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Abstract: The occurrence of natural vegetation at a given time is determined by interplay of mul-
tiple drivers. The effects of several drivers, e.g., geomorphology, topography, climate variability,
accessibility, demographic indicators, and changes in human activities on the occurrence of natural
vegetation in the severe drought periods and, prior to the year 2000, have been analyzed in West
Africa. A binary logistic regression (BLR) model was developed to better understand whether the
variability in these drivers over the past years was statistically significant in explaining the occur-
rence of natural vegetation in the year 2000. Our results showed that multiple drivers explained
the occurrence of natural vegetation in West Africa at p < 0.05. The dominant drivers, however,
were site-specific. Overall, human influence indicators were the dominant drivers in explaining
the occurrence of natural vegetation in the selected hotspots. Human appropriation of net primary
productivity (HANPP), which is an indicator of human socio-economic activities, explained the
decreased likelihood of natural vegetation occurrence at all the study sites. However, the impacts of
the remaining significant drivers on natural vegetation were either positive (increased the probability
of occurrence) or negative (decreased the probability of occurrence), depending on the unique envi-
ronmental and socio-economic conditions of the areas under consideration. The study highlights the
significant role human activities play in altering the normal functioning of the ecosystem by means
of a statistical model. The research contributes to a better understanding of the relationships and
the interactions between multiple drivers and the response of natural vegetation in West Africa. The
results are likely to be useful for planning climate change adaptation and sustainable development
programs in West Africa.

Keywords: West Africa; natural vegetation; underlying drivers; climate; human activities; binary
logistic regression

Highlights

1. Underlying drivers of natural vegetation were identified by Binary Logistic Regression.
2. Multiple underlying drivers were significant at p < 0.05 with varying impacts.
3. Human activities indicators were the dominant underlying drivers.
4. The response of natural vegetation to climate was altered by intensification of hu-

man activities.
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1. Introduction

Over the years, changes in the anthroposphere have drastically altered the normal
functioning of the ecosystem, leading to widespread environmental deterioration, serious
famine, and food security risks with a subsequent impact on the sustainable development
and human well-being in many countries. According to Turner et al. [1] and Foley et al. [2],
intensive anthropic (human) activities and the rapid changes in the Land Use Land Cover
(LULC) system at the local, regional, and global scales may intensify changes in the land
surface climate and exacerbate the vulnerability of the ecosystem to changes. Ecosystem
changes, in some cases, are normal phenomena and a natural way for the system to
regulate itself. The problem is that the pace and the magnitude at which the system is
changing have been alarming in recent years due to over-exploitation by humans in light
of population growth, abrupt changes in climate and intrinsic natural conditions (terrain
slope, elevation, and soil type), improved accessibility to natural vegetation areas, and
other multiple drivers [1,3]. According to Steffen et al. [4] and Ehlers and Krafft [5], in the
past, human-induced LULC changes and, in particular, natural vegetation changes were
restricted to a few areas and insignificant drivers of the ecosystem dynamics. In contrast,
the current human impact on the ecosystem is pervasive and can be observed at a different
spatial aggregation. The 1970s and 1980s drought and environmental disturbances in
Africa [6] is a typical example of how the synergetic effect of multiple factors may lead to
extreme environmental degradation, deforestation, biodiversity loss, food security risks,
global warming, and so forth [7–10]. The consequences of it manifested through the LULC
change of the continent, i.e., encroachment of natural vegetation by human-induced LULC
types, e.g., cropland and settlements [11–13].

LULC change is, therefore, recognized as a major indicator of the impact of climate,
anthropic activities, and other drivers on the ecosystem [14]. Lambin et al. [3] highlighted
that the LULC change is a complex process driven by a combination of proximate and
underlying drivers [15]. Human activities such as farming, illegal logging of timber,
firewood extraction, and settlement expansions have a direct impact on the LULC system
and may be categorized as proximate drivers [15]. According to Lambin et al. [3], proximate
drivers are often under the direct control of the local people. On the other hand, the
underlying drivers may be beyond the control of the indigenous people. In many cases,
they are intrinsic natural characteristics, i.e., topography, climate, soil type, or accessibility
to and from natural areas, socio-economic, e.g., poverty, agricultural, and development
policies as well as demographic factors, e.g., human population growth with indirect
impacts on the LULC system at the local level [3,14]. The previously mentioned multiple
underlying causes of the LULC change have been considered by different theories to
explain the underlying drivers of LULC change in the past. According to Chomitz and
Gray [16], the drivers of LULC change may be explained by Boserupinan (1965) and
Malthusian’s (1826) theories, which relate the LULC change to population growth, the von
Thunen’s (1966) perspective, which relates the LULC change mainly to location-specific
characteristics, such as cost of access to market, and the Ricardian (1817) theory, which
relates the LULC change to intrinsic land quality (e.g., soil quality, slope, and elevation).
Turner et al. [1] pointed out that these drivers are location-specific and context-specific.

In the context of Africa, especially the Sahel region, the school of thought is that
climate variability (e.g., variation in wetness index) is the major underlying driver of
natural vegetation’s change [17–20]. On the contrary, Lambin et al. [14] were of the view
that climate variability alone is not sufficient to explain the natural vegetation change
in Africa. Some other studies relate changes in natural vegetation to either population
growth or improved accessibility, poverty, the land tenure system, and so forth [21–24].
Boschetti et al. [25], Brandt et al. [26], Rishmawi and Prince [27], and Leroux et al. [28]
highlighted that interplay of multiple factors drive a natural vegetation change in Africa.
At the sub-continental and continental scales of Africa, previous driving factors analysis
focused on historical LULC change detection [11–13]. These studies [11–13] revealed LULC
transitions at the expense of natural vegetation at some hotspots and led to an improved
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understanding of the nature, spatial pattern, magnitude, and rates of a natural vegetation
change in Africa, thereby, laying a foundation to identify the proximate drivers of a LULC
change. However, they did not offer a better understanding of the statistically significant
underlying drivers, which determine the presence or absence of natural vegetation at a
given location and time.

The numerous underlying drivers of LULC change [21–24] perceived in Africa may
be interpreted as possible linkages between these drivers and the response LULC types.
Nevertheless, information about which of these perceived underlying drivers is statistically
significant and most important in explaining the presence or absence of natural vegetation
at a given moment is not well understood in Africa [29]. Natural vegetation’s relationship
with these perceived drivers, the conditions at which each interaction is important, leads
to the occurrence of natural vegetation with respect to changes in these perceived drivers.
These are some of the questions that require systematic research in Africa. Testing the
statistical significance of the perceived drivers would lead to an objective assessment
of their influences on natural vegetation occurrence. While the proximate drivers may
be determined directly from LULC change analysis, the underlying drivers may require
supplementing LULC change analysis with spatially explicit dynamic models [30].

LULC change modeling may help to improve the current understanding of the human
and climate interaction with the ecosystem, especially the dynamics of natural vegetation
and its response to interplay of multiple drivers. This information is required in natural
resources as well as environmental and climate change management in Africa since natural
vegetation plays a significant role in the global carbon cycle. Modeling the underlying
drivers of natural vegetation occurrence is vital to improve the capacity of the vulnerable
people to adapt to the accelerating LULC change [3,14] as proper management of the LULC
system may increase food production, fibre, efficient resource use, and income toward
sustainable development as well as social wellbeing [1]. Nevertheless, spatially explicit dy-
namic modeling of multiple drivers of natural vegetation dynamics is an under-developed
area of research in Africa [14]. In many cases, such analyses are based on subjective group
discussion, in-depth interviews, and people’s perceptions of the underlying drivers [31,32].

The aim of this research was to test the statistical significance of the underlying
drivers of LULC transitions, i.e., natural vegetation loss between the period of 1975–2000
previously detected in West Africa by Asenso Barnieh et al. [11]. Our specific objective was
to develop a spatially explicit model to identify the underlying determinants of natural
vegetation occurrence prior to the year 2000, i.e., after the severe drought of the 1970s and
the 1980s in some selected hotspots in West Africa. The influential underlying drivers
out of a set of potential ones were identified and ranked. The relationships between the
significant underlying drivers and the occurrence of natural vegetation were also explored.
We focused on modeling the effect of the underlying drivers of natural vegetation observed
in 2000. According to Rishmawi and Prince [27], analyses of the dynamics in natural
vegetation prior to 2000 with remote sensing (RS) data have revealed widespread natural
vegetation reductions and impoverishment in Africa. Yet, the underlying drivers are not
well understood. Understanding the past land surface processes related to the occurrence,
dynamics, and interactions of natural vegetation with the human, climate, topographic,
and other components is fundamental for acquiring insights into the current processes and
projection into the future. Here, we hypothesized that variation in multiple drivers over
past years, i.e., prior to 2000 explained the presence or absence of natural vegetation in
West Africa in the year 2000.

Some previous research integrated data from different sources, such as LULC maps
derived from RS data, and other socio-economic geospatial datasets to develop spatially
explicit dynamic models to understand the relationship between the LULC change and the
underlying driving factors [33–35]. This study builds upon these sources of information
by developing a binary logistic regression (BLR) model to relate the presence of natural
vegetation in 2000 to multiple sets of a perceived time invariant and time-dependent
predictors in six selected hotspots of a natural vegetation change in West Africa [11].



Sustainability 2021, 13, 4673 4 of 37

The BLR has the ability to rank the proximate causes and underlying drivers, which
determine the occurrence of a given LULC type at a given moment. It has been used
in the past to model the nonlinear relationship between a response variable and a set of
multiple predictor variables [36,37]. In recent years, the model has been applied in diverse
study domains, e.g., public health-care, and landslide susceptibility analysis, to predict the
probability of occurrence of an event and to identify significant drivers [36,38–52]. In many
cases, the response variable is binary at two categorical levels (presence or absence, live
or dead, yes or no, 0 or 1), while one or more categorical or continuous predictors can be
applied [53]. Inter-annual and intra-annual variability in the LULC system can be captured
by developing a BLR model using multiple, time-dependent predictors.

In this present study, the BLR model was applied to link the presence or absence of nat-
ural vegetation with a set of potential predictors, which we categorized as: (a) natural/climate
drivers, i.e., slope, elevation (slope and elevation influence soil erosion in Africa. Gentle
slope and low elevations are favorable for replacement of natural vegetation by agricultural
activities [54]), soil type (soil provides the required nutrient needed for plants growth. Like-
lihood of natural vegetation occurrence increases with a favorable soil type. Concurrently,
soil type determines the suitability of the land area for agriculture expansion [55]), and
wetness index (wetness index was used to indicate variations in precipitation, atmospheric
water demand, climate forcing, and moisture availability to plant roots [56]), (b) Anthropic
drivers, i.e., population density and human appropriation of net primary productivity
(HANPP) (HANPP is a measure of human activities’ impacts, e.g., waste disposal, urban-
ization, construction, and fuel-wood collection on natural vegetation. These impacts have
been translated into grams of carbon [57]). Livestock density was also used to represent
the impact of human activities in the form of livestock rearing and grazing on natural
vegetation [58], while travel time in hours (hr) also represented the impact of human’s
accessibility to and from natural areas on natural vegetation [59].

2. Study Area and Datasets
2.1. Study Area: Selected Hotspots in West Africa

The study was undertaken in West Africa. The area is characterized by five broad
bio-climatic zones, i.e., Saharan, Sahelian, Sudanian, Guinean, and Guineo-Congolian [60].
These five broad bioclimatic zones were further categorized into two major bio-climatic
zones on the basis of the wetness index defined as the ratio of mean annual precipitation
(MAP)/mean annual potential evapo-transpiration (MAE) by Trabucco and Zomer [56].
Areas with MAP/MAE < 0.4 and MAP/MAE ≥ 0.4 were categorized as Sahel (arid-semi
arid) and Sudanian, Guinean, and Guineo-Congolian (humid) regions, respectively, for
the purpose of this study. The Saharan eco-region in West Africa was not included in this
analysis due to the desert conditions [61]. For a description of the different LULC types
and long-time dynamics in West Africa, we referred to Asenso Barnieh et al. [11]. Six sites
with massive natural vegetation loss between 1975 and 2000 were selected for this analysis
(see Figure 1). Three sites, i.e., Site 1. Diourbel-Louga (Senegal), Site 2. Hodh el Gharbi
(Mauritania), and Site 3. Zinder-Maradi (Niger) were located in the arid regions and the
remaining three sites were located in the humid region, i.e., Site 4. Centre and Centre Sud
(Burkina Faso), Site 5. Ashanti region (Ghana), and Site 6. Niger State (Nigeria) of the
study area.

2.1.1. Site 1: Diourbel-Louga (Senegal)

Diourbel-Louga is located in the Peanut Basin of Senegal within the Sahel (arid) region.
The extent of the area is about 29,537.5 km−2. The climate here is characterized by two
major seasons, i.e., nine months of the dry season, i.e., October-June and three months of
rainy season, i.e., July-September [62]. In the west, cropland fields were abandoned and
replaced by grasslands and other vegetation since the 1980s. The land devoted to rain-fed
crops remained fairly stable between 1975 and 2000 and agricultural expansion continued
in the east. This overshadows the actual magnitude of rapid agricultural land increases in
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this region [11,61,63]. The major soil types in the area are Cambisols, Gleysols, Arenosols,
Regosols, and Vertisols. Arenosols is the dominant soil type.

Figure 1. The study area: the area delineated with the brown outline is the Sahel (arid-semi arid) eco-
region. The remaining portion of the map constitutes the Sudanian, Guinean, and Guineo-Congolian
(humid and semi-humid) eco-regions.

2.1.2. Site 2: Hodh el Gharbi (Mauritania)

Hodh el Gharbi is situated in the southern part of Mauritania and covers a land area
of about 50,273 km−2. The area falls within the Sahel region with very high inter-annual
rainfall variability and is characterized by sandy dunes supporting large rangelands and
comparatively fertile ferruginous soils with agricultural potential. The major soil types in
the area are Lithosols, Luvisols, Arenosols, and Regosols. Here, steppe and Sahelian short
grass savannah are the dominant vegetation types. Previous analyses of LULC transitions
in this region revealed replacement of natural vegetation by other LULC types, such as
bare land and sand dunes [11,61].

2.1.3. Site 3: Zinder-Maradi (Niger)

Zinder-Maradi is situated in the lowest part of the Niger Plateau in South-central
Niger with Sahelian bioclimatic conditions characterized by a large inter-seasonal and
intra-seasonal variability of rainfall, with annual rainfall between 200 and 600 mm a−1 and
accompanied by high temperatures in the dry season. The extent of the area is approxi-
mately 185,067 km−2. The dominant soil types in the area are Arenosols, Gleysols Lithosols,
Luvisols, Fluvisols, Vertisols, Regosols, and others [55]. The mean bio-productivity in this
region increases toward the southern boundary of the country with relatively high popu-
lation density between 80 and 150 inhabitants/people km−2 coupled with “wall-to-wall”
farmland, where agricultural fields occupy nearly the entire landscape [61]. Approximately
80% of all land is cultivated with few uncultivated natural vegetation patches, making
the region the largest agricultural area in Niger. Here, farmers preserve trees by natural
regeneration. This is a practice which has improved on-farm trees and crop production
in the area. Farmers experienced major tree declines in the 1970s and 1980s as a result of
drought, expanding cropland, and human pressure [64,65].
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2.1.4. Site 4: Centre and Centre Sud (Burkina Faso)

Centre and Centre Sud are located in southern Burkina Faso across a wide bioclimatic
gradient with annual rainfall between 650 mm a−1 and 1000 mm a−1 in the more humid
Sudanian Region. The extent of the area is about 14,381 km−2. Forest, gallery forest,
Savanna, steppe, and rocky land are the major LULC types in the country. Previous
LULC change analysis revealed the replacement of natural vegetation by cropland and
settlements, along the Ouagadougou-Pama corridor in the southeast [11,61]. The major
soil types in the area are Luvisols, Lithosols, Cambisols, Vertisols, Regosols, and Planosols.

2.1.5. Site 5: Ghana (Ashanti Region)

The Ashanti Region is located in the south-central part of Ghana where previous
LULC transition analyses revealed massive natural vegetation loss due to encroachment by
cropland and settlements. In the last four decades, the population density in Kumasi, which
is Ghana’s second-largest city, has risen sharply due to substantial rural-urban migration
led by the development of factories and business activities both in and around the city,
thereby, exacerbating negative impacts on pristine forest reserves (e.g., Bobiri forest reserve
and Banda Hills). The extent of the area is about 24,904.1 km−2. The region is characterized
by two rainy seasons, i.e., the major rainy season in April to August and the minor rainy
season from September to November with mean annual rainfall of 1270 mm a−1 [66]. The
major soil types in the area are Acrisols, Lithosols, Nitosols, and Luvisols.

2.1.6. Site 6: Nigeria (Niger State)

The Niger State is located at the Southern Guinea Savannah zone of Nigeria and
extends into a land area of about 71,017.8 km−2. Livestock rearing is prominent in this
state. The state has a rainy season from April to October and a dry season from November
to March. Mean relative humidity is 59% and temperature varies between 22 ◦C and
39 ◦C. The mean annual rainfall is between 1200 mm and 1300 mm a−1, with the highest
temperature in March and the lowest in August. The major soil types in the area are
Nitisols, Luvisols, Lithosols, and Fluvisols. Previous LULC transition analyses in this
region revealed settlement, rain-fed, and irrigated cropland, plantation, and open mines
fields’ expansions at the expense of natural vegetation [11,61].

2.2. Datasets

The LULC map in 2000 was acquired from the United States Geographical Survey
(USGS), West African Land Use Dynamic project. The data extend over seventeen countries
in West Africa at 2 km spatial resolution. Only a small part of Cameroon was mapped.
Additionally, according to CILSS [61], the northern parts of Mauritania, Mali, Niger, and
Chad were not mapped due to the desert conditions, stable vegetation, and other LULC
types (e.g., sand and rocks) through time. As a result, the unmapped northern parts of
the previously mentioned countries, Cape Verde and Cameroon, were excluded from the
analyses in this paper. The white regions on the map in Figure 1 are the areas without
data and, therefore, were not mapped. Comprehensive definitions of the LULC types
in the map can be found in a book published by CILSS [61]. The data was accessible at
https://eros.usgs.gov/westafrica (accessed on 10 November 2018). The original LULC data
with 24 classes had been re-classified into 7 LULC classes in a previous research study [11].
The reclassified map was further categorized into either presence or absence of natural
vegetation and used as a dependent variable in a binary logistic regression (BLR) model
we established in this study. To explain the spatial patterns and long-term response of
natural vegetation to changes induced by the interplay of complex human-environmental
interactions and other multiple drivers, perceived drivers of a LULC change in the study
area were reviewed from literature and eight independent geospatial datasets of these
perceived drivers were acquired from an open source earth observation database and cate-
gorized as: (a) natural/climate drivers, i.e., slope, elevation, soil type, and wetness index
and (b) anthropic drivers, i.e., human appropriation of net primary productivity (HANPP),

https://eros.usgs.gov/westafrica
https://eros.usgs.gov/westafrica
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population density, livestock density, and accessibility drivers, i.e., travel time from natural
vegetation areas to urban resources. Potential drivers without geospatial dimensions were
excluded from the analyses because one of the major objectives of this study was to develop
a spatially explicit dynamic model on independent predictive variables. The categorization
was based on a conceptual framework developed from a combination of the Boserupian
(1965), Malthusian (1826), Ricardian (1817), and von Thunen’s (1966) LULC change theories
described by Chomitz and Gray [16] and Mazzucato et al. [22].

The soil map has information about the major soil groups of the world [55]. The
spatial resolution of this dataset was about 10 km. Each grid cell contains the unique
value that depicts the features of the major group it represents. The dataset is available
at: http://www.fao.org:80/geonetwork/srv/en/resources.get?id=14129&fname=Map4
_5.zip&access=private (accessed on 10 May 2018).

The global slope dataset was obtained from the United States Geographical Survey
(USGSS). The gridded slope layer was mapped at about 1 km spatial resolution. The
data and the metadata, which explains how the dataset was produced, can be accessed
from https://www.usgs.gov/natural-hazards/earthquake-hazards/science/vs30-models-
and-data (accessed on 10 May 2018). The elevation data was extracted from the Digital
Elevation Model (DEM) data acquired by the NASA- Shuttle Radar Topography Mission
(SRTM). The dataset is available for downloads at 30 m resolution at https://developers.
google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003 (accessed on 10 May
2018). Figure 2 shows the LULC map and the geospatial datasets of the eight potential
predictors we used for the analysis.

Figure 2. Geospatial datasets applied in the binary logistic regression (BLR) analysis. HANPP represents human appropria-
tion of net primary productivity. TLU represents tropical livestock unit. Population density is defined as the number of
persons per grid cell in a given year divided by the grid cell area in square kilometers.

The wetness index gridded dataset was mapped at 1 km spatial resolution. This index
is given as a function of precipitation, temperature, and potential evapo-transpiration.
The global mean wetness index has been binned into hyper arid, arid, semi-arid, dry
sub-humid, and humid (i.e., < 0.03, 0.03–0.2, 0.2–0.5, 0.5–0.65, >0.65), respectively [56].
Details of the method used to estimate the mean wetness index from 1950 to 2000 can be ac-
cessed from the CGIAR-CSI GeoPortal at: https://www.dropbox.com/sh/e5is592zafvovwf/
AAAijCvHNiE4mYvYqWDpeJ3Ga/Global%20PET%20and%20Aridity%20Index?dl=0
(accessed on 10 May 2018)

A gridded raster map of accessibility (i.e., mean travel time (hours) from natu-
ral areas to the nearest town, market, other urban resources) and human settlements
greater than 20,000 inhabitants was obtained from the FAO-Geo-network database. This
dataset was generated by the Harvest Choice (2015) and available for downloads at
http://harvestchoice.org/data/TT_20K (accessed on 10 May 2018).

http://www.fao.org:80/geonetwork/srv/en/resources.get?id=14129&fname=Map4_5.zip&access=private
http://www.fao.org:80/geonetwork/srv/en/resources.get?id=14129&fname=Map4_5.zip&access=private
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/vs30-models-and-data
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/vs30-models-and-data
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://www.dropbox.com/sh/e5is592zafvovwf/AAAijCvHNiE4mYvYqWDpeJ3Ga/Global%20PET%20and%20Aridity%20Index?dl=0
https://www.dropbox.com/sh/e5is592zafvovwf/AAAijCvHNiE4mYvYqWDpeJ3Ga/Global%20PET%20and%20Aridity%20Index?dl=0
http://harvestchoice.org/data/TT_20K
http://harvestchoice.org/data/TT_20K
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The demography driving factors map (time series gridded population density map of
West Africa at five-year intervals (from 1995–2000) was obtained from Center for Interna-
tional Earth Science Information Network CIESIN [67]. This dataset is a spatially explicit
global population census data mapped at 1 km, which depicts the distribution of the human
population in each grid cell. The dataset can be accessed at https://sedac.ciesin.columbia.
edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11
(accessed on 10 May 2018).

The global patterns in human appropriation of net primary productivity (HANPP)
have been mapped at 28 km spatial resolution in grams of carbon per grid cell. The datasets
were downloaded from: http://sedac.ciesin.columbia.edu/es/hanpp.html (accessed on
25 January 2019). [57]. The gridded livestock density datasets were available at: http:
//harvestchoice.org/data/ad05_tlu (accessed on 24 February 2019). The datasets included
livestock grazing and browsing values mapped at a 5 km spatial resolution as density of
livestock per cell measured as tropical livestock units (TLU/sq. km). In addition, Google
Earth Imagery and other ancillary data were also obtained for the validation of the results
of the analyses. Table 1 is a summary of the datasets we used for the analysis.

Table 1. Summary of the datasets.

Variable Sources Spatial Resolution Temporal Coverage

LULC raster map USGS(2000) 2000 m 2000
Elevation NASA-SRTM 30 m Static

Slope USGSS 1 km Static
Soil Type FAO GEONETWORK 10 km Static

Wetness Index CGIAR-CSI (1950–2000) 1 km 1950–2000
Travel Time FAO GEONETWORK-Harvest Choice 10 km Benchmarked 2000

Live Stock Density FAO GEONETWORK-Harvest Choice 5 km Benchmarked 2000
HANPP SEDEC 28 km 1975–2000

Population Density SEDEC 1 km 2000

USGS, NASA-SRTM, FAO, CGIAR-CSI, SEDEC, and HANPP represent United States Geographical Survey, National Aeronautics and Space
Administration-Shuttle Radar Topography Mission (NASA-SRTM), Food and Agriculture Organization (FAO), Consultation Group for
International Agricultural Research-Consortium for Spatial Information (CGIAR-CSI), Social and Economic Development Centre (SEDEC)
and Human Appropriation of Net Primary productivity (HANPP) respectively.

3. Methodology
3.1. Binary Logistic Regression (BLR) Model

Nelder and Wedderburn [36] defined the BLR model as “empirically parameterized
static model that compute probabilities, which indicate the likelihood of the occurrence of
a specific event at a specific location in time.” The BLR approach can model the inherent
complex human environmental interactions to inform a LULC change. Where this change
occurs over a longer period of time, the underlying drivers of change and how these
drivers interact with the LULC system. The probability that a given LULC type (Y) is equal
to (1), i.e., present for a given value of X or a change in a time-dependent variable can
be determined by a BLR model. In a situation whereby the BLR model is generated by
geospatial datasets, the technique yields coefficients that can be used to generate maps
of the probability of occurrence of events, which is, in our case, the presence of natural
vegetation [30,68]. Therefore, based on the BLR model and the potential predictors we
used in this study, the probability P of observing the presence (1) or absence (0) of natural
vegetation in a given pixel in the year 2000 can be expressed as:

P (Presence of Natural Vegetation) =
Expβ0+β1Mean Wetness index+β2Mean HANPP...+βnxn+e

1 + Expβ0+β1Mean Wetness index+β2Mean HANPP...+βnxn+e (1)

where β0 stands for the intercept, β1, β2 . . .βn are the slope parameters, and {x1, x2, . . . , xn,}
are the vectors of the independent predictors per grid cell. In this study, the predictors
were: wetness index, HANPP, travel time, livestock density, population density, soil type,
elevation and “slope”, and e is the residual [44,52,69]. The detailed methodology is ex-
plained in Section 3.2 through Section 3.5. The output of the BLR model can be interpreted

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11
http://sedac.ciesin.columbia.edu/es/hanpp.html
http://harvestchoice.org/data/ad05_tlu
http://harvestchoice.org/data/ad05_tlu


Sustainability 2021, 13, 4673 9 of 37

to rank the importance of the drivers. The ranking of the predictors shows which driver
has the greatest effect on the dependent variable. The BLR also yields an estimate of the
significance of the drivers. In regression analyses, the probability that the observed rela-
tionship between the independent and the dependent variable occurs by chance gives the
statistical significance level. The statistical significance level is inversely proportional to the
set confidence level, i.e., the smaller the statistical significance, the higher the confidence of
the relationship between the variables under consideration [34]. In this study, the statistical
p-value was applied as a metric of significance of the multiple set of predictors, while the
absolute value of the standardized BLR model coefficients and the odds ratio were used
to determine and rank the importance of the drivers. The odds of an event are given by
P/(1− P), where P is the probability that the event will occur. The odds ratio is defined
as the ratio of two odds and accounts for the effects of an independent variable on the
dependent variable. The odds ratio is calculated as:

OR =

P(event|x+1 )
(1−P(event|x+1 )

P(event|x)
(1−P(event|x)

(2)

The natural log of the odds ratio gives the logit coefficient, i.e., the exponent β

(Expβ) in Equation (1). Therefore, the two functions are a measure of the same effect
(i.e., the strength of the relationship between the dependent variable, and the independent
predictors) [44,51]. Lower odds of an event will give β < 0, Expβ < 1, while higher odds
will give β > 0, Expβ >1. The major reason for choosing the BLR model for our analysis is
its ability to accommodate a wide range of data types, i.e., categorical (binary, ordinal) and
continuous data, which are typical examples of data types employed in LULC modeling.
On top of it, if the objective is to predict the probability of an event, the BLR model can be
optimized to achieve better prediction accuracy unlike the other “black box” models [44].
To develop the BLR model, five steps were followed (i.e., literature review on potential
drivers (see Introduction), geospatial data acquisition and preparation, multi-collinearity
analysis, BLR model development, and validation).

3.2. Data Preparation

One of the ways to model the relationship in space and time between the presence
of a given LULC type and multiple predictors at the continental scale is to determine
historical changes in LULC for the whole continent in order to identify hotpots of severe
changes. Spatially explicit dynamic models may then be developed to relate the observed
LULC type in each hotspot to multiple predictors, e.g., factors that determine the presence
of natural vegetation. In this way, the dominant underlying drivers at the continental
scale can be captured. In the case of this study, long time LULC transitions mapping
and hotspots identification in the study area, i.e., West Africa had been undertaken by
Asenso Barnieh et al. [11]. Natural vegetation (forestland and other natural vegetation)
encroachment by other LULC types, i.e., cropland, wetland, water bodies, settlements, and
other LULC were the major transitions detected between 1975 and 2000. Therefore, this
study focused on understanding the underlying drivers, which determined the presence of
natural vegetation at some of the selected hotpots in West Africa. Due to geospatial data
gaps on the potential drivers after 2000, we restricted our analysis to the years prior to 2000.
However, the approach we used can be applied to model occurrence of natural vegetation
at any given year when data availability is not a limiting factor.

On the basis of the previously mentioned BLR modeling approach [37], the observed
LULC map of a given year (2000) with 7 LULC classes (cropland, forestland, other vegetation,
wetland, water, settlement, and other LULC types) developed by Asenso Barnieh et al. [11]
was further aggregated into just two categories, i.e., presence of natural vegetation, i.e.,
forestland and other natural vegetation and absence of natural vegetation, i.e., cropland,
wetland, water bodies, settlements, and other LULC types. These major LULC categories
were converted into a binary dataset and coded as 1 (presence of natural vegetation) and 0
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(absence of natural vegetation). The binary LULC map and all the other geospatial gridded
raster maps of the potential drivers were projected and resampled to the same spatial
resolution (2 km) as the LULC map in 2000. This analysis was conducted in ARCGIS version
10.4 and the results were exported into R computing programming software interface for
further analysis. All the missing values in the entire datasets were removed [44]. The
datasets were divided into training (80%) and testing (20%) for the development of the
model and validation, respectively. In order to examine the range of values of the potential
drivers, the individual datasets were plotted against the natural vegetation dataset.

3.3. Multi-Collinearity Analysis

Collinearity occurs in multiple regressions modeling when any of the predictors are
strongly correlated and two or more of the predictors bring the same information into the
model. Strongly correlated predictors may inflate the standard errors of the regression
coefficients in multi-variant regression and reduce the power of the significance test [44].
To identify the predictor variables, which may exhibit multi-collinearity and to remove
redundant variables from the model, we analyzed correlation of the predictor variables
after re-sampling the data to the same spatial resolution (2 km, i.e., the spatial resolution
of the observed LULC map). Apart from the correlation analysis, other means of multi-
collinearity analysis (variance inflation factor (VIF), kappa, and conditional number of the
eigen values) were also employed. While the output from the correlation matrix was used
to examine the kappa and the conditional numbers of the eigen-values in the model, the
output from the BLR model fitted with all the potential drivers was used to examine the
VIF of these drivers. Any driver with VIF greater than 10 indicates severe multi-collinearity
in the model. In addition, kappa and conditional numbers of the eigen-values greater than
100 indicate severe multi-collinearity [40,51,70,71].

3.4. Model Development

The presence of natural vegetation, i.e., P(Y) for a given set of values of the inde-
pendent predictors X was modeled by fitting a BLR. The previously mentioned potential
drivers, i.e., mean wetness index, mean population density, soil type, elevation, and travel
time from natural areas to urban resources, livestock density, and HANPP (Section 3.2)
were used to develop the BLR model. The BLR model calculates the natural logarithm of
the odds ratio (the probability of occurrence against the probability of non-occurrence of
an event) to transform a non-linear model into a linear model [72]. The development of the
BLR model was based on Equation (1).

The output of this model ranks the contribution of each variable in explaining the
presence of natural vegetation. Prior to the binary logistic modeling with the multiple
predictors, a one-to-one logistic regression model was initially fitted between the binary
response LULC data and each predictor. The rationale was to exclude insignificant drivers
before the development of the multivariate BLR model. The model was run stepwise in
a forward and backward direction to eliminate redundant variables, which may exhibit
multi-collinearity in order to remove less significant variables.

The most important drivers of natural vegetation’s occurrence were determined
based on Wald Statistics and the odds ratio from the BLR model. The variable with
the highest standardized coefficient was the most important in explaining occurrence of
natural vegetation in 2000. To determine the dominant categories of drivers, i.e., natural
or anthropic activities in each study site, the BLR model was again determined first using
natural predictors only, i.e., slope, elevation, soil type, and wetness index, and second
human influence predictors only, i.e., a combination of anthropic (i.e., HANPP, livestock
density) and accessibility indicator, i.e., travel time. The rationale was to ascertain which of
the two combinations would provide a better BLR model fit.
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3.5. Model Validation

Data-splitting was adopted to validate the BLR model. Prior to the BLR modeling,
the total observations in each hotspot were randomly divided into two sets, i.e., training
samples of 80% (model development) and testing samples of 20% (model evaluation).
The Akaike information criterion (AIC), Bayesian information criterion (BIC), and log
likelihood-ratio were used as metrics for two or more model evaluations. Stepwise forward
selection of the most significant predictors and backward elimination of the least significant
predictors were applied in this evaluation. If two selection criteria give the same results,
then multi-collinearity in the model can be neglected [34,51,73–78].

The entire stepwise selection technique was an iterative process. In the case of the
forward selection process, the model was initially fitted with the most significant predictors
and additional predictors were added in order of significance. The iteration stops when no
improvement can be achieved by including additional predictors. By contrast, the stepwise
backward selection process is initialized by fitting the model with all the possible predictors
and eliminates the least significant one at each step until the decrease in model accuracy
at each step is less than a pre-set threshold. At each stage of both forward and backward
selection, AIC, p-values, and the residual, with the number of degrees of freedom being
the number of the independent predictors remaining at each stage, were used to set a
termination rule. Lower AIC, p-values, Log likelihood ratios, and residual deviance were
used to determine the best fitted model. A p-value < 0.05 was considered as the optimal
termination rule to include significant variables [34,51,73–78].

The ability of the BLR model to predict the presence of natural vegetation was eval-
uated with the testing samples. Using Equation (1) and the BLR model coefficients es-
timated with the training samples, we predicted the presence of natural vegetation in
each hotspot of the study area. The AUC, which is the area under the receiver oper-
ating characteristics (ROC) curve, was used to evaluate the predictive accuracy of the
BLR model [47,70,71,76,79–81]. The true positive rate of the predicted values was plotted
against the false positive rate at various threshold settings [68]. The AUC ranges from 0
to 1. AUC less than or equal to 0.5 is an indication that the model prediction is random,
while AUC > 0.5 indicates a deterministic prediction of the response variable. AUC ≈ 1 is
an indication of a perfect fit [47,70,71,76,79–81]. The map of predicted probabilities for the
presence of natural vegetation in each hotspot site was compared with the observed map
as a means of additional validation.

4. Results
4.1. Multi-Collinearity

The descriptive (Table 2) statistics illustrate the patterns in the variables we used for the
development of the BLR model. The mean HANPP (2.14 × 1011, 1.728 × 1011, 8.94 × 1010

and 26.25 × 1010 in grams of carbon) was relatively higher in the Ashanti Region of Ghana,
Centre-Centre Sud of Burkina Faso, Diourbel-Louga in Senegal, and Niger State in Nigeria
coupled with a denser population, i.e., mean population densities of 153.47, 119.08, 57.73,
and 47.35 inhabitants/people km−2, respectively. Except Diourbel-Louga in Senegal, the
mean wetness indexes, i.e., 0.84, 0.42, 0.20, and 0.61 in the previously mentioned areas
were comparatively high, thus, placing these regions in the humid agro-ecological zone as
defined in Section 2.2. Overall, livestock density did not appear to correlate with population
density across the sub-continent since the mean population density in some study sites,
e.g., Ashanti Region of Ghana, was comparatively high when coupled with low mean
livestock density (Table 2). Comparatively, the mean travel time, i.e., 3.52, 2.75, 2.60, and
3.74 hr to grid cells endowed with urban resources was lower in densely populated sites,
i.e., Ashanti Region of Ghana, Centre-Centre-Sud, in Burkina Faso, Diourbel in Senegal,
and Niger State in Nigeria, than in sparsely populated sites, i.e., Zinder-Maradi in Niger
and Hodh el Gharbi in Mauritania, where it was 6.70 and 7.86 hr, respectively.
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Table 2. Descriptive statistics of the continuous predictor variables at the various study sites in West Africa at a grid cell of 2 km spatial resolution.

Study Sites Variables Mean SD Median Minimum Maximum Range Skew Kurtosis SE

1. Diourbel-Louga,
Senegal HANPP (g) 8.94 × 1010 1.03 × 1011 4.15 × 1010 1.05 × 1010 4.89 × 1011 4.78 × 1011 1.53 1.25 1.27 × 109

Number of
Samples = 6557

Livestock Density
(TLU/km2)

26.19 8.64 25.40 0.20 96.25 96.05 0.47 3.08 0.11

Population Density
(people km−2)

57.73 79.92 11.58 2.55 308.24 305.69 2.14 3.59 0.99

Slope (m) 251.71 37.02 237.91 203.81 583.57 379.76 2.47 9.55 0.46
Travel Time (hr) 2.60 1.17 2.38 0.17 10.27 10.10 1.63 4.60 0.01
Wetness Index 0.20 0.03 0.20 0.13 0.28 0.15 0.20 −0.37 0.00
Elevation (m) 40.96 11.28 43.86 2.52 60.64 58.13 −0.85 −0.05 0.14

2. Hodh el Gharbi HANPP (g) 6.39 × 109 5.82 × 109 5.15 × 109 8.58 × 108 6.37 × 1010 6.29 × 1010 4.82 2.85 × 101 5.42 × 107

Number of
Samples = 11,498

Livestock Density
(TLU/km2)

10.43 13.64 2.49 0.00 57.30 57.30 1.29 0.47 0.13

Population Density
(people km−2)

4.55 6.72 3.97 0.11 114.77 114.65 9.49 127.97 0.06

Slope (m) 327.46 119.27 290.00 205.20 899.99 694.79 2.17 5.11 1.11
Travel Time (hr) 7.86 4.22 6.47 1.62 23.66 22.04 1.41 1.49 0.04
Wetness Index 0.11 0.03 0.10 0.06 0.21 0.15 0.84 0.30 0.00
Elevation (m) 213.22 44.44 201.50 140.13 444.44 304.31 1.68 3.68 0.41

3. Zinder-Maradi,
Niger HANPP (g) 4.52 × 1010 5.59 × 1010 1.41 × 1010 3.00 × 109 3.49 × 1011 3.46 × 1011 1.55 2.05 2.82 × 108

Number of
Samples = 39,277

Livestock Density
(TLU/km2)

14.23 23.06 10.00 0.00 526.20 526.20 14.93 315.94 0.12

Population Density
(people km−2) 25.22 64.95 9.66 0.22 2593.00 2592.78 20.87 593.26 0.33

Slope (m) 299.47 80.40 280.15 200.36 896.25 695.88 2.70 10.71 0.41
Travel Time (hr) 6.70 8.11 3.48 0.29 48.13 47.84 2.44 5.74 0.04
Wetness Index 0.11 0.06 0.12 0.02 0.29 0.27 0.17 −0.85 0.00
Elevation (m) 428.74 43.17 430.33 304.08 603.33 299.24 0.02 −0.45 0.22

4. Centre-Centre
Sud, Burkina Faso HANPP (g) 1.72 × 1011 1.20 × 1011 1.44 × 1011 2.38 × 1010 8.18 × 1011 7.94 × 1011 1.77 4.67 2.14 × 1019

Number of
Samples = 3155

Livestock Density
(TLU/km2)

51.13 24.15 49.40 0.00 108.90 108.90 0.09 −0.80 0.43

Population Density
(people km−2)

119.08 312.64 55.93 6.93 1886.85 1879.91 4.98 23.99 5.57

Slope (m) 343.12 43.10 335.39 254.52 734.40 479.89 2.76 14.67 0.77
Travel Time (hr) 2.75 1.56 2.29 0.18 8.78 8.61 1.38 1.87 0.03
Wetness Index 0.42 0.03 0.42 0.36 0.50 0.15 0.44 −0.82 0.00
Elevation (m) 293.25 26.19 295.44 205.57 356.24 150.67 −0.41 −0.08 0.47
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Table 2. Cont.

Study Sites Variables Mean SD Median Minimum Maximum Range Skew Kurtosis SE

5. Ashanti Region,
Ghana HANPP (g) 2.14 × 1011 1.19 × 1011 2.01 × 1011 5.26 × 1010 8.13 × 1011 7.60 × 1011 1.26 2.54 1.62 × 109

Number of
Samples = 5456 Livestock density (TLU/km2) 5.39 1.88 5.27 0.00 12.90 12.90 0.32 0.08 0.03

Population density
(people km−2)

153.47 456.63 83.25 17.07 4849.50 4832.42 8.61 78.17 6.18

Slope (m) 493.16 157.32 436.65 261.99 900.00 638.01 1.01 −0.08 2.13
Travel time (hr) 3.52 2.49 2.74 0.12 14.36 14.24 1.52 1.78 0.03
Wetness index 0.84 0.09 0.84 0.69 1.06 0.37 0.18 −1.11 0.00
Elevation (m) 221.80 83.85 211.26 77.43 625.99 548.56 0.87 0.78 1.14

6. Niger State,
Nigeria HANPP (g) 6.25 × 1010 2.85 × 1010 6.03 × 1010 1.72 × 1010 1.70 × 1011 1.53 × 1011 7.05 × 10−1 4.16 × 10−1 2.27 × 108

Number of
Samples = 15,731 Livestock density (TLU/km2) 19.85 14.43 17.10 0.00 94.00 94.00 1.45 3.14 0.12

Population density
(people km−2) 47.35 103.52 38.77 14.16 3117.93 3103.77 17.70 373.64 0.83

Slope (m) 465.36 111.76 445.55 200.10 900.00 699.90 0.91 1.24 0.89
Travel time (hr) 3.75 2.65 2.97 0.11 20.61 20.49 2.74 10.14 0.02
Wetness index 0.61 0.05 0.62 0.49 0.76 0.27 0.05 0.41 0.00
Elevation (m) 250.28 107.31 244.83 44.56 620.58 576.02 0.48 −0.10 0.86

Here, SD, SE, TLU, and HANPP represent standard deviation (SD), standard error (SE), tropical livestock unit (TLU), and human appropriation of net primary productivity (HANPP), respectively.
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Figure 3 shows the pairwise correlation between the continuous predictor variables
at the various study sites. Table 3 is the BLR model output which shows the signifi-
cance levels of the predictor variables and Table 4 shows the performance parameters
of the model. In many of the sites analyzed, some drivers exhibited multi-collinearity
(Figure 3 and Table 4). The correlation matrices (Figure 3) and the VIF of the full model
(Table 4) indicated multi-collinearity in the model at Zinder-Maradi-Niger (HANPP and
wetness index, correlation = 0.8) and Diourbel-Louga, Senegal (HANPP and Population
density, correlation = 0.8) sites. The strength of the correlation did not exceed the threshold
for severe collinearity (correlation value > 0.8) we set in this study. In both cases, the
variables exhibited positive correlation. The VIF values suggested multi-collinearity in the
full model, particularly in the study sites in the arid and semi-arid regions. The conditional
number of the eigen values and the Kappa of the predictors did not exceed the thresholds,
i.e., kappa and conditional number of the eigen values > 100, that we set for this study
(Table 4). In general, multi-collinearity was an issue in the sites where the independent
predictors could explain the presence of natural vegetation, regardless of the other predic-
tors. If two collinear predictors bring the same information into the model, the internal
algorithms of the BLR model remove the less important predictor.

Figure 3. Cont.
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Figure 3. The correlation matrix of the three hotspots in the arid regions, Diourbel-Louga, Senegal (a), Hodh el Gharbi,
Mauritania (b), and Zinder-Maradi, Niger (c), and three hotspots in the humid regions, Centre-Centre Sud, Burkina
Faso (d), Ashanti Region, Ghana (e), and Niger State, Nigeria (f). HANPP represents human appropriation of net
primary productivity.

Table 3. The binary logistic regression (BLR) model output summary. HANPP represents human appropriation of net
primary productivity.

Arid Region

Study Sites Variables Parameter
Estimate β

Standard Error Wald (Z Value) Pr(>|Z|) Significance
Codes

1. Diourbel-Louga,
Senegal Intercept −1.150 6.200 × 10−1 −1.845 6.500 × 10−2 •

Number of
Samples = 6557 HANPP −9.162 × 10−12 7.512 × 10−13 −1.220 × 101 2.000 × 10−16 ***

Training = 5099 Travel Time 6.626 × 10−1 5.126 × 10−2 1.293 × 10 2.000 × 10−16 ***
Testing = 1458 Slope 1.057 × 10−2 1.545 × 10−3 6.840 7.940 × 10−12 ***

Area Under the
ROC/AUC Livestock Density −2.878 × 10−2 5.103 × 10−3 −5.639 1.710 × 10−8 ***

Climate
Drivers = 0.83 Elevation 3.659 × 10−2 5.087 × 10−3 7.193 6.320× 10−13 ***

Human
Drivers = 0.87 Soil Type 1.949 × 10−2 5.878 × 10−3 3.316 9.130 × 10−4 ***
Climate and

Human = 0.88 Wetness Index −1.187 × 101 2.256 −5.263 1.420 × 10−7 ***

Population Density 2.046 × 10−3 8.291 × 10−4 2.468 1.358 × 10−2 *

2. Hodh el Gharbi,
Mauritania Intercept 2.977 3.423 × 10−1 8.698 2.000 × 10−16 ***

Number of Samples
11,408 Livestock Density 2.965 × 10−2 4.116 ×10−3 7.205 5.820 × 10−13 ***

Training
Samples = 8942 Elevation −9.042 × 10−3 7.009 × 10−4 −1.290 × 101 2.000 × 10−16 ***

Testing
Samples = 2556 Wetness Index 2.008 × 101 2.216 9.063 2.000 × 10−16 ***

Area Under the
ROC/AUC HANPP −5.577 × 10−11 6.688 × 10−12 −8.338 2.000 × 10−16 ***

Climate
Drivers = 0.74 Slope −2.113 × 10−3 2.530 × 10−4 −8.353 2.000 × 10−16 ***

Human
Drivers = 0.71 Soil Type −5.705 × 10−2 8.708 × 10−3 −6.551 5.700 × 10−11 ***
Climate and

Human = 0.75 Travel Time −4.374 × 10−2 7.004 ×10−3 −6.245 4.240 × 10−10 ***

Population Density −2.104 × 10−2 4.141 × 10−3 −5.081 3.750 × 10−7 ***
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Table 3. Cont.

Arid Region

Study Sites Variables Parameter
Estimate β

Standard Error Wald (Z Value) Pr(>|Z|) Significance
Codes

3. Zinder-Maradi,
Niger Intercept 6.035 2.276 × 10−1 2.651 × 10 2.00 × 10−16 ***

Number of
Samples = 39,277 Wetness Index −2.250 × 101 7.572 × 10−1 −2.972 × 101 2.000 × 10−16 ***

Training
Samples = 30,549 Population Density −1.382 × 10−2 1.042 × 10−3 −1.326 × 101 2.000 × 10−16 ***

Testing
Samples = 8728 Slope −3.063 × 10−3 1.923 × 10−4 −1.593 × 101 2.000 × 10−16 ***

Area Under the
ROC/AUC Travel Time −3.527 × 10−2 3.264 × 10−3 −1.081 × 101 2.000 × 10−16 ***

Climate
Drivers = 0.86 HANPP −4.768 × 10−12 6.011 × 10−13 −7.932 2.150 × 10−15 ***

Human
Drivers = 0.87 Soil Type −2.089 × 10−2 4.910 × 10−3 −4.255 2.090 × 10−5 ***
Climate and

Human = 0.88 Livestock Density 5.008 × 10−3 1.585 × 10−3 3.159 1.583 × 10−3 **

DEM −1.498 × 10−3 4.078 × 10−4 −3.674 2.390 × 10−4 ***

Humid Region

4. Centre-Centre Sud,
Burkina Faso Intercept −1.761 1.255 −1.403 1.606 × 10−1

Number of
Samples = 3155 Wetness Index 1.277 × 10 2.433 5.247 1.550 × 10−7 ***

Training
Samples = 2453 Livestock Density −1.290 × 10−2 2.555 × 10−3 −5.050 4.430 × 10−7 ***

Testing Samples = 702 Population Density −5.907 × 10−4 1.701 × 10−4 −3.473 5.160 × 10−4 ***
Area Under the

ROC/AUC HANPP −1.546 × 10−12 4.601 × 10−13 −3.359 7.810 × 10−4 ***

Climate
Drivers = 0.70 Elevation −4.879 × 10−3 1.888 × 10−3 −2.585 9.751 × 10−3 **

Human
Drivers = 0.71 Slope −2.376 × 10−3 1.212 × 10−3 −1.960 4.995 × 10−2 *
Climate and

Human = 0.72 Travel Time 4.854 × 10−2 3.027 × 10−2 1.603 1.089 × 10−1

5.Ashanti Region,
Ghana Intercept −8.415 × 10−2 2.295 × 10−1 −3.670×10−1 7.139 × 10−1

Number of
Samples = 5456 HANPP −3.001 × 10−12 4.520 × 10−13 −6.639 3.170 × 10−11 ***

Training
Samples = 4243 Slope 1.947 × 10−3 2.850 × 10−4 6.832 8.380 × 10−12 ***

Testing
Samples = 1213 Travel Time 7.631 × 10−2 1.997 × 10−2 3.821 1.330 × 10−4 ***

Area Under the
ROC/AUC Elevation −1.388 × 10−3 5.701 × 10−4 −2.435 1.489 × 10−2 *

Climate Drivers = 0.64 Population Density −3.783 × 10−4 1.574 × 10−4 −2.403 1.626 × 10−2 *
Human Drivers = 0.66 Soil Type −1.329 × 10−3 5.089 × 10−4 −2.611 9.038 × 10−3 **

Climate and
Human = 0.70 Livestock Density 4.529 × 10−2 1.893 × 10−2 2.393 1.671 × 10−2 *

6. Niger State, Nigeria Intercept 7.181 × 10−1 1.164 × 10−1 6.168 6.910 × 10−10 ***
Number of

Samples 15,731 Livestock Density −2.247 × 10−2 1.471 × 10−3 −1.528 × 101 2.000 × 10−16 ***
Training

Samples = 12,235 HANPP −8.350 × 10−12 7.862 × 10−13 −1.062 × 101 2.000 × 10−16 ***

Testing
Samples = 3496 Slope 1.660 × 10−3 1.791 × 10−4 9.267 2.000 × 10−16 ***

Area Under the
ROC/AUC Travel Time 6.759 ×1 0−2 9.492 × 10−3 7.121 1.070 × 10−12 ***

Climate Drivers = 0.57 Elevation −1.173 × 10−3 1.819 × 10−4 −6.449 1.130 × 10−10 ***
Human Drivers = 0.63 Soil Type 8.765 × 10−4 2.307 × 10−4 3.799 1.450 × 10−4 ***

Climate and
Human = 0.65 Population Density −4.071 × 10−4 2.129 × 10−4 −1.912 5.585 × 10−2 •

Significance. Codes p < 0.001 *** p < 0.01 ** p < 0.05 * p < 0.1 • 1

In each study site, the variables are arranged in order of significance. Insignificant variables were automatically removed by the algorithm
used to develop the model. In some cases, some predictors were insignificant but were retained in the model if the removal would decrease
the model accuracy. The predictors were ranked as follows: p < 0.001 *** (Extremely Significant), p < 0.01 ** (Very Significant), p < 0.05 *
(Significant) p < 0.1 •(Less Significant), 1 (Insignificant). Here, AUC/ROC represents the area under the receiver operating characteristics
(ROC) curve. The AUC ranges from 0 to 1. AUC less than or equal to 0.5 is an indication that the model prediction is random, while
AUC > 0.5 indicates a deterministic prediction of the response variable. AUC ≈ 1 is an indication of a perfect fit.



Sustainability 2021, 13, 4673 17 of 37

Table 4. Model Performance Parameters.

Study Sites Continuous Variables VIF (Full Model) Eigen Values

1. Diourbel-Louga-Senegal Elevation 16.8 0.1
AIC = 4255.4 Slope 16.1 0.6
BIC = 4314.2 Wetness Index 20.6 0.3

Log Likelihood = −2118.7 Travel Time 18.6 0.4
Deviance = 4247.4 Live Stock Density 9.9 1.7

Training samples = 5099.0 HANPP 30.4 3.1
Kappa and Conditional Number = 23.5 Population Density 22.4 0.8

2. Hodh el Gharbi, Mauritania Elevation 8.7 0.2
AIC = 8935.7 Slope 8.1 0.7
BIC = 8999.6 Wetness Index 39.1 0.4

Log Likelihood = −4458.9 Travel Time 7.8 0.5
Deviance = 8917.7 Live Stock Density 28 1.5

Training Samples = 8942.0 HANPP 13.5 2.8
kappa and Conditional Number = 17.9 Population Density 6.6 0.9

3. Zinder-Maradi, Niger Elevation 9.4 0.1
AIC = 27,333.9 Slope 7.2 0.7
BIC = 27,408.9 Wetness Index 58.6 0.5

Log Likelihood = −13,658.0 Travel Time 21.4 0.6
Deviance = 27,315.9 Live Stock Density 40.5 1.3

Training Samples = 30,549.0 HANPP 34.5 2.9
Kappa and conditional Number = 24.4 Population Density 145.8 0.8

4.Centre-Cente-Sud, Burkina Faso Elevation 6.1 0.3
AIC = 2988.6 Slope 7.2 0.8
BIC = 2980.1 Wetness Index 15.1 0.4

Log Likelihood = −1458.8 Travel Time 5.5 0.7
Deviance = 2917.6 Live Stock Density 9.4 1.2

Training Samples = 2453 HANPP 7.9 2.5
Kappa and conditional Number = 10.1 Population Density 6.9 1.1

5. Ashanti Region, Ghana Elevation 10.6 0.2
AIC = 5366.5 Slope 9.5 0.7
BIC = 5417.3 Wetness Index 7.5 0.5

Log Likelihood = −2675.2 Travel Time 10.9 0.3
Deviance = 5350.5 Live Stock Density 5.4 1.4

Training Samples = 4243.0 HANPP 14.4 2.8
Kappa and conditional Number = 13.9 Population Density 21.9 0.9

6.Niger State, Nigeria Elevation 4.9 0.5
AIC = 15,426.0 Slope 5.1 0.9
BIC = 15,485.3 Wetness Index 6.0 0.6

Log Likelihood = −7705.0 Travel Time 7.9 0.8
Deviance = 15,409.9 Live Stock Density 5.5 1.3

Training Samples = 12,235.0 HANPP 6.7 2.1
Kappa and conditional Number = 4.6 Population Density 6.5 0.9

Here, AIC, BIC, VIF, and HANPP represent Akaike information criterion (AIC), Bayesian information criterion (BIC), variance inflation
factor (VIF), and human appropriation of net primary productivity, respectively.

4.2. Significant Underlying Drivers of Natural Vegetation Identified from the Binary Logistic
Regresion (BLR) Model

The BLR model revealed that the occurrence of natural vegetation in West African
landscape is determined by multiple combinations of drivers (Tables 3 and 5). The combina-
tions varied from one location to another, apparently responding to the local environmental
and socio-economic conditions. The ranking of the drivers also differed from one location
to another. Human influence predictors were the most significant in the Ashanti Region
(HANPP), Diourbel-Louga (HANPP), Niger State (livestock density), and Hodh el Gharbi
(livestock density). HANPP, livestock density, and population density were significant at all
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the sites. The significance levels of population density were lower in the Ashanti region of
Ghana and the Niger State of Nigeria, with both being densely populated (Tables 3 and 5).

Table 5. The summary of the significance levels and the impacts of the underlying drivers on natural vegetation at some
selected hotspots in West Africa.

Study Sites Underlying Driving Factors

West Africa HANPP Pop. Density L. Density Travel Time Slope Elevation Soil Type W. Index
1. Diourbel-

Louga,
Senegal

Negative *** Positive * Negative *** Positive *** Positive *** Positive *** Positive *** Negative ***

2. Hodh el
Gharbi,

Mauritania
Negative *** Negative **** Positive *** Negative *** Negative *** Negative *** Negative *** Positive ***

3. Zinder-
Maradi,
Niger

Negative *** Negative**** Positive ** Negative *** Negative *** Negative *** Negative *** Negative ***

4. Centre-
Centre-Sud,

Burkina Faso
Negative *** Negative**** Negative *** Insignificant Negative * Negative ** Insignificant Positive ***

5. Ashanti
Region,
Ghana

Negative *** Negative * Positive * Positive *** Positive *** Negative * Negative ** Insignificant

6. Niger State,
Nigeria Negative *** Negative • Negative *** Positive *** Positive *** Negative *** Positive *** Insignificant

Where, HANPP represents (Human Appropriation of Net Primary Productivity), Pop. Density (Population Density), L. Density (Livestock
Density), and W. Index (Wetness Index). The “Negative” indicates that increasing the effect of the underlying drivers will decrease the
presence of natural vegetation and vice versa. The “Positive” indicates that increasing the effect of the underlying drivers will increase the
presence of natural vegetation. The predictors were ranked as follows: p < 0.001 *** (Extremely Significant), p < 0.01 ** (Very Significant),
p < 0.05 * (Significant), p < 0.1 •(Less Significant), 1 (Insignificant). The shaded entries are the dominant underlying drivers and their
significance impacts at each site.

The wetness index was the most significant driver in Zinder-Maradi in Niger, located
in the arid and semi-arid eco-region, and Centre-Centre Sud in Burkina Faso in the semi-
humid eco-region. In the Ashanti Region of Ghana and the Niger State of Nigeria in the
southern humid region, the wetness index was not a significant driver at p < 0.05. In Hodh
el Gharbi in Mauritania (arid region), the model fitted with the natural predictors only,
i.e., the wetness index, elevation, slope, and soil type predicted the presence of natural
vegetation better than the socio-economic predictors only, i.e., HANPP, population density,
livestock density, and travel time. In all the remaining study sites, the model fitted with
only the socio-economic predictors (see Table 3 for the AUC of the sub models) achieved
better performance than the model fitted with only the natural predictors.

4.3. Model Validation

In all the study sites, the stepwise forward and backward BLR yielded the same model
outcomes. The performances of these two models were better than the model fitted with
only the intercept and the “full model” with all the predictors included. The best model
selection was identified by the lowest AIC, Log Likelihood Ratio, BIC, and the residual
deviance (Tables 3 and 4). Here, we presented the results of the forward fitting model
since this identifies and ranks the most important predictors from the best to the least,
which was the main objective of this study (Tables 3 and 4). As mentioned in Section 3, the
ROC curve (AUC, see Figure 4 and Table 4) was used as a performance metric to assess
the predictive accuracy of the BLR model. AUC values range from 0 to 1. Model fitting
is best when AUC ≥ 0.7. The (AUC) of the BLR model were 0.88, 0.75, 0.88, 0.72, 0.70,
and 0.64 in Diourbel-Louga-Senegal, Hodh el Gharbi-Mauritania, Zinder-Maradi-Niger,
Centre-Centre Sud-Burkina Faso, Ashanti-Ghana, and Niger State-Nigeria, respectively.
The model performance was better in the arid regions, i.e., Diourbel-Louga, Senegal = 0.88,
Hodh el Gharbi, Mauritania = 0.75, and Zinder-Maradi, Niger = 0.88, than in the humid
regions, i.e., Centre-Centre Sud, Burkina Faso = 0.72, Ashanti Region, Ghana = 0.70, and
Niger State, Nigeria=0.64. Figure 5 shows the predicted probability maps and the observed
LULC maps in the study sites. The BLR model fitted with only socio-economic human
activities and accessibility indicators, i.e., HANPP, livestock density, population density,
and travel time to urban resources, performed better than with only a wetness index, slope,
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elevation, and soil type in all the study sites except in Hodl el Gharbi, Mauritania. At the
latter site, the model fitted with only natural predictors gave a higher AUC than with the
socio-economic indicators only (Table 4).

Figure 4. Cont.
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Figure 4. The area under the receiver operating characteristic curve (AUC) at various thresholds
(0.0–1.0) for the validation of the binary logistic regression (BLR) model at each study site. Diourbel-
Louga in Senegal (a). Hodh el Gharbi in Mauritania (b). Zinder-Maradi in Niger (c). Centre-Centre-
Sud in Burkina Faso (d). Ashanti Region in Ghana (e) and Niger State in Nigeria (f). AUC less than
0.5 indicate that model predictions are random. AUC above 0.5 indicates the prediction is systematic.
The models with AUC ≥ 0.7 are the best.
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Figure 5. Validation of the predicted probability maps from the binary logistic regression (BLR) model against the observed
LULC maps at the various study sites. Predicted probability maps from the BLR model (Site 1a−6a). Observed LULC maps
(Site 1b−6b) in Diourbel-Louga, Hodl el Gharbi, Zinder-Maradi, Centre-Centre-Sud, Ashanti, Niger State, respectively. The
predicted probability values range from 0 to 1. Predicted probability threshold values > 0.5 indicate occurrence of natural
vegetation while a predicted probability threshold values ≤ 0.5 indicate an absence of natural vegetation.
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4.4. The Relationship between the Significant Underlying Drivers and Natural Vegetation

The sign of each coefficient of the predictors is a measure of the magnitude and
direction of change in the probability of presence of natural vegetation in response to a
change in a predictor (Table 3, Figures 6 and 7). Positive coefficients of the predictors
indicate that increasing the effect of the predictors will increase the likelihood of natural
vegetation’s occurrence (presence) and vice versa (see Tables 3 and 5, Figure 6(b3–b4,c1–c3)
and Figure 7(a3–a4,b1)). On the contrary, negative coefficients of the predictor vari-
ables indicate that increasing the effect of the predictor variable will decrease the like-
lihood of natural vegetation’s occurrence (see Tables 3 and 5, Figure 6(a1–a4,c4) and
Figure 7(a1–a2,b2)). We observed a consistent negative impact of HANPP on the presence
of natural vegetation across all the study sites (see Tables 3 and 5, and Figure 6(a1–a4)).
In many cases, the wetness index was insignificant in the humid regions, i.e., the Ashanti
Region of Ghana and Niger State in Nigeria, characterized by intensive anthropic activities,
i.e., high HANPP and livestock density (see Tables 3 and 5). In areas where the wetness
index was a significant predictor, the effect on natural vegetation was different depending
on the specific conditions of the site (see Tables 3 and 5 and Figure 7(a1–a4)).

Figure 6. Cont.
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Figure 6. The relationship between some of the anthropic drivers (human activities indicators) and the predicted probabilities
of natural vegetation occurrence in some selected hotspots of the study area. The Figure a1 through a4 illustrate a negative
impact of human appropriation of net primary productivity (HANPP) on occurrence of natural vegetation in Diourbel-
Louga, Senegal (a1); Zinder-Maradi, Niger (a2); Ashanti Region, Ghana (a3); and Niger State, Nigeria (a4). Figure (b1)
through (b4) illustrate negative (b1,b2) and positive (b3,b4) impacts of livestock density on the occurrence of natural
vegetation in Diourbel-Louga, Senegal (b1); Niger State, Nigeria (b2); Hodh el Gharbi, Mauritania (b3); and Ashanti Region,
Ghana (b4) respectively. The “TLU” in (b1) through (b4) stands for tropical livestock unit. Figure c1 through c4 illustrate
positive (c1–c3) and negative (c4) impacts of travel time on the occurrence of natural vegetation in Diourbel-Louga, Senegal
(c1); Niger State, Nigeria (c2); Ashanti Region, Ghana (c3); and Hodh el Gharbi, Mauritania (c4) respectively. The predicted
probabilities of occurrence >0.5 were classified as the presence of natural vegetation and ≤ 0.5 were classified as an absence
of natural vegetation. The red (absence) and blue (presence) colors depict the observed natural vegetation. The red pixel
points shown above the threshold value (0.5) are the misclassified absence category while the blue pixel points shown below
the threshold values are the misclassified presence category by the model.

The likelihood of natural vegetation’s occurrence was lower in the southern parts
of Zinder-Maradi-Niger and Diourbel-Louga in Senegal where the wetness index and
human activities (HANPP) were relatively higher compared to the northern parts of
the same regions (see Table 3 for all the cases, Figure 6(a1,a2) and Figure 7(a1,a2)) for
graphical representations of the cases in Diourbel-Louga, Senegal, and Zinder-Maradi,
Niger, respectively. Here, the effect of wetness index on the presence of natural vegetation
was negative. The reverse was true. For example, Centre-Centre Sud in Burkina Faso,
i.e., in the same study site, the likelihood of natural vegetation occurrence was higher in
locations, with a higher wetness index (more humid conditions), while human activities
were intensive in areas with a lower wetness index. In this region (see Tables 3 and 5
and Figure 7(a4)), the wetness index had a positive impact on the occurrence of natural
vegetation in line with the natural pattern.
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Figure 7. The relationship between some of the climate/natural drivers and the predicted probabilities of natural vegetation
occurrence in some selected hotspots in the study area. Figure a1 through a4 illustrate negative (a1,a2) and positive
(a3,a4) impacts of wetness index on the occurrence of natural vegetation in Diourbel-Louga, Senegal (a1); Zinder-Maradi,
Niger (a2); Hodh el Gharbi, Mauritania (a3); and Centre-Centre Sud in Burkina Faso, Burkina Faso (a4) respectively.
Figure b1 and b2 illustrate positive (b1) and negative (b2) impacts of elevation on the occurrence of natural vegetation in
Diourbel-Louga, Senegal (b1); and Hodh el Gharbi, Mauritania (b2). The predicted probabilities of occurrence > 0.5 were
classified as presence of natural vegetation and ≤0.5 were classified as absence of natural vegetation. The red (absence) and
blue (presence) colors depict the observed natural vegetation. The red pixel points shown above the threshold value (0.5)
are the misclassified absence category while the blue pixel points shown below the threshold values are the misclassified
presence category by the model.

Population density had a negative impact on the presence of natural vegetation in all
the study sites except Diourbel-Louga in Senegal, where we observed a positive impact.
The impact of livestock density on natural vegetation was negative in two humid and
sub-humid regions, i.e., Niger State-Nigeria and Centre-Centre Sud in Burkina Faso and
one semi-arid region, i.e., the Diourbel-Louga in Senegal (see Tables 3 and 5, Figure 6(b1,b2)
for some of the cases). By contrast, the impact was positive in two arid regions, i.e., Hodh
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el Gharbi-Mauritania and Zinder-Maradi-Niger, and one humid region, i.e., the Ashanti
Region of Ghana (see Tables 3 and 5, Figure 6(b3,b4) for some of the cases). In the Ashanti
Region, livestock density was lower in the highly urbanized areas where HANPP and
population density were extremely high. In other words, HANPP and population density
were negatively correlated with livestock density, but the strength of the correlation was
weak to suggest multi-collinearity and the significance level of livestock density was low
(see Table 3).

Accessibility measured by travel time to urban areas with population greater than
2 × 104 of people had a positive impact on natural vegetation in Ashanti Region of Ghana,
Niger State in Nigeria and Diourbel-Louga in Senegal (see Tables 3 and 5, Figure 6(c1–c3)).
Travel time to urban areas was an insignificant driver in Center-Center-Sud in Burkina Faso,
which is a semi-humid region. On the other hand, the effect of this predictor on the presence
of natural vegetation was negative in the arid regions (see Tables 3 and 5 and Figure 6(c4))
except Diourbel-Louga in Senegal. Additionally, elevation had a negative effect on the
presence of natural vegetation at all the study sites, except in Diourbel-Louga, Senegal
where the impact of elevation on natural vegetation was positive (see Tables 3 and 5,
Figure 7(b1,b2)). In this area, slope and soil type had a positive impact on natural vegetation.
In the other arid zones, i.e., Hodh el Gharbi-Mauritania and Zinder-Maradi-Niger, elevation,
slope, and soil type had a clearly negative impact on natural vegetation (see Figure 7(b2)
for the effects of elevation on the occurrence of natural vegetation at Hodh el Gharbi in
Mauritania). On the contrary, slope had a positive impact on natural vegetation in Ashanti
Region-Ghana and Niger State in Nigeria, while soil type impacted negatively on natural
vegetation in the Ashanti Region of Ghana and positively in the Niger State of Nigeria (see
Tables 3 and 5).

5. Discussion
5.1. Multi-Collinearity

In some sites, e.g., Diourbel-Louga in Senegal, some variables exhibited collinearity
(Figure 3 and Table 4). We set aside 20% of the original data for model validation and
prediction. Thus, the dataset used for model predictions had the same degree of collinearity
as the original dataset used to train the model. According to Harrrell Jr. [44], collinearity
does not affect predictions when based on the same dataset used to estimate the model
parameters, or on a new data that have the same degree of collinearity as the original data,
provided extreme extrapolation is avoided. In the stepwise variable selection, collinearity
can cause predictors to compete and make the selection of “important” variables arbitrary.
Collinearity makes it difficult to estimate and interpret a particular regression coefficient
because the predictor carries limited additional information. Despite that, we strived to
eliminate redundant variables by initially identifying the potential drivers from literature.
In addition, candidate predictors with a huge number of missing values were removed.

5.2. Significant Underlying Drivers Identified by the Binary Logistic Regression (BLR) Model

The BLR model provided a clear picture of which variable was significant with the
corresponding p-value applying to the final predicted outcome. It revealed that the impact
of the multiple sets of drivers on natural vegetation depends on other specific environ-
mental conditions of the location under consideration, as the relationship between natural
vegetation and the significant predictors varied from one study site to another for even the
same predictor variables (see Tables 3 and 5).

The stepwise variable selection technique we employed enabled us to develop a con-
cise model with fewer predictors when possible, thereby, reducing collinearity among
the multiple predictors. This prevented insignificant regression coefficients from being
included in the model [44,82,83]. The major limitations of this technique have been under-
lined by Harrrell Jr. [44], who noted that the technique may yield a p-value, which is too
small. Harrrell Jr. [44] further stressed that the problem of multi-collinearity may be com-
pounded by applying stepwise variable selection to select randomly significant variables
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since the inclusion of a potential driver in the model depends on the estimated regression
coefficient instead of their true values. As a result, the probability of a potential driver to
be included is higher if its regression coefficient is over-estimated than the reverse [82].

According to Derksen and Keselman [83], the number of potential predictors may
add noise in the model. In addition, the correlation between the predictors may affect
the inclusion of genuine predictors. With respect to the dimensionality of the model,
Derksen and Keselman [83] proposed that the focus of effective driver selection should be
the development of an algorithm to determine beforehand the total number of potential
drivers to be included, rather than focusing on the number of drivers in the final model.
Harrrell Jr. [44] recommended that, prior to driver selection, multi-collinearity and driver
interaction must be tested. Methods such as a full model fits or data reduction are preferable
to stepwise selection algorithms. However, in the case of this study, variable selection was
crucial since the major objective was to identify the important drivers based on the ranking
of the predictor variables by the stepwise selection algorithm.

5.3. Model Validation

Model performance is usually assessed by evaluating whether the model can accu-
rately predict future values of the response variables. Different model validation meth-
ods have been highlighted by Harrrell Jr. [44]. We applied data-splitting to set aside
independent data for model validation. However, this approach has drawbacks since
data-splitting greatly reduces the sample size for both model development and model
validation. Roecker [84] noted that this method “appears to be a costly approach, both in
terms of predictive accuracy of the fitted model and the precision of estimated accuracy”.
Breiman [74] found that bootstrap validation on the original sample was as efficient as
having a separate test sample twice as large.

In our case, the predictive accuracy of the BLR model was better in the arid regions
than in the humid regions (Table 3 and Figure 4). Harrrell Jr. [44] linked poor performance
of a regression model with over fitting, changes in measurement methods, changes in
the definition of categorical variables, and major changes in variable inclusion criteria.
The poor performance of our model in the humid ecosystem may be due to the exclusion
of potentially important drivers, such as land tenure system, customs, norms, and so
forth [22] in the development of the BLR model. According to Mazzucato et al. [22], the
coping strategies adopted by the local informal land tenure system in Africa, have shaped
the functioning of the ecosystem over years [22]. This suggests that, to obtain a perfect
model fit, additional predictors must be included in the model. Among other things, a data
gap in the predictor variables is one of the major limitations of this study.

5.4. The Relationship between the Significant Underlying Drivers and Occurrence of
Natural Vegetation

Here, the effect of the dominant drivers, i.e., HANPP, wetness index, livestock density,
and accessibility are discussed in detail from Section 5.4.1 through Section 5.4.4 with a
brief discussion on the effect of soil types, slope, and elevation on the presence of natural
vegetation in Section 5.4.5.

5.4.1. Human Activities (HANPP) and Demography (Population Density)

Although the relationships between the occurrence of natural vegetation and some
significant drivers were location-specific, the BLR model estimated a negative relationship
between HANPP and the presence of natural vegetation at all the study sites at p < 0.001.
This indicates that any significant increase in HANPP will decrease the likelihood of the
presence of natural vegetation (see Tables 3 and 5 and Figure 6(a1–a4) and for the graphical
representation of the cases in Diourbel Louga, Senegal, Zinder-Maradi, Niger, Ashanti
Region, Ghana, and Niger State, Nigeria, respectively). This result is in agreement with
Steffen et al. [4] and Ehlers and Krafft [5,85] who stated that the current human impact
on the ecosystem, i.e., on natural vegetation, in particular, is pervasive at different scales.
HANPP was a dominant driver in the Ashanti Region, Ghana and Diourbel-Louga in
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Senegal where Asenso Barnieh et al. [11] revealed a massive settlement and cropland
expansions. On the other hand, vegetation recovery due to cropland abandonment was
detected in some isolated areas of Diourbel-Louga by the same authors.

In-depth analysis revealed that human activities had an impact on the relationships
between the presence of natural vegetation and other significant drivers, particularly the
wetness index, soil type, slope, and elevation. For instance, in the Ashanti Region of
Ghana, Niger State in Nigeria and Diourbel-Louga in Senegal where human activities
were a dominant driver, slope had a positive impact on natural vegetation because human-
induced LULC types, i.e., cropland, human settlements, and other LULC types, which
were categorized as “absence of natural vegetation” in this study systematically occurred
in areas with a relatively lower (gentler) slope, with the presence of natural vegetation in
areas with a steeper slope (Figure 2). This signifies that crop farming and expansion of
other built-up areas are avoided in areas with steeper slopes, thereby, favoring conservation
of natural vegetation. Another example of how human influence may alter the response
of natural vegetation to climate is the negative relationship between the occurrence of
natural vegetation and the wetness index in Zinder-Maradi, Niger and Diourbel-Louga,
Senegal (see Figure 7(a1,a2)). In this case, detailed analysis revealed lower probability
of natural vegetation’s occurrences in locations with a higher wetness index against the
natural pattern of more likely occurrence of natural vegetation with higher humidity (see
Figure 2). This is consistent with the previous studies by Turner et al. [1] and Foley et al. [2]
who suggested that intensive human activities at the local scale and the rapid changes
in the LULC system at different scales may intensify changes in land surface climate
and exacerbate the vulnerability of ecosystem services, biodiversity, water balance, and
soil conditions.

Furthermore, we found that population density was directly proportional to HANPP
in all the study sites except Diourbel-Louga in Senegal (see Tables 3 and 5). In this area,
there was a positive relationship between population density and the presence of natural
vegetation, i.e., an increase in population density increased the likelihood of the presence
of natural vegetation. Though the population density observed in this area in 2000 was
comparatively high, i.e., third highest in the selected hotspots in West Africa (see Table 2),
the abandonment of cropland, the subsequent replacement by natural vegetation, and
migration of the farmers to bigger cities in the same study site explained the observed posi-
tive impact of population density on natural vegetation in this region [11,61,63]. Detailed
validation with the geospatial raster maps used to develop the model showed denser popu-
lation coupled with intensive human activities in the Diourbel Region. Here, the likelihood
of natural vegetation occurrence was lower. However, toward the Louga Region, which is
the greater proportion of the site, sparser population correlated with higher likelihood of
natural vegetation (see Figure 2).

The negative relationship between population density and presence of natural vegeta-
tion observed in all the other sites highlights the negative impact of human activities on
natural vegetation. Brandt et al. [21] underlined the “negative-population-vegetation” re-
sponse in West Africa. Under this scenario, a further increase in population will exacerbate
the impact of human activities on natural vegetation with serious implications for climate
impact mitigation. The loss of biomass and carbon through deforestation and degradation
of natural resources increases the emission of greenhouse gases into the atmosphere. In
densely populated regions, e.g., Ashanti Region in Ghana, Niger State in Nigeria and
Diourbel-Louga in Senegal, the significance (see Tables 3 and 5) of population density,
in explaining the presence of natural vegetation was lower since population densities in
these regions were localized in few major cities (see Table 2 for the descriptive statistics
and Figure 2 for spatial distribution). This finding is consistent with the LULC transitions
mapping by Asenso Barnieh et al. [11] who found that human settlement expansions in
West Africa are localized in only a few areas.
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5.4.2. Livestock Density

In the sites in Diourbel-Louga, Senegal, Centre-Centre Sud in Burkina Faso, and Niger
State in Nigeria, with very high livestock density (see Table 2), the BLR model predicted a
negative impact of livestock density, especially cattle, on the presence of natural vegetation
(see Tables 3 and 5 and Figure 6(b1,b2) for graphical representations of the cases in Diourbel-
Louga, Senegal and Niger State, Nigeria). In reality, grazing and trampling pressure by
livestock have negative impacts on total above ground biomass with pressure, increasing
when livestock density increases [58,86–88]. This is consistent with the findings from this
study. Furthermore, in the previously mentioned areas, nomadism and transhumance
are well practiced. Mobility of herds through nomadism (i.e., herds migrate over long
distances from season to season in search of pasture) and transhumance are well-known
coping strategies by livestock keepers in West Africa for ensuring the survival of livestock
when the availability of natural vegetation is low during the dry season. This system of
livestock management has a greater impact on natural vegetation when the movement
of the animals are unguided [58,87,89,90]. Here, the proportion of livestock occurrence in
the highly urbanized area was higher than in the less urbanized area where the fractional
abundance of natural vegetation was higher (see Figure 2). Therefore, apart from the
negative impact of livestock density on the presence of natural vegetation, other human
activities tied with urbanization may play a role in the displacement of natural vegetation
in these sites.

According to Schlecht et al. [88], in highly populated and urbanized areas, livestock
farmers dispose livestock dung in open spaces and streets. The exposure of dung to extreme
sunlight and rainfall has negative implications on the environment since the process may
lead to leaching of nutrients and emission of greenhouse gases, such as methane to the
atmosphere with a subsequent impact on climate. In Burkina Faso, roadside grasses,
fallowed vegetation and stubble material from public spaces within and particularly
around the city, are contributing a significant share of dry matter intake of ruminants in
Ouagadougou, which is one of the urbanized areas in the study site in Centre-Centre Sud
of Burkina Faso [88].

On the contrary, in the study sites in Hodh el Gharbi, Mauritania, Ashanti Re-
gion, Ghana, and Zinder-Maradi, Niger where positive relationships (see Tables 3 and 5,
Figures 2 and 6(b3,b4) for the cases in Hodh el Gharbi, Mauritania and Ashanti Region,
Ghana) were predicted between the presence of natural vegetation and livestock density
by the BLR model. The livestock densities were relatively lower (Table 2) and the types
of livestock were restricted to small ruminants, such as goat and sheep with restricted
livestock movement [90]. Though Mauritania is well known for its dependence on nomadic
and transhumance livestock farming, the site in Hodh el Gharbi had a relatively lower
livestock density (see Table 2 and Figure 2) with restricted livestock movement and impact
on natural vegetation compared with other parts of the country [90].

Livestock rearing in the Ashanti Region of Ghana is not nomadic. Livestock farmers
mostly depend on a wide variety of feed resources such as grass and peels of cassava,
plantain, and agro-industrial by-products like millet mash residue, rice bran, and home
waste to feed their cattle [91]. This reduces the grazing pressure by livestock. Moreover,
livestock density is more likely to have a positive impact on the presence of natural
vegetation in areas where livestock are used as manpower for crop cultivation, e.g., Hodh el
Gharbi, and where crop residues are used to feed the livestock. Such symbiotic association
between livestock rearing and crop farming, as in some rural and peri-urban areas in the
Ashanti Region, Ghana and Zinder Maradi, Niger is more likely to lead to a positive impact
of livestock density on the presence of natural vegetation (Tables 3 and 5 and Figure 2)
as predicted by the BLR model since crop residues augment herbaceous vegetation for
grazing, thereby, easing the pressure on natural vegetation cover [89].
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5.4.3. Accessibility (Travel Time)

The negative or positive (see Tables 3 and 5 and Figure 6(c1–c4)) influence of accessi-
bility on the presence of natural vegetation may be related to the differences in the type
and spatial distribution of natural vegetation as well human settlements.

In the humid and highly urbanized regions, i.e., Ashanti Region in Ghana and Niger
State in Nigeria, where wetness was not a limiting factor, the BLR model predicted a positive
relationship between travel time to urban resources and the presence of natural vegetation
(see Tables 3 and 5 and Figure 6(c2,c3)). In these sites, the rate of natural vegetation
conversion to human settlement, cropland, and other industrial developments between
1975 and 2000 was unprecedented [11]. The only types of natural vegetation spared from
land conversion in these areas were protected forest and natural vegetation in the rural
areas. The closer the cities to land area allocated for natural vegetation conservation and
protection, the higher the rate of conversions and, hence, as travel time increases, the
likelihood of the presence of natural vegetation increases (see Figure 2). Therefore, natural
protected areas in such areas may be sited very far away from urban areas. Diourbel-Louga
in Senegal is an arid region with spatial patterns similar to the previously mentioned areas
in the humid region (see Figure 6(c1)). Here, the model predicted a positive impact of
travel time on natural vegetation.

The reverse was true for the study sites in Zinder-Maradi in Niger and Hodh el Gharbi
in Mauritania where wetness was a limiting factor and human settlements were in close
proximity with natural vegetation and better climate conditions. In this case, a negative
relationship between travel time and natural vegetation was estimated by the BLR model
(see Tables 2, 3 and 5 and Figure 6(c4) for the case in Hodh el Gharbi, Mauritania). However,
HANPP in the relatively more humid and urbanized areas was high. In the Zinder-Maradi
Region, for example, farmers have adopted management practices. The areas very far from
the cities were degraded due to the repeated episodes of severe drought in the 1970s and
1980s [64,65]. Under these conditions, increasing travel time to urban resources decreases
the likelihood of the presence of natural vegetation (Figure 2). This is in agreement with
the analysis of distribution and trend in vegetation in some sections of the Zinder-Maradi
site by Rishmawi and Prince [27], who highlighted that areas far from human settlements
were prone to a biomass productivity decline. Leroux et al. [28] found that increasing
travel time had a negative impact on biomass productivity in some parts of the study area.
Therefore, natural protected areas in such Regions must be cited in close proximity to
human settlements under strict management and protection. The Sahel Great Green Belt
Initiative is a call in the right direction [92,93].

5.4.4. Climate (Wetness Index)

The predictions from the BLR model suggested that the wetness index was neither the
only underlying driver nor the dominant driver of the presence of natural vegetation in
West Africa prior to the period of 2000. The wetness index was insignificant at p < 0.05 in
some study sites, particularly in the humid regions, e.g., the Ashanti Region-Ghana and
Niger State-Nigeria (see Tables 3 and 5). This contradicts previous studies by Anyamba
and Tucker [19], Hickler et al. [17], Seaquist et al. [18], and Huber et al. [20], who noted
that climate variability is the major underlying driver of vegetation dynamics in Africa,
particularly in the Sahel region. In Diourbel-Louga in Senegal, which falls within the
Sahel (arid) region, the step-wise forward BLR model revealed that human activity as
measured by HANPP was the dominant driver of the presence of natural vegetation
(see Tables 3 and 5). The relationship determined by the BLR model is supported by the
previous LULC transitions analyses of Asenso Barnieh et al. [11], who revealed a massive
settlement and cropland expansion with isolated cropland decline due to abandonment
in Senegal.

Even in the study sites where the wetness index was the leading underlying driver, the
sub-models demonstrated that the model with human socio-economic activities predictors
only explained a greater proportion of variability in the presence of natural vegetation
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than the natural predictors’ only (see Table 3). In addition, the impact of the wetness
index on natural vegetation was different and controlled by human activities across the
sub-continent, as described earlier (see Table 3 and Figure 7(a1–a4)). With limited human
activities, a higher wetness index will increase the presence of natural vegetation, as in the
case of Hodh el Gharbi in Mauritania (Figures 2 and 7(a3,a4).

Despite the fact that the impact of wetness index on natural vegetation was posi-
tive in both Hodh el Gharbi in Mauritania and Centre-Centre Sud in Burkina Faso (see
Tables 3 and 5, Figure 7(a3,a4)), we observed that the impact in Hodh el Gharbi in Mau-
ritania was random while the impact in Centre-Centre-Sud in Burkina Faso was system-
atic. This is because we found a direct relationship between population density, HANPP,
and livestock density, and the wetness index in Hodh el Gharbi-Mauritania (Figure 3b).
Nonetheless, toward the northern part of the study site, there was a vast area of degraded
land. Visual analysis of the HANPP and livestock density geospatial data (Figure 2) re-
vealed little human impact and a clearer impact of climate, such as repeated episodes
of drought in this area. Comparatively, human socio-economic activities measured by
population density, livestock density, and HANPP were relatively lower at this study site
(Table 2). The sub-model fitted with only natural predictors explained a greater propor-
tion of the variability in the occurrence of natural vegetation than the sub-model fitted
with only human socio-economic predictors in this study site. This is consistent with
the LULC transition analysis by Asenso Barnieh et al. [11] who revealed massive natural
vegetation replacement by sandy dunes and bare land linked with climate in this region.
Hoscilo et al. [94] found a positive relationship between rainfall and normalized difference
vegetation index NDVI, which is a proxy for biomass productivity in Mauritania.

On the contrary, an inverse relationship was found between population density,
HANPP, and livestock density and the wetness index in Centre-Centre Sud in Burkina
Faso (Figure 3d). Here, socio-economic indices were relatively high (see Figure 2) in the far
arid north. Generally, human socio-economic indicators in this study site were higher in
comparison with other study sites apart from the Ashanti Region of Ghana (see Table 2).
The wetness index was higher in the areas toward the humid south, far from human
settlements with little human activities whose impact is coupled with very dense natural
vegetation. These areas were spared from land conversion between 1975–2000 [11] (see
Figure 2 for spatial distribution of natural vegetation). The natural vegetation distribution
here followed the natural pattern suggesting that, in spite of human socio-economic growth,
systematic spatial planning may sustain the positive response of natural vegetation to
precipitation and mitigate its sensitivity to disturbances (see Figure 7(a4)).

In Diourbel-Louga of Senegal and Zinder-Maradi in Niger, where the impact of the
wetness index on natural vegetation was negative, the effect of the wetness index on
natural vegetation was controlled by the intensity of human activities, i.e., a positive
relationship was found between HANPP, livestock density, population density, and the
wetness index (see Figures 2 and 3a,c), with the presence of natural vegetation decreasing
while increasing the wetness index (see Figure 7(a1,a2) for a graphical representation of
the case in Diourbel-Louga and Zinder-Maradi). In these two areas, previous studies have
documented massive expansions of croplands at the more humid southern parts where
the wetness index is higher and natural vegetation has been replanted at the water deficit
areas under the “farmer-managed natural resources’ regeneration initiative” [64,65].

5.4.5. Soil Type, Elevation, and Slope

The BLR model predicted (see Tables 3 and 5 and Figure 2) a positive effect of soil type
on the presence of natural vegetation in Centre-Centre Sud of Burkina Faso, Niger State
of Nigeria, and Diourbel-Louga of Senegal, where the dominant soil types, i.e., Nitisols,
Luvisols, Fluvisols, Arenosols, and Cambisols, are fertile and a negative effect in the Ashanti
Region of Ghana, Hodh el Gharbi of Mauritania, and Zinder-Maradi of Niger, where the
dominant soil types, i.e., Acrisol, Lithisols, and Regosols, are sub-optimal for natural
vegetation growth [55]. With regard to the effect of slope and elevation on occurrence
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of natural vegetation, naturally, gentle slopes and lower elevations are generally more
suitable for vegetation growth [54]. This is consistent with the negative effects of elevation
on natural vegetation, i.e., increasing elevation decreased the odds of the occurrence of
natural vegetation, estimated by the BLR model at all the study sites (see Table 3 and
Figure 7(b2) for a graphical representation of the case in Hodh el Gharbi, Mauritania),
except in Diourbel-Louga in Senegal (see Figure 7(b1)) where a higher elevation increased
the presence of natural vegetation.

Slope controls soil water content by influencing infiltration, drainage, and runoff [95–98]
and it is a determinant of soil erosion and degradation, with an impact on vegetation
growth [99]. In the Ashanti Region of Ghana, Diourbel-Louga of Senegal, and Niger State
of Nigeria, human activities were influential drivers (see Tables 3 and 5) and slope had
a positive impact on natural vegetation, i.e., steeper slopes increased the odds of natural
vegetation occurrence because humans induced LULC types, i.e., cropland and human
settlements systematically occur in areas with a gentler slope (see Tables 3 and 5 and
Figure 2). The results of this study provide enough evidence to support the conclusion
that “a single factor explanation of a LULC change in Africa”, i.e., of the occurrence of
natural vegetation is not enough [14]. Our findings are in agreement with the findings of
Boschetti et al. [25] and Leroux et al. [28] who stated that the LULC change in West Africa
is determined by interplay of climate, biophysical, and anthropogenic drivers.

6. Conclusions

This research demonstrated the ability of the BLR model to identify statistically signif-
icant drivers, which determine the presence of natural vegetation in a complex ecosystem
where a single driver explanation was not sufficient. The BLR model revealed not only
the statistically significant multiple set of underlying drivers of natural vegetation’s oc-
currence, but also the interplay of these drivers and their relative impacts. The study
revealed that, even prior to 2000, human activities as measured by HANPP were pervasive
and a significant driver of natural vegetation in West Africa. The likelihood of natural
vegetation’s occurrence decreases with increasing human activities in all the study sites.
Moreover, the relationships between the presence of natural vegetation and all the other
drivers were location-specific and mostly depended on the intensity of human activities.
The study highlights the significant role human activities play in altering the land sur-
face climate and natural indicators as well as the ecosystem. Thus, without a negative
human influence, the relationship between natural vegetation and natural drivers, i.e.,
wetness index, slope, elevation, and soil type, leads to positive effects on the ecosystem,
but intensive human activities may trigger negative changes in the ecosystem. Therefore,
development of policies and strategies to control the intensity of human activities and to
revamp the degraded landscape are urgently needed in West Africa. The results from this
study may provide useful information for understanding the interactions between human
and the environment for natural resources management, climate change adaptation, and
sustainable development. The past responses of natural vegetation to multiple underlying
drivers captured by this research may serve as a foundation to predict the current occur-
rences of natural vegetation and projections into the future. The BLR model approach
is advancement over the traditional narrations and people’s perceptions on underlying
drivers of natural vegetation’s dynamics in West Africa.
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