

Delft University of Technology

Toward automatic generation of control structures for process flow diagrams with large
language models

Hirtreiter, Edwin; Schulze Balhorn, Lukas; Schweidtmann, Artur M.

DOI
10.1002/aic.18259
Publication date
2023
Document Version
Final published version
Published in
AIChE Journal

Citation (APA)
Hirtreiter, E., Schulze Balhorn, L., & Schweidtmann, A. M. (2023). Toward automatic generation of control
structures for process flow diagrams with large language models. AIChE Journal, 70(1), Article e18259.
https://doi.org/10.1002/aic.18259

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/aic.18259
https://doi.org/10.1002/aic.18259

R E S E A R CH A R T I C L E

P r o c e s s S y s t em s E n g i n e e r i n g

Toward automatic generation of control structures for process
flow diagrams with large language models

Edwin Hirtreiter | Lukas Schulze Balhorn | Artur M. Schweidtmann

Department of Chemical Engineering,

Delft University of Technology, Delft,

The Netherlands

Correspondence

Artur M. Schweidtmann, Department of

Chemical Engineering, Delft University of

Technology, Van der Maasweg 9, Delft 2629

HZ, The Netherlands.

Email: a.schweidtmann@tudelft.nl

Funding information

NWO, Grant/Award Number: 203.001.107

Abstract

Developing Piping and Instrumentation Diagrams (P&IDs) is a crucial step during

process development. We propose a data-driven method for the prediction of control

structures. Our methodology is inspired by end-to-end transformer-based human lan-

guage translation models. We cast the control structure prediction as a translation

task where Process Flow Diagrams (PFDs) without control structures are translated

to PFDs with control structures. We represent the topology of PFDs as strings using

the SFILES 2.0 notation. We pretrain our model using generated PFDs to learn the

grammatical structure. Thereafter, the model is fine-tuned leveraging transfer learn-

ing on real PFDs. The model achieved a top-5 accuracy of 74.8% on 10,000 gener-

ated PFDs and 89.2% on 100,000 generated PFDs. These promising results show

great potential for AI-assisted process engineering. The tests on a dataset of 312 real

PFDs indicate the need for a larger PFD dataset for industry applications and hybrid

artificial intelligence solutions.

K E YWORD S

artificial intelligence, control structure, deep learning, machine Learning, piping and
instrumentation diagram, process flow diagram, transformer language model

1 | INTRODUCTION

Piping and Instrumentation Diagrams (P&IDs) are important

engineering documents of chemical plants depicting the arrange-

ment of process equipment, valves, piping, control structure, and

instrumentation.1 In contrast, Process Flow Diagrams (PFDs) focus

on major equipment parts and material streams. While PFDs are

typically used during the early stage conceptual design phase,

P&IDs are developed in the basic design and detailed engineering

phases. They are essentially the central document in every indus-

trial chemical plant for storing, revising, and exchanging informa-

tion.2 The applications of P&IDs range from engineering and

design, to hazard and operability studies, construction, operation,

maintenance, and decommission.2

The development of P&IDs from PFDs is a tedious and

time-consuming task that offers great potential to reduce costs

and speed-up the development process.3 Commonly, process engi-

neers manually develop P&IDs adopting and modifying schemes

from prior projects, design rules, and their experience utilizing

Computer-Aided Design (CAD) software. However, this traditional

development can be laborious because finding, manually adjusting,

and transferring suitable technical solutions from old projects can

be tedious and error-prone. Time constraints can lead to the adop-

tion of nonoptimal solutions from previous projects and possible

alternatives not being considered.3 Unleashing the potential of

computer algorithms assisting engineers in process engineering

may help to reduce development times, reduce costs, increase

safety, and avoid errors.

Received: 26 February 2023 Revised: 29 August 2023 Accepted: 8 September 2023

DOI: 10.1002/aic.18259

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2023 The Authors. AIChE Journal published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.

AIChE J. 2023;e18259. wileyonlinelibrary.com/journal/aic 1 of 15

https://doi.org/10.1002/aic.18259

https://orcid.org/0000-0002-0693-925X
https://orcid.org/0000-0001-7494-9110
https://orcid.org/0000-0001-8885-6847
mailto:a.schweidtmann@tudelft.nl
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/aic
https://doi.org/10.1002/aic.18259
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faic.18259&domain=pdf&date_stamp=2023-10-04

Researchers have been working on the automation of process

development since the 90s. To assist the engineering process during

the creation of P&IDs, multiple rule-based systems have been devel-

oped.3-5 Modularization approaches of chemical plants commonly

provide the underlying framework of rule-based systems and aim to

accelerate process development.6-8 The method proposed by

Blitz et al.4 asks a user to define certain inputs, such as material prop-

erties and process-specific requirements. Then, a P&ID is generated

based on the user input and the underlying knowledge-based

approach, which is implemented as a decision tree. Similarly,

Uzuner et al.3 and Obst et al.5 also utilize a knowledge-based method,

which is represented as a hierarchical decision tree. Uzuner et al.3 first

divide the chemical process into modules to reduce the complexity of

the design problem. Secondly, design questions and options are used

to guide the user to obtain a P&ID of the desired module. While the

previous works demonstrate the potential of computer-assisted P&ID

development, they have not yet been broadly adopted by industry.

One step toward the development of P&IDs is the synthesis of an

appropriate control structure. In decentralized control, a controller

adjusts manipulated variables based on observations of measured vari-

ables in order to follow a set point of a controlled variable or optimize

another operating objective.9 Typically, the development of a plant-

wide control scheme starts by analysis of the degrees of freedom

(i.e., the number of controllable variables).10,11 In parallel, control tasks

are defined that relate to decentralized operational targets, such as set-

point tracking or disturbance rejection of product qualities or flow rates,

and overarching economic and ecological objectives, such as maximum

product output or minimum energy consumption.9-11 To assist process

engineers in developing (decentralized) control structures that specify

all controllable variables and achieve the process objectives, several

established methods exist including dynamic simulations12 and relative

gain array methods.13 In addition, heuristic design procedures10 and

knowledge-based expert systems14,15 have been proposed in the 90s.

However, many expert systems in chemical engineering have not led to

the expected major advances.16 In particular, rule-based systems are

often difficult to set up, maintain, and extend.3,16

Recent research and development in deep learning-based Artifi-

cial Intelligence (AI) applications promise improvements over expert

systems revealing an outstanding performance in numerous disci-

plines, as highlighted by the following examples. In particular, Natural

Language Processing (NLP), a subfield of AI focusing on natural lan-

guage, with its powerful models (e.g. GPT-3,17 T518) showed break-

through performance in many natural language tasks outperforming

systems that previously used handcrafted rules.17-20 We already see

great speedups of AI-assisted workflows in many domains (e.g., deepL

for translations or GitHub Copilot software development). Similarly,

there are a large number of domains that explore the potential of

ChatGPT, although there are no guarantees of correct predictions.

Also, deep learning has outperformed rule-based approaches in

organic chemistry. For example, transformer-based language models

can accurately predict reaction outcomes based on string representa-

tions of reactions using the Simplified Molecular-Input Line-Entry

System (SMILES) notation.21-25

In the context of process engineering, there exist a few very

recent and promising methods, which learn patterns from existing

PFDs and P&IDs.26-29 Zhang et al.26 and Zheng et al.27 use the Simpli-

fied Flowsheet-Input Line-Entry System (SFILES)30 notation to

describe the flowsheet topologies as strings in conjunction with

sequence alignment algorithms to identify design heuristics in process

diagrams. Oeing et al.28 propose an AI-assisted method to predict the

subsequent equipment using a Recurrent Neural Network (RNN). Sim-

ilarly, we proposed a methodology for auto-completion of flowsheets

based on transformer language models.29 To enable the use of NLP

models, we utilized the SFILES 2.031 notation. While previous

methods focus on the completion of incomplete process diagrams,

there is no method available that enables the generation of PFDs with

decentralized control structures directly from basic PFDs without con-

trol structures.

We propose a novel methodology to generate PFDs with decen-

tralized control structures from PFDs without control structures as a

first step toward the automatic generation of P&IDs. Notably, we pro-

vide a conceptual contribution as well as a proof-of-concept which

demonstrates that predicting decentralized control structures on syn-

thetic data is feasible. The underlying idea of our approach is to cast

the control structure prediction as a translation task, the source lan-

guage being the PFD without control structure and the target being

the PFD with control structure. To leverage the potential of

state-of-the-art sequence-to-sequence translation models, based on

the transformer architecture,19 we utilize the text-based SFILES 2.0

notation31 to represent the topological information of PFDs.

The remainder of this article is structured as follows: Section 2

describes the fundamentals of the applied natural language model and

summarizes the concept of the SFILES 2.0 string representation of chemi-

cal processes typologies. Thereafter, in Section 3 we describe the data

acquisition. In Section 4 we introduce the transformer model adapted for

predicting the control structure. Afterward, the results are discussed in

Section 5 and demonstrated with an illustrative example in Section 5.3.

2 | BACKGROUND

This section summarizes the fundamentals of sequence-to-sequence

models for the translation of natural language (Section 2.1). In

Section 2.2, we highlight the transformer architecture as the state-of-

the-art deep learning architecture for translation. Thereafter, the con-

cept of the SFILES 2.0 notation, which enables a text-based represen-

tation of PFDs including control structures, is outlined in Section 2.3.

The underlying idea for using SFILES 2.0 in combination with NLP

methods was originally proposed by Vogel et al.29 Vogel et al.29 utilize

a generative transformer model consisting of a decoder-only model

structure. The decoder is fed with an incomplete PFD, represented as

SFILES 2.0, and generates step-by-step the missing parts of the flow-

sheet. While the previous work proposed a flowsheet autocompletion

methodology,29 we developed a concept for the prediction of control

structures in PFDs. For this purpose, we develop a sequence-to-

sequence model with an encoder-decoder structure. That is, we map

2 of 15 HIRTREITER ET AL.

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

the PFD without control structure directly to the PFD with control

structure.

2.1 | Sequence-to-sequence models

Sequence-to-sequence models are machine learning models that map

an input sequence to an output sequence. They are utilized in numer-

ous NLP tasks, for example, in translation,32 text summarization,33

speech recognition,34 and image captioning.35

Typically, a sequence-to-sequence model comprises an encoding and

decoding stack as depicted in Figure 1. During encoding, a numerical

embedding of the input sequence is determined, which is subsequently

used by the decoder stack to generate the output sequence in an auto-

regressive way. The decoder iteratively processes the preceding output

sequence together with the numerical embedding of the encoder to pre-

dict the next token (e.g., a word). The iterative decoding is stopped as the

decoder predicts the end of the sequence as the next token.

During decoding, the decoder stack determines the probabilities for

each token in its vocabulary, whereupon the next token of the output

sequence is identified utilizing a decoding strategy (e.g., using the

greedy or beam search decoding strategy). Greedy search selects the

next token of a sequence based on the highest predicted probability at

the decoding step. The greedy strategy is computationally cheap. How-

ever, it does not ensure a sequence with a maximal overall probability

because sequences with a high probability can also contain some tokens

with a low probability. To mitigate this issue the beam search algorithm

was introduced in sequence-to-sequence models (e.g., References

36-38). Beam search selects and memorizes the N-best tokens at every

decoding step creating a tree of possible output sequences. Every

selected token is added separately to the preceding output sequence,

and thus the decoder is prompted in total N-times to predict the out-

put probabilities of the next tokens. Therefrom the decoder selects N

tokens with the highest probabilities for the next decoding step and

discards branches with a lower probability. In the end either the

sequence with the overall highest probability is selected or the N-best

sequences are returned to a user for selection. Choosing an appropri-

ate beam size N is a trade-off between generating sequences with

high probabilities and computational cost.

Training of sequence-to-sequence models is typically performed

using the cross-entropy loss of the predicted output probabilities of the

next tokens and the ground truth.18 With the aid of the computed

cross-entropy loss the parameters of the model are adjusted to improve

the model performance. Teacher forcing39 is commonly applied to cor-

rect the model at each decoding step, which forces the model to gener-

ate the ground truth corresponding to a given input sequence.18

2.2 | Transformer architecture

Originally, the underlying model architectures of sequence-

to-sequence models comprised variations of RNNs.36 To avoid vanish-

ing or exploding gradients, long short-term memory40 and gated

recurrent neural nets41 were also introduced. Recently, the trans-

former architecture,19 which is based on the sequence-to-sequence

model structure, revolutionized the field of NLP demonstrating break-

through performances on numerous tasks.17-19

The transformer architecture19 is based on the auto-regressive

encoder-decoder model structure and was originally proposed to perform

translation tasks. The transformer model relies entirely on attention

mechanisms dispensing any recurrence or convolutions. Eliminating recur-

rence and using attention significantly reduces the number of sequential

computations and enables fast parallel processing and model training.19

Attention, being an important core component of the trans-

former architecture, enables the model to efficiently capture the

meaning of a token depending on the context present in the

sequence. During model training, the weights of query, key, and

value matrices are adjusted to learn the bidirectional context of

words in a sequence. These matrices are used to compute a query q,

key k, and value v vector from the input embedding. The resulting

vectors are packed to query Q, key K, and value V matrices to effi-

ciently compute the scaled dot-product attention. The implementa-

tion of the scaled dot-product attention in the transformer

architecture includes a scaling factor dk corresponding to the

layer size:

AttentionðQ,K,VÞ¼ softmax
QKTffiffiffiffiffi
dk

p
 !

V: ð1Þ

To allow the model to learn different representations of a single word,

multihead attention is introduced. For this purpose, the queries, keys,

and values are linearly projected to different dimensions and pro-

cessed in parallel by multiple attention heads, which are thereafter

concatenated. Thus, multihead attention enables the model model to

learn multiple relations of a word within a sentence.

The attention mechanisms are not able to cover any positional

information due to the absence of recurrence or convolutions in the

transformer architecture. Therefore, a positional encoding, utilizing

sine and cosine functions, is added to the input and output embedding

to provide information about the position in the sequence.

The structure of the original transformer architecture comprises

an encoder and a decoder stack each containing six identical layers.

Encoder stack Decoder stack

Numerical embedding

Input sequence Preceding output
sequence

Next token prediction

“Here is an example sentence.”
“Hier ist”

“ein”

F IGURE 1 Encoder-decoder structure of sequence-to-sequence
models.

HIRTREITER ET AL. 3 of 15

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

The encoder layers consist of a multihead attention sublayer followed

by a position-wise fully connected feed-forward network. Each sub-

layer is succeeded by layer normalization and the addition of a resid-

ual connection, which prevent “losing” information from the previous

layer and facilitate the gradient flow. Residual connections are bypass

connections around layers, which transfer information from previous

layers. Without those layers, information from preceding layers may

otherwise be diminished by operations in the subsequent layers. The

structure of the decoder stack is similar to the encoder with the dif-

ference that the decoder contains two attention sublayers. The first

attention sublayer is masked, which limits the decoder to attend only

to already generated tokens and prevents the decoder “from glancing

into the future.” During training, the model is fed simultaneously with

input and target data. Therefore, the masking algorithm prevents the

model from simply taking the next token from the target sequence,

but learns to predict the next token based on the information in the

input sequence and the tokens already generated. The second atten-

tion sublayer, the encoder-decoder attention layer, performs multi-

head attention combining the numerical embedding of the last

encoder layer and the results of the preceding self-attention layer.

2.3 | Graph- and text-based representation of
process diagrams

This section briefly summarizes the graph- and text-based representa-

tion of process diagrams as SFILES 2.0.29,31 Process diagrams

(e.g., PFDs or P&IDs) of chemical plants can be represented as

directed graphs.31,42 Unit operations and control units can be illus-

trated as nodes in the graph, while material streams and signals are

directed edges connecting the nodes. Figure 2 shows an illustrative

example process containing a reactor with level control and a recycle

loop with flow control. This process diagram can be converted to its

corresponding graph representation as depicted in Figure 3. Notably,

the two-stream heat exchanger (hex-1) is split into two nodes to dis-

tinguish the two separate material flows, which do not mix inside the

heat exchanger. The control units are stored as nodes like unit

operations.

SFILES 2.031 is a text-based representation of process topologies,

extending the original SFILES notation as proposed by d'Ante-

rroches.30 The SFILES notation is inspired by the SMILES notation,

which is used for representing molecules as strings.21,22 With

SFILES 2.0 we can efficiently store the topological information of a

process graph (e.g., Figure 3) as text, which enables us the application

of advanced data processing methods, such as NLP

models (Section 2.2). Converting the graph in Figure 3 to the

SFILES 2.0 notation with our publicly available Github repository

(https://doi.org/10.5281/zenodo.6901932)43 results in the following

string:

ðrawÞðhexÞf1gðCÞfTCg_1ðmixÞ<1ðrÞ½ðCÞfLCg_2�ðvÞ
< _2ðspltÞ½ðprodÞ� ðCÞfFCg_3ðvÞ1
< _3njðrawÞðvÞ< _1ðhexÞf1gðprodÞ:

The SFILES 2.0 notation is read from left to right with two con-

secutive unit operations respectively control units in parentheses

implying a material flow in between. Branching in the process, for

example after the stream splitter (splt), is represented by putting the

individual branches in brackets (here prod), but omitting the brackets

for the stream noted last at the branching point (here the recycle flow

over C/FC). Material recycles are included in the SFILES 2.0 notation

using a number # for the starting point (v) and <# for the correspond-

ing target (mix). The heat exchanger is noted twice in the string with a

number in braces, indicating that it is the same heat exchanger but

two streams enter and leave the equipment. Independent material

streams, such as the utility stream flowing through the heat exchanger

compartment hex-1/2, are appended to the SFILES 2.0 string stream

TC

LCxxx

FC

r-1

v-1
v-2

hex-1
raw-1

raw-2

prod-2

prod-1splt-1

mix-1

v-3

F IGURE 2 Exemplary chemical process diagram with branching,
recycle stream, control units and different mass trains.

hex-1/1raw-1

hex-1/2

mix-1C-1/TC r-1 splt-1

C-1/FC

C-1/LC

v-2

v-1

v-3raw-2

prod-1prod-2

hex-1

F IGURE 3 Graph representation
of the process diagram in Figure 2.

4 of 15 HIRTREITER ET AL.

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.6901932

separated with nj. Control units are inserted in the same way as unit

operations with subsequent braces indicating the letter code of the

instrument. Signal connections are implemented similarly to material

recycles but include an underscore (_#, <_#). Currently, the SFILES 2.0

notation is capable of representing flowsheet topologies with their

corresponding control structures. The integration of detailed informa-

tion on material flows, present components, process dynamics, equip-

ment sizing, special type unit operations, piping information, or

operating points is at the moment not available in the SFILES 2.0

notation, but will be subject to further extensions.

3 | DATA

We use generated data and a dataset of real PFDs with control struc-

tures for model training and evaluation. Section 3.1 describes the gen-

eration algorithm of PFDs with decentralized control structures,

which are utilized for pre-training the model. Subsequently,

Section 3.2 summarizes the pre-processing of real PFDs with control

structures derived from publicly available sources used for model

fine-tuning. It should be highlighted that the generated PFDs and the

mined PFDs only contain control structures. These diagrams are far

less detailed than P&IDs available in the industry containing additional

information, such as pipe classes, valves, or instrumentation.

3.1 | Generated data for pretraining

Typically, NLP models are trained on huge corpora of text that are

publicly available on the internet. For example, Common Crawl

(https://commoncrawl.org) is a publicly available database that

extracts around 20 TB of text from the web every month.18 Filtered

and cleaned, data from Common Crawl was used as C4 (Colossal

Clean Crawled Corpus) dataset with about 750 GB to pre-train the

roughly 220 million parameters of the T5-base model.18 Commonly,

transfer learning techniques are employed to reduce this massive data

demand for new applications.18

Although the SFILES 2.0 notation with its limited, small vocabu-

lary is less complex than natural language, a reasonable amount of

pretraining data is necessary to train the randomly initialized weights

of the transformer model. Due to a completely different vocabulary of

the SFILES 2.0 compared to natural language, we cannot leverage

transfer learning on human language models. Also, there is no data-

base of PFDs and P&IDs publicly available.

Since data availability is a major limitation of our method, we gen-

erate a large set of PFDs with decentralized control structures by

extending the previously proposed approach by Vogel et al.29 for gen-

erating several thousand PFDs in a time-efficient way. This generated

dataset is used for pretraining in a transfer learning approach (see

Section 5.1 for more details). The main goal of this data generation

step is to obtain a dataset, which is possibly similar to real data. The

generated data allows the model to learn the grammatical structure of

SFILES 2.0 and to demonstrate the capabilities of the model

predicting decentralized control structures. For this purpose, we

implement patterns including decentralized control structures of sub-

processes, such as thermal separation or reaction, in which a chemical

process is typically divided. These patterns are thereafter added

together to create the PFDs with decentralized control structures of a

chemical process consisting of multiple subprocesses. The construc-

tion of the PFD dataset follows a first-order Markov chain-like sam-

pling process with fixed probabilities, that is, the selection of the next

subprocess only depends on the current state. The probabilities,

shown in Figure 4, for the transition between the subprocesses are

selected based on our experience to generate realistic process flow-

sheets sufficient for pretraining the model. The utilization of fixed

probabilities result in a general structure of the process flowsheet

consisting of feed treatment, followed by reaction, thermal separation

and final conditioning. Compared to Vogel et al.,29 we add control

structures based on several basic design heuristics (inspired by Refer-

ences 1, 44, and 45) for every generated subprocess. The utilized

decentralized control patterns are included in Figures S1–S8. As illus-

trated in Figure 4, we initialize up to three feed streams, which may

be preprocessed by inserting heat exchangers, pumps, compressors,

or mixing units. Thereafter, a Markov transition selects either thermal

separation or reaction as the next subprocess. Exemplary illustrated is

the generation pattern for the reaction pattern: Firstly, upstream unit

operations comprising heat exchangers, pumps, and compressors are

selected. Thereafter, present heat exchangers may be pre-selected for

heat integration utilizing a reactor outlet stream. In the next step, one

of six stored reactor patterns with an optional material recycle stream

is selected. Optionally, a second or third reactant is fed to the reactor

in the final step completing the reaction pattern. In general, the pat-

terns have several outlet streams transitioning to the “Next sub-pro-

cess” state, which lead to multiple Markov transitions to subsequent

subprocesses. Branches are either terminated after reaching the con-

ditioning step or if the generation algorithm detects a node number

exceeding 65, which prevents the generation of very large flowsheet

graphs. Duplicates and process diagrams exceeding a node number of

100 are deleted. We selected a maximum node number of 100 such

Thermal
separation

Feed(s)

Next sub
process

Conditioning Product(s)

Start

End

Reaction

= 0.8= 0.2

= 0.1

= 0.7

= 0.2

Choose upstream
unit operations,
e.g.:

Select heat
Integration,
e.g.:

Reactor,
e.g.:

Optional:
Add reactants

F IGURE 4 Generation scheme for a process flow diagram with
control structure.

HIRTREITER ET AL. 5 of 15

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://commoncrawl.org

that the standard deviation and average node number of the gener-

ated dataset are in the same order of magnitude as our real PFD data-

set (cf. Table 1). During the sampling process with fixed probabilities,

it can happen that incorrect combinations of decentralized control

structures occur, which can ultimately have a negative impact on the

accuracy of the trained model.

The resulting process graphs with control structure are automati-

cally converted to SFILES 2.0 using our graph to SFILES 2.0 algo-

rithm.43 In a subsequent step, the SFILES 2.0 with control structure

are converted to SFILES 2.0 without control structure by removing all

control instruments (abbrev. C) with their corresponding letter code in

braces and signal connections identifiable by an underscore before

the number #. Finally, the generated pretraining dataset consists of

process diagrams without control structure (input data) and process

diagrams with control structure (output data). Table 1summarizes the

number of training/validation/test samples for model pretraining and

key properties of the dataset. Besides the number of samples, Table 1

shows the average number of nodes nnodes, the SD of the number of

nodes σðnnodesÞ, and the vocabulary size. The inclusion of a more

diverse set of control patterns and, in particular, letter codes to

increase the vocabulary of the generated dataset could improve the

positive effect of the model pre-training procedure. The complete

generated dataset including the SFILES 2.0 PFDs with decentralized

control structures and the corresponding PFDs without control struc-

tures are published.46

3.2 | Real data for fine-tuning

We collected 312 PFD images including control structures from

publicly available sources including the Google and Bing image

search engines*and extracted process diagrams from scientific liter-

ature using data mining.47 These process flowsheets originate from

various industry and academic domains, such as gas and oil plants,

experimental setups, or batch operations. After the manual selec-

tion of process diagrams containing control structure, automatic

object detection, and path exploration is performed using our

flowsheet digitization algorithm.48 Correcting faulty nodes and

edges, adding the letter code of control units, and adding the con-

nectivity of the unit operations and control structures is performed

using LabelGraph, which is our custom extension to LabelImg.49 In

addition, this manual correction step in LabelGraph ensures the

trustworthiness of the mined and digitized process flowsheets. In

this step, process flowsheets with obvious faults, as well as

duplicates, are deleted, but due to time limitations, a detailed check

could not be performed. The resulting process graphs are converted

to SFILES 2.0 using our code.43 Then, all control structures are

removed to build a dataset consisting of SFILES 2.0 without control

structure as our input data and SFILES 2.0 with control structures

as our output data. Key statistics of the dataset are denoted in

Table 1. The table shows that the standard deviation of the number

of nodes in the real data (28) is significantly higher than in the gen-

erated data (20) while the average number of nodes is smaller in

the real data. This indicates that the sizes of the process diagrams

vary more strongly in the real dataset. The table also highlights a

significantly higher vocabulary size of the real dataset (390) com-

pared to the generated dataset (113). The reason for this is mainly a

diversity of additional, new letter codes, but also other new unit

operations, which are not present in the generated data. To con-

clude, identifying good measures for the comparison of process dia-

grams (here, generated data and real data) is difficult. As a first

step, we used the average node number, the SD of the number of

nodes and the vocabulary size. In the future, an investigation of dif-

ferent measures, such as graph similarity, might be helpful for com-

paring two different process flowsheets.

3.3 | Data augmentation

Data augmentation methods are commonly applied to datasets to

increase their size without the effort of manual labeling and

to improve the robustness of machine learning models. In computer

vision, images are rotated, cropped, or distorted to have multiple

instances of the original image, which are from the computer's point

of view completely different. In the field of NLP, data augmentation is

more difficult since the meaning of the sentence has to be preserved.

Techniques in NLP for data augmentation include for example, syno-

nym replacement, back-translation, random insertion, deletion, or

swapping of words.50-52

To augment the process diagram datasets, we modify the branch-

ing decision in the SFILES 2.0 generation algorithm to create different

SFILES 2.0 strings representing the same process diagram.53 This pro-

cedure is motivated by significant performance advances when using

augmented SMILES in neural networks.24,54,55 When generating aug-

mented (noncanonical) SFILES 2.0, the branching decision is made

randomly, whereas in the case of the determination of canonical

SFILES 2.0 the branching decision is predetermined by assigning every

node of the graph to a unique rank.31 The resulting augmented

SFILES 2.0 is grammatically correct and contains identical information

as the canonical SFILES 2.0 and thus describes the same process

TABLE 1 Dataset properties and training (tr), validation (val),
test (te) splits used for the experiments.

Generated data Real data

samplestr 100/1000/10,000/100,000 250

samplesval 1000 31

sampleste 1000 31

nnodes 52 37

σðnnodesÞ 20 28

Vocabulary size 113 390

*Search keywords: “Piping and Instrumentation Diagram,” “Rohrleitungs und
Instrumentenfließbild,” “P&ID,” “R&I,” “R+I.”

6 of 15 HIRTREITER ET AL.

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/heartexlabs/labelImg

flowsheet. During augmentation, only the uniqueness of the

SFILES 2.0 representation is lost. For the augmented model training

runs we roughly doubled the training data by generating a second

SFILES 2.0 for every PFD in the input dataset. As an example, the

PFD corresponding to Figure 2 is represented by the following canon-

ical SFILES 2.0

ðrawÞðhexÞf1gðmixÞ<1ðrÞðvÞðspltÞ½ðprodÞ�ðvÞ
1njðrawÞðvÞðhexÞf1gðprodÞ,

which can be augmented to

ðrawÞðhexÞf1gðmixÞ<1ðrÞðvÞðspltÞ½ðvÞ1�ðprodÞn
jðrawÞðvÞðhexÞf1gðprodÞ:

To review more examples of augmented SFILES 2.0, we published the aug-

mented dataset together with the non-augmented generated dataset.46

4 | CONTROL STRUCTURE
PREDICTION MODEL

In the following section, we provide an overview of the general

procedure to predict the control structure of PFDs utilizing a

sequence-to-sequence transformer model. In Section 4.2, we describe

the tokenizer that enables the model to process the SFILES 2.0

strings. Thereafter, key parameters of the utilized transformer archi-

tecture are briefly summarized in Section 4.3.

4.1 | Overview

Figure 5A presents an overview of the control structure prediction

model, which is described in the following. Firstly, the PFD, which is

subject to the development of a control structure, is converted to

the corresponding SFILES 2.0 string as described in Section 2.3

(Step 1). Then, the SFILES 2.0 string is split into chunks of text using

the SFILES 2.0 tokenizer as explained in Section 4.2 (Step 2). After

converting the tokenized string to an input embedding and adding a

positional encoding, the encoder stack computes a numerical

embedding of the input string (Step 3). In Step 4, the decoder stack

is initially prompted with a start-of-sequence token. In combination

with the numerical embedding of the input sequence produced by

the encoder, the decoder stack predicts the next token of the output

sequence. The predicted token is then added to the preceding

tokens of the output sequence and the decoder is again prompted

to predict the next token (Step 5). This auto-regressive prediction of

tokens is continued until an end-of-sequence token terminates the

prediction process (Step 6). Lastly, the resulting SFILES 2.0 string is

converted to its corresponding graph representation, the PFD with

control structure. Eventually, this procedure could be implemented

in CAD software packages to automatically generate the control

structure of a drawn PFD as depicted in Figure 5B.

4.2 | Tokenization

Tokenizers are generally used in NLP to split text sequences into

pieces that can be processed by the language model. The aim is to

compress as many words of a language as possible into a fixed vocab-

ulary while preserving the meaning of the words. Using the vocabu-

lary, tokenizers convert the input sequence into a numerical vector,

which can be processed by the NLP model. Different tokenization

algorithms have been developed according to different languages and

intended use cases. The most commonly used tokenization algorithms

comprise word- and subword-based tokenizers, which split the text

into words or parts of words and automatically build their vocabulary.

Examples of popular subword-based tokenizers include byte-pair

encoding56 and SentencePiece.57

We perform the tokenization of the SFILES 2.0 using a custom

tokenizer to preserve the inherent structure of the SFILES 2.0 nota-

tion, which is significantly different from natural language. Inspired by

the SMILES tokenizer of Schwaller et al.,23 we propose a SFILES 2.0

tokenizer, which, for instance, identifies unit operations (e.g., (hex)),

stream tags (e.g., tout), letter codes (e.g., LC), material recycle

(e.g., <#, #) and signal connections (e.g., <_#, _#). The SFILES 2.0 string

is split into pieces using the following regular expression, which is

used to search and match certain patterns in the SFILES 2.0:

ð ∖ ð:þ? ∖ Þj ∖ f:þ? ∖ gj½<%_�
þ ∖dþj ∖ �j ∖ ½j ∖ < ∖& ∖ jjð?<!< Þ& ∖ jjn ∖
jjð?<!&Þð?<!nÞ ∖ jj&ð?! ∖ jÞj ∖dÞ:

For example, tokenizing the following SFILES 2.0 string

ðrawÞðhexÞf1gðCÞfTCg_1ðmixÞ<1ðrÞ½ðCÞfLCg_2�ðvÞ
< _2ðspltÞ½ðprodÞ�ðCÞfFCg_3ðvÞ1< _3njðrawÞðvÞ
< _1ðhexÞf1gðprodÞ

results in

ðrawÞ; ðhexÞ; f1g; ðCÞ; fTCg;_1; ðmixÞ; <1; ðrÞ,
½; ðCÞ; fLCg;_2; �; ðvÞ; < _2; ðspltÞ; ½; ðprodÞ; �,
ðCÞ; fFCg; _3; ðvÞ; 1; < _3; nj; ðrawÞ; ðvÞ,
< _1; ðhexÞ; f1g; ðprodÞ:

4.3 | T5-Model for control structure prediction

There exist multiple, publicly available sequence-to-sequence models,

such as OpenNMT58 or the T5 model.18 We use the T5 transformer

model,18 a state-of-the-art model easily accessible through Hugging

Face (https://huggingface.co), casting the control structure prediction

as a translation task. Therefore, the employed model is a sequence-

to-sequence model with an encoder-decoder structure as explained in

Section 2.1. The T5 model is in large parts equivalent to the original

transformer architecture proposed by Vaswani et al.19 Modifications

include removing the layer bias norm, placing layer normalization

HIRTREITER ET AL. 7 of 15

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://huggingface.co

outside the residual connections, and applying a different positional

encoding.18 Since the SFILES 2.0 vocabulary is limited to a few hun-

dred entries, we utilize the T5-small version with originally about

60 million parameters. The T5-small model has an embedding size of

512, utilizes an eight-headed attention mechanism, and consists of six

encoder and decoder layers each. Preliminary tests on a generated

SFILES 2.0 dataset with around 10,000 samples indicate, that an even

smaller architecture may be sufficient and advantageous. For this rea-

son, we further decrease the model size of the T5-small model by

reducing the embedding size to 128 and the number of encoder and

decoder layers each to two. In summary, our model comprises roughly

7.9 million trainable parameters. Compared to other state-of-the-art

language models, our model size is significantly smaller, but our

vocabulary sizes are clearly smaller, too. We performed a hyperpara-

meter optimization including the model size and several other model

and training parameters based on a grid-search hyperparameter tuning

run (cf. Table S1). The results of the hyperparameter tuning run sug-

gest that smaller models lead to better results. Thus, the consideration

of even simpler model architectures, such as simple RNNs, in addition

to extensive hyperparameter tuning runs could be promising for

future work. During model training, early stopping is utilized to pre-

vent overfitting and unnecessary long training runs. Evaluation of the

F IGURE 5 Overview of the control structure prediction with the transformer model. (A) Conversion of the process flow diagram (PFD) to
SFILES 2.0 (1). Processing of the input SFILES 2.0 with transformer model to predict the control structure (2–5). Conversion of the output
SFILES 2.0 to the PFD including the corresponding control structure (6-7). (B) Example control structure prediction adapted from Reference 29.

8 of 15 HIRTREITER ET AL.

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

model is performed by generating predictions with beam search as

decoding strategy as described in Section 2.1. The beam width is set

to five and those five, most probable predictions are returned to the

user as recommendations for possible control structures of the pro-

vided PFD. The implementation of a constrained beam search would

be possible to prevent the model from predicting unit operations,

which are not present in the PFD. However, such an implementation

is not applied in the following experiments.

5 | RESULTS AND DISCUSSION

This section summarizes the training procedure for pretraining and

fine-tuning the control structure prediction model. Thereafter, the

model is evaluated based on the top-k accuracy metric.

5.1 | Model training

We perform model pretraining with different generated training set

sizes as denoted in Table 2. Additionally, an independent validation

and test set is generated with 1000 samples each. During pretraining,

we use a learning rate of 3 �10�4 and a batch size of 32. Model evalu-

ation is performed depending on the dataset size every 500 steps for

the training dataset containing 10,000 and 100,000 samples, every

25 steps for the dataset with 1000 samples, and every five steps for

the dataset with 100 samples. Early stopping is applied with patience

of 10 steps to prevent overfitting.

Subsequently, we fine-tune the pretrained model on real PFDs

with control structures splitting the dataset into a train (80%), valida-

tion (10%), and test (10%) set. Model fine-tuning is performed with a

reduced learning rate of 0:5 �10�4 and a batch size of 2. We evaluate

the model every 20 steps and apply early stopping with patience of

40 steps.

Figure 6A illustrates exemplary the training and validation loss

curves during model pre-training with a dataset size of 10,000 gener-

ated PFDs with decentralized control structures. The first few epochs

exhibit a steep decrease of both training and validation loss, where-

upon the losses in the subsequent epochs asymptotically approach a

constant value. The gap between training and validation loss is small,

indicating a small generalization error, which is likely due to the lim-

ited variance in the generated dataset. Additionally, the samples of

training and validation set are drawn from the same probability distri-

bution and thus forming a representative validation set. The early

TABLE 2 Top-k accuracy of the
pretrained model on the generated
test set.

Samples in
training data top-1 (%) top-2 (%) top-3 (%) top-4 (%) top-5 (%)

100 0.0 0.0 0.0 0.0 0.0

199a 0.0 0.0 0.0 0.0 0.0

1000 0.3 0.6 0.6 0.8 0.9

1958a 0.3 0.3 0.4 0.5 0.6

10,000 37.7 56.3 65.8 72.0 74.8

10,000b 17.8 30.2 38.9 44.2 48.0

19,573a 41.4 61.1 67.7 73.7 76.1

100,000 48.6 71.3 81.4 86.7 89.2

195,467a 49.7 70.6 80.9 85.7 87.5

aAugmented dataset.
bRemoved valves in input training data.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

Epochs

C
ro
s
s
-e
n
tr
o
p
y
lo
s
s Training loss

Validation loss

(A)

0 5 10 15 20 25
0

1

2

3

4

5

6

Epochs

C
ro
s
s
-e
n
tr
o
p
y
lo
s
s Training loss

Validation loss

(B)

F IGURE 6 Training and validation loss curve during
(A) pretraining with 10,000 training samples and (B) fine-tuning.

HIRTREITER ET AL. 9 of 15

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

stopping callback detects no increase in the validation loss during

model training. The small difference between training and validation

loss is an indication that overfitting is not observed.

Figure 6B depicts the training and validation loss curves during

model fine-tuning. Compared to Figure 6A a larger gap between training

and validation loss curve and generally higher fluctuations are observed.

This behavior is most likely related due to the training on real PFDs with

control structures, which generally exhibit a higher complexity than the

generated examples. As indicated in Table 1, the real data show higher

variations in the number of nodes and due to additional other unit oper-

ations and letter codes in the control structures, resulting in an

extended vocabulary size. Along with the small dataset size, the valida-

tion set is likely not representative. The early stopping callback detects

an increase in the validation loss at around epoch 27 and thus termi-

nates the model training run. The difference between training and vali-

dation loss is due to higher variations in the dataset within an expected

range but still in the same order of magnitude. The experiments with

different dataset sizes during pretraining resulted in qualitatively similar

loss curves during pretraining and fine-tuning.

5.2 | Model evaluation

The model performance after pretraining on different generated data-

set sizes is evaluated based on the top-k accuracy. Therefore, the

top-5 predictions are determined with beam search decoding. A pre-

diction is counted as true, if the target PFD with control structure is

present in the top-k predictions of the model. The results, presented

in Table 2, show that increasing the dataset size significantly improves

the model performance. It is evident that a dataset size of 100 or

1000 samples is not sufficient for pretraining the control structure

prediction model. With 10,000 generated process diagrams, we

already reach a top-5 accuracy of roughly 75% on the test set consist-

ing of generated data during pretraining. The top-5 accuracy can be

increased up to 89.2% on the test set, consisting of generated data,

when pre-training with 100,000 generated samples. Therefore we

conclude, that the control structure prediction model learns the gram-

matical structure of SFILES 2.0, which are based on generated PFDs,

and correctly gives recommendations for the control structure of

unknown PFDs, corresponding to the generated dataset, through

learning the patterns present in the training data. The transformer

model learns conditional probabilities and essentially exploits common

patterns in the data. It is highlighted that this generated dataset is

only based on topological information of the PFDs and no information

such as process dynamics, operating points, or equipment sizing is

provided therein. Since this generated dataset is created under differ-

ent assumptions than real PFDs with control structure, these results

are not directly transferable to real conditions. Nevertheless, the

results indicate successful learning of our proof-of-concept on syn-

thetic data. In addition, the results indicate, that SFILES 2.0 data aug-

mentation has positive effects on the model performance. Especially

on the dataset with 10,000 samples, a significant increase in the top-1

accuracy is observed after augmentation.

Since valves are often omitted in PFDs, an additional pretraining

run is performed with 10,000 training samples, where the entire con-

trol structure and all valves are removed from the input dataset. Thus,

the model learns to predict not only the control structures but also

the valves. The results, denoted in Table 2, indicate that it is signifi-

cantly more difficult for the model to predict correct control struc-

tures. This causes the top-1 accuracy to decrease from 37.7% (10,000

input samples with valves) to 17.8% (10,000 input samples without

valves). However, this demonstrates that the model is also capable of

predicting correct valve positions, which are not necessarily present in

the PFDs.

In a first experiment, we trained the control structure prediction

model directly on 250 real PFDs with control structures. This

approach did not yield useful results, as apparently the size of the

dataset of 250 real P&IDs is not sufficient to train a transformer-

based NLP model. In a second experiment, we applied a transfer learn-

ing method. We fine-tuned the control structure prediction model

with real PFDs with control structures using checkpoints obtained

from pretraining with generated data. Still, the results after fine-tuning

revealed a top-5 accuracy of 0% on the test set of real PFDs with con-

trol structures. Therefore, based on the top-k metric, we cannot dem-

onstrate the utility of the model on real data. While the trained model

is not yet applicable to industrial applications, the result is consistent

with the results from pre-training. In particular, the pretraining on a

small number of generated PFDs with control structures indicates,

that 100 or even 1000 training samples are not sufficient for reason-

able results (cf. Table 2). The pretraining results highlight, that a suffi-

ciently large number (here, 10,000) of training PFDs with control

structures is necessary to enable the model learning patterns in the

provided data. Depending on the complexity of real PFDs with control

structures the amount of required training samples may be signifi-

cantly larger due to the increasing complexity of the task.

Error sources and difficulties for the control structure prediction

model are not only due to the small real dataset size but also to the

dataset composition. The PFDs with control structures are derived

from scientific literature and publicly available sources representing

laboratory setups, but also chemical plants or fictive examples and

may contain errors, incomplete control structures, and wrong, not

standardized, letter codes. In addition, the real dataset, as described in

Section 3.2, contains very heterogeneous and generally more complex

PFDs with control structures. In combination with the small size of

the dataset, this leads to errors in the model predictions, including

added or missing unit operations, invalid SFILES 2.0, not connected

material recycles, or signal connections. These errors could be partly

mitigated by implementing a constrained beam search algorithm,

which sets the probabilities of unit operations not present in the input

sequence to zero and forces the model to add only the control struc-

ture and valves to the output sequence. Nevertheless, since for every

section of a chemical plant exists at least one PFD and P&ID, we

believe that there is enough data available in the proprietary domain

to train our control structure prediction model making no arbitrarily

changes in the PFD and predicting correct control schemes. Here, a

major limitation is the availability of real flowsheet data to academia,

10 of 15 HIRTREITER ET AL.

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

as most of the PFDs and P&IDs in the industry are protected

confidential.

5.3 | Illustrative example

This section illustrates the model predictions on one representative

sample taken from the independent test set. For this illustrative exam-

ple, we use the model that has been trained on 10,000 training sam-

ples without data augmentation and fine-tuning. The model is

prompted with a PFD (colored black in Figure 7) of the test dataset, as

denoted in the following SFILES 2.0 string:

ðrawÞðhexÞf1gðmixÞ<&jðrawÞðvÞ&jðvÞðhexÞf2g
ðrectÞ<1<2½ftoutg ðcondÞðsepÞ½ðvÞðprodÞ�ðspltÞ
½ðvÞðprodÞ� ðvÞ1�fboutgðspltÞ½ðvÞðprodÞ�ðhexÞ
f3g2njðrawÞðhexÞf1gðvÞðprodÞnjðrawÞðvÞðhexÞf2g
ðprodÞnjðrawÞðvÞðhexÞf3gðprodÞ:

The model predicts with beam search decoding the following five,

syntactically correct SFILES 2.0. These SFILES 2.0 contain the input

PFD colored in black and the predicted, five most-likely control struc-

tures illustrated in blue:

1. (raw)(hex){1}(C){TC}_1(C){FT}_2(mix)<&|(raw)(C)

{FFC}_3<_2(v)& <_3|(C){FC}_4(v)<_4(hex){2}(C){TC}

vv

v

v

v

v

v

FT

raw

prod

raw

raw

raw

prod

prod

prod

prod

raw

prod

mix

v

v

hex hex

hex

cond sep

col

splt

splt

FFC

TC FC

TC

PC

FC

LC

FCLC

(A)

vv

v

v

v

v

v

FT

raw

prod

raw

raw

raw

prod

prod

prod

prod

raw

prod

mix

v

v

hex hex

hex

cond sep

col

splt

splt

FFC

TC FC

TC

PC

FC

LC

FCLC

TC

(B)

v

v

v

v

v

v

v

FT

raw

prod

raw

raw

raw

prod

prod

prod

prod

raw

prod

mix

v

v

hex hex

hex

cond sep

col

splt

splt

FFC

TC FC

TC

PC

FC

LC

LC

TC

FC

(C)

vv

v

v

v

v

v

FT

raw

prod

raw

raw

raw

prod

prod

prod

prod

raw

prod

mix

v

v

hex hex

hex

cond sep

col

splt

splt

FC

TC FC

TC

PC

FC

LC

FCLC

(D)

vv

v

v

v

v

v

FT

raw

prod

raw

raw

raw

prod

prod

prod

prod

raw

prod

mix

v

v

hex hex

hex

cond sep

col

splt

splt

FFC

TC FC

TC

PC

LC FC

LCFC

(E)

F IGURE 7 Control structure predictions (A–E) (in blue) of the model prompted with the process flow diagram (colored black) as input.

HIRTREITER ET AL. 11 of 15

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

_5(rect)<1<2[(C){PC}_6][(C) {LC}_7][{tout}(cond)

(sep)[(C){LC}_8][(v)<_6(prod)](splt)[(v) <_8(prod)]

(C){FC}_9(v)1<_9]{bout}(splt)[(C){FC}_10(v)<_10

(prod)](hex){3}2n|(raw)(hex){1}(v)<_1(prod)n|(raw)

(v)<_5(hex){2}(prod)n|(raw)(v)<_7(hex){3}(prod)

2. (raw)(hex){1}(C){TC}_1(C){FT}_2(mix)<&|(raw)(C)

{FFC}_3<_2(v)& <_3|(C){FC}_4(v)<_4(hex){2}(C){TC}

_5(rect)<1<2[(C){PC}_6][(C) {LC}_7][(C){TC}_8]

[{tout}(cond)(sep)[(C){LC}_9][(v)<_6(prod)] (splt)

[(v)<_9(prod)](C){FC}_10(v)1<_10]{bout}(splt)[(C)

{FC} _11<_8(v)<_11(prod)](hex){3}2n|(raw)(hex){1}

(v)<_1(prod) n|(raw)(v)<_5(hex){2}(prod)n|(raw)(v)

<_7(hex){3}(prod)

3. (raw)(hex){1}(C){TC}_1(C){FT}_2(mix)<&|(raw)(C)

{FFC}_3<_2(v)& <_3|(C){FC}_4(v)<_4(hex){2}(C){TC}

_5(rect)<1<2[(C){PC}_6][(C) {LC}_7][(C){TC}_8]

[{tout}(cond)(sep)[(C){LC}_9][(v)<_6(prod)] (splt)

[(C){FC}_10<_8(v)<_10(prod)](v)1<_9]{bout}(splt)

[(v)<_7(prod)](hex){3}2n|(raw)(C){FC}_11(v)<_11

(hex){3}(prod) n|(raw)(hex){1}(v)<_1(prod)n|(raw)

(v)<_5(hex){2}(prod)

4. (raw)(C){FC}_1(v)<_1(mix)<&|(raw)(hex){1}(C){TC}_2

(C){FT}&_3| (C){FC}_4(v)<_4(hex){2}(C){TC}_5(rect)

<1<2[(C){PC}_6][(C) {LC}_7][{tout}(cond)(sep)[(C)

{LC}_8][(v)<_6(prod)](splt)[(v) <_8(prod)](C){FC}_9

(v)1<_9]{bout}(splt)[(C){FC}_10(v)<_10(prod)](hex)

{3}2n|(raw)(hex){1}(v)<_2(prod) n|(raw)(v)<_5(hex)

{2}(prod)n|(raw)(v)<_7(hex){3}(prod)

5. (raw)(hex){1}(C){TC}_1(C){FT}_2(mix)<&|(raw)(C)

{FFC}_3<_2(v)& <_3|(C){FC}_4(v)<_4(hex){2}(C){TC}

_5(rect)<1<2[(C){PC}_6][(C) {LC}_7][{tout}(cond)

(sep)[(C){LC}_8][(v)<_6(prod)] (splt)[(C) {FC}_9

(v)<_9(prod)](v)1<_8]{bout}(splt)[(v)<_7(prod)](hex)

{3} 2n|(raw)(C){FC}_10(v)<_10(hex){3}(prod) n|(raw)

(hex){1}(v)<_1(prod)n|(raw)(v)<_5(hex){2}(prod)

Figure 7 illustrates the five model predictions. The PFD, col-

ored black in Figure 7, contains two feed preheater, a mixing

point of two material streams, and a distillation column. The

model predicts a temperature-dependent control of the utility

stream for both feed preheater. Mixing of the two raw material

streams is, according to the model, most likely done with a flow

ratio control. Furthermore, the model provides correct predic-

tions of four different distillation column control schemes, which

are included in the seven column control structures used to gen-

erate the data. The first prediction (Figure 7A) corresponds to the

ground truth for the corresponding PFD fed to the model as

input.

Apart from the correct predictions, Figure 7 illustrates limitations

and errors of the control structure prediction model. In Figure 7D, the

model inserts a flow transmitter and fails to predict a corresponding

signal connection. In addition, the mixing of the material flows

upstream of the distillation column could be problematic from a

control perspective, as flow control is proposed here before and after

mixing. This problem arises from model training with generated data,

which is synthesized by adding small control patterns to a final PFD

with control structure. The addition of the utilized control patterns

may not result in a meaningful, correct control architecture, and fur-

thermore, no long-range dependencies but only decentralized control

structures are considered in the data generation procedure. In addi-

tion, correct predictions of the control structure of a distillation col-

umn setup depend not only on the topological structure, but also on

additional information such as present components, material flows, or

operating conditions. This means that control structure predictions

considering only the topological structure of the process may appear

correct, but are wrong when considering in detail light- and heavy-

boiling components, azeotropic mixtures, or quality measures.

Since PFDs do not necessarily contain valves, we trained a model

with 10,000 training samples, removing not only the entire control

structure but also each valve in the input data. Given the PFD (colored

black in Figure 8) and excluding any valve in the model input, the third

prediction of the model, as illustrated in Figure 8, represents the

ground truth. This shows that our model has also the potential to

learn the positioning of valves in combination with the prediction of

the control structure.

5.4 | Current limitations and future directions

Overall, our results show great potential for automatically predicting

decentralized control structures for PFDs. However, the results also

demonstrate several current limitations that need to be overcome for

industry applications. A main issue related to the proposed model is

the consideration of only topological information of the PFD for the

prediction of an appropriate control structure. As already discussed in

Section 5.3 specifically for the distillation setup, detailed information

about the design characteristics, such as equipment sizing, tempera-

ture control (isothermal, adiabatic, non-isothermal), batch or, continu-

ous operation, of every unit operation is necessary to develop a safe

and reliable control structure. In addition, the SFILES 2.0 currently

misses information about streams, present components, and operating

points. Furthermore, process dynamics and operating objectives of a

chemical plant need to be considered during the design of the control

structure. This missing information severely limits the model perfor-

mance and could lead to wrong predictions of the control structure.

To overcome the current limitations and challenges, we have

identified four main development directions that need to be

addressed in order to effectively apply the proposed model to real-

world PFDs for control structure prediction in the future.

1. Data availability: To train NLP models effectively, a high quantity

of training data needs to be accessible for the model. Especially for

the prediction of control structures, the collaboration of industry

and academia is essential to provide high-quality P&IDs for model

training. Ideally, such training data should also be checked/curated

thoughtfully. As an alternative, we also explore the automatic

12 of 15 HIRTREITER ET AL.

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

mining of flowsheets from literature and patents53 and their auto-

matic digitization.48

2. Inclusion of additional information: To encode the required infor-

mation for a successful control structure design, such as operating

points, stream information, or present components, the SFILES 2.0

notation needs to be extended. Another possibility is a switch from

the language-based to a graph-based model architecture, where the

required information about the chemical process is encoded in a graph

instead of a string. In our previous work, we showed already that flow-

sheets and flow information can be represented as graphs.42 In addi-

tion, we already leveraged graph neural networks to learn from these

flowsheet graphs.42 These technologies are also promising in the con-

text of the prediction of decentralized control structures.

3. Hybrid AI solutions: Chemical engineers have developed funda-

mental principles of modeling and control. Integrating these princi-

ples into the future AI algorithm has a great potential to improve

extrapolability, increase safety and explainability, and reduce data

requirements.16,59 Thus, this integration is an important future

research direction.

4. Validity checks: Control is safety-critical. Thus, future work

requires validity checks for the training data as well as the model

predictions. These can be guided by physical knowledge and rules

from the process engineering domain,16 AI approaches,28 and

hybrid AI approaches.59

Consequently, addressing the mentioned points in future research

will make the model applicable to industrial applications. We envision

an integration of our model in CAD software to assist engineers in

developing PFDs with control structures.

6 | CONCLUSION

Predicting the control structure of PFDs with machine learning

models is a promising strategy to accelerate the development of

chemical processes. We propose a novel method of casting the pre-

diction task as a translation task and leveraging the transformer archi-

tecture from the field of NLP. To apply NLP techniques, we represent

the graph-based process diagrams in the text-based SFILES 2.0 nota-

tion. We successfully trained a fully data-driven sequence-

to-sequence model to predict the decentralized control structure of

generated chemical processes without relying on handcrafted rules.

Experiments on 312 real PFDs with control structures indicate that

for reasonable results larger datasets are necessary.

Future work should focus on the acquisition of a larger dataset of

real PFDs with control structures, which can be used to fine-tune our

model and leverage the possible advantages of transfer learning. Addi-

tionally, the context of the chemical process, such as operating condi-

tions, basic control structures already present in the PFD, or stream

information, may be included in advanced models to refine the predic-

tion of the control structure. Furthermore, training the model on spe-

cific classes of plants such as petrochemical or utility systems could

be promising since this would decrease the complexity of the predic-

tion task. Besides the prediction of the control structure, extensions

of the control structure prediction model could include, for example,

pipe classes or valve types, to finally enable the automatic prediction

of complete P&IDs. Moreover, validity checks may be included to fur-

ther increase the accuracy of the model predictions. Ultimately, our

model should not be seen as an alternative to the control engineer or

existing rule-based systems. According to the UNESCO60 AI may

assist humans in decision-making for efficiency reasons, but an AI

algorithm does not replace human responsibility in safety-critical deci-

sions. Therefore, we envision a combination of the algorithm with

other process development methods to assist the engineer with rec-

ommendations, reduce the number of manual tasks, and generally

make process development more efficient.

AUTHOR CONTRIBUTIONS

Edwin Hirtreiter: data curation (lead); investigation (equal); methodol-

ogy (equal); software (lead); validation (lead); visualization (lead);

v

v

vvv

v

v

FT

raw

prod

raw

raw

raw

prod

prod

prod

prod

raw

prod

mix

v

v

hex hex

hex

cond sep

col

splt

splt

FFC

TC FC

TC

PC

FC

LC

FC LC

F IGURE 8 Control structure
prediction (in blue) of the model
prompted with the process flow
diagram (colored black) as input.

HIRTREITER ET AL. 13 of 15

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

writing – original draft (lead). Lukas Schulze Balhorn: conceptualiza-

tion (supporting); investigation (equal); methodology (supporting);

software (supporting); supervision (supporting); writing – review and

editing (equal). Artur M. Schweidtmann: conceptualization (lead);

funding acquisition (lead); project administration (lead); supervision

(lead); writing – review and editing (equal).

ACKNOWLEDGMENTS

This publication is part of the project “ChemEng KG - The Chemical

Engineering Knowledge Graph” with project number 203.001.107 of

the research program “Open Science (OS) Fund 2020/2021” which is

(partly) financed by the Dutch Research Council (NWO). We want to

thank the anonymous reviewers for their time and effort in evaluating

this article. This greatly helped us to clarify and improve our publication.

DATA AVAILABILITY STATEMENT

The synthetic data that support the findings of this study are openly

available in zenodo at https://doi.org/10.5281/zenodo.7658798, ref-

erence number 7658798. The real training data, code, and trained

models are not shared.

ORCID

Edwin Hirtreiter https://orcid.org/0000-0002-0693-925X

Lukas Schulze Balhorn https://orcid.org/0000-0001-7494-9110

Artur M. Schweidtmann https://orcid.org/0000-0001-8885-6847

REFERENCES

1. Towler GP, Sinnott RK. Chemical Engineering Design - Principles, Prac-

tice and Economics of Plant and Process Design. Elsevier/Butterworth-

Heinemann; 2008.

2. Toghraei M. Piping and Instrumentation Diagram Development. 1st ed.

John Wiley & Sons Inc; 2019.

3. Uzuner H, Schembecker G. Wissensbasierte erstellung von R&I-

fließbildern. Chem Ing Tech. 2012;84:747-761. doi:10.1002/cite.

201100230

4. Blitz H, Engelke J, Sonnenschein R, Schmidt-Traub H. Rechnerges-

tützte konfigurierung von RI-fließbildern am beispiel von pumpen.

Chem Ing Tech. 1994;66:470-475. doi:10.1002/cite.330660404

5. Obst M, Doherr F, Urbas L. Wissensbasiertes Assistenzsystem für

modulares engineering. Automatisierungstechnik. 2013;61:103-108.

doi:10.1524/auto.2013.0011

6. Fleischer-Trebes C, Krasberg N, Bramsiepe C, Kockmann N. Planung-

sansatz für modulare anlagen in der chemischen Industrie. Chem Ing

Tech. 2017;89:785-799. doi:10.1002/cite.201600083

7. Hohmann L, Kössl K, Kockmann N, Schembecker G, Bramsiepe C. Mod-

ules in process industry � a life cycle definition. Chem Eng Process Pro-

cess Intens. 2017;111:115-126. doi:10.1016/j.cep.2016.09.017

8. Eilermann M, Post C, Radatz H, Bramsiepe C, Schembecker G. A gen-

eral approach to module-based plant design. Chem Eng Res Des. 2018;

137:125-140. doi:10.1016/j.cherd.2018.06.039

9. Morari M, Arkun Y, Stephanopoulos G. Studies in the synthesis of

control structures for chemical processes: part I: formulation of the

problem. Process decomposition and the classification of the control

tasks. Analysis of the optimizing control structures. AIChE J. 1980;26:

220-232. doi:10.1002/aic.690260205
10. Luyben ML, Tyreus BD, Luyben WL. Plantwide control design proce-

dure. AIChE J. 1997;43:3161-3174. doi:10.1002/aic.690431205

11. Ng C, Stephanopoulos G. Synthesis of control structures for chemical

plants. 8th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems:

Theory and Applications. Vol 31. Elsevier; 1998:17-29. doi:10.1016/

S1474-6670(17)41767-8
12. Seborg DE, Edgar TF, Mellichamp DA, Doyle FJ III. Process Dynamics

and Control. 3rd ed. Wiley; 2011.

13. van de Wal M, de Jager B. A review of methods for input/output selection.

Automatica. 2001;37:487-510. doi:10.1016/S0005-1098(00)00181-3

14. Williamson C. Computer Aided Process Control Systems Synthesis Using

Rule-Based Programming. Dissertation. University of Canterbury. 1989.

15. Song JJ, Park SW. Intellite3: a knowledge based expert system for

control structure synthesis. Korea J Chem Eng. 1990;7:198-209. doi:

10.1007/bf02697352

16. Venkatasubramanian V. The promise of artificial intelligence in chemi-

cal engineering: is it here, finally? AIChE J. 2019;65:466-478. doi:10.

1002/aic.16489
17. Brown TB, Mann B, Ryder N, et al. Language models are few-shot

learners. arXiv. 2020:1-75. doi:10.48550/arXiv.2005.14165

18. Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer

learning with a unified text-to-text transformer. J Mach Learn Res.

2019;21:1-67. doi:10.48550/arXiv.1910.10683

19. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv.

2017:1-15. doi:10.48550/arXiv.1706.03762
20. Popel M, Tomkova M, Tomek J, et al. Transforming machine transla-

tion: a deep learning system reaches news translation quality compa-

rable to human professionals. Nat Commun. 2020;11:1-15. doi:10.

1038/s41467-020-18073-9
21. Weininger D. SMILES, a chemical language and information system.

1. Introduction to methodology and encoding rules. J Chem Inf Model.

1988;28:31-36. doi:10.1021/ci00057a005

22. Weininger D, Weininger A, Weininger JL. SMILES. 2. Algorithm for

generation of unique SMILES notation. J Chem Inf Comput Sci. 1989;

29:97-101. doi:10.1021/ci00062a008

23. Schwaller P, Gaudin T, Lányi D, Bekas C, Laino T. “Found in transla-

tion”: predicting outcomes of complex organic chemistry reactions

using neural sequence-to-sequence models. Chem Sci. 2018;9:6091-

6098. doi:10.1039/c8sc02339e
24. Schwaller P, Laino T, Gaudin T, et al. Molecular transformer: a model

for uncertainty-calibrated chemical reaction prediction. ACS Central

Sci. 2019;5:1572-1583. doi:10.1021/acscentsci.9b00576
25. Schwaller P, Petraglia R, Zullo V, et al. Predicting retrosynthetic

pathways using transformer-based models and a hyper-graph

exploration strategy. Chem Sci. 2020;11:3316-3325. doi:10.1039/

c9sc05704h

26. Zhang T, Sahinidis NV, Siirola JJ. Pattern recognition in chemical

process flowsheets. AIChE J. 2019;65:592-603. doi:10.1002/aic.

16443

27. Zheng C, Chen X, Zhang T, Sahinidis NV, Siirola JJ. Learning process

patterns via multiple sequence alignment. Comput Chem Eng. 2022;

159:107676. doi:10.1016/j.compchemeng.2022.107676
28. Oeing J, Welscher W, Krink N, Jansen L, Henke F, Kockmann N.

Using artificial intelligence to support the drawing of piping and

instrumentation diagrams using DEXPI standard. Digit Chem Eng.

2022;4:100038. doi:10.1016/j.dche.2022.100038

29. Vogel G, Schulze Balhorn L, Schweidtmann AM. Learning from flow-

sheets: a generative transformer model for flowsheet autocomple-

tion. arXiv. 2022:1-31. doi:10.48550/arXiv.2208.00859

30. d'Anterroches L. Process Flow Sheet Generation and Design through a

Group Contribution Approach. Dissertation. Technical University of

Denmark. 2006.

31. Vogel G, Schulze Balhorn L, Hirtreiter E, Schweidtmann AM. SFILES

2.0: an extended text-based flowsheet representation. arXiv. 2022:

1-13. doi:10.48550/arXiv.2208.00778

32. Stahlberg F. Neural machine translation: a review. J Artif Intell Res.

2020;69:343-418. doi:10.1613/jair.1.12007
33. Nallapati R, Zhou B, CNd s, Gulcehre C, Xiang B. Abstractive text

summarization using sequence-to-sequence RNNs and beyond. arXiv.

2016. doi:10.48550/arXiv.1602.06023

14 of 15 HIRTREITER ET AL.

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.7658798
https://orcid.org/0000-0002-0693-925X
https://orcid.org/0000-0002-0693-925X
https://orcid.org/0000-0001-7494-9110
https://orcid.org/0000-0001-7494-9110
https://orcid.org/0000-0001-8885-6847
https://orcid.org/0000-0001-8885-6847
info:doi/10.1002/cite.201100230
info:doi/10.1002/cite.201100230
info:doi/10.1002/cite.330660404
info:doi/10.1524/auto.2013.0011
info:doi/10.1002/cite.201600083
info:doi/10.1016/j.cep.2016.09.017
info:doi/10.1016/j.cherd.2018.06.039
info:doi/10.1002/aic.690260205
info:doi/10.1002/aic.690431205
info:doi/10.1016/S1474-6670(17)41767-8
info:doi/10.1016/S1474-6670(17)41767-8
info:doi/10.1016/S0005-1098(00)00181-3
info:doi/10.1007/bf02697352
info:doi/10.1002/aic.16489
info:doi/10.1002/aic.16489
info:doi/10.48550/arXiv.2005.14165
info:doi/10.48550/arXiv.1910.10683
info:doi/10.48550/arXiv.1706.03762
info:doi/10.1038/s41467-020-18073-9
info:doi/10.1038/s41467-020-18073-9
info:doi/10.1021/ci00057a005
info:doi/10.1021/ci00062a008
info:doi/10.1039/c8sc02339e
info:doi/10.1021/acscentsci.9b00576
info:doi/10.1039/c9sc05704h
info:doi/10.1039/c9sc05704h
info:doi/10.1002/aic.16443
info:doi/10.1002/aic.16443
info:doi/10.1016/j.compchemeng.2022.107676
info:doi/10.1016/j.dche.2022.100038
info:doi/10.48550/arXiv.2208.00859
info:doi/10.48550/arXiv.2208.00778
info:doi/10.1613/jair.1.12007
info:doi/10.48550/arXiv.1602.06023

34. Chiu CC, Sainath TN, Wu Y, et al. State-of-the-art speech recognition

with sequence-to-sequence models. arXiv. 2017:1-5. doi:10.48550/

arXiv.1712.01769

35. Karpathy A, Fei-Fei L. Deep visual-semantic alignments for generating

image descriptions. arXiv. 2014:1-17. doi:10.48550/arXiv.1412.2306

36. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with

neural networks. In: Ghahramani Z, Welling M, Cortes C, Lawrence N,

Weinberger K, eds. Advances in Neural Information Processing Systems.

Curran; 2014:1-9. doi:10.48550/ARXIV.1409.3215

37. Graves A. Sequence transduction with recurrent neural networks.

arXiv. 2012:1-9. doi:10.48550/arXiv.1211.3711

38. Boulanger-Lewandowski N, Bengio Y, Vincent P. High-dimensional

sequence transduction. arXiv. 2012; 1936:1-5. doi:10.48550/arXiv.

1212

39. Williams RJ, Zipser D. A learning algorithm for continually running

fully recurrent neural networks. Neural Comput. 1989;1:270-280. doi:

10.1162/neco.1989.1.2.270

40. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Com-

put. 1997;9:1735-1780. doi:10.1162/neco.1997.9.8.1735

41. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv. 2014:1-9.

doi:10.48550/arXiv.1412.3555

42. Stops L, Leenhouts R, Gao Q, Schweidtmann AM. Flowsheet synthe-

sis through hierarchical reinforcement learning and graph neural net-

works. arXiv. 2022:1-22. doi:10.48550/arXiv.2207.12051

43. Vogel G, Schulze Balhorn L, Hirtreiter E, Schweidtmann AM. Process-

intelligence-research/SFILES2: v1.0.0. 2022. doi:10.5281/zenodo.

6901932

44. Perry RH, Green DW, Maloney JO. Perry's Chemical Engineers’ Hand-
book. 7th ed. McGraw-Hill; 1997.

45. Stichlmair J. Konzeptuelle Prozesssynthese. Lecture Script. Technische

Universität München. 2020.

46. Hirtreiter E, Schulze Balhorn L, Schweidtmann AM. Supplementary

data for: "Towards automatic generation of control structures for

Process Flow Diagrams (PFDs) with Artificial Intelligence". 2023. doi:
10.5281/zenodo.7658798

47. Schulze Balhorn L, Gao Q, Goldstein D, Schweidtmann AM. Flow-

sheet recognition using deep convolutional neural networks. In:

Yamashita Y, Kano M, eds. Proceedings of the 14th International Sym-

posium on Process Systems Engineering - PSE 2021. Vol 49. Elsevier;

2022:1567-1572. doi:10.1016/B978-0-323-85159-6.50261-X

48. Theisen M, Flores KN, Schulze Balhorn L, Schweidtmann AM. Digiti-

zation of chemical process flow diagrams using deep convolutional

neural networks. Digit Chem Eng. 2023;6:100072. doi:10.1016/j.dche.

2022.100072

49. LabelImg. LabelImg v1.8.1. 2018 https://github.com/heartexlabs/

labelImg. Accessed September 10, 2022.

50. Sennrich R, Haddow B, Birch A. Improving neural machine translation

models with monolingual data. In: Erk K, Smith NA, eds. Proceedings

of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Association for Computational Lin-

guistics; 2016:86-96. doi:10.18653/v1/P16-1009

51. Wei J, Zou K. EDA: easy data augmentation techniques for boosting

performance on text classification tasks. In: Inui K, Jiang J, Ng V,

Wan X, eds. Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th International Joint Confer-

ence on Natural Language Processing (EMNLP-IJCNLP). Association for

Computational Linguistics; 2019:6382-6388. doi:10.18653/v1/D19-

1670

52. Feng SY, Gangal V, Wei J, et al. A survey of data augmentation

approaches for NLP. arXiv. 2021:1-21. doi:10.48550/arXiv.2105.03075

53. Schulze Balhorn L, Hirtreiter E, Luderer L, Schweidtmann AM. Data

augmentation for machine learning of chemical process flowsheets.

arXiv. 2022:1-6. doi:10.48550/arXiv.2302.03379

54. Bjerrum EJ. SMILES enumeration as data augmentation for neural

network Modeling of molecules. arXiv. 2017:1-7. doi:10.48550/

ARXIV.1703.07076

55. Tetko IV, Karpov P, van Deursen R, Godin G. State-of-the-art aug-

mented NLP transformer models for direct and single-step retrosynth-

esis. Nat Commun. 2020;11:5575. doi:10.1038/s41467-020-19266-y

56. Gage P. A new algorithm for data compression. C Users J Arch. 1994;

12:23-38. doi:10.5555/177910.177914

57. Kudo T, Richardson J. SentencePiece: a simple and language indepen-

dent subword tokenizer and detokenizer for neural text processing.

In: Blanco E, Lu W, eds. Proceedings of the 2018 Conference on Empiri-

cal Methods in Natural Language Processing: System Demonstrations.

Association for Computational Linguistics; 2018:66-71. doi:10.

18653/v1/D18-2012

58. Klein G, Kim Y, Deng Y, Senellart J, Rush A. OpenNMT: open-source

toolkit for neural machine translation. Proceedings of ACL 2017, System

Demonstrations. Association for Computational Linguistics; 2017:67-72.

59. Schweidtmann AM, Esche E, Fischer A, et al. Machine learning in

chemical engineering: a perspective. Chem Ing Tech. 2021;93:2029-

2039. doi:10.1002/cite.202100083

60. UNESCO. Recommendation on the Ethics of Artificial Intelligence.

UNESCO; 2021.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Hirtreiter E, Schulze Balhorn L,

Schweidtmann AM. Toward automatic generation of control

structures for process flow diagrams with large language

models. AIChE J. 2023;e18259. doi:10.1002/aic.18259

HIRTREITER ET AL. 15 of 15

 15475905, 0, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18259 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.48550/arXiv.1712.01769
info:doi/10.48550/arXiv.1712.01769
info:doi/10.48550/arXiv.1412.2306
info:doi/10.48550/ARXIV.1409.3215
info:doi/10.48550/arXiv.1211.3711
info:doi/10.48550/arXiv.1212
info:doi/10.48550/arXiv.1212
info:doi/10.1162/neco.1989.1.2.270
info:doi/10.1162/neco.1997.9.8.1735
info:doi/10.48550/arXiv.1412.3555
info:doi/10.48550/arXiv.2207.12051
info:doi/10.5281/zenodo.6901932
info:doi/10.5281/zenodo.6901932
info:doi/10.5281/zenodo.7658798
info:doi/10.1016/B978-0-323-85159-6.50261-X
info:doi/10.1016/j.dche.2022.100072
info:doi/10.1016/j.dche.2022.100072
https://github.com/heartexlabs/labelImg
https://github.com/heartexlabs/labelImg
info:doi/10.18653/v1/P16-1009
info:doi/10.18653/v1/D19-1670
info:doi/10.18653/v1/D19-1670
info:doi/10.48550/arXiv.2105.03075
info:doi/10.48550/arXiv.2302.03379
info:doi/10.48550/ARXIV.1703.07076
info:doi/10.48550/ARXIV.1703.07076
info:doi/10.1038/s41467-020-19266-y
info:doi/10.5555/177910.177914
info:doi/10.18653/v1/D18-2012
info:doi/10.18653/v1/D18-2012
info:doi/10.1002/cite.202100083
info:doi/10.1002/aic.18259

	Toward automatic generation of control structures for process flow diagrams with large language models
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Sequence-to-sequence models
	2.2 Transformer architecture
	2.3 Graph- and text-based representation of process diagrams

	3 DATA
	3.1 Generated data for pretraining
	3.2 Real data for fine-tuning
	3.3 Data augmentation

	4 CONTROL STRUCTURE PREDICTION MODEL
	4.1 Overview
	4.2 Tokenization
	4.3 T5-Model for control structure prediction

	5 RESULTS AND DISCUSSION
	5.1 Model training
	5.2 Model evaluation
	5.3 Illustrative example
	5.4 Current limitations and future directions

	6 CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES

