an existing IDE, discussed
in Section 4.2.

4.1 Implementing ApiNnpa

Based on an earlier prototype for a web-based IDE called
WWWorkspace [14], we have implemented an initial prototype of
ADINDA. This IDE establishes a connection with Eclipse on the
server-side. The editors operate on the browser’s DOM-tree using
AJAX. In the current prototype version, it is possible to create user
workspaces, Java projects, packages, and class files through the
browser-based interface. There is support for syntax highlighting,

TUD-SERG-2010-005

v [1]12/16/09 @ 13:24 CET | (8 actions) | watching class [SydeA] in package [sydetest] of project [SydeTest]

](> J] switch @ 13:24:32 CET | You looked at class [SydeA] in package [sydetest] of project [SydeTest] (Action with 1/2 'relevant’ events)
» [J] open @ 13:24:33 CET | You opened class [SydeC] in package (sydetest.dd] of project [SydeTest] (Action with 2/4 'relevant’ events)

+ > [4]) close @ 13:24:35 CET | You closed class [SydeC] in package [sydetest.dd] of project [SydeTest] (Action with 2/4 ‘relevant’ events)

1[5 close @ 13:24:35 CET | You closed class [sydeal in package [sydetest] of project [sydeTest] (Action with 3/5 relevant’events)

1 > [J] close @ 13:24:36 CET | You closed class [SydeB] in package [sydetest] of project [SydeTest] (Action with 2/3 'relevant’ events)

| v 7] open @ 13:24:37 CET | You opened ciass (sydeA] in package [sydetest) of project (SydeTest] (Action with 3/5 relevant’everts)

A€lselected [text: SydeA java] @ Package Explorer
1| 29ou opened class [Sydea] in package [sydetest] of project [SydeTest] events
N A€ You looked at class [SydeA] in package [sydetest] of project [SydeTest)
I » [J) open @ 13:24:38 CET | You opened class [SydeB] in package [sydetest] of project [SydeTest] (Action with 5/8 'relevant’ events)
L 4J] switch @ 13:24:40 CET | You looked at class [SydeA] in package [sydetest] of project SydeTest] (Action wal!i ‘relevant; events)
ntit

J) FocusedEntity: class [Syde] in package [sydetest] of project (SydeTest] ocuse y

actions

Figure 2: An interaction recorded in James.

code compilation (which is done on the server, see Figure 1), and
code completion in the browser.

The primary objective of our implementation effort is to be able
to experiment with solutions to the various challenges listed in Sec-
tion 3. Thus, we are not trying to rebuild a complete IDE: we fo-
cus on solely on IDE functionality required for our experiments.
Furthermore, in our implementation we reuse existing components
where possible, such as Eclipse plugins and APIs in the server or
AJAX editors running in the browser.

4.2 Experimental Collaborative Program Com-
prehension

Driven by curiosity concerning the opportunities of merging Web
2.0 and interaction mining, we also conducted some experiments
within an existing IDE (Eclipse), allowing us to obtain initial re-
sults as long as our browser-based IDE is work in progress.

In particular, we have created James, an Eclipse plugin aiming
at combining status messages as in Twitter (“What’s happening?”)
with interaction data collected from developers navigating through
the code. Users are requested to explicitly tell the plugin what they
are doing in the form of a short, twitter-like, message, indicating
their quest goal. Their search and navigation is recorded by the
plugin via an interaction trace. Furthermore, users are requested to
indicate whether their journey through the code has been success-
ful. Finally, users can add annotations to every piece of informa-
tion, adding more value to this shared knowledge about the system
under analysis.

The information gathered is made available to other developers.
In fact, James will suggest where to look in the code, given their
goal and their private navigation history. The quest goal in com-
bination with successful interaction traces is furthermore presented
in a style resembling a Frequently-Asked-Questions list.

James’ implementation relies on listeners capturing single low
level (Eclipse) events, which are then grouped in actions (such as
“file X has been opened”). The events recorded at the moment
of writing consist of events relative to Ul parts in Eclipse and to
the selection of pieces of code. Actions are grouped in a single
interaction through timers, modeling the fact that people takes a
few instants to decide on what to focus on. An interaction also
stores the entity on which the user focused at last.

In Figure 2 we can see an example of an interaction, as currently
displayed by James. All the interactions made while a quest goal
message is set, will form the interactions trace for that particular
quest goal.

Among the challenges to be addressed, one important issue is
finding meaningful criteria for the identification of information rel-
evant to the user’s goal (as opposite to “noise” generated by brows-
ing irrelevant parts of the system). Once the information is filtered,
it needs to be merged with the previously recorded data (collected
from many users). The merging of the data gathered from differ-
ent users is another point of investigation (i.e. traces from differ-
ent users working toward the same goal, can have a different im-

Van Deursen et al. Adinda: A Knowledgeable, Browser-Based IDE

portance, based on some yet to be defined metrics), as well as the
scalability to the possibly huge amount of data collected. Another
important research question to be tackled is how the collected data
can survive code refactoring, maintaining its valuable information.

From our preliminary usage of the James tool, we are trying to
answer the research question: “Does the collected data help to un-
derstand a certain piece of code or concept?”. As a first experiment,
we are planning to collect quest messages and relative interactions
traces from a group of users while they perform given tasks on a
small to medium size system. We will categorize users in groups,
for example: experts and newbies of the code. This data will be
analyzed and will then serve us to better understand whether and
how the various users’ interaction traces that led to the successful
completion of a task matches with each other. A close similarity
between interaction traces (or parts of them) will help answering
our research question.

5. RELATED WORK

The research directions that we propose builds upon a number
of rich existing research areas. Particularly relevant are the fields
of collaborative software engineering [16], integrated development
environments [17] and repository mining [11]. The proposed ap-
proach is furthermore relevant for the field of globally distributed
software engineering — for an overview of existing tool support in
this area we refer to [9].

Apart from bringing these fields together, ADINDA aims at lever-
aging the Web 2.0 for software development. This is an emerging
area, with initial results by, e.g., [3, 7]. Furthermore, existing tools
such as IBM Jazz and Microsoft Team Foundation Server are inte-
grating web technologies such as virtual presence into the software
development tool suites.

In the open source domain, Bespin* is a Mozilla initiative lever-
aging the HTMLS canvas tag to experiment with a program editor
that runs in the browser. Furthermore Eclipse E4 plans’ include
making Eclipse APIs available as services, and making a user’s
workspace accessible via the web.

6. CONCLUDING REMARKS

In today’s software development environments, most of the
knowledge developers collect about the software project, for in-
stance during maintenance tasks, is lost eventually. In this paper
we propose ADINDA, a browser-based software development en-
vironment that collects information while developers interact with
the system. ADINDA leverages Web 2.0 techniques, such as tagging
and micro-blogging, to enrich the collected information. In this pa-
per, we have identified a series of research challenges that need to
be resolved to realize ADINDA, and reported on our approach and
initial results.

7. REFERENCES

[1] M. Ames and M. Naaman. Why we tag: motivations for
annotation in mobile and online media. In CHI ’07: Proc.
SIGCHI conference on Human factors in computing systems,
pages 971-980. ACM, 2007.

[2] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should
fix this bug? In ICSE ’06: Proceedings of the 28th
international conference on Software engineering, pages
361-370, New York, NY, USA, 2006. ACM.

[3] A.Begel and R. DeLine. Codebook: Social networking over
code. In 31st International Conference on Software

4https://bespin.mozilla.com/
Shttp://www.eclipse.org/ed/

(4]

(6]

[7

—

(8]

[9

—

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

SE

Engineering, ICSE Companion Volume, pages 263-266.
IEEE Computer Society, 2009.

S. Breu and T. Zimmermann. Mining aspects from version
history. In 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE 2006), pages
221-230. IEEE Computer Society, 2006.

L.-T. Cheng, C. R.B. de Souza, S. Hupfer, J. Patterson, and
S. Ross. Building collaboration into IDEs. Queue,
1(9):40-50, 2004.

Reidar Conradi and Bernhard Westfechtel. Version models
for software configuration management. ACM Comput. Surv.,
30(2):232-282, 1998.

Robert DeLine. Del.icio.us development tools. In CHASE
"08: Proceedings of the 2008 international workshop on
Cooperative and human aspects of software engineering,
pages 33-36, New York, NY, USA, 2008. ACM.

D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen.
Refactoring-aware configuration management for
object-oriented programs. In ICSE ’07: Proceedings of the
29th international conference on Software Engineering,
pages 427436, Washington, DC, USA, 2007. IEEE
Computer Society.

K. Dullemond, B. van Gameren, and R. van Solingen. How
technological support can enable advantages of agile
software development in a GSE setting. In Fourth IEEE
International Conference on Global Software Engineering
(ICGSE), pages 143-152. IEEE, 20009.

Jesse Garrett. Ajax: A new approach to web applications.
Adaptive path, February 2005.
http://www.adaptivepath.com/publications/essays/
archives/000385.php.

Michael W. Godfrey, Ahmed E. Hassan, James D. Herbsleb,
Gail C. Murphy, Martin P. Robillard, Premkumar T.
Devanbu, Audris Mockus, Dewayne E. Perry, and David
Notkin. Future of mining software archives: A roundtable.
IEEE Software, 26(1):67-70, 20009.

S. A. Golder and B. A. Huberman. Usage patterns of
collaborative tagging systems. J. Inf. Sci., 32(2):198-208,
2006.

Tim O’Reilly. What is Web 2.0: Design patterns and
business models for the next generation of software.
Oreillynet, 2005. http://www.oreillynet.com/pub/a/
oreilly/tim/news/2005/09/30/what-is-web-20.html.
W. Ryan. Web-based Java integrated development
environment. BEng Thesis, University of Edinburgh,
Division of Informatics, 2007.
http://www.willryan.co.uk.

C. Treude and M.-A. Storey. How tagging helps bridge the
gap between social and technical aspects in software
development. In Proceedings of the 31st International
Conference on Software Engineering (ICSE’09). IEEE
Computer Society, 2009.

Jim Whitehead. Collaboration in software engineering: A
roadmap. In FOSE "07: 2007 Future of Software
Engineering, pages 214-225. IEEE Computer Society, 2007.
Andreas Zeller. The future of programming environments:
Integration, synergy, and assistance. In FOSE ’07: 2007
Future of Software Engineering, pages 316-325,
Washington, DC, USA, 2007. IEEE Computer Society.

T. Zimmermann, P. Weilgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. [EEE
Trans. Software Eng., 31(6):429-445, 2005.

TUD-SERG-2010-005

TUD-SERG-2010-005 S E(I
ISSN 1872-5392

