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1
Introduction

Sub-millimetre wave applications have been receiving an increasing attention from the antenna engineering
community. Such attention has been driven by their potential for designing front ends of diminished dimen-
sions, together with the possibility of providing wide band channels. Potential applications include wireless
communication and radar systems [1],[2],[3], astronomical instrumentation [4],[5],[6], and security imaging
[7],[8],[9]. The analysis and design of the antennas, embedded in sub-millimetre wave front ends, require the
accurate modelling of relevant parameters, such as the input impedance, the radiation patterns and the mu-
tual coupling. Most often, the design of these structures resorts to commercial full-wave solvers, which allow
for the necessary flexibility to investigate substantially different geometries. However, generic commercial
software tools often suffer from computation overhead and correspondingly long simulation times. At times,
high-frequency techniques, such as the Physical Optics (PO) have been utilized to facilitate the analysis of
quasi optical systems. For instance, in the analysis of lens antennas [10], these techniques have been applied
somewhat successfully [11],[12].

Nevertheless, high frequency techniques remain limited in their scope. In particular, if the lens antennas
are small in terms of the wavelength, the approximations implicit in the asymptotic analysis can render them
severely inaccurate. Recently, for instance, small-size lens antennas have been used as elements for coherent
arrays [2], as shown in Fig 1.1a, or as the core lens in core shell lens structures [3], as shown in Fig 1.1b. In
these cases, the ray propagations via Geometrical Optics (GO) or the PO integrations become inaccurate when
the curvatures of the surfaces are small with respect to the wavelength. These inherent limitations are call-
ing for the development of simulation tools that can model these specific structures efficiently, but without
compromising the accuracy.

To achieve this goal, the THz Sensing Group [13],[14] has recently started with the development of a dedi-
cated 3-dimensional Method of Moments tool that is suitable for the analysis of dielectric lenses. To be able to
analyse structures with dimensions in the order of a few wavelengths, it is necessary to maintain a volumetric
sub-gridding which is fairly large in terms of the wavelength inside the dielectric, λd = λ0/

p
εr , where λ0 de-

notes the free space wavelength and εr denotes the relative dielectric permittivity. Assuming that λd /10 is the
required sub-gridding, a lens with a leading dimension of 2λ0 ≈ 3λd requires roughly NMoM ≈ 105 unknowns,
which is a large, but manageable number, even with regular laptops. The tool developed in the THz Sensing
Group provides the solution to such a problem in a run time of about 1 minute. However, the majority of the
lens feeds that could reasonably be expected within such a lens system, are characterized by dimensions that
are much smaller thanλd /10. Specifically, if the feeds are to be realized in integrated technology, the character-
istic dimensions of dipoles and transmission lines will be those permitted by the technology: i.e. micrometric
or even nanometric. As a case in point, the thickness of standard Printed Circuit Board (PCB) technology is in
the order of wz ≈ 20µm and the minimal width of PCB lines is typically wy ≈ 100µm. However, in integrated
technology wz ≈ 0.2−2µm, while wy ≈ 1−10µm. Consequently, if one had to use a 10µm resolution for a lens
with a leading dimension of 2mm, the number of unknowns would be NMoM ≈ 24 ·109. Problems of such scale
cannot be expected to be solved anywhere in the near future.

To circumvent this problem, the strategy, adopted in the THz Sensing group, has been to hybridize the lens
feed analysis [15], [16]. The feed would be studied with a full wave technique, i.e. MoM or similar, in which the
reaction integral via the lens would be approximated using the PO approximations. This technique is certainly
valid, as long as the dimensions of the lens are large enough in terms of the wavelength.
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(a) (b)

Figure 1.1: Applications of small lenses (a) as elements for coherent arrays [2] and (b) as the core-shell lens for fly eyes applications [3]

1.0.1. Auxiliary feed strategy
In a parallel effort, the broader goal of the MoM development in the THz Sensing group is now to develop a
strategy to separate the characterization of the feeding structure and the lens antennas, while trying to main-
tain a higher simulation accuracy than a PO hybridization would permit: i.e. being able to study smaller lenses
for which the use of the PO would be entirely inappropriate. To reach this goal, the original feed structure,
with fine details, can be replaced by an auxiliary feed structure, that has the same dynamic (i.e. radiating)
equivalent currents, but much coarser dimensions. The analysis of the auxiliary feed can then be performed
together with the analysis of the already coarsely discretized lens structure. Since the interaction between the
lens and the auxiliary feed only occurs via the dynamic components of the spectrum, one can isolate such
interaction from the numerical results. This can be achieved by expressing the result, obtained by simulating
the lens with the auxiliary feed, as the superposition of a contribution due to the auxiliary feed, operating in
the presence of an infinite dielectric and the contribution due to the reflections inside the lens. Once this latter
interaction term is found, the analysis of the original finely discretized feed can simply be complemented with
the contribution from the lens, which will be the same for the original and the auxiliary feed.

1.0.2. Towards the synthesis of the auxiliary feeds
The synthesis of such an auxiliary feed structure, in the presence of an infinite dielectric, rather than a finite
lens, can be obtained in many alternative ways. For instance, the analysis of both the original feed and the
auxiliary feed could be performed, resorting to a purely numerical MoM procedure, iterating the analysis of
trial auxiliary geometries until a certain geometry satisfies the requirements. However, in order to converge
faster to a useful geometry, one first needs to acquire a better understanding of the characterizing features of
the proposed feeds. Specifically, in integrated technology with thicknesses of the metal in the order of wz ≈
0.2−2µm and wy ≈ 1−10µm, the dimensions are much closer to the penetration depth, which, for metals, is
in the order of 0.3µm at 300GHz. The small dimensions in terms of the penetration depth imply that for the
guided waves that propagate along the metallic lines, the Ohmic losses are high and the wave velocity itself is
very different from the one in absence of losses.

For these reasons, it has been decided to develop a dedicated tool to investigate the properties of pla-
nar transmission lines, that are typically used in the millimetre and sub-millimetre waves regimes, account-
ing for the thickness of the material explicitly. The chosen tool is the typical transmission line Green’s func-
tion [15],[17],[18],[19], which was shown to be a powerful tool to investigate planar open guiding structures.
The method is typically used, assuming that the open guiding structure is infinitely extended along the x-
direction and infinitesimally thin. A surface boundary condition is then imposed to derive the equivalent
current, flowing along the longitudinal direction. Typically, the propagation constant, the (complex) charac-
teristic impedance and the losses are derived from the polar contributions in the spectrum of the longitudinal
current.

In microstrips, however, the inclusion of the thickness becomes significant in the evaluation of the char-
acteristic impedance, when this thickness is comparable to the distance between the main conductor and the
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Figure 1.2: Equivalent procedure to simulate a feed with realistic dimensions by simulating a feed with convenient dimensions together
with an adjusted conductivity σeff

ground plane [20],[21]. Moreover, if the finite thickness of the conductor is not embedded into the formula-
tion, the influence of the thickness of the conductor on the losses of the transmission line, has to be introduced
in an alternative way. The software tool, proposed in [19], estimates the influence of the conductor thickness
by using the modified surface impedance, given by [22]. However, this approach fails to take into account the
asymmetric current distribution inside the main conductor of the microstrip.

Due to the new desire to accurately take into account the dispersion properties of the lines, associated to
the metal thickness, the assumption of infinitesimal thickness is not satisfactory. To account for the actual
thickness, a different volumetric integral equation has been set up that guarantees the verification of the ap-
propriate volumetric constitutive relations of a conductor with finite conductivity. The procedure has been
developed in the frequency domain, starting from a 3D integral representation of the stratified media Green’s
function for the case of dipoles in generic stratifications, including those that support leaky wave propagation.
In all cases, one of the 3 integrals can be closed analytically, which leads to a quasi analytical tool to obtain
the electric currents inside the metals. Thanks to the availability of this tool, a parametric analysis has been
performed on a family of important transmission lines. This family includes microstrips, as well as dipoles in
free space and in the presence of a semi-infinite dielectric region. This last case is particularly relevant, as it
represents a widely used type of leaky wave radiator, adopted in THz Sensing group.

1.1. Contribution of the thesis
The core content of this thesis is concerned with the development of a spectral domain formulation to char-
acterize printed transmission lines, in the presence of an arbitrary stratification, taking into account the finite
thickness of the conductors. In particular, the applicability of this formulation will be demonstrated by study-
ing one of the most common transmission line topologies: the microstrip. As explained in the previous section,
within the scope of the overall project, carried out in the THz Sensing Group, the purpose of the spectral do-
main formulation is to characterize the thin metallic feed of the integrated lens antennas. Therefore, the spec-
tral formulation will also be used to study dipoles in the presence of a semi-infinite dielectric stratification,
which support leaky wave propagation.

In order to validate the newly developed spectral domain formulation, the Volumetric Method of Moments
(V-MoM), available from the group, has been taken as a starting point. In [14], the use of the V-MoM was pro-
posed, for the analysis of integrated lens antennas, due to its suitability for simulating geometries of resonant
size, and its ease in handling material inhomogeneity’s. The V-MoM, developed in [14], uses a structured grid,
which provides the possibility of reducing the memory requirements and the computational complexity by
means of the Conjugate Gradient Fast Fourier Transform (CG-FFT). Moreover, the use of a structured grid al-
lows one to pre-compute and reuse the reaction integrals, associated to the employed integral equation, when
simulating multiple different geometries.

However, the tool developed in [14] had not been optimized in terms of its computation time. Additionally,
the numerical calculation of the reaction integrals, that was implemented in [14], was relatively inaccurate,
compared to alternative computation schemes, such as the method, introduced in [23]. Furthermore, the
V-MoM has inherent difficulties when simulating geometries that are not well-represented by the structured
grid.

3



The thesis thus presents a second important part, which is somewhat separated from the original task: the
optimization of the MATLAB tool, developed in [14]. To this extent, the numerical procedure, used to solve
the matrix equation of the V-MoM, is optimized in terms of its computation time. Moreover, a more accurate
procedure for the numerical calculation of the reaction integrals has been implemented, based on the method,
proposed in [23]. Additionally, a solution is presented to improve the accuracy of the V-MoM, when simulating
geometries that are not well-represented by the structured grid.

1.2. Thesis Outline
Since this thesis work was embedded in the main research line of the THz Sensing group on the development
of a MoM tool, dedicated to the analysis of antenna excited dielectric lenses, Chapter 2, provides an overview
of the V-MoM, developed in [14]. The V-MoM solves the Electric Field Integral Equation (EFIE), obtained by
invoking the volume equivalence theorem [24]. The EFIE is then discretized using a structured grid, consisting
of piece-wise constant basis functions, which converts the integral equation to a matrix equation that is solved
using an iterative technique called the Conjugate Gradient Fast Fourier Transform (CG-FFT).

Next, Chapter 3 describes the work on the optimization of the V-MoM in terms of accuracy and compu-
tation time that was performed during the thesis project. To this extent, the computation time of the V-MoM
has been improved by optimizing the memory allocation during the simulation as well as the implementation
of the FFT based matrix-vector products. Moreover, a solution is presented to enhance the accuracy of the V-
MoM when simulating geometries that are not well-represented by the structured grid. This procedure refines
the representation of the scatterer by averaging the permittivity of the voxels that are located at the boundary
of the scatterer. Finally, a more accurate procedure for the numerical calculation of the reaction integrals is
implemented, based on a reduction from volume to surface integrals [23].

The core of the thesis work starts in Chapter 4. This chapter introduces the spectral domain formulation
that allows us to study infinitely long printed transmission lines, taking into account the non-zero thickness of
the conductors. This formulation is based on the local form of Ohm’s law and will be introduced by studying
an infinitely long dipole located in free space. By approximating the exponential decay inside the dipole with
the Leontovich boundary condition [25], an expression is obtained for the spectrum of the longitudinal current
distribution. The relevant parameters of the transmission line are then extracted from the polar singularities in
the spectrum. In particular, the residue contribution of the input admittance is interpreted as the contribution
from two infinitely long transmission lines. This interpretation is then substantiated by demonstrating its
resemblance with the characteristic impedance obtained by defining the voltage along the transmission line
as the line integral of the transverse electric field.

In Chapter 5, the formulation developed in Chapter 4 is extended to allow the characterization of printed
transmission lines in the presence of an arbitrary stratification, using the spectral domain Green’s function for
stratified media. Since the spectral domain Green’s function for stratified media has a spectral dependence
along the transverse dimensions and a spatial dependence on z and z’, the projection in the y-direction is
performed in the spectral domain, while the projection in the z-direction is performed in the spatial domain.
To represent the asymmetric geometry of the microstrip, the transverse current distribution is expanded into
two basis function, each with an exponential decay starting from the bottom or the top of the metal strip.

Next, Chapter 6 introduces an equivalent circuit representation to model the input impedance of a mi-
crostrip, printed on an electrically thin dielectric substrate. This circuit representation is based on the ex-
traction of two dominant parts of the current spectrum: the dynamic part and the quasi-static part. The
dynamic part of the spectrum refers to the portion of the spectrum that is related to small values of kx and
can be approximated by a Taylor approximation around the pole. On the other hand, the asymptotic part of
the spectrum refers to the limit for kx tending to infinity and can be approximated by only retaining the ky = 0
component of the spectrum. By interpreting the quasi-TEM wave launched along the microstrip as the current
along two infinitely long transmission lines, connected to a transformer, we can define a gap impedance that
is almost purely imaginary. This gap impedance can then be approximated using the two dominant parts of
the current spectrum.

Finally, in Chapter 7, the formulation, developed in Chapters 4 and 5 is used to study a leaky structure
containing a dipole in the presence of a semi-infinite dielectric region. This geometry is particularly relevant
with respect to the overall research line carried out in the THz Sensing Group, as it allows us to obtain a better
understanding of the properties of the dynamic (i.e. radiating) components of the metallic feed, in an effort
to isolate the contributions due to the reflections inside the lens. Since the leaky wave pole is located on the
bottom Riemann Sheet with, the appropriate transverse integration path has been chosen to obtain the physi-
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cally significant leaky wave pole. A parametric analysis is then performed to gain insight into the properties of
the dynamic (i.e. radiating) currents along the dipole.
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2
Overview of the Volumetric Method of

Moments

This chapter provides an overview of the Volumetric Method of Moments (V-MoM), developed in [14]. The
objective of the V-MoM is to solve the Electric Field InteIgral Equation (EFIE) that is obtained by invoking the
volume equivalence theorem [24]. To this extent, the EFIE is discretized using a structured grid, consisting of
piece-wise constant basis functions. This procedure converts the integral equation to a matrix equation that
is solved using an iterative technique called the Conjugate Gradient Fast Fourier Transform (CG-FFT).

The V-MoM has three distinct advantages. First of all, by using the same grid, the reaction integrals can
be pre-computed and reused to simulate multiple different geometries. Second, as a consequence of the use
of a structured grid, the system matrix has a Toeplitz structure, which allows for a reduction of the memory
requirements by storing only 2Nt entries, instead of 9N 2

t entries, where Nt denotes the total number of voxels
within the grid. Finally, the Toeplitz structure of the system matrix allows us to use the CG-FFT, which results
in a significant reduction of the total computation time, when dealing with large-scale problems.

This chapter is structured as follows. First, Section 2.1 formulates the Electric Field Integral Equation (EFIE)
by invoking the volume equivalence theorem [24]. In Section 2.2, the EFIE is discretized by employing the
Method of Moments [26]. Subsequently, Section 2.3 defines the grid and describes the computation of the
reaction integrals. Next, Section 2.4 describes the inversion of the system matrix by means of an iterative tech-
nique called the Conjugate Gradient (CG). Finally, Section 2.5 describes how FFTs can be utilized to accelerate
the matrix-vector products, performed by the CG.

2.1. Integral equation
The objective of the Volumetric Method of Moments (V-MoM) is to solve a forward problem in which an inci-
dent electric field E⃗ i (⃗r ) illuminates an arbitrary scatterer, constituted of a material with a relative permittivity
εr (⃗r ), which occupies a volume V . The object is assumed to be embedded in a homogeneous background
medium with relative permittivity εr,bg . The total electric field inside the scatterer can be written as the super-

position of the incident field E⃗ i (⃗r ) and the scattered field E⃗ s (⃗r ), as shown in the following expression

E⃗ (⃗r ) = E⃗ i (⃗r )+ E⃗ s (⃗r ) (2.1)

By invoking the volume equivalence theorem [24], the scatterer can be replaced by an equivalent current dis-
tribution J⃗eq (⃗r ), radiating in free space, as shown in Fig. 2.1. J⃗eq (⃗r ) is related to the total electric field inside the
scatterer through an effective conductivity σeff (⃗r ) as follows

J⃗eq (⃗r ) =σeff (⃗r )E⃗ (⃗r ), (2.2)

where σeff (⃗r ) is defined as follows
σeff = jωε0(εr (⃗r )−εr,bg ). (2.3)

Since the equivalent currents radiate in free space, E⃗ s (⃗r ) can be expressed as the convolution between the free
space Green’s function GE J

f s (⃗r − r⃗ ′) and J⃗eq (⃗r ), as shown in the following expression

E⃗ s (⃗r ) =
Ñ

V
GE J

f s (⃗r − r⃗ ′ )⃗Jeq (⃗r ′)dr⃗ ′. (2.4)
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Figure 2.1: Replacement of the scatterer with an equivalent current distribution J⃗eq (⃗r ), radiating in free space, by invoking the volume
equivalence theorem [24]

By substituting (2.3) and (2.4) into (2.1), we obtain the following expression

E⃗ i (⃗r ) = J⃗eq (⃗r )

σeff (⃗r )
−

Ñ
V

GE J
f s (⃗r − r⃗ ′ )⃗Jeq (⃗r ′)dr⃗ ′. (2.5)

The integral equation, given by (2.5), is called the Electric Field Integral Equation (EFIE) and will be discretized
and solved with the Method of Moments (MoM), as described in the following section.

2.2. Discretization integral equation
The first step in the Method of Moments [26] is to expand the unknown in the integral equation as the sum-
mation of a number of basis functions, as shown in the following expression

J⃗eq (⃗r ) =
Nt∑

n=1
in b⃗n (⃗r ). (2.6)

By substituting (2.6) into (2.5), we obtain the following expression

E⃗ i (⃗r ) =
Nt∑

n=1
in

(
b⃗n (⃗r )

σeff (⃗r )
−

Ñ
V

GE J
f s (⃗r − r⃗ ′ )⃗bn (⃗r )dr⃗ ′

)
. (2.7)

To convert (2.7) to a matrix equation, we will first define the following projection operator

〈 f (⃗r ), g (⃗r )〉V =
Ñ

V
f (⃗r )g (⃗r )dr⃗ . (2.8)

Since the integral operator in (2.5), defines a mapping from the function space L2(R3) to L2(R3) [23], adopting
the Galerkin method guarantees convergence in the norm when the set of basis functions spans the aforemen-
tioned function space [27],[28]. By applying a Galerkin projection to (2.7), we obtain the following expression

〈E⃗ i , b⃗m (⃗r )〉V︸ ︷︷ ︸
1⃝

=
Nt∑

n=1
in

 〈⃗bn (⃗r ), b⃗m (⃗r )〉V

σeff (⃗r )︸ ︷︷ ︸
2⃝

−〈
Ñ

V
GE J

f s (⃗r − r⃗ ′ )⃗bn (⃗r ′)dr⃗ ′, b⃗m (⃗r )〉V︸ ︷︷ ︸
3⃝

 . (2.9)

As explained in [29], it is necessary that the set of basis functions spans the aforementioned function space.
Since the equivalent currents defined in (2.3) are fictitious, they do not satisfy any continuity condition [29].
Hence, it is not necessary that the set of basis function enforces any continuity condition either. The simplest
choice is to use piece-wise constant basis functions, as shown in the following expression

b⃗n (⃗r ) = 1

∆2 rect

(
r⃗ − r⃗ ′

n

∆

)
p̂n , (2.10)
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(a) (b)

Figure 2.2: (a) Structured grid having dimensions Lx , Ly and Lz , and discretized with voxels of size ∆ and (b) distinction between the

self-integrals and the mutual integrals of the coupling matrix Zrad

where p̂n ∈ {x̂, ŷ , ẑ}, depending on the polarization of the basis function. The chosen set of basis functions
allows for an analytical evaluation of the forcing term 1⃝ as well as the term 2⃝ in (2.9). The forcing term
becomes as follows

〈E⃗ i , b⃗m (⃗r )〉V = E⃗ i · p̂m∆= vm , (2.11)

where vm denotes the voltage, impressed on the mth basis function. The term 2⃝ in (2.9) becomes as follows

〈⃗bn (⃗r ), b⃗m (⃗r )〉V

σeff (⃗r )
= δmn

σeff,n∆
, (2.12)

where δmn denotes the Kronecker delta. By defining the diagonal matrix Zmat as follows

Zmat = diag

(
1

σeff,1∆
,

1

σeff,2∆
, . . . ,

1

σeff,Nt∆

)
, (2.13)

and by defining the coupling matrix Zrad as follows

Zrad
mn =−〈

Ñ
V

GE J
f s (⃗r − r⃗ ′ )⃗bn (⃗r ′)dr⃗ ′, b⃗m (⃗r )〉V , (2.14)

(2.9) can be written as the following matrix equation,

v = (Zmat +Zrad)i, (2.15)

where v denotes the excitation vector and i denotes the unknown current vector.

2.3. Definition of the grid and computation of the integrals
To discretize the integral equation in (2.5), a rectangular volume is defined, containing the scatterer, and having
dimensions Lx , Ly and Lz , as shown in Fig 2.2a. Subsequently, a structured mesh is defined, which divides the
rectangular volume into cubic subdomains having a length ∆ in the x-, y- and z-directions.

Once the grid is defined, we can obtain the coupling matrix Zrad. Evaluating the entries of the coupling
matrix Zrad requires the numerical evaluation of the 6D reaction integrals given by (2.14). When the source and
observation point coincide, the singularity in the Green’s function GE J

f s (⃗r − r⃗ ′) requires appropriate treatment.

Therefore, the integrals in (2.14) are divided into two categories, as shown in Fig. 2.2b: the self-integrals, i.e.
the integrals with m = n, and the mutual integrals, i.e. the integrals with m ̸= n. The mutual reaction integrals
have been calculated by discretizing the source and observation regions into a uniform submesh, as shown in
Fig 2.3. The reaction integrals can then be calculated as follows

Zrad
mn =− ℓ

6

∆4

∑
l ,p,q

∑
l ′,p ′,q ′

GE J
f s (⃗rl ,p,q − r⃗l ′,p ′,q ′ ), (2.16)

8



Figure 2.3: Uniform submesh to calculate the reaction integrals

where ℓ denotes the size of the submesh. The self-reaction integrals cannot be calculated directly from (2.14),
due to the singularity of the Green’s function, when the source and observation point coincide. However, as
shown in [30] and [31], the electric field inside the source region can be rigorously derived, which leads to the
following expression

Zrad
mn =−〈

Ñ
V −Vδ

GE J
f s (⃗r − r⃗ ′ )⃗bn (⃗r ′)dr⃗ ′, b⃗m (⃗r )〉V − 1

jωε0∆

(
2

3
e− j ka(1+ j ka)−1

)
, (2.17)

where Vδ denotes a spherical volume, used to exclude the singularity of GE J
f s (⃗r − r⃗ ′), and a denotes the radius

of Vδ. Similar to before, (2.17) has been calculated by discretizing the source and observation regions into a
uniform submesh, which leads to the following expression.

Zrad
nn =− ℓ

6

∆4

∑
l ,p,q

∑
l ′,p ′,q ′ ̸=l ,p,q

GE J
f s (⃗rl ,p,q − r⃗l ′,p ′,q ′ )− 1

jωε0∆

(
2

3
e− j kℓ

( 3
4π

) 1
3

(
1+ j kℓ

(
3

4π

) 1
3

)
−1

)
, (2.18)

where the radius a = ℓ( 3
4π )

1
3 has been chosen such that the spherical volume Vδ is equal the volume of the

cubic submesh.

2.4. Iterative solver
Solving the matrix equation in (2.15), requires the inversion of the impedance matrix Zmat +Zrad. To allevi-
ate the memory requirements and to decrease the computational complexity, the tool utilizes the Conjugate
Gradient Fast Fourier Transform (CG-FFT) [32]. The Conjugate Gradient (CG) is an iterative technique that ap-
proximates the solution to a linear system. To understand the procedure, let us consider the following matrix
equation

Zi = v. (2.19)

Instead of solving (2.19) directly, the Conjugate Gradient first defines the following functional

f (i) = 1

2
iTZi− iTv, (2.20)

whose minimum coincides with the solution of (2.19). The minimum of (2.20) is then obtained in an iterative
manner, using successive approximations.

The overall algorithm is shown in Fig. 2.4. The CG starts with an initial guess i(0). Subsequently, at each
iteration, a residual error r(k) is calculated, associated with the approximation i(k). Based on the residual error
r(k), the CG computes a new approximation i(k+1). This procedure continues until a predetermined tolerance ϵ
is reached. Unfortunately, the procedure shown in Fig. 2.4 is still unfeasible in terms of memory requirements
and computational complexity, when performed in a traditional manner. To understand the reason, let us
consider the computation of the residual error

r(k) = v−Zmat · i(k)︸ ︷︷ ︸
1⃝

+Zrad · i(k)︸ ︷︷ ︸
2⃝

. (2.21)

Zmat denotes the diagonal matrix defined in (2.12). Hence, product 1⃝ only requires us to store Nt entries and
to perform Nt operations, where Nt denotes the number of unknowns. However, the coupling matrix Zrad is a
full matrix. Therefore, product 2⃝ requires us to store N 2

t entries and to perform N 2
t operations. Fortunately,
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Figure 2.4: Iterative method to solve the matrix equation

the choice of the structured grid and the translational invariance of the free space Green’s function GE J
f s (⃗r − r⃗ ′),

result in a coupling matrix with a Toeplitz structure. The Toeplitz structure of Zrad allows us to reduce the
memory requirements and to accelerate the matrix-vector products by utilizing FFTs. This procedure will be
explained in the following section.

2.5. FFT-based solver
As mentioned in Section 2.4, the Toeplitz structure of the coupling matrix Zmat allows us to reduce the memory
requirements and to accelerate the matrix-vector products in (2.21). To understand the underlying principles,
we will first consider the case of a one-dimensional grid and subsequently, extend the procedure to two- and
three-dimensional geometries.

2.5.1. One-dimensional geometry
Let us consider a one-dimensional grid consisting of Nx equispaced basis functions, as shown in Fig 2.5. The
coupling matrix Zrad can be expressed explicitly as follows

Zrad =


Z11 Z12 Z13 · · · Z1Nx

Z21 Z22 Z23 · · · Z2Nx

Z31 Z32 Z33 · · · Z3Nx

...
...

...
. . .

...
ZNx 1 ZNx 2 ZNx 3 · · · ZNx Nx

 , (2.22)

where Zi j represents the projection of the scattered field, produced by the j th basis function, onto the i th test

function. Due to the translational invariance of the free space Green’s function GE J
f s (⃗r −r⃗ ′), the mutual coupling

only depends on the relative distance between the basis functions. Hence, by defining Zi j = Zi− j , we obtain
the following Toeplitz matrix

Zrad =


Z0 Z−1 Z−2 · · · Z1−Nx

Z1 Z0 Z−1 · · · Z2−Nx

Z2 Z1 Z0 · · · Z3−Nx

...
...

...
. . .

...
ZNx−1 ZNx−2 ZNx−3 · · · Z0

 . (2.23)

The Toeplitz structure in (2.23) allows us to characterize the entire coupling matrix Zrad by storing only the
first row and column of (2.23) into the following (2Nx −1)-by-1 vector

żrad = [
ZNx−1 ZNx−2 · · · Z1 Z0 Z−1 · · · Z2−Nx Z1−Nx

]T
, (2.24)
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Figure 2.5: One-dimensional grid consisting of Nx equispaced basis functions

which reduces the memory requirements from N 2
x to 2Nx − 1. To understand how FFTs can be utilized to

accelerate the matrix-vector product in (2.21), let us consider the product between Zrad and i, which can be
expressed explicitly, as follows

vrad = Zrad · i =


Z0 Z−1 · · · Z1−Nx

Z1 Z0 · · · Z2−Nx

...
...

. . .
...

ZNx−1 ZNx−2 · · · Z0

 ·


i1

i2
...

iNx

=


Z0 · i1 +Z−1 · i2 +·· ·+Z1−Nx · iNx

Z1 · i1 +Z0 · i2 +·· ·+Z2−Nx · iNx

...
ZNx−1 · i1 +ZNx−2 · i2 +·· ·+Z0 · iNx

 . (2.25)

By examining (2.25), we can see that the first entry of the resulting vector vrad can be represented as the multi-
plication of the vector i with the last Nx entries of żrad, as shown below

ZNx−1 ZNx−2 · · · Z1 Z0 Z−1 · · · Z2−Nx Z1−Nx

i1 i2 · · · iNx−1 iNx

Similarly, the second entry of vrad can be represented as the multiplication of the vector i with element Z1 till
element Z2−Nx , as shown below

ZNx−1 ZNx−2 · · · Z1 Z0 Z−1 · · · Z2−Nx Z1−Nx

i1 i2 i3 · · · iNx

By repeating the above procedure Nx times, it becomes apparent that the matrix-vector product in (2.25) can
be represented as an element-wise multiplication of the vector i with a backsliding window that selects the
appropriate elements of the vector żrad. This procedure can be represented as follows

vrad = [flip(żrad ∗flip(ip))]1:Nx (2.26)

where ∗ denotes the circular convolution and ip is the following (2Nx −1)-by-1 vector

ip = [
0 · · · 0 i1 i2 i3 · · · iNx ,

]T
. (2.27)

which contains the vector i, padded by Nx −1 zeros. The subscript 1 : Nx in (2.26) indicates the selection of the
first Nx elements of the resulting vector. Note that ip, as well as the resulting vector, have to be flipped before
and after the circular convolution, due to the fact that we are using a backsliding window, instead of a forward
sliding window, as in the usual definition of the circular convolution. Finally, the circular convolution in (2.26)
can be equivalently calculated as an element-wise multiplication in the frequency domain, which results in
the following expression

v =
[

flip
(
IFFT

(
FFT(żrad)⊙FFT(flip(ip))

))]
1:Nx

, (2.28)

where ⊙ denotes the Hadamard product. This procedure reduces the computational complexity of the matrix-
vector product in (2.21) from O (N 2

t ) to O (Nt logNt ). The overall procedure is depicted schematically in Fig 2.6.

2.5.2. Two dimensional geometry
In a two-dimensional geometry, the translational invariance of GE J

f s (⃗r − r⃗ ′) leads to the following block Toeplitz
structure

Zrad =


Z0 Z−1 Z−2 · · · Z1−Ny

Z1 Z0 Z−1 · · · Z2−Ny

Z2 Z1 Z0 · · · Z3−Ny

...
...

...
. . .

...
ZNy−1 ZNy−2 ZNy−3 · · · Z0

 , (2.29)
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Figure 2.6: Equivalent procedure to calculate the matrix-vector product in (2.25)

where each block Zi has a Toeplitz structure as in (2.23). Analogous to the one-dimensional case, the matrix in
(2.29) can be characterized by the following (2Nx −1)-by-(2Ny −1) matrix

z̈rad =



ZNx−1,Ny−1 · · · ZNx−1,1 ZNx−1,0 ZNx−1,−1 · · · Z1−Nx ,1−Ny

...
. . .

...
...

...
. . .

...
Z1,Ny−1 · · · Z1,1 Z1,0 Z−1,0 · · · Z1,1−Ny

Z0,Ny−1 · · · Z1,1 Z1,1 Z1,1 · · · Z0,1−Ny

Z−1,Ny−1 · · · Z1,1 Z1,1 Z1,1 · · · Z−1,1−Ny

...
. . .

...
...

...
. . .

...
Z1−Nx ,Ny−1 · · · Z1−Nx ,1 Z1−Nx ,0 Z1−Nx ,−1 · · · Z1−Nx ,1−Ny


, (2.30)

where the subscripts i and j of each entry Zi j , refer to the difference in location in the x- and y-direction,
between the source and observation point. Similarly, the vector i has to be rearranged into the following (2Nx−
1)-by-(2Ny −1) matrix, that is again appropriately zero-padded

ip =



0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · i1,1 i1,2 · · · i1,Ny

0 0 · · · i2,1 i2,2 · · · i2,Ny

...
...

. . .
...

...
. . .

...
0 0 · · · iNx ,1 iNx ,2 · · · iNx ,Ny


. (2.31)

The procedure for computing the matrix-vector products, remains essentially the same as in the 1-dimensional
case. This time, however, the one-dimensional FFTs are replaced by 2-dimensional FFTs and the flips are
performed over the rows and columns of the matrices. The overall procedure is still depicted in Fig. 2.6

2.5.3. Three dimensional geometry
In the 3-dimensional case, the translational invariance of the free space Green’s function GE J

f s (⃗r − r⃗ ′) results in a

coupling matrix Zrad with the same block-Toeplitz structure, shown in (2.29). This time, however, each block Zi

has itself a block-Toeplitz structure. In this case, Zrad can be be characterized by the (2Nx −1)-by-(2Ny −1)-by-
(2Nz −1) tensor

...
z rad, where the subscripts i , j and k of each entry

...
z rad

i , j ,k represent the difference in location

in the x-, y- and z-direction, between the source and observation point. The vector i has to be rearranged
into the (2Nx −1)-by-(2Ny −1)-by-(2Nz −1) tensor ip, where the entries i p

i , j ,k contain the entries of i, whenever

Nx ≤ i ≤ 2Nx − 1, Ny ≤ j ≤ 2Ny − 1 and Nz ≤ k ≤ 2Nz − 1, and are filled with zeros everywhere else. In the
3-dimensional case, the procedure to compute the matrix-vector products remains essentially the same as in
the 1-dimensional case, apart from the fact that the 1-dimensional FFTs are replaced by 3-dimensional FFTs
and the fact that the flips are now performed over all 3 dimensions of the corresponding tensors. Hence, the
overall procedure is still depicted in Fig. 2.6.

Finally, we have to consider the polarizations of the basis and test functions. By taking into account all
possible polarizations, the matrix-vector product in (2.21) can be expressed as follows

Zrad · i =
Zxx Zx y Zxz

Zy x Zy y Zy z

Zzx Zz y Zzz

 ·
ix

iy

iz

=
Zxx

Zy x

Zzx

 · ix +
Zx y

Zy y

Zz y

 · iy +
Zxz

Zy z

Zzz

 · iz , (2.32)
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Figure 2.7: Overall procedure to calculate each row of the the matrix-vector product in (2.32)

where each of the blocks Zi j has a block-Toeplitz structure, as described before. The multiplication of each
component Zi j of the coupling matrix with the corresponding component i j of the current vector can be per-
formed by the procedure depicted in Fig 2.6. By taking into account all possible polarizations, the overall
procedure to compute each row of (2.32) is depicted schematically in Fig 2.7. Since the FFTs of i j only have to
be computed once per iteration, we have to compute in total 12 FFTs/IFFTs per iteration: three at the input
and nine at the output. Moreover, it should be noted that the FFTs of

...
z rad can be computed before entering

the iterative procedure in Fig 2.4. Consequently, these FFTs do not add significantly to the total computation
time.

2.5.4. Construction coupling tensor
The procedure described in the previous sections allows us to reduce the memory requirements from 9N 2

x N 2
y N 2

z
to 9(2Nx−1)(2Ny−1)(2Nz−1). Moreover, the number of reaction integrals that have to be evaluated, is reduced
by the same amount. However, we can further reduce both the memory requirements and the number of re-
action integrals that have to be evaluated.

To understand how this can be done, let us consider again the one-dimensional grid, shown in Fig 2.5.
Since the magnitude of the reaction integral only depends on the absolute distance between the basis and test
function, the following relation holds

|Z−i | = |Zi |. (2.33)

Consequently, the first Nx −1 entries of żrad can be obtained from the last Nx −1 entries, by correcting the sign.
The entire vector żrad can then be obtained by only evaluating the last Nx entries. To this extent, we may fix
the basis function to the first line segment, and sweep the test function over all of the line segments within the
grid. In the 3-dimensional case, the entire tensor

...
z rad can be obtained by only evaluating the entries

...
z rad

i , j ,k
with Nx ≤ i ≤ 2Nx −1, Ny ≤ i ≤ 2Ny −1 and Nz ≤ i ≤ 2Nz −1. This can be done by fixing the basis function
to the first voxel in the grid, and sweeping the test function over all of the voxels within the grid, as shown
in Fig 2.8b. All other entries can then be obtained from these Nx Ny Nz entries, by correcting the sign. This
procedure reduces the memory requirements and the number of reaction integrals that have to be evaluated
from 9(2Nx −1)(2Ny −1)(2Nz −1) to 9Nx Ny Nz .

However, both the memory requirements and the number of reaction integrals that have to be evaluated,
can be reduced even further. To understand how this can be done, let us consider the 2-dimensional grid
shown in Fig. 2.8a, illustrated for x-polarized and y-polarized currents. The reaction integral between the
x-polarized currents with index 1⃝ and 4⃝ is equal to the reaction integral between the y-polarized currents
with index 1⃝ and 2⃝. A similar relation holds for the z-polarized currents. Therefore, the tensors

...
z rad,y y and

...
z rad,zz , corresponding to the components Zy y and Zzz , can be obtained from the tensor

...
z rad,xx , correspond-

ing to the component Zxx , by interchanging the dimensions of the tensor. Similarly, all tensors
...
z rad,i j , cor-

responding to the cross-polarized components of Zrad, can be obtained from the tensor
...
z rad,x y , correspond-

ing to Zx y , by interchanging the appropriate dimensions of the tensors. Therefore, we only have to compute
...
z rad,xx and

...
z rad,x y , which reduces the memory requirements and the number of reaction integrals that have

to be calculated from 9Nx Ny Nz to 2Nx Ny Nz .
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(a) (b)

Figure 2.8: (a) Two-dimensional grid with x- and y-polarized currents and (b) construction of
...
z rad by fixing the test function to the first

voxel in the grid and sweeping the basis functions over all of the voxels within the grid
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3
Optimization of the Volumetric Method of

Moments

Chapter 2 has given an overview of the volumetric Method of Moments, developed in [14]. However, the MAT-
LAB tool has not been optimized in terms of its computation time. Moreover, the V-MoM becomes less accu-
rate when simulating geometries that are not well-represented by the structured grid. Finally, the numerical
calculation of the reaction integrals, described in Section 2.3, is relatively inaccurate compared to alternative
procedures, such as the method proposed in [23].

This chapter is structured as follows. First, Section 3.1 describes the optimization of the tool in terms of
its computation time. Next, Section 3.2 introduces a procedure to enhance the accuracy of the solution, when
simulating geometries that do not conform to the structured grid. Subsequently, Section 3.3 describes the
implementation of an alternative numerical scheme to calculate the reaction integrals. This method is based
on a reduction from volume to surface integrals, and allows us to calculate the reaction integrals up to machine
precision. Finally, section 3.4 provides a validation of the optimized MATLAB tool.

3.1. Acceleration
3.1.1. Optimization of the FFT-based matrix-vector product
From the profiler in Fig 3.1, one can notice that the "flip" operations, performed before the FFTs and after
the IFFTs of (2.28), take up a significant portion of the total computation time. However, these flips can be
removed by taking advantage of the properties of the FFT and the IFFT. By considering the definitions of the
FFT and the IFFT

I [k] = FFT(i [n]) =
N−1∑
k=0

i [n]e− j 2πk
N n (3.1)

i [n] = IFFT(I [k]) = 1

N

N−1∑
k=0

I [k]e j 2πk
N n , (3.2)

one can notice that, apart from the scaling factor N , the two operators differ only in the sign at the exponent.
Therefore, these two operators can be interchanged, if we reverse the order of the sequences. This property
allows us to avoid the "flip" operations. However, since the vectors in (2.28) were extended to represent a
circular convolution, one has to pay attention to the ordering of their entries. For the 1-dimensional case, the
circular convolution is correctly represented if the vector of the currents is ordered as follows

ip = [
iNx 0 · · · 0 i1 i2 · · · iNx−1

]T
, (3.3)

where the entries from position 2 to position Nx+1 are padded with zeros. The matrix-vector product can then
be calculated with the following expression

v =
[

FFT
(
FFT(ż rad)⊙ IFFT(ip)

)]
2:Nx+1

, (3.4)
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Figure 3.1: The profiler, which shows the contribution of each operation to the total computation time

Figure 3.2: The modified procedure to calculate the matrix-vector product in (2.25)

where the entries from position 2 to position Nx +1 are retained. In the 2-dimensional case, the matrix ip is
ordered as follows

ip =



iNx ,Ny 0 · · · iNx ,1 iNx ,2 · · · iNx ,Ny−1

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

i1,1 0 · · · i1,1 i1,2 · · · i1,Ny−1

i1,2 0 · · · i2,1 i2,2 · · · i1,Ny−1
...

...
. . .

...
...

. . .
...

i1,Ny−1
...

. . . iNx−1,1 iNx−1,2 · · · iNx−1,Ny−1


. (3.5)

Finally, in the 3-dimensional case, the tensor ip, has "pages" defined as follows

ip
page,nz

=



iNx ,Ny ,nz 0 · · · iNx ,1,nz iNx ,2,nz · · · iNx ,Ny−1,nz

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

i1,1,nz 0 · · · i1,1,nz i1,2,nz · · · i1,Ny−1,nz

i1,2,nz 0 · · · i2,1,nz i2,2,nz · · · i1,Ny−1,nz

...
...

. . .
...

...
. . .

...

i1,Ny−1,nz

...
. . . iNx−1,1,nz iNx−1,2,nz · · · iNx−1,Ny−1,nz


, (3.6)

where the "pages" are ordered as in (3.3), with the "pages" being zero-padded from position 2 to position
Nz +1. The modified procedure to calculate the matrix vector products in (2.25) is depicted schematically in
Fig 3.2.

3.1.2. Optimization of the memory allocation
The second optimization of the developed MATLAB tool is related to the memory allocation during the simu-
lation. As explained in Section 2.4, the V-MoM uses an iterative method, called the Conjugate Gradient (CG),
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(a) (b)

Figure 3.3: (a) The iterative method, which calls a function to perform the matrix-vector products in (2.21) and (b) the process that is
initiated by the function call

to find the solution of the matrix equation in (2.15). At each iteration, the CG calculates the residual error
defined by (2.21). As explained in Section 2.5, the matrix-vector products in (2.21) are accelerated by utilizing
FFTs/IFFTs. As shown in Fig 3.3a, this procedure requires a function call, which initiates the process illustrated
in Fig 3.3b. After the function is called, a copy of its input variables is stored on the stack. Subsequently, the
function executes its code, after which it returns control to the main code. Finally, the memory, used to store
the input variables of the function, is de-allocated.

The input variables of the function in Fig 3.3b are the radiation tensors
...
z rad, defined in Section 2.5.3.

For large scale problems, these tensors may contain millions of entries. Moreover, the function is executed at
every iteration of the CG. Consequently, allocation and de-allocation of memory may take a significant portion
of the total computation time. Fortunately, this can be avoided by declaring the radiation tensors as global
variables. Since global variables are visible throughout the entire program, both the main file and the function
can operate on the same variable, which avoids unnecessary allocation and de-allocation of memory.

3.1.3. Reduction of the number of FFTs in the matrix-vector products
The third optimization is related to the specific implementation of the matrix-vector product shown in (2.32).
By taking into account all possible polarizations, the overall procedure to compute each row of (2.32), is de-
picted schematically in Fig. 3.4a. As shown in Fig. 3.4a, this procedure starts by performing a 3-dimensional
IFFT on the tensors ip, corresponding to the three components of the current vector i. Next, element-wise
multiplications are performed with the FFT of

...
z rad. Subsequently, a 3-dimensional FFT is performed on each

of the resulting tensors, after which the three components are added according to (2.32).

However, due to the linearity of the FFTs, we can swap the final summation with the FFTs, which reduces
the total number of FFTs/IFFTs. Fig. 3.4a depicts the resulting procedure to compute each row of (2.32). Since
the procedure in Fig. 3.4a is performed for each row of (2.32), the total amount of FFTs/IFFTs per iteration is
reduced from 12 to six. Since the total computation time of the iterative solver is dominated by the FFTs, this
reduction results in a significant acceleration of the MATLAB tool.

3.1.4. Time comparison
To assess the performance of the three optimizations described in Section 3.1.1 to 3.1.3, a cube has been sim-
ulated, having a length L = λ0/2, constituted of a dielectric with permittivity εr = 4, excited by a plane wave
propagating in the z-direction, as shown in Fig 3.5a. The cube has been discretized with voxels having a size
∆ = L/61 and ∆ = L/101. Figs 3.5b and 3.5c show the total computation time and the relative time reduction
for the two discretization levels, where each row includes the optimizations of the rows above. The last row of
Figs 3.5b and 3.5c show the total relative time reduction.

While the removed "flip" operations and the reduced number of FFTs result in a relative time reduction
that is more or less independent of the discretization level, the finer discretization level benefits more from
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(a) (b)

Figure 3.4: Overall procedure to calculate each row of the matrix-vector product in (2.32) (a) before swapping the summation with the
FFTs and (b) after swapping the summation with the FFTs

(a)

(b) (c)

Figure 3.5: (a) Dielectric cube having a size L =λ0/2 and permittivity εr = 4, illuminated by a plane wave propagating in the z-direction
and computation time and relative time reduction for a discretization level of (b) ∆= L/61 and (c) ∆= L/101

the optimization of the memory allocation. This result could have been anticipated, since the tensors
...
z rad

require much more memory, if the discretization level is refined. Nevertheless, the total relative time reduction
is roughly 60% in both cases. Finally, it should be mentioned that the relative time reduction is independent of
the simulated geometry since the optimizations described in Section 3.1.1 to 3.1.3 simply reduce the execution
time of each iteration.

3.2. Tapered relative permittivities
As mentioned in Section 2.3, the V-MoM uses a structured grid to discretize the integral equation in (2.5). De-
spite its advantages in terms of memory requirements and computational complexity, the use of a structured
grid results in a lower accuracy, when the geometry is not well-represented by the structured grid, as shown in
the example of Fig 3.6a. In this case, the scatterer is approximated by the voxels whose centers are inside the
scatterer, as shown in Fig 3.6b. This representation can be refined by dividing the voxels into three groups: the
voxels that are entirely inside the scatterer, the voxels that are entirely outside the scatterer, and the voxels that
are partially inside the scatterer, as shown in Fig 3.6c. While the voxels that are entirely outside of the scatterer
receive the permitivity of the background εr,bg , and the voxels that are entirely inside the scatterer receive the
local permittivity of the scatterer εr , the voxels that are partially inside the scatterer will receive a permittivity
εr,av , defined as follows

εr,av = Vint

Vt
εr + (1− Vint

Vt
)εr,bg = εr,bg +

Vint

Vt
(εr −εr,bg ), (3.7)

which is an average of εr and εbg , where εr is weighted by the percentage of the voxel that is inside the scatterer
and εbg is weighted by the percentage of the voxel that is outside the scatterer.

3.2.1. Validation
To compare the traditional procedure of Fig 3.6b to the refined approach of Fig 3.6c, both procedures have
been used to simulate a dielectric sphere with radius R =λ0/2 and permittivity εr = 4 and εr = 8. The sphere is
illuminated by a plane wave with amplitude E⃗inc = 1V/m, propagating in the z-direction, as shown in Fig 3.7a.
In both cases, the sphere is discretized, using basis functions with ∆=λ0/81. The results have been compared
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(a) (b) (c)

Figure 3.6: Grid with a non-rectangular geometry with (a) the original geometry, (b) the traditional approximation and (c) the refined
approximation

to the analytical solution obtained by the Mie Series [33],[34].
Figs 3.7c and 3.7d show the magnitude of the total electric field E⃗ on the z-axis of the sphere, for εr = 4

and εr = 8, respectively. To assess the performance, the relative error with respect to the Mie series has been
defined as follows

ϵsolver =
∥∥∥∥∥

∣∣E⃗ t
solver

∣∣− ∣∣E⃗ t
Mie

∣∣∣∣E⃗ t
Mie

∣∣
∥∥∥∥∥ , (3.8)

where ∥·∥ denotes the 2-norm of the vector and
∣∣E⃗ t

solver

∣∣ denotes the solution obtained from the V-MoM, using
either of the two approaches. Fig. 3.7b shows the relative error ϵsolver, obtained using both approaches. From
Fig. 3.7b, it becomes clear that the geometry with εr = 8 benefits much more from the averaging. The reason
is that this geometry is more resonant. Consequently, the solution is much more sensitive to changes in the
geometry.

3.3. Improved evaluation of the reaction integrals
As mentioned in Section 2.3, obtaining the coupling matrix Zrad requires the numerical evaluation of the re-
action integrals in (2.14). However, the procedure, described in Section 2.3, is relatively inaccurate compared
to alternative procedures. In particular, the reaction integrals can be reduced from volume integrals to surface
integrals [23], which allows us to evaluate the resulting integrals up to machine precision. To this extent, we
will have to slightly modify the integral equation in (2.5).

First, by multiplying (2.5) with jωε0(εr (⃗r )−εr,bg ), we obtain the following expression

jωε0(εr (⃗r )−εr,bg )E⃗ i (⃗r ) = J⃗eq (⃗r )− jωε0(εr (⃗r )−εr,bg )
Ñ

V
GE J

f s (⃗r − r⃗ ′ )⃗Jeq (⃗r ′)dr⃗ ′. (3.9)

The free space Green’s function GE J
f s (⃗r − r⃗ ′) can be expressed as follows

GE J
f s (⃗r − r⃗ ′) =− jωµ(I + 1

k2
0

∇∇·)G0 (⃗r − r⃗ ′), (3.10)

where the scalar Green’s function G0 (⃗r − r⃗ ′) is defined as

G0 (⃗r − r⃗ ′) = e− j k0 |⃗r−r⃗ ′|

4π|⃗r − r⃗ ′| . (3.11)

By substituting (3.10) into (3.9), we obtain the following expression

jωε0(εr (⃗r )−εr,bg )E⃗ i (⃗r ) = J⃗eq (⃗r )− (k2
0 +∇∇·)

Ñ
V

G0 (⃗r − r⃗ ′ )⃗Jeq (⃗r ′)dr⃗ ′. (3.12)
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(a)

(b)

(c) (d)

Figure 3.7: (a) Simulated geometry consisting of a dielectric sphere with radius R =λ0/2 and permittivity εr = 4 or εr = 8, (b) comparison
between the error committed by the traditional approach and the approach of averaging the permittivity, and magnitude of the electric

field on the z-axis of the sphere for (c) a permittivity εr = 4, and (d) a permittivity εr = 8

(3.12) can be rewritten with the help of the following identity [35]

(k2
0 +∇∇·)

Ñ
V

G0 (⃗r − r⃗ ′ )⃗Jeq(r ′)dr ′ =∇×∇×
Ñ

V
G0 (⃗r − r⃗ ′ )⃗Jeq(r ′)dr ′− J⃗eq(r ). (3.13)

By substituting (3.13) into (3.12), we obtain the following expression

jωε0(εr (⃗r )−εr,bg )E⃗ i (⃗r ) = εr (⃗r )⃗Jeq (⃗r )− (εr (⃗r )−εr,bg )∇×∇×
Ñ

V
G0 (⃗r − r⃗ ′ )⃗Jeq (⃗r ′)dr⃗ ′. (3.14)

Finally, by dividing (3.14) by εr (⃗r ), we obtain the following expression

jωε0
εr (⃗r )−εr,bg

εr (⃗r )
E⃗ i (⃗r ) = J⃗eq (⃗r )− εr (⃗r )−εr,bg

εr (⃗r )
∇×∇×

Ñ
V

G0 (⃗r − r⃗ ′ )⃗Jeq (⃗r ′)dr⃗ ′. (3.15)

As shown in [23], this last step offers numerical advantages in the case of inhomogeneous scatterers. The inte-
gral equation in (3.15) has been discretized with the Galerkin method, using the following piece-wise constant
basis functions

b⃗n (⃗r ) = 1p
∆3

rect

(
r⃗ − r⃗ ′

n

∆

)
p̂n , (3.16)
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Figure 3.8: Reaction integrala between one face of basis function b⃗n (⃗r ′) and one face of test function b⃗m (⃗r )

where the normalization constant 1/
p
∆3 has been chosen such that the entries of the system matrix do not

change significantly, when the discretization level is changed. By applying a Galerkin projection to (3.15), using
the basis functions defined in (3.16), we obtain the following matrix equation

v = (I−Z mat Z rad)i, (3.17)

where I denotes the identity matrix. The mth entry of the excitation vector v is given by the following expression

vm = 〈 jωε0
εr (⃗r )−εr,bg

εr (⃗r )
E⃗ i (⃗r ), b⃗m (⃗r )〉V = jωε0

εr (⃗r )−εr,bg

εr (⃗r )
E⃗ i · p̂m

√
∆3 = jωε0

εr (⃗r )−εr,bg

εr (⃗r )
vm

p
∆, (3.18)

where vm denotes the voltage impressed on the mth basis function. The diagonal matrix Z mat is defined as
follows

Z mat = diag

(
εr,1 −εr,bg

εr,1
,
εr,2 −εr,bg

εr,2
, . . . ,

εr,Nt −εr,bg

εr,Nt

)
, (3.19)

and the entries of Zrad are given by the following expression

Z rad
mn =

Ñ
V

(
∇×∇×

Ñ
V

G0 (⃗r − r⃗ ′ )⃗bn (⃗r ′)dr⃗ ′
)
· b⃗m (⃗r )dr⃗ . (3.20)

As shown in Appendix A, the volume integrals in (3.20) can be reduced to the following form

Z rad
mn = 1

∆3

∑
k

∑
l

(n̂k × p̂m) · (n̂l × p̂n)I kl
mn , (3.21)

where the surface integral I kl
mn can be expressed as follows

I kl
mn =

Ï
Sk

Ï
Sl

G0 (⃗r − r⃗ ′)dr⃗ ′ dr⃗ , (3.22)

which is the reaction integral between one face of basis function b⃗n (⃗r ′), and one face of test function b⃗m (⃗r ),
as illustrated in (3.8), where k and l denote the indexes of the faces of the test and basis function, respectively.
The summation in (3.21) is performed over each face of the basis and test function, where n̂k and n̂l denote
the corresponding normal vectors of each of the faces, i.e. n̂k , n̂l ∈ {−x̂, x̂,−ŷ , ŷ ,−ẑ, ẑ}.

The reduction from volume to surface integrals has three distinct advantages. First of all, the 6D-integrals
in (2.14) have been reduced to 4D-integrals. Second, the integrand in (3.22) contains the scalar Green’s func-
tion G0 (⃗r − r⃗ ′), which is numerically less expensive to evaluate than the Dyadic Green’s function GE J

f s (⃗r − r⃗ ′).

Finally, the 1/R3-singularity in GE J
f s (⃗r − r⃗ ′) has been reduced to a 1/R-singularity, which can be evaluated effi-

ciently by the pre-existing tool DIRECTFN, introduced in [36] and [37]. Moreover, this approach allows us to
take into account the singularities on the face-, edge- and vertex-adjacent voxels, which were not taken into
account, with the previous integration technique, presented in Section 2.3.
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3.3.1. Construction tensor
As explained in Section 2.3, the entire coupling matrix Zrad can be characterized by two tensors

...
z rad,xx and

...
z rad,x y , corresponding to the Zxx and Zx y components of the coupling matrix. We will first explain how to
construct the tensor

...
z rad,xx .

By substituting p̂n = x̂ and p̂m = x̂ into (3.21), we obtain the following expression

Z rad
mn = 1

∆3

∑
k

∑
l

(n̂k × x̂) · (n̂l × x̂)I kl
mn (3.23)

The terms in (3.23) are only nonzero whenever n̂k and n̂l are both parallel to ±ŷ or ±ẑ. Therefore, the sum-
mation in (3.23) has 8 nonzero terms. However, the integrals I kl

mn contain many duplicates. To understand this
observation, let us consider two adjacent voxels, as shown in Fig 3.9a. I−ẑ,ẑ

11 represents the reaction integral be-

tween two opposite faces of the same voxel. On the other hand, I ẑ,ẑ
21 represents the reaction integral between

the faces of two adjacent voxels with the same normal vectors, i.e. nk = nl = ẑ. Since the distance between the
faces are both equal to ∆ and the normal vectors are oriented in the same way, the two integrals are numeri-
cally equivalent. Moreover, the reaction integrals between faces with normal vectors n̂k =±ŷ and n̂l =±ŷ can
be constructed from the reaction integrals between faces with normal vectors n̂k =±ẑ and n̂l =±ẑ, analogous
to the way in which

...
z rad,y y and

...
z rad,zz could be constructed from

...
z rad,xx .

To avoid performing the same integral multiple times, we will first define zsurf,ẑ,ẑ as the tensor, obtained by
fixing the observation domain to the first face with n̂k = ẑ and sweeping the source domain over all of the faces
with n̂l = ẑ within the grid, as illustrated in Fig 3.9b. Since all of the nonzero terms in (3.23) can be constructed
from the term with n̂k = ẑ and n̂l = ẑ, the tensor

...
z rad,xx can be constructed from zsurf,ẑ,ẑ as follows

...
z rad,xx

i , j ,k = 2zsurf,ẑ,ẑ
i , j ,k − zsurf,ẑ,ẑ

i , j ,k+1 − zsurf,ẑ,ẑ
i , j ,k−1 +2zsurf,ẑ,ẑ

i ,k, j − zsurf,ẑ,ẑ
i ,k+1, j − zsurf,ẑ,ẑ

i ,k−1, j , (3.24)

where the subscript k +1 denotes a shift along ẑ of all the entries in the tensor and the subscript i ,k, j indi-
cates that the y- and z-dimension have been interchanged. While the first three terms on the right-hand side
of (3.24) represent the interactions between all of the faces with n̂k =±ẑ and n̂l =±ẑ, the last three terms rep-
resent the interactions between all of the faces with n̂k = ±ŷ and n̂l = ±ŷ , which can be recognized from the
fact that the y- and z-dimension of the tensor have been interchanged.

Let us now consider the tensor
...
z rad,x y , corresponding to the Zx y component of the coupling matrix. By

substituting p̂m = x̂ and p̂n = ŷ into (3.21), we obtain the following expression

Z rad
mn =∑

k

∑
l

(n̂k × x̂) · (n̂l × ŷ)I kl
mn (3.25)

The terms in (3.25) are only nonzero whenever n̂k =±x̂ and n̂l =±ŷ . Therefore, the summation in (3.25) has 4
nonzero terms. Similar to before, we will first define zsurf,ŷ ,x̂ , as the tensor obtained by fixing the observation
domain to the first face with normal vector n̂l = ŷ and sweeping the source domain over all of the faces with
normal vector n̂k = x̂. Since all of the nonzero terms in (3.25) can be obtained from the term with n̂l = ŷ and
n̂k = x̂, the tensor

...
z rad,x y can be constructed from zsurf,ŷ ,x̂ as follows

...
z rad,x y

i , j ,k =−zsurf,ŷ ,x̂
i , j ,k + zsurf,ŷ ,x̂

i , j+1,k + zsurf,ŷ ,x̂
i−1, j ,k − zsurf,ŷ ,x̂

i−1, j+1,k , (3.26)

where the subscripts j +1 and i −1 denote a shift along ŷ and x̂ of all the entries in the tensor.

3.3.2. Evaluation reaction integrals
To obtain the tensors zsurf,ẑ,ẑ and zsurf,ŷ ,x̂ , we have to evaluate the reaction integrals between the correspond-
ing faces of the voxels. These integrals can be divided into four groups as shown in Figs 3.10a-3.10d. The first
group is illustrated in Fig 3.10a and consists of non-adjacent faces. Since the faces are separated, the singular-
ity of the scalar Green’s function G0 (⃗r − r⃗ ′) is not encountered on the integration domain. The second group is
illustrated in Fig 3.10b and consists of coinciding faces. In this case, the singularity of G0 (⃗r − r⃗ ′) is encountered
whenever r⃗ = r⃗ ′. The third group is illustrated in Fig 3.10c and consists of edge-adjacent faces. In this case the
singularity of G0 (⃗r − r⃗ ′) is encountered at the coinciding edge of the two faces. The last group is illustrated in
Fig 3.10d and consists of vertex-adjacent faces. In this case the singularity of G0 (⃗r − r⃗ ′) is encountered at the
coinciding vertex of the two faces.

The reaction integrals corresponding to the non-adjacent faces have been evaluated numerically using the
Gauss-Legendre quadrature [38], as explained in Appendix B. On the other hand, the reaction integrals be-
tween coinciding faces, edge-adjacent faces and vertex-adjacent faces can be evaluated using the pre-existing
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(a)

(b)

Figure 3.9: (a) The reaction integral between two opposite faces of the same voxel and the reaction integral between the faces of two
adjacent voxels with the same normal vectors and (b) the construction of zsurf,ẑ,ẑ by fixing the observation domain to the first face with

n̂k = ẑ and sweeping the source domain over all of the faces with n̂l = ẑ within the grid

(a) (b) (c) (d)

Figure 3.10: Reaction integral between (a) non-adjacent faces, (b) coinciding faces, (c) edge-adjacent faces and (d) vertex-adjacent faces

tool DIRECTFN, introduced in [36] and [37]. This tool is based on a direct integration method, in which the
singularity of G0 (⃗r − r⃗ ′) is treated by a change from Cartesian to polar coordinates. With this transformation,
the 1/R-singularity is cancelled by the Jacobian.

To choose an appropriate number of integration points, we have plotted the numerical convergence of
the integration in Figs. 3.11a and 3.11b. Fig. 3.11a shows the convergence in the case of non-adjacent faces
versus the number of integration points for different distances between the source and observation domain. As
shown in Fig. 3.11a, the reaction integrals converge faster if the distance between the source and observation
domain is increased. For this reason, the number of integration points per integral has been chosen according
to the staircase pattern in Fig 3.11c. This pattern has been chosen to reach machine precision with the minimal
required computational effort. Fig 3.11b shows the convergence in the case of coinciding faces, edge-adjacent
faces or vertex-adjacent faces. Similar to before, the number of integration points per integral has been chosen
to reach machine precision with the minimal required computational effort.

3.3.3. Comparison
To compare the performance of the procedure, described in the previous sections, to the original procedure in
Section 2.3, we have simulated a dielectric sphere with radius R =λ0/4 and permittivity εr = 4.3 and εr = 12.85.
The sphere is illuminated by a plane wave with amplitude E⃗inc = 1V/m, propagating in the z-direction, as
shown in Fig 3.7a. Moreover, the V-MoM uses a discretization level of ∆=λ0/81 in both cases.

To compare the accuracy of the reaction integrals, we have defined the relative error committed by the
original procedure as follows

ϵoriginal =
∥∥∥∥∥

...
z rad

original −
...
z rad

optimized
...
z rad

optimized

∥∥∥∥∥ , (3.27)

where
...
z rad

original denotes the radiation tensor, obtained by the original procedure in Section 2.3 and
...
z rad

optimized
denotes the radiation tensor, obtained by the new procedure described in the previous sections.

Fig. 3.12 shows the relative error of
...
z rad

original versus the distance between the basis and test function. While
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Figure 3.11: Convergence of the reaction integrals (a) between non-adjacent faces and (b) between adjacent or coinciding faces and (c)
number of integration points used for the numerical integration versus distance between the source and observation domain

the first term of
...
z rad

original is relatively accurate, the second term commits an error of about 18%. This obser-

vation can be understood as follows. The first term of
...
z rad

original represents the self-reaction integral which

contains a singularity whenever r⃗ = r⃗ ′. In Section 2.3 this singularity has been extracted, using the proce-
dure presented in [30] and [31], which led to the expression in (2.18). On the other hand, the second term
of

...
z rad

original represents the reaction integral between two adjacent voxels, which contains a singularity at the

coinciding face of the two voxels. Since this singularity has not been treated by the procedure, presented in
Section 2.3, a significant error is committed in the evaluation of the second term of

...
z rad

original.

Figs 3.13a and 3.13b show the magnitude of the total electric field E⃗ on the z-axis of the sphere, for εr = 4.3
and εr = 12.85, respectively. From Figs 3.13a and 3.13b it becomes apparent that the requirements on the ac-
curacy of the integrals become much more severe, when the permittivity of the scatterer increases. Figs. 3.13a
and 3.13b show the numerical convergence of the iterative solver, for εr = 4.3 and εr = 12.85, respectively.
While the convergence follows a similar trend for both procedures in the case εr = 4.3, the oscillations ,in-
troduced by the inaccuracy of the integrals, have a tremendous impact on the numerical convergence in the
case εr = 12.85. Finally, it should be noted that the computation time of the reaction integrals was negligible
compared to the time of the iterative solver in both cases.

3.4. Validation
In this section, we will validate the final code of the optimized V-MoM and compare its performance with CST
[39]. First, the V-MoM is validated against the Mie Series [33],[34]. In the formulation of the Mie Series, the
incident field and the scattered field are expanded in terms of spherical harmonics, after which the expan-
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Figure 3.12: Relative error committed by the original procedure, described in Section 2.3 versus the distance between the source and
observation domain
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Figure 3.13: Magnitude of the total electric field E⃗ on the z-axis of the sphere, for (a) εr = 4.3 and (b) εr = 12.85
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Figure 3.14: Numerical convergence of the iterative solver, for (a) εr = 4.3 and (b) εr = 12.85

sion coefficients are obtained by enforcing the boundary conditions on the surface of the sphere. Since this
formulation provides an analytical solution it will serve as a reliable validation of the tool. Next, the perfor-
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Figure 3.15: Magnitude of the total electric field E⃗ on the z-axis of the sphere, for (a) εr = 4 and (b) εr = 8 and (c) a comparison between
CST and the V-MoM in terms of accuracy and computation time

mance of the V-MoM is compared to the performance of CST, by simulating a realistic scenario consisting of a
hemispherical lens, excited by a λ0/2 dipole.

3.4.1. Mie Series
The V-MoM has been validated against the Mie Series [33],[34] by simulating a dielectric sphere with radius
R = λ0/2 and permittivity εr = 4 and εr = 8. The sphere is illuminated by a plane wave with amplitude E⃗inc =
1V/m, propagating in the z-direction, as shown in Fig 3.7a. In both cases, the sphere is discretized, using basis
functions with ∆ = λ0/81. Moreover, the performance of the V-MoM has been compared to the performance
of CST. To compare the accuracy of the V-MoM to the accuracy of CST, the relative error with respect to the Mie
Series has been defined as in (3.8). During the CST simulation, the frequency domain solver has been used,
because of the resonant nature of the problem.

Figs 3.15a and 3.15c show the magnitude of the total electric field E⃗ on the z-axis of the sphere, for εr = 4
and εr = 8, respectively. In both cases, the error committed by the V-MoM is within the discretization tolerance.
Fig. 3.15c shows the comparison between the relative error committed by the V-MoM and the relative error
committed by CST as well as the comparison between the computation time of both solvers. Fig. 3.15c shows
that the V-MoM outperforms CST in terms of both accuracy and computation time. It should be noted that the
calculation of the reaction integrals of the V-MoM took an additional 7s. However, since these integrals can be
reused, the computation time of the reaction integrals is not very relevant.

3.4.2. Lens antenna
The performance of the V-MoM has been compared to the performance of CST by simulating a realistic sce-
nario consisting of a hemispherical dielectric lens with permittivity εr = 2.34. The lens has been simulated
both for a plane wave excitation and with a λ0/2 dipole as the feeding element. The hemispherical lens is
constructed by placing a cylinder with radius R = 1mm and height H = 0.4mm below a hemisphere with ra-
dius R = 1mm. The λ0/2 dipole has a square cross-section having a width and height w = h = λ0/20 and a
gap of length λ0/10. In both cases, the lens has been discretized, using basis function with ∆ = λ0/20. Both
geometries are illustrated in Figs. 3.16a and 3.16b.

Figs 3.17a and 3.17b show the magnitude of the total electric field inside the lens on the XZ-plane for a
plane wave excitation at a frequency f = 294GHz. While Fig. 3.17a shows the field, obtained using the V-MoM,
Fig. 3.17b shows the field, obtained using CST. Figs. 3.17a and 3.17b show that the field obtained by the V-MoM
and the field obtained by CST are in excellent agreement. Figs 3.18a and 3.18b show the magnitude of the
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(a) (b)

Figure 3.16: Simulated geometry consisting of a 2λ0 hemispherical lens with permittivity εr = 2.34 (a) excited by a plane wave and (b)
excited by a λ0/2 dipole
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Figure 3.17: Magnitude of the total electric field E⃗ on the XZ-plane inside the lens for a plane wave excitation (a) obtained using the
V-MoM and (b) obtained using CST

total electric field inside the lens on the XZ-plane with the λ0/2 dipole as the feeding element at a frequency
f = 294GHz. While Fig. 3.17a shows the field, obtained using the V-MoM, Fig. 3.17b shows the field, obtained
using CST. Similar to before, Figs 3.18a and 3.18b show that the field obtained by the V-MoM and the field
obtained by CST are in excellent agreement.

Finally, the input impedance has been calculated, for a dipole with the same dimensions as in Fig. 3.16b.
The input impedance has been obtained, both for a dipole located in free space, and for the hemispherical
lens in Fig. 3.16b. Fig. 3.19a shows the input impedance of the λ0/2 dipole in free space, obtained using both
the V-MoM and CST. Since CST cannot model a volumetric excitation, nine discrete ports have been placed in
parallel over the gap. Fig. 3.19a shows that the real part of the input impedance, obtained from both solvers
are in good agreement. However, the imaginary part shows a larger discrepancy. The difference observed in
Fig. 3.19a is probably due to the different representations of the excitation, which only affects the imaginary
part. Moreover, the use of a single basis function to model the cross-section of the dipole may not be enough
to correctly represent the current distribution.

Fig. 3.19b shows the input impedance of the hemispherical lens with the λ0/2 dipole as the feeding ele-
ment. Similar to before, Fig. 3.19b shows that the real part of the input impedance, obtained using the two
solvers, are in good agreement, while the imaginary part shows a larger discrepancy. As mentioned before, this
is probably due to the different representations of the excitation and the use of a single basis function to model
the cross-section of the dipole. Moreover, it becomes apparent that the V-MoM correctly reproduces the os-
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Figure 3.18: Magnitude of the total electric field on the XZ-plane inside the lens excited by the λ0/2 dipole (a) obtained using the V-MoM
and (b) obtained using CST
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Figure 3.19: Input impedance of a λ0/2 dipole (a) in free space and (b) as the feed of a lens antenna and (c) the comparison between the
computation of CST and the V-MoM

cillations with frequency. Finally, Fig. 3.19c shows the comparison between the computation time of CST and
the computation of the V-MoM. Fig. 3.19c shows that the V-MoM is roughly six times faster than CST. It should
be noted that the computation of the reaction integrals of the V-MoM took an additional 21s. However, since
these integrals can be reused, the computation time of the reaction integrals is not very relevant.
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4
Analysis of a dipole with nonzero thickness

in free space

In this Chapter, we will introduce the spectral domain formulation that allows us to study infinitely long
printed transmission lines, taking into account the non-zero thickness of the conductors. In [40] a similar
formulation has been presented to study infinitely long dipoles, assuming that the main conductor has in-
finitesimal thickness. In that formulation, the losses have been modelled by introducing an equivalent surface
impedance. However, ignoring the finite thickness of the conductor has two important consequences. First
of all, when considering a microstrip, the nonzero thickness of the conductor can have a major impact on the
characteristic impedance, when the thickness of the conductor becomes significant, compared to the distance
between the main conductor and the ground plane [20],[21]. Second, if the finite thickness of the conductor is
not embedded into the formulation, the influence of the thickness of the conductor on the losses of the trans-
mission line, has to be introduced in an alternative way. The software tool, proposed in [19], estimates the
influence of the conductor thickness by using the modified surface impedance, given by [22]. However, this
approach fails to take into account the asymmetric current distribution inside the main conductor of the mi-
crostrip. Consequently, we would like to develop a formulation that takes into account the non-zero thickness
of the conductors.

In the subsequent sections, we will develop a spectral domain formulation, based on the local form of
Ohm’s law. By making a justified assumption on the transverse current distribution and by applying a Galerkin
projection, we will be able to find an expression for the spectrum of the longitudinal current distribution. The
longitudinal current distribution can then be converted from the spectral domain to the spatial domain by
performing an inverse Fourier transform.

Moreover, the relevant parameters of the transmission line, such as the characteristic impedance, the prop-
agation constant and the losses can be obtained from the polar singularities of the current spectrum. In par-
ticular, the propagation constant is given by the location of the pole, while the characteristic impedance can
be obtained by interpreting the residue contribution of the input impedance as the contribution from two
infinitely long transmission lines. To substantiate this interpretation, we will compare the resulting character-
istic impedance with an alternative definition of the characteristic impedance, in which the voltage along the
transmission line is defined as the line integral of the transverse electric field.

This chapter is structured as follows. In Section 4.1, we will develop the spectral domain formulation by
studying an infinitely long dipole, located in free space. Next, Section 4.2 will introduce the presence of an
infinitely extended perfectly conducting ground plane by applying the image theorem.

4.1. Free space dipole
In this section, we will develop the spectral domain formulation by considering an infinitely long dipole, lo-
cated in free space. In Section 4.1.1, we will derive the transmission line Green’s function of the geometry.
Next, Section 4.1.2 will introduce one possible definition of the characteristic impedance in which the voltage
along the transmission line is defined as the line integral of the transverse electric field. Subsequently, Sec-
tion 4.1.3 will explain how to extract the relevant parameters of the transmission line from the spectrum of the
longitudinal current distribution and provide a validation of the current, obtained from the spectral domain
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Figure 4.1: Infinitely extended dipole with height wz and width wy , constructed from a material with conductivity σ, oriented along the
x-axis and excited by a delta-gap excitation of length ∆.

formulation. Finally, in Section 4.1.4, we will demonstrate the formulation, developed in Section 4.1.1 to 4.1.3,
by performing a parametric analysis versus the relevant dimensions of the transmission line.

4.1.1. Derivation transmission-line Green’s function
Let us consider an infinitely long dipole with height wz and width wy , constituted of a material having con-
ductivity σ. The dipole is oriented along the x-axis, and excited by a delta-gap excitation of length∆, as shown
in Fig. 4.1. Inside the dipole, the current density j⃗ and the electric field e⃗ are related through the local form of
Ohm’s law

j⃗ =σe⃗. (4.1)

By expressing the total electric field e⃗ as the superposition of the incident field e⃗inc and the scattered field e⃗scatt,
we obtain following expression

j⃗ =σ(⃗einc + e⃗scatt). (4.2)

By assuming that j⃗ only has a nonzero x-component, and by applying the separation of variables, the current
density can be expressed as follows

j⃗ = i (x) jt (y, z)x̂, (4.3)

where i (x) represents the net longitudinal current and jt (y, z) represents the transverse distribution of the
current. Similarly, e⃗inc can be expressed as follows

e⃗inc = einc,l (x)einc,t (y, z)x̂, (4.4)

where e⃗inc,l(x) and e⃗inc,t(y, z) represent the longitudinal and transverse dependencies of the incident field, re-
spectively. By substituting (4.3) and (4.4) into (4.2), by equating the x-components of the left- and right-hand
sides of (4.2) and by introducing the resistivity ρ = 1/σ, we obtain the following expression

ρi (x) jt (y, z) = einc,l (x)einc,t (y, z)+escatt,x , (4.5)

where escatt,x denotes the x-component of the scattered field. By expressing escatt,x as the convolution between
the x-component of the transverse current distribution jx and the xx-component of the free-space Green’s

function g e j
xx (x −x ′, y − y ′, z − z ′), (4.5) becomes as follows

ρi (x) jt (y, z) = einc,l (x)einc,t (y, z)+
∞∫

−∞

∞∫
−∞

∞∫
−∞

g e j
xx (x −x ′, y − y ′, z − z ′)i (x ′) jt (y ′, z ′)d x ′ d y ′ d z ′. (4.6)

The xx-component of the free-space Green’s function g e j
xx (x − x ′, y − y ′, z − z ′) can be expressed in terms of its

plane wave spectrum Ge j
xx (kx ,ky ,kz ), as shown in the following expression

g e j
xx (x −x ′, y − y ′, z − z ′) = 1

8π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )e− j kx (x−x′)e− j ky (y−y ′)e− j kz (z−z ′) dkx dky dkz . (4.7)
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where

Ge j
xx (kx ,ky ,kz ) = j

ζ

k

k2 −k2
x

k2 −k2
x −k2

y −k2
z

. (4.8)

By substituting (4.7) into (4.6) and by bringing all of the terms containing the current i (x) to one side, we obtain
the following expression

einc,l (x)einc,t (y, z) = ρi (x) jt (y, z)−
∞∫

−∞

∞∫
−∞

∞∫
−∞

 1

8π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )e− j kx (x−x′)e− j ky (y−y ′)e− j kz (z−z ′) dkx dky dkz


i (x ′) jt (y ′, z ′)d x ′ d y ′ d z ′.

(4.9)

By changing the order of integration, (4.9) can be expressed as follows

einc,l (x)einc,t (y, z) = ρi (x) jt (y, z)−
1

8π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )e− j kx x e− j ky y e− j kz z

 ∞∫
−∞

i (x ′)e j kx x′
d x ′

 ∞∫
−∞

∞∫
−∞

jt (y ′, z ′)e j ky y ′
e j kz z ′ d y ′ d z ′

dkx dky dkz .

(4.10)

By recognizing the Fourier transform of i (x) and the Fourier transform of jt (y, z) and by expressing both
einc,l (x) and i (x) as an inverse Fourier transform, (4.10) becomes as follows

1

2π

∞∫
−∞

Einc,l (kx )e− j kx x dkx einc,t (y, z) = 1

2π

∞∫
−∞

I (kx )e− j kx x dkxρ jt (y, z)−

1

2π

∞∫
−∞

I (kx )e− j kx x dkx
1

4π2

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )Jt (ky ,kz )e− j ky y e− j kz z dky dkz .

(4.11)

Since the dipole is assumed to be infinite, (4.11) is valid for every x. Hence, we can equate the spectra in kx ,
which results in the following expression

Einc,l (kx )einc,t (y, z) = I (kx )

ρ jt (y, z)− 1

4π2

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )Jt (ky ,kz )e− j ky y e− j kz z dky dkz

 . (4.12)

By defining the following projection operator

〈 f (y, z), g (y, z)〉A =
Ï
A

f (y, z)g (y, z)d y d z, (4.13)

where A denotes the cross-section of the dipole, and by projecting (4.12) onto the transverse current distribu-
tion jt (y, z), one obtains the following expression

Einc,l (kx )〈einc,t (y, z), jt (y, z)〉A = I (kx )

(
ρ〈 jt (y, z), jt (y, z)〉A−

〈 1

4π2

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )Jt (ky ,kz )e− j ky y e− j kz z dky dkz , jt (y, z)〉A

)
.

(4.14)

The projection in the space domain can be equivalently calculated as a projection in the spectral domain, as
shown in the following expression

〈 1

4π2

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )Jt (ky ,kz )e− j ky y e− j kz z dky dkz , jt (y, z)〉A =

1

4π2

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )J 2

t (ky ,kz )dky dkz .

(4.15)
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(a) (b)

Figure 4.2: Transverse current distribution on a dipole located in free space, (a) extracted from CST, and (b) approximated using the
Leontovich boundary condition

By substituting (4.15) into (4.14), we obtain the following expression

Einc,l (kx )〈einc,t (y, z), jt (y, z)〉A = I (kx )

(
ρ〈 jt (y, z), jt (y, z)〉A−

1

4π2

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )J 2

t (ky ,kz )dky dkz

)
.

(4.16)

From (4.16) the spectrum of the current can be obtained as follows

I (kx ) = Einc,l (kx )〈einc,t (y, z), jt (y, z)〉A

ρ〈 jt (y, z), jt (y, z)〉A −D(kx )
, (4.17)

where the longitudinal spectral Green’s function D(kx ) is given by the following expression

D(kx ) = 1

4π2

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )J 2

t (ky ,kz )dky dkz . (4.18)

The general expression for I (kx ) is given by (4.17). However, obtaining its explicit expression requires an as-
sumption on the transverse current distribution jt (y, z). To make a justified assumption, Fig. 4.2a shows the
transverse current distribution obtained from CST for a dipole in free space, having a width and thickness
wz = wy = 10µm, constituted of a material with conductivity σ= 107S/m. As shown in Fig. 4.2a the current is
mostly localized at the outer surface of the dipole and decays exponentially inside the metal. However, by as-
suming an exponential decay within the metal, one obtains a rather complicated expression for Jt (ky ,kz ). To
simplify the expression of the transverse current distribution, we will approximate the exponential decay in-
side the metal, by using the Leontovich boundary condition [25]. This choice will allow us to close the integral
in kz in (4.18) analytically.

By using the Leontovich boundary condition, we may assume that the current inside the dipole is uniformly
distributed on a strip, located at the outer surface of the metal, having a thickness equal to the penetration
depth δp , and zero elsewhere, as shown in Fig. 4.2b. The transverse current distribution jt (y, z) can then be
expressed as follows

jt (y, z) = 1

2δp (wy +wz −2δp )
( jout(y, z)− jin(y, z)), (4.19)

where the outer rectangular function jout(y, z) is given by the following expression

jout (y, z) = rect

(
y

wy

)
rect

(
z

wz

)
, (4.20)
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and the inner rectangular function jin(y, z) is expressed as follows

jin(y, z) = rect

(
y

wy −2δp

)
rect

(
z

wz −2δp

)
. (4.21)

The constant in front of (4.19) is chosen such that the integration of jt (y, z) over the cross-section of the dipole
is equal to one. Consequently, i (x) represents the net current along the dipole. The Fourier transforms of
jout(y, z) and jin(y, z) can then be expressed as follows

Jout(ky ,kz ) = wy wz sinc

(
ky wy

2

)
sinc

(
kz wz

2

)
(4.22)

Jin(ky ,kz ) = (wy −2δp )(wz −2δp )sinc

(
ky

wy −2δp

2

)
sinc

(
kz

wz −2δp

2

)
. (4.23)

By assuming the dipole to be excited by a delta-gap generator, the longitudinal and transverse distribution of
the incident field can be expressed as follows

einc,l (x) = 1

∆
rect

( x

∆

)
(4.24)

einc,t (y, z) = rect

(
y

wy

)
rect

(
z

wz

)
. (4.25)

The Fourier transform of einc,l (x) can then be expressed as follows

Einc,l (kx ) = sinc

(
kx∆

2

)
(4.26)

The chosen distributions of jt (y, z) and einc,t (y, z) allow for simple analytical evaluations of the two spatial
projections in (4.17):

〈einc,t (y, z), jt (y, z)〉A = 1

2δp (wy +wz −2δp )

 wz /2∫
−wz /2

wy /2∫
−wy /2

d y d z −
wz /2−δp∫

−wz /2+δp

wy /2−δp∫
−wy /2+δp

d y d z

= 1 (4.27)

〈 jt (y, z), jt (y, z)〉A = 1

4δ2
p (wy +wz −2δp )2

 wz /2∫
−wz /2

wy /2∫
−wy /2

d y d z −
wz /2−δp∫

−wz /2+δp

wy /2−δp∫
−wy /2+δp

d y d z

=

1

2δp (wy +wz −2δp )
.

(4.28)

Finally, by substituting (4.27) and (4.26) into (4.17), we obtain the following expression

I (kx ) = sinc((kx∆)/2)

ρ〈 jt (y, z), jt (y, z)〉A −D(kx )
. (4.29)

The most computationally expensive part of calculating I (kx ) is to evaluate the double integral of D(kx ), which
can be expressed as follows

D(kx ) = 1

4π2

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )J 2

t (ky ,kz )dky dkz = 1

4δ2
p (wy +wz −2δp )2

(I1 + I2 −2I3), (4.30)

where I1, I2 and I3 are given by the following expressions

I1 = jζ

k

w2
y w2

z (k2 −k2
x )

4π2

∞∫
−∞

∞∫
−∞

sinc2
(
ky wy /2

)
sinc2(kz wz /2)

k2 −k2
x −k2

y −k2
z

dky dkz (4.31)

I2 = jζ

k

(wy −2δp )2(wz −2δp )2(k2 −k2
x )

4π2

∞∫
−∞

∞∫
−∞

sinc2
(
ky (wy −2δp )/2

)
sinc2(kz wz /2)

k2 −k2
x −k2

y −k2
z

dky dkz (4.32)
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Figure 4.3: Spectral plane of I (kx ) for a dipole in free space

I3 = jζ

k

wy wz (wy −2δp )(wz −2δp )(k2 −k2
x )

4π2 ·
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)
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z
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(4.33)

As shown in Appendix D, the integral in kz can be closed analytically, which results in the following expressions
for I1, I2, and I3

I1 = jζ

k

(k2
x −k2)w2

y

2π

∞∫
−∞

 wz sinc2
(
ky wy /2

)
k2

x +k2
y −k2

+ e
−wz

√
k2

x+k2
y−k2 −1

(k2
x +k2

y −k2)
3
2

sinc2
(

ky wy

2

) dky (4.34)

I2 = jζ
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(4.35)

I3 = jζ

k
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(4.36)

In Section 4.1.4, we will demonstrate the importance of the assumption on the transverse current distribution
by making a comparison between the results obtained by using the Leontovich boundary condition and the
results obtained by assuming a uniform current distribution on the cross-section. If a uniform current dis-
tribution is used, only I1 should be retained in the calculation of the longitudinal spectral Green’s function,
which results in the following expression

D(kx ) = jζ

k

(k2
x −k2)

2π

∞∫
−∞

 wz sinc2
(
ky wy /2

)
k2

x +k2
y −k2

+ e
−wz

√
k2

x+k2
y−k2 −1

(k2
x +k2

y −k2)
3
2

sinc2
(

ky wy

2

) dky . (4.37)

In this case, the spatial projection becomes as follows

〈 jt (y, z), jt (y, z)〉A = 1

wy wz
. (4.38)

4.1.2. Definition of the characteristic impedance
In this section, we will give one possible definition of the characteristic impedance in which the voltage along
the transmission line is defined as the line integral of the transverse electric field. In Section 4.1.3, we will

34



give an alternative definition, by interpreting the residue contribution of the input admittance as the contri-
bution from two infinitely long transmission lines. In Section 4.1.4, we will then support this interpretation by
comparing the characteristic impedance, obtained using the two different definitions.

Let us first consider the longitudinal current distribution i (x), which can be calculated as the following
inverse Fourier Transform

i (x) = 1

2π

∞∫
−∞

I (kx )e− j kx x dkx , (4.39)

where the integral can be performed numerically by integrating over the contour shown in Fig. 4.3. Note that
the pole kxp has been separated from the branch point k0 due to the presence of the Ohmic losses. Therefore,
it is possible to explicitly calculate the contribution due to the pole, by applying the residue theorem [41]. This
results in a forward traveling current wave ires(x), which can be expressed as follows

ires(x) = I+e− j kxp x , (4.40)

where the amplitude I+ can be expressed as follows

I+ =− j
sinc

(
(kxp∆)/2

)
D ′(kxp )

. (4.41)

The location of the pole kxp can be found through a local root-finding algorithm, such as the Newton-Raphson
method, as explained in Appendix C.

To obtain the characteristic impedance of the transmission line, we have to relate the current wave to a
voltage wave traveling along the dipole. If we assume that a quasi-TEM wave is propagating along the dipole,
we may define the voltage as the line integral of the transverse electric field from a point located at the surface
of the dipole to infinity [40], as shown in the following expression

v(x) =
∞∫

wz /2

ez (x, y = 0, z)d z. (4.42)

where ez (x, y = 0, z) denotes the z-component of the electric field, observed at y = 0. By expressing ez (x, y =
0, z) in terms of its plane wave spectrum Ez (kx ,ky ,kz ), we obtain the following expression

v(x) =
∞∫

wz /2

 1

8π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ez (kx ,ky ,kz )e− j kx x e− j kz z dkx dky dkz

d z. (4.43)

Ez (kx ,ky ,kz ) can be expressed as follows

Ez (kx ,ky ,kz ) = I (kx )Jt (kx ,ky ,kz )Ge j
zx (kx ,ky ,kz ), (4.44)

where the zx-component of the free space Dyadic Green’s function Ge j
zx (kx ,ky ,kz ) is given by the following

expression

Ge j
zx (kx ,ky ,kz ) =− jζ

k

kz kx

k2 −k2
x −k2

y
. (4.45)

By substituting (4.44) and (4.45) into (4.43), we obtain the following expression

v(x) =− jζ

k

1

8π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

I (kx )Jt (kx ,ky ,kz )
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y −k2
z

e− j kx x

∞∫
wz /2

e− j kz z d z dkx dky dkz . (4.46)

By assuming that the radiation condition is satisfied, i.e. limz→∞ e− j kz z = 0, the integral in z can be closed
analytically, which leads to the following expression

v(x) = ζ

k

1

8π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

I (kx )Jt (kx ,ky ,kz )
kx

k2 −k2
x −k2

y −k2
z

e− j kx x e− j kz wz /2 dkx dky dkz . (4.47)
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By using the Leontovich boundary condition for the transverse current distribution, the voltage can be ex-
pressed as follows

v(x) = vout(x)− vin(x)

2δp (wy +wz −2δp )
, (4.48)

where the voltage due to the outer rectangular function vout(x) is given by the following expression

vout(x) = ζ

k
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8π3

∞∫
−∞

∞∫
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∞∫
−∞
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)
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2

)
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z

e− j kx x e− j kz wz /2 dkx dky dkz ,

(4.49)
and the voltage due to the inner rectangular function vin(x) is expressed as follows

vin(x) = ζ
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(4.50)

As shown in Appendix D, the integrals in kz can be closed analytically, which results in the following expres-
sions

vout(x) = wy

8π2
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(4.52)
To simplify the notation, we will define the function Z (kx ) as follows

Z (kx ) = ζkx
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(4.53)

With this definition, v(x) can be expressed as follows

v(x) = 1

2π

∞∫
−∞

I (kx )Z (kx )e− j kx x dkx . (4.54)

The contribution of the polar singularity to the integral in (4.54) can then be evaluated using the residue theo-
rem [41], which results in a forward traveling voltage wave along the dipole, as shown in the following expres-
sion

vres(x) =V +e− j kxp x , (4.55)

where the amplitude V + is expressed as follows

V + =− j
sinc

(
(kxp∆)/2

)
D ′(kxp )

Z (kxp ). (4.56)

Finally, the characteristic impedance Z0,TEM can be defined as the ratio between the amplitudes of the voltage
and current waves, as shown in the following expression

Z0,TEM = V +

I+
= Z (kxp ). (4.57)

Similar to before, the location of the pole kxp can be found through a local root-finding algorithm, such as the
Newton-Raphson method, as explained in Appendix C.
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As mentioned in Section 4.1.1, we will investigate the influence of the assumption on the transverse current
distribution, on the main parameters of the transmission line, by making a comparison between the results ob-
tained by using the Leontovich boundary condition and the results obtained by assuming a uniform current
distribution on the cross-section. If a uniform current distribution is used in the calculation of the character-
istic impedance, only the outer rectangular function jout should be retained. Consequently, Z (kx ) becomes as
follows

Z (kx ) = ζkx

k

1

4πwz

∞∫
−∞

sinc

(
ky wy

2

)
e
−wz

√
k2

x+k2
y−k2 −1

k2
x +k2

y −k2
dky . (4.58)

In thath case, the characteristic impedance is still defined by (4.57), where kxp denotes the pole of the current
spectrum I (kx ) that is obtained, using (4.37) as the longitudinal spectral Green’s function.

4.1.3. Transmission line characterization and validation
In this section, we will explain how to extract the relevant parameters of the transmission line, such as the
characteristic impedance, the effective permittivity and the losses and provide a validation of the formula-
tion developed in Section 4.1.1. In Section 4.1.2, we have given one possible definition of the characteristic
impedance, in which the voltage is defined as the line integral of the transverse electric field. In this section,
we will provide an alternative definition by interpreting the residue contribution of the input admittance as the
contribution from two infinitely long transmission lines. To this extent, let us consider again the expression of
the current i (x), shown in (4.39). By averaging the current over the gap, the input admittance can be expressed
as follows

Yin = 1

2π

∞∫
−∞

I (kx )sinc

(
kx∆

2

)
dkx , (4.59)

where the integral can be performed numerically by integrating over the same contour shown in Fig. 4.3. To
characterize the transmission line in terms of its characteristic impedance, its effective dielectric permittivity
and its losses, we will consider the residue contribution of (4.59), which can be expressed as follows

Yres =− j
sinc2

(
(kxp∆)/2

)
D ′(kxp )

. (4.60)

Yres represents the portion of the input admittance, due to the residue contribution of the current ires(x), as
defined in (4.40). By examining (4.40), it becomes apparent that ires(x) represents a forward propagating cur-
rent wave with amplitude I+ and propagation constant kxp . Considering the similarity between (4.40) and
the expression of a traveling current wave from transmission line theory, it is tempting to interpret ires(x) as
the current flowing on two infinitely long transmission lines. By interpreting the term sinc2

(
(kxp∆)/2

)
as a

transformer with turn ratio n = sinc
(
(kxp∆)/2

)
, we obtain the equivalent circuit, shown in Fig. 4.5a. With these

interpretations, we may define the characteristic impedance of the dipole in the following alternative way

Z0,res = j
D ′(kxp )

2
. (4.61)

To support the above interpretation, Fig. 4.5b shows the comparison between the characteristic impedance,
obtained from the definition in (4.57), and the characteristic impedance, obtained from the definition in (4.61),
for a dipole in free space having a height wz = 1µm and width wy = 20µm, constituted of a material with
conductivityσ= 4.1·107S/m. The similarity between the two results indeed seem to support the interpretation,
suggested above. The difference observed in Fig. 4.5b originates from two underlying differences between the
definition in (4.57) and the definition in (4.61).

First of all, in the definition in (4.57), the voltage along the dipole is defined as the line integral of the
transverse electric field from a point at the surface of the dipole to infinity. This definition is based on the
assumption that a TEM-wave is propagating along the dipole, as shown in Fig.4.4a. If this assumption was true,
the transverse electric field would satisfy the Laplace equation and the voltage could be rigorously defined as
the line integral of the transverse electric field. However, the assumption of a TEM-wave is only valid at infinite
distance from the source. At finite distance from the source, the field is directed from one arm of the dipole to
the other, as shown in Fig. 4.4b. Therefore, the definition of the voltage in (4.42) is not entirely rigorous.

Second, in the definition of (4.61), the voltage over the gap is defined by averaging the incident field over
the cross-section of the dipole. On the other hand, in the definition of (4.57), the voltage along the dipole is
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(a) (b)

Figure 4.4: Field distribution of an infinite dipole (a) assuming a TEM wave and (b) assuming a realistic field distribution

defined as the line integral of the transverse electric field, starting from the surface of the metal. Nevertheless,
we may regard the similarity, observed in Fig. 4.5b, as a justification of the interpretation, suggested before. In
Chapter 6, we will develop this interpretation more rigorously for a microstrip and use it to derive an equivalent
circuit representation to characterize the input impedance of the microstrip.

To extract the propagation constant, the effective permittivity and the losses of the transmission line, we
will again consider the residue contribution of the current, defined in (4.40). By examining (4.40), it becomes
apparent that the propagation constant of the current wave is given by the location of the pole kxp in the
spectral plane. As an example, Fig. 4.6a shows the dispersion diagram of a dipole in free space having a height
wz = 1µm and width wy = 20µm, constituted of a material with conductivity σ= 4.1 ·107S/m.

To extract the effective permittivity and the losses of the transmission line, we will express the propagation
constant as kxp = β− jα, where β denotes the phase constant and α denotes the attenuation constant. The
effective dielectric permittivity can then be obtained from the phase constant as follows

εeff =
(
β

k0

)2

. (4.62)

The losses are characterized by the attenuation constant α and can be converted to dB/λ as follows

α[dB/λ] = 8.868α[Np]λ. (4.63)

Finally, the formulation developed in Section 4.1.1 has been validated by obtaining the longitudinal current
i (x) for a dipole, located in free space, having a thickness wz = 10µm and width wy = 10µm, constituted of
a material with conductivity σ = 107S/m. Fig. 4.6b shows the current obtained from (4.39), together with the
current, obtained from CST as well as the residue contribution ires(x). Fig. 4.6b shows that the current, ob-
tained from CST, and the current, obtained from (4.39), are in excellent agreement. Moreover, at large distance
from the gap (i.e. x > 4λ0), the current obtained from (4.39) becomes indistinguishable from the residue con-
tribution ires(x).

4.1.4. Parametric analysis
In this subsection, we will illustrate the formulation, developed in Sections 4.1.1 to 4.1.3, by performing a
parametric analysis versus the relevant dimensions of the dipole. Fig. 4.7a shows the attenuation in dB/λ0 of a
dipole in free space having a thickness wz = 1µm, constituted of a material with conductivity σ= 4.1 ·107S/m
for varying width. Moreover, Fig. 4.7a shows the comparison between the attenuation constant, obtained
by assuming a uniform current distribution on the cross-section, and the attenuation constant, obtained by
using the Leontovich boundary condition. Clearly, the assumption on the transverse current distribution has a
major impact on the losses of the transmission line. In particular, the losses, obtained by using the Leontovich
boundary condition are significantly larger, since the current is assumed to be distributed over a smaller area.
For the same reason, the losses tend to decrease when the width of the dipole is increased.

Fig. 4.7b shows the attenuation in dB/λ0 of a dipole in free space having a width wy = 20µm, constituted
of a material with conductivity σ = 4.1 · 107S/m for varying thickness. Similar to before, the losses tend to
decrease when the thickness is increased, since the area over which the current is distributed becomes larger.
However, when we compare the attenuation constant, obtained by assuming a uniform distribution on the
cross-section to the attenuation constant, obtained using the Leontovich boundary condition, we may notice
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(a) (b)

Figure 4.5: (a) The equivalent circuit obtained by interpreting Yres as the contribution from two parallel transmission lines connected to a
transformer, and (b) a comparison between the characteristic impedance obtained from (4.57) and the characteristic impedance

obtained from (4.61)

(a) (b)

Figure 4.6: (a) The dispersion diagram of a dipole in free space having a thickness wz = 1µm and width wy = 20µm, constituted of a

material with conductivity σ= 4.1 ·107S/m, and (b) the current on a dipole in free space having a thickness wz = 10µm and width
wy = 10µm, constituted of a material with conductivity σ= 107S/m, obtained from (4.39) and CST, together with the residue

contribution, given by (4.40)

that the dependence on wz is much weaker in the latter case. This can be understood by noting that the width
of the dipole is much larger than the thickness. Since the current is localized at the outer surface of the dipole,
varying the thickness tends to have a small effect on the total area over which the current is distributed. Finally,
Figs. 4.7a and 4.7b show that the attenuation constant tends to decrease, when the frequency is increased. This
can be understood by noting that the dipole becomes electrically larger, which results in a smaller attenuation
constant.

Figs. 4.7c and 4.7d show the characteristic impedance, obtained using the definition in (4.61), of a dipole
with the same dimensions and material parameters as Figs. 4.7a and 4.7b, respectively. Figs. 4.7c and 4.7d show
that the characteristic impedance has a very weak dependence on the dimensions of the dipole. This can be
understood by considering a charge distributed on an infinitely long cylinder, as shown in Fig. 4.8. As a conse-
quence of Gauss’ law, the electric field outside the charge region does not depend on the radius. In the present
case, we are of course considering a current distribution instead of a charge distribution. However, since the
characteristic impedance is defined, by considering only the residue contribution ires(x), we may assume that
a quasi-TEM wave is propagating along the dipole. With this assumption, the transverse electric field satisfies
the Laplace equation as in electrostatics, which results in a characteristic impedance that is independent of
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(a) (b)

(c) (d)

Figure 4.7: Losses of a dipole in free space, constituted of a material with conductivity 4.1 ·107S/m and (a) having a metal thickness
wz = 1µm for varying width wy , and (b) having a width wy = 20µm for varying metal thickness wz , and characteristic impedance of a

dipole in free space, constituted of a material with conductivity 4.1 ·107S/m and (c) having a metal thickness wz = 1µm for varying width
wy , and (d) having a width wy = 20µm for varying metal thickness wz

Figure 4.8: Charge distributed on an infinitely long cylinder

the transverse dimensions of the dipole. The weak dependence that can still be observed in Figs. 4.7c and 4.7d
originates from the lack of a cylindrical symmetry. Additionally, Figs. 4.7c and 4.7d show that the difference
between the characteristic impedance, obtained by assuming a uniform distribution on the cross-section, and
the characteristic impedance, obtained by using the Leontovich boundary condition, tends to increase with
frequency. This can be understood by noting that the penetration depth δp decreases with frequency, which
increases the difference between the two distributions. As mentioned before, Figs. 4.7c and 4.7d have been ob-
tained using the definition in (4.61). The same parametric analysis has been performed, using the definition
in (4.57). For the sake of conciseness, these results have been omitted. Nevertheless, when using the definition
in (4.57), the qualitative behaviour remains the same as in Figs. 4.7c and 4.7d.
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4.2. Ground plane with image theorem
In Section 4.1, a spectral domain formulation has been developed to study infinitely long dipoles in free space,
taking into account the non-zero thickness of the conductor. In this section, we will introduce the presence of
an infinitely extended perfectly conducting ground plane by applying the image theorem.

In Section 4.2.1, we will derive the transmission line Green’s function of the geometry. Next Section 4.2.2
will introduce one possible definition of the characteristic impedance in which the voltage along the trans-
mission line is defined as the line integral of the transverse electric field. Finally, in Section 4.2.3, we will
demonstrate the formulation, developed in Section 4.2.1 and 4.2.2 by performing a parametric analysis versus
the relevant dimensions of the transmission line.

4.2.1. Derivation Green’s function
The presence of an infinitely extended perfectly conducting ground plane can be introduced by applying the
image theorem [42], illustrated in Fig. 4.9. The scattered field will then be the superposition of the field, pro-
duced by the original current distribution jt (y, z), and the field produced by the image current jt,image(y, z).
The original current distribution is still given by (4.19). Moreover, the image current jt,image(y, z) can be ob-
tained from the original current distribution by applying a shift of −2(d +wz /2) along ẑ, which results in the
following expression

jt,image(y, z) = 1

2δp (wy +wz −2δp )
( jout,image(y, z)− jin,image(y, z)), (4.64)

where jout,image(y, z) and jin,image(y, z) are given by the following expressions

jout,image(y, z) = rect
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)
rect

(
z +2(d +wz /2)
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)
(4.65)

jin,image(y, z) = rect

(
y

wy −2δp

)
rect

(
z +2(d +wz /2)

wz −2δp

)
. (4.66)

By Applying a Fourier transform to (4.65) and (4.66), we obtain the following expressions

Jout,image(ky ,kz ) = wy wz sinc

(
ky wy

2

)
sinc

(
kz wz

2

)
e− j kz 2(d+wz /2) (4.67)

Jin,image(ky ,kz ) = (wy −2δp )(wz −2δp )sinc

(
ky

wy −2δp

2

)
sinc

(
kz

wz −2δp

2

)
e− j kz 2(d+wz /2), (4.68)

where the multiplication factor e− j kz 2(d+wz /2) represents the displacement along ẑ. The spectral current is still
given by (4.17), where the spatial projections are performed with respect to the original current distribution
jt (y, z), since the image current jt ,i mag e (y, z) is only fictitious. As a consequence of the superposition principle,
D(kx ) can be written as follows

D(kx ) = Doriginal(kx )+Dimage(kx ), (4.69)

where Doriginal(kx ) denotes the original longitudinal spectral Green’s function, given by (4.30), and Dimage(kx )
denotes the additional term, resulting from the image current. Dimage(kx ) can be expressed as follows

Dimage(kx ) = 1

4π2

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )Jt ,i mag e (ky ,kz )Jt (ky ,kz )dky dkz . (4.70)

Note again that the projection is performed with respect to the original current distribution. Similar to before,
Dimage(kx ) can be expressed as follows

Dimage(kx ) = 1

4δ2
p (wy +wz −2δp )2

(
I1,image + I2,image −2I3,image

)
, (4.71)

where I1,image, I2,image and I3,image are given by the following expressions

I1,image = jζ

k

w2
y w2

z (k2 −k2
x )

4π2
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∞∫
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sinc2
(
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)
sinc2(kz wz /2)

k2 −k2
x −k2

y −k2
z

e− j kz 2(d+wz /2) dky dkz (4.72)
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Figure 4.9: Application of the image theorem [42] to replace a perfectly conducting ground plane by an image current

I2,image = jζ

k
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(4.73)

I3,image = jζ
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(4.74)

As shown in Appendix E, the integrals in kz can be closed analytically, which results in the following expressions
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I3,image = jζ
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(4.77)

In Section 4.2.3, we will demonstrate the importance of the assumption on the transverse current distribution
by making a comparison between the results obtained by using the Leontovich boundary condition and the
results obtained by assuming a uniform distribution on the cross-section. If a uniform current distribution is
used in the calculation of D(kx ), Doriginal(kx ) is given by (4.37). To obtain Dimage(kx ), only (4.75), should be
retained, which results in the following expression

Dimage(kx ) = jζ

k
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(4.78)
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4.2.2. Characteristic impedance
In this section, we will provide one possible definition of the characteristic impedance in which the voltage
along the transmission line is defined as the line integral of the transverse electric field. Similar to Section
4.1.2, the current wave ires(x) and its amplitude I+ are given by (4.40) and (4.41). However, since the ground
plane acts as an equipotential surface, we will now define the voltage v(x) as follows

v(x) =−
−wz /2∫

−(d+wz /2)

ez (x, y = 0, z)d z, (4.79)

where ez (x, y = 0, z) denotes the z-component of the electric field, observed at y = 0. Note that the integral
in (4.79) is defined from −(d + wz /2) to −wz /2, since the origin of the reference system is defined to be at
the center of the dipole. By expressing ez (x, y = 0, z) in terms of its plane wave spectrum, and by separating
the contribution from the original current distribution jt (y, z) and the contribution from the image current
jt ,image(y, z), one can express (4.79) as follows

v(x) =− jζ

k
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(4.80)

By closing the integral in z analytically, (4.80) becomes as follows

v(x) = ζ
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(4.81)

The voltage v(x) can now be expressed as a combination of four terms,

v(x) = vout(x)+ vout,image(x)− (vin(x)+ vin,image(x))

2δp (wy +wz −2δp )
(4.82)

where vout(x), vout,image(x), vin(x) and vin,image(x) are expressed as follows
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As shown in Appendix D, the integrals in kz can be closed analytically, which leads to the following expressions
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To simplify the notation, we will define the function Z (kx ) as follows

Z (kx ) = Zout(kx )−Zin(kx ), (4.91)

where Zout(kx ) and Zin(kx ) are given by the following expressions
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Zin(kx ) = ζkx
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With these definitions, the voltage v(x) can be expressed as in (4.54). Similar to before, the residue contri-
bution gives rise to a traveling voltage wave vres(x), given by (4.55), with amplitude V +, given by (4.56). The
characteristic impedance Z0,TEM can then be defined as in (4.57).

In section 4.2.3, we will demonstrate the importance of the assumption on the transverse current distri-
bution by comparing the characteristic, obtained by using the Leontovich boundary condition, with the char-
acteristic impedance, obtained by assuming a uniform current distribution on the cross-section. If a uniform
current distribution is assumed, only vout(x) and vout,image(x) should be used in the calculation of Z (kx ). Con-
sequently, Z (kx ) becomes as follows

Z (kx ) = ζkx

wz k
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In this case, the characteristic impedance Z0,TEM is still defined by (4.57), where kxp denotes the pole of the
current spectrum I (kx ) that is obtained, using (4.37) to calculate Doriginal(kx ) and (4.78) to calculate Dimage(kx ).
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(a) (b)

(c) (d)

Figure 4.10: Characteristic impedance of a dipole, constituted of a material with conductivity σ= 4.1 ·107S/m, in the presence of a
perfectly conducting ground plane, (a) having a metal thickness wz = 1µm and a width wy = 20µm, located at a distance d = 10µm from
the ground plane, with a comparison between the definition in (4.57) and the definition in (4.61), (b) having a metal thickness wz = 1µm,

located at a distance d = 10µm from the ground plane for varying width wy , and (c) having a width wy = 20µm, located at a distance
d = 10µm from the ground plane for varying metal thickness wz , and (d) having a metal thickness wz = 1µm and width wy = 20µm for

varying distance d between the metal strip and the ground plane

4.2.3. Parametric analysis
In this section, we will first show a comparison between the characteristic impedance obtained from the defi-
nition in (4.57) and the characteristic impedance obtained from the definition in (4.61). Next, we will demon-
strate the formulation, developed in Sections 4.2.1 and 4.2.2, by performing a parametric analysis versus the
relevant dimensions of the transmission line.

Fig. 4.10a shows the comparison between the characteristic impedance obtained from (4.57) and the char-
acteristic impedance obtained from (4.61), for a dipole having a height wz = 1µm and width wy = 20µm,
constituted of a material with conductivity σ= 4.1 ·107S/m, located at a distance d = 10µm from an infinitely
extended perfectly conducting ground plane. Similar to Section 4.1.3, the resemblance between the results
obtained from the two definitions seem to support the interpretation of the residue contribution as a current
wave propagating along two infinitely long transmission lines, as suggested in Section 4.1.3. The difference,
observed in Fig. 4.10a, originates from an underlying difference between the two definitions of the charac-
teristic impedance. In the definition of (4.61), the voltage over the gap is defined by averaging the incident
electric field over the cross-section of the dipole. On the other hand, in the definition of (4.57), the voltage
along the dipole is defined as the line integral of the transverse electric field, starting from the surface of the
metal. Nevertheless, the similarity between the characteristic impedance, obtained from the two different def-
initions, can be regarded as a justification to interpret the residue contribution of the input admittance as the
contribution from two infinitely long transmission lines.
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(a) (b)

Figure 4.11: Field distribution of a microstrip (a) neglecting fringe effects and (b) assuming a realistic field distribution

Fig. 4.10b shows the characteristic impedance, obtained from the definition in (4.57), of a dipole having
a thickness wz = 1µm, constituted of a material with conductivity σ = 4.1 ·107S/m, located at a distance d =
10µm from a perfectly conducting ground plane for varying width of the dipole. Fig. 4.10b shows that the
characteristic impedance decreases when the width of the dipole is increased. This can be understood by
considering a quasi-static analysis, in which the electric field is assumed to be confined between the metals,
and fringe effects are ignored, as illustrated in Fig 4.11a. If the width of the dipole is increased, the current is
distributed over a larger area. Consequently, the electric field between the metals is weaker, which leads to a
lower voltage and therefore a smaller characteristic impedance. In reality, the field distribution is more similar
to Fig 4.11b. Nevertheless, one should expect a similar qualitative behaviour.

Fig. 4.10c shows the characteristic impedance, obtained from the definition in (4.57), of a dipole having
a width wy = 20µm, constituted of a material with conductivity σ = 4.1 · 107S/m, and located at a distance
d = 10µm from a perfectly conducting ground plane for varying thickness of the dipole. Similar to before,
Fig. 4.10c shows that the characteristic impedance decreases when the thickness of the dipole is increased.
Fig. 4.10d shows the characteristic impedance, obtained from the definition in (4.57), of a dipole having a
width wy = 20µm and thickness wz = 1µm, constituted of a material with conductivity σ = 4.1 · 107S/m, for
varying distance between the dipole and the ground plane. Fig. 4.10d shows that the characteristic impedance
increases when the distance between the strip and the ground plane is increased. This can be understood by
considering the same quasi-static analysis as before. By making the same assumption on the field distribution,
the electric field strength becomes independent of d . Hence, increasing the distance, leads to a higher voltage
between the metals and therefore a larger characteristic impedance. As mentioned before, Figs. 4.10b to 4.10d
have been obtained using the definition in (4.61). The same parametric analysis has been performed, using
the definition in (4.57). For the sake of conciseness, these results have been omitted. Nevertheless, when using
the definition in (4.57), the qualitative behaviour remains the same as in Figs. 4.10b to 4.10d.

Fig. 4.12a shows the attenuation in dB/λ0 of a dipole with the same dimensions and material parameters
as in Fig. 4.10b. Fig. 4.12b shows that the attenuation constant decreases, when the width of the dipole is in-
creased. However, the dependence on the width is much weaker compared to Fig. 4.7c, in which the character-
istic impedance of a dipole in free space was shown. This can be understood by considering the perturbation
method [43], which allows us to express the attenuation constant α as follows

α= Pl

P0
, (4.95)

where Pl denotes the power lost per unit length and P0 denotes the power transmitted along the transmission
line. Both for a dipole located in free space and for a dipole in the presence of a ground plane, the power
lost per unit length decreases, if the width of the dipole is increased, due to the increased area over which the
current is distributed. However, we may recall from Fig. 4.10b that the characteristic impedance of a dipole
in the presence of a ground plane decreases, if the width of the dipole is increased. Since P0 is proportional
to the characteristic impedance, the power transmitted along the line decreases as well. For a dipole in the
presence of a ground plane, these two effects compensate, which leads to a much weaker dependence of the
attenuation constant on the width.

Fig. 4.12b shows the attenuation in dB/λ0 of a dipole with the same dimensions and material parameters
as in Fig. 4.10c. Similar to before, Fig. 4.12b shows that the attenuation constant decreases, when the thickness
of the dipole is increased, due to the larger area over which the current is distributed. By examining Fig. 4.12b,
it becomes apparent that the dependence is much weaker, if the Leontovich boundary condition is used. The
explanation is similar to the one given in Section 4.2.1. Since the width of the metal strip is much larger than its
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(a) (b)

(c)

Figure 4.12: Losses of a dipole in the presence of a perfectly conducting ground plane (a) having a metal thickness wz = 1µm, located at a
distance d = 10µm from the ground plane for varying width wy , (b) having a width wy = 20µm, located at a distance d = 10µm from the
ground plane for varying metal thickness wz , and (c) having a metal thickness wz = 1µm and width wy = 20µm, for varying distance d

between the metal strip and the ground plane

thickness, the area over which the current is distributed does not vary much, when the thickness of the dipole
is changed.

47



5
Analysis of a dipole with non-zero thickness

in an arbitrary stratification

In this chapter, the formulation, introduced in Chapter 4, will be extended to study the microstrip transmis-
sion line, shown in Fig. 5.1. To study this problem, the spectral domain Green’s function for stratified media
is used, which allows the modelling of arbitrary stratifications. The spectral domain Green’s function for strat-
ified media has a spectral dependence on kx and ky , i.e. wavenumbers of the directions, longitudinal with
respect to the stratification, and a spatial dependence on z ′ and z, denoting the z-coordinate of the source and
observation point, respectively. For this reason, the projection in the y-direction will be calculated in the spec-
tral domain, while the projection in the z-direction will be calculated in the spatial domain. Consequently,
evaluating the longitudinal spectral Green’s function D(kx ) amounts to evaluating a 3D-integral. However,
since the dependence on the observation point z is only in the exponent of the voltage waves in the equivalent
transmission-line model, the integral in z can be closed analytically. As we shall see, the amplitudes of the
voltage waves in the equivalent transmission-line model will generally have a complicated dependence on z ′.
As a consequence, the integral in z ′ cannot be closed analytically. Therefore, the integrals in ky and z ′ will have
to be performed numerically.

This chapter is structured as follows. In section 5.1, we will illustrate the procedure by deriving the transmission-
line Green’s function of a dipole in free space, using the spectral domain Green’s function for stratified media.
For this geometry, the integrals in z and z ′ can both be closed analytically. In section 5.2, we will apply the
same procedure to the more realistic geometry of a microstrip.

5.1. Free space
To illustrate the procedure and demonstrate its validity, we will derive the transmission-line Green’s function
of a volumetric dipole in free space, carrying a uniform current distribution, using the spectral domain Green’s
function for stratified media. For this geometry, the integrals in z and z’ can both be closed analytically. As
expected, the procedure, used in this section, results in the same equation, derived in Section 4.1.1, by starting
with the 3D spectral Green’s function.

Let us consider again the spectral current I (kx ), given by (4.17). Since the stratified media Green’s func-
tion has a spectral dependence on ky and a spatial dependence on z and z ′, the longitudinal spectral Green’s
function D(kx ) can be expressed as follows

D(kx ) = 1

2π

∞∫
−∞

wz∫
0

wz∫
0

Ge j
xx (kx ,ky , z, z ′)Jt (ky , z ′)Jt (ky , z)d zd z ′dky , (5.1)

where the projection in the y-direction is calculated in the spectral domain, and the projection in the z-
direction is calculated in the spatial domain. The equivalent transmission-line model of free space is shown in
Fig. 5.2, in which both the upper and lower transmission lines represent a semi-infinite air region above and
below the source, which is located at z = z ′. Since both transmission lines are infinite, there will only be a for-
ward propagating voltage wave along the transmission lines. Hence, the voltages inside the regions z ∈ [z ′,∞)
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Figure 5.1: Infinite microstrip with metal thickness wz , width wy , dielectric thickness d and conductivity, σ oriented along the x-axis and
excited by a delta-gap excitation with length ∆

Figure 5.2: Equivalent transmission line model in free space

and z ∈ (−∞, z ′] can be expressed as follows

VT E/T M (z > z ′) = ZT E/T M

2
e− j kz (z−z ′) (5.2)

VT E/T M (z < z ′) = ZT E/T M

2
e j kz (z−z ′). (5.3)

By substituting (5.2) and (5.3) into the xx-component of the Dyadic Green’s function Ge j
xx (kx ,ky , z, z ′), we ob-

tain the following expression

Ge j
xx (kx ,ky , z, z ′) =−

VT M k2
x +VT E k2

y

k2
x +k2

y
=−

ZT M k2
x +ZT E k2

y

2(k2
x +k2

y )
e∓ j kz (z−z ′), (5.4)

where the ∓ depends on the observation region (z ∈ [z ′,∞) and z ∈ (−∞, z ′]). Since this section serves as a
demonstration of the procedure, we will consider the following transverse current distribution

jt (y, z) = 1

wy wz
rect

(
y

wy

)
rect

(
z

wz

)
. (5.5)

By performing a Fourier transform in y , we obtain the following expression

Jt (ky , z) = sinc

(
ky wy

2

)
1

wz
rect

(
z

wz

)
. (5.6)
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By substituting (5.4) and (5.6) into (5.1) and by taking into account the different expression for the two obser-
vation regions, the longitudinal spectral Green’s function D(kx ) can be expressed as follows

D(kx ) = 1

2π

∞∫
−∞

( wz∫
0

wz∫
z ′

−
ZT M k2

x +ZT E k2
y

2(k2
x +k2

y )
e− j kz (z−z ′)d zd z ′

+
wz∫
0

z ′∫
0

−
ZT M k2

x +ZT E k2
y

2(k2
x +k2

y )
e j kz (z−z ′)d zd z ′

)
sinc2

(
ky wy

2

)
dky .

(5.7)

Since the dependence on z and z ′ is only in the exponent, both integrals can be closed analytically, which
results in the following expression

D(kx ) =− 1

2π

∞∫
∞

ZT M k2
x +ZT E k2

y

k2
x +k2

y

(
wz

j kz
+ 1−e− j kz wz

k2
z

)
sinc2

(
ky wy

2

)
dky . (5.8)

By substituting ZT M = ζ0kz0/k0, ZT E = ζ0k0/kz0 and kz =− j
√

k2
x +k2

y −k2
0 into (5.8) and by performing some

algebraic manipulations (5.8) can be expressed as follows

D(kx ) = j
ζ

k

k2
x −k2

2π

∞∫
−∞

 wz

k2
x +k2

y −k2
+ e

−wz

√
k2

x+k2
y−k2 −1

(k2
x +k2

y −k2)
3
2

sinc2
(

ky wy

2

)
dky . (5.9)

As anticipated, the longitudinal spectral Green’s function in (5.9), derived using the spectral domain Green’s
function for stratified media, is congruent with (4.37), obtained using the 3D spectral Green’s function of free
space.

5.2. Microstrip
In Section 5.1, we have used the spectral domain Green’s function for stratified media to derive the tranmsis-
sion line Green’s function of a dipole located in free space. In this section, we will use the same procedure to
study the more realistic geometry of the microstrip, shown in Fig. 5.1.

In Section 5.2.1, we will derive the transmission line Green’s function of this geometry. Next Section 5.2.2
will introduce one possible definition of the characteristic impedance in which the voltage along the trans-
mission line is defined as the line integral of the transverse electric field. Finally, in Section 5.2.3, we will
demonstrate the formulation developed in Sections 5.2.1 and 5.2.2 by performing a parametric analysis versus
the relevant dimensions of the transmission line.

5.2.1. Derivation Green’s function
Let us consider the microstrip, shown in Fig. 5.1, consisting of an infinitely long metal strip, having a width
wy and thickness h, constituted of a material with conductivity σ, printed on a dielectric substrate with per-
mittivity εd and thickness d , with underneath an infinitely extended ground plane, constituted of a material
with conductivityσ. The ground plane is assumed to have a thickness large enough, such that the electric field
entering the ground plane is entirely absorbed. Hence, the ground plane can be modeled as a semi-infinite
region.

Fig. 5.3a shows the stratification of the microstrip. The corresponding equivalent transmission-line model
is shown in Fig. 5.3b. In Fig. 5.3b, the transmission-lines right above and below the current source represent
the air region above the dielectric. The transmission-line directly below the air region represents the dielectric
substrate, while the transmission line on the bottom represents the infinitely extended ground plane. Finally,
the current source represents an electric current flowing inside the metal strip at z = z ′.

From the previous sections, it is clear that we need to project the scattered field onto the transverse current
distribution. Therefore, we need to evaluate the field in the region z ∈ [0, wz ]. In the transmission-line model
of Fig. 5.3b, this region corresponds to the transmission-lines right above and below the current source.

First, we will calculate the input impedance, looking from the transmission line right below the current
source towards the transmission line representing the dielectric, as shown in the following expression

Zin,d = Zd
Zσ+Zd tanh( j kzd d)

Zd +Zσtanh( j kzd d)
. (5.10)
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(a) (b)

Figure 5.3: (a) The stratification and (b) the equivalent transmission line-model of the microstrip

Next, we can calculate the input impedance looking from the source towards the air region below, as shown in
the following expression

Zin,down = Z0
Zin,d +Z0tanh( j kz0z ′)
Z0 +Zin,d tanh( j kz0z ′)

. (5.11)

Finally, we can calculate the voltage at the current source, as follows

Vin =V (z = z ′) = Zin,downZ0

Zin,down +Z0
. (5.12)

Since the upper air region is infinite, there will only be a forward propagating wave along the transmission line,
as shown in the following expression

V (z > z ′) =Vine− j kz0(z−z ′). (5.13)

Since the air region below the source is finite, the voltage in this region will be the superposition of a forward
and backward propagating wave, as shown in the following expression

V (0 < z < z ′) =V +
lowere j kz0(z−z ′) +V −

lowere− j kz0(z−z ′). (5.14)

By applying the boundary condition at z = 0, we obtain the following expression

V (0 < z < z ′) =V +
lower(e j kz0(z−z ′) +Γd e− j kz0(z+z ′)), (5.15)

where the reflection coefficient Γd can be expressed as follows

Γd = Zin,d −Z0

Zi n,d +Z0
. (5.16)

Finally, by applying the boundary condition at z = z ′, we can find the amplitude V + of the forward propagating
wave, as shown in the following expression

V + = Vin

1+Γd e−2 j kz0z ′ . (5.17)
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Once the amplitudes of the voltage waves are obtained, the xx-component of the Dyadic Green’s function

Ge j
xx (kx ,ky , z, z ′) can be constructed. In the region z ∈ [z ′,∞), Ge j

xx (kx ,ky , z, z ′) is given by the following expres-
sion

Ge j
xx (kx ,ky , z > z ′) =−

VTMk2
x +VTEk2

y

k2
x +k2

y
=−

V +
TM,upperk2

x +V +
TE,upperk2

y

(k2
x +k2

y )
e− j kz0(z−z ′), (5.18)

while in the region z ∈ [0, z ′], Ge j
xx (kx ,ky , z, z ′) can be expressed as follows

Ge j
xx (kx ,ky ,0 < z < z ′) =−

VTMk2
x +VTEk2

y

k2
x +k2

y
=

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y
e j kz0(z−z ′) −

ΓTM,d V +
TM,lowerk2

x +ΓTE,d V +
TE,lowerk2

y

k2
x +k2

y
e− j kz0(z+z ′).

(5.19)

Finally, by substituting (5.18) and (5.19) into (5.1) and by making an assumption on the transverse current
distribution Jt (ky , z ′), we can obtain an expression for the longitudinal spectral Green’s function D(kx ). For
clarity, we will first assume a uniform current distribution on the cross-section, which results in the following
expression

D(kx ) =− 1

2π

∞∫
−∞

wz∫
0

wz∫
z ′

V +
TM,upperk2

x +V +
TE,upperk2

y

k2
x +k2

y
e− j kz0(z−z ′)sinc2

(
ky wy

2

)
d zd z ′dky−

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

V +
TM,lowerk2

x +V +
TE,lowerk2

y

k2
x +k2

y
e j kz0(z−z ′)sinc2

(
ky wy

2

)
d zd z ′dky−

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

ΓTM,d V +
TM,lowerk2

x +ΓTE,d V +
TE,lowerk2

y

k2
x +k2

y
e− j kz0(z+z ′)sinc2

(
ky wy

2

)
d zd z ′dky .

(5.20)

Note that the expression above is different for the two observation regions, where the region z ∈ [z ′, wz ]
only contains a forward propagating voltage wave, while the region z ∈ [0, z ′] contains both a forward and
backward propagating wave. By closing the integrals in z analytically, (5.20) can be expressed as follows

D(kx ) =− j

2π

∞∫
−∞

wz∫
0

V +
TM,upperk2

x +V +
TE,upperk2

y

k2
x +k2

y

e− j kz0(wz−z ′) −1

kz0
sinc2

(
ky wy

2

)
d z ′dky−

j

2π

∞∫
−∞

wz∫
0

V +
TM,lowerk2

x +V +
TE,lowerk2

y

k2
x +k2

y

e− j kz0z ′ −1

kz0
sinc2

(
ky wy

2

)
d z ′dky−

j

2π

∞∫
−∞

wz∫
0

ΓTM,d V +
TM,lowerk2

x +ΓTE,d V +
TE,lowerk2

y

k2
x +k2

y

e−2 j kz0z ′ −e− j kz0z ′

kz0
sinc2

(
ky wy

2

)
d z ′dky .

(5.21)

(5.21) contains an integral in ky and z ′. Unfortunately, these integrals cannot be closed analytically. To under-
stand the reason, consider the expression for the voltage at the current source, given by (5.12). As shown in
(5.12), the voltage at the current source depends on Zin,down. As shown in (5.11), Zin,down has a rather compli-
cated dependence on z ′. Hence, the integral in z ′ cannot be closed analytically. The same argument applies to
the dependence on ky . Consequently, the integrals in ky and z ′ will have to be performed numerically.

(5.21) gives the expression of the longitudinal Green’s function, assuming a uniform current distribution on
the cross-section. If the Leontovich boundary condition is used to model the transverse current distribution,
the longitudinal Green’s function D(kx ) can be expressed as follows

D(kx ) = 1

4δ2
p (wy +wz −2δp )2

(D1(kx )+D2(kx )+D3(kx )) . (5.22)

The derivation of D1(kx ), D2(kx ) and D3(kx ) is reported in Appendix H.1 and results in the following expres-
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sions

D1(kx ) =− j

2π

∞∫
−∞

δp∫
0

V +
TM,upperk2

x +V +
TE,upperk2

y

k2
x +k2

y

e− j kz0(δp−z ′) −1

kz0
w2

y sinc2
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ky wy

2

)
d z ′dky−

j

2π

∞∫
−∞

δp∫
0

V +
TM,lowerk2

x +V +
TE,lowerk2

y

k2
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y

e− j kz0z ′ −1

kz0
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y sinc2
(

ky wy

2

)
d z ′dky−

j

2π
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−∞

δp∫
0
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x +ΓTE,d V +
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y

k2
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y
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y sinc2
(

ky wy

2

)
d z ′dky−

j

π

∞∫
−∞

δp∫
0

V +
TM,upperk2

x +V +
TE,upperk2

y

k2
x +k2

y
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kz0
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y sinc2
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ky wy

2
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d z ′dky−

j
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δp∫
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V +
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y
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y
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kz0
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(
ky wy

2

)(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
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wy −2δp

2

))
d z ′dky ,

(5.23)

D2(kx ) =− j

2π

∞∫
−∞

wz−δp∫
δp

V +
TM,upperk2

x +V +
TE,upperk2

y

k2
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y
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(
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2
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(
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d z ′dky−

j
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y

k2
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y
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2
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j
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(
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2
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y
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y
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2
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(5.24)
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D3(kx ) =− j

2π

∞∫
−∞

wz∫
wz−δp

V +
TM,upperk2

x +V +
TE,upperk2

y

k2
x +k2

y

e− j kz0(wz−z ′) −1
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y sinc2
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2
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j
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2
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j
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y sinc2
(

ky wy

2

)
d z ′dky−

j
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y sinc2
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2

)
d z ′dky .

(5.25)

In Section 4.1.1, it has been shown that the current inside a dipole decays exponentially from the surface of
the metal. To simplify the expression for Jt (ky ,kz ), the transverse current distribution has been approximated,
using the Leontovich boundary condition. This approximation allowed the integral in kz to be closed analyt-
ically. However, when using the transmission-line Green’s function for stratified media, the projection in the
y-direction is performed in the spectral domain, while the projection in the z-direction is performed in the
spatial domain. In this case, only the integral in z is closed analytically, while the integrals in ky and z ′ are per-
formed numerically. Consequently, using the Leontovich boundary condition to approximate the exponential
decay inside the dipole does not provide the same advantages as in the case of free space. Consequently, we
may use the following alternative transverse current distribution

jt (y, z) = 2

wyπ

1√
1− (2y/wy )2

e−z/δp +e(z−wz )/δp

2δp (1−e−wz /δp )
. (5.26)

The distribution in z is chosen to model the exponential decay inside the dipole, while the distribution in y
is chosen to be the edge-singular distribution to remain consistent with the commonly used planar formu-
lations. In Appendix H.2, the same procedure is applied using (5.26) as the transverse current distribution,
which results in the following expression

D(kx ) =− 1
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x +V +
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j kz0 −1/δp
J0

(
ky wy

2

)
sinc

(
ky wy

2
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e−(w z−z ′)/δp −e−wz /δp e− j kz0z ′
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(
ky wy

2

)
sinc

(
ky wy

2

)
d z ′dky−

1
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∞∫
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wz∫
0
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TM,lowerk2

x +ΓTE,d V +
TE,lowerk2

y

k2
x +k2

y

e− j kz0z ′ −e−z ′/δp e−2 j kz0z ′

j kz0 +1/δp
·

e−wz /δp e− j kz0z ′ −e−2 j kz0z ′e−(w z−z ′)/δp

j kz0 −1/δp
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(
ky wy

2

)
sinc

(
ky wy

2

)
d z ′dky .

(5.27)

In this case, the spatial projection becomes as follows

〈 jt (y, z), jt (y, z)〉A = δp (1−e−2wz /δp )+2wz e−wz /δp

4wyδ
2
p (1−e−wz /δp )2

. (5.28)

5.2.2. Characteristic impedance
In this section, we will give one possible definition of the characteristic impedance, in which the voltage along
the transmission line is defined as the line integral of the transverse electric field. Similar to Section 4.1.2, the
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current wave ires(x) and its amplitude I+ are given by (4.40) and (4.41). Since the ground plane has a finite
conductivity, regarding it as an equipotential surface is only approximately true. Nevertheless, if the ground
plane is constituted of a good conductor, we may define the voltage along the transmission line as follows

v(x) =−
0∫

−d

ez (x, y = 0, z)d z, (5.29)

where ez (x, y = 0, z) denotes the z-component of the electric field, observed at y = 0. Note that, in contrast to
Section 4.2.2, the integral in (5.29) is defined from −d to 0, since the origin of the reference system has been
defined to be located at the bottom of the metal strip. By expressing ez (x, y = 0, z) in terms of its plane wave
spectrum, (5.29) can be expressed as follows

v(x) =− 1

4π2

0∫
−d

wz∫
0

∞∫
−∞

∞∫
−∞

Gzx (kx ,ky , z, z ′)I (kx )Jt (ky , z ′)dky dkz d z ′d z, (5.30)

where the zx-component of the dyadic Green’s function Gzx (kx ,ky , z, z ′) is given by the following expression

Gzx (kx ,ky , z, z ′) = ζkx

k
iT M (5.31)

To obtain iT M , we will again use the equivalent transmission-line model of Fig 4.5a. Since the electric field
in (5.29) is evaluated in the region z ∈ [−d ,0], we will have to obtain the current on the transmission line that
represents the dielectric substrate. Since the voltage in the region z ∈ [0, z ′] has already been derived in Section
5.2.1, it is more convenient to first derive the voltage in the region z ∈ [−d ,0]. Since the transmission-line that
represents the dielectric substrate is finite, the voltage in this region can be expressed as the superposition of
a forward and backward traveling wave, as shown in the following expression

V (−d < z < 0) =V +
d e j kz0z +V −

d e− j kz0z . (5.32)

By applying the boundary condition at z =−d , we obtain the following expression

V (−d < z < 0) =V +
d (e j kz0z +Γσe−2 j kzd d e− j kzd z ), (5.33)

where the reflection coefficient Γσ is given by the following expression

Γσ = Zσ−Zd

Zσ+Zd
. (5.34)

By applying the boundary condition at z = 0, we obtain V +
d , as shown in the following expression

V +
d =V + e− j kz0z +Γd e− j kz0z

1+Γσe−2 j kzd d
(5.35)

Finally, by using the relation between the amplitudes of the voltage and current waves along the equivalent
transmission-line model, the current in the region z ∈ [−d ,0] becomes as follows

I (−d < z < 0) =−V +
d

Zd
(e j kz0z −Γσe−2 j kzd d e− j kzd z ). (5.36)

By substituting (5.31) and (5.26) into (5.30), we obtain the following expression

v(x) = 1

4π2

0∫
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∞∫
−∞

∞∫
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I (kx )
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(
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2
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e− j kx x e− j kz z dkx dky d z ′d z.

(5.37)
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By closing the integral in z analytically, we obtain the following expression

v(x) = j

4π2

wz∫
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−∞
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−∞
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(5.38)

To simplify the notation, we will define the function Z (kx ) as follows

Z (kx ) = j
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With this definition, the voltage v(x) can be expressed as in (4.54). Similar to Section 4.1.2, the residue contri-
bution gives rise to a traveling voltage wave vres(x), given by (4.55), with amplitude V +, given by (4.56). The
characteristic impedance Z0,TEM can then be defined as in (4.57).

In section 4.2.3, we will demonstrate the importance of the assumption on the transverse current distri-
bution by making a comparison between the characteristic impedance obtained using the exponential dis-
tribution in (5.26), the characteristic impedance obtained using the Leontovich boundary condition and the
characteristic impedance obtained by assuming a uniform current distribution on the cross-section.

If the Leontovich boundary condition is used, Z (kx ) can be expressed as follows

Z (kx ) = 1

2δp (wy +wz −2δp )
(Z1(kx )+Z2(kx )+Z3(kx )) (5.40)

where Z1(kx ) is given by the following expression
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where Z2(kx ) is given by the following expression

Z2(kx ) = j
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(5.42)

where Z3(kx ) is given by the following expression

Z3(kx ) = j
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(5.43)
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The characteristic impedance Z0,TEM is still defined by (4.57), where kxp denotes the pole of the current spec-
trum I (kx ) that is obtained, using (5.22) to calculate D(kx ).

If a uniform current distribution is assumed, only Z1(kx ) should be retained. Consequently, Z (kx ) becomes
as follows

Z (kx ) = j
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(5.44)

Similar to before, the characteristic impedance Z0,TEM is still defined by (4.57), where kxp denotes the pole of
the current spectrum I (kx ) that is obtained, using (5.21) to calculate D(kx ).

5.2.3. Parametric analysis
In this section, we will first show a comparison between the characteristic impedance, obtained from the def-
inition in (4.57), and the characteristic impedance, obtained from the definition in (4.61). Subsequently, we
will demonstrate the formulation, developed in Sections 5.2.1 and 5.2.2, by performing a parametric analysis
versus the relevant dimensions of the transmission line.

Fig. 5.4a shows the comparison between the characteristic impedance obtained from (4.57) and the char-
acteristic impedance obtained from (4.61), for a microstrip having a width wy = 20µm and a metal thickness
wz = 1µm, constituted of a material with conductivity σ= 4.1 ·107S/m, printed on a dielectric substrate, hav-
ing a thickness d = 10µm and permittivity εr = 4.3. Fig. 5.4a shows that the definition in (4.61) has a stronger
dependence on the transverse current distribution than the definition in (4.57). The reason is that the defi-
nition in (4.61) incorporates the transverse current distribution twice, when applying the Galerkin projection.
Moreover, the resemblance between the characteristic impedance, obtained from the two different definitions
supports the interpretation, suggested in Section 4.1.3, in which the residue contribution of the input admit-
tance is interpreted as the contribution from two infinitely long transmission lines.

Fig. 5.4b shows the characteristic impedance of a microstrip having a metal thickness wz = 1µm, con-
stituted of a material with conductivity σ = 4.1 ·107S/m, printed on a dielectric substrate having a thickness
d = 10µm and permittivity εr = 4.3, for varying width of the metal. Moreover, Fig. 5.4b shows the compari-
son between the characteristic impedance, obtained by assuming a uniform distribution on the cross-section,
the characteristic impedance, obtained by using the Leontovich boundary condition, and the characteristic
impedance, obtained by using the exponential distribution of (5.26). Fig. 5.4b shows that the characteristic
impedance decreases when the width is increased. This can be understood from the quasi-static analysis,
shown in Fig. 4.11a, in which the electric field is assumed to be confined between the metals and fringe effects
are ignored. If the width of the metal is increased, the current is distributed over a larger area. Therefore, the
electric field between the metals is weaker, which leads to a lower voltage and consequently a smaller charac-
teristic impedance.

Fig. 5.4d shows the characteristic impedance of a microstrip having a width wy = 20µm and metal thick-
ness wz = 1µm, constituted of a material with conductivity σ = 4.1 · 107S/m, printed on a dielectric sub-
strate with permittivity εr = 4.3 for varying thickness of the substrate. Fig. 5.4d shows that the characteristic
impedance increases when the thickness of the dielectric substrate is increased. This can be understood from
the same quasi-static analysis as before. By making the same assumptions on the field distribution, the electric
field strength becomes independent of d . Therefore, increasing d leads to a higher voltage and consequently
a larger characteristic impedance.

Finally, Fig. 5.4c shows the characteristic impedance of a microstrip having a width wy = 20µm, constituted
of a material with conductivity σ= 4.1 ·107S/m, printed on a dielectric substrate having a thickness d = 10µm
and permittivity εr = 4.3, for varying metal thickness. Fig. 5.4c shows that the characteristic impedance in-
creases, when the thickness of the metal is increased. The reason is similar as in the example of Fig. 5.4d. As
mentioned before, Figs. 5.4b to 5.4d have been obtained using the definition in (4.61). The same parametric
analysis has been performed, using the definition in (4.57). For the sake of conciseness, these results have
been omitted. Nevertheless, when using the definition in (4.57), the qualitative behaviour remains the same
as in Figs. 5.4b to 5.4d.

Fig. 5.5b shows the attenuation in dB/λ0 for a microstrip with the same dimensions as in Fig. 5.4c. Fig. 5.5b
shows that the attenuation constant decreases, when the metal thickness is increased. The reason is that the
current is distributed over a larger area, which leads to a smaller current density and lower losses. Additionally,
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(a) (b)

(c) (d)

Figure 5.4: Characteristic impedance of a microstrip constituted of a material with conductivity σ= 4.1 ·107S/m, printed on a dielectric
substrate with permittivity εr = 4.3, (a) having a metal thickness wz = 1µm and dielectric thickness d = 10µm for varying width wy , (b)

having a width wy = 20µm and dielectric thickness d = 10µm for varying metal thickness wz , and (c) having a width wy = 20µm and
metal thickness wz = 1µm for varying dielectric thickness d

Fig. 5.5b shows that the attenuation constant is less sensitive to the thickness of the metal, when we use either
the Leontovich boundary condition or the exponential distribution. This can be understood by noting that the
width of the dipole is much larger than the thickness. Since the current is localized at the outer surface of the
dipole, varying the thickness tends to have a small effect on the total area over which the current is distributed.

Fig. 5.5a shows the attenuation in dB/λ0 for a microstrip with the same dimensions and material param-
eters as in Fig. 5.4b. Fig. 5.5a shows that the attenuation constant only has a weak dependence on the width
of the microstrip. This can be understood by considering the perturbation method [43], which allows us to ex-
press the attenuation constant as in (4.95). Since the power lost per unit length Pl and the power transmitted
along the transmission line P0 both scale with the width of the microstrip, the two effects tend to cancel each
other, which results in an attenuation constant that only has a weak dependence on the width.

Finally, Fig. 5.5c shows the attenuation constant for a microstrip with the same dimensions and material
parameters as in Fig. 5.4d. Fig. 5.5c shows that the attenuation constant decreases when the thickness of the
dielectric substrate is increased. This can again be understood by considering the perturbation method. Re-
call from Fig. 5.4d, that the characteristic impedance increases, when the thickness of the dielectric substrate
is increased. Since the power transmitted along the transmission line is proportional to the characteristic
impedance, the attenuation constant of the line decreases.

Fig. 5.6b shows the effective dielectric permittivity εeff for a microstrip with the same dimensions and ma-
terial parameters as in Fig. 5.4c. Fig. 5.6b shows that εeff decreases significantly when the thickness of the metal
is increased. This can be understood as follows. A current on the bottom of the metal strip is flowing at the
interface between the dielectric substrate and the air region and will therefore have an effective permittivity
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(a) (b)

(c)

Figure 5.5: Attenuation constant of a microstrip constituted of a material with conductivity σ= 4.1 ·107S/m, printed on a dielectric
substrate with permittivity εr = 4.3 (a) having a metal thickness wz = 1µm and dielectric thickness d = 10µm for varying width wy , (b)
having a width wy = 20µm and dielectric thickness d = 10µm for varying metal thickness wz , and (c) having a width wy = 20µm and

metal thickness wz = 1µm for varying dielectric thickness d

that is close to the average of the two regions. On the other hand, a current on the top of the metal strip is
located farther away from the interface and will have a lower effective permittivity. By considering both the
current on the top and bottom of the metal strip, the effective permittivity becomes lower compared to a for-
mulation in which all of the current is assumed to be at the interface between the two regions. Consequently,
if the thickness of the metal is increased, the current on the top of the metal strip moves farther away from the
interface of the two regions, which decreases the overall effective permittivity.

Figs. 5.6a and 5.6c show the effective dielectric permittivity for a microstrip with the same dimensions and
material parameters as in Figs.5.4b and 5.4d, respectively. Figs. 5.6a and 5.6c show that the effective dielectric
permittivity of the microstrip has a relatively weak dependence on the width of the metal strip and the thick-
ness of the dielectric substrate. Finally, from Figs. 5.6a, 5.6b and 5.6c it becomes apparent that the effective
permittivity, obtained by using the Leontovich boundary condition, and the effective permittivity, obtained
by using the exponential distribution of (5.26), bear a close resemblance, since both distributions take into
account the fact that the current is localized at the outer surface of the metal. On the other hand, the effective
permittivity, obtained by assuming a uniform distribution on the cross-section, shows a larger disagreement
with the other two distributions, since the uniform distribution does not take into account the skin effect.

5.3. Separation current top and bottom
Due to the presence of the dielectric substrate and the ground plane underneath, a microstrip is not symmet-
ric in the z-direction. Therefore, it is not appropriate to assume a symmetric current distribution along this
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(a) (b)

(c)

Figure 5.6: Effective dielectric permittivity of a microstrip constituted of a material having conductivity σ= 4.1 ·107S/m, printed on a
dielectric substrate with permittivity εr = 4.3 (a) having a metal thickness wz = 1µm and dielectric thickness d = 10µm for varying width
wy , (b) having a width wy = 20µm and dielectric thickness d = 10µm for varying metal thickness wz , and (c) having a width wy = 20µm

and metal thickness wz = 1µm for varying dielectric thickness d

direction. (As we shall see, the current will mainly be localized at the bottom of the strip.) To address this
problem, we will define two basis functions, representing the current on the top and the bottom, allowing the
current on both sides of the strip to be different.

5.3.1. Derivation Green’s function

By following the same steps as in Section 4.1.1 and by expanding the transverse current distribution into two
basis functions, the electric field integral equation can be expressed as follows

Einc,l (kx )einc,t (y, z) =
2∑

m=1
Im(kx )ρ jt ,m(y, z)−

2∑
m=1

Im(kx )
1

2π

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky , z, z ′)Jt ,m(ky , z ′)e− j ky y dky d z ′,

(5.45)
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where m denotes the index of the basis function. By performing a testing with the Galerkin’s method, we obtain
the following expression

Einc,l (kx )〈einc,t (y, z), jtn(y, z)〉A =
2∑

m=1
ρIm(kx )〈 jtm(y, z), jtn(y, z)〉A−

2∑
m=1

Im(kx )
1

2π

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ge j
xx (kx ,ky ,kz )Jtm(ky , z ′)J∗tn(ky , z)dky d z d z ′,

(5.46)

where n denotes the index of the test function. The relation in (5.46) can be expressed as the following matrix
equation [〈einc,t (y, z), Jt1(y, z)〉A

〈einc,t (y, z), Jt2(y, z)〉A

]
Einc,l (kx ) =([

ρ〈Jt1(y, z), Jt1(y, z)〉A ρ〈Jt1(y, z), Jt2(y, z)〉A

ρ〈Jt2(y, z), Jt1(y, z)〉A ρ〈Jt2(y, z), Jt2(y, z)〉A

]
−

[
D11(kx ) D12(kx )
D21(kx ) D22(kx )

])[
I1(kx )
I2(kx )

]
.

(5.47)

By defining the current vector as follows

I(kx ) =
[

I1(kx )
I2(kx )

]
, (5.48)

by defining the following excitation vector

V(kx ) =
[〈einc,t (y, z), Jt1(y, z)〉A

〈einc,t (y, z), Jt2(y, z)〉A

]
Einc,l (kx ), (5.49)

by defining the coupling matrix as follows

D(kx ) =
[

D11(kx ) D12(kx )
D21(kx ) D22(kx )

]
, (5.50)

and by defining the following matrix

Zloss =
[
ρ〈Jt1(y, z), Jt1(y, z)〉A ρ〈Jt1(y, z), Jt2(y, z)〉A

ρ〈Jt2(y, z), Jt1(y, z)〉A ρ〈Jt2(y, z), Jt2(y, z)〉A

]
, (5.51)

where Zloss takes into account the Ohmic losses inside the metal strip, (5.47) can be expressed as follows

V(kx ) = Z(kx )I(kx ), (5.52)

where Z(kx ) is defined as follows
Z(kx ) = Zloss −D(kx ). (5.53)

In the case of the microstrip, the entries of the matrix D(kx ) are calculated by evaluating the following 3D-
integral

Dmn(kx ) = 1

2π

∞∫
−∞

wz∫
0

wz∫
0

Ge j
xx (kx ,ky , z, z ′)Jtm(ky , z ′)J∗tn(ky , z)d zd z ′dky , (5.54)

The transverse current distribution will be expanded into the following two basis functions

jt ,1(y, z) = 2

wyπ

1√
1− (2y/wy )2

e−z/δp

δp (1−e−wz /δp )
(5.55)

jt ,2(y, z) = 2

wyπ

1√
1− (2y/wy )2

e(z−wz )/δp

δp (1−e−wz /δp )
, (5.56)

where jt ,1(y, z) has an exponential decay starting from the bottom of the metal strip, and jt ,2(y, z) has an ex-
ponential decay starting from the top of the metal strip. If the penetration depth δp , is small compared to the
thickness of the metal, jt ,1(y, z) and jt ,2(y, z) can, for all practical purposes, be referred to as the current on
the bottom and the current on the top of the metal strip. In Appendix H.3, the entries of D(kx ) are obtained
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explicitly, using the two exponential basis functions given by (5.55) and (5.56). Consequently, D11(kx ) can be
expressed as follows

D11(kx ) =− 1
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D22(kx ) is given by the following expression
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As a consequence of the reciprocity theorem [44], D12(kx ) and D21(kx ) are equal. As shown in Appendix H.3,
D12(kx ) and D21(kx ) can be expressed as follows

D12(kx ) = D21(kx ) =− 1
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(5.59)
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By analytically inverting the matrix in (5.53), the spectral currents I1(kx ) and I2(kx ), associated with the two
basis functions jt ,1(y, z) and jt ,2(y, z), can be calculated as follows

I1(kx ) = Z22(kx )V1(kx )−Z12(kx )V2(kx )

Zdet(kx )
(5.60)

I2(kx ) = Z11(kx )V1(kx )−Z21(kx )V2(kx )

Zdet(kx )
, (5.61)

where
Zdet(kx ) = det(Z(kx )) = Z11(kx )Z22(kx )−Z12(kx )Z21(kx ) (5.62)

Once the spectral currents I1(kx ) and I2(kx ) are obtained, the spatial currents i1(x) and i2(x), associated to
the two basis functions jt ,1(y, z) and jt ,2(y, z), can be calculated by performing the following inverse Fourier
transform

im(x) = 1

2π

∞∫
−∞

Im(kx )e− j kx x dkx . (5.63)

Finally, the input admittance can be calculated as the superposition of the input admittance, due to i1(x) and
i2(x), as shown in the following expression

Yin = Y1 +Y2, (5.64)

where

Ym = 1

2π

∞∫
−∞

Im(kx )sinc

(
kx∆

2

)
dkx . (5.65)

5.3.2. Spectral properties and validation current
To investigate the properties of the spectral currents I1(kx ) and I2(kx ), when the transverse current distribution
is expanded into two basis functions, the spectral plane of 1/det|Z(kx )| has been calculated for a microstrip,
having a width wy = 1µm and a metal thickness wz = 1µm, constituted of a material with conductivity σ =
1 · 108S/m, printed on a dielectric substrate, having a thickness d = 1µm and permittivity εr = 1. Note that
these dimensions and material parameters are not realistic for an actual microstrip, but have been chosen
to illustrate the properties of the spectral currents I1(kx ) and I2(kx ). Fig. 5.7a shows the spectral plane of
1/Zdet(kx ). From Fig. 5.7a, it becomes apparent that the spectrum contains two poles. To understand what
these poles correspond to, we will define the contribution of pole 1 and pole 2 to the currents i1(x) and i2(x)
as follows

i1,res,pn =− j
Z22(kxpn)V1(kxpn)−Z12(kxpn)V2(kxpn)

Z ′
det(kxpn)

e− j kxpn x (5.66)

i2,res,pn =− j
Z11(kxpn)V1(kxpn)−Z21(kxpn)V2(kxpn)

Z ′
det(kxpn)

e− j kxpn x , (5.67)

where pn refers to pole 1 or pole 2.
Fig. 5.7b shows the real and imaginary part of i1,res,p1 and i2,res,p1, i.e. the contribution of pole 1 to the

current flowing on the bottom of the metal strip and the contribution of pole 1 to the current flowing on the
top of the metal strip. Fig. 5.7c shows the real and imaginary part of i1,res,p1 and i2,res,p1, i.e. the contribution
of pole 2 to the current flowing on the bottom of the metal strip and the contribution of pole 2 to the current
flowing on the top of the metal strip. Fig. 5.7b shows that pole 1 corresponds to a current distribution in which
the current on the bottom of the metal strip is in phase with the current on the top, i.e. a common mode.
On the other hand, Fig. 5.7c shows that pole 2 corresponds to a current distribution in which the current on
the bottom of the metal strip is 180° out of phase with the current on the top, i.e. a differential mode. From
Fig. 5.7a, it becomes clear that pole 1 has a much smaller attenuation constant than pole 2. Consequently, the
differential mode decays much faster than the common mode, which means that the common mode is the
dominant mode along the transmission line.

To validate the formulation, developed in Section 5.3.1, and to demonstrate the relevance of allowing a dif-
ferent current on the top and bottom of the metal strip, a microstrip has been simulated, consisting of a metal
strip having a width wy = 10µm and metal thickness wz = 10µm, constituted of a material with conductivity
σ= 107S/m, printed on a dielectric substrate having a thickness d = 10µm and permittivity εr = 11.9. Fig.5.8a
shows i1(x), i.e. the current on the bottom of the metal strip, while Fig.5.8b shows i2(x), i.e. the current on
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Figure 5.7: (a) The spectral plane of 1/det|Z(kx )| for a microstrip, having a width wy = 1µm and a metal thickness wz = 1µm, constituted

of a material with conductivity σ= 1 ·108S/m, printed on a dielectric substrate, having a thickness d = 1µm and permittivity εr = 1 with
the location of the two poles, (b) the current associated to pole 1 on the top and the bottom of the microstrip, and (c) the current

associated to pole 2 on the top and the bottom of the microstrip

the top of the metal strip. As shown in Figs.5.8a and 5.8b, the current on the bottom is much larger than the
current on the top, since the electric field is mainly focused between the metal strip and the ground plane.
Therefore, the losses along the transmission line will mainly be associated with the current on the bottom of
the metal strip. Moreover, for the current on the bottom of the strip, Fig.5.8a shows a good agreement between
i1(x), obtained using (5.63) and the current obtained from CST. For the current on the top of the metal strip,
Fig. 5.8b shows a larger discrepancy between i2(x), obtained using (5.63), and the current obtained with CST.
However, since the current on the bottom is dominant, this difference is less significant, when we characterize
the transmission line in terms of its characteristic impedance and its losses. Finally, it should be noted that a
metal strip with equal width and thickness is not a realistic geometry. The dimensions in Figs.5.8a and 5.8b
have been chosen to allow the validation with CST, which cannot simulate a realistic microstrip geometry.

5.3.3. Transmission line characterization
As discussed in Section 5.3, expanding the transverse current distribution into two basis functions leads to
two polar singularities in the spectral currents I1(kx ) and I2(kx ). Therefore, it is possible to represent the
microstrip by two parallel transmission lines, each with its own characteristic impedance and propagation
constant. However, we would like to represent the microstrip by a single transmission line with a single char-
acteristic impedance and propagation constant. To achieve this, we have considered two different approaches.
The first approach is to define the average propagation constant kav

xp , where each pole is weighted by its con-
tribution to the input admittance. To this extent, we will first define the contribution of each of the poles to the
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Figure 5.8: The current on a microstrip, having metal thickness wz = 10µm, width wy = 10µm, constituted of a material with

conductivity σ= 107S/m and printed on a dielectric substrate having a thickness d = 10µm and permittivity εr = 11.9, (a) obtained from
(5.60), i.e. the current on the bottom of the microstrip, and (b) obtained from (5.61), i.e. the current on the top of the microstrip

input admittance, as follows

Yres,pn = Y1,res,pn +Y2,res,pn , (5.68)

where pn refers to pole 1 or pole 2. Y1,res,pn and Y2,res,pn denote the contributions of the pole to Y1 and Y2 in
(5.64) and are given by the following expressions

Y1,res,pn =− j
Z22(kxpn)V1(kxpn)−Z12(kxpn)V2(kxpn)

Z ′
det(kxpn)

sinc

(
kxpn∆

2

)
(5.69)

Y2,res,pn =− j
Z11(kxpn)V1(kxpn)−Z21(kxpn)V2(kxpn)

Z ′
det(kxpn)

sinc

(
kxpn∆

2

)
. (5.70)

With these definitions we may define kav
xp as follows

kav
xp = kxp1

|Yres,p1|
|Yres,p1|+ |Yres,p2|

+kxp2
|Yres,p2|

|Yres,p1|+ |Yres,p2|
, (5.71)

Note that the input admittance is practically equal the current at x = 0. Therefore, the poles are essentially
weighted by the amplitudes of the corresponding current waves.

The second approach consists of two steps. The first step is to use the formulation developed in Section
5.3.1 to obtain the contribution of both poles to the input admittance Y1 and Y2, corresponding to the currents
i1(x) and i2(x), as shown in the following expression

Ym,res = Ym,res,p1 +Ym,res,p2, (5.72)

where the contribution of each of the poles Ym,res,pn , is obtained using (5.69) or (5.70). The next step is to
define the following basis function

jt ,z (z) = Re−z/δp +ez−wz /δp (5.73)

to model the asymmetry in ẑ, where the ratio R is calculated as follows

R = |Y1,res|
|Y2,res|

. (5.74)

We will then use the formulation developed in Section 5.2.1 for a single basis function to obtain the character-
istic impedance and propagation constant, in which (5.73) is used as the transverse current distribution.
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Figure 5.9: Dispersion characteristics of a microstrip having metal thickness wz = 10µm, width wy = 10µm, constituted of a material

with conductivity σ= 107S/m and printed on a dielectric substrate having a thickness d = 10µm and permittivity εr = 11.9, obtained
from CST, using the planar formulation in [19], using the symmetric basis function in (5.26), using the asymmetric basis function in

(5.73), and by averaging the poles as in (5.71), with (a) the attenuation constant, and (b) the effective dielectric permittivity

5.3.4. Validation CST
To validate both approaches, described in Section 5.3.3, a microstrip has been simulated, having a width wy =
10µm and a metal thickness wz = 10µm, constituted of a material with conductivity σ = 107S/m, printed on
a dielectric substrate having a thickness d = 10µm and permittivity εr = 11.9. Fig. 5.9a shows the attenuation
along the microstrip in dB/λ0, where the dashed line denotes the attenuation constant, obtained using the
single symmetric basis function defined in (5.26), the solid line denotes the attenuation constant obtained,
using the asymmetric basis function, defined in (5.73) and the dotted line denotes the attenuation constant,
obtained by averaging the poles as in (5.71). Moreover, the results, obtained from both CST and the planar
formulation of [19], have been plotted. As shown in Fig. 5.9a, using a symmetric basis function results in
a significant underestimation of the losses. The main reason is that the symmetric basis function of (5.26)
overestimates the area over which the current is distributed, which leads to a smaller current density and
therefore an underestimation of the losses. On the other hand, both averaging the poles as in (5.71) and using
the asymmetric basis function in (5.73) results in an attenuation constant that is comparable to CST. Finally, it
should be noted that the use of a planar formulation is not adequate to accurately estimate the losses for this
geometry.

Fig. 5.9b shows the effective permittivity for the same geometry as in Fig. 5.9a. Similar to before, using the
symmetric basis function in (5.26) results in an effective permittivity that is significantly too low. This result
can be understood as follows. The current on the bottom of the dipole is practically located at the interface
between the dielectric and the air region. Therefore, the effective permittivity of a current located on the
bottom of the strip is close to the average between the two regions. However, the current on the top is farther
away from the interface between the two regions. Therefore, the effective permittivity of a current located on
the top of the strip is closer to the permittivity of the air region. By considering both the current on the top
and bottom of the metal strip, the effective permittivity becomes lower compared to a formulation in which
all of the current is assumed to be located at the interface. Moreover, the influence of the current on the top
and bottom of the strip on the effective permittivity of the microstrip, depends on the ratio between the two
currents. Therefore, an overestimation of the current on the top of the metal strip results in an underestimation
of the effective permittivity of the microstrip. On the other hand, Fig. 5.9b shows that both averaging the
poles as in (5.71) and using the asymmetric basis function in (5.73) results in an effective permittivity that is
comparable to CST. Similar to before, the use of a planar formulation is not adequate to accurately estimate
the effective permittivity for this geometry.

5.3.5. Validation Rautio
As shown in Figs. 5.9a and 5.9b, the losses and the effective permittivity, obtained by the procedures, explained
in Section 5.3, correspond well with the results from CST. Nevertheless, the accuracy of the CST simulations
is difficult to assess, because the discretization, used during the simulation, is relatively large with respect to
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Figure 5.10: Losses in dB of a microstrip, having a length l = 6.8mm, a width wy = 51µm and a metal thickness wz = 9µm, constituted of

a material with conductivity σ= 3.42 ·107S/m, printed on a dielectric substrate having a thickness d = 75µm and permittivity εr = 12.9
with (a) the measurements from [22] and (b) the results obtained by the procedures, explained in Section 5.3.3

the penetration depth. To perform a more reliable validation, we have compared the losses, obtained by the
spectral techniques, developed in this thesis, with the measurements in [22] of a microstrip, having a length
l = 6.8mm, a width wy = 51µm and a metal thickness wz = 9µm, constituted of a material with conductivity
σ = 3.42 · 107S/m, printed on a dielectric substrate, having a thickness d = 75µm and permittivity εr = 12.9.
While Fig. 5.10a shows the measured losses from [22], Fig.5.10b shows the losses, obtained by the spectral
techniques, described in the previous sections. Fig.5.10b shows that the use of a symmetric basis function is
not adequate to correctly estimate the losses along the microstrip. Using a single asymmetric basis function,
on the other hand, results in a better estimation of the losses. Finally, the losses, obtained by averaging the two
poles, correspond quite well with the measurements in [22]. Nevertheless, it is not entirely clear, whether this
approach is fully justified. Since the procedure of using a single asymmetric basis function simply calculates
the losses, associated to a current distribution with different amplitudes on both sides of the conductor, this
approach should be considered the more justified procedure. Unfortunately, this procedure does not recon-
struct the measurements in [22] perfectly. Hence, it may be necessary to consider alternative shapes to model
the transverse current distribution.
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6
Equivalent circuit characterization of a

microstrip

In Chapters 4 and 5, we have developed a spectral domain formulation that allows us to characterize printed
transmission lines in the presence of an arbitrary stratification, taking into account the nonzero thickness of
the conductors. The relevant parameters of the transmission line can then be extracted from the polar singu-
larities in the spectrum of the current. However, to obtain the total input admittance of the transmission line,
we still have to perform the full integral in (4.59). To accelerate the convergence of the integral in (4.59), we
may extract two dominant contributions of the current spectrum I (kx ): the dynamic part and the asymptotic
part. The dynamic part refers to the lower portion of the spectrum, which is dominated by the polar singular-
ities. Therefore, it is possible to approximate this part of the spectrum by a Taylor expansion around the pole
kxp . This approximation enables an analytical evaluation of the inverse Fourier transform in (4.59).

The asymptotic part of the spectrum refers to the limit for kx tending to infinity, and is dominated by the
ky = 0 component of the spectrum. The extraction of the dynamic and asymptotic part of the spectrum will
enable an approximate evaluation of the input impedance through a simple equivalent circuit.

First, Section 6.1 discusses the dynamic part of the spectrum. Subsequently, Section 6.2 discusses the
asymptotic part of the spectrum. Finally, Section 6.3 introduces the equivalent circuit, which enables a simple
and efficient way to characterize the input admittance of the microstrip.

6.1. Dynamic part spectrum
The dynamic part of the spectrum I (kx ) refers to the portion of the spectrum that is related to small values of
kx . This part of the spectrum is dominated by the polar singularities and can therefore be approximated by a
Taylor expansion around the pole kxp , as shown in the following expression

Idyn(kx ) = 2kxp

D ′(kxp )(k2
x −k2

xp )
sinc

(
kx∆

2

)
. (6.1)

The spatial current, associated with the dynamic part of the spectrum, can be calculated as the following in-
verse Fourier transform

idyn(x) = 1

2π

∞∫
−∞

2kxp

D ′(kxp )(k2
x −k2

xp )
sinc

(
kx∆

2

)
e− j kx x dkx . (6.2)

By closing the integral in (6.2) analytically, we obtain the following expressions

idyn(|x| > ∆

2
) =− j

D ′(kxp )
sinc

(
kxp∆

2

)
e− j kxp |x| (6.3)

idyn(|x| < ∆

2
) = 1

∆

1

D ′(kxp )

1

kxp
(2−2cos(kxp )e− j kxp∆/2), (6.4)
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Figure 6.1: (a) The current spectrum I (kx ) of a microstrip, having a metal thickness wz = 1µm and width wy = 20µm, constituted of a

material with conductivity σ= 4.1 ·107S/m, printed on a dielectric, having a thickness d = 10µm and permittivity εr = 4.3, and its Taylor
approximation defined in (6.2), and (b) the relative error of the Taylor approximation defined in (6.2) with respect to I (kx )

where (6.3) is valid for observation points outside the source region, and (6.4) is valid for observation points
inside the source region. From (6.3) it becomes clear that outside the source region, the dynamic part of the
spectrum is associated with a quasi-TEM wave launched into the microstrip. On the other hand, inside the
source region, the dynamic current idyn(x) contains an additional term, associated to a stationary field distri-
bution, localized inside the source region.

To assess the accuracy of the approximation in (6.2), the dynamic part of the spectrum has been calculated
for a microstrip, having a width wy = 20µm and a metal thickness wz = 1µm, constituted of a material with
conductivity σ = 4.1 ·107S/m, printed on a dielectric substrate having a thickness d = 10µm and permittivity
εr = 4.3. Fig. 6.1a shows the comparison between the spectrum I (kx ) and the Taylor approximation defined in
(6.2). Moreover, Fig. 6.1b shows the error, committed when approximating I (kx ) by the Taylor approximation,
defined in (6.2). Clearly, for values of kx close to the pole kxp , the Taylor approximation provides an excellent
reconstruction of the spectrum I (kx ). On the other hand, the error increases for values of kx that are more
distant from the pole kxp . However, the dynamic part of the spectrum is dominated by the polar singularity.
Therefore, the error, committed for values of kx that are more distant from kxp , will have a small impact on the
integral in (6.3).

6.2. Asymptotic part spectrum
As mentioned before, to obtain the input admittance of the microstrip, we have to perform the full integral in
(4.59). To accelerate the evaluation of (4.59) it is convenient to extract the asymptotic part of the spectrum,
which approximates I (kx ) for large values of kx . This extraction is particularly useful when the integrand in
(4.59) is slowly converging at infinity, i.e. for small gap size. To find an approximation of I (kx ) for large values
of kx , we will first express the sinc-function, as the following Fourier transform

sinc

(
ky wy

2

)
= 1

wy

wy /2∫
−wy /2

e j ky y ′
d y ′ = 1

wy

 ∞∫
∞

e j ky y ′
d y ′−

−wy /2∫
−∞

e j ky y ′
d y ′−

∞∫
wy /2

e j ky y ′
d y ′

 , (6.5)

By recognizing the first term on the right-hand side of (6.5) as the Fourier transform of a constant function,
(6.5) can be expressed as follows

sinc

(
ky wy

2

)
= 1

wy

2πδ(ky )−
−wy /2∫
−∞

e j ky y ′
d y ′−

∞∫
wy /2

e j ky y ′
d y ′

 , (6.6)
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where δ(ky ) denotes Dirac’s delta. By substituting (6.6) into (5.1), the longitudinal spectral Green’s function
D(kx ) can be expressed as the summation of three components, as shown in the following expression

D(kx ) = D1(kx )+D2(kx )+D3(kx ), (6.7)

where D1(kx ), D2(kx ) and D3(kx ) are given by the following expressions

D1(kx ) = 1

wy

wz∫
0

wz∫
0

Ge j
xx (kx ,ky = 0, z, z ′)Jt (ky = 0, z ′)Jt (z)d z d z ′ (6.8)

D2(kx ) = 1

wy

wy /2∫
−∞

∞∫
−∞

wz∫
0

wz∫
0

Ge j
xx (kx ,ky , z, z ′)Jt (ky , z ′)Jt (ky , z)d z d z ′dky e j ky y ′

d y ′ (6.9)

D3(kx ) = 1

wy

∞∫
wy /2

∞∫
−∞

wz∫
0

wz∫
0

Ge j
xx (kx ,ky , z, z ′)Jt (ky , z ′)Jt (ky , z)d z d z ′dky e j ky y ′

d y ′. (6.10)

The term D1(kx ) is dominant for large values of kx . To understand the reason, we will note that the terms
D2(kx ) and D3(kx ) represent the electric field at observation points |y | > wy /2, radiated by a continuous su-
perposition of current lines located in the region y ∈ [−wy /2, wy /2], z ∈ [0, wz ], that are propagating along x
with a wavenumber kx . For large values of kx , each current line radiates only evanescent field contributions.
Therefore, the contributions of D2(kx ) and D3(kx ) tend to zero in the limit kx →∞. By using the exponential
distribution, defined in (5.26), the asymptotic approximation becomes as follows

D∞(kx ) =− 1

wy

wz∫
0

V +
TM,upper

e−z ′/δp −e−wz /δp e− j kz0(wz−z ′)

j kz0 +1/δp

e−(w z−z ′)/δp −e− j kz0(wz−z ′)

j kz0 −1/δp
d z ′−

1

wy

wz∫
0

V +
TM,upper

e−z ′/δp −e− j kz0z ′

j kz0 −1/δp

e−w z−z ′/δp −e−wz /δp e− j kz0z ′

j kz0 +1/δp
d z ′−

1

wy

wz∫
0

ΓT M V +
TM,lower

e− j kz0z ′ −e−z ′/δp e−2 j kz0z ′

j kz0 +1/δp

e−wz /δp e− j kz0z ′ −e−2 j kz0z ′e−(w z−z ′)/δp

j kz0 −1/δp
d z ′.

(6.11)

To assess the accuracy of the approximation in (6.11), we have calculated the longitudinal spectral Green’s
function D(kx ) and the asymptotic approximation D∞(kx ) for a microstrip, having a metal thickness wz = 1µm
and width wy = 20µm, constituted of a material with conductivityσ= 4.1·107S/m, printed on a dielectric sub-
strate, having a thickness d = 10µm and permittivity εr = 4.3. Fig. 6.2 shows the relative difference between the
longitudinal spectral Green’s function D(kx ) and the asymptotic approximation D∞(kx ) versus the normalized
spectral wavenumber kx . At kx = 500k0, the relative difference between D(kx ) and D∞(kx ) is roughly 1.2%. It
should be noted that the integral in (4.39) needs to be extended until kx = 20000 to achieve an error of about
1% if the gap size ∆ is in the order of λ0/1000.

6.3. Equivalent circuit
In this section we will introduce an equivalent circuit for characterizing the input impedance of a microstrip,
printed on an electrically thin dielectric substrate. Referring to the discussion in Section 6.1, we can define the
dynamic impedance, i.e. the impedance associated to the dynamic part of the spectrum, as follows

Ydyn =− 1

2π

∞∫
−∞

2kxp

D ′(kxp )(k2
x −k2

xp )
sinc2

(
kx∆

2

)
dkx . (6.12)

By closing the integral in kx analytically, we obtain the following expression

Ydyn = Yres +Ydyn,src, (6.13)

where Yres is defined as follows

Yres =− j

D ′(kx )
sinc2

(
kxp∆

2

)
, (6.14)
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Figure 6.2: Relative error committed by approximating D(kx ) by D∞(kx ) for a microstrip, having a metal thickness wz = 1µm and width
wy = 20µm, constituted of a material with conductivity σ= 4.1 ·107S/m, printed on a dielectric, having a thickness d = 10µm and

permittivity εr = 4.3

and Ydyn,src is given by the following expression

Ydyn,src =
1

∆

1

D ′(kxp )

2

kxp
(sinc(kxp∆)−1). (6.15)

The term Ydyn,src is associated with the reactive current localized inside the source region. On the other hand,
the term Yres denotes the input admittance that is associated with the quasi-TEM wave launched into the mi-
crostrip. Referring to the discussion in Section 4.1.3, we may interpret the term − j /D ′(kx ) as the contribution
from two parallel transmission lines, each having the characteristic impedance, defined in (4.61). The term
sinc2

(
kxp∆/2

)
can then be interpreted as a transformer with turn ratio

n = sinc

(
kxp∆

2

)
. (6.16)

To investigate the properties of Yres, we have calculated both Yres and Yin for a microstrip, having a metal
thickness wz = 1µm and width wy = 20µm, constituted of a material with conductivityσ= 4.1·107S/m, printed
on a dielectric substrate with permittivity εr = 4.3, for varying thickness of the substrate. Fig. 6.3a shows the
comparison between the real part of Yin, obtained by performing the full integral of (4.59) and the real part
of Yres. From Fig. 6.3a, it becomes apparent that, for electrically thin dielectric substrates, i.e. d < λ0/40,
Yres dominates the real part of the input admittance. On the other hand, when the thickness of the dielectric
substrate is large in terms of the wavelength, the gap directly contributes to radiation in the form of surface
waves launched along the microstrip or in the form of direct free space radiation. Therefore, in this section,
we will only consider microstrips, printed on electrically thin dielectric substrates. It should be noted that
the influence of the metal thickness on the characteristic impedance of the microstrip mostly depends on the
ratio between the metal thickness and the distance between the main conductor and the ground plane [20].
Therefore, the formulation developed in Chapters 4 and 5 is also the most relevant in the case of electrically
thin dielectric substrates.

Considering the interpretation, suggested above, in which Yres is interpreted as the contribution from two
infinitely long transmission lines, connected to a transformer, we may define the gap admittance as follows

Ygap = Yin −Yres (6.17)

Considering the property Re(Yin) ≈ Re(Yres), the gap admittance Ygap will then be almost entirely imaginary.
After obtaining the location of the pole kxp , the characteristic impedance Z0 and the turn ratio n of the

transformer can be calculated analytically. However, evaluating the gap admittance Ygap still requires the full
integral. To provide an approximation of Ygap, that can be evaluated without excessive computational cost, we
will resort to the asymptotic approximation, derived in Section 6.2. To this extent, we will define the quasi-
static input admittance as follows

Yqs = 1

2π

∞∫
−∞

I∞
(
sinc2

(
kx∆

2

)
− sinc2

(
kx∆large

2

))
dkx , (6.18)
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(a) (b)

Figure 6.3: (a) The comparison between the real part of Yin and Yres for a microstrip, having a width wy = 20µm and metal thickness

wz = 1µm, constituted of a material with conductivity σ= 4.1 ·107S/m, printed on a dielectric substrate with permittivity εr = 4.3, for
varying thickness of the substrate, and (b) the equivalent circuit representation of the input admittance

where I∞ denotes the asymptotic part of the spectrum, obtained by replacing D(kx ) by its asymptotic approxi-
mation D∞(kx ), defined in (6.11). Note that the asymptotic part of the spectrum is multiplied by sinc2(kx∆/2)−
sinc2(kx∆large/2) instead of sinc2(kx∆/2), where∆large is an artificially introduced parameter. The reason is that
D∞(kx ) approximates D(kx ) well for large values of kx . Therefore, the term sinc2(kx∆/2)− sinc2(kx∆large/2)
represents a spectral windowing function, which only selects the large values of kx . The optimal value for
∆large to reconstruct the gap admittance has been chosen to be 4d/

p
εeff, where d denotes the thickness of the

dielectric substrate and εeff denotes the effective permittivity of the microstrip.
With the definition in (6.18), the gap admittance Ygap can be represented as the summation of three terms,

as shown in the following expression
Ygap = Yqs +Ydyn,src +Yr , (6.19)

where the residual admittance is expressed as follows

Yr = 1

2π

∞∫
−∞

(
I (kx )− 2kxp

D ′(kxp )(k2
x −k2

xp )

)
sinc2

(
kx∆

2

)
− I∞

(
sinc2

(
kx∆

2

)
− sinc2

(
kx∆large

2

))
dkx . (6.20)

Neglecting the residual admittance Yr , we obtain the equivalent circuit, shown in Fig. 6.3b.
To assess the accuracy of the equivalent circuit in Fig. 6.3b, we have calculated the input admittance of a

microstrip, having a width wy = 30µm, constituted of a material with conductivity σ= 4.1 ·107S/m, printed on
a dielectric substrate, having a thickness d = 10µm and permittivity εr = 4.3, for a metal thickness wz = 1µm
or wz = 4µm and varying gap length∆. Figs. 6.4a and 6.4b show the imaginary part of the gap admittance Ygap,
obtained from the definition of (6.15), together with the imaginary part of gap admittance, obtained from the
equivalent circuit in Fig. 6.3b, i.e. the summation of Yqs and Ydyn,src, for wz = 1µm and wz = 4µm, respectively.
Moreover, to emphasize the importance of including the quasi-static, the imaginary part of Ydyn,src is shown
as well. As shown in Figs. 6.4a and 6.4b, the gap admittance is reconstructed well by the two terms Yqs and
Ydyn. Therefore, the integral in (6.20), will rarely have to be performed. Moreover, Fig. 6.4a shows that for small
gap length, the imaginary part of the gap admittance is dominated by the quasi-static input admittance Yqs.
Finally, Fig. 6.4c shows the computation times of the full integral in (4.59) and the equivalent circuit in Fig. 6.3b,
for the microstrips in Figs. 6.4a and 6.4b. As shown in Fig. 6.4c, the computation time of the equivalent circuit
is almost two orders of magnitude smaller than the computation time of the full integral of (4.59). Moreover, it
should be noted that CST cannot simulate the structures in Figs. 6.4a and 6.4b, taking into account the nonzero
thickness of the conductors, due to the large aspect ratio of the metal strip.
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(a) (b)

(c)

Figure 6.4: Imaginary part of the gap admittance Ygap of a microstrip, having a width wy = 30µm, constituted of a material with

conductivity σ= 4.1 ·107S/m, printed on a dielectric substrate, having a thickness d = 10µm and permittivity εr = 4.3, obtained from the
definition of (6.15), and obtained from the equivalent circuit in Fig. 6.3b, i.e. the summation of Yqs and Ydyn,src, for (a) a metal thickness
wz = 1µm, and (b) a metal thickness wz = 4µm, and (c) the computation times of the full integral in (4.59) and the equivalent circuit in

Fig. 6.3b, for the dipoles in Figs. 6.4a and 6.4b
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7
Leaky structure

As mentioned in the introduction, this thesis is embedded in the main research line, carried out in the THz
Sensing group, to develop a dedicated 3D MoM for the analysis of integrated lens antennas. The goal of the
overall project, is to develop a strategy to separate the contribution of the metallic feed in the presence of a
semi-infinite dielectric region from the contribution due to the reflections inside the dielectric lens. Within
the scope of this overall project, the purpose of the spectral domain formulation, developed in Chapters 4 and
5, is to characterize the thin metallic feed of the lens antenna. To this extent, the spectral domain formulation
has been extended to study an infinitely long dipole with height wz and width wy , located at a distance hgap

from a semi-infinite dielectric region, as shown in Fig.7.1.

7.1. Transverse integration path
The derivation of the longitudinal spectral Green’s function D(kx ), for the leaky structure in Fig. 7.1, is similar
to the case of the microstrip and is reported in Appendix I. Moreover, the total current i (x) and the residual
current ires(x) can still be calculated with (4.39) and (4.40), while the characteristic impedance Z0, the effec-
tive permittivity εeff, and the attenuation constant α can be obtained from (4.61), (4.62) (4.63). However, the
dominant mode along the dipole is now associated to a leaky wave pole kxp , as opposed to the bounded mode
of the microstrip in Chapter 5. Since the leaky wave pole radiates into the dense medium, it is located on the
bottom Riemann sheet with respect to k2, i.e. the wavenumber of the dense medium. Moreover, as the dis-
tance between the dipole and the interface between the two regions increases, the phase constant of the leaky
wave pole may decrease below k1. In such cases, the physically significant leaky wave pole kxp is also located
on the bottom Riemann sheet with respect to k1. Since the different Riemann sheets can be entered through
a proper choice of the transverse integration path [18], care has to be taken, when deciding on the integration
path in the transverse spectral plane.

To be more explicit, Figs.7.2a and 7.2b show the complex plane topology of the longitudinal spectral wavenum-
ber kx and the complex plane topology of the transverse spectral wavenumber ky , where the branch points kt ,i

in the transverse spectral plane are given by the following expression

kt ,i =
√

k2
i −k2

x . (7.1)

The branch points in the longitudinal spectral plane are located at kx = ±ki , and start off the branch cuts,

arising from the square roots kz,i =
√

k2
i −k2

ρ . The solutions of the square root are given by the following
expression

kz,i =
√

k2
i −k2

ρ =
− j

√
k2
ρ −k2

i

+ j
√

k2
ρ −k2

i ,
(7.2)

where the first solution is located on the top Riemann sheet with respect to ki , and the second solution is
located on the bottom Riemann sheet with respect to ki . As mentioned before, the pole kxp is a leaky wave pole
and is therefore always located on the bottom Riemann Sheet with respect to k2. Moreover, if the condition
Re(kxp ) ≥ Re(k1) is satisfied, the physically significant leaky wave pole is located in region II in the longitudinal
spectral plane and is therefore located on the top Riemann sheet with respect to k1. On the other hand, if the
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Figure 7.1: Infinite dipole with height wz , width wy , constituted of a material with conductivity σ, located at a distance hgap from a semi-
infinite dielectric region with permittivity εr , oriented along the x-axis and excited by a delta-gap excitation of length ∆

condition Re(kxp ) ≤ Re(k1) is satisfied, the physically significant leaky wave pole is located in region III and
is therefore located on the bottom Riemann sheet with respect to k1. Consequently, the correct integration
path in the transverse spectral plane, depends on the phase constant of the leaky wave pole. Figs.7.3a and
7.3b illustrate the correct integration paths to enter region II and region III in the longitudinal spectral plane,
respectively [18], where Fig.7.4b indicates the correct Riemann sheets with respect to k1 and k2 to calculate
each contour integral.

Although the integration paths, shown in Figs.7.3a and 7.3b allow us to enter the correct region in the
longitudinal spectral plane, their implementations are inconvenient, when performing the contour integrals
numerically. Fortunately, the integration paths in Figs.7.3a and 7.3b can be performed in an equivalent, but
more convenient manner [18], as illustrated in Fig.7.4a. By invoking Cauchy’s integral theorem [41], we obtain
the following expression ∫

C1

f (kz )dkz +
∫

C2

f (kz )dkz +
∫

C3

f (kz )dkz = 0. (7.3)

By rearranging the terms in (7.3), we obtain the following expression∫
C1

f (kz )dkz =−
∫

C2

f (kz )dkz −
∫

C3

f (kz )dkz . (7.4)

Consequently, the contour integral over C1 can equivalently be calculated by performing the integral over the
real axis and subtracting the contour integral over C2. By applying, this procedure to the integration paths in
Figs.7.3a and 7.3b, we obtain the equivalent integration paths, illustrated in Figs.7.5a and 7.5b.

7.2. Verification
To illustrate the procedure, and to verify the validity of the transverse integration paths, discussed in the pre-
vious section, we have calculated the total current i (x) and the residual current ires(x) for a dipole with metal
thickness wz = 1µm and width wy = 30µm, constituted of a material with conductivity σ = 4.1 ·107, at a fre-
quency f = 300GHz. Fig.7.6a shows the total current i (x) and the residual current ires(x), when the dipole is
printed directly on top of the dielectric medium. On the other hand, Fig.7.6b shows the total current i (x) and
the residual current ires(x), when the dipole is located at a distance hgap = 10µm from the dielectric medium.
Figs.7.6a and 7.6b show that the residual current ires(x) resembles the total current i (x) well at larger distance
from the source. Hence, we have indeed captured the physically significant leaky wave pole.
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(a) (b)

Figure 7.2: Complex plane topology of the leaky structure in Fig. 7.1 (a) for the longitudinal spectral wavenumber kx and (b) for the
transverse spectral wavenumber ky

(a) (b)

Figure 7.3: Transverse integration path to obtain a leaky wave pole (a) located in region II in the longitudinal spectral plane, and (b)
located in region III in the longitudinal spectral plane

7.3. Parametric analysis
As mentioned before, the purpose of the spectral domain formulation is to characterize the thin metallic feed
of the lens antenna in the presence of a semi-infinite dielectric region. To gain more insight into the dispersion
properties of this structure, a parametric analysis has been performed versus the relevant dimensions of the
dipole, both in the case of a dipole, printed directly on top of the dielectric region and for a dipole, located at a
distance hgap = 10µm from the interface between the two regions.

Fig. 7.7a shows the characteristic impedance of a dipole, having a thickness wz = 1µm, constituted of a
material with conductivity σ = 4.1 ·107S/m, directly printed on top a semi-infinite dielectric region with per-
mittivity εr = 11.9, for varying width of the dipole. Fig. 7.7a shows that the characteristic impedance decreases,
when the width of the dipole is increased. On the other hand, Fig. 7.7b shows the characteristic impedance
of a dipole, having a width wy = 20µm, constituted of a material with conductivity σ = 4.1 ·107S/m, printed
on a semi-infinite dielectric region with permittivity εr = 11.9, for varying thickness of the dipole. Fig. 7.7b
shows that the characteristic impedance increases, when the thickness of the dipole is increased. Moreover,
the characteristic impedance has an almost constant imaginary part, associated to the radiative nature of the
leaky wave pole.

Fig. 7.8a and 7.8b show the effective permittivity of a dipole with the same dimensions and material param-
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(a) (b)

Figure 7.4: (a) Application of Cauchy’s integral theorem [41] in the transverse spectral plane to obtain a more convenient integration
path, and (b) a legend which shows the correct Riemann sheet for each integration path

(a) (b)

Figure 7.5: Equivalent integration path to obtain a leaky wave pole (a) located in region II in the longitudinal spectral plane, and (b)
located in region III in the longitudinal spectral plane

eters as in Fig. 7.7a and 7.7b, respectively. Fig. 7.8a shows that the effective permittivity increases, when the
width of the dipole is increased. On the other hand, Fig. 7.8b shows that the effective permittivity decreases,
when the thickness of the dipole is increased. This observation can be understood by the same argument given
in Section 5.2.3. A current on the bottom of the dipole is flowing at the interface between the dielectric and
the air region and will therefore have an effective permittivity that is close to the average of the two regions.
On the other hand, a current on the top of the dipole is located farther away from the interface and will have
a lower effective permittivity. By considering both the current on the top and the bottom of the dipole, the
effective permittivity becomes larger compared to a formulation in which all of the current is assumed to be
at the interface between the two regions. Consequently, if the thickness of the metal is increased, the current
on the top of the dipole moves farther away from the interface of the two regions, which decreases the overall
effective permittivity.

Figs. 7.9a and 7.9b show the attenuation constant of a dipole with the same dimensions and material pa-
rameters as in Figs. 7.7a and 7.7b, respectively. Fig. 7.9a shows that the attenuation constant increases, when
the width of the dipole is increased. Fig. 7.9b shows that the attenuation constant increases when the thickness
of the dipole is increased. This can be understood through a similar argument as before. While a current on
the bottom of the dipole is flowing at the interface between the dielectric region and the air region, a current
on the top of the dipole is located at a distance wz from the interface between the two regions. This effect is
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(a) (b)

Figure 7.6: Total current i (x) and residual current ires(x) of a dipole, having a metal thickness wz = 1µm and width wy = 30µm,

constituted of a material with conductivity σ= 4.1 ·107, (a) directly printed on top of a semi-infinite dielectric region with permittivity
εr = 11.9, and (b) located at a distance hgap = 10µm from a semi-infinite dielectric region with permittivity εr = 11.9

(a) (b)

Figure 7.7: Characteristic impedance of a dipole, constituted of a material with conductivity σ= 4.1 ·107S/m, directly printed on top of a
semi-infinite dielectric region with permittivity εr = 11.9, (a) for a thickness wz = 1µm and varying width of the dipole, and (b) for a

width wy = 20µm and varying thickness of the dipole

similar to adding an extremely small air gap, which increases the leakage into the denser medium. By con-
sidering both the current on the top and the bottom of the dipole, the overall attenuation constant becomes
lower compared to a formulation in which all of the current is assumed to be at the interface between the two
regions. Consequently, if the thickness of the metal is increased, the current on the top of the dipole moves
farther away from the interface of the two regions, which increases the overall attenuation constant. It should
be noted that Fig. 7.8b is obtained, assuming a symmetric transverse current distribution. Similar to the mi-
crostrip, the actual current distribution is asymmetric in ẑ. Therefore, Fig. 7.8b might overestimate the effect
of the thickness on the attenuation constant.

Figs. 7.10a and 7.10b show the characteristic impedance of a dipole with the same dimensions and material
parameters as in Figs. 7.7a and 7.7b, respectively. However, the dipole is now located at a distance hgap = 10µm
from a semi-infinite dielectric region with permittivity εr = 11.9. Similar to before, Fig. 7.10a shows that the
characteristic impedance increases, when the width of the dipole is increased. Moreover, Fig. 7.10b shows that
the characteristic impedance slightly decreases, when the thickness of the dipole is increased.

Figs. 7.11a and 7.11b show the effective permittivity of a dipole with the same dimensions and material
parameters as in Figs. 7.10a and 7.10b, respectively. Fig. 7.11a shows that the effective permittivity increases,
when the width of the dipole is increased. On the other hand, Fig. 7.11b shows that the effective permittivity
slightly decreases, when the thickness of the dipole is decreased. However, the dependence of the effective
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(a) (b)

Figure 7.8: Effective permittivity of a dipole, constituted of a material with conductivity σ= 4.1 ·107S/m, directly printed on top of a
semi-infinite dielectric region with permittivity εr = 11.9, (a) for a thickness wz = 1µm and varying width of the dipole, and (b) for a

width wy = 20µm and varying thickness of the dipole

(a) (b)

Figure 7.9: Attenuation constant of a dipole, constituted of a material with conductivity σ= 4.1 ·107S/m, directly printed on top of a
semi-infinite dielectric region with permittivity εr = 11.9 (a) for a thickness wz = 1µm and varying width of the dipole, and (b) for a width

wy = 20µm and varying thickness of the dipole

permittivity on the thickness of the dipole is much weaker, compared to Fig. 7.8b. The reason is that the dipole
is already located at a distance hgap = 10µm from the interface between the two regions. Consequently, the
influence of the thickness of the dipole on the effective permittivity is much smaller.

Figs. 7.12a and 7.12b show the attenuation constant of a dipole with the same dimensions and material
parameters as in Fig. 7.10a and 7.10b, respectively. Fig. 7.12a shows that the attenuation constant increases,
when the width of the dipole is increased. On the other hand, Fig. 7.12b shows that the attenuation constant
slightly decreases, when the thickness of the dipole is decreased. However, the dependence of the attenuation
constant on the thickness of the dipole is much weaker, compared to Fig. 7.9b. This observation can be un-
derstood through a similar argument as before. Since the dipole is already located at a distance hgap = 10µm
from the interface between the two regions, the influence of the thickness of the dipole on the leakage into the
denser medium is much smaller than in Fig. 7.9b.
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(a) (b)

Figure 7.10: Characteristic impedance of a dipole, constituted of a material with conductivity σ= 4.1 ·107S/m, located at a distance
hgap = 10µm from a semi-infinite dielectric region with permittivity εr = 11.9, (a) for a thickness wz = 1µm and varying width of the

dipole, and (b) for a width wy = 20µm and varying thickness of the dipole

(a) (b)

Figure 7.11: Effective permittivity of a dipole, constituted of a material with conductivity σ= 4.1 ·107S/m, located at a distance
hgap = 10µm from a semi-infinite dielectric region with permittivity εr = 11.9 (a) for a thickness wz = 1µm and varying width of the

dipole, and (b) for a width wy = 20µm and varying thickness of the dipole

(a) (b)

Figure 7.12: Attenuation constant of a dipole, constituted of a material with conductivity σ= 4.1 ·107S/m, located at a distance
hgap = 10µm from a semi-infinite dielectric region with permittivity εr = 11.9, (a) for a thickness wz = 1µm and varying width of the

dipole, and (b) for a width wy = 20µm and varying thickness of the dipole
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8
Conclusion

8.1. Summary and conclusion
The main goal of this thesis was concerned with the development of a spectral domain formulation to char-
acterize printed transmission lines in the presence of an arbitrary stratification, taking into account the non-
zero thickness of the conductors. In particular, this formulation has been demonstrated by studying one of the
most common transmission line topologies: the microstrip. Since this thesis project is embedded in the main
research line of the MoM development, carried out in the THz Sensing group, with the goal of developing a
strategy to separate the contributions due to the feeding structure and the reflections inside the lens antennas,
we have subsequently used this spectral domain formulation to gain more insight into the dynamic behaviour
of dipoles in the presence of a semi-infinite dielectric region. In addition, we have continued the development
of the Volumetric Method of Moments (V-MoM).

As mentioned before, the thesis work was embedded in the main research line of the THz Sensing group
on the development of a MoM tool. Therefore, Chapter 2 has provided an overview of the V-MoM, devel-
oped in [14]. The V-MoM solves the Electric Field Integral Equation (EFIE), obtained by invoking the volume
equivalence theorem [24]. To this extent, the EFIE is discretized using a structured grid consisting of piece-
wise constant basis functions. By applying the Method of Moments [26], the integral equation is converted
to a matrix equation, which is solved using an iterative technique called the Conjugate Gradient Fast Fourier
Transform (CG-FFT).

Next, Chapter 3 has described the optimization of the V-MoM in terms of accuracy and computation time.
The computation time of the V-MoM has been reduced by removing "flip" operations, taking advantage of the
properties of the FFT, by optimizing the memory allocation during the simulation, and by reducing the number
of FFTs, performed by the CG-FFT. These optimizations have reduced the total computation time by roughly
60%. Moreover, we have introduced a procedure to enhance the accuracy of the solution when simulating
geometries that are not well-represented by the structured grid. This procedure refines the representation of
the scatterer by averaging the permittivity of the voxels that are located at the boundary of the scatterer. Finally,
we have implemented a more accurate procedure to calculate the reaction integrals. This procedure is based
on a reduction from volume to surface integrals [23], and allows us to calculate the resulting integrals up to
machine precision.

The core of the thesis work started in Chapter 4. This chapter introduced the spectral domain formulation
that allows us to study infinitely long printed transmission lines, taking into account the non-zero thickness
of the conductors. This formulation is based on the local form of Ohm’s law and has been introduced by
studying a dipole located in free space. By approximating the exponential decay inside the dipole with the
Leontovich boundary condition [25], an expression has been obtained for the spectrum of the longitudinal
current distribution. Subsequently, the relevant parameters of the transmission line have been extracted from
the polar singularities in the spectrum. In particular, the residue contribution of the input admittance has
been interpreted as the contribution from two infinitely long transmission lines. This interpretation has been
substantiated by demonstrating its resemblance with the characteristic impedance, obtained by defining the
voltage along the transmission line as the line integral of the transverse electric field. Moreover, the current,
obtained from this spectral domain formulation, has been shown to be in excellent agreement with CST.

In Chapter 5, the formulation, developed in Chapter 4, has been extended to allow the characterization of
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printed transmission lines in the presence of an arbitrary stratification. In particular, this formulation has been
used to study one of the most common transmission line topologies: the microstrip. To extend the formula-
tion, developed in Chapter 4, to arbitrary stratifications, the spectral domain Green’s function for stratified
media has been used. Since the spectral domain Green’s function for stratified media has a spectral depen-
dence in the transverse dimensions and a spatial dependence on z and z’, the projection in the y-direction
has been performed in the spectral domain, while the projection in the z-direction has been performed in the
spatial domain.

Subsequently, it has been shown that the assumption of a symmetric basis function is not congruent with
the asymmetric geometry of a microstrip. To represent the asymmetry of the microstrip accurately, the trans-
verse current distribution has been expanded into two basis functions, each with an exponential decay, start-
ing from the bottom or the top of the metal strip. It has been shown that this procedure allows us to correctly
retrieve the current that is flowing on the bottom and the top of the metal strip. Moreover, the relevance of al-
lowing a different current on the bottom and the top of the microstrip has been demonstrated through a com-
parison between the propagation constant, obtained by assuming a symmetric current distribution, and the
propagation constant, obtained by expanding the transverse current distribution into two separate basis func-
tions. In particular, the assumption of a symmetric transverse current distribution leads to an overestimation
of the current on the top of the metal strip and consequently an underestimation of the attenuation constant
and the effective permittivity. On the other hand, by expanding the transverse current distribution into two
separate basis functions, we obtained an attenuation constant and effective permittivity that are in excellent
agreement with CST. Nevertheless, the comparison with the measurements from [22] showed a discrepancy
between the results obtained from the spectral techniques, developed in this thesis, and the measured results
from [22], even when a single asymmetric basis function was used to model the transverse current distribution.
Averaging the poles, however, resulted in a better reconstruction of the measurements in [22]. Nevertheless, it
is not clear, whether this approach is entirely justified. Therefore, it may be necessary to consider alternative
shapes to model the transverse current distribution.

Next, Chapter 6 has introduced an equivalent circuit representation to model the input impedance of a
microstrip, printed on an electrically thin dielectric substrate. This circuit representation is based on the ex-
traction of two dominant parts of the current spectrum: the dynamic part and the quasi-static part. The dy-
namic part of the spectrum refers to the portion of the spectrum that is related to small values of kx . This part
of the spectrum is dominated by the polar singularities and can be approximated by a Taylor approximation
around the pole. An analytical evaluation of the dynamic part of the spectrum shows that it comprises both
a quasi-TEM wave, launched along the microstrip, and a reactive current, associated with a stationary field
distribution, localized inside the gap. On the other hand, the asymptotic part of the spectrum refers to the
limit for kx tending to infinity and can be approximated by only retaining the ky = 0 component of the spec-
trum. By interpreting the quasi-TEM wave, launched along the microstrip, as the current along two infinitely
long transmission lines, connected to a transformer, we may define a gap impedance that is almost purely
imaginary. This gap impedance can then be decomposed into three parts: the impedance associated to the
stationary field, resulting from the dynamic part of the spectrum, the impedance associated to the reactive
currents, resulting from the asymptotic part of the spectrum, and a remaining part. The contribution of the
remaining part is usually negligible, rendering the evaluation of the circuit parameters numerically efficient.

Finally, in Chapter 7, the formulation, developed in Chapters 4 and 5, has been used to study a leaky struc-
ture containing a dipole in the presence of a semi-infinite dielectric region. This geometry is particularly rel-
evant with respect to the overall research line, carried out in the THz Sensing Group, as it allows us to obtain
a better understanding of the properties of the dynamic (i.e. radiating) component of the current in an effort
to isolate the contribution due to the reflections inside the lens. Since the leaky wave pole is located on the
bottom Riemann Sheet, the appropriate transverse integration path has been chosen to obtain the physically
significant leaky wave pole. A parametric analysis was then performed to gain insight into the properties of
the dynamic (i.e. radiating) currents along the dipole.

8.2. Future work
As mentioned in the introduction, representing the thin metallic feed of the lens antenna, with the V-MoM,
developed in [14], is a non-trivial task. This drawback is inherent to the V-MoM, developed in [14], and has two
underlying reasons. First of all, the use of a structured grid requires the same discretization level for the entire
geometry. Consequently, simultaneously simulating an electrically large lens, together with a thin metallic feed
would result in a linear system with such an extreme computational complexity, that it cannot be expected to
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Figure 8.1: Equivalent procedure to simulate a feed with realistic dimensions by simulating a feed with convenient dimensions together
with an adjusted conductivity σeff

be solved anywhere in the near future. Moreover, the system matrix, obtained by the V-MoM in [14], becomes
ill-conditioned when the permittivity of the scatterer becomes large with respect to the permittivity of the
background medium, a phenomenon referred to as the high-contrast (HC) breakdown [45].

To circumvent these problems, the overall goal in the THz Sensing group is to develop a strategy to separate
the characterization of the feeding structure and the lens antennas. Within the scope of this overall project,
the purpose of the spectral domain formulation, developed in Chapters 4, 5 and 7 is to characterize the thin
metallic feed in the presence of a semi-infinite dielectric region. The V-MoM, developed in [14], will then be
used to account for the reflections inside the dielectric lens [46]. This procedure will be explained in more
detail in the following paragraph.

The starting point of this procedure is the parametric analysis, performed in Chapter 7, which gives in-
sight into the dynamic behaviour of an infinitely long dipole in the presence of a semi-infinite dielectric strat-
ification. Equipped with an understanding of the dispersion characteristics of the dynamic (i.e. radiating)
components of the current, obtained from this analysis, the next step is to simulate the dielectric lens with
the V-MoM, developed in [14]. However, instead of simulating a feed with realistic dimensions, and using the
correct conductivity σ, we will simulate an auxiliary feed with more convenient dimensions and use an ad-
justed conductivity σeff, such that the propagation constant of the auxiliary feed is similar to the propagation
constant of the actual feed. This procedure is illustrated in Fig. 8.1.

Since the dynamic part of the input impedance is dominated by the quasi-TEM wave launched along the
dipole, this procedure will correctly reconstruct the dynamic part of the input impedance. On the other hand,
the asymptotic part of the input impedance is associated to the reactive fields, localized inside the gap, and
strongly depends on the dimensions of the dipole. However, since the asymptotic part of the input impedance
remains unaffected by the reflections inside the dielectric lens, we may use the spectral domain formulation,
developed in Chapters 4, 5 and 7, together with the extraction of the asymptotic part, described in Chapter 6,
to correct the asymptotic part of the input impedance. Since the total input input impedance is well approx-
imated by the two spectral components, this procedure should allow us to accurately reconstruct the input
impedance of the original dipole.
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A
Reduction volume to surface integrals

The reaction integrals are given by (3.20). By substituting the piece-wise constant basis functions, defined in
(2.10), into (3.20), and by reversing the order of integration, we obtain the following expression

Zmn =
Ñ

Vm

(
∇×∇×

Ñ
Vn

G0 (⃗r − r⃗ ′)p̂n dr⃗ ′
)
· p̂m dr⃗ , (A.1)

where Vn and Vm denote the volume of the source and observation region, respectively, and p̂n and p̂m denote
the corresponding polarization vectors. By using one of the vector calculus identities1, (A.1) can be expressed
as follows

Zmn =−
Ñ

Vm

∇·
(

p̂m ×∇×
Ñ

Vn

G0 (⃗r − r⃗ ′)p̂n dr⃗ ′
)

dr⃗ , (A.2)

where the term ∇× p̂m vanishes, since p̂m is a constant vector. By applying the divergence theorem2, (A.2)
becomes as follows

Zmn =−
Ó

Sm

(
p̂m ×∇×

Ñ
Vn

G0 (⃗r − r⃗ ′)p̂n dr⃗ ′
)
· n̂m dr⃗ , (A.3)

where Sm denotes the surface enclosing the volume Vm , and n̂m denotes the outward normal vector of the
surface Sm . By using one of the vector identities3 to permute the vectors in (A.3), one obtains

Zmn =−
Ó

Sm

(n̂m × p̂m) ·
Ñ

Vn

∇×G0 (⃗r − r⃗ ′)p̂n dr⃗ ′ dr⃗ (A.4)

By using another vector calculus identity4, (A.4) can be expressed as follows

Zmn =−
Ó

Sm

(n̂m × p̂m) · (
Ñ

Vn

∇G0 (⃗r − r⃗ ′)dr⃗ ′)× p̂n dr⃗ (A.5)

where the term ∇× p̂n vanishes since p̂n is a constant vector. By using the relation ∇G0 (⃗r − r⃗ ′) =−∇′G0 (⃗r − r⃗ ′)
[23], (A.5) can be expressed as follows

Zmn =−
Ó

Sm

(n̂m × p̂m) · (p̂n ×
Ñ

Vn

∇′G0 (⃗r − r⃗ ′)dr⃗ ′)dr⃗ (A.6)

1

∇· (A⃗× B⃗) = B⃗ ·∇× A⃗− A⃗ ·∇× B⃗

2 Ñ
V
∇· A⃗ dV =

Ó
S

A⃗ · n̂ dS

3

A⃗ · (B⃗ × C⃗ ) = B⃗ · (C⃗ × A⃗)

4

∇× (ψA) =ψ(∇× A)+ (∇ψ)× A
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Finally, by using one of the corollaries of the divergence theorem5, (A.6) can be expressed as follows

Zmn =−
Ó

Sm

(n̂m × p̂m) · (p̂n ×
Ó

Sn

∇′G0 (⃗r − r⃗ ′)n̂m dr⃗ ′)dr⃗ , (A.7)

where Sn denotes the surface enclosing the volume Vn , and n̂n denotes the outer normal vector of the surface
Sn . Note that the term ∇· p̂n vanishes, since p̂n is a constant vector. Since the source and observation domains
are cubes, (A.7) can be expressed as the summation in (3.22)

5 Ñ
V

A⃗∇ψdV =
Ó

S
A⃗ψ · n̂S −

Ñ
V
ψ∇· A⃗dV
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B
Gauss-Legendre

The Gauss-Legendre quadrature is a Gaussian quadrature to approximate the definite integral of a function
f (x). For the integration domain x ∈ [−1,1], the Gauss-Legendre rule can be expressed as follows

1∫
−1

f (x)d x ≈
n∑

i=1
wi f (xi ), (B.1)

where n denotes the number of Gauss-Legendre points, xi denotes the i th root of the Legendre polynomial
Pn(x), and the weights wi are given by the following expression [47]

wi = 2

(1−x2
i )(P ′

n(xi ))2
. (B.2)

The zeros of the Legendre polynomial can be found using the Newton-Raphson method with the following
initial guess [38]

xi ,guess = cos

(
π

2i −1

2n

)
+ 0.27

n
sin

(
π

(
2(i −1)

N
−1

)
N −1

N +1

)
(B.3)

For the integration domain x ∈ [a,b], we can apply the change of variables

x = b −a

2
u + a +b

2
(B.4)

In this case the integration rule becomes as follows

b∫
a

f (x)d x ≈ b −a

2

n∑
i=1

wi f

(
b −a

2
ui + a +b

2

)
, (B.5)

where ui denotes the i th root of the Legendre polynomial Pn(x).
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C
Newton-Raphson

To characterize the transmission line in terms of its characteristic impedance, attenuation constant and effec-
tive dielectric permittivity, the residue contribution has to be evaluated and the pole location of I (kx ) has to
be determined. The polar singularity of I (kx ) corresponds to the zero of the denominator of (4.17), which can
be expressed as follows

C (kx ) = ρ〈 jt (y, z), jt (y, z)〉A −D(kx ). (C.1)

The zero of (C.1) can be found through the Newton-Raphson method, which is a local root-finding algorithm.
The method is an iterative technique, which calculates the zero, through successive approximations, starting
with an initial guess kxp0. To find the subsequent approximation, C (kx ) is linearized around kxp0, as shown in
the following expression

C (kx ) ≈C (kxp0)+C ′(kxp0)(kx −kxp0). (C.2)

The subsequent approximation kxp1 is obtained by finding the zero of the linear approximation,

C (kxp0)+C ′(kxp0)(kxp1 −kxp0) = 0, (C.3)

which results in

kxp1 = kxp0 −
C (kxp0)

C ′(kxp0)
. (C.4)

By substituting (C.1) into (C.4), we obtain the following expression

kxp1 = kxp0 +
ρ〈 jt (y, z), jt (y, z)〉A −D(kxp0)

D ′(kxp0)
. (C.5)

This procedure can be applied in an iterative manner to yield the following expression

kxp,n+1 = kxp,n + ρ〈 jt (y, z), jt (y, z)〉A −D(kxp,n)

D ′(kxp,n)
. (C.6)

where kxp,n denotes the approximation of the pole kxp at iteration n. In general, it can be demonstrated that
for a continuously differentiable function, the Newton-Raphson method converges quadratically or faster[48].
Hence, it is not necessary that the initial guess point is very accurate.

87



D
Integral I

D.1. Integration rule
To find the longitudinal spectral Green’s functions, we have to perform the double integrals of (4.31), (4.32) and
(4.33). Fortunately, the integrals in kz can be closed analytically. To this extent, let us only consider the integral
in kz

I1,kz =
∞∫

−∞

sinc2(kz wz /2)

k2 −k2
x −k2

y −k2
z

dkz (D.1)

I2,kz =
∞∫

−∞

sinc2
(
kz (wz −2δp )/2

)
k2 −k2

x −k2
y −k2

z
dkz (D.2)

I3,kz =
∞∫

−∞

sinc
(
kz (wz −2δp )/2

)
sinc(kz wz /2)

k2 −k2
x −k2

y −k2
z

dkz . (D.3)

By using the definition of the sinc, i.e. sinc(x) = sin(x)/x, and by using the trigonometric identity sin2(x) =
(1−cos(2x))/2, (D.1) and (D.2) can be expressed as follows

I1,kz =
2

w2
z

∞∫
−∞

1−cos(kz wz )

k2
z (k2 −k2

x −k2
y −k2

z )
dkz (D.4)

I2,kz =
2

(wz −2δp )2

∞∫
−∞

1−cos(kz (wz −2δp ))

k2
z (k2 −k2

x −k2
y −k2

z )
dkz . (D.5)

Similarly, by using the trigonometric identity sin(x)sin(y) = (cos(x − y)−cos(x + y))/2, (D.3) can be expressed
as follows

I3,kz =
2

wz (wz −2δp )

∞∫
−∞

cos(δp )−cos(wz −δp )

k2
z (k2 −k2

x −k2
y −k2

z )
dkz . (D.6)

Apart from the constant in front, the integrals in (D.4), (D.5) and (D.6) can all be reduced to the following
integral

∞∫
−∞

cos(akz )−cos(bkz )

k2
z (k2

z −k2
zp )

dkz , (D.7)

where kzp = j
√

k2
x +k2

y −k2 and the constants a and b depend on the specific integral, i.e. a = 0 and b = kz wz

or b = kz (wz −2δp ) in case of (D.4) and (D.5), and a = δp and b = wz −δp in case of (D.6).
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Figure D.1: Complex plane of the function f (kz ), defined in (D.10), and integration contour consisting of the arcs CR, Cρ , L1 and L2

D.2. Change of variables
To close the integral in (D.7), we will first rewrite (D.7) as follows

∞∫
−∞

cos(akz )−cos(bkz )

k2
z (k2

z −k2
zp )

dkz =
∞∫

−∞

e j akz −e j bkz

2k2
z (k2

z −k2
zp )

dkz +
∞∫

−∞

e− j akz −e− j bkz

2k2
z (k2

z −k2
zp )

dkz . (D.8)

By making the change of variables kz →−kz in the second term on the right-hand side, (D.7) can be expressed
as follows

∞∫
−∞

cos(akz )−cos(bkz )

k2
z (k2

z −k2
zp )

dkz =
∞∫

−∞

e j akz −e j bkz

2k2
z (k2

z −k2
zp )

dkz −
−∞∫
∞

e j akz −e j bkz

2k2
z (k2

z −k2
zp )

dkz =
∞∫

−∞

e j akz −e j bkz

k2
z (k2

z −k2
zp )

dkz . (D.9)

Note that the minus sign of the Jacobian is cancelled by flipping the integration bounds.

D.3. Contour integral
To close the integral on the right-hand side of (D.9), let us consider its integrand

f (kz ) = e j akz −e j bkz

k2
z (k2

z −k2
zp )

. (D.10)

f (kz ) contains three simple poles located at kz =±kzp and kz = 0. Note that the pole at kz = 0 is not a double
pole, since the numerator of (D.10) becomes zero at kz = 0. Hence the complex plane topology is shown in
Fig. D.1. Since f (kz ) converges to zero in the upper-half plane, we define the contour C , shown in Fig. D.1,
consisting of the four arcs Cρ , CR , L1, L2. Since f (kz ) is analytic inside and on C , except for the pole at kz = kzp ,
we can apply the Cauchy residue theorem [41], which results in the following expression∫

C
f (kz )dkz =

∫
L1

f (kz )dkz +
∫

L2

f (kz )dkz +
∫

Cρ

f (kz )dkz +
∫

CR

f (kz )dkz = 2π j Res
kz=kzp

. (D.11)

By rearranging terms, (D.11) can be expressed as follows∫
L1

f (kz )dkz +
∫

L2

f (kz )dkz = 2π j Res
kz=kzp

−
∫

Cρ

f (kz )dkz −
∫

CR

f (kz )dkz . (D.12)

To evaluate the right-hand side of (D.12), we will first compute the contribution of the residue at kz = kzp , as
shown in the following expression

2π j Res
kz=kzp

= π(e j bkzp −e j akzp )

2 j k3
zp

. (D.13)
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Since the pole at kz = 0 is a simple pole, we can evaluate the contribution of the arc Cρ as follows [41]

lim
ρ→0

∫
Cρ

f (kz )dkz =−π j Res
kz=kzp

f (kz ) =−π j lim
kz→0

e j akz −e j bkz

kz (k2
z −k2

zp )
= π(b −a)

k2
zp

. (D.14)

Finally, we need to consider the arc CR . First, observe that for every point kz on CR , we can establish the
following upper bound

| f (kz )| ≤ MR = 2

R2(R2 −|kzp |2)
. (D.15)

The length of the arc CR is equal to L = πR. Therefore, we obtain the following upper bound on the absolute
value of the integral

|
∫

CR

f (kz )dkz | ≤ MR L = 2π

R(R2 −|kzp |2)
. (D.16)

Since this contribution goes to zero for R →∞, the integral along CR vanishes. Consequently, we obtain the
following expression

∞∫
−∞

cos(akz )−cos(bkz )

k2
z (k2

z −k2
zp )

dkz =
∫

L1

f (kz )dkz +
∫

L2

f (kz )dkz = π(a −b)

k2
zp

+ π(e j bkzp −e j akzp )

j k3
zp

. (D.17)

D.4. Final substitutions
To obtain the value of the integrals of (D.1) and (D.2), we substitute kzp = j

√
k2

x +k2
y −k2, a = 0 and b = wz or

b = wz −2δp into (D.17). To obtain the value of the integral of (D.3), we substitute a = δp and b = wz −δp . This
results in the following expressions

I1,kz =− 2π

wz (k2
x +k2

y −k2)
− 2π(e

−wz

√
k2

x+k2
y−k2 −1)

w2
z (k2

x +k2
y −k2)

3
2

(D.18)

I2,kz =− 2π

(wz −2δp )(k2
x +k2

y −k2)
− 2π(e

−(wz−2δp )
√

k2
x+k2

y−k2 −1)

(wz −2δp )2(k2
x +k2

y −k2)
3
2

(D.19)

I3,kz =− 2π

wz (k2
x +k2

y −k2)
− 2π(e

−(wz−δp )
√

k2
x+k2

y−k2 −e
−δp

√
k2

x+k2
y−k2

)

wz (wz −2δp )(k2
x +k2

y −k2)
3
2

. (D.20)

Finally, by substituting (D.18), (D.19) and (D.20) into the original double integrals of (4.31), (4.32) and (4.33),
we obtain the final expressions given by (4.34), (4.35) and (4.36).
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E
Integral II

E.1. Integration rule
To compute the voltage along the dipole, we need to perform the 3D-integrals of (4.49) and (4.50). Fortunately,
the integrals in kz can be closed analytically. To this extent, let us only consider the integral in kz

vout,kz =
∞∫

−∞

sinc(kz wz /2)

k2 −k2
x −k2

y −k2
z

e− j kz wz /2 dkz (E.1)

vin,kz =
∞∫

−∞

sinc
(
kz (wz −2δp )/2

)
k2 −k2

x −k2
y −k2

z
e− j kz wz /2 dkz . (E.2)

By using the definition sinc(x) = sin(x)/x, (E.1) and (E.2) can be reduced to the following integral
∞∫

−∞

sin(akz )

kz (k2
z −k2

zp )
e− j bkz dkz , (E.3)

where kzp = j
√

k2
x +k2

y −k2, b = wz /2 and a = wz /2 or a = (wz −2δp )/2.

E.2. Contour integral
To close the integral in (E.3), let us consider its integrand

f (kz ) = sin(akz )

kz (k2
z −k2

zp )
e− j bkz , (E.4)

where we assume Re(b) ≥ Re(a). The integrand on the left-hand side of (E.3) contains a simple pole at z =±kzp .
Note that kz = 0 is not a pole, since the numerator of (E.4) becomes zero. Hence, the complex plane topology is
shown in Fig. E.1. Since we are assuming Re(b) ≥ Re(a), the integrand on the left-hand side of (E.3) converges
to zero in the lower half-plane. Hence, we can use the contour, shown in Fig. E.1, consisting of the arcs L and
CR . Similar to before, the integrand on the left-hand side of (E.3) is analytic inside and on C except for the
pole at kz = −kzp . Therefore, we can apply the Cauchy residue theorem [41], which results in the following
expression ∫

C
f (kz )dkz =

∫
L

f (kz )dkz +
∫

CR

f (kz )dkz =−2π j Res
kz=−kzp

. (E.5)

Note that the minus sign appears due to the clockwise direction of the contour C . It can be demonstrated
that the integral

∫
CR

f (kz )dkz , vanishes in the limit R →∞ in a similar fashion as in Appendix D. Hence, the
integral in (E.3) can be obtained by evaluating the residue at z =−kzp . This results in the following expression

∞∫
−∞

sin(akz )

kz (k2
z −k2

zp )
e− j bkz dkz =−2π j Res

kz=−kzp

=

π j
sin(akzp )

k2
zp

e j bkzp = π(e j (b−a)kzp −e j (b+a)kzp )

2k2
zp

.

(E.6)
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Figure E.1: Complex plane of the function f (kz ), defined in (E.4), and integration contour consisting of the arcs CR and Cρ

E.3. Final substitutions
To obtain the value of (E.1) and (E.2), we substitute kzp = j

√
k2

x +k2
y −k2, b = wz /2 and a = wz /2 or a =

(wz −2δ)/2 into (E.6). This results in the following expressions

vout,kz =−πe
−wz

√
k2

x+k2
y−k2 −1

wz (k2
x +k2

y −k2)
(E.7)

vin,kz =−πe
−(wz−δp )

√
k2

x+k2
y−k2 −e

−δp

√
k2

x+k2
y−k2

(wz −2δp )(k2
x +k2

y −k2)
. (E.8)

Finally, by substituting (E.7) and (E.8) into the original 3D-integral of (4.49) and (4.50), we obtain the final
expressions given by (4.51) and (4.52).
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F
Integral III

F.1. Integration rule
To find the longitudinal spectral Green’s functions of the geometry with the perfectly conducting ground plane,
we have to perform the double integrals of (4.31), (4.32) and (4.33). Fortunately, the integrals in kz can be closed
analytically. To this extent, let us only consider the integral in kz

I1,image,kz =
∞∫

−∞

sinc2(kz wz /2)

k2 −k2
x −k2

y −k2
z

e− j kz 2(d+wz /2) dkz (F.1)

I2,image,kz =
∞∫

−∞

sinc2
(
kz (wz −2δp )/2

)
k2 −k2

x −k2
y −k2

z
e− j kz 2(d+wz /2) dkz (F.2)

I3,image,kz =
∞∫

−∞

sinc
(
kz (wz −2δp )/2

)
sinc(kz wz /2)

k2 −k2
x −k2

y −k2
z

e− j kz 2(d+wz /2) dkz (F.3)

By applying the trigonometric identity sin2(x) = (1−cos(2x))/2 to (F.1) and (F.2), and by applying the trigono-
metric identity sin(x)sin(y) = (cos(x − y)−cos(x + y))/2 to (F.3), we obtain the following expressions

I1,i mag e,kz =
2

w2
z

∞∫
−∞

1−cos(kz wz )

k2
z (k2 −k2

x −k2
y −k2

z )
e− j kz 2(d+wz /2) dkz (F.4)

I2,image,kz =
2

(wz −2δ)2

∞∫
−∞

1−cos(kz (wz −2δp ))

k2
z (k2 −k2

x −k2
y −k2

z )
e− j kz 2(d+wz /2) dkz . (F.5)

I3,image,kz =
2

wz (wz −2δ)

∞∫
−∞

cos(δp )−cos(wz −δp )

k2
z (k2 −k2

x −k2
y −k2

z )
e− j kz 2(d+wz /2) dkz . (F.6)

Apart from the constant in front, the integrals in (F.4), (F.5) and (F.6) can all be reduced to the following integral

∞∫
−∞

cos(akz )−cos(bkz )

k2
z (k2

z −k2
zp )

e j ckz dkz , (F.7)

where kzp = j
√

k2
x +k2

y −k2 and c = 2(d +wz /2). The constants a and b depend on the specific integral, i.e.

a = 0 and b = kz wz or b = kz (wz −2δp ) in case of (F.4) and (F.5), and a = δp and b = wz −δp in case of (F.6).
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F.2. Contour integral
To close the integral in (F.7), let us consider its integrand

f (kz ) = cos(akz )−cos(bkz )

k2
z (k2

z −k2
zp )

e j ckz , (F.8)

where we assume Re(c) ≥ max(Re(a),Re(b)). f (kz ) has a simple pole at kz = ±kzp . Note that kz = 0 is not a
pole, since the numerator of (F.8) has a double zero. Since we are assuming Re(c) ≥ max(Re(a),Re(b)), f (kz )
converges to zero in the lower half-plane. Hence, we can use the same contour, shown in Fig. E.1, consisting
of the arcs L and CR . Since the integrand in (F.7) is analytic inside and on C , except for the pole at kz =−kzp ,
we can apply the Cauchy residue theorem [41], which results in the following expression∫

C
f (kz )dkz =

∫
L

f (kz )dkz +
∫

CR

f (kz )dkz =−2π j Res
kz=−kzp

. (F.9)

Note that the minus sign appears due to the clockwise direction of the contour C . It can be demonstrated that
the integral

∫
CR

f (kz )dkz vanishes in the limit R →∞ in a similar fashion as in Appendix D. Hence, the integral
in (E.3) can be obtained by evaluating the residue at kz =−kzp , as shown in the following expression

∞∫
−∞

cos(akz )−cos(bkz )

k2
z (k2

z −k2
zp )

e− j ckz dkz = 2π j Res
kz=−kzp

=

2π j
cos(akzp )−cos(bkzp )

k3
zp

e− j ckzp = π(e j (c+b)kzp +e j (c−b)kzp − (e j (c+a)kzp +e j (c−a)kzp ))

2 j k3
zp

.

(F.10)

F.3. Final substitution
To obtain the value of (F.1) and (F.2), we substitute kzp = j

√
k2

x +k2
y −k2, c = 2(d +wz /2), a = 0 and b = wz or

b = wz −2δp into (F.10). To obtain the value of (F.3), we substitute a = δp and b = wz −δp . This results in the
following expressions

I1,image =πe
−2(d+wz )

√
k2

x+k2
y−k2 +e

−2d
√

k2
x+k2

y−k2 −2e
−(2d+wz )

√
k2

x+k2
y−k2

w2
z (k2

x +k2
y −k2)

3
2

(F.11)

I2,image =πe
−2(d+wz−δp )

√
k2

x+k2
y−k2 +e

−2(d+δp )
√

k2
x+k2

y−k2 −2e
−(2d+wz )

√
k2

x+k2
y−k2

(wz −2δ)2(k2
x +k2

y −k2)
3
2

(F.12)

I3,image =πe
−(2d+2wz−δp )

√
k2

x+k2
y−k2 +e

−(2d+δp )
√

k2
x+k2

y−k2 −e
−(2d+wz+δp )

√
k2

x+k2
y−k2 −e

−(2d+wz−δp )
√

k2
x+k2

y−k2

wz (wz −2δ)(k2
x +k2

y −k2)
3
2

.

(F.13)
Finally, by substituting (F.11), (F.12) and (F.13) into the original double integrals of (4.72), (4.73) and (4.74), we
obtain the final expressions, given by (4.75), (4.76) and (4.77).
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G
Integral IIII

G.1. Integration rule
To compute the voltage on a dipole in the presence of a perfectly conducting ground plane, we need to perform
the 3D-integrals of (4.83), (4.84), (4.85) and (4.86). Fortunately, the integrals in kz can be closed analytically. To
this extent, let us only consider the integral in kz

vout,kz (x) =
∞∫

−∞
sinc

(
kz wz

2

)
e j kz (d+wz /2) −e j kz wz /2

k2 −k2
x −k2

y −k2
z

dkz (G.1)

vin,kz (x) =
∞∫

−∞
sinc

(
kz

wz −2δp

2

)
e j kz (d+wz /2) −e j kz wz /2

k2 −k2
x −k2

y −k2
z

dkz (G.2)

vout,image,kz (x) =−
∞∫

−∞
sinc

(
kz wz

2

)
e− j kz (d+wz /2) −e j kz 2d

k2 −k2
x −k2

y −k2
z

dkz (G.3)

vin,image,kz (x) =−
∞∫

−∞
sinc

(
kz

wz −2δp

2

)
e− j kz (d+wz /2) −e j kz 2d

k2 −k2
x −k2

y −k2
z

dkz .. (G.4)

By using the substitution kz →−kz , (G.5) to (G.8) can be expressed as follows

vout,kz (x) =
∞∫

−∞
sinc

(
kz wz

2

)
e− j kz (d+wz /2) −e− j kz wz /2

k2 −k2
x −k2

y −k2
z

dkz (G.5)

vin,kz (x) =
∞∫

−∞
sinc

(
kz

wz −2δp

2

) −e− j kz (d+wz /2) −e− j kz wz /2

k2 −k2
x −k2

y −k2
z

dkz (G.6)

vout,image,kz (x) =−
∞∫

−∞
sinc

(
kz wz

2

)
e− j kz (d+wz /2) −e− j kz 2d

k2 −k2
x −k2

y −k2
z

dkz (G.7)

vin,image,kz (x) =−
∞∫

−∞
sinc

(
kz

wz −2δp

2

)
e− j kz (d+wz /2) −e− j kz 2d

k2 −k2
x −k2

y −k2
z

dkz .. (G.8)

By using the definition sinc(x) = sin(x)/x , (G.5) to (G.8) can all be reduced to (E.6).
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G.2. Final substitutions
To obtain the value of all of the terms in (G.5) to (G.8), we substitute kzp = j

√
k2

x +k2
y −k2, a = wz /2 or a =

(wz −2δp )/2 and b = d +wz /2, b = wz /2 or b = 2d into (F.10). This results in the following expressions

vout,kz (x) = 1+e
−(d+wz )

√
k2

x+k2
y−k2 −e

−d
√

k2
x+k2

y−k2 −e
−wz

√
k2

x+k2
y−k2

k2
x +k2

y −k2
(G.9)

vin,kz (x) = e
−δp

√
k2

x+k2
y−k2 +e

−(d+wz−δp )
√

k2
x+k2

y−k2 −e
−(d+δp )

√
k2

x+k2
y−k2 −e

−(wz−δp )
√

k2
x+k2

y−k2

k2
x +k2

y −k2
(G.10)

vout,image,kz (x) =−e
−(d+wz )

√
k2

x+k2
y−k2 +e

−2d
√

k2
x+k2

y−k2 −e
−d

√
k2

x+k2
y−k2 −e

−(2d+wz )
√

k2
x+k2

y−k2

k2
x +k2

y −k2
(G.11)

vin,image,kz (x) =−e
−(d+wz−δp )

√
k2

x+k2
y−k2 +e

−(2d+δp )
√

k2
x+k2

y−k2 −e
−(d+δp )

√
k2

x+k2
y−k2 −e

−(2d+wz−δp )
√

k2
x+k2

y−k2

k2
x +k2

y −k2
.

(G.12)
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H
Longitudinal spectral Green’s function

microstrip

H.1. Leontovich boundary condition
In the case of the microstrip, the longitudinal spectral Green’s function D(kx ) can be calculated by the 3D-
integral given by (5.1). Since the integral in z ′ will be solved numerically, we have decided to express the
transverse current distribution of the Leontovich boundary condition as a summation of three terms, as shown
in the following expression

jt (y, z) = 1

2δp (wy +wz −2δp )
( jt1(y, z)+ jt2(y, z)+ jt3(y, z)), (H.1)

where jt1(y, z), jt2(y, z) and jt3(y, z) can be expressed as follows

jt1(y, z) = rect

(
y

wy

)
rect

(
z −δp /2

δp

)
(H.2)

jt2(y, z) =
(
rect

(
y

wy

)
− rect

(
y

wy −2δp

))
rect

(
z −wz /2

wz −2δp

)
(H.3)

jt3(y, z) = rect

(
y

wy

)
rect

(
z − (wz −δp /2)

δp

)
. (H.4)

By performing a Fourier transform in y , we obtain the following expressions

Jt1(ky , z) = wy sinc

(
ky wy

2

)
rect

(
z −δp /2

δp

)
(H.5)

Jt2(ky , z) =
(

wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))
rect

(
z −wz /2

wz −2δp

)
(H.6)

Jt3(ky , z) = wy sinc

(
ky wy

2

)
rect

(
z − (wz −δp /2)

δp

)
. (H.7)

In principle, substituting (H.1) into (5.1) results in 9 terms. However, by resorting to the reciprocity theorem
[44], we can express (5.1) as a combination of 6 terms, as shown in the following expression

D(kx ) = D11(kx )+D22(kx )+D33(kx )+2D12(kx )+2D13(kx )+2D23(kx ), (H.8)
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where D11(kx ), D22(kx ) and D33(kx ) are given by the following expressions

D11(kx ) = 1

2π

∞∫
−∞

δp∫
0

δp∫
z ′

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e− j kz0(z−z ′)sinc2

(
ky wy

2

)
d zd z ′dky+

1

2π

∞∫
−∞

δp∫
0

z ′∫
0

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y
e j kz0(z−z ′)sinc2

(
ky wy

2

)
d zd z ′dky+

1

2π

∞∫
−∞

δp∫
0

z ′∫
0

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y
e− j kz0(z+z ′)sinc2

(
ky wy

2

)
d zd z ′dky

(H.9)

D22(kx ) = 1

2π

∞∫
−∞

wz−δp∫
δp

wz−δp∫
z ′

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e− j kz0(z−z ′)

(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))2

d zd z ′dky+

1

2π

∞∫
−∞

wz−δp∫
δp

z ′∫
δp

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y
e j kz0(z−z ′)

(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))2

d zd z ′dky+

1

2π

∞∫
−∞

wz−δp∫
δp

z ′∫
δp

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y
e− j kz0(z+z ′)

(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))2

d zd z ′dky

(H.10)

D33(kx ) = 1

2π

∞∫
−∞

wz∫
wz−δp

wz∫
z ′

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e− j kz0(z−z ′)sinc2

(
ky wy

2

)
d zd z ′dky+

1

2π

∞∫
−∞

wz∫
wz−δp

z ′∫
wz−δp

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y
e j kz0(z−z ′)sinc2

(
ky wy

2

)
d zd z ′dky+

1

2π

∞∫
−∞

wz∫
wz−δp

z ′∫
wz−δp

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y
e− j kz0(z+z ′)sinc2

(
ky wy

2

)
d zd z ′dky .

(H.11)

Note that the integrands in (H.15), (H.10) and (H.11) contain different expressions for the two observation
regions, where the region z ∈ [z ′, wz ] only contains a forward propagating wave, while the region z ∈ [z ′, wz ]
contains both a forward and a backward propagating wave. D12(kx ), D13(kx ) and D23(kx ) are expressed as
follows

D12(kx ) = 1

2π

∞∫
−∞

δp∫
0

wz−δp∫
δp

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e− j kz0(z−z ′)

sinc

(
ky wy

2

)(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))
d zd z ′dky

(H.12)

D13(kx ) = 1

2π

∞∫
−∞

δp∫
0

wz∫
wz−δp

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e− j kz0(z−z ′)sinc2

(
ky wy

2

)
d zd z ′dky (H.13)
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D23(kx ) = 1

2π

∞∫
−∞

wz−δp∫
δp

wz∫
wz−δp

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e− j kz0(z−z ′)

sinc

(
ky wy

2

)(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))
d zd z ′dky .

(H.14)

By closing the integrals in z, we obtain the following expressions

D11(kx ) = 1

2π

∞∫
−∞

δp∫
0

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y

e− j kz0(δp−z ′) −1

kz0
sinc2

(
ky wy

2

)
d zd z ′dky+

1

2π

∞∫
−∞

δp∫
0

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y

e− j kz0z ′ −1

kz0
sinc2

(
ky wy

2

)
d zd z ′dky+

1

2π

∞∫
−∞

δp∫
0

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y

e−2 j kz0z ′ −e− j kz0z ′

kz0
sinc2

(
ky wy

2

)
d zd z ′dky

(H.15)

D22(kx ) = j

2π

∞∫
−∞

wz−δp∫
δp

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y

e− j kz0(wz−δp−z ′) −1

kz0(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))2

d z ′dky+

j

2π

∞∫
−∞

wz−δp∫
δp

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y

e− j kz0(z ′−δp ) −1

kz0(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))2

d z ′dky+

j

2π

∞∫
−∞

wz−δp∫
δp

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y

e−2 j kz0z ′ −e− j kz0(z ′+δp )

kz0(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))2

d z ′dky

(H.16)

D33(kx ) = j

2π

∞∫
−∞

wz∫
wz−δp

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y

e− j kz0(wz−z ′) −1

kz0
sinc2

(
ky wy

2

)
d z ′dky+

j

2π

∞∫
−∞

wz∫
wz−δp

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y

e− j kz0(z ′−wz+δp ) −1

kz0
sinc2

(
ky wy

2

)
d z ′dky+

j

2π

∞∫
−∞

wz∫
wz−δp

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y

e−2 j kz0z ′ −e− j kz0(z ′+wz−δp )

kz0
sinc2

(
ky wy

2

)
d z ′dky

(H.17)

D12(kx ) = j

π

∞∫
−∞

δp∫
0

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y

e− j kz0(wz−δp−z ′) −e− j kz0(δp−z ′)

kz0

wy sinc

(
ky wy

2

)(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))
d z ′dky

(H.18)

D13(kx ) = j

2π

∞∫
−∞

δp∫
0

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y

e− j kz0(wz−z ′) −e− j kz0(wz−δp−z ′)

kz0
w2

y sinc2
(

ky wy

2

)
d z ′dky (H.19)
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D23(kx ) = j

2π

∞∫
−∞

wz−δp∫
δp

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y

e− j kz0(wz−z ′) −e− j kz0(wz−δp−z ′)

kz0

wy sinc

(
ky wy

2

)(
wy sinc

(
ky wy

2

)
− (wy −2δp )sinc

(
ky

wy −2δp

2

))
d z ′dky

(H.20)

By collecting all of the terms with the same integration bounds, we obtain the three integrals given by (5.23),
(5.24) and (5.25).

H.2. Exponential distribution
The longitudinal spectral Green’s function D(kx ) is still given by the 3D-integral of (5.1). However, the trans-
verse current distribution is given by (5.26). By performing a Fourier transform in y , we obtain the following
expression

Jt (ky , z) = J0

(
ky wy

2

)
e−z/δp −e(z−wz )/δp

2δp (1−e−wz /δp )
(H.21)

By substituting (H.21) into (5.1), we obtain the following expression

D(kx ) = 1

2π

∞∫
−∞

wz∫
0

wz∫
z ′

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e− j kz0(z−z ′)

J0

(
ky wy

2

)
sinc

(
ky wy

2

)
(e−z/δp +e(z−wz )/δp )(e−z ′/δp +e(z ′−wz )/δp )d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y
e j kz0(z−z ′)

J0

(
ky wy

2

)
sinc

(
ky wy

2

)
(e−z/δp +e(z−wz )/δp )(e−z ′/δp +e(z ′−wz )/δp )d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y
e− j kz0(z+z ′)

J0

(
ky wy

2

)
sinc

(
ky wy

2

)
(e−z/δp +e(z−wz )/δp )(e−z ′/δp +e(z ′−wz )/δp )d zd z ′dky .

(H.22)

By closing the integral in z, we obtain (5.27).

H.3. Exponential distribution split
To obtain the entries of the matrix D(kx ), we have to evaluate the 3D-integral of (5.54). To this extent, we
will use the two exponentially decaying basis functions, given by (5.55) and (5.56). By performing a Fourier
transform in y , we obtain the following expressions

Jt ,1(ky , z) = J0

(
ky wy

2

)
e−z/δp

δp (1−e−wz /δp )
(H.23)

Jt ,2(ky , z) = J0

(
ky wy

2

)
e(z−wz )/δp

δp (1−e−wz /δp )
. (H.24)
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By substituting (H.23) and (H.24) into (5.54), we obtain the following expressions

D11(kx ) = 1

2π

∞∫
−∞

wz∫
0

wz∫
z ′

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e j kz0(z−z ′) J0

(
ky wy

2

)
sinc

(
ky wy

2

)
e−z/δp e−z ′/δp d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y
e j kz0(z−z ′) J0

(
ky wy

2

)
sinc

(
ky wy

2

)
e−z/δp e−z ′/δp d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y
e− j kz0(z+z ′) J0

(
ky wy

2

)
sinc

(
ky wy

2

)
e−z/δp e−z ′/δp d zd z ′dky

(H.25)

D22(kx ) = 1

2π

∞∫
−∞

wz∫
0

wz∫
z ′

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e j kz0(z−z ′) J0

(
ky wy

2

)
sinc

(
ky wy

2

)
e(z−wz )/δp e(z ′−wz )/δp d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y
e j kz0(z−z ′) J0

(
ky wy

2

)
sinc

(
ky wy

2

)
e(z−wz )/δp e(z ′−wz )/δp d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y
e− j kz0(z+z ′) J0

(
ky wy

2

)
sinc

(
ky wy

2

)
e(z−wz )/δp e(z ′−wz )/δp d zd z ′dky

(H.26)

D12(kx ) = 1

2π

∞∫
−∞

wz∫
0

wz∫
z ′

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e j kz0(z−z ′) J0

(
ky wy

2

)
sinc

(
ky wy

2

)
e−z ′/δp e(z−wz )/δp d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y
e j kz0(z−z ′) J0

(
ky wy

2

)
sinc

(
ky wy

2

)
e−z ′/δp e(z−wz )/δp d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y
e− j kz0(z+z ′) J0

(
ky wy

2

)
sinc

(
ky wy

2

)
e−z ′/δp e(z−wz )/δp d zd z ′dky

(H.27)
By closing the integrals in z, we obtain (5.57), (5.58) and (5.59).
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I
Green’s function leaky structure

Fig.I.1a shows the stratification of the leaky structure in Fig.7.1. The corresponding equivalent transmission-
line model is shown in Fig.I.1b. The transmission-line model in Fig.I.1b is similar to the one in Fig.5.3b, except
for the omission of the bottom transmission line in Fig.5.3b. Consequently, the xx-component of the spectral

domain Green’s function Ge j
xx (kx ,ky , z, z ′), in the regions z ∈ [z ′,∞) and z ∈ [0, z ′], is given by (5.18) and (5.19),

in which Zin,d is replaced by Zd .
Since the metal is located in the region z ∈ [hgap,hgap+wz ], the longitudinal spectral Green’s function D(kx )

is given by the following expression

D(kx ) = 1

2π

∞∫
−∞

hgap+wz∫
hgap

hgap+wz∫
hgap

Ge j
xx (kx ,ky , z, z ′)Jt (ky , z ′)J∗t (ky , z)d zd z ′dky , (I.1)

To model the transverse current distribution, we have decided to use the exponential distribution of (5.26). By
applying a shift of hgap along ẑ, (5.26) becomes as follows

jt (y, z) = 2

wyπ

1√
1− (2y/wy )2

e−(z−hgap)/δp +e(z−hgap−wz )/δp

2δp (1−e−wz /δp )
. (I.2)

By performing a Fourier transform in y , we obtain the following expression

Jt (ky , z) = J0

(
ky wy

2

)
e−(z−hgap)/δp −e(z−hgap−wz )/δp

2δp (1−e−wz /δp )
. (I.3)

By substituting (5.18), (5.19) and (I.3) into (I.1), we obtain the following expression

D(kx ) = 1

2π

∞∫
−∞

wz∫
0

wz∫
z ′

−
V +

TM,upperk2
x +V +

TE,upperk2
y

k2
x +k2

y
e− j kz0(z−z ′)

J0

(
ky wy

2

)
sinc

(
ky wy

2

)
(e−(z−hgap)/δp +e(z−hgap−wz )/δp )(e−(z ′−hgap)/δp +e(z ′−hgap−wz )/δp )d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
V +

TM,lowerk2
x +V +

TE,lowerk2
y

k2
x +k2

y
e j kz0(z−z ′)

J0

(
ky wy

2

)
sinc

(
ky wy

2

)
(e−(z−hgap)/δp +e(z−hgap−wz )/δp )(e−(z ′−hgap)/δp +e(z ′−hgap−wz )/δp )d zd z ′dky+

1

2π

∞∫
−∞

wz∫
0

z ′∫
0

−
ΓT M V +

TM,lowerk2
x +ΓT E V +

TE,lowerk2
y

k2
x +k2

y
e− j kz0(z+z ′)

J0

(
ky wy

2

)
sinc

(
ky wy

2

)
(e−(z−hgap)/δp +e(z−hgap−wz )/δp )(e−(z ′−hgap)/δp +e(z ′−hgap−wz )/δp )d zd z ′dky .

(I.4)
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(a) (b) Equivalent transmission line model leaky structure

Figure I.1: (a) The stratification and (b) the equivalent transmission line-model of a dipole, located at a distance hgap from a semi-infinite
dielectric region

By closing the integral in z, we obtain the following expression

D(kx ) =− 1

2π

∞∫
−∞

wz∫
0

V +
TM,upperk2

x +V +
TE,upperk2

y

k2
x +k2

y

e−(z ′−hgap)/δp −e−wz /δp e− j kz0(hgap+wz−z ′)

j kz0 +1/δp
·

e−(hgap+w z−z ′)/δp −e− j kz0(hgap+wz−z ′)

j kz0 −1/δp
J0

(
ky wy

2

)
sinc

(
ky wy

2

)
d z ′dky−

1

2π

∞∫
−∞

wz∫
0

V +
TM,upperk2

x +V +
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y

k2
x +k2

y

e−(z ′−hgap)/δp −e− j kz0(z ′−hgap)

j kz0 −1/δp
·

e−(hgap+w z−z ′)/δp −e−wz /δp e− j kz0(z ′−hgap)

j kz0 +1/δp
J0

(
ky wy

2

)
sinc

(
ky wy

2

)
d z ′dky−

1

2π

∞∫
−∞

wz∫
0

ΓTM,d V +
TM,lowerk2

x +ΓTE,d V +
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y

k2
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y
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·
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(
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)
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(
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(I.5)
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