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Chapter 1

An informal introduction and motivations

When introducing the field of interacting particle systems (IPS), it is necessary to take a step back and start with a
quick overview of statistical mechanics. Indeed, IPS, as studied nowadays, arose as an independent research area
within probability theory from some of the fundamental questions that physicists attempted to answer since the
end of the 19th century. This short chapter has the aim of framing this thesis within a more general context, though,
not having the ambition of providing a complete and precise picture of the physical motivations and perspectives
behind the field of IPS.

Statistical mechanics is the area of physics where the emergence of macroscopic laws starting from a microscopic
kinetic description of particles is studied. Any physical system can be studied at different scales, and here we
distinguish two of them:

i) the macroscopic scale, where the system is studied as a “whole”. The system is then described in terms of
continuous variables, such as density, pressure and temperature, which evolve according to some determin-
istic partial differential equations (PDEs);

ii) the microscopic scale, namely the level at which we can discern the enormous amount of molecules of the
system, which rapidly move and collide with each other, following (quantum) Hamiltonian evolution.

Establishing a connection between the microscopic and the macroscopic world was the goal of the founding fathers
of statistical mechanics, Boltzmann, Gibbs and Maxwell. In the foundational work of statistical mechanics the
emphasis was on the study of equilibrium and the connection between the microscopic world and the macroscopic
laws of equilibrium thermodynamics. Later on, Boltzmann, via the introduction of the Boltzmann equation, tried to
make further progress on these ideas also in the realm of non–equilibrium. Understanding the connection between
micro and macro laws in the context of non-equilibrium systems is nowadays still largely an open problem and a
subject of intense investigation. Only close to equilibrium, there is a general formalism known as linear response
theory. Far from equilibrium, the study of this problem is mostly model driven, where one distinguishes stochastic
models (the subject of this thesis) and deterministic models (like dynamical systems).

Equilibrium systems are characterized by reversibility: the evolution of all the particles together is reversible in
time and the detailed-balance relation is satisfied. A typical equilibrium situation can be obtained by putting a
system in contact with thermal baths at the same temperature: in such systems there are no macroscopic cur-
rents, such as heat current. In this setting there is a well established formalism to describe the distribution of the
micro-states compatible with thermodynamic macro-parameters such as density, temperature and pressure. These
parameters determine the equilibrium states which are characterized by time-reversal invariance and described by
the Boltzmann-Gibbs distribution

P(X = x) =
1
Zβ

e−βE(x). (1.0.1)

Here e−βE(x) is the Boltzmann weight, β is the inverse temperature, E(x) is the energy of the micro-state x and Zβ
is the partition function. The scaling procedure to pass from the micro to the macro world via such probabilities is
referred to as thermodynamic limit. Further, from these distributions, the law of equilibrium thermodynamics can
be obtained, as well as phenomena like phase transitions and symmetry breaking.

In contrast, in non-equilibrium statistical mechanics, there is not such a universal method to determine the relevant
probability measures which allow to pass from the micro to the macro world. There are two forms of non–
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4 1. An informal introduction and motivations

equilibrium: relaxation to equilibrium and non–equilibrium caused by an external driving. In the latter, namely in
driven systems, one obtains in the long limit a steady state, called stationary non–equilibrium state. This differs
from equilibrium steady states by the absence of detailed balance and by the presence of currents or, equivalently,
by the breaking of time reversal symmetry. At present, deriving universal properties of such non–equilibrium
steady states in various settings is one of the main research subject of non–equilibrium statistical mechanics.
Examples of driving mechanisms pushing a system out of equilibrium are:

i) boundary–driving: open systems in contact with thermal bath/reservoirs working at different tempera-
tures/densities.

ii) bulk–driving: systems undergoing the action of an external field which pushes the particles in a preferential
direction.

iii) activity of particles: systems where particles have an internal state that may change over time.

In such systems, there is a net current of quantities such as heat or particle-density in a preferential direction.
Preferential direction is a manifestation of time reversal breaking. Another signature of non-equilibrium is the
presence of long-range correlations in the non–equilibrium stationary state, which are expected to be universal and
not depending on a specific choice of the parameters of the system (in contrast to equilibrium, where, for system
with short range interactions, long-range correlations only appear at critical points).

Relaxation to equilibrium refers to how a system converges to equilibrium when starting from a non-equilibrium
state. At the macro–scale, there are various equations available describing relaxation to equilibrium and most of
them can be easily derived with heuristic arguments. A prominent example is the heat (or diffusion) equation,
which can be derived from conservation of mass together with Fick’s law relating the current to the gradient of the
conserved quantity (such as particle density). It is however a completely different problem to derive such equations
from the microscopic dynamics. In particular, for realistic molecular motion (Hamiltonian dynamics), this is in
general still a completely open problem, and only for very special systems, such as hard spheres, a rigorous
derivation of macroscopic equations can be obtained. However, the variety of interesting phenomena emerging
from systems of particles out of equilibrium pushes the study of non-equilibrium steady states. Typical examples
of such phenomena are transport phenomena of heat or mass, with possible uphill diffusions and dissipation, and
hydrodynamics motion with turbulence or formation of shocks.

Both in the context of equilibrium and out–of–equilibrium statistical mechanics, interacting particle systems are
simplified microscopic models which provide a fruitful framework in which the transition from micro to macro can
be made mathematically rigorous. IPS were introduced in the 70s by Spitzer as microscopic models of particles
based on the two following simplifications:

i) Particles move and interact in a random way such that the whole configuration is a Markov process, i.e.
the future evolution of the system depends only on the present state and not on the past. The Hamiltonian
description is thus abandoned in favor of stochasticity in the motion mimicking the complicated microscopic
dynamics.

ii) The physical space is discretized, i.e. the particles evolve on graphs such as the Euclidean lattices Zd, d ≥ 1.

The only stochasticity in real microscopic deterministic dynamics comes from the initial condition. This, combined
with the chaotic motion of particles, leads to the same type of ergodicity that is present in IPS. However, such
ergodicity in IPS has been introduced artificially by the randomness in the motion of the particles. Even if these
simplifications emphasize the toy-nature of IPS, still such caricatures of the real microscopic dynamics grasp the
essential properties of the true physical interactions. Most importantly, the randomness assigned to the motion of
the particles makes the rigorous derivation of macroscopic equations possible. In this probabilistic framework, the
derivation of macro equations can be thought of as an infinite dimensional law of large numbers (at the trajectory
level) and the procedure is called hydrodynamic limit. In the spirit of this analogy, one can then view the limit
theorems for fluctuations around the hydrodynamic limit as an infinite dimensional analogues of the central limit
theorems and the probabilities to deviate from the macro equations as an infinite dimensional large deviation result.
The scaling results that we can obtain from IPS are expected to be universal and to be shared by large classes of
systems, thus reinforcing the motivation to study IPS.

When turning to out–of–equilibrium scenarios, IPS in contact with reservoirs working at different densities, IPS
driven by external fields and systems of interacting active particles, turn out to be analyzable models as well. In
some cases, some out–of–equilibrium IPS are even exactly solvable models. The Bethe-Ansatz method and the
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matrix formulation method in the context of boundary driven IPS allowed to obtain explicit expressions for the non-
equilibrium steady states of very specific models. However, these models are very special and the aforementioned
methods are not robust enough to include, for instance, spatial inhomogeneities, which is one of the main themes
in this thesis.

A class of IPS slightly more general than exactly solvable models are systems satisfying stochastic duality. Stochas-
tic duality is a useful tool in probability theory which allows to study a Markov process (the one that interests you)
via another Markov process, called dual process, which is hopefully easier to be studied. The connection between
the two processes is established via a function, the so-called duality function which takes configurations of both
processes as input. In the context of IPS, one of the typical simplifications provided by stochastic duality is that a
system with an infinite number of particles can be studied via a finite number of particles. Notice that in order to
perform the transition from micro to macro, it is necessary, as already understood at the beginning of the evolution
of statistical mechanics, to consider systems with a large number of particles. Thus, being able to reduce the scal-
ing limit problem to a finite system is a big advantage. When the dual system with a finite number of particles is a
copy of the original process, duality is referred to as self-duality.

Even though IPS satisfying stochastic (self-)duality are still special, they are less special than exactly solvable
models. Indeed duality is robust enough to still hold when modelling spatial inhomogeneities. We can then take
advantage of duality in space inhomogeneous settings and obtain a closed form of the correlations of the systems:
the time evolution of time dependent n-th order correlations will depend only on the initial correlations up to order
n, and not on higher order correlations. Even if these closed forms may not be exactly computable, they still
provide interesting information, such as universal properties of the system, and they can help in performing the
transition from micro to macro. For instance, the study of the expectation of the rescaled empirical density field of
a self-dual IPS in a spatial inhomogeneous setting, simplifies, by self-duality, to the study of the scaling behavior
of one single space-inhomogeneous particle, i.e. to an invariance principle.

The simplification from many to few particles is nowadays a standard practice for classical IPS and more generally
in studying scaling limits of Markov processes. However, it is less standard in the context of space inhomogeneous
settings for which the literature is quite poor. When speaking of space inhomogeneities, the underlying physical
idea is that we would like to incorporate in the model the presence of impurities and defects in the underlying
environment where the particles evolve or modelling media composed by multiple materials with different charac-
teristics. There are several ways of modelling the space inhomogeneities depending on the situations that one is
trying to capture. Two of them are reported below.

i) Random Environments: often, the presence of inhomogeneities in a medium are modeled with an extra
source of randomness, the so-called random environment. When performing the rescaling from micro to
macro, one might obtain homogenization results: under certain assumptions the extra-randomness miming
the inhomogeneities will then homogenize into a deterministic macroscopic quantity.

ii) Multi-layer systems: in some cases, the spatial inhomogeneities are caused by the presence of several layers
in the media where the particle evolves in each of them with different characteristics. Multi-layer systems
appeared also in the context of both active particles and population dynamics with seed-banks, where indi-
viduals are in either active or dormant state.

Pushing stochastic duality in this direction, i.e., studying interacting particle systems in space inhomogeneous set-
tings, is the first aim of this thesis. More specifically, we want to extend stochastic duality to space inhomogeneous
settings and use the simplification from many to few, both to have detailed information on the microscopic prop-
erties of such microscopic IPS in and out–of–equilibrium, and to perform rigorously the transition from micro to
macro.

The second main goal of this thesis is to extend the notion stochastic self-duality beyond discrete underlying parti-
cles space. Namely, we want to get rid of the simplifications that particles move on Zd and to be able to formulate
duality in the form from many to few for particles evolving in the continuum, e.g. on Rd. In discrete settings,
self-duality functions are products over lattice sites of polynomials in the number of particles at each site, depend-
ing on the number of dual particles (the number of dual particles corresponds to the degree of the polynomial).
The self-duality functions are usually categorized in “classical” self-duality functions, corresponding to (modified)
factorial moments, and “orthogonal” self-duality functions, which are products of orthogonal polynomials, where
orthogonality is with respect to an underlying reversible product measure. The language and formulation of duality
in terms of number of particles at discrete lattice sites clearly breaks down in many natural settings of particles
moving in the continuum. It is therefore important to develop a more general approach to self-duality that can lead
to results also in the continuum, on general state spaces.
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Chapter 2

Probabilistic introduction to interacting
particle systems: a duality perspective

In this chapter we introduce the field of interacting particle systems from a probabilistic point of view. The focus
will be on models satisfying stochastic duality, a technique that will be explained in detail later.

2.1 Notation and general terminology

An interacting particle system (IPS) is a collection of elements, the particles, that move randomly and are subjected
to some interaction rules. Thus, it is a collection of coupled random processes. In many cases, we are interested
in modelling spaces that resemble regular crystalline structures, and the Euclidean lattice Zd is suitable for that
purpose. The points of Zd are thus the points in the physical space. The choice of Zd as physical space can be also
viewed as a model simplification.

The simplest particle system model is a system of independent random walks on Zd: each particle evolves as an
independent continuous–time jumping Markov process on the Euclidean lattice and no interaction takes place.
The particle system is described via the so-called configuration process (which is a Markov process), namely as
the collection

{ηt, t ≥ 0} = {(ηt(x))x∈Zd , t ≥ 0},

where, for any x ∈ Zd and t ≥ 0, the variable ηt(x) denotes the number of particles at time t at the location x. In more
interesting cases, on top of the independent Markovian dynamics of the particles, one super-imposes an interaction
rule: in this way the evolution of an individual particle is no longer Markovian but what is still Markovian in many
relevant interacting particle systems is the evolution of the composite state of the process, namely the configuration
process (ηt)t≥0. Denoting by X the state space of (ηt)t≥0 (which in the case of independent random walks is NZ

d

endowed with the product topology) and letting f : X → R be a continuous and bounded function, we can take
advantage of two mathematical objects encapsulating the Markovian nature of the configuration process:

i) the semigroup {S t, t ≥ 0} of {ηt, t ≥ 0} given by

S t f (η) := Eη[ f (ηt)], η ∈ X,

where Eη[·] denotes the expectation with respect to the law of the configuration process;

ii) the generator L of {ηt, t ≥ 0} given by

L f (η) := lim
t→0

S t f (η) − f (η)
t

supposing that for the continuous and bounded function f under consideration the above limit exists. The
limit above has to be interpreted in the sense of the norm of an appropriate function space that depends on
the specific model.

The semigroup provides the expected evolution of an observable f : X → R of the particle system, while the
generator provides the expected infinitesimal change of an observable f .

7



8 Introduction

2.2 Stationary measures and hydrodynamics

As already mentioned in the previous chapter, some of the goals of statistical mechanics are to study equilibrium
behaviors of physical systems and how equilibria states are attained, the emergence of macroscopic dynamics
starting from complicated microscopic ones, and the non-equilibrium properties in transport phenomena. At this
point, we can formulate these problems in a mathematical way.

2.2.1 Steady states

Studying the equilibria states of the particle systems means to find the invariant probability measures of the con-
figurations process: i.e., find a probability measure µ on X for which

µ = µS t ∀t ≥ 0,

where the evolved measure µS t is defined via the relation
∫

f dµS t =
∫

S t f dµ for any f : X → R continuous and
bounded. In terms of the generator L of the process, a probability measure µ is invariant if and only if∫

L f dµ = 0

for any f in the domain of L. Moreover, we say that a stationary measure µ is also reversible if for any continuous
and bounded functions f , g : X → R ∫

(S t f )gdµ =

∫
(S tg) f dµ,

which, in terms of the generator L, is equivalent to require L to be self-adjoint in L2(µ).

Other basic questions related to the equilibrium states are:

i) under which conditions is there a unique invariant measure for the system?

ii) can the domain of attraction of an invariant measure µ be identified? In other words, which are the probability
measures ν on X such that νS t → µ as t → ∞?

These classical questions were among the first to be addressed in the literature of interacting particle systems. We
refer the reader to [126] for an extensive treatment of several IPS.

2.2.2 Non-equilibrium steady states

In this thesis, for many models on Zd under consideration the stationary (in some cases reversible) measures will
be known or easily obtained from standard knowledge in the literature of IPS. The situation is different when
we will look at out–of–equilibrium systems. A typical way to model a particle system out–of–equilibrium is the
following: you let the interacting particles evolve on a finite chain, say VN := {1, . . . ,N}, and one couples the left
and the right end points of the chain, respectively the sites 1 and N, with a left and a right reservoir. Reservoirs are
mechanisms that inject and absorb particles from the systems at some prescribed rates. If the two reservoirs work
at different densities, then the system is out–of–equilibrium. Systems coupled with reservoirs are called boundary
driven systems and studying and identifying the stationary state, which is called non-equilibrium steady state, is
typically a much harder problem than studying the invariant measures for systems of particles in Zd (see, e.g.,
[107]). To fix some nomenclature, the boundary driven systems will be also referred as open systems, where the
word “open”refers to the fact that particles exit and enter the bulk (the chain VN) of the system, thus exchanging
mass or energy with the outside. On the other hand, systems of particles evolving on Zd will be referred to as
closed systems.

Supposing that for a certain boundary driven system one is able to prove that there exists a unique non-equilibrium
steady state µ, typical objects of study are the non-equilibrium stationary profile

(
Eµ[η(x)]

)
x∈VN

, the stationary

truncated n-point correlations Eµ
[∏n

i=1(η(xi) − Eµ[η(xi)])
]

and whether the stationary current of particles satisfies
the Fick’s law of transport, namely if the flux of particles at stationarity goes from the reservoir working at higher
density towards the reservoirs working at lower density. All these quantities and problems are non-trivial due to
the fact that in many models the non-equilibrium steady state µ is not known explicitly.
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2.2.3 Hydrodynamics

As already mentioned at the beginning of this section, another challenge is to rigorously derive a macroscopic
law starting from the microscopic dynamics modeled via an interacting particle system. The general idea here is
that IPS are models at a microscopic scale, in the sense that when modelling the motion and the interaction of the
particles we are implicitly assuming that we are zooming in a certain material or physical phenomenon to be able
to see these small entities and slowing down the time to be able to follow their trajectories. These two actions, the
zooming in the space and the slowing–down of time, are performed from our human point of view, the macroscopic
scale. To understand better this separation of scale, let us look at a concrete example. Let us start by reasoning at
the macroscopic scale (basically describing what we see) and let us study the motion of a drop of ink in a big glass
full of water. First, the size of the glass has to be large when compared with the amount of ink injected, in the
sense that we want to reproduce a situation where the boundary conditions imposed by the presence of the glass
are negligible for the motion of the ink. To find a model for the evolution of the density ρt of ink, two aspects must
be observed and mathematically formulated. First the conservation in time of the total mass of ink, i.e.,

∂

∂t

∫
V
ρt(x)dx = −

∫
∂V
∇Jt · n̂

= −

∫
V
∇ · Jt(x)dx

where V is an arbitrary control volume inside the glass of water with smooth boundary ∂V and outward normal
vector n̂, Jt is the flux of ink and the second equality follows from the divergence theorem. In other words, the
above formula is telling that the variation of mass of ink in a certain control volume is equal to the amount of flux
of ink that enters and leaves the system. Secondly, empirical observations tell us that the flux of ink goes against
the gradient of concentration of ink, the so-called Fick’s law mentioned above. Thus we have

Jt(x) = −D∇ρt(x),

where D is the so-called diffusion coefficient. Putting together the two formulas above and using the arbitrariness
of the control volume V we get the following partial differential equation (PDE),

∂

∂t
ρt = D∆ρt,

which is known under the name of diffusion equation or heat equation (indeed, besides the diffusion of mass, it
also models diffusion of heat, in which case one speaks of Fourier’s law instead of Fick’s law).

At this point one is led to the fundamental question whether the above PDE, that is nowadays standard and stands
at the basis of many engineering simulations, can be rigorously derived starting from a microscopic dynamics of
particles. Thus, considering the simplest particle systems consisting of independent simple symmetric random
walks on Zd and keeping in mind the separation of scales discussed before, we need to take care of two things:

i) find a way to rescale space, time and mass to go from the microscopic perspective, when looking at the
particles, to the macroscopic point of view of humans;

ii) find a way to study the collective behavior of the particles as a whole.

These two goals are achieved introducing a scaling parameter N and the rescaled empirical density field XN
t , i.e.

the random measure on Rd given by

XN
t B

1
Nd

∑
x∈Zd

δ x
N
ηtN2 (x) . (2.2.1)

As we can see from the above definition, this is a measure on Rd given by a sum of Dirac deltas at the locations
of the particles, and each of these deltas is weighted by the number of particles at that location. Being the number
of particles at various times the result of the stochastic evolution of the particle system, XN

t is a random measure.
Moreover, the scaling parameter N is used for three purposes, as mentioned earlier:

i) to rescale the mass of each particle by a factor 1
Nd ;

ii) to squeeze the space by a factor 1
N ;

iii) to speed up the time by a factor N2.
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These three operations are responsible for the zooming-out procedure that allows to pass from the microscopic to
the macroscopic scale.

Thus, we are after the following mathematical question: can we prove rigorously that when sending N to infin-
ity, the rescaled empirical density field properly converges to a macroscopic deterministic measure Xt, which is
absolutely continuous with respect to the Lebesgue measure

Xt(du) = ρt(u)du,

and whose density ρt is the solution of some physically relevant PDE (like the diffusion equation previously intro-
duced)? This limiting procedure is called hydrodynamic limit and the PDE solved by the macroscopic density is
called hydrodynamic equation. These names come from the fact that typical limiting equations are indeed the ones
used in hydrodynamic theory, like the diffusion equation. Notice that the rescaled space-time used when defining
the rescaled empirical density field is the so–called parabolic rescaling: the diffusion equation is indeed invariant
under this rescaling and reflects the fact that a single random walk in time N2t travels O(Nt) distance. Thus the
rescaling to be adopted will depend on the particle system under consideration and on the macroscopic quantity
and phenomenon that we are intended to study. Even for the simplest system of independent random walks the
first rigorous results about hydrodynamic limits are rather recent. Establishing hydrodynamic limits for a compre-
hensive class of IPS and macroscopic laws is nowadays extremely active and vibrant research area. We refer the
reader to the books [47] and [106] for several techniques and case studies.

2.3 A classical model: the exclusion process

After having introduced some of the problems that will be addressed in this thesis, it is now time to introduce one
of the most classical and studied IPS: the simple symmetric exclusion process (SSEP). The SSEP was introduced
by Spitzer in [156] as a model for a lattice gas at infinite temperature. More precisely, the particles move as
independent random walks on Zd, but they are prevented by the (physical) constraint that they cannot share the
same space location. Thus, on the dynamics of the independent random walks, the so-called exclusion rule is
super-imposed: maximum one particle is allowed in each site, thus, jumps towards already occupied sites are
suppressed.

The state space of SSEP is given by X = {0, 1}Z
d

and the generator by

L f (η) =
∑
{x,y}⊆Zd ,
|x−y|=1

 η(x)(1 − η(y)) ( f (ηx,y) − f (η))

+ η(y)(1 − η(x)) ( f (ηy,x) − f (η))

 , (2.3.1)

where f : X → R is a local (depending on a finite number of sites only) and bounded function and ηx,y denotes
the configuration where a particle has been moved from x to y. The above generator is describing the following
dynamics of particles:

i) a particle at x ∈ Zd waits an exponential time with parameter 2d;

ii) after this waiting time, the particle chooses a neighboring site y (i.e., such that |y − x| = 1) with uniform
probability given by 1

2d ;

iii) if the chosen site y is empty, the particle jumps there, otherwise it stays at x.

When turning to the open SSEP, i.e. the boundary driven version of the particle system, the state space is given by
Xopen = {0, 1}VN with VN = {1, . . . ,N} and the generator is given by

Lopen f (η) = Lbulk f (η) +LL,R f (η) . (2.3.2)

The generator Lbulk describes the bulk part of the dynamics and is given by

Lbulk f (η) =
∑

{x,y}⊆VN ,
|x−y|=1

 η(x)(1 − η(y)) ( f (ηx,y) − f (η))

+ η(y)(1 − η(x)) ( f (ηy,x) − f (η))


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and the boundary part of the dynamics is described by the generator LL,R as follows:

LL,R f (η) = LL f (η) +LR f (η) , (2.3.3)

with

LL f (η) = η(1) (1 − θL) ( f (η1,−) − f (η))

+ θL (1 − η(1)) ( f (η1,+) − f (η)) (2.3.4)

and

LR f (η) = η(N) (1 − θR)
(

f (ηN,−) − f (η)
)

+ θR(1 − η(N))
(

f (ηN,+) − f (η)
)
, (2.3.5)

where ηx,− ∈ X, resp. ηx,+ ∈ X, denotes the configuration obtained from η by removing, resp. adding, a particle
from, resp. to, site x ∈ V . In the above dynamics, creation and annihilation of particles occur at sites x = 1 and
x = N due to the interaction with a reservoir. The parameters θL, θR ∈ [0, 1] are the so-called reservoirs densities,
and if θL , θR the system is driven out of equilibrium.

Even if the interaction in the SSEP is quite simple, solving the problems described during this section for the SSEP,
or its open version, is harder than in the systems of independent random walks. However, since the moment when
the process was introduced, a special property for the SSEP was found out: the SSEP satisfies the self-duality
property and, thanks to that, many quantities of interest can be computed quite explicitly.

Self-duality is a special instance of the so-called stochastic duality property and it can be viewed as a certain
degree of exact solvability of the model. Stochastic duality is at the core of this thesis, and in the next section, after
introducing it mathematically and showing some of the simplifications that provides, we will show how it can be
used to solve some problems for the SSEP.

2.4 Stochastic duality

Stochastic duality is a probabilistic property that connects two Markov processes, allowing to study one process
via the other one. The connection is established via a function, the duality function, defined on the product of the
state spaces of the two connected Markov processes and which can be viewed as an observable of them. This tool
becomes interesting when one of the two process is “much simpler” than the other one and the duality function is
a useful observable of the original Markov process. Let us be more precise providing the mathematical definition
of stochastic duality.

Definition 2.4.1. Let (ηt)t≥0 and (ξt)t≥0 be two Markov processes with state space X and X̂, and let D : X̂×X → R
be a measurable function. (ηt)t≥0 satisfies stochastic duality with dual process (ξt)t≥0 and duality function D if

Eη
[
D(ξ, ηt)

]
= Êξ

[
D(ξt, η)

]
, ∀t > 0, η ∈ X, ξ ∈ X̂ (2.4.1)

where Eη denotes expectation w.r.t. (ηt)t≥0 starting at η ∈ X and Êξ denotes the expectation w.r.t. (ξt)t≥0 starting at
ξ ∈ X̂.

2.4.1 Examples

Some of the typical simplifications provided by stochastic duality are listed below via several interesting examples.

i) From reflecting to absorbing: this if the first historical example of stochastic duality and it is due to Lévy (see
[130]). Let (Xt)t≥0 be a Brownian motion on [0,∞), reflected at the origin and denote by Ex the expectation
with respect to (Xt)t≥0 starting from x > 0. Let (Yt)t≥0 be a Brownian motion on [0,∞), absorbed at the
origin, and denote by Êy the expectation with respect to (Yt)t≥0 starting from y > 0. These two processes are
in duality relation with respect to the function D(y, x) = 1{x≤y}, i.e.

Ex[D(y, Xt)] = Êy[D(Yt, x)] ∀t ≥ 0, x, y > 0.

ii) From a complicated initial condition to a simpler one: when the two processes connected by the stochastic
duality property are two copies of the same process, we speak of self-duality. The simplification that self-
duality provides lies in the fact that a Markov process starting from a complicated initial condition (think
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of infinitely many particles at time 0) can be studied via a copy of the same process but with a simpler
initial condition (with one or a few particles). The self-duality property is satisfied by the classical example
introduced above: the simple symmetric exclusion process. Indeed, denote by Eη the path-space expectation
of the process (ηt)t≥0 defined via the generator given in (2.3.1) and starting from η ∈ {0, 1}Z

d
. Let D(η, ξ) =∏

x∈Zd 1{η(x)≥ξ(x)}, then the self-duality relation (see, e.g., [156]) reads as

Eη[D(ξ, ηt)] = Eξ[D(ξt, η)] ∀t ≥ 0, η, ξ ∈ {0, 1}Z
d

(2.4.2)

where (ξt)t≥0 is a copy of (ηt)t≥0 and is still referred to as the dual process. The above relation becomes
interesting when dual process (ξt)t≥0 is such that ξ(x) ≤ η(x) for any x ∈ Zd, i.e. ξ is a sub-configuration
of η, and

∑
x∈Zd ξ(x) < ∞, i.e. the total number of particles in the dual process is finite. In particular, when∑

x∈Zd ξ(x) = 1, i.e. there is only one particle in the dual system, we are left with a single random walk which
is not subjected to any interaction rule due to the absence of other particles. Denote by ERW

x the path-space
expectation with respect to the random walk starting from x ∈ Zd evolving according to the generator

LRWg(x) =
∑

y:|x−y|=1

(g(y) − g(x)). (2.4.3)

It then follows that relation (2.4.2) with ξ = δx can be rewritten as

Eη[ηt(x)] = ERW
x [η(Xt)]. (2.4.4)

The above relation tells that the expectation in the SSEP process of the number of particles at time t at the
location x is equal to an expectation with respect to a simple symmetric random walk starting at x of the
number of particles at time 0 in the location of this random walk at time t. Later, we will see how this relation
will be helpful when studying hydrodynamic limits.

iii) From continuous to discrete variables: in some cases, stochastic duality allows to study a process evolving
in the continuum via a process evolving on a discrete, and thus simpler, space. This is the case for the so
called Brownian momentum process (BMP), a system of diffusion processes subjected to a time-dependent
magnetic field, which emerges as a high-temperature limit of an Hamiltonian dynamics. More precisely, let
G = (V, E) be a graph with vertexes in V and edges in E, then the BMP process xt = (xt(1), . . . , xt(|V |)) on
R|V | is defined via the generator

LBMP =
∑

(i, j)∈E

(
x(i)

∂

∂x( j)
− x( j)

∂

∂x(i)

)2

.

This is a model of heat conduction satisfying Fourier’s law. The dual process is the so-called symmetric
inclusion process (SIP) on the space NV , whose generator is given by

LSIP f (ξ) =
∑

(i, j)∈E

 ξ(i)
(

1
2 + ξ( j)

)
( f (ξi, j) − f (ξ))

+ ξ( j)
(

1
2 + ξ(i)

)
( f (ξ j,i) − f (ξ))


where ξ ∈ NV , ξi, j represents the configuration where a particle has jumped from i to j and f : NV → R is a
bounded function. The duality function is given by (see, e.g., [32])

D(x, ξ) =
∏
i∈V

x(i)2ξ(i)

(2ξ(i) − 1)!!
.

iv) From evolutions forward in time to evolutions backward in time: this is a typical simplification provided
by duality which has been often used in models of population genetics and genetics evolution (see, e.g.,
[61]). The simplest example of process satisfying this instance of duality is the following. Let (Yt)t≥0 be the
diffusion process on [0, 1] evolving according to the following stochastic differential equation:

dYt =
√

Yt(1 − Yt) dBt

where (Bt)t≥0 denotes a standard Brownian motion. The process (Yt)t≥0 models the evolution of the fraction
of individuals of type A in a two-type population on large space-time scales. Denote by Ey the expectation
with respect to (Yt)t≥0 starting from y ∈ (0, 1). Let (Nt)t≥0 be the death process on N = {1, 2, . . .} where
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transitions from n to n−1 occur at rate
(

n
2

)
. Denote by Ên the expectation with respect to (Nt)t≥0 starting from

n ∈ N. Then, these two processes are in duality relation with respect to the function D(n, y) = yn, namely

Ey[(Yt)n] = Ên[yNt ] ∀t ≥ 0, y ∈ (0, 1), n ∈ N.

The above expectation on the left hand side can be interpreted as the probability that n individuals from an
infinite population are of type A at time t, thus, as a quantity resulting from an evolution forward in time. On
the other hand, the above expectation on the right hand side can be read as the probability that the ancestors
at time 0 of the n individuals are of type A, thus as a quantity resulting from an evolution backward in time.

As a direct and simple application of this duality relation, we compute the fixation probability in the process
(Yt)t≥0. Indeed, denoting by Py the path-space probability of the process (Yt)t≥0 starting from y ∈ (0, 1), we
have

Py(Y∞ = 1) = Ey[Y∞] = Ey[D(1,Y∞)] = Ê1[D(N∞, y)] = y,

where in the third step we used duality and the last step follows immediately from the definition (Nt)t≥0. In
the above computation we can appreciate how stochastic duality can simplify the derivation of meaningful
results for Markov processes.

v) From boundary driven systems to a system with absorbing boundaries: as explained before, a typical way to
model out–of–equilibrium systems consists in adding to the model reservoirs working at different densities.
It turns out that, for several systems, the model with the reservoirs is dual to the model where the reservoirs
are substituted by absorbing sites, which are much simpler mechanisms. The first example of this instance of
duality goes back to the so–called Kipnis-Marchioro-Presutti (KMP) model (see [107]), a model of energy
redistribution. Turning to particle systems (see, e.g., [32]), we have that the boundary driven process (ηt)t≥0
with generator given in (2.3.2) is dual to the process (ξt)t≥0 on the extended chain VN ∪ {0,N + 1} which
evolves as (ηt)t≥0 on the bulk VN and where the reservoirs are replaced by the absorbing sites {0,N + 1}.
More precisely, the state space of (ξt)t≥0 is X̂ = {0, 1}VN∪{0,N+1} and its generator is given by

L̂ = L̂bulk + L̂L,R , (2.4.5)

where, for all bounded functions f : X̂ → R,

L̂bulk f (ξ) =
∑

{x,y}⊆VN ,
|x−y|=1

 ξ(x) (1 − ξ(y)) ( f (ξx,y) − f (ξ))

+ ξ(y) (1 − ξ(x)) ( f (ξy,x) − f (ξ))

 ,

and

L̂L,R f (ξ) = L̂L f (ξ) + L̂R f (ξ)

= ξ(1)
(

f (ξ1,L) − f (ξ)
)

+ ξ(N)
(

f (ξN,R) − f (ξ)
)
,

with ξx,y = ξ − δx + δy ∈ X̂.

The duality function is given by

D(η, ξ) = θ
ξ(0)
L

∏
x∈VN

1{η(x)≥ξ(x)}

 θξ(N+1)
R ,

where we recall that θL and θR are the reservoirs densities appearing in the generator in (2.3.2).

vi) From a deterministic to a stochastic evolution: in some cases, stochastic duality connects a system evolv-
ing in a deterministic way to a stochastic process. The simplest example of this instance of duality is the
following. Let (ηt)t≥0 with ηt = (ηt(x))x∈Z be the configuration process of a system of simple symmetric
independent random walks on Z with generator given by

L f (η) =
∑
{x,y}⊆Z,
|x−y|=1

 η(x) ( f (ηx,y) − f (η))

+ η(y) ( f (ηy,x) − f (η))

 .
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Consider the deterministic process (ζt)t≥0 on [0,∞)Z which is the solution of the following system of linear
ODE’s:

dζt(x)
dt

=
∑

y:|y−x|=1

(ζt(y) − ζt(x)).

Then, (ηt)t≥0 and (ζt)t≥0 are in duality relation (see, e.g., [35]) with respect to the duality function

D(η, ζ) =
∏
x∈Z

ζ(x)η(x).

vii) Stochastic representation of PDEs solutions: this instance of duality is highly connected to the previous
item and refers to the duality relation between deterministic evolution described via PDEs or SPDEs and
associated evolutions of stochastic processes. The simplest example in this case is an instance of the so-
called Feynman–Kac formula (see, e.g., [63]): i.e., let ρt be the solution of the following Cauchy problem ∂

∂tρt = 1
2 ∆ρt

ρ0 = ρ̄

and let (Bt)t≥0 be a standard Brownian motion, we then have the following relation

ρt(x) = EBM
x [ρ̄(Bt)] (2.4.6)

where EBM
x denotes the expectation of the process (Bt)t≥0 starting from x ∈ R. Here the processes in duality

relation are (ρt)t≥0 and (Bt)t≥0 and the duality function is given by

D(ρ, B) = ρ(B).

2.4.2 General principles to obtain dualities

At this point, we hope the reader is convinced of how stochastic duality can be versatile and useful in the study of
Markov processes. If this is not yet the case, the powerfulness of this technique will become evident while further
reading the manuscript.

However, less satisfactory will be the answers to questions of the type “how can I find a dual process?”or “which
are necessary and sufficient conditions for a Markov process to satisfy stochastic duality?” These are very difficult
and general questions, that will not be addressed in this work, at least not in such a generality. Using the words of
A. Etheridge: “finding dual processes is something of a black art” (see [61, p. 519]). Big progresses in developing
a general theory for stochastic duality have been recently obtained via the so-called algebraic approach to duality
(see, e.g., [83]), which relies on a deep connection between stochastic duality and representations of Lie algebras.

Some general principles that will be used in this thesis regard the relation between duality functions and symmetries
of the Markov process under consideration, i.e. operators S that commute its generator L

SL = LS ,

and intertwinings of two Markov generators L1, L2, i.e. operators Λ such that

L1Λ = ΛL2.

Before informally explaining these general principles to obtain dualities relation, we notice how, for many Markov
processes satisfying stochastic duality, the duality relation can be expressed in terms of generators instead of
expectations as done in Definition 2.4.1. More precisely, let (ηt)t≥0 and (ξt)t≥0 be two Markov processes appearing
in Definition 2.4.1 and denote by L and Ldual their respective generator. Then, assuming that D(ξ, ·) is in the
domain of L for all ξ ∈ X̂ and D(·, η) in the domain of Ldual for all for all η ∈ X, the duality relation (2.4.1) can be
restated as

LD(ξ, ·)(η) = LdualD(·, η)(ξ), ∀η ∈ X, ξ ∈ X̂. (2.4.7)

On the left–hand side the operator L is acting on the η–variable of the duality function, while on the right hand
side Ldual is acting on the ξ–variable.

Below, we list informally some general principles to obtain duality or self-duality functions.
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i) Suppose that (2.4.7) holds and let S be a symmetry of L, then D̂ := S D with S acting on the right entry of
D is also a duality function (see, e.g., [146]). Indeed, we have

LD̂(η, ·)(η) = SLD(η, ·)(η) = SLdualD(·, η)(ξ) = LdualD̂(·, η)(ξ),

where in the first equality we used the definition of D̂ and the fact that S is a symmetry of L, in the second
equality the duality relation with respect to D and in the last equality the fact that Ldual and S act on two
different entries of D.

ii) Let (ηt)t≥0 be a reversible Markov process with reversible measure µ, then

D(η, η′) :=
1
µ(η)

δη,η′

is a self-duality function, called cheap self-duality (see, e.g., [37]). Thus, if S is a symmetry of the generator
of (ηt)t≥0, D̂ := S D is a self-duality function as well.

iii) Let L1,L2 be two Markov generators and let Λ be an intertwiner. If Λ can be written as a kernel operator in
an L2(µ) space where µ is a reversible measure of the process with generator L, i.e.

Λ f (η) =

∫
f (η′)D(η, η′)dµ(η),

then the corresponding kernel is a duality function for the processes with generators L1,L2 (see e.g. Lemma
2.1 in Groenevelt [90]).

After this brief introduction to stochastic duality, in the next section we specify on which instances of duality we
focus in this thesis and we provide some first computations where duality plays a key role.

2.5 From many to few: self-dual systems and their boundary driven counterparts

In this thesis the focus will be on the simplifications provided by items ii) and v) above. These two instances of
stochastic duality allow to provide meaningful information of a system with many particles via a system with a few
particles. The simplification from many to few is at the core of all the results and of the investigations in this thesis.
Moreover, the focus will be on particle systems that are conservative and consistent or such that they are in duality
relation with a conservative and consistent system. By conservative we mean that the total number of particles
is conserved by the dynamics. Consistency is a more delicate property that, in words, means that the action of
removing uniformly at random a particle commutes with the dynamics of the particle system.

In this section we present some classical interacting particle systems satisfying self-duality; additionally, we dis-
cuss their duality functions and stochastic duality of their boundary driven counterparts.

2.5.1 Three self-dual systems: classical and orthogonal dualities

For σ ∈ {−1, 0, 1} consider the Markov process with state space

η := {η(x)}x∈Z ∈ X =

{0, 1}Z
d
, if σ = −1,

NZ
d

0 , if σ = 0, 1,

and with generator given by

L f (η) =
∑
{x,y}⊆Zd ,
|x−y|=1

 η(x)(1 + ση(y)) ( f (ηx,y) − f (η))

+ η(y)(1 + ση(x)) ( f (ηy,x) − f (η))

 . (2.5.1)

For σ = −1 we obtain the previously introduced SSEP, for σ = 0 the system of simple symmetric independent
random walks (SSIRW) and for σ = 1 the so-called simple symmetric inclusion process (SSIP). While for σ = 0
the particles do not interact, for σ = 1 the interaction is opposite with respect to the one described before for the
SSEP: there is no restriction on the total number of particles per site and particles have a higher chance to jump to
sites with more particles. If for σ = −1 the particles are subject to a repulsive interaction, for σ = 1 there is an
attractive type of interaction.
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In order to determine the reversible measures of such systems it is enough to impose the so–called detailed balance
condition, namely look for measures µ on X such that

µ(η)c(η, η′) = µ(η′)c(η′, η)

where c(η, η′) denotes the rate of the transition η→ η′. A direct computation shows that, fixed σ ∈ {−1, 0, 1}, there
exists a one-parameter family of reversible product measures{

µθ =
⊗
x∈Zd

νx,θ : θ ∈ Θ
}

with Θ = [0, 1] if σ = −1 and Θ = [0,∞) if σ ∈ {0, 1}, and with marginals given by

νx,θ = νθ =


Bernoulli (θ), σ = −1,

Poisson (θ), σ = 0,

Negative–Binomial (1, θ
1+θ

), σ = 1.

(2.5.2)

Moreover, the so-called classical self-duality relation holds, i.e., for all configurations η, ξ ∈ X and for all times
t ≥ 0,

Eη[D(ξ, ηt)] = Eξ[D(ξt, η)], (2.5.3)

with {ξ(t) : t ≥ 0} and {η(t) : t ≥ 0} two copies of the process with generator given in (2.5.1) and self-duality
function D : X × X → R given by

D(ξ, η) :=
∏
x∈Zd

d(ξ(x), η(x)), (2.5.4)

with

d(k, n) :=
n!

(n − k)!
1

w(k)
1{k≤n} (2.5.5)

and

w(k) :=

 Γ(1+k)
Γ(1) , σ = 1,

1, σ = −1, 0.
(2.5.6)

The word classical refers to the fact that the duality functions are products of falling factorial polynomials and for
σ = −1 they reduce to the duality functions originally found by Spitzer (see [156]).

There is a second type of self-duality functions for this class of system: the so–called orthogonal dualities. These
are products of polynomials parametrized by the dual configurations and that satisfy the following orthogonality
relation with respect to the reversible measure µθ of the systems under consideration: i.e.∫

Dor
θ (ξ, η)Dor

θ (ξ′, η)dµθ = 0 if ξ , ξ′.

More precisely,

Dor
θ (ξ, η) =

∏
x∈Zd

dor
θ (ξ(x), η(x))

where, for all k, n ∈ N0,

dor
θ (k, n) = (−θ)k ×



2F1

[
−k − n
−1

;
1
θ

]
σ = −1

2F0

[
−k − n
−

;−
1
θ

]
σ = 0

2F1

[
−k − n

1
;−

1
θ

]
σ = 1 .

(2.5.7)
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In other words, these jointly factorized orthogonal dualities consist of products of hypergeometric functions of the
following two types: either

2F0

[
−k − n
−

;−u
]

:=
k∑
`=0

(
k
`

) (
n!

(n − `)!
1{`≤n}

)
u` (2.5.8)

or

2F1

[
−k − n

v
; u

]
:=

k∑
`=0

(
k
`

) (
Γ(v)

Γ(v + `)
n!

(n − `)!
1{`≤n}

)
u` , (2.5.9)

with k, n ∈ N0 and u, v ∈ R. The orthogonality relation for the single–site duality function then reads as follows for
all k, ` ∈ N0,

∞∑
n=0

dor
θ (k, n) dor

θ (`, n) νθ(n) = 1{k=`}‖dθ(k, ·)‖2L2(νθ)
.

More specifically, these orthogonal single-site self-duality functions are Kravchuk polynomials for SEP (σ = −1),
Charlier polynomials for IRW (σ = 0) and Meixner polynomials for SIP (σ = 1) (see e.g. [78]). Because in this
setting there exists a one-parameter family of stationary product measures for each of the three particle systems,
this corresponds to the existence of a one-parameter family of orthogonal duality functions.

2.5.2 The boundary driven counterparts

When turning to the boundary driven counterparts of the SSEP, SIRW and SSIP, i.e. the IPS on the finite chain
VN := {1, . . . ,N} coupled with a left and a right reservoir, the state space is

η := {η(x)}x∈Z ∈ X =

{0, 1}VN , if σ = −1,
NVN

0 , if σ = 0, 1,

and the generator is

Lopen f (η) = Lbulk f (η) +LL,R f (η) . (2.5.10)

The generator Lbulk describes the bulk part of the dynamics and is given by

Lbulk f (η) =
∑

{x,y}⊆VN ,
|x−y|=1

 η(x)(1 + ση(y)) ( f (ηx,y) − f (η))

+ η(y)(1 + ση(x)) ( f (ηy,x) − f (η))

 .

and the boundary part of the dynamics is described by the generator LL,R as follows:

LL,R f (η) = LL f (η) +LR f (η) , (2.5.11)

with

LL f (η) = η(1) (1 + σθL) ( f (η1,−) − f (η))

+ θL (1 + ση(1)) ( f (η1,+) − f (η)) (2.5.12)

and

LR f (η) = η(N) (1 + σθR)
(

f (ηN,−) − f (η)
)

+ θR(1 + ση(N))
(

f (ηN,+) − f (η)
)
, (2.5.13)

where ηx,− ∈ X, resp. ηx,+ ∈ X, denotes the configuration obtained from η by removing, resp. adding, a particle
from, resp. to, site x ∈ V . In the above dynamics, creation and annihilation of particles occurs at sites x = 1 and
x = N due to the interaction with a reservoir.
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For each choice of σ ∈ {−1, 0, 1}, it has been proved in [32] that a particle system with purely absorbing reservoirs
is dual to the corresponding system in contact with reservoirs. In the dual systems, particles hop on the extended
chain VN ∪ {L,R} following the same bulk dynamics as the particle systems with generators in (2.5.10) but having
{L,R} as absorbing sites.

More in detail, {ξt : t ≥ 0} denotes such particle systems having

X̂ = X × N{L,R}0 (2.5.14)

as configuration space and infinitesimal generator L̂ given by

L̂ f (ξ) = L̂bulk f (ξ) + L̂L,R f (ξ) , (2.5.15)

where, for all bounded functions f : X̂ → R,

L̂bulk f (ξ) =
∑

{x,y}⊆VN ,
|x−y|=1

 ξ(x) (1 + σξ(y)) ( f (ξx,y) − f (ξ))

+ ξ(y) (1 + σξ(x)) ( f (ξy,x) − f (ξ))

 ,

and

L̂L,R f (ξ) = L̂L f (ξ) + L̂R f (ξ)

= ξ(1)
(

f (ξ1,L) − f (ξ)
)

+ ξ(N)
(

f (ξN,R) − f (ξ)
)
,

with, for all x, y ∈ V ∪ {L,R}, ξx,y = ξ − δx + δy ∈ X̂.

The stochastic duality relation between the processes with generators given in (2.5.10) and (2.5.15) hold with the
duality function Dc` : X̂ × X → R defined as follows: for all configurations η ∈ X and ξ ∈ X̂,

Dc`(ξ, η) = dc`
L (ξ(L)) ×

∏
x∈V

dc`(ξ(x), η(x))

 × dc`
R (ξ(R)) ,

where, for all k, n ∈ N0, dc`(k, n) is given in (2.5.5) and

dc`
L (k) = (θL)k and dc`

R (k) = (θR)k . (2.5.16)

After having recalled these known duality results that constitute the starting point for the research contained in
this thesis, we provide in the next two subsections some applications of these results. More precisely, we first use
self-duality for the closed systems with generator given in (2.5.1) to study the expectation of the empirical density
field. Second, we use the duality result for the boundary driven system with generator given in (2.5.10) to compute
the stationary profile.

2.5.3 Self-duality for closed systems: hydrodynamics

In this section we use stochastic duality to study macroscopic fields via the scaling limit of dual particles. More
precisely we focus on the rescaled empirical density field XN

t defined in (2.2.1) and associated to the particle
systems with generator given in (2.5.1). Stochastic duality with one single dual particle, a random walk, implies
that the hydrodynamic limit can be determined by the scaling limit of such random walk.

For any σ ∈ {−1, 0, 1}, as already mentioned before for the SSEP, if we consider an initial configuration with one
particle only, i.e. η ∈ X such that

∑
x∈Zd η(x) = 1 we are left with a random walk with generator LRW given in

(2.4.3). It is well known the so-called invariance principle:

Let (Xt)t≥0 be the random walk with generator given in (2.4.3) and starting from the origin. Let (Bt)t≥0
be a standard Brownian motion. Then(

1
N

XN2t

)
t≥0
→ (Bt)t≥0 as n→ ∞

where, here,→ denotes the weak-convergence in path space.
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Notice that the invariance principle implies that for any bounded and continuous function f : Rd → R, we have

lim
n→∞
ERW

[
f
(

1
N

XN2t

)]
= EBM[ f (Bt)] , ∀t ≥ 0.

Moreover, recall that for a continuous and bounded function ρ̄ : Rd → R+ we have the stochastic representation of
the solution of the Cauchy problem  ∂

∂tρt = 1
2 ∆ρt

ρ0 = ρ̄
(2.5.17)

given in (2.4.6).

Before stating the result, we need to assume that the initial distribution of the particle system converges to the
macroscopic profile ρ̄.

Definition 2.5.1 (Consistency of the initial conditions). We say that a sequence of probabilities {νN}N∈N on X is
consistent to a continuous macroscopic profile ρ̄ : Rd → R if the following convergence

νN


η ∈ X :

∣∣∣∣∣∣∣ 1
Nd

∑
x∈Zd

G( x
N )η(x) −

∫
Rd

G(u) ρ̄(u) du

∣∣∣∣∣∣∣ > δ

 −→N→∞

0 (2.5.18)

holds for all G ∈ S (Rd) and δ > 0.

S (Rd) denotes the space of Schwartz functions, i.e., C∞ functions of which all derivatives converge to zero at
infinity faster than any polynomial. S (Rd), endowed with a suitable topology, is chosen to be the space of test
function for the sequence empirical density fields (XN)N which indeed are viewed as elements in S ′(Rd), the set of
Schwartz distributions. For a probability measure ν on X, we denote by Eν the expectation for the process (ηt)t≥0
with generator given in (2.5.1), initially distributed according to ν.

Proposition 2.5.2. Let ρ̄ : Rd → R+ a bounded and continuous function, such that supx∈Rd ρ(x) ≤ 1 for σ = −1.
Let (νN)N∈N be a sequence of probability measures on X such that

∫
X η(x)dνN(η) = ρ̄( x

N ) for any x ∈ Zd and N ∈ N.
Let (XN)N∈N be the sequence of rescaled density fields associated to the IPS with generator given in (2.5.1) and
σ ∈ {−1, 0, 1}. Then

lim
N→∞
EνN [XN

t (G)] =

∫
Rd
ρt(x)G(x)dx

for any G ∈ S (Rd), t ≥ 0, where (ρt)t≥0 is the unique continuous and bounded solution of (2.5.17).

Proof. For all σ ∈ {−1, 0, 1}, the self-duality relation in (2.5.3) when the dual initial state ξ has one-particle only,
i.e.

∑
x∈Zd ξ(x) = 1, rewrites as in (2.4.4), i.e.

Eη[ηt(x)] = ERW
x [η(Xt)].

Notice that sequence νN is a consistent initial condition, and using stochastic duality we obtain

EνN [ηN2t(x)] =

∫
X

Eη[ηtN2 (x)]dνN(η) =

∫
X
ERW

x [η(XN2t)]dνN(η) = ERW
x

[
ρ̄

(
1
N

XN2t

)]
and from the translation invariance of the random walk we have

EνN [ηN2t(x)] = ERW
0

[
ρ̄

(
1
N

XN2t +
x
N

)]
.

The invariance principle then implies

lim
N→∞
EνN [XN

t (G)] = lim
N→∞

1
Nd

∑
x∈Zd

G
( x

N

)
ERW

0

[
ρ̄

(
1
N

XN2t +
x
N

)]
= lim

N→∞

1
Nd

∑
x∈Zd

G
( x

N

)
EBM

0

[
ρ̄
(
Bt +

x
N

)]
= lim

N→∞

1
Nd

∑
x∈Zd

G
( x

N

)
ρt

( x
N

)
=

∫
Rd

G(x)ρt(x)dx

concluding the proof, where we used (2.4.6) in the third equality. �
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Notice that in the proof we used the translation invariance of the law of the walk. When the transition rates of the
random walk are inhomogeneous, and more precisely space dependent, the translation invariance is lost and the
invariance principle from the origin will not be enough to prove the convergence of the expectation of the empirical
density field. This issue is discussed in detail in the next chapter of the thesis.

2.5.4 Duality for boundary driven systems: non-equilibrium steady state and stationary profile

In this section we provide a simple application of duality to the systems with generator given in (2.5.10).

For these systems it can be proved that, for all θL, θR > 0, i.e. also out–of–equilibrium, there exists a unique
stationary state µstat. However, unless σ = 0, or the equilibrium case θL = θR for σ ∈ {−1, 1}, µstat does not take an
easy and product form and, for σ = 1, µstat is not explicitly known in the literature as in the case σ = 1 for which
a matrix formulation for µstat is available (see, e.g., [55]). However, stochastic duality with one dual absorbed
particle provides in a simple way the stationary profile, namely the quantities

θN(x) := Eµstat [η(x)] (2.5.19)

for all x ∈ {1, . . . ,N}. Here, the sub-index N in θN(x) denotes the size of the chain.

Recall indeed the generator of the dual process given in (2.5.15). When the initial dual configuration ξ contains
only one particle, i.e.

∑
x∈{0,...,N+1} ξ(x) = 1 the process (ξt)t≥0 reduces to a purely absorbed random walk (Xabs

t )t≥0
evolving as a simple symmetric random walk on VN and absorbed at {0,N + 1}. The duality relation between the
particle systems described by the generators in (2.5.10) for σ ∈ {−1, 0, 1} and (Xabs

t )t≥0 then reads

Eη[ηt(x)] = ERWabs
x

[
θ

1{0}(Xabs
t )

L θ
1{N+1}(Xabs

t )
R 1{0,N+1}(Xabs

t ) + η(Xabs
t )1VN (Xabs

t )
]
, (2.5.20)

where ERWabs
x [·] denotes the expectation of the process (Xabs

t )t≥0 starting from x.

Proposition 2.5.3. The stationary profile in the non–equilibrium steady state (see (2.5.19)) is given by

θN(x) = θR +

(
1 −

x
N + 1

)
(θL − θR).

Proof. Recalling the definition of θN(x), by the duality relation (2.5.20) and the uniqueness of the steady state µstat,
we have

θN(x) = Eµstat [η(x)] =

∫
lim
t→∞
Eη[ηt(x)]dµstat(η)

=

∫
lim
t→∞
ERWabs

x

[
θ

1{0}(Xabs
t )

L θ
1{N+1}(Xabs

t )
R 1{0,N+1}(Xabs

t ) + η(Xabs
t )1VN (Xabs

t )
]

dµstat(η)

=

∫
ERWabs

x

[
θ

1{0}(Xabs
∞ )

L θ
1{N+1}(Xabs

∞ )
R

]
dµstat(η)

and since the expression inside the integral above does not depend on the integration variable η, we obtain

θN(x) = ERWabs
x

[
θ

1{0}(Xabs
∞ )

L θ
1{N+1}(Xabs

∞ )
R

]
= θL p̂∞(x, 0) + θR(1 − p̂∞(x, 0))

where p̂∞(x, 0) is the probability that the random walk (Xabs
t )t≥0 starting from x is absorbed at 0. The absorption

probabilities ( p̂∞(x, 0))x∈VN satisfy
LRWabs p̂∞(·, 0)(x) = 0,

where LRWabs denotes the generator of (Xabs
t )t≥0, i.e. x → p̂∞(x, 0) is an harmonic function for LRWabs. This

provides the following linear system of N + 2 equations
p̂∞(0, 0) = 1
p̂∞(x + 1, 0) − 2p̂∞(x, 0) − p̂∞(x − 1, 0) = 0, x ∈ VN

p̂∞(1, 0) = 0
(2.5.21)

which is solved by

p̂∞(x, 0) =

(
1 −

x
N + 1

)
concluding the proof. �
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As a direct consequence of the computation we just performed, we can investigate the behavior of the stationary
current in the boundary driven particle systems.

For x ∈ VN , let us denote by c(η, ηx,x+1) the rate of the transition from the configuration η to the configuration ηx,x+1

where a particle, if any, has jumped from x to x + 1. The instantaneous current on the edge {x, x + 1} at time t is
then defined as

Jx,x+1(t) := c(ηt, η
x,x+1
t ) − c(ηt, η

x+1,x
t ).

For the particle systems under consideration, we have

JN
x,x+1(t) = ηt(x)(1 + σηt(x + 1)) − ηt(x + 1)(1 + σηt(x))

= ηt(x) − ηt(x + 1),

i.e., the instantaneous current on the edge {x, x + 1} is equal to the difference of the occupation variables at these
sites, exhibiting the so-called gradient behavior. If then we define the stationary current as JN,stat

x,x+1 := Eµstat [JN
x,x+1(t)],

we obtain, in view of Proposition 2.5.3,

JN,stat
x,x+1 = θN(x) − θN(x + 1)

= −
1
N

(θR − θL),

i.e., the stationary current is constant in space and proportional to the difference of the reservoirs’ densities. The
Fick’s law is thus satisfied at the microscopic scale. Moreover, this is the case also at the macroscopic scale. Indeed
if we define the macroscopic stationary current as

J(u) := lim
N→∞

NJN(buNc, buNc + 1), u ∈ (0, 1)

and the macroscopic stationary profile as

ρ(u) := lim
N→∞

ρN(buNc), u ∈ (0, 1)

we obtain J(u) = θL − θR and ρ(u) = θR + (1 − u)θL, leading to the standard Fick’s relation

J(u) = −∇ρ(u).
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Chapter 3

Research problems and outline of the
thesis

In this thesis, two general problems will be addressed:

i) Extending the self-duality and duality results for spatial inhomogeneous versions of the processes described
by the generator in (2.5.1) and consequently applying these duality relations to rigorously prove physically
meaningful properties of inhomogeneous IPS.

ii) Generalize the notion of self-duality to systems of particles evolving in the continuum and more specifically
on Rd.

In Section 3.1 we introduce the topic of inhomogeneous IPS, while in Section 3.2 we introduce a new formulation
of self-duality that makes sense in the continuum.

3.1 Inhomogeneous closed and open IPS

In this thesis we consider two cases of space-inhomogeneous evolutions: processes in random environment and
processes in a multi-layer system.

3.1.1 Random environments and stochastic homogenizations

In many cases, the medium where the particles evolve is microscopically irregular due to the presence of impurities
and defects. A random environment is an external source of randomness added to the evolution of particles,
aimed at capturing the presence of impurities and defects in the material where the evolution takes place. A
motivation to introduce this extra stochasticity could be the following. In many situations the presence of impurities
is unavoidable and an essential feature of nature. However, in experiments, it is rarely the case that such impurities
can be measured and mapped in the system. Such measurements would be typically invasive and most probably
would affect the set-up. Moreover, whenever an experiment has to be repeated in several samples, mapping every
time the impurities would be costly and unfeasible. Each sample would have its own impurities located in a
particular way. It is then natural to model such impurities at random (as a random environment), thus treating
the observed (stochastic) dynamics as a statistical realization of an ensemble where the local properties of the
dynamics are sampled according to an external source of randomness modeled by a probability measure P. One
then investigates under which conditions on P the presence of random impurities homogenize when passing from
the micro to the macro picture of the evolution. In other words, even if the microscopic picture may reveal many
irregularities, in many cases those are invisible at the macroscopic scale: space inhomogeneous microscopic motion
of particles may rescale to a homogeneous macroscopic diffusion whose diffusion characteristic, the diffusion
matrix, depends only on the law P and not on the specific realization of the environment.

The exclusion process with random conductances One of the most studied random environments is obtained
by assigning random conductances ω = {ω{x,y}, |x − y| = 1} to the edges of Zd. We then say that the jump rate of a
particle from x in Zd to a nearest neighboring site y is given by ω{x,y}. In the context of the most studied IPS, the

23
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symmetric exclusion process, we thus obtain the following generator

Lω f (η) =
∑
{x,y}⊆Zd ,
|x−y|=1

ω{x,y}

 η(x)(1 − η(y)) ( f (ηx,y) − f (η))

+ η(y)(1 − η(x)) ( f (ηy,x) − f (η))

 , (3.1.1)

where we remark that the weights are random ω{x,y} and sampled according to some probability P. We denote the
exclusion process with random conductance with generator given in (3.1.1) by SEP(ω). In order to have homoge-
nization when studying the hydrodynamic limit of the SEP(ω) in random environment, some sort of averaging has
to occur for the random conductances: namely, the ergodic theorem has to play a role when rescaling the system.
The conditions on P are then:

i) P is invariant and ergodic under translation in Zd.

Moreover, in order to guarantee non-degeneracy of the limiting diffusion, one assumes also uniform ellipticity for
the random conductances: i.e.

ii) there exists C, c > 0 such that P(c ≤ ω{x,y} ≤ C) = 1 for any |x − y| = 1.

The quenched invariance principle for the random conductance model In order to understand how the above
assumptions ensure stochastic homogenization, let us consider a single continuous-time random walk in the same
random environment. For simplicity let us stick to d = 1, where all the quantities of interest can be computed
explicitly. This paragraph serves as an illustration of the ideas behind the stochastic homogenization result we are
going to study and is written for the sake of explanation. However, when d > 1, the situation is more complicated
and analogous explicit expressions are not available.

Let use denote by Xω = {Xω
t , t ≥ 0}, abbreviated by RW(ω), the Markov process starting with law Pωz , z ∈ Z

denoting the starting point, on D([0,∞),R) (and corresponding expectation Eω
z ) and evolving on Z according to

the generator given by
Aω f (x) :=

∑
y∈Z
|y−x|=1

ωxy ( f (y) − f (x)) , x ∈ Z , (3.1.2)

where f : Z → R is a bounded function. Such a model is called random conductance model and is very well
studied in the literature (see, e.g., [23]). Under the above conditions we have the following result (see, e.g., [23]).

Proposition 3.1.1 (Quenched invariance principle). For P–a.e. ω, under Pω0 , { 1
N Xω

tN2 , t ≥ 0} convergences in law
to a Brownian motion with diffusion constant given by

2D(P) = 2EP
[
1/ω0,1

]−1 .

Proof. Let us define

ψ(ω, x) :=


D(P)

∑x−1
i=0

1
ω{i,i+1}

, x > 0

0, x = 0
D(P)

∑−1
i=x

1
ω{i,i+1}

, x < 0.

It is easy to check that x→ ψ(ω, x) is a harmonic function for Aω. We thus have the following decomposition

Xω
t = ψ(ω, Xω

t ) + X(ω, Xω
t ),

where ψ(ω, Xω
t ) is a martingale w.r.t. the natural filtration of Xω. By the martingale central limit theorem, (see, e.g.

[92]), and ergodicity of P, it follows that P-a.s., under Pω0 , 1
Nψ(ω, Xω

tN2 ) converges in law to a Brownian motion
with limiting diffusion constant given by

D = lim
t→∞

1
t

∫
Eω

0 [ψ2(ω, Xω
t )]P(dω) = lim

n→∞

1
nδ

∫
Eω

0 [ψ2(ω, Xω
nδ)]P(dω).

The above limit can be computed in the following way. First notice that

∫
Eω

0 [ψ2(ω, Xω
nδ)]P(dω) =

∫
Eω

0


n−1∑

k=0

ψ(ω, Xω
(k+1)δ) − ψ(ω, Xω

(k)δ)


2P(dω)
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= n
∫

Eω
0 [ψ2(ω, Xω

δ )]P(dω)

where the last step follows by stationarity and orthogonality of the increments. Thus, for any δ > 0,

D =
1
δ

∫
Eω

0 [ψ2(ω, Xω
δ )]P(dω)

and in particular

D = lim
δ→0

1
δ

∫
Eω

0 [ψ2(ω, Xω
δ )]P(dω) =

∫
Aωψ2(ω, ·)(x)P(dω)

=

∫ (
ω{0,1}ψ

2(ω, 1) + ω{0,−1}ψ
2(ω,−1)

)
P(dω) = 2EP

[
1/ω0,1

]−1
= 2D(P).

To conclude the proof, it remains to show that for P-a.e. ω, under Pω0 ,

lim
N→∞

1
N
X(ω, Xω

tN2 ) = 0

which, in turns, follows from
X(ω, x) = o(|x|), (3.1.3)

i.e. the sub-linearity of the corrector X. Indeed, by the central limit theorem for martingales we have that
ψ(ω, Xω

tN2 ) = O(N) and if (3.1.3) holds, then Xω
tN2 = O(N) which in turn implies that X(ω, Xω

tN2 ) = o(N). But
(3.1.3) follows directly from the ergodic theorem, indeed, for P-a.e. ω

lim
x→+∞

x − ψ(ω, x)
x

= lim
x→+∞

D(P)

 1
D(P)

−
1
x

x−1∑
i=0

1
ω{x,x+1}

 = 0

and similarly for x→ −∞. �

The quenched hydrodynamic limit Let us now turn to the stochastic homogenization problem for the SEP(ω).
The key observation is that self-duality still holds for this model with the same duality functions given in (5.3.3).

Proposition 3.1.2 (Self-duality with one dual particle). RW(ω) and SEP(ω) are in duality relation w.r.t. the
function

D(η, x) = η(x).

The computation is simple and instructive.

Proof. It is enough to check that for any η ∈ {0, 1}Z
d

and x ∈ Zd

LωD(·, x)(η) = AωD(η, ·)(x).

We have

LωD(·, x)(η) =
∑
{z,y}⊆Zd ,
|z−y|=1

ω{z,y}

 η(z)(1 − η(y)) (D(ηz,y, x) − D(η, x))

+ η(y)(1 − η(z)) (D(ηy,z, x) − D(η, x))

 ,

=
∑
y∈Zd ,
|x−y|=1

ω{x,y}

 η(x)(1 − η(y)) (η(x) − 1 − η(x))

+ η(y)(1 − η(x)) (η(x) + 1 − η(x))

 ,

=
∑
y∈Zd ,
|x−y|=1

ω{x,y}(η(y) − η(x)) =
∑
y∈Zd ,
|x−y|=1

ω{x,y}(D(η, y) − D(η, x)) = AωD(η, ·)(x)

where in the first line we used the definition of Lω, in the second and in the fourth equality the definition of the
duality function and in the last equality the definition of Aω. Notice that all the terms in the sum with z , x give a
contribute equal to zero being D(ηz,y, x) = D(η, x). The proof is concluded. �
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The following homogenization result for the one-dimensional SEP (ω) was proved in [139].

Proposition 3.1.3 (See [139], Theorem 3). Let ρ̄ : R → R+ a bounded and continuous function, such that
supx∈R ρ(x) ≤ 1. Let (νN)N∈N be a sequence of probability measures on X such that

∫
X η(x)dνN(η) = ρ̄( x

N ) for
any x ∈ Z and N ∈ N. Let (XN)N∈N be the sequence of rescaled density fields associated to the SEP(ω). Then, for
P–a.e. environment ω

lim
N→∞
EνN [XN

t (G)] =

∫
R

ρt(x)G(x)dx

for any G ∈ C∞c (R), t ≥ 0, where (ρt)t≥0 is the unique continuous and bounded solution of ∂
∂tρt = 2D(P)∆ρt

ρ0 = ρ̄
(3.1.4)

with D(P) = 1
EP[1/ω{0,1}]

.

The idea of the proof is to exploit the duality relation given in Proposition (3.1.2) to transfer the homogenization
problem of the SEP(ω) to an homogenization problem for RW(ω). By following the same computations as in the
proof of Proposition (2.5.2), we obtain that

EνN [XN
t (G)] =

1
Nd

∑
x∈Zd

G
( x

N

)
Eω

x

[
ρ̄

(
1
N

Xω
tN2

)]
=

1
Nd

∑
x∈Zd

Eω
x

[
G

(
1
N

Xω
tN2

)]
ρ̄
( x

N

)
where in the last step we used reversibility of RW(ω) w.r.t. the counting measure. Denoting by EBM(D(P))

x the
expectation w.r.t. the Brownian motion starting from x and with diffusion constant 2D(P), one is thus left with
proving that for P-a.e. ω the following L1-convergence

1
Nd

∑
x∈Zd

∣∣∣∣∣Eω
x

[
G

(
Xω

tN2

N

)]
− EBM(D(P))

x
N

[G(Bt)]
∣∣∣∣∣ −→N→∞

0 , t ≥ 0 , (3.1.5)

holds for all G : R → R continuous with compact support. Notice, however, that the stochastic homogenization
result given in Proposition 3.1.1 is not in general enough to prove the convergence in (3.1.5), since a simultaneous
control over all the starting points of the random walks is needed. In [139], (3.1.5) is achieved by proving the
convergence of the associated generators of RW(ω) and of the Brownian motion with diffusivity given by 2D(P).
However, this strategy works only in the one dimensional setting.

One of the first aims of this thesis is to extend these ideas to a different type of physically relevant random envi-
ronment for the exclusion process and to make the connection between the homogenization result for one single
particle to the homogenization result for the IPS rigorous (and in any dimension d ≥ 1), strengthening the quenched
invariance principle. Moreover, we are interested in proving a path-space hydrodynamic limit, i.e. the convergence
of the density field random trajectories, a stronger convergence than the convergence of the expectation of the
density field at fixed times.

Boundary driven systems in a quenched environment When moving to the study of inhomogeneous systems
out–of–equilibrium, it is natural to consider boundary driven IPS in random environment. More specifically, the
open SEP with random conductances is the Markov process with state space given by Xopen = {0, 1}VN with
VN = {1, . . . ,N} and the generator given by

L
open
ω f (η) = Lbulk

ω f (η) +LL,R
ω f (η) . (3.1.6)

The bulk generator Lbulk
ω is defined as

Lbulk
ω f (η) =

∑
{x,y}⊆VN ,
|x−y|=1

ω{x,y}

 η(x)(1 − η(y)) ( f (ηx,y) − f (η))

+ η(y)(1 − η(x)) ( f (ηy,x) − f (η))

 .
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The boundary part of the dynamics is described by the generator LL,R
ω as follows:

LL,R
ω f (η) = ω{L,1}LL f (η) + ω{N,R}LR f (η) , (3.1.7)

where LL and LR are given, respectively, in (2.5.12) and in (2.5.13). We are then interested in understanding and
studying properties of the non-equilibrium steady state and homogenizations effects for relevant quantities such
as the current and microscopic profile. Even if the matrix formulation (see, e.g., [57]) giving the explicit steady
correlations for the homogeneous boundary driven SEP may still work in presence of the conductances, it certainly
breaks down when allowing more than one particle per site. We are thus interested in investigating universal
properties on the out–of–equilibrium steady states correlations in the most general quenched random environment
setting which still preserve the validity of duality relations of the type given in Section (2.5.2).

3.1.2 Multi-diffusivity

The second space-inhomogeneous evolution that we consider refers to scenarios in which the inhomogeneities still
have some degree of geometric regularity. More specifically, we focus on motion of particles in layered materials,
where each layer has its own conductivity properties. The goal is then to understand which type of dynamics is
followed by the total density of particles in such materials, which is expected to violate the Fick’s law.

Typical physical examples of evolution in multi-porous media are the following:

i) diffusion of thermal energy or chemical diffusion of dissolved solutes in layered biological materials (such
as animals skin, see, e.g. [135]);

ii) diffusion in polycrystal materials (see, e.g., [159]);

iii) dislocation-pipe diffusion (see, e.g., [59]).

The typical macroscopic model for diffusion is given by the following PDE

∂ρ

∂t
= D∆ρ,

where ρ is the concentration and D > 0 is the diffusion coefficient. As already mentioned, this model is based
on the Fick’s law of transport and it is applicable to homogeneous, isotropic and isothermal media, with a single
family of diffusion paths. During the second half of the past century, physicists established experimentally the
limitations of Fick’s law for several situations such as the ones described in the list above. A single macroscopic
diffusivity is not realistic in these examples and averaging the distinct microscopic properties of the media in a
unique macroscopic diffusivity D may lead to very rough estimates not useful in applications. To overcome the
limitations of Fick’s law, during the 70s some new models have been proposed. A very simple one, that turned out
to be very successful in applications and well matching empirical data, is the so-called double diffusivity model
(D-D model).

The D-D model (see, e.g., [3]), is a model for materials or environments with two distinct diffusivity properties,
thus with two families of diffusion paths. Let ρ0 and ρ1 be the concentrations of each family of paths and denote
by J0 and J1 the corresponding fluxes. For each single family, we still impose the Fick’s law, namely

J0 = −D0∇ρ0

and
J1 = −D1∇ρ1,

where D0,D1 > 0 are the two distinct diffusion coefficients of the material. The conservation of mass of each
single diffusion path gives

∂ρ0

∂t
+ ∇ · J0 = q

and
∂ρ1

∂t
+ ∇ · J1 = −q,

where the function q = q(ρ0, ρ1) models the mass transfer between the two diffusivity paths. The first expression
that has been used and studied for q is given by

q = −k0ρ0 − k1ρ1
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where k0 > 0 and k1 < 0.

Putting everything together, we obtain the following system of coupled PDEs, called indeed the D-D model: ∂ρ0
∂t = D0∆ρ0 − k0ρ0 − k1ρ1
∂ρ1
∂t = D1∆ρ0 + k0ρ0 + k1ρ1.

As one can immediately see, the total concentration

ρ = ρ0 + ρ1

does not satisfy a standard diffusion equation with a diffusion constant D = f (D1,D2) for some function f . By
simple computations, one finds that ρ satisfies

∂2ρ

∂t
+ (k0 − k1)

∂ρ

∂t
= (k0D1 − k1D0)∆ρ + (D0 + D1)

∂∆ρ

∂t
− D0D1∆(∆ρ).

Even though the literature for this macroscopic model is wide and touches different fields, such as material science
and financial mathematics, the D-D has not been derived from a microscopic model of interacting particles. Study-
ing multi–layer IPS which are the natural microscopic counterpart of the D-D model and exploring the violation
of the Fick’s law of such IPS out–of–equilibrium are some of the goals of this thesis. Additional motivations to
study multi–layer IPS comes from population genetics, where individuals can be either active or dormant (see,
e.g., [124]), and from models of interacting active random walks with an internal state that changes randomly (e.g.
activity, internal energy) and that determines their diffusion rate and or drift (see, e.g. [114]).

3.2 Duality results for systems of particles evolving in the continuum

As already mentioned, the second main goal of this thesis is to generalize the notion of stochastic (self-)duality
beyond Zd. However, the known classical and orthogonal self-duality functions previously introduced are given
by products over lattice sites of polynomials in the number of particles at each site. This formulation of duality
clearly does not make sense in very natural settings such as systems of interacting Brownian motions or more
general interacting Markov processes in the continuum. Even for one of the simplest examples such as independent
Brownian motions, it is not immediately clear how to formulate and obtain self-duality. The naive approach of
using the scaling limit of self-dualities of independent random walkers does not lead to useful results. However, it
is very natural to expect that all the classical discrete systems with self-duality properties have counterparts in the
continuum.

Thus, we need to develop a more general and abstract approach to self-duality that can work on very general state
spaces. At first, one has to find a language in which the basic duality properties of discrete systems, including the
orthogonal dualities, can be restated in such a way that they make sense in the continuum. Secondly, one has to
understand under which assumptions these generalized relations are valid, hoping to include many more systems
in the class of self-dual Markov processes. These two steps are part of the contributions of this thesis.

In Section 3.2.1 we revisit self-duality for independent random walkers and link it to factorial moment measures of
point processes. This allows us to rewrite the self-duality relation in such a way that it makes sense for independent
Markov processes on general state spaces, provided a symmetry condition is fulfilled.

3.2.1 Self-Duality for Independent Random Walkers on a Finite Set: Revisited

The section “interpolates” between the usual notation in the IPS literature and that for point processes. We start
by considering a system of independent random walks on a finite set, for which duality and self-duality properties
are well-known (see, e.g., [84, 47]). First, we revisit these duality results in the language of labelled particles.
This will provide us with a notational framework in which these known duality relations are cast in a language that
makes sense in a much more general setting, namely independent Markov processes on a general state space. In
this way, the reader is prepared (via a convenient and easy case) to the general framework that we build in Chapter
8.

Let E be a finite set and (ηt)t≥0, ηt = (ηt(x))x∈E , be the Markov process on NE
0 generated by

L f (η) =
∑
x,y∈E

η(x)c(x, y)( f (ηx,y) − f (η))
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for f : E → R and c : E × E → R+ a symmetric function (c(x, x) = 0 for any x ∈ E without loss of generality).
We denote by pt(x, y) the transition probability of a single random walk, which is a symmetric function due to the
symmetry of the rates c : E × E → R+.

Recalling the definition of the classical self-duality functions given in (2.5.4), the self-duality relation for the
system of independent walkers then reads as follows

Eη (D(ξ, ηt)) = Eξ (D(ξt, η)) (3.2.1)

for all η, ξ ∈ NE
0 and t ≥ 0, where Eη denotes the expectation in the configuration process started from η.

In the next paragraph, by a change of notation, we reformulate the relation (3.2.1) with one dual particle (i.e.,
ξ = δx) in such a way that it is meaningful in contexts more general than random walks on a finite set, namely also
in the continuum. Thus we get rid of the configuration process notation.

A new framework for self-duality Let X := (X0(1), . . . ,X0(N)) be an arbitrary labelling of the initial positions
of the particles which are in total N < ∞. We then denote Xt the positions of these particles at time t ≥ 0, with
Xt(i) the position of the i-th particle at time t ≥ 0. The correspondence between the labeled system (Xt)t≥0 and the
previously introduced configuration process (ηt)t≥0 is given by ηt(x) =

∑N
i=1 1{Xt(i)=x}.

We describe the system also via the point configuration
∑N

i=1 δXt(i). Notice that in this discrete setting, this is
simply a change of notation for the configuration: indeed, for x ∈ E, we have

(∑N
i=1 δXt(i)

)
({x}) = ηt(x). For the

generalization of self-duality in Chapter 8, it is convenient to identify ηt with the point configuration

ηt =

N∑
i=1

δXt(i).

This is the same as identifying a measure η on the finite E with the vector η({x}), x ∈ E. The advantage of this
change of notation is that it generalizes to arbitrary measurable state spaces E, and it also allows to produce a
simple but insightful proof of the self-duality (3.2.1).

Let us start with self-duality with a single dual particle, i.e. (2.5.4) with dual configuration ξ = δx, which reads as

Eη(ηt({x})) = EIRW
x (η0({Yt})) =

∑
y∈E

pt(x, y)η({y}),

where EIRW
x denotes the expectation with respect to random walk with transition rates c(x, y) starting at x ∈ E.

Let us denote by EX(ηt) the measure defined as EX (ηt) (A) := EX (ηt(A)) for A ⊂ E, where EX denotes the
expectation when starting Xt(1), . . . ,Xt(N) at X. We then have

EX (ηt) = EX

 N∑
i=1

δXt(i)

 =

N∑
i=1

EX(δXt(i)) =

N∑
i=1

EIRW
X0(i)(δXt(i)) (3.2.2)

where in the third equality in (3.2.2) we used that the particles are independent, i.e., the distribution of the posi-
tion of the i-th particle is only depending on its initial position X0(i) and not on the other particles. Using that
EIRW
X0(i)(δXt(i)) =

∑
y∈E pt(X0(i), y)δy, we can rewrite (3.2.2) as

EX (ηt) =

N∑
i=1

∑
y∈E

pt(X0(i), y)δy =
∑
y∈E

δy

∑
i

pt(y,X0(i)) =
∑
y∈E

(∫
pt(y, z)η0(dz)

)
δy

where in the fourth equality we used the symmetry of the transition probabilities pt(x, y). If we denote by λ(dy)
the counting measure on E we obtain

(EX (ηt)) (dy) =

(∫
pt(y, z)η0(dz)

)
λ(dy). (3.2.3)

The above reformulation of the self-duality relation with one dual particle now makes sense on general measurable
state spaces E.
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Reformulation of Self-Duality with n Dual Particles As a next step we want to generalize (3.2.3) to the case of
n dual particles. In order to do so, given a point configuration η =

∑N
i=1 δxi , we introduce the n-th factorial measure

of η (see, e.g., [120, Eq. (4.5)]), which is given by

η(n) =
∑,

1≤i1,...,in≤N

δ(xi1 ,...,xin ). (3.2.4)

Using the notation adopted in [120], the superscript , indicates summation over n-tuples with pairwise different
entries and where an empty sum is defined as zero. The reason why the measure in (3.2.4) is called falling factorial
is clearly explained by the elementary combinatorial lemma below, where the relation with the classical dualities
defined in (2.5.4) (consisting of products of falling factorial polynomials) is given. We leave the simple proof to
the reader.

Lemma 3.2.1. Let η =
∑N

i=1 δxi . Then, for all (y1, . . . , yn) ∈ En, we have

η(n)({(y1, . . . , yn)}) = D

 n∑
k=1

δyk , η

 , (3.2.5)

where D( · , · ) is the self-duality polynomial function given in (2.5.4). As a consequence, the n-th factorial measure
can be rewritten as follows

η(n) =
∑

y1,...,yn∈E

δ(y1,...,yn)D

 n∑
k=1

δyk , η

 . (3.2.6)

We can then generalize (3.2.3) to the expectation of the n-th factorial measure measure η(n)
t of the point configura-

tion valued process ηt =
∑

i δXt(i) introduced above.

Proposition 3.2.2. Let λ be the counting measure on E. Then, for all t > 0 and n ∈ N,

EX(η(n)
t )(d(y1 . . . yn)) =

∫
En

n∏
i=1

pt(yi, zi)η
(n)
0 (d(z1, . . . zn))

 λ⊗n(d(y1, . . . , yn)) (3.2.7)

Proof. Let f : En → R. We then have

EX

(∫
f (y1, . . . , yn)η(n)

t (d(y1 . . . yn))
)

=
∑,

1≤i1,...,in≤N

EX f (Xt(i1), . . . ,Xt(in)) (3.2.8)

=
∑,

1≤i1,...,in≤N

∫
f (y1, . . . , yn)

n∏
k=1

pt(X0(ik), yk)
n∏

k=1

λ(dyk)

=
∑,

1≤i1,...,in≤N

∫
f (y1, . . . , yn)

n∏
k=1

pt(yk,X0(ik))
n∏

k=1

λ(dyk)

=

∫
f (y1, . . . , yn)

∫ n∏
k=1

pt(yk, zk)η(n)
0 (d(z1 . . . zn))

 n∏
k=1

λ(dyk).

where we used (3.2.4) in the first and the last equality, the independence of the particles in the second equality and
the of the transition probabilities in the third equality. Because f is arbitrary, this proves (3.2.7) �

Remark 3.2.3. 1. Equation (3.2.7) holds for each system of independent reversible random walks where the
reversible measure λrev for the single random walk is used in place of the counting measure λ.

2. Without assuming the symmetry of the rates c : E × E → R, from (3.2.8) and the independence of the
particles, we still have the relation

EX

(∫
En

f dη(n)
t

)
=

∫
En
EIRW

y1,...,yn
( f (Yt(1), . . . ,Yt(n))) η(n)

0 (d(y1 . . . , yn)), (3.2.9)

where f : En → R is a permutation invariant function and EIRW
y1,...,yn

denotes expectation with respect to n
independent random walkers initially starting from (y1, . . . , yn). Equation (3.2.9) has to be read as a self-
intertwining relation and it will be generalized in Section 8.2.2.
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iii) For any (y1, . . . , yn) ∈ En, (3.2.7) implies

EX(η(n)
t ({(y1, . . . , yn)}) = EIRW

y1,...,yn

(
η(n)

0 ({(Yt(1), . . . ,Yt(n))})
)

which, in view of (3.2.5), reads as

EX

D

 n∑
k=1

δyk , ηt

 = EIRW
y1,...,yn

D

 n∑
k=1

δYt(i), η

 ,
which is precisely the classical self-duality relation given in (3.2.1).

Orthogonal Self-Duality In this paragraph we turn to orthogonal self-dualities for random walks in a finite set.
In [146], [78] and [76] it has been shown (using, respectively, generating functions method, three–term recurrence
relations and algebraic methods) that, for all θ > 0, the following self-duality relation holds

Eη(Dθ(ξ, ηt)) = Eξ(Dθ(ξt, η)) (3.2.10)

with respect to the self-duality functions

Dθ(ξ, η) =
∏
x∈S

dor
ξ({x})(η({x}); θ). (3.2.11)

{dor
n ( · ; θ)}n∈N are the Charlier polynomials, i.e. the polynomials satisfying the following orthogonality relation∫

dor
n (η({x}); θ)dor

m (η({x}); θ)ρθ(dη) = 1{n=m}
n!
θn

with ρθ = ⊗x∈Eρx,θ and ρx,θ = Poisson(θ) for each x ∈ S . We refer to the functions in (3.2.11) as orthogonal
self-dualities. Let [n] := {1, . . . , n} and ξ =

∑n
i=1 δyi . In this setting, the relation between orthogonal and classical

dualities is simple and given by (see [76, Remark 4.2])

Dθ(ξ, η) =
∑
ξ′≤ξ

(−θ)|ξ|−|ξ
′ |

(
ξ

ξ′

)
D(ξ′, η) =

∑
I⊂[n]

(−θ)n−|I|D

∑
i∈I

δyi , η

 (3.2.12)

from which it follows that (3.2.10) is a direct consequence of (3.2.1) and the independence of the particles. We
can now reformulate the self-duality relation (3.2.10) in terms of a point configuration notation. First we introduce
the orthogonalized version of the falling factorial measure associated to a point configuration η =

∑N
i=1 δxi , namely

η(n),θ(d(x1, . . . , xn)) :=
n∑

r=0

(−θ)n−r
∑

I⊂[n]:|I|=r

η(r)(d(x1, . . . , xn)I) ⊗ λ⊗(n−r)(d(x1, . . . , xn)[n]\I), (3.2.13)

where λ denotes the counting measure,
∫

f0 dη(0) := f0 for all f0 ∈ R and (x1, . . . , xn)I denotes the subvector of
(x1, . . . , xn) with components in I ⊂ [n]. The relation between η(n),θ and the orthogonal self-dualities is expressed
in the following result.

Lemma 3.2.4. Let η =
∑N

i=1 δxi . Then, for all (y1, . . . , yn) ∈ En, we have

η(n),θ({(y1, . . . , yn)}) = Dθ

 n∑
i=1

δyi , η

 (3.2.14)

where Dθ( · , · ) is the orthogonal self-duality given in (3.2.12). As a consequence

η(n),θ
t =

∑
y1,...,yn∈E

Dθ

 n∑
i=1

δyi , η

 δ(y1,...,yn).

Proof. For I ⊂ [n] with |I| = r, we have, using (3.2.5),

D

∑
i∈I

yi, η

 = η(r)((y1, . . . , yn)I) =

∫
1(y1,...,yn)I (x1, . . . , xr)η(r)(d(x1, . . . , xr))

=

∫
1(y1,...,yn)(x1, . . . , xn)η(r)(d(x1, . . . , xn)I) ⊗ λ⊗(n−r)(d(x1, . . . , xn)[n]\I).

Therefore, (3.2.14) follows from (3.2.12). �
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We then state the analogue of Proposition 3.2.2 for η(n),θ in a notation which makes sense in the context of general
measurable state space E. The result follows from (3.2.7) combined with the definition of η(n),θ and the reversibility
of λ for the single random walk: we omit here the simple proof and we refer to Section 8.2.3 for the proof of the
self-intertwining formulation of this result in a much more general setting.

Proposition 3.2.5. For all t > 0 and n ∈ N

EX(η(n),θ
t )(d(y1, . . . , yn)) =

∫
En

n∏
i=1

pt(yi, xi)η
(n),θ
0 (d(x1, . . . , xn))

 λ⊗n(d(y1, . . . , yn)). (3.2.15)

It was observed in [78] (just above equation (8) in [78]), that the orthogonal self-dualities given in (3.2.11) coin-
cide with the polynomials obtained by the Gram-Schmidt orthogonalization procedure initialized with the classical
duality functions given in (2.5.4). In the present context, the Gram-Schmidt orthogonalization applied to (2.5.4) is
(3.2.12). However, so far, no proof was provided of the fact that the orthogonalization procedure applied to clas-
sical self-duality functions leads again to self-duality functions. In Chapter 8, we prove, in a much more general
context, that if we properly orthogonalize a self-intertwiner which is a generalized falling factorial polynomial,
we get a generalized orthogonal polynomial which is again a self-intertwiner. The proof boils down to show the
commutation of the semigroup of the point configuration process with the linear map of the orthogonalization
procedure, i.e. that the orthogonalization procedure is a symmetry. From the self-intertwining relations just men-
tioned follows both classical and orthogonal self-duality relations. The self-intertwiner related to the generalized
falling factorial polynomials is introduced in Section 8.2.2 below and the connection between self-intertwining and
classical self-dualities is explained in Section 8.3.1.

3.2.2 Boundary driven systems in the continuum

The final goal of this thesis is to initiate the analysis of duality for boundary-driven systems in the continuum,
starting from the case of independent particles. To achieve our goal, a proper definition of the action of reservoirs in
the continuum has to be considered. In the interval [0, 1], the naive idea would be to study a system of independent
Brownian motions that are absorbed at the boundaries 0 and 1, with additional creation of particles at 0 and 1.
However, as it was noticed in [20], this approach does not work, because in the continuum particles put at the
boundary would immediately leave via that same boundary. In [20] the boundary-driven Brownian gas on [0, 1]
has been defined as the sum of two independent processes: one process modeling the evolution of the particles
initially present in the system and moving as independent Brownian motions absorbed at 0 and at 1; and another
Poisson point process adding particles on (0, 1) with well-chosen intensity. The creation of particles no longer takes
place at the boundaries only, instead particles are created everywhere in (0, 1) with an intensity that guarantees the
prescribed densities of the reservoirs. One of the goals of this thesis is to establish in the setting of the boundary
driven Brownian gas, the kind of duality results proved in [32, 76] for discrete boundary driven systems (see
Section section: duality boundry driven). To do this, we use the set-up introduced in Chapter 8 for closed systems
in the continuum and extend it to the boundary driven Brownian gas.

3.3 Organization of the thesis

The rest of the thesis is subdivided in three parts.

Part II is dedicated to hydrodynamic limits in space–inhomogeneous settings and contains Chapter 4 and Chapter
5.

In Chapter 4 we introduce a new random environment for the exclusion process in Zd obtained by assigning a
maximal occupancy to each site. This maximal occupancy is allowed to randomly vary among sites, and partial
exclusion occurs. Under the assumption of ergodicity under translation and uniform ellipticity of the environment,
we derive a quenched hydrodynamic limit in path space by using the mild solution approach. To this purpose,
we prove, employing the technology developed for the random conductance model, a homogenization result in
the form of an arbitrary starting point quenched invariance principle for a single particle in the same environment,
which is a result of independent interest. The self-duality property of the partial exclusion process allows us to
transfer this homogenization result to the particle system.

Chapter 4 is based on [74], a joint work with Frank Redig (TU Delft) and Federico Sau (IST Austria).

In Chapter 5 we consider three classes of interacting particle systems on Z: independent random walks, the sym-
metric exclusion process, and the symmetric inclusion process. Particles are allowed to switch their jump rate (the
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rate identifies the type of particle) between 1 (fast particles) and ε ∈ [0, 1] (slow particles). The switch between
the two jump rates happens at rate γ ∈ (0,∞). In the exclusion process, the interaction is such that each site can
be occupied by at most one particle of each type. In the inclusion process, the interaction takes places between
particles of the same type at different sites and between particles of different type at the same site. We derive the
macroscopic limit equations for the three systems, obtained after scaling space by N−1, time by N2, the switching
rate by N−2, and letting N → ∞. The limit equations for the macroscopic densities associated to the fast and slow
particles is the previously introduced double diffusivity model. We provide a discussion on the solution of the D-D
model, thereby connecting mathematical literature applied to material science and to financial mathematics.

Chapter 5 is based on the first part of [75], a joint work with Cristian Giardinà (Modena and Reggio Emilia Uni.),
Frank den Hollander (Leiden Uni.), Shubhamoy Nandan(Leiden Uni.) and Frank Redig (TU Delft).

Part III is dedicated to the study of out–of–equilibrium properties of boundary driven systems and contains Chapter
6 and Chapter 7.

In Chapter 6, we consider symmetric partial exclusion and inclusion processes in a general graph in contact with
reservoirs, where we allow both for edge disorder and well-chosen site disorder. We extend the classical dualities
to this context and then we derive new orthogonal polynomial dualities. From the classical dualities, we derive the
uniqueness of the non-equilibrium steady state and obtain correlation inequalities. Starting from the orthogonal
polynomial dualities, we show universal properties of n-point correlation functions in the non-equilibrium steady
state for systems with at most two different reservoir parameters, such as a chain with reservoirs at left and right
ends.

Chapter 6 is based on [76], a joint work with Frank Redig (TU Delft) and Federico Sau (IST Austria).

In Chapter 7, in order to investigate the microscopic out–of–equilibrium properties of the model introduced in
Chapter 5, we analyse the system on [N] = {1, . . . ,N}, adding boundary reservoirs at sites 1 and N of fast and
slow particles, respectively. Inside [N] particles move as in the models of Chapter 5, but now particles are injected
and absorbed at sites 1 and N with prescribed rates that depend on the particle type. We compute the steady-state
density profile and the steady-state current. It turns out that uphill diffusion is possible, i.e., the total flow can be in
the direction of increasing total density. This phenomenon, which cannot occur in a single-type particle system, is
a violation of Fick’s law made possible by the switching between types. We rescale the microscopic steady-state
density profile and steady-state current and obtain the steady-state solution of a boundary-value problem for the
double diffusivity model.

Chapter 7 is based on the second part of [75], a joint work with Cristian Giardinà (Modena and Reggio Emilia
Uni.), Frank den Hollander (Leiden Uni.), Shubhamoy Nandan(Leiden Uni.) and Frank Redig (TU Delft).

Part IV is dedicated to the theoretical study of stochastic duality for closed and open systems of particles evolving
in the continuum and contains Chapter 8 and Chapter 9.

In Chapter 8, we derive intertwining relations for a broad class of conservative particle systems both in discrete
and continuous setting. Using the language of point process theory, we are able to derive a new framework in
which duality and intertwining can be formulated for particle systems evolving in general spaces. These new
intertwining relations are formulated with respect to factorial and orthogonal polynomials. Our novel approach
unites all the previously found self-dualities in the context of conservative discrete particle systems and provides
new duality results for several interacting systems in the continuum, such as interacting Brownian motions. We
also introduce a process, consisting of interacting random walks in the continuum, for which our method applies
and yields generalized Meixner polynomials as orthogonal self-intertwiners.

Chapter 8 is based on [73], a joint work with Sabine Jansen (LMU Munich), Frank Redig (TU Delft) and Stefan
Wagner (LMU Munich).

Finally, in Chapter 9, inspired by the recent work of Bertini and Posta [20], who introduced the boundary driven
Brownian gas on [0, 1], we study boundary driven systems of independent particles in a general setting, including
particles jumping on finite graphs and diffusion processes on bounded domains in Rd. We prove duality with a dual
process that is absorbed at the boundaries, thereby creating a general framework that unifies dualities for boundary
driven systems in the discrete and continuum setting. We use duality first to show that from any initial condition
the systems evolve to the unique invariant measure, which is a Poisson point process with intensity the solution of
a Dirichlet problem. Second, we show how the boundary driven Brownian gas arises as the diffusive scaling limit
of a system of independent random walks coupled to reservoirs with properly rescaled intensity.
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Chapter 9 is based on [36], a joint work with Gioia Carinci (Modena and Reggio Emilia Uni.), Cristian Giardinà
(Modena and Reggio Emilia Uni.) and Frank Redig (TU Delft).
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Chapter 4

Hydrodynamics for the partial exclusion
process
in random environment

4.1 Introduction

In recent years there has been extensive study of the scaling limit of random walks in both static and dynamic
random environment. In this realm, the random conductance model (RCM) takes a prominent place. Various
analytic tools have been developed to prove scaling properties such as quenched invariance principles, local central
limit theorems as well as detailed estimates on the random walks such as heat kernel bounds (see, e.g., [23] for an
overview on the subject).

A natural next step is to consider interacting particle systems in random environment, where particles model
transport of mass or energy, while the random environments model, as explained in Section 3.1.1, impurities or
defects in the conducting material. The macroscopic effects of the environment may be studied through scaling
limits such as hydrodynamic limits, fluctuations and large deviations around the hydrodynamic limit, as well as
via the study of non-equilibrium behavior of systems coupled to reservoirs which, in random environment, is still
a challenge.

Due to the presence of the random environment, these systems are typically non-gradient and standard gradients
methods to study the hydrodynamic behavior do not carry on. Nevertheless, interacting particle systems with
(self-)duality are especially suitable to make the step from single-particle scaling limits towards the derivation of
the macroscopic equation for the many-particle system. Indeed, in such systems (see Section 3.1.1 for the one
dimensional case), the macroscopic equation can be guessed from the behavior of the expectation of the local
particle density which, in turn, amounts to understand the scaling behavior of a single “dual” particle. However,
this intuitive “transference principle” from the scaling limit of one random walker to the macroscopic equation has
to be made rigorous.

4.1.1 Model

In this chapter, we introduce a random environment for the exclusion process in Zd obtained by assigning a maximal
occupancy αx ∈ N to each site x ∈ Zd and we study its hydrodynamic limit.

In what follows, we refer to random environment as the collection α = {αx, x ∈ Zd}, for which we assume the
following.

Assumption 4.1.1 (Ergodicity and uniform ellipticity of α). We fix a constant c ∈ N for which the random envi-
ronment α = {αx, x ∈ Zd} is chosen according to a distribution P on {1, ..., c}Z

d
, which is stationary and ergodic

under translations {τx, x ∈ Zd} in Zd.

In particular, all realizations α of the random environment satisfy the following uniform upper and lower bounds:

1 ≤ αx ≤ c , x ∈ Zd . (4.1.1)

39
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Figure 4.1: Schematic description of the one-dimensional partial exclusion process in the environment α = {αx, x ∈
Z}, where αx ∈ N denotes the maximal occupancy of site x ∈ Z.

Let us introduce the exclusion process in the environment α (see Figure 4.1) and indicate the configuration of
particles by η = {η(x), x ∈ Zd}, consisting of a collection of occupation variables indexed by the sites of Zd. These
variables indicate the number of particles at each site, i.e.,

η(x) B number of particles at x .

We define the configuration space Xα (endowed with the product topology) as

Xα B Πx∈Zd {0, ..., αx} ; (4.1.2)

here the superscript emphasizes the dependence of the configuration space on the realization of the environment.
Hence, given a realization α of the random environment, the partial (simple) exclusion process in the environment
α, abbreviated by SEP(α), is the Markov process on Xα whose generator acts on bounded cylindrical functions ϕ :
Xα → R, i.e., functions which depend only on a finite number of occupation variables, as follows (all throughout
the chapter, |·| will always denote the Euclidean norm):

Lαϕ(η) =
∑
{x,y}⊆Zd ,
|x−y|=1

 η(x)(αy − η(y)) (ϕ(ηx,y) − ϕ(η))

+ η(y)(αx − η(x)) (ϕ(ηy,x) − ϕ(η))

 . (4.1.3)

In the above formula, ηx,y denotes the configuration obtained from η by removing a particle (if any) from the site x
and adding a particle to the site y, i.e.,

ηx,y =

η − δx + δy if η(x) ≥ 1 and η(y) < αy

η otherwise .
(4.1.4)

Condition (4.1.1) ensures the existence of the process (see, e.g., [126, Chapter 1]), which we call {ηt, t ≥ 0}, defined
via the generator (4.1.3). We highlight that SEP(α) is a inhomogeneous variant of the partial exclusion process
considered in [152] (see also [84]), where αx = m for any x ∈ Zd and m is a natural number, while, for the choice
αx = 1 for any x ∈ Zd, we recover the simple symmetric exclusion process in Zd (see, e.g., [126]). Moreover, if
there is only one particle in the system, no interaction takes place and we are left with a single random walk in the
environment α, that we call random walk in the random environment α, abbreviated by RW(α). More precisely,
RW(α) is the Markov process {Xα

t , t ≥ 0} on Zd with law Pα induced by the infinitesimal generator given by

Aα f (x) B
∑
y∈Zd

|y−x|=1

αy ( f (y) − f (x)) , (4.1.5)

where f : Zd → R is a bounded function. For all x ∈ Zd, let Xα,x = {Xα,x
t , t ≥ 0} denote the random walk RW(α)

started in x ∈ Zd.
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4.1.2 Quenched hydrodynamics and discussion of related literature

The main result of this chapter, Theorem 4.2.2, states that, under Assumption 4.1.1, for almost every realization
of the environment α, the path-space hydrodynamic limit of SEP(α) is a deterministic diffusion equation with a
non-degenerate diffusion matrix not depending on the realization of the environment. To this purpose, we run
through the following steps. First, we show that SEP(α) is dual to RW(α) and we express the occupation variables
of SEP(α) at time t as mild solutions of a lattice stochastic partial differential equation, linear in the drift. Then
we show that the microscopic disorder α undergoes a homogenization effect, in the form of a quenched invariance
principle for the random walks RW(α). In conclusion, we transfer this homogenization effect from the random
walk to the interacting particle system via the aforementioned duality. To the essence, this transference principle
boils down to the following two requirements:

(i) Consistency of the initial conditions (see Definition 4.2.1 below) stating, roughly speaking, that a law of
large numbers holds for the initial particle densities;

(ii) The validity of a quenched homogenization result for the random walks RW(α) in the form of an arbitrary
starting point quenched invariance principle (see (4.3.1) below).

The mild solution approach to hydrodynamic limits in random environment has been initiated in [139] in Zd with
d = 1 and further developed to any dimension and with less restrictive conditions in [64]. Hence, the idea of
deriving the hydrodynamic limit in random environment from a homogenization result for the dual random walk
is not new. These works, though, lack of a proof of path space tightness for the empirical density fields of the
particle system, as more classical tightness criteria such as Aldous-Rebolledo and Censov (see, respectively, e.g.,
[106] and [47]) do not apply when employing a mild solution representation for the density fields.

On the other hand, along with the derivation of the limiting hydrodynamic equation, the proof of tightness for
particle systems in random environment has been obtained in several works by introducing the so-called corrected
empirical density field, an auxiliary process for which the evolution equation “closes” and the aforementioned
tightness criteria apply. Thus, one has to face the extra step consisting in proving that the empirical density field
and the corrected one are close in a suitable sense. The idea of the corrected empirical density field has been
introduced in [99] for the exclusion process with random conductances on Zd with d = 1 and later extended to the
d-dimensional torus in [87], with d ≥ 1, and more general geometries in [98]. The construction of the corrected
empirical density field as in [87] is general enough to apply, by employing the convergence of either the random
walk generators or the associated Dirichlet forms, also to different contexts, like in [68] for a one-dimensional
subdiffusive exclusion process, [66] for a zero range process with random conductances and our context of site-
varying maximal occupancy exclusion process. However, we believe that a general strategy to establish tightness
and the hydrodynamic limit for sequences of tempered distribution-valued mild solutions may be of help when
stochastic convolutions, although not being martingales, ensure a stronger space-time regularity of the stochastic
processes as in the context, e.g., of Gaussian SPDEs. In [147], in which the hydrodynamic limit of the simple
exclusion process in presence of dynamic random conductances is studied, a criterion for relative compactness,
based on the notion of uniform stochastic continuity, has been presented. We apply this criterion to our context
of partial exclusion, which has the advantages to directly apply to the sequence of mild solutions and avoid the
introduction of the auxiliary sequence of the corrected empirical density fields.

Next to the problem of ensuring relative compactness for the empirical density, another main challenge in the study
of scaling limits of particle systems in random environment is to prove a homogenization result for the underlying
environment. To get the desired homogenization result we employ, via a suitable random time change, several
concepts and results developed in the context of the random conductance model (RCM) (see, e.g., [23]). So far, the
technology developed in the last two decades for RCM has not been employed in the context of particle systems
in random environment, other types of convergence being preferred. In particular, either Γ-convergence (see, e.g.,
[98]) or two-scale convergence (see, e.g., [65, 67]) were employed to recover quenched hydrodynamic limits for
the simple exclusion process in more general settings than RCM with uniformly elliptic conductances.

For the RW(α) under Assumption 4.1.1, one does not need such a level of generality and it is natural to try to use
the existing quenched invariance principles for the random conductance model. However all quenched invariance
principles for RCM (see, e.g., [7, 10, 8, 15, 155]) are derived for the walk starting at the origin, which is, in general,
too weak as a convergence to ensure the quenched hydrodynamic limit for the particle system. To fill the gap
between quenched invariance principle and quenched hydrodynamic limit, a homogenization result involving the
random walks RW(α) starting from all spatial locations suffices. To this purpose, we choose to extend the quenched
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invariance principle valid for the random walk starting from the origin to walks starting from arbitrary sequences
of starting points; we believe the latter to be a result of interest in its own right. Note that this strengthening is not
trivial due to the lack of translation invariance of the law of the random walk in quenched random environment.

The problem of deriving quenched arbitrary starting point invariance principles has been posed in [148] and only
recently solved in [42] for the static random conductance model on the supercritical percolation cluster. In our
context of random environment α, in order to prove the quenched invariance principle with arbitrary starting
positions for the dual random walk, we use the formalism and ideas from [42].

The connection between the quenched invariance principle in RCM and hydrodynamics in random environment
seems to be promising, at least in the case of particle systems with self-duality, and this gives hope, for future works,
to obtain path-space hydrodynamic limit also in degenerate environments. In conclusion, we remark that other
strategies than self-duality to prove hydrodynamic limits for interacting particle systems in random environment
are available and rely on the non-gradient methods (see, e.g., [132]) and methods based on Riemann-characteristics
for hyperbolic concentration laws (see, e.g., [12]).

The remaining of the chapter is organized as follows. In Section 4.2 we state the main theorem – the quenched
hydrodynamic limit in path space – and explain the strategy of the proof in more detail. Section 4.3 is devoted to
the arbitrary starting point quenched invariance principle and Section 4.4 to the proof of the hydrodynamic limit.
The proofs of some auxiliary results stated in the body of the chapter are collected in separate sections at the end
of the chapter.

4.2 Main result and strategy of the proof

As observable of the macroscopic behavior of the interacting particle system, we consider the empirical density
fields, indicated, for all N ∈ N, by XN = {XN

t , t ≥ 0}. Given, for a fixed realization of the environment α, a
sequence of probability measures να = {ναN}N∈N on the configuration space Xα, for all N ∈ N, the empirical density
field XN is a measure-valued process obtained as a function of the system η = {ηt, t ≥ 0} as follows:

XN
t B

1
Nd

∑
x∈Zd

δ x
N
ηtN2 (x) , (4.2.1)

where η is the process SEP(α) introduced in Section 4.1 initially distributed as ναN . We refer to Pα
ναN

as the probability
measure on the Skorokhod spaceD([0,∞),Xα) of such process and let Eα

ναN
denote the corresponding expectation,

while Pαη and Eαη indicate the law and the corresponding expectation, respectively, of the process starting from
the configuration η. We note that the definition (4.2.1) encodes a space-time diffusive rescaling of the micro-
scopic system. Moreover, due to the uniform upper bound in (4.1.1) on the maximal occupancies, we view (as
done, e.g., in the textbook [47, Chapter 2]) the empirical density fields as processes in D([0,∞),S ′(Rd)); here,
S ′(Rd) denotes the topological dual of the Schwartz class of smooth and rapidly decreasing functions S (Rd) and
D([0,∞),S ′(Rd)) the Skorokhod space of S ′(Rd)-valued càdlàg trajectories. For further details on the construc-
tion and topologies of these spaces, we refer to, e.g., [47, Chapter 2, Section 6], [138], as well as [101, Chapter 2,
Section 4]. Hence, for all t ≥ 0, the action of XN

t on the test function G ∈ S (Rd) is given by

XN
t (G) B

1
Nd

∑
x∈Zd

G( x
N ) ηtN2 (x) . (4.2.2)

Let us remark that this choice of the functional spaces D([0,∞),S ′(Rd)), while being standard when studying
fluctuation fields, is less canonical in the context of hydrodynamic limits (cf., e.g., [106]). The motivation behind
this choice is twofold. On the one side, the nuclear structure of the pair S (Rd) and S ′(Rd) allows, in Section
4.4.1, to employ Mitoma’s tightness criterion for processes in D([0,∞),S ′(Rd)), see [138]. On the other side,
in Section 4.4.2, we need that S (Rd) is dense and invariant under the action of the semigroup on C0(Rd) – the
Banach space of continuous and vanishing at infinity functions endowed with the supremum norm – of the d-
dimensional Brownian motion {BΣt , t ≥ 0} with diffusion matrix Σ ∈ Rd×d, i.e., the strongly continuous and
contraction semigroup {SΣt , t ≥ 0} on C0(Rd) associated to the following second-order differential operator

AΣ = 1
2∇ · (Σ ∇) .
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As our goal is to study the limit of the N-th empirical density field XN as N goes to infinity, we need to require
that the initial particle configurations suitably rescale to a macroscopic profile. We make this requirement precise
in the following definition, in which P(Xα) denotes the space of probability measures on Xα.

Definition 4.2.1 (Consistency of the initial conditions). We say that, for a given environment α, a sequence of
probabilities να B {ναN}N∈N in P(Xα) is consistent to a continuous macroscopic profile ρ̄ : Rd → [0, 1] if the
following convergence

ναN


η ∈ Xα :

∣∣∣∣∣∣∣ 1
Nd

∑
x∈Zd

G( x
N )η(x) −

∫
Rd

G(u)EP [α0] ρ̄(u) du

∣∣∣∣∣∣∣ > δ

 −→N→∞

0 (4.2.3)

holds for all G ∈ S (Rd) and δ > 0.

We are ready to state our main theorem, whose proof is deferred to Section 4.4 below.

Theorem 4.2.2 (Hydrodynamic limit in quenched random environment). Let ρ̄ : Rd → [0, 1] be a continuous
macroscopic profile and, for all realizations of the environment α, let να = {ναN}N∈N be a sequence of probabilities
on P(Xα). Recall Definition 4.2.1, define

C B
{
α ∈ {1, . . . , c}Z

d
: να is consistent with ρ̄

}
, (4.2.4)

and assume that P(C) = 1.

Then, there exists two measurable subsets A and B ⊆ {1, . . . , c}Z
d

with P(A) = P(B) = 1 (given, respectively, in
(4.2.16) and (4.3.11) below) such that, for all α ∈ A ∩ B ∩ C and for all T > 0, we have the following weak
convergence inD([0,T ],S ′(Rd)): {

XN
t , t ∈ [0,T ]

}
=⇒
N→∞

{
πΣt , t ∈ [0,T ]

}
, (4.2.5)

where the empirical density fields {XN
t , t ∈ [0,T ]}N∈N are given as in (4.2.1) and

πΣt (du) B EP [α0] ρΣt (u) du , (4.2.6)

with {ρΣt , t ≥ 0} being the unique strong solution in Rd to ∂tρ = 1
2∇ · (Σ ∇ρ)

ρ0 = ρ̄ .
(4.2.7)

In particular, the diffusion matrix Σ ∈ Rd×d in (4.2.7) and given in Proposition 4.3.4 below is non-degenerate,
symmetric, positive-definite and does not depend on the particular realization of the environment.

Remark 4.2.3 (Existence and uniqueness of the limit). Let Cb(Rd) denote the Banach space of continuous and
bounded functions from Rd to R endowed with the supremum norm. It is well-known (see, e.g., [63, Chapter 2,
Section 3.1, Theorem 1]) that, ρ̄ being bounded and continuous, the strong solution {ρΣt , t ≥ 0} to (4.2.7) exists,
is unique and admits the following stochastic representation in terms of the contraction and strongly continuous
semigroup of Brownian motion {BΣt , t ≥ 0} on Cb(Rd), still referred to – with a slight abuse of notation – as
{SΣt , t ≥ 0}:

ρΣt = SΣt ρ̄ , t ≥ 0 . (4.2.8)

Moreover, by [96, Theorem 1.4], there exists a unique element {πt, t ≥ 0} in the space of S ′(Rd)-valued continuous
trajectories C([0,∞),S ′(Rd)) (see, e.g., [96], [101, Chapter 2, Section 4]) such that either one of the following
two identities hold for all t ≥ 0 and G ∈ S (Rd):

πt(G) = πρ̄(G) +

∫ t

0
πs(AΣG) ds or πt(G) = πρ̄(SΣt G) , (4.2.9)

where
πρ̄(du) B EP [α0] ρ̄(u) du . (4.2.10)

As a consequence of (4.2.8) and∫
Rd
SΣt G(u) H(u) du =

∫
Rd

G(u)SΣt H(u) du , G ∈ S (Rd) , H ∈ Cb(Rd) , t ≥ 0 , (4.2.11)

such a unique element must coincide with {πΣt , t ≥ 0} in (4.2.6).
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Before discussing the strategy of proof of Theorem 4.2.2, we present an ergodic theorem (Lemma 4.2.5 below)
of importance at various stages of the chapter; in particular, this allows us to exhibit in Proposition 4.2.6 below a
class of initial distributions for SEP(α) which verify the assumption of Theorem 4.2.2. Preliminarily, we need the
following definition.

Definition 4.2.4. A subset F of C0(Rd) is said to be equicontinuous if

lim
δ↓0

sup
u,v∈Rd

|u−v|<δ

sup
F∈F
|F(u) − F(v)| = 0 (4.2.12)

holds, bounded if
sup
F∈F

sup
u∈Rd
|F(u)| < ∞ (4.2.13)

holds, and uniformly integrable if
sup
F∈F
|F(u)| ≤ f (u) , u ∈ Rd , (4.2.14)

holds for some function f ∈ L1(Rd) ∩ C0(Rd).

Lemma 4.2.5. Under Assumption 4.1.1 on the environment, for P-a.e. realization of the environment α, the fol-
lowing holds:

For all equicontinuous, bounded and uniformly integrable subsets F of C0(Rd) (see Definition 4.2.4),
we have

sup
F∈F

∣∣∣∣∣∣∣ 1
Nd

∑
x∈Zd

F( x
N )αx − EP [α0]

∫
Rd

F(u) du

∣∣∣∣∣∣∣ −→N→∞
0 . (4.2.15)

The proof of Lemma 4.2.5 can be found in Section 4.6 below. Moreover, we find convenient to define

A B
{
α ∈ {1, . . . , c}Z

d
: the claim in Lemma 4.2.5 holds for α

}
. (4.2.16)

By a detailed balance computation, it is simple to check that the following product measures

ναp = ⊗
x∈Zd

Binomial(αx, p) , (4.2.17)

are reversible measures for SEP(α), for all parameters p ∈ [0, 1]. In general, if the parameter p depends on the
site x ∈ Zd, the corresponding Bernoulli product measures are not invariant for the exclusion dynamics. Never-
theless, as shown in Proposition 4.2.6 below, such probability measures with slowly varying parameter satisfy the
assumptions of Theorem 4.2.2.

Proposition 4.2.6. For all α ∈ A (see (4.2.16)) and for all continuous profiles ρ̄ : Rd → [0, 1], the sequence of
probabilities {να,ρ̄N }N∈N in P(Xα) given, for all N ∈ N, by

ν
α,ρ̄
N B ⊗

x∈Zd
Binomial(αx, ρ̄( x

N )) (4.2.18)

is consistent with the continuous profile ρ̄ (Definition 4.2.1), thus, satisfying the assumption of Theorem 4.2.2.

Proof. Note that, for all realizations of the environment α, N ∈ N and x ∈ Zd, one has

Eα
ν
α,ρ̄
N

[
η(x)

]
= αxρ̄( x

N ) and Eα
ν
α,ρ̄
N

[(
η(x) − αxρ̄( x

N )
)2
]

= αxρ̄( x
N )

(
1 − ρ̄( x

N )
)
. (4.2.19)

Hence, by Chebyshev’s inequality, for all δ > 0 and G ∈ S (Rd),

ν
α,ρ̄
N


η ∈ Xα :

∣∣∣∣∣∣∣ 1
Nd

∑
x∈Zd

G( x
N )

(
η(x) − αxρ̄( x

N )
)∣∣∣∣∣∣∣ > δ


 −→N→∞

0 (4.2.20)

holds true for all α. With the observation that, for all functions G ∈ S (Rd) and continuous profiles ρ̄ : Rd → [0, 1],
the product of G and ρ̄ is continuous, bounded and integrable, Lemma 4.2.5 yields the desired result for α ∈ A.

�
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4.2.1 Duality

For all given environments α, SEP(α) and RW(α), besides being the latter a particular instance of the former when
the system consists of only one particle, are connected through the notion of stochastic duality, or, shortly, duality.
This notion occurs in various contexts (see, e.g., [126]) and, in the particular case of interacting particle systems,
turns useful when quantities of a many-particle system may be studied in terms of quantities of a simpler, typically
a-few-particle, system. Moreover, when this duality relation is established between two copies of the same Markov
process, one speaks about self-duality.

SEP(α) is a self-dual Markov process, meaning that there exists a function Dα : Xαf × X
α → R (with Xαf being the

subset of configurations in Xα with finitely-many particles), called self-duality function, given by

Dα(ξ, η) :=
∏
x∈Zd

η(x)!
(η(x) − ξ(x))!

(αx − ξ(x))!
αx!

1{ξ(x)≤η(x)} ,

for which the following self-duality relation holds: for all ξ ∈ Xαf and η ∈ Xα,

LαDα(·, η)(ξ) = LαDα(ξ, ·)(η) . (4.2.21)

In particular, the l.h.s. corresponds to apply the generator Lα to the function D(·, η) and evaluate the resulting
function at ξ; similarly for the r.h.s.. This property was proven for the first time in [152] for the homogeneous
partial exclusion, i.e., for αx = m ∈ N for all x ∈ Zd, (see also [84]) and extends to the random environment
context.

We are interested in a particular instance of this self-duality property, namely when the dual configuration consists
in a single particle configuration, i.e., ξ = δx for some x ∈ Zd. In this case the function Dα(δx, η) C Dα(x, η) reads

Dα(x, η) =
η(x)
αx

(4.2.22)

and the self-duality relation reduces to

AαDα(·, η)(x) = LαDα(x, ·)(η) , (4.2.23)

which may be checked by a straightforward computation. Relation (4.2.23) has to be interpreted as a duality
relation between SEP(α) and RW(α) with duality function Dα given in (4.2.22).

Notice that the generator Aα is, in view of Assumption 4.1.1, a bounded operator on both Banach spaces `∞(Zd,α)
and `1(Zd,α), where α plays the role of reference measure on Zd assigning to each site x ∈ Zd the positive value
αx. Likewise, Aα is a bounded operator on the weighted Hilbert space `2(Zd,α) whose inner product is defined as

〈 f , g〉 :=
∑
x∈Zd

f (x) g(x)αx . (4.2.24)

With a slight abuse of notation, we continue to use 〈·, ·〉 also for the bilinear map on `1(Zd,α) × `∞(Zd,α) defined
by the r.h.s. of (4.2.24); moreover, we let Aα and {S α

t , t ≥ 0} denote the generator and corresponding semigroup
associated to RW(α), indistinguishably of the Banach space they act on.

As it follows from a detailed balance relation, RW(α) is reversible with respect to the weighted counting measure
α. More precisely, Aα is self-adjoint in `2(Zd,α) and, moreover, for all f ∈ `1(Zd,α) (resp. `2(Zd,α)) and g ∈
`∞(Zd,α) (resp. `2(Zd,α)) and for all t ≥ 0, we have

〈S α
t f , g〉 = 〈 f , S α

t g〉 , (4.2.25)

or, equivalently,
αx pαt (x, y) = αy pαt (y, x) , x, y ∈ Zd , t ≥ 0 , (4.2.26)

for the corresponding transition probabilities.

4.2.2 Strategy of the proof

The self-duality relation (4.2.23) suggests that the limiting collective behavior of the particle density is connected
to the limiting behavior of the diffusively rescaled RW(α). Let us describe the strategy of the proof of our main
result and the role of this connection.
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Mild solution representation

As a first observation, by following closely [139] and [64], for all realizations of the environment α, we apply
Dynkin’s formula to the bounded cylindrical functions {Dα(x, · ) : Xα → R}x∈Zd given in (4.2.22): for all initial
configurations η ∈ Xα, we have

Dα(x, ηt) = Dα(x, η) +

∫ t

0
LαDα(x, · )(ηs) ds + Mα

t (x) , x ∈ Zd , t ≥ 0 , (4.2.27)

where {Mα
t (x), t ≥ 0}x∈Zd is a family of martingales w.r.t. the natural filtration of the process whose joint law

is characterized in terms of their predictable quadratic covariations (see (4.4.2)–(4.4.3) below; for an explicit
construction of these martingales, see Section 4.5 below). We remark that in (4.2.27) above Lα acts on the function
Dα(·, ·) w.r.t. the η-variables. We recall from (4.2.23) that the function Dα : Zd × Xα → R of the joint system is a
duality function between SEP(α) and RW(α). Hence, by using (4.2.23), we rewrite (4.2.27) as

Dα(x, ηt) = Dα(x, η) +

∫ t

0
AαDα(·, ηs)(x) ds + Mα

t (x) , x ∈ Zd , t ≥ 0 , (4.2.28)

yielding a system (indexed by x ∈ Zd) of linear – in the drift – stochastic integral equations. As a consequence, the
solution of this system may be represented as a mild solution by considering the semigroup {S α

t , t ≥ 0} associated
to the generator Aα of RW(α), i.e., we have

Dα(x, ηt) = S α
t Dα(·, η)(x) +

∫ t

0
S α

t−s dMα
s (x) , x ∈ Zd , t ≥ 0 , (4.2.29)

where ∫ t

0
S α

t−s dMα
s (x) :=

∫ t

0

∑
y∈Zd

Pα(Xα,x
t−s = y) dMα

s (y) (4.2.30)

(for a definition of Xα,x and its law, see the end of Section 4.1.1; for a proof of the absolute convergence of the
latter infinite sum, we refer the reader to Lemma 4.5.2 below).

Combining the definitions (4.2.1)–(4.2.2) and (4.2.22) with the mild solution representation in (4.2.29), we rewrite
the empirical density fields, for all test functions G ∈ S (Rd), as follows:

XN
t (G) =

1
Nd

∑
x∈Zd

G( x
N ) Dα(x, ηtN2 )αx

=
1

Nd

∑
x∈Zd

G( x
N ) S α

tN2 Dα(·, η0)(x)αx +
1

Nd

∑
x∈Zd

G( x
N )

∫ tN2

0
S α

tN2−s dMα
s (x)

αx .

Furthermore, because both Aα and the corresponding semigroup are self-adjoint in `2(Zd,α) (see (4.2.25)), we
obtain:

XN
t (G) =

1
Nd

∑
x∈Zd

S N,α
tN2 G( x

N ) Dα(x, η0)αx +
1

Nd

∑
x∈Zd

∫ tN2

0
S N,α

tN2−sG( x
N ) dMα

s (x)

αx

=
1

Nd

∑
x∈Zd

S N,α
tN2 G( x

N ) η0(x) +
1

Nd

∑
x∈Zd

∫ tN2

0
S N,α

tN2−sG( x
N ) dMα

s (x)

αx

= XN
0 (S N,α

tN2 G) +

∫ t

0
dMN

s (S N,α
tN2−sG) , (4.2.31)

where we adopted the shorthand, for all G ∈ S (Rd),∫ t

0
dMN

s (S N,α
tN2−sG) :=

1
Nd

∑
x∈Zd

∫ tN2

0
S N,α

tN2−sG( x
N ) dMα

s (x)

αx , (4.2.32)

with
S N,α

t G( x
N ) := S α

t G( ·N )(x) , x ∈ Zd , t ≥ 0 . (4.2.33)

Hence, we obtain in (4.2.31) the same decomposition as in, e.g., [139, 64, 68, 147], in which the empirical density
field is written as a sum of its expectation (the first term on the r.h.s. of (4.2.31)), and “noise”(the second term),
which is not a martingale.
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From the arbitrary starting point invariance principle towards the path space hydrodynamic limit

As in those works, our first aim is to prove that, for P-a.e. α, the finite-dimensional distributions of the empirical
density fields converge in probability to those of the solution of the hydrodynamic equation (4.2.7). Moreover,
since convergence in probability of finite-dimensional distributions is implied by the convergence in probability of
single marginals, it suffices to prove convergence of one-dimensional distributions. In particular, we will show in
Section 4.4 below that, for all G ∈ S (Rd), t ≥ 0 and δ > 0,

PαναN


∣∣∣∣∣∣∣
∫ tN2

0
dMN

s (S N,α
tN2−sG)

∣∣∣∣∣∣∣ > δ
 −→N→∞

0 (4.2.34)

holds for all environments α, and that (recall (4.2.10))

PαναN

(∣∣∣XN
0 (S N,α

tN2 G) − πρ̄(SΣt G)
∣∣∣ > δ) −→

N→∞
0 (4.2.35)

holds for P-a.e. environment α. Hence, provided that {XN
t , t ≥ 0} is relatively compact in D([0,∞),S ′(Rd)) and

that all limit points belong to C([0,∞),S ′(Rd)), (4.2.34)–(4.2.35) and the uniqueness result in Remark 4.2.3 would
then yield a quenched (w.r.t. the environment law P) convergence in probability of finite-dimensional distributions
for the empirical density fields.

More specifically, the convergence in (4.2.34) (whose proof is close in spirit to that in all other related works) relies
on Chebyshev’s inequality and the uniform upper bound (4.1.1) on the environment α. This result is established
in Section 4.4.2 below. For what concerns (4.2.35), as done in the aforementioned references, the idea is to go
through a homogenization result which ensures convergence – in a sense to be made precise – of semigroups for
P-a.e. α. In particular, provided α is an environment for which the following L1-convergence

1
Nd

∑
x∈Zd

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣αx −→
N→∞

0 , t ≥ 0 , (4.2.36)

holds for all G ∈ S (Rd), Markov’s inequality, the uniform boundedness of the occupation variables {η(x), x ∈ Zd}

and (4.2.36) yield

PαναN

(∣∣∣XN
0 (S N,α

tN2 G) − XN
0 (SΣt G)

∣∣∣ > δ) −→
N→∞

0 , t ≥ 0 , (4.2.37)

for that same environment α and all test functions G ∈ S (Rd). By combining (4.2.37) – which will hold for
P-a.e. α – with the assumption of P-a.s. consistency of initial conditions (see the statement of Theorem 4.2.2
and Definition 4.2.1), we obtain (4.2.35) for P-a.e. α. All the details of the proof of (4.2.35) may be found in
Proposition 4.4.4 below.

In view of these considerations, the proof of convergence of the finite dimensional distributions of the empirical
density fields boils down to show (4.2.34) and (4.2.36). Several methods have been developed in, e.g., [139, 64,
68, 67] to obtain (4.2.36). The road we follow here is to derive (4.2.36) from quenched invariance principle results
for random conductance models (RCM) (see, e.g., [23]) in the following two steps:

(i) By viewing our random walks RW(α) as random time changes of suitable RCM, we derive from well-known
analogous results in the context of RCM, a quenched invariance principle for the random walk RW(α)
started from the origin.

(ii) By means of the space-time Hölder equicontinuity of the semigroups {S N,α
t , t ≥ 0}N∈N (see (4.2.33) for its

definition), heat kernel upper bounds and building on the ideas in [42, Appendix A.2], we obtain: for P-a.e.
realization of the environment α,

For all T > 0 and G ∈ C0(Rd),

sup
t∈[0,T ]

sup
x∈Zd

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣ −→
N→∞

0 ,

holds true.
(4.2.38)
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Relating the above convergence of Markov semigroups to the weak convergence in path-space of the corresponding
Markov processes, it is straightforward to check that (4.2.38) implies the weak convergence of the finite dimen-
sional distributions of RW(α) with arbitrary starting positions, i.e., for P-a.e. α,

For all u ∈ Rd and for any sequence of points {xN}N∈N ⊆ Z
d such that xN

N → u as N → ∞,

Eα

[
G1

(
Xα,xN

t1 N2

N

)
· · ·Gn

(
Xα,xN

tnN2

N

)]
−→
N→∞

E
[
G1

(
BΣ,ut1

)
· · ·Gn

(
BΣ,utn

)]
holds true for all n ∈ N, 0 ≤ t1 < . . . < tn and G1, . . . ,Gn ∈ C0(Rd), where {BΣ,ut := BΣt + u, t ≥ 0} is the
Brownian motion introduced in Section 4.2 started from u ∈ Rd.

Moreover, as a direct consequence of the heat kernel upper bound in Proposition 4.3.7 below, the tightness of the
random walks { 1

N Xα,xN

tN2 , t ≥ 0}N∈N in D([0,∞),Rd) can also be derived (see, e.g., [147, Lemma C.3]). In view of
this implication, we will refer to (4.2.38) as the arbitrary starting point invariance principle. See also Theorem
4.3.1 below for a slightly more precise statement regarding the convergence in (4.2.38) and Remark 4.3.8 below
for a discussion on the equivalence between (4.2.38) and the weak convergence in path-space of the corresponding
Markov processes; for a general result on the fact that the convergence in (4.2.38) implies convergence of the
corresponding Markov processes we refer the interested reader to [116, Theorem 4.29].

As shown in Corollary 4.3.2 below, the convergence in (4.2.38) implies, in particular, for P-a.e. α and for all T > 0
and G ∈ S (Rd),

sup
t∈[0,T ]

1
Nd

∑
x∈Zd

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣αx −→
N→∞

0 . (4.2.39)

Note that the above convergence differs from (4.2.36) by the uniformity of the convergence over bounded intervals
of times.

The results (4.2.38) and (4.2.39) are stronger than what is strictly needed for the proof of convergence of finite
dimensional distributions of the empirical density fields, but they turn out to be very useful in the proof of relative
compactness of the probability distributions of {

XN
t , t ∈ [0,T ]

}
N∈N

(4.2.40)

in D([0,T ],S ′(Rd)). Indeed, because the random walk RW(α) semigroups enter in the decomposition of the
empirical density fields, it has to be expected that some sort of equicontinuity in time of such semigroups is needed
for the sequence (4.2.40) to be tight. This intuition can be made rigorous by means of a combination of the
tightness criteria developed in [138, Theorem 4.1] and [147, Appendix B], which apply directly to the empirical
density fields decomposed as mild solutions. We refer the reader to Section 4.4.1 below for all the details on the
proof of tightness.

4.3 Arbitrary starting point quenched invariance principle

This section is devoted to the proof of a quenched homogenization result for the dual random walk in random en-
vironment α, RW(α) with generator Aα given in (4.1.5) and corresponding semigroup {S α

t , t ≥ 0}. More precisely,
we will prove the following theorem:

Theorem 4.3.1 (Arbitrary starting point quenched invariance principle). There exists a measurable subset B ⊆
{1, . . . , c}Z

d
(defined in (4.3.11) below) with P(B) = 1 and such that, for all environments α ∈ B, for all T > 0 and

G ∈ C0(Rd), (4.2.38) holds, i.e.,

sup
t∈[0,T ]

sup
x∈Zd

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣ −→
N→∞

0 . (4.3.1)

The proof of the above theorem is deferred to Section 4.3.3 below, and goes through the proof of three intermediate
results: the quenched invariance principle for the random walk started from the origin (see Proposition 4.3.4 in
Section 4.3.1 below), the space-time equicontinuity of the random walk semigroups (see Proposition 4.3.6 in
Section 4.3.2 below) and heat kernel upper bounds (see Proposition 4.3.7 in Section 4.3.2 below).

As a consequence of Theorem 4.3.1 above and Lemma 4.2.5, and recalling from there the characterizations of the
subsets B and A ⊆ {1, . . . , c}Z

d
, respectively, we obtain:
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Corollary 4.3.2. For all environments α ∈ A ∩B, for all T > 0 and G ∈ S (Rd), (4.2.39) holds, i.e.,

sup
t∈[0,T ]

1
Nd

∑
x∈Zd

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣αx −→
N→∞

0 . (4.3.2)

The proof of the above corollary – whose main ideas are adapted from [147, Proposition 5.3] – is postponed to
Section 4.6 below.

4.3.1 Quenched invariance principle for RW(α) starting from the origin

For all realizations α of the environment, the random walk RW(α), Xα,0 = {Xα,0
t , t ≥ 0} – with generator given

in (4.1.5) and with the origin of Zd as starting position – can be viewed as a random time change of a specific
RCM, i.e., the continuous-time random walk Xω,0 = {Xω,0

t , t ≥ 0}, abbreviated by RW(ω) and with law Pω (and
corresponding expectation Eω), starting from the origin of Zd and evolving on Zd according to the generator given
by

Aω f (x) :=
∑
y∈Zd

|y−x|=1

ωxy ( f (y) − f (x)) , x ∈ Zd , (4.3.3)

where f : Zd → R is a bounded function and

ωxy B αxαy , ∀ x, y ∈ Zd such that |x − y| = 1 . (4.3.4)

Indeed, when in position x ∈ Zd, the walk Xα,0 spends there an exponential holding time with parameter λαx given
by

λαx =
∑
y∈Zd

|y−x|=1

αy , (4.3.5)

and then jumps to a neighbor of x, say z, with probability rα(x, z) given by

rα(x, z) =
αz

λαx
. (4.3.6)

The corresponding quantities (4.3.5) and (4.3.6) for the walk Xω,0 are given, respectively, by

λωx =
∑
y∈Zd

|y−x|=1

αxαy = αxλ
α
x , (4.3.7)

and

rω(x, z) =
αxαz

αxλ
α
x

= rα(x, z) . (4.3.8)

Hence, if we define the random time change {R(t), t ≥ 0} by

R(t) B
∫ t

0
αXω,0

s
ds , (4.3.9)

then, in law,

{Xω,0
R−1(t), t ≥ 0} = {Xα,0

t , t ≥ 0} ,

where R−1 is the inverse of the continuous piecewise linear and increasing bijection R : [0,∞)→ [0,∞).

In what follows, we let Ω denote the space of all conductances ω with ωxy ∈ {1, ..., c2} endowed with the Borel
σ-algebra induced by the discrete topology. Recall the definition of P in Assumption 4.1.1. We then let Q be the
probability measure on Ω for which, for all measurableU ⊆ Ω,

Q(U) = P

(
α ∈ {1, . . . , c}Z

d
:
∃ω ∈ U s.t. ωxy = αxαy

∀ x, y ∈ Zd with |x − y| = 1

)
. (4.3.10)

We remark that the measure Q inherits the invariance and ergodicity under space translations from P (see Assump-
tion 4.1.1). We then have the following result, taken from [155, Theorem 1.1 and Remark 1.3].
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Theorem 4.3.3 (Quenched invariance principle for RW(ω) started from the origin [155]). The quenched invariance
principle holds for the random walk RW(ω) started from the origin with a limiting non-degenerate covariance
matrix Λ, i.e., for Q-a.e. environment ω and for all T > 0, the following convergence in law in the Skorokhod space
D([0,T ],Rd) holds Xω,0

tN2

N
, t ∈ [0,T ]

 =⇒
N→∞

{
BΛt , t ∈ [0,T ]

}
,

where the r.h.s. is a Brownian motion on Rd starting at the origin with a non-degenerate covariance matrix Λ ∈
Rd×d independent of the realization of the environment ω.

We remark that [155] and [133] were the first two works in which the quenched invariance principle for RCM with
ergodic and uniformly elliptic conductances was proven for any dimension d ≥ 1. We refer to, e.g., [18, 134, 24,
8, 15] as a partial list for further results in which the uniform ellipticity assumption on the conductances has been
replaced by more general conditions on the conductance moments.

In order to get the quenched invariance principle for the random walk RW(α), we only need to check that the
random time change defined in (4.3.9) properly rescales. In the proof of the following result, we follow closely
Section 6.2 in [? ].

Proposition 4.3.4 (Quenched invariance principle for RW(α) started from the origin). The quenched invariance
principle holds for the random walk RW(α) started from the origin with a limiting non-degenerate covariance
matrix Σ := 1

EP[α0]Λ. Here Λ is the covariance matrix appearing in Theorem 4.3.3. In particular, the covariance
matrix Σ does not depend on the specific realization of the environment α, but only on the law P.

Remark 4.3.5. For later purposes, we define

B B
{
α ∈ {1, . . . , c}Z

d
: the invariance principle for RW(α) in Proposition 4.3.4 holds

}
. (4.3.11)

Proof. Consider the random walk Xω,0 starting from the origin and the corresponding process of the environment
α as seen from the random walk Xω,0, i.e.,{

τXω,0
t
α, t ≥ 0

}
⊆ {1, . . . , c}Z

d
. (4.3.12)

By our Assumption 4.1.1 and [50, Lemma 4.3], P is an invariant (actually reversible) and ergodic law for the
process in (4.3.12). Hence, recalling the random time change {R(t), t ≥ 0} defined in (4.3.9), Birkhoff’s ergodic
theorem for the process in (4.3.12) yields, for P-a.e. environment α,

lim
t→∞

R(t)
t

= EP [α0] . (4.3.13)

Because R : [0,∞)→ [0,∞) is a strictly increasing bijection, (4.3.13) is, in turn, equivalent to

lim
t→∞

R−1(t)
t

=
1

EP [α0]
. (4.3.14)

The conclusion of the theorem follows from the argument in Section 6.2 in [? ] as soon as we prove that, for all
t > 0 and ε > 0, we have, for P-a.e. α (recall from (4.3.4) that ω = ω(α) with ωxy = αxαy for all x, y ∈ Zd with
|x − y| = 1),

lim sup
N→∞

Pω


∣∣∣∣∣∣∣∣∣
Xω,0

R−1(tN2) − Xω,0
1

EP[α0] tN2

N

∣∣∣∣∣∣∣∣∣ > ε
 = 0 , (4.3.15)

where Pω denotes the law of Xω.

We are, thus, left with the proof of (4.3.15). Fix t > 0 and ε > 0. Then, for all δ > 0, we have

Pω


∣∣∣∣∣∣∣∣∣
Xω,0

R−1(tN2) − Xω,0
1

EP[α0] tN2

N

∣∣∣∣∣∣∣∣∣ > ε

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≤ Pω


∣∣∣∣∣∣∣∣∣
Xω,0

R−1(tN2) − Xω,0
1

EP[α0] tN2

N

∣∣∣∣∣∣∣∣∣ > ε,
∣∣∣∣∣∣R−1(tN2)

N2 −
t

EP [α0]

∣∣∣∣∣∣ ≤ δ


+ Pω
(∣∣∣∣∣∣R−1(tN2)

N2 −
t

EP [α0]

∣∣∣∣∣∣ > δ
)
. (4.3.16)

The second term on the r.h.s. of (4.3.16) goes to zero as N → ∞ by (4.3.14), while the first term is bounded above
by

Pω

 sup
|s−r|≤δ
r,s≤T

∣∣∣∣∣∣∣X
ω,0
sN2 − Xω,0

rN2

N

∣∣∣∣∣∣∣ > ε
 . (4.3.17)

for some positive T = T (t, c) independent of N ∈ N. Due to Theorem 4.3.3 and the continuity of the trajectories of
the limit process, the expression in (4.3.17) vanishes as N → ∞ and δ→ 0, i.e.,

lim
δ↓0

lim sup
N→∞

Pω

 sup
|s−r|≤δ
r,s≤T

∣∣∣∣∣∣∣X
ω,0
sN2 − Xω,0

rN2

N

∣∣∣∣∣∣∣ > ε
 = 0 . (4.3.18)

Indeed, let X̃ω,0 = {X̃ω,0
t , t ∈ [0,T ]} denote the piecewise linear interpolation of the jump process Xω,0. Then, due

to the continuity of the trajectories of the limiting Brownian motion in Theorem 4.3.3, the same theorem holds
with C([0,T ],Rd) (the Banach space of continuous functions from [0,T ] to Rd endowed with the supremum norm;
see, e.g., [22, Chapter 8]) and X̃ω,0 in place of D([0,T ],Rd) and Xω,0, respectively. By Prohorov’s theorem (see,
e.g., [22, Theorem 6.2]) and the characterization of tightness of probability measures on C([0,T ],Rd) (see, e.g.,
[22, Theorem 8.2]), we have, for all ε > 0,

lim
δ↓0

lim sup
N→∞

Pω

 sup
|s−r|≤δ
r,s≤T

∣∣∣∣∣∣∣ X̃
ω,0
sN2 − X̃ω,0

rN2

N

∣∣∣∣∣∣∣ > ε
 = 0 . (4.3.19)

For all δ > 0 and ε > 0, Xω,0 being a nearest-neighbor random walk implies that

lim sup
N→∞

Pω

 sup
|s−r|≤δ
r,s≤T

∣∣∣∣∣∣∣ X̃
ω,0
sN2 − X̃ω,0

rN2

N

∣∣∣∣∣∣∣ > ε
 = lim sup

N→∞
Pω

 sup
|s−r|≤δ
r,s≤T

∣∣∣∣∣∣∣X
ω,0
sN2 − Xω,0

rN2

N

∣∣∣∣∣∣∣ > ε


holds true. This and (4.3.19) yield (4.3.18), thus, concluding the proof of the proposition. �

4.3.2 Hölder equicontinuity of the semigroup and heat kernel upper bounds for RW(α)

In this section, α is an arbitrary realization of the environment. We start by proving that the family of semigroups
corresponding to the diffusively rescaled random walks RW(α) are Hölder equicontinuous in both space and time
variables. It is well-known (see, e.g., [157, 52] as references in the context of graphs) that Hölder equicontinuity
of solutions to parabolic partial differential equations may be derived from parabolic Harnack inequalities (see,
e.g., [52, Definition 1.6]). In our context, for all bounded functions f : Zd → R, the parabolic partial difference
equation that S α

· f (·) =
{
S α

t f (x), t ≥ 0, x ∈ Zd
}

solves reads as follows:

αx
∂

∂t
ψ(t, x) =

∑
y

αxαy(ψ(t, y) − ψ(t, x)) , t ≥ 0 , x ∈ Zd , (4.3.20)

with initial condition ψ(0, ·) = f . By applying the Moser iteration scheme as in [52, Section 2], we recover the
parabolic Harnack inequality ([52, Theorem 2.1]) for positive solutions of (4.3.20). We note that α, viewed as a
σ-finite measure on Zd and due to the assumption of uniform ellipticity, plays the role of speed measure (cf. m in
[52, Section 1.1]; see also [9, Remark 1.5] for an analogous discussion).

In conclusion, by applying the aforementioned parabolic Harnack inequality as, e.g., in [52, Proposition 4.1] and
[157, Theorem 1.31], we obtain the following result:
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Proposition 4.3.6 (Hölder equicontinuity of semigroups). There exists C > 0 and γ > 0 such that, for all realiza-
tions α of the environment, for all N ∈ N and for all G ∈ C0(Rd), we have

∣∣∣S N,α
tN2 G( x

N ) − S N,α
sN2G( y

N )
∣∣∣ ≤ C sup

u∈Rd
|G(u)|

 √|t − s| ∨ | xN −
y
N |

√
t ∧ s

γ (4.3.21)

for all s, t > 0 and x, y ∈ Zd.

The second result is an upper bound for the heat kernel of the random walk RW(α), i.e.,

qαt (x, y) :=
1
αy

Pα(Xα,x
t = y) ≡

pαt (x, y)
αy

. (4.3.22)

More precisely, we need to ensure that the tails of the heat kernels satisfy a uniform integrability condition. To
this aim, many results of heat kernel upper bounds which have been established in the literature, such as Gaussian
upper bounds (see, e.g., [13, Theorem 2.3]), would suffice. Here, we follow Nash-Davies’ method as in Section
3 in [38] applied to our context. Indeed, by [38, Theorem 3.25], if Nash inequality in [38, Eq. (3.18)] holds true,
then there exists a constant c′ > 0 depending only on the dimension d ≥ 1 and c such that

qαt (x, y) ≤
c′

1 ∨
√

td
e−D(2t;x,y) , (4.3.23)

where
D(r; x, y) := sup

ψ∈`∞(Zd ,α)

(
|ψ(x) − ψ(y)| − rΓ(ψ)2

)
(4.3.24)

and

Γ(ψ)2 := sup
x∈Zd

 ∑
y:|y−x|=1

αy

2

(
eψ(y)−ψ(x) − 1

)2

 , (4.3.25)

with the above quantity corresponding to the equation one line above [38, Theorem 3.9]. For what concerns Nash
inequality, since α(x)α(y) ≥ 1 for all x, y ∈ Zd, we have, for all f ∈ `1(Zd,α),

Eα( f , f ) :=
1
2

∑
x∈Zd

∑
y:|y−x|=1

α(x)α(y) ( f (y) − f (x))2

≥
1
2

∑
x∈Zd

∑
y:|y−x|=1

( f (y) − f (x))2

≥ C ‖ f ‖
2+ 4

d

`2(Zd ,ν) ‖ f ‖
− 4

d

`1(Zd ,λ) , (4.3.26)

where λ is the counting measure on Zd. Note that for the last inequality above we used Nash inequality for the
continuous-time simple random walk (see, e.g., [157, Eq. (1.8)]), with the constant C > 0 depending only on the
dimension d ≥ 1. Due to the assumed uniform ellipticity of α (see Assumption 4.1.1), the equivalence of the norms
‖·‖`p(Zd ,λ) and ‖·‖`p(Zd ,α) together with (4.3.26) yield

Eα( f , f ) ≥ C c−(1+ 2
d ) ‖ f ‖

2+ 4
d

`2(Zd ,α) ‖ f ‖
− 4

d

`1(Zd ,α) , (4.3.27)

which corresponds to [38, Eq. (3.18)] with A =
(
C−1c1+ 2

d

)
, ν = d and δ = 0. Therefore, we get (4.3.23) by [38,

Theorem 3.25] for ρ = 1.

Finally, by arguing as in the proof of Lemma 1.9 in [157] and by the uniform ellipticity of α, we obtain the
following proposition:

Proposition 4.3.7 (Heat kernel upper bound). There exists a constant c > 0 depending only on d ≥ 1 and c such
that, for all environments α, t > 0 and x, y ∈ Zd, the following upper bound holds:

Pα
(
Xα,x

t = y
)
≤

c

1 ∨
√

td
e−

|x−y|
1∨
√

t . (4.3.28)
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4.3.3 Proof of Theorem 4.3.1

Let us conclude the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. First we prove that, for all α ∈ B (see (4.3.11)), for all t ≥ 0 and G ∈ C0(Rd), we have

sup
x∈Zd

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣ −→
N→∞

0 . (4.3.29)

We follow the ideas in [42, Appendix A.2]. For all u ∈ Rd and ε > 0, let Bε(u) (resp. Bε(u)) denote the open (resp.
closed) Euclidean ball of radius ε > 0 centered in u ∈ Rd. Moreover, for all α, we define

σN
ε (u) := inf

t ≥ 0 :
Xα,0

tN2

N
∈ Bε(u)

 and σε(u) := inf
{
t ≥ 0 : BΣt ∈ Bε(u)

}
to be the first hitting times of Bε(u) of the random walks and Brownian motion, respectively. Then, as a conse-
quence of Proposition 4.3.4 (see also Remark 4.3.5) and the strong Markov property of both processes, we have,
for all α ∈ B, for all t ≥ 0, T > 0 and G ∈ C0(Rd),

∑
y
N ∈Bε(u)∩Z

d

N

Eα

G Xα,y
tN2

N

 Pαε,u,T
( y

N

)
−→
N→∞

∫
Bε(u)
E
[
G(BΣt + v)

]
Pε,u,T (dv) , (4.3.30)

where

Pαε,u,T
(

y
N

)
:= Pα

Xα,0
σN
ε (u)

N
=

y
N

∣∣∣∣∣σN
ε (u) < T

 and Pε,u,T (dv) := P(BΣσε(u) = dv
∣∣∣σε(u) < T ) .

Let {xN}N∈N ⊆ Z
d be such that xN

N → u as N → ∞. Then, by the triangle inequality, we have, for all ε > 0,∣∣∣S N,α
tN2 G( xN

N ) − SΣt ( xN
N )

∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣∣S
N,α
tN2 G

(
xN
N

)
−

∑
y
N ∈Bε(u)∩Z

d

N

Eα

G Xα,y
tN2

N

 Pαε,u,T
( y

N

)∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣
∑

y
N ∈Bε(u)∩Z

d

N

Eα

G Xα,y
tN2

N

 Pαε,u,T
( y

N

)
−

∫
Bε(u)
E
[
G(BΣt + v)

]
Pε,u,T (dv)

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
Bε(u)
E
[
G(BΣt + v)

]
Pε,u,T (dv) − SΣt G( xN

N )

∣∣∣∣∣∣ . (4.3.31)

As for the first term on the r.h.s. above, for all environments α ∈ B, we have, by Hölder’s inequality,∣∣∣∣∣∣∣∣∣∣∣S
N,α
tN2 G

(
xN
N

)
−

∑
y
N ∈Bε(u)∩Z

d

N

Eα

G Xα,y
tN2

N

 Pαε,u,T
( y

N

)∣∣∣∣∣∣∣∣∣∣∣
≤

∑
y
N ∈Bε(u)∩Z

d

N

∣∣∣∣S N,α
tN2 G

(
xN
N

)
− S N,α

tN2 G
(

y
N

)∣∣∣∣ Pαε,u,T
( y

N

)
≤ sup

y
N ∈Bε(u)

∣∣∣∣S N,α
tN2 G

(
xN
N

)
− S N,α

tN2 G
(

y
N

)∣∣∣∣ .
The above upper bound, since xN

N → u as N → ∞, yields, by Proposition 4.3.6 and the uniform boundedness of the
function G ∈ C0(Rd),

lim
ε→0

lim sup
N→∞

∣∣∣∣∣∣∣∣∣∣∣S
N,α
tN2 G

(
xN
N

)
−

∑
y
N ∈Bε(u)∩Z

d

N

Eα

G Xα,y
tN2

N

 Pαε,u,T
( y

N

)∣∣∣∣∣∣∣∣∣∣∣ = 0 (4.3.32)
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for all environments α ∈ B and t ≥ 0. A similar argument employing the uniform continuity of G ∈ C0(Rd) and
the translation invariance of the law of Brownian motion ensures

lim
ε→0

lim sup
N→∞

∣∣∣∣∣∣
∫
Bε(u)
E
[
G(BΣt + v)

]
Pε,u,T (dv) − SΣt G( xN

N )

∣∣∣∣∣∣ = 0 (4.3.33)

for all t ≥ 0. By combining (4.3.30)–(4.3.33), we obtain, for all α ∈ B, for all G ∈ C0(Rd), t ≥ 0, u ∈ Rd and
approximating points xN

N → u, ∣∣∣S N,α
tN2 G( xN

N ) − SΣt G( xN
N )

∣∣∣ −→
N→∞

0 . (4.3.34)

In order to go from pointwise (i.e., (4.3.34)) to uniform convergence over points in Zd (i.e., (4.3.29)), we crucially
use the heat kernel upper bound in Proposition 4.3.7 and the Hölder equicontinuity in Proposition 4.3.6. First, note
that proving (4.3.29) for continuous and compactly supported functions G ∈ Cc(Rd) suffices, due to the density of
Cc(Rd) in C0(Rd) and the contractivity of the semigroups {S N,α

tN2 , t ≥ 0} and {SΣt , t ≥ 0} w.r.t. the supremum norms
on Z

d

N and Rd, respectively. Hence, for all G ∈ Cc(Rd) and for all compact sets K ⊆ Rd, (4.3.34), Proposition 4.3.6
and the uniform continuity of SΣt G ∈ C0(Rd) imply, for all α ∈ B,

sup
x
N ∈K∩

Zd
N

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣ −→
N→∞

0 . (4.3.35)

Letting supp(G) ⊆ Rd denote the compact support of G ∈ Cc(Rd), we have

sup
x
N ∈K

c∩ Z
d

N

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣
≤ sup

u∈Rd
|G(u)| sup

x
N ∈K

c∩ Z
d

N

Pα
Xα,x

tN2

N
∈ supp(G)

 + P(BΣt + x ∈ supp(G))

 . (4.3.36)

Thus, by the heat kernel upper bounds for RW(α) (Proposition 4.3.7) and analogous bounds for the non-degenerate
Brownian motion {BΣt , t ≥ 0}, we can choose K ⊆ Rd such that the r.h.s. in (4.3.36) is arbitrarily small. This yields
(4.3.29) for all α ∈ B.

To go from (4.3.29) to (4.3.1) in which the convergence is uniform over bounded intervals of time, we apply [62,
Chapter 1, Theorem 6.1]. Indeed, for all realizations of the environment α, the semigroups {S N,α

t , t ≥ 0}N∈N and
{SΣt , t ≥ 0} are strongly continuous contraction semigroups in the Banach spaces {C0(Z

d

N )}N∈N and C0(Rd) (endowed
with the corresponding supremum norms), respectively; moreover, the projections πN : C0(Rd) → C0(Z

d

N ) given
by πNG( x

N ) := G( x
N ) are linear and such that supN∈N ‖πN‖N = 1 < ∞, with ‖πN‖N denoting the operator norm of

πN . �

Remark 4.3.8 (Equivalent formulations of the arbitrary starting point quenched invariance principle). If one as-
sumes, for a given realization of the environment α, the invariance principle for the random walk RW(α) with
arbitrary starting positions, i.e.,

For all T > 0, for any macroscopic point u ∈ Rd and for any sequence of points {xN}N∈N ⊆ Z
d such that

xN
N → u as N → ∞, the laws of { 1

N Xα,xN

tN2 , t ∈ [0,T ]}N∈N, the diffusively rescaled RW(α) started from xN
N ,

converge weakly to the law of {BΣ,ut := BΣt + u, t ∈ [0,T ]}, the Brownian motion started from u ∈ Rd and
with a non-degenerate covariance matrix Σ independent of the realization of the environment α

(4.3.37)
then (4.3.34) follows immediately by the uniform continuity of SΣt G ∈ C0(Rd). By the same argument used in
the final part of the proof of Theorem 4.3.1 above (i.e., the part of the proof immediately after (4.3.34) involving
the heat kernel upper bound in Proposition 4.3.7 and the Hölder equicontinuity in Proposition 4.3.6) one gets the
convergence in (4.2.38). Therefore, in view of the discussion just after (4.2.38), we obtain that, under Assumption
4.1.1, (4.3.37) and (4.2.38) are equivalent.

Remark 4.3.9 (Quenched local CLT). As already mentioned, (4.3.1), namely the arbitrary starting point quenched
invariance principle for the diffusively rescaled random walks RW(α), is stronger than the quenched invariance
principle for RW(α) starting from the origin. Another well-known strengthening of the quenched invariance prin-
ciple is the quenched local central limit theorem (see, e.g., [? , Theorem 1.11 and Remark 1.12], which applies to
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our context) for RW(α): if we denote by kΣt the heat kernel of the Brownian motion started at the origin, it holds
that, for P-a.e. environment α and for any `, T > 0 and δ > 0,

lim
N→∞

sup
|

y
N |<`

sup
t∈[δ,T ]

∣∣∣∣∣∣∣NdPα
Xα,0

tN2

N
=

y
N

 − kΣt ( y
N )

∣∣∣∣∣∣∣ = 0 . (4.3.38)

The proof of (4.3.38) resembles that of Theorem 4.3.1 and, thus, one may wonder whether (4.3.38) directly yields
(4.3.1). However, (4.3.38) does not seem to be of help when proving (4.3.29), being the supremum over space in
the arrival point and not in the starting point – fixed to be the origin – and being the supremum over time only on
bounded intervals away from t = 0.

4.4 Proof of the hydrodynamic limit

In this section we present the proof of Theorem 4.2.2, which consists of two steps: ensuring tightness of the
empirical density fields and establishing convergence of their finite dimensional distributions to the unique solution
of (4.2.7). In both steps, we use the following representation for the renormalized occupation variables: for all
realizations of the environment α, there exists a probability space such that a.s., for all initial configurations η ∈ Xα,
for all x ∈ Zd and t ≥ 0,

ηt(x)
αx

= S α
t ( η(·)

α·
)(x) +

∫ t

0
S α

t−sdMα
s (x) , (4.4.1)

where {Mα
· (x), x ∈ Zd} is a family of square integrable martingales w.r.t. the natural filtration of SEP(α) (see also

(4.2.29)–(4.2.30)), whose predictable quadratic covariations are given by

〈Mα(x),Mα(y)〉t = −1{|x−y|=1}

∫ t

0
αxαy

(
ηs(x)
αx

+
ηs(y)
αy
− 2 ηs(x)

αx

ηs(y)
αy

)
ds (4.4.2)

for x, y ∈ Zd with x , y, and

〈Mα(x),Mα(x)〉t = −
∑
y∈Zd

|y−x|=1

〈Mα(x),Mα(y)〉t (4.4.3)

for x ∈ Zd. The identity in (4.4.1) expresses the solution of the following infinite system of stochastic differential
equations (cf. (4.2.22)–(4.2.23)) d( ηt(·)

α·
)(x) = Aα( ηt− (·)

α·
)(x) dt + dMα

t (x) , x ∈ Zd , t ≥ 0
η0(x)
αx

=
η(x)
αx

, x ∈ Zd ,

as a mild solution (see, e.g., [145, Chapter 6, Section 1]). The rigorous proof of the identity in (4.4.1) – in which
the r.h.s. contains infinite summations – is postponed to Section 4.5 below. The idea of the proof is to first provide
a so-called “ladder representation” for SEP(α) in terms of a symmetric exclusion process which allows at most
one particle per site; then obtain a mild solution representation analogous to the one in (4.4.1) for such “ladder”
exclusion process as done in, e.g., [139, 64, 147]. The same strategy can be applied to rigorously verify the
identities in (4.4.2)–(4.4.3). We refer to Section 4.5 for further details.

4.4.1 Tightness

In the proof of tightness for the empirical density fields we employ the uniform convergence over time of the
semigroups established in Theorem 4.3.1 and Corollary 4.3.2. Tightness in quenched random environment, which
by Mitoma’s tightness criterion [138] follows from tightness of the following real-valued processes{

XN
t (G), t ∈ [0,T ]

}
N∈N

, ∀G ∈ S (Rd) , (4.4.4)

has been established via the strategy of employing corrected empirical density fields ([99, 87, 68, 66] and [98]). In
what follows, we opt for a different strategy by applying the tightness criterion developed in [147, Appendix B],
which, for convenience of the reader, we report below.
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Theorem 4.4.1 (Tightness criterion [147, Theorem B.4]). For a fixed T > 0, let
{
ZN

t , t ∈ [0,T ]
}

N∈N
be a family of

real-valued stochastic processes with laws {PN}N∈N. Then, this family is tight in the Skorokhod spaceD([0,T ],R)
if the following conditions hold:

(T1) For all t in a dense subset of [0,T ] which includes T ,

lim
`→∞

lim sup
N→∞

PN
(∣∣∣ZN

t

∣∣∣ > `) = 0 .

(T2) For all ε > 0, there exists hε > 0 and Nε ∈ N such that, for all N ≥ Nε, there exist deterministic functions
ψN
ε , ψε : [0, hε]→ [0,∞) and non-negative values φN

ε satisfying the following properties:

(i) The functions ψN
ε are non-decreasing.

(ii) For all h ∈ [0, hε] and t ∈ [0,T ], we have

PN
(∣∣∣ZN

t+h − Z
N
t

∣∣∣ > ε∣∣∣F N
t

)
≤ ψN

ε (h) , a.s. ,

where
{
F N

t , t ≥ 0
}

denotes the natural filtration of
{
ZN

t , t ≥ 0
}
.

(iii) For all h ∈ [0, hε], we have ψN
ε (h) ≤ ψε(h) + φN

ε .

(iv) φN
ε → 0 as N → ∞.

(v) ψε(h)→ 0 as h→ 0.

As we show in the proof of Proposition 4.4.2 below, this criterion, the semigroup convergence in Theorem 4.3.1
and the following mild solution representation of the empirical density fields (see also (4.2.31))

XN
t+h(G) = XN

t (S N,α
hN2G) +

∫ (t+h)N2

tN2
dMN

s (S N,α
(t+h)N2−sG) , t, h > 0 , G ∈ S (Rd) , (4.4.5)

yield tightness directly for the processes in (4.4.4).

Proposition 4.4.2 (Tightness). For all environments α ∈ A ∩ B (see (4.2.16) and (4.3.11)) and for all T > 0, the
sequence {

XN
t , t ∈ [0,T ]

}
N∈N

is tight inD([0,T ],S ′(Rd)). As a consequence, {XN
t , t ≥ 0}N∈N is tight inD([0,∞),S ′(Rd)).

Proof. All throughout the proof, we fix α ∈ A ∩ B. As mentioned above, it suffices to show that conditions (T1)
and (T2) in Theorem 4.4.1 hold for{

ZN
t , t ∈ [0,T ]

}
N∈N

=
{
XN

t (G), t ∈ [0,T ]
}

N∈N
, (4.4.6)

for all G ∈ S (Rd). Because (T1) is a consequence of Proposition 4.4.4 below, it suffices to show (T2). To this
purpose, we fix G ∈ S (Rd) and set, for all ε > 0, h ≥ 0 and N ∈ N,

ψN
ε (h) B

C
ε2 sup

h′∈[0,h]
sup
x∈Zd

∣∣∣G( x
N ) − S N,α

h′N2G( x
N )

∣∣∣ (4.4.7)

ψε(h) B
C
ε2 sup

h′∈[0,h]
sup
u∈Rd

∣∣∣G(u) − SΣh′G(u)
∣∣∣ (4.4.8)

and
φN
ε B

C
ε2 sup

t∈[0,T ]
sup
x∈Zd

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣ , (4.4.9)

where
C B sup

N∈N

1
Nd

∑
x∈Zd

∣∣∣G( x
N )

∣∣∣αx (4.4.10)

is a constant independent of N ∈ N and, since α ∈ A (see (4.2.16)), finite. As a consequence of the triangle
inequality, Theorem 4.3.1 and the continuity of h ∈ [0,∞) 7→ SΣh G ∈ C0(Rd), the functions in (4.4.7)–(4.4.9)
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satisfy the conditions in items (i), (ii), (iv) and (v) of the tightness criterion in Theorem 4.4.1. In the remainder of
the proof, we verify also the remaining condition (iii) in that theorem.

By (4.4.5) and the triangle inequality, we have, for all t, h ≥ 0 and N ∈ N,

PαναN

(∣∣∣XN
t+h(G) − XN

t (G)
∣∣∣ > ε∣∣∣F N

t

)
≤ PαναN

(∣∣∣XN
t (S N,α

hN2G −G)
∣∣∣ > ε

2

∣∣∣∣F N
t

)
(4.4.11)

+ PαναN


∣∣∣∣∣∣∣
∫ (t+h)N2

tN2
dMN

s (S N,α
(t+h)N2−sG)

∣∣∣∣∣∣∣ > ε

2

∣∣∣∣∣∣F N
t

 ,
with F N

t B σ{XN
s , s ≤ t}. The boundedness of the occupation variables of SEP(α), the convergence in (4.3.2) and

the continuity of h ∈ [0,∞) 7→ SΣh G ∈ C0(Rd) allows us to choose hε > 0 and Nε ∈ N such that the first term on
the r.h.s. in (4.4.11) equals zero for all h ∈ [0, hε], N ≥ Nε and t ≥ 0, i.e.,

PαναN

(∣∣∣XN
t (S N,α

hN2G −G)
∣∣∣ > ε

2

∣∣∣∣F N
t

)
= 0 , h ∈ [0, hε] , N ≥ Nε . (4.4.12)

As for the second term on the r.h.s. in (4.4.11), by Chebyshev’s inequality and the first inequality in (4.4.14) below,
we obtain, for all h ∈ [0, hε], N ≥ Nε and t ≥ 0,

PαναN


∣∣∣∣∣∣∣
∫ (t+h)N2

tN2
dMN

s (S N,α
(t+h)N2−sG)

∣∣∣∣∣∣∣ > ε

2

∣∣∣∣∣∣F N
t

 ≤ ψN
ε (h) , a.s. . (4.4.13)

By combining (4.4.11)–(4.4.13), condition (iii) in Theorem 4.4.1 holds true for the process (4.4.6), thus yielding
the desired result. �

4.4.2 Convergence of finite dimensional distributions

In the following proposition – which is an adaptation of, e.g., [139, Lemma 12], [64, Lemma 3.1], [147, Lemma
5.1] – we prove (4.2.34). To this purpose, recall the definitions of Pα

ναN
, Pαη , Eα

ναN
and Eαη at the beginning of Section

4.2 (below (4.2.1)).

Lemma 4.4.3. For any given realization of the environment α, for all N ∈ N, G ∈ S (Rd), η ∈ Xα and t ≥ 0, we
have

Eαη


 1

Nd

∑
x∈Zd

αx

∫ tN2

0
S N,α

tN2−sG( x
N ) dMα

s (x)

2
≤

1
2Nd

1
Nd

∑
x∈Zd

(∣∣∣G( x
N )

∣∣∣2 − ∣∣∣S N,α
tN2 G( x

N )
∣∣∣2)αx ≤

1
2Nd

1
Nd

∑
x∈Zd

∣∣∣G( x
N )

∣∣∣2 αx . (4.4.14)

As a consequence of (4.4.14) and the uniformity of the upper bound w.r.t. η ∈ Xα, we further get

EαναN


 1

Nd

∑
x∈Zd

αx

∫ tN2

0
S N,α

tN2−sG( x
N ) dMα

s (x)

2 −→N→∞
0 , (4.4.15)

where {ναN}N∈N is the sequence of probability measures on Xα given in Theorem 4.2.2.

Proof. A simple computation employing the explicit form of the predictable quadratic covariations of the martin-
gales (4.4.2)–(4.4.3) yields

Eαη


 1

Nd

∑
x∈Zd

αx

∫ tN2

0
S N,α

tN2−sG( x
N ) dMα

s (x)

2
=

∫ tN2

0

1
N2d

∑
x,y∈Zd

|x−y|=1

(
S N,α

tN2−sG( x
N ) − S N,α

tN2−sG( y
N )

)2
αxαy E

α
η

[(
ηs(x)
αx

+
ηs(y)
αy
− 2 ηs(x)

αx

ηs(y)
αy

)]
ds .
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Because a.s. 0 ≤
(
ηs(x)
αx

+
ηs(y)
αy
− 2 ηs(x)

αx

ηs(y)
αy

)
≤ 2, we further get

Eαη


 1

Nd

∑
x∈Zd

αx

∫ tN2

0
S N,α

tN2−sG( x
N ) dMα

s (x)

2
≤

1
Nd

∫ tN2

0

1
Nd

∑
x,y∈Zd

|x−y|=1

αxαy

(
S N,α

tN2−sG( x
N ) − S N,α

tN2−sG( y
N )

)2
ds

=
1

Nd

∫ tN2

0

d
ds

 1
Nd

∑
x∈Zd

∣∣∣S N,α
tN2−sG( x

N )
∣∣∣2 αx

 ds

=
1

Nd

 1
Nd

∑
x∈Zd

(∣∣∣G( x
N )

∣∣∣2 − ∣∣∣S N,α
tN2 G( x

N )
∣∣∣2)αx

 ≤ 1
Nd

 1
Nd

∑
x∈Zd

∣∣∣G( x
N )

∣∣∣2 αx

 .
In view of Lemma 4.2.5, lim supN→∞

1
Nd

∑
x∈Zd

∣∣∣G( x
N )

∣∣∣2 αx < ∞, thus, concluding the proof. �

Since, with probability one, only one particle jumps at the time, for all environments α, and for all T > 0 and
G ∈ S (Rd), we have

EαναN

[
sup

t∈[0,T ]

∣∣∣XN
t+ (G) − XN

t− (G)
∣∣∣] ≤ 2 supu∈Rd |G(u)|

Nd −→
N→∞

0 . (4.4.16)

By combining this with the relative compactness of {XN
t , t ≥ 0} in D([0,T ],S ′(Rd)) (see Proposition 4.4.2), we

obtain that all limit points of {XN
t , t ≥ 0} belong to C([0,T ], S ′(Rd)). Hence, Remark 4.2.3 and the following

proposition conclude the proof of Theorem 4.2.2.

Proposition 4.4.4. Recall the definitions (4.2.16), (4.3.11) and (4.2.4), and fix α ∈ A∩B∩ C. Then, for all δ > 0,
t ≥ 0 and G ∈ S (Rd), we have

PαναN

(∣∣∣XN
t (G) − πΣt (G)

∣∣∣ > δ) −→
N→∞

0 , (4.4.17)

where {πΣt , t ≥ 0} is given in (4.2.6).

Proof. Due to the uniform boundedness of the environments α (Assumption 4.1.1) and the decomposition (4.2.31)
of the empirical density fields, we obtain, for all δ > 0,

PαναN

(∣∣∣XN
t (G) − πΣt (G)

∣∣∣ > δ )
≤ PαναN

(∣∣∣XN
0 (S N,α

tN2 G) − πΣt (G)
∣∣∣ > δ

2

)
+ PαναN


∣∣∣∣∣∣∣
∫ tN2

0
dMN

s (S N,α
tN2−sG)

∣∣∣∣∣∣∣ > δ

2

 . (4.4.18)

Hence, by Chebychev’s inequality and Lemma 4.4.3, the second term on the r.h.s. in (4.4.18) vanishes as N → ∞.
Concerning the first term on the r.h.s. in (4.4.18), in view of πΣt (G) = πρ̄(SΣt G) (see Remark 4.2.3), we proceed as
follows:

PαναN

(∣∣∣XN
0 (S N,α

tN2 G) − πΣt (G)
∣∣∣ > δ

2

)
≤ PαναN

(∣∣∣XN
0 (S N,α

tN2 G) − XN
0 (SΣt G)

∣∣∣ > δ

4

)
+ PαναN

(∣∣∣XN
0 (SΣt G) − πρ̄(SΣt G)

∣∣∣ > δ

4

)
. (4.4.19)

For the first term on the r.h.s. in (4.4.19), by Markov’s inequality and the uniform boundedness of the occupation
variables {η(x), x ∈ Zd}, we obtain

PαναN

(∣∣∣XN
0 (S N,α

tN2 G) − XN
0 (SΣt G)

∣∣∣ > δ

4

)
≤

4
δ

1
Nd

∑
x∈Zd

∣∣∣S N,α
tN2 G( x

N ) − SΣt G( x
N )

∣∣∣αx .

In turn, this latter upper bound vanishes for all environments α ∈ A ∩ B, for all G ∈ S (Rd) and t ≥ 0, in view of
Corollary 4.3.2. The second term on the r.h.s. in (4.4.19) vanishes because S (Rd) is invariant under the action of
the Brownian motion semigroup and because of the assumed consistency of the initial conditions (see Definition
4.2.1) for α ∈ C (see (4.2.4)). This concludes the proof. �
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4.5 Mild solution and ladder construction

In this section we derive the mild solution representation for SEP(α). More in detail, we start from a so-called
α-ladder symmetric exclusion process (see, e.g., [84]), we obtain the a.s. mild solution representation as in e.g.
[64, Section 3] and [147, Proposition 4.1] for this ladder counterpart and, then, by means of a projection which
preserves the Markov property, we derive an a.s. mild solution representation for SEP(α).

Let us fix a realization of the environment α satisfying Assumption 4.1.1. Then, we define

{N̄·({(x, i), (y, j)}) : x, y ∈ Zd with |x − y| = 1, i ∈ {1, . . . , αx}, j ∈ {1, . . . , αy}}. (4.5.1)

to be a family of independent and identically distributed compensated Poisson processes with intensity one.

We denote by (N̄,F, {Ft : t ≥ 0},P) the probability space on which this compensated Poisson processes are defined.
This randomness will be responsible (see Lemma 4.5.1 below) for the stirring construction (see, e.g., [126, p.
399]) of the so-called ladder symmetric exclusion process with parameter α ∈ {1, . . . , c}Z

d
, the particle system with

configuration space
X̃α = {η̃ : η̃(x, i) ∈ {0, 1} for all x ∈ Zd and i ∈ {1, . . . , αx}} (4.5.2)

and with infinitesimal generator L̃α acting on bounded cylindrical functions ϕ̃ : X̃α → R as follows:

L̃αϕ̃(η̃) =
∑
{x,y}∈Zd

|x−y|=1

L̃αxyϕ̃(η̃) , (4.5.3)

where

L̃αxyϕ̃(η̃) =

αx∑
i=1

αy∑
j=1

{
η̃(x, i) (1 − η̃(y, j)) (ϕ̃(η̃(x,i),(y, j)) − ϕ̃(η̃))

+ η̃(y, j) (1 − η̃(x, i)) (ϕ̃(η̃(y, j),(x,i)) − ϕ̃(η̃))
}
.

Here η̃(x,i),(y, j) denotes, also in this context, the configuration obtained from η̃ ∈ X̃α by removing a particle at
position (x, i) and placing it on (y, j).

This process may be considered as a special case of a symmetric exclusion process on the set Z̃d = {(x, i), x ∈
Zd, i ∈ {1, . . . , αx}}. For this reason and from the uniform boundedness assumption of the environment, we obtain
the following representation of {η̃t, t ≥ 0}, whose proof is completely analogous to the one of, e.g., [64, Section 3]
and [147, Proposition 4.3]. We restate this result below for convenience of the reader.

Lemma 4.5.1 (Mild solution for the ladder exclusion). Fix an environment α ∈ {1, . . . , c}Z
d
. For P-a.e. realization

of the compensated Poisson processes {N̄·({·, ·})} and for all initial configurations η̃ ∈ X̃α, we have, for all (x, i) ∈ Z̃d

and t ≥ 0,

η̃t(x, i) = S̃ α
t η̃0(x, i) +

∫ t

0
S̃ α

t−s dM̃α
s (x, i) . (4.5.4)

In the above formula, {S̃ α
t , t ≥ 0}, resp. { p̃αt (·, ·), t ≥ 0}, corresponds to the transition semigroup, resp. probabili-

ties, associated to the continuous-time random walk on Z̃d whose infinitesimal generator Ãα is given below:

Ãα f (x, i) =
∑
y∈Zd

|y−x|=1

αy∑
j=1

( f (y, j) − f (x, i)) , (x, i) ∈ Z̃d ,

where f : Z̃d → R is a bounded function. Moreover, for all (x, i) ∈ Z̃d and t, s ≥ 0,

dM̃α
s (x, i) ≡ dM̃α

s ((x, i), η̃s− ) B
∑
y∈Zd

|y−x|=1

αy∑
j=1

(η̃s− (y, j) − η̃s− (x, i)) dN̄s({(x, i), (y, j)}) , (4.5.5)

and ∫ t

0
S̃ α

t−s dM̃α
s (x, i) B

∑
y∈Zd

αy∑
j=1

∫ t

0
p̃αt−s((x, i), (y, j)) dM̃α

s (y, j) ,

where the above time-integrals are Lebesgue-Stieltjes integrals w.r.t. the realizations of the compensated Poisson
processes. Furthermore, the infinite summations in (4.5.4) are P-a.s. – for all times and initial configurations –
absolutely convergent.
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We leave to the reader to check that, P-a.s., for all times t ≥ 0 and initial configurations η̃ ∈ X̃α, the predictable
quadratic covariations of the martingales {M̃α

t (·), t ≥ 0} in (4.5.4) read as

〈M̃α(x, i), M̃α(y, j)〉t = −1{|x−y|=1}

∫ t

0
(η̃s(x, i) − η̃s(y, j))2 ds (4.5.6)

for (x, i), (y, j) ∈ Z̃d with x , y, and

〈M̃α(x, i), M̃α(x, i)〉t = −
∑
y∈Zd

|x−y|=1

αy∑
j=1

〈M̃α(x, i), M̃α(y, j)〉t (4.5.7)

for (x, i) ∈ Z̃d.

In the following lemma, we show how to obtain SEP(α), with generator given in (4.1.3), from the ladder symmetric
exclusion process with parameter α (see, e.g., [84] for further details on this construction). By combining this result
with Lemma 4.5.1, we obtain a mild solution representation of SEP(α) which employs the same randomness used
to define the ladder process.

Lemma 4.5.2 (Mild solution for SEP(α)). Fix an environment α ∈ {1, . . . , c}Z
d
.

Let η ∈ Xα and η̃ ∈ X̃α be configurations satisfying the following relation:

η(x) =

αx∑
i=1

η̃(x, i) , x ∈ Zd . (4.5.8)

Let {η̃t, t ≥ 0} be the ladder symmetric exclusion process with parameter α, started from η̃ ∈ X̃α presented above
and represented as in Lemma 4.5.1. Then, the stochastic process {ηt, t ≥ 0} taking values in Xα defined in terms of
{η̃t, t ≥ 0} as follows

ηt(x) B
αx∑
i=1

η̃t(x, i) , t ≥ 0 , x ∈ Zd , (4.5.9)

is a Markov process with infinitesimal generator Lα as given in (4.1.3) and started from η ∈ Xα.

Moreover, for P-a.e. realization of the compensated Poisson processes in (4.5.1) and for all initial configurations
η ∈ Xα, we have (cf. the definition of the semigroup {S α

t , t ≥ 0} in Section 4.2.2, as well as (4.2.29)–(4.2.30))(
ηt
α

)
(x) = S α

t ( η
α

)(x) +

∫ t

0
S α

t−s dMα
s (x) , t ≥ 0 , x ∈ Zd , (4.5.10)

where

dMα
s (x) B

1
αx

αx∑
i=1

dM̃α
s ((x, i)) , x ∈ Zd , (4.5.11)

with {M̃α
t (·), t ≥ 0} being the martingales given in (4.5.5) and defined in terms of the ladder exclusion process

{η̃t, t ≥ 0} started from any configuration η̃ ∈ X̃α related to η ∈ Xα as in (4.5.8); furthermore, the predictable
quadratic covariations of the martingales in (4.5.11) are those given in (4.4.2)–(4.4.3).

Proof. Arguing as in [84, Theorem 4.2(a)], the process {ηt, t ≥ 0} defined in (4.5.9) is Markov; furthermore, it is
simple to check that, by uniqueness in law of the solution to the martingale problem associated to (Lα, η) (see, e.g.,
[126, Chapter 1]), its infinitesimal generator is Lα (we refer to [84, Section 4.1] for further details).

As for the second part of the claim, by definition of the process {ηt, t ≥ 0} in terms of the process {η̃t, t ≥ 0} and
formula (4.5.4), we obtain, P-a.s., for all x ∈ Zd and t ≥ 0, the following expression for ηt(x):

ηt(x) B
αx∑
i=1

η̃t(x, i)

=

αx∑
i=1

∑
y∈Zd

αy∑
j=1

(
p̃αt ((x, i), (y, j)) η̃0(y, i) +

∫ t

0
p̃αt−s((x, i), (y, j)) dM̃α

s (y, j)
)
. (4.5.12)



4.6. Proofs of auxiliary results 61

Since the infinite summations above are absolutely convergent, we may re-order them so to obtain:

ηt(x) =
∑
y∈Zd

Yt(y) ,

where

Yt(y) B
αx∑
i=1

αy∑
j=1

p̃αt ((x, i), (y, j)) η̃0(y, j) +

∫ t

0

αx∑
i=1

αy∑
j=1

p̃αt−s((x, i), (y, j)) dM̃α
s (y, j) . (4.5.13)

We observe that, for all sites x, y ∈ Zd and labels i, i′ ∈ {1, . . . , αx}, j, j′ ∈ {1, . . . , αy}, p̃αt ((x, i), (y, j)) =

p̃αt ((x, i′), (y, j′)); in other words, the transition probabilities p̃αt (·, ·) do not depend on the labels, but only on
the sites. Therefore, we define p̃αt (x, y) := p̃αt ((x, i), (y, j)). If we combine this with the definition of η0(y) :=∑αy

j=1 η̃0(y, j), the expression in (4.5.13) rewrites as follows:

Yt(y) = αx p̃αt (x, y) η0(y) +

∫ t

0
αx p̃αt−s(x, y)

αy∑
j=1

dM̃α
s ((y, j), η̃s− ) .

Recalling from Section 4.2.2 the definition of transition probabilities {pαt (·, ·), t ≥ 0} associated to RW(α) and after
observing that

pαt (x, y) =

αy∑
j=1

p̃αt ((x, i), (y, j)) = αy p̃αt (x, y) , (4.5.14)

the proof of the identity (4.5.10) is concluded.

In order to recover the predictable quadratic covariations (4.4.2)–(4.4.3) for the martingales {Mα
t (·), t ≥ 0}, it

suffices to combine (4.5.11) with (4.5.6)–(4.5.7) and (4.5.9); we leave the details to the reader. �

We take the construction and (4.5.9) in Lemma 4.5.2 as a definition of our partial exclusion process SEP(α). In
particular, we consider the process {ηt, t ≥ 0} as a Markov functional of the ladder process {η̃t, t ≥ 0}, whose
evolution, in turn, is prescribed in Lemma 4.5.1 in terms of the compensated Poisson processes {N̄(·, ·)} in (4.5.1)
and its initial configuration η̃0 ∈ X̃

α.

However, to any given SEP(α)-configuration η ∈ Xα there may correspond, in general, many “compatible ladder
configurations”, namely configurations η̃ ∈ X̃α of the following type:η̃ ∈ X̃α :

αx∑
i=1

η̃(x, i) = η(x) for all x ∈ Zd

 .

Therefore, when we say that the particle system {ηt, t ≥ 0} starts from the configuration η ∈ Xα, we first need to
specify how to initialize the underlying ladder process and, then, unequivocally follow the Poissonian source of
randomness yielding (4.5.10) and (4.5.11). We will always assume that, given an initial configuration η ∈ Xα, the
compatible ladder configurations η̃ ∈ X̃α are chosen according to some probability distribution independent of the
compensated Poisson processes in (4.5.1). We can, for instance, make the deterministic choice of filling up the
ladders at each site starting from bottom to top.

4.6 Proofs of auxiliary results

In order to fix notation, for all compact subsets K ⊆ Rd, Cb(K) (resp. Cc(K)) denotes the space of continuous and
bounded (resp. compactly supported) functions from K to R endowed with the supremum norm, while M+(K)
denotes the space of non-negative finite Borel measures on K endowed with the weak∗ topology w.r.t. Cb(K).
Moreover, for all µ ∈ M+(K) and F ∈ Cb(K), we define

µ(F) B
∫
K

F(u) µ(du) . (4.6.1)
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4.6.1 Proof of Lemma 4.2.5

Proof of Lemma 4.2.5. The methodology of the proof is inspired by [28, Theorem 8.2.18].

By applying [67, Proposition 3.2] to the integrable function g : α ∈ {1, . . . , c}Z
d
7→ α0 ∈ R, there exists a (translation

invariant) measurable subset A ⊆ {1, . . . , c}Z
d

such that P(A) = 1 holds, as well as∣∣∣∣∣∣∣ 1
Nd

∑
x∈Zd

G( x
N )αx − EP [α0]

∫
Rd

G(u) du

∣∣∣∣∣∣∣ −→N→∞
0 (4.6.2)

hold for all α ∈ A and G ∈ Cc(Rd), the subspace of C0(Rd) of compactly supported functions.

In the remainder of this proof, α ∈ A; moreover, we define

YN,α B
1

Nd

∑
x∈Zd

δ x
N
αx and Y B EP [α0] du (4.6.3)

as elements in S ′(Rd).

Recall from the proof of Theorem 4.3.1 the definitions of the open and closed Euclidean balls B`(u) and B`(u).
Then, for all ` > 0, since the restriction map |

B`(0) : Cc(Rd) → Cc(B`(0)) is onto and since Cc(B`(0)) ≡ Cb(B`(0)),
(4.6.2) implies that, for all α ∈ A, YN,α

`
weakly converge as non-negative finite Borel measures as N → ∞ to Y`,

where
YN,α
`

(du) B
1

Nd

∑
x
N ∈B`(0)

δ x
N

(du)αx and Y`(du) B EP [α0] 1
{u∈B`(0)} du . (4.6.4)

By the compactness of B`(0) ⊆ Rd, for all δ > 0, there exists a finite sub-cover U`(δ) B {Bδ(ui)}ni=1 of open
balls of radius δ > 0 (with n = n(δ) ∈ N). Moreover, by defining recursively V1 B Bδ(u1) ∩ B`(0) and Vi B
{Bδ(ui) ∩ B`(0)} \ Vi−1, it is simple to check that the pairwise disjoint sets V`(δ) B {Vi}

n
i=1 cover B`(0) and

Y`(∂Vi) = 0 for all i = 1, . . . , n, where ∂Vi denotes the boundary of Vi in the subspace topology on B`(0). Hence,

sup
F∈F

∣∣∣YN,α
`

(F) − Y`(F)
∣∣∣ ≤ sup

F∈F

n∑
i=1

1
Nd

∑
x
N ∈Vi

∣∣∣F( x
N ) − F(ui)

∣∣∣αx

+ sup
F∈F

sup
u∈Rd
|F(u)|

n∑
i=1

∣∣∣∣∣∣∣∣ 1
Nd

∑
x
N ∈Vi

αx −

∫
Vi

EP [α0] du

∣∣∣∣∣∣∣∣
+ sup

F∈F

n∑
i=1

EP [α0]
∫

Vi

|F(u) − F(ui)| du . (4.6.5)

The boundedness of F (see (4.2.13)), and the convergence (recall that YN,α
`

weakly converges to Y` as N → ∞ as
well as Y`(∂Vi) = 0 for all i = 1, . . . , n)

YN,α
`

(Vi) −→
N→∞

Y`(Vi) , i = 1, . . . , n , (4.6.6)

ensure that, for all δ > 0, the second term on the r.h.s. in (4.6.5) vanishes as N → ∞:

sup
F∈F

sup
u∈Rd
|F(u)|

n∑
i=1

∣∣∣∣∣∣∣∣ 1
Nd

∑
x
N ∈Vi

αx −

∫
Vi

EP [α0] du

∣∣∣∣∣∣∣∣ −→N→∞
0 . (4.6.7)

The first and third terms on the r.h.s. in (4.6.5) are both bounded above by

sup
u,v∈Rd

|u−v|<δ

sup
F∈F
|F(u) − F(v)|

{
YN,α
`

(B`(0)) + Y`(B`(0))
}

; (4.6.8)

hence, by the definition (4.2.12) of equicontinuity of the subset F ⊆ C0(Rd) and

lim sup
N→∞

YN,α
`

(B`(0)) + Y`(B`(0)) = 2Y`(B`(0)) < ∞ , (4.6.9)
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we obtain

lim
δ↓0

lim sup
N→∞

sup
F∈F


n∑

i=1

1
Nd

∑
x
N ∈Vi

∣∣∣F( x
N ) − F(ui)

∣∣∣αx +

n∑
i=1

EP [α0]
∫

Vi

|F(u) − F(ui)| du

 = 0 . (4.6.10)

Hence, (4.6.7) and (4.6.10) combined with (4.6.5) yield, for all ` > 0,

sup
F∈F

∣∣∣YN,α
`

(F) − Y`(F)
∣∣∣ −→

N→∞
0 . (4.6.11)

The uniform integrability assumption (see (4.2.14)) and the upper bound αx ≤ c < ∞ (see Assumption 4.1.1)
ensure

lim
`→∞

lim sup
N→∞

sup
F∈F

 1
Nd

∑
| x

N |>`

∣∣∣F( x
N )

∣∣∣αx + EP [α0]
∫
{|u|>`}

|F(u)| du

 = 0 . (4.6.12)

The triangle inequality

sup
F∈F

∣∣∣YN,α(F) − Y(F)
∣∣∣ ≤ sup

F∈F

∣∣∣YN,α
`

(F) − Y`(F)
∣∣∣

+ sup
F∈F

 1
Nd

∑
| x

N |>`

∣∣∣F( x
N )

∣∣∣αx + EP [α0]
∫
{|u|>`}

|F(u)| du

 , (4.6.13)

which holds for all ` > 0 and N ∈ N, combined with (4.6.11) and (4.6.12), yields the desired result. �

4.6.2 Proof of Corollary 4.3.2

Proof of Corollary 4.3.2. In what follows, let α be an environment in the subset A ∩B ⊆ {1, . . . , c}Z
d

(see (4.2.16)
and (4.3.11)). Fix T > 0 and G ∈ S (Rd) ⊆ C0(Rd). Let G+ and G− be the positive and negative parts of G
(G = G+ − G−); then, G± ∈ L1(Rd) ∩ C0(Rd) (hence they satisfy (4.3.1)) and there exist functions H± ∈ S (Rd)
(see, e.g., [147, Proposition 5.3] for an explicit construction) such that

0 ≤ G±(u) ≤ H±(u) , u ∈ Rd . (4.6.14)

As a consequence, there exist constants C± > 0 such that

sup
0≤t≤T

|SΣt G±(u)| ≤
C±

1 + |u|2d , u ∈ Rd . (4.6.15)

This follows from the bounds (4.6.14), the fact that SΣt acts as convolution with a non-degenerate Gaussian kernel
and the use of Fourier transformation in S (Rd). Moreover, because of the uniform continuity of G± and the
contractivity of the semigroup in C0(Rd), we have

sup
t∈[0,T ]

sup
|u−v|<δ

∣∣∣SΣt G±(u) − SΣt G±(v)
∣∣∣ ≤ sup

t∈[0,T ]
sup
|u−v|<δ

∣∣∣G±(u) −G±(v)
∣∣∣ −→
δ→0

0 .

As a consequence, for all T > 0, both subsets of C0(Rd) given by

F[0,T ](G±) B
{
SΣt G± ∈ C0(Rd) : t ∈ [0,T ]

}
(4.6.16)

satisfy the assumptions in Lemma 4.2.5. Therefore, since α ∈ A, Lemma 4.2.5 ensures that, for all G ∈ S (Rd) and
T > 0, we have

sup
t∈[0,T ]

∣∣∣∣∣∣∣ 1
Nd

∑
x∈Zd

SΣt G±( x
N )αx −

∫
Rd
SΣt G±(u)EP [α0] du

∣∣∣∣∣∣∣ −→N→∞
0 . (4.6.17)

Let us now prove

sup
t∈[0,T ]

1
Nd

∑
x∈Zd

∣∣∣S N,α
tN2 G±( x

N ) − SΣt G±( x
N )

∣∣∣αx −→
N→∞

0 , (4.6.18)
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from which (4.3.2) follows.

Since |c| = c + 2 max{−c, 0} for all c ∈ R, we have

sup
t∈[0,T ]

1
Nd

∑
x∈Zd

∣∣∣S N,α
tN2 G±( x

N ) − SΣt G±( x
N )

∣∣∣αx

≤ sup
t∈[0,T ]

1
Nd

∑
x∈Zd

(
S N,α

tN2 G±( x
N ) − SΣt G±( x

N )
)
αx

+ sup
t∈[0,T ]

2
Nd

∑
x∈Zd

max
{
SΣt G±( x

N ) − S N,α
tN2 G±( x

N ), 0
}
αx . (4.6.19)

As for the first term in the r.h.s. above, by detailed balance (see (4.2.26)),
∑

x∈Zd pαtN2 (y, x) = 1, as well as∫
Rd S

Σ
t G±(u) du =

∫
Rd G±(u) du, we obtain

sup
t∈[0,T ]

∣∣∣∣∣∣∣ 1
Nd

∑
x∈Zd

(
S N,α

tN2 G±( x
N ) − SΣt G±( x

N )
)
αx

∣∣∣∣∣∣∣
= sup

t∈[0,T ]

∣∣∣∣∣∣∣∣ 1
Nd

∑
y∈Zd

G±( y
N )αy

∑
x∈Zd

pαtN2 (y, x) −
1

Nd

∑
x∈Zd

SΣt−sG
±( x

N )αx

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ 1
Nd

∑
x∈Zd

G±( x
N )αx −

∫
Rd

G±(u)EP [α0] du

∣∣∣∣∣∣∣
+ sup

t∈[0,T ]

∣∣∣∣∣∣∣ 1
Nd

∑
x∈Zd

SΣt G±( x
N )αx −

∫
Rd
SΣt G±(u)EP [α0] du

∣∣∣∣∣∣∣ ;

thus, the first expression on the r.h.s. of (4.6.19) vanishes as N → ∞ by (4.6.17).

Moreover, we have, for all N ∈ N and x ∈ Zd,

sup
t∈[0,T ]

max
{
SΣt G±( x

N ) − S N,α
tN2 G±( x

N ), 0
}
αx ≤ sup

t∈[0,T ]
SΣt G±( x

N )αx . (4.6.20)

Therefore, for all ` > 0 and combining (4.6.20) and (4.6.15), we obtain

lim sup
N→∞

sup
t∈[0,T ]

2
Nd

∑
x∈Zd

max
{
SΣt G±( x

N ) − S N,α
tN2 G±( x

N ), 0
}
αx

≤ lim sup
N→∞

sup
t∈[0,T ]

sup
| x

N |≤`

∣∣∣SΣt G±( x
N ) − S N,α

tN2 G±( x
N )

∣∣∣ 1
Nd

∑
| x

N |≤`

αx (4.6.21)

+ lim sup
N→∞

2
Nd

∑
| x

N |>`

C± αx

1 + | xN |
2d . (4.6.22)

By Theorem 4.3.1 applied to the functions G± and supN∈N
1

Nd

∑
| x

N |≤`
αx < ∞, (4.6.21) equals zero for all ` > 0,

while (4.6.22) vanishes as ` → ∞. This concludes the proof. �



Chapter 5

Switching interacting particle systems:
hydrodynamics

5.1 Introduction

Section 5.1.1 provides the background and the motivation for the chapter. Section 5.2 defines the model. Sec-
tion 5.3 identifies the dual and the stationary measures. Section 5.3.1 gives a brief outline of the remainder of the
chapter.

5.1.1 Background and motivation

As explained in the introduction of this thesis, interacting particle systems are used to model and analyse properties
of non-equilibrium systems, such as macroscopic profiles, long-range correlations and macroscopic large devia-
tions. Some models have additional structure, such as duality or integrability properties, which allow for a study of
the fine details of non-equilibrium steady states, such as microscopic profiles and correlations. Examples include
zero-range processes, exclusion processes, and models that fit into the algebraic approach to duality, such as inclu-
sion processes and related diffusion processes, or models of heat conduction, such as the Kipnis-Marchioro-Presutti
model [32, 56, 55, 84, 107]. Most of these models have indistinguishable particles of which the total number is
conserved, and so the relevant macroscopic quantity is the density of particles.

Turning to more complex models of non-equilibrium, various exclusion processes with multi-type particles have
been studied [70, 71, 115], as well as reaction-diffusion processes [27, 29, 47, 48, 49], where non-linear reaction-
diffusion equations are obtained in the hydrodynamic limit, and large deviations around such equations have been
analysed. In this chapter, we focus on a reaction-diffusion model that on the one hand is simple enough so that via
duality a complete microscopic analysis of the non-equilibrium profiles can be carried out, but on the other hand
exhibits interesting phenomena, such as violation of the Fick’s law. In our model we have two types of particles,
fast and slow, that jump at rate 1 and ε ∈ [0, 1], respectively. Particles of identical type are allowed to interact via
exclusion or inclusion. There is no interaction between particles of different type that are at different sites. Each
particle can change type at a rate that is adapted to the particle interaction (exclusion or inclusion), and is therefore
interacting with particles of different type at the same site. An alternative and equivalent view is to consider two
layers of particles, where the layer determines the jump rate (rate 1 for bottom layer, rate ε for top layer) and where
on each layer the particles move according to exclusion or inclusion, and to let particles change layer at a rate that
is appropriately chosen in accordance with the interaction. In the limit as ε ↓ 0, particles are immobile on the top
layer.

We show that the hydrodynamic limit of all three dynamics is a linear reaction-diffusion system known under the
name of double diffusivity model, namely,∂tρ0 = ∆ρ0 + Υ(ρ1 − ρ0),

∂tρ1 = ε∆ρ1 + Υ(ρ0 − ρ1),
(5.1.1)

where ρi, i ∈ {0, 1}, are the macroscopic densities of the two types of particles, and Υ ∈ (0,∞) is the scaled
switching rate. The above system was introduced in [3] to model polycrystal diffusion (more generally, diffusion

65
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in inhomogeneous porous media) and dislocation pipe diffusion, with the goal to overcome the restrictions imposed
by Fick’s law. Non-Fick behaviour is immediate from the fact that the total density ρ = ρ0 + ρ1 does not satisfy the
classical diffusion equation.

The double diffusivity model was studied extensively in the PDE literature [4, 95, 94], while its discrete counterpart
was analysed in terms of a single random walk switching between two layers [93]. The same macroscopic model
was studied independently in the mathematical finance literature in the context of switching diffusion processes
[161]. Thus, we have a family of interacting particle systems whose macroscopic limit is relevant in several
contexts. Another context our three dynamics fit into are models of interacting active random walks with an
internal state that changes randomly (e.g. activity, internal energy) and that determines their diffusion rate and or
drift [53, 77, 91, 114, 131, 143, 6, 111].

An additional motivation to study two-layer models comes from population genetics. Individuals live in colonies,
carry different genetics types, and can be either active or dormant. While active, individuals resample by adopting
the type of a randomly sampled individual in the same colony, and migrate between colonies by hopping around.
Active individuals can become dormant, after which they suspend resampling and migration, until they become
active again. Dormant individuals reside in what is called a seed bank. The overall effect of dormancy is that
extinction of types is slowed down, and so genetic diversity is enhanced by the presence of the seed bank. A wealth
of phenomena can occur, depending on the parameters that control the rates of resampling, migration, falling asleep
and waking up [25, 89]. Dormancy not only affects the long-term behaviour of the population quantitatively. It
may also lead to qualitatively different equilibria and time scales of convergence. For a panoramic view on the role
of dormancy in the life sciences, we refer the reader to [124].

5.2 Three models

For σ ∈ {−1, 0, 1} we introduce an interacting particle system on Z where the particles randomly switch their jump
rate between two possible values, 1 and ε, with ε ∈ [0, 1]. For σ = −1 the particles are subject to the exclusion
interaction, for σ = 0 the particles are independent, while for σ = 1 the particles are subject to the inclusion
interaction. Let

η0(x) := number of particles at site x jumping at rate 1,
η1(x) := number of particles at site x jumping at rate ε.

The configuration of the system is

η := {η(x)}x∈Z ∈ X =

{0, 1}Z × {0, 1}Z, if σ = −1,
NZ0 × N

Z
0 , if σ = 0, 1,

where
η(x) := (η0(x), η1(x)), x ∈ Z.

We call η0 = {η0(x)}x∈Z and η1 = {η1(x)}x∈Z the configurations of fast particles, respectively, slow particles. When
ε = 0 we speak of dormant particles (see Fig. 5.2).

Figure 5.1: Representation via slow and fast particles moving on the one-layer graph Z (σ = 0).

Definition 5.2.1. [Switching interacting particle systems] For ε ∈ [0, 1] and γ ∈ (0,∞), let Lε,γ be the generator

Lε,γ := L0 + εL1 + γL0l1, (5.2.1)
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Figure 5.2: Representation via particles moving on the two-layer graph Z × I (σ = 0).

acting on bounded cylindrical functions f : X → R as

(L0 f )(η) =
∑
|x−y|=1

{
η0(x)(1 + ση0(y))

[
f ((η0 − δx + δy, η1)) − f (η)

]
+ η0(y)(1 + ση0(x))

[
f ((η0 + δx − δy, η1)) − f (η)

]}
,

(L1 f )(η) =
∑
|x−y|=1

{
η1(x)(1 + ση1(y))

[
f ((η0, η1 − δx + δy)) − f (η)

]
+ η1(y)(1 + ση1(x))

[
f ((η0, η1 + δx − δy)) − f (η)

]}
,

(L0l1 f )(η) = γ
∑
x∈Zd

{
η0(x)(1 + ση1(x))

[
f ((η0 − δx, η1 + δx)) − f (η)

]
+ η1(x)(1 + ση0(x))

[
f ((η0 + δx, η1 − δx)) − f (η)

]}
.

The Markov process {η(t) : t ≥ 0} on state space X with

η(t) := {η(x, t)}x∈Z =
{
(η0(x, t), η1(x, t))

}
x∈Z,

hopping rates 1, ε and switching rate γ is called switching exclusion process for σ = −1, switching random walks
for σ = 0 (see Fig. 5.2), and switching inclusion process for σ = 1. ♠

5.3 Duality and stationary measures

The systems defined in (5.2.1) can be equivalently formulated as jump processes on the graph (see Fig. 5.2) with
vertex set {(x, i) ∈ Zd × I}, with I = {0, 1} labelling the two layers, and edge set given by the nearest-neighbour
relation

(x, i) ∼ (y, j) when

|x − y| = 1 and i = j,
x = y and |i − j| = 1.

In this formulation the particle configuration is

η = (ηi(x))(x,i)∈Z×I

and the generator L is given by

(L f )(η) =
∑
i∈I

∑
|x−y|=1

ε iηi(x)(1 + σηi(y)) [ f (η − δ(x,i) + δ(y,i)) − f (η)]

+ ε iηi(y)(1 + σηi(x)) [ f (η − δ(y,i) + δ(x,i)) − f (η)]

+
∑
i∈I

γ
∑
x∈Z

ηi(x)(1 + ση1−i) [ f (η − δ(x,i) + δ(x,1−i)) − f (η)].

(5.3.1)

Thus, a single particle (when no other particles are present) is subject to two movements:

(i) Horizontal movement: In layer i = 0 and i = 1 the particle performs a nearest-neighbour random walk on Z
at rate 1, respectively, ε.



68 Switching IPS

(ii) Vertical movement: The particle switches layer at the same site at rate γ.

It is well known (see e.g. [146]) that for these systems there exists a one-parameter family of reversible product
measures {

µθ = ⊗(x,i)∈Z×Iν(x,i),θ : θ ∈ Θ
}

with Θ = [0, 1] if σ = −1 and Θ = [0,∞) if σ ∈ {0, 1}, and with marginals given by

ν(x,i),θ =


Bernoulli (θ), σ = −1,

Poisson (θ), σ = 0,

Negative–Binomial (1, θ
1+θ

), σ = 1.

(5.3.2)

Moreover, the classical self-duality relation holds, i.e., for all configurations η, ξ ∈ X and for all times t ≥ 0,

Eη[D(ξ, ηt)] = Eξ[D(ξt, η)],

with {ξ(t) : t ≥ 0} and {η(t) : t ≥ 0} two copies of the process with generator given in (5.2.1) and self-duality
function D : X × X → R given by

D(ξ, η) :=
∏

(x,i)∈Zd×I

d(ξi(x), ηi(x)), (5.3.3)

with
d(k, n) :=

n!
(n − k)!

1
w(k)

1{k≤n} (5.3.4)

and

w(k) :=

 Γ(1+k)
Γ(1) , σ = 1,

1, σ = −1, 0.
(5.3.5)

Remark 5.3.1. [Possible extensions] Note that we could allow for more than two layers, for inhomogeneous rates
and for non-nearest neighbour jumps as well, and the same duality relation would still hold (see e.g. [74] for an
inhomogeneous version of the exclusion process). More precisely, let {ωi({x, y})}x,y∈Z and {αi(x)}x∈Z be collections
of bounded weights for i ∈ IM = {0, 1, . . . ,M} with M < ∞. Then the interacting particle systems with generator

(LD,γ f )(η) =

M∑
i=0

Di

∑
|x−y|=1

ωi({x, y})
{
ηi(x) (αi(y) + σηi(y))

[
f (η − δ(x,i) + δ(y,i)) − f (η)

]
+ ηi(y) (αi(x) + σηi(x))

[
f (η − δ(y,i) + δ(x,i)) − f (η)

]}
+

M−1∑
i=0

γ{i,i+1}

∑
x∈Z

{
ηi(x)

[
f (η − δ(x,i) + δ(x,i+1)) − f (η)

]
+ ηi+1(x)

[
f (η − δ(x,i+1) + δ(x,i)) − f (η)

]}
,

(5.3.6)

with η = (ηi(x))(x,i)∈Z×IM , {Di}i∈IM a bounded decreasing collection of weights in [0, 1] and γ{i,i+1} ∈ (0,∞), are still
self-dual with duality function as in (5.3.3), but with I replaced by IM and single-site duality functions given by
d(x,i)(k, n) = n!

(n−k)!
1

w(x,i)(k) 1{k≤n} with

w(x,i)(k) :=



αi(x)!
(αi(x) − k)!

1{k≤αi(x)}, σ = −1,

αi(x)k, σ = 0,
Γ(αi(x) + k)

Γ(αi(x))
, σ = 1.

We prefer to stick to the two-layer homogeneous setting in order not to introduce extra notations. However, it is
straightforward to extend many of our results to the inhomogeneous multi-layer model. ♠

Duality is a key tool in the study of detailed properties of interacting particle systems, since it allows for explicit
computations. It has been used widely in the literature (see, e.g., [126, 47]). In the next section, self-duality (which
implies microscopic closure of the evolution equation for the empirical density field) will be used to derive the
hydrodynamic limit of the switching interacting particle systems described above. More precisely, we will use
self-duality with one and two dual particles to compute the expectation of the evolution of the occupation variables
and of the two-point correlations. These are needed, respectively, to control the expectation and the variance of the
density field.
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5.3.1 Outline

Section 5.4 identifies and analyses the hydrodynamic limit of the system in Definition 5.2.1 after scaling space, time
and switching rate diffusively. In doing so, we exhibit a class of interacting particle systems whose microscopic
dynamics scales to a macroscopic dynamics called the double diffusivity model. In Section 5.5, we provide a
discussion on the solutions of this model, thereby connecting mathematical literature applied to material science
and to financial mathematics.

5.4 The hydrodynamic limit

In this section we scale space, time and switching diffusively, so as to obtain a hydrodynamic limit. In Section 5.4.1
we scale space by 1/N, time by N2, the switching rate by 1/N2, introduce scaled microscopic empirical distribu-
tions, and let N → ∞ to obtain a system of macroscopic equations. In Section 5.5 we recall some known results
for this system, namely, there exists a unique solution that can be represented in terms of an underlying diffusion
equation or, alternatively, via a Feynman-Kac formula involving the switching diffusion process.

5.4.1 From microscopic to macroscopic

Let N ∈ N, and consider the scaled generator Lε,γN (recall (5.2.1)) with γN = Υ/N2 for some Υ ∈ (0,∞), i.e., the
reaction term is slowed down by a factor N2 in anticipation of the diffusive scaling we are going to consider.

In order to study the collective behaviour of the particles after scaling of space and time, we introduce the following
empirical density fields, which are Radon measure-valued càdlàg (i.e., right-continuous with left limits) processes:

XN
0 (t) :=

1
N

∑
x∈Z

η0(x, tN2) δx/N , XN
1 (t) :=

1
N

∑
x∈Z

η1(x, tN2) δx/N ,

where δy stands for the Dirac measure at y ∈ R. In order to derive the hydrodynamic limit for the switching
interacting particle systems, we need the following set of assumptions. In the following we denote by C∞c (R) the
space of infinitely differentiable functions with values in R and compact support, by Cb(R;σ) the space of bounded
and continuous functions with values in R+ for σ ∈ {0, 1} and with values in [0, 1] for σ = −1, by C0(R) the space
of continuous functions vanishing at infinity, by C2

0(R) the space of twice differentiable functions vanishing at
infinity and by M the space of Radon measure on R.

Assumption 5.4.1. [Compatible initial conditions] Let ρ̄i ∈ Cb(R;σ) for i ∈ {0, 1} be two given functions, called
initial macroscopic profiles. We say that a sequence (µN)N∈N of measures on X is a sequence of compatible initial
conditions when:

(i) For any i ∈ {0, 1}, g ∈ C∞c (R) and δ > 0,

lim
N→∞

µN

(∣∣∣∣∣〈XN
i (0), g〉 −

∫
R

dx ρ̄i(x)g(x)
∣∣∣∣∣ > δ) = 0.

(ii) There exists a constant C < ∞ such that

sup
(x,i)∈Z×I

EµN [ηi(x)2] ≤ C. (5.4.1)

♠

Note that Assumption 5.4.1(ii) is the same as employed in [40, Theorem 1, Assumption (b)] and is trivial for the
exclusion process.

Theorem 5.4.1. [Hydrodynamic scaling] Let ρ̄0, ρ̄1 ∈ Cb(R;σ) be two initial macroscopic profiles, and let
(µN)N∈N be a sequence of compatible initial conditions. Let PµN be the law of the measure-valued process

{XN(t) : t ≥ 0}, XN(t) := (XN
0 (t), XN

1 (t)),

induced by the initial measure µN . Then, for any T, δ > 0 and g ∈ C∞c (R),

lim
N→∞
PµN

(
sup

t∈[0,T ]

∣∣∣∣∣ 〈XN
i (t), g〉 −

∫
R

dx ρi(x, t)g(x)
∣∣∣∣∣ > δ) = 0, i ∈ I,
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where ρ0 and ρ1 are the unique continuous and bounded strong solutions of the system∂tρ0 = ∆ρ0 + Υ(ρ1 − ρ0),
∂tρ1 = ε∆ρ1 + Υ(ρ0 − ρ1),

(5.4.2)

with initial conditions ρ0(x, 0) = ρ̄0(x),
ρ1(x, 0) = ρ̄1(x).

(5.4.3)

Proof. The proof follows the standard route presented in [153, Section 8] (see also [47, 40]). We still explain the
main steps because the two-layer setup is not standard. First of all, note that the macroscopic equation (5.4.2) can
be straightforwardly identified by computing the action of the rescaled generator LN = Lε,Υ/N2 on the cylindrical
functions fi(η) := ηi(x), i ∈ {0, 1}, namely ,

(LN fi)(η) = ε i [ηi(x + 1) − 2ηi(x) + ηi(x − 1)
]
+

Υ

N2

[
η1−i(x) − ηi(x)

]
and hence, for any g ∈ C∞c (R),∫ tN2

0
ds LN

 1
N

∑
x∈Z

g(x/N) ηi(x, s)

 =

∫ tN2

0
ds

ε i

N

∑
x∈Z

ηi(x, s) 1
2
[
g((x + 1)/N) − 2g(x/N) + g((x − 1)/N)

]
+

∫ tN2

0
ds

1
N

∑
x∈Z

g(x/N)
Υ

N2

[
η1−i(x, s) − ηi(x, s)

]
,

where we moved the generator of the simple random walk to the test function by using reversibility w.r.t. the
counting measure. By the regularity of g, we thus have∫ tN2

0
ds LN

 1
N

∑
x∈Z

g(x/N) ηi(x, s)

 =

∫ t

0
ds 〈XN

i (s), ε i∆g〉 +
∫ t

0
ds Υ

[
〈XN

1−i(s), g〉 − 〈XN
i (s), g〉

]
+ o( 1

N2 ),

which is the discrete counterpart of the weak formulation of the right-hand side of (5.4.2), i.e.,
∫ t

0 ds
∫
R

dx ρi(x, s)∆g(x)+

Υ
∫ t

0 ds
∫
R

dx [ρ1−i(x, s) − ρi(x, s)] g(x). Thus, as a first step, we show that

lim
N→∞
PµN

(
sup

t∈[0,T ]

∣∣∣∣∣∣〈XN
i (t), g〉 − 〈XN

i (0), g〉 −
∫ t

0
ds 〈XN

i (s), ε i∆g〉 −
∫ t

0
ds Υ

[
〈XN

1−i(s) − XN
i (s), g〉

]∣∣∣∣∣∣ > δ
)

= 0.

In order to prove the above convergence we employ the Dynkin’s martingale formula for Markov processes (see,
e.g., [153, Theorem 4.8]), which gives that the process defined as

MN
i (g, t) := 〈XN

i (t), g〉 − 〈XN
i (0), g〉 −

∫ tN2

0
ds LN

 1
N

∑
x∈Z

g(x/N) ηi(x, s)


is a martingale w.r.t. the natural filtration generated by the process {ηt}t≥0 and with predictable quadratic variation
expressed in terms of the carré du champ, i.e.,

〈MN
i (g, t),MN

i (g, t)〉 =

∫ tN2

0
dsEµN

[
ΓN

i (g, s)
]

with

ΓN
i (g, s) = LN

 1
N

∑
x∈Z

g(x/N) ηi(x, s)

2

− 2

 1
N

∑
x∈Z

g(x/N) ηi(x, s)

 LN

 1
N

∑
x∈Z

g(x/N) ηi(x, s)

 .
We then have, by Chebyshev’s inequality and Doob’s martingale inequality (see, e.g., [102, Section1.3]),

PµN

(
sup

t∈[0,T ]

∣∣∣∣∣∣〈XN
i (t), g〉 − 〈XN

i (0), g〉 −
∫ t

0
ds 〈XN

i (s), ε i∆g〉 −
∫ t

0
ds Υ

[
〈XN

1−i(s), g〉 − 〈XN
i (s), g〉

]∣∣∣∣∣∣ > δ
)

≤
1
δ2EµN

[
sup

t∈[0,T ]

∣∣∣MN
i (g, s)

∣∣∣2] ≤ 4
δ2EµN

[∣∣∣MN
i (g,T )

∣∣∣2] =
4
δ2EµN

[
〈MN

i (g,T ),MN
i (g,T )〉2

]
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=
4

δ2N2EµN

∫ N2T

0
ds

∑
x∈Zd

ηi(x, s)(1 + σηi(x ± 1, s))
(
g
(

x ± 1
N

)
− g

( x
N

))2
 (5.4.4)

+
4Υ

δ2N4EµN

∫ N2T

0
ds

∑
x∈Zd

(ηi(x, s) + η1−i(x, s) + 2σηi(x, s)η1−i(x, s))g2
( x

N

) ,
where in the last equality we explicitly computed the carré du champ. Let k ∈ N be such that the support of g is in
[−k, k]. Then, by the regularity of g, (5.4.4) is bounded by

4
δ2N2 (N2T )(2k + 1)N

‖∇g‖2∞
N2 sup

x∈Z, s∈[0,N2T ]
EµN

[
ηi(x, s)(1 + σηi(x + 1, s))

]
+

4Υ

δ2N4 (N2T )(2k + 1)N‖g‖2∞ sup
x∈Z, s∈[0,N2T ]

EµN

[
ηi(x, s) + η1−i(x, s) + 2σηi(x, s)η1−i(x, s)

]
. (5.4.5)

We now show that, as a consequence of (5.4.1), for any (x, i), (y, j) ∈ Z × I and s ≥ 0,

EµN

[
ηi(x, s)

]
≤ C, EµN

[
ηi(x, s)η j(y, s)

]
≤ C, (5.4.6)

from which we obtain

PµN

(
sup

t∈[0,T ]

∣∣∣∣∣∣〈XN
i (t), g〉 − 〈XN

i (0), g〉 −
∫ t

0
ds 〈XN

i (s), ε i∆g〉 −
∫ t

0
ds Υ

[
〈XN

1−i(s), g〉 − 〈XN
i (s), g〉

]∣∣∣∣∣∣ > δ
)

≤
8T
δ2N

(2k + 1)‖∇g‖2∞C + Υ
16T
δ2N

(2k + 1)‖g‖2∞C,

and the desired convergence follows. In order to prove (5.4.6), first of all note that, by the Cauchy-Schwartz
inequality, it follows from (5.4.1) that, for any (x, i), (y, j) ∈ Z × I,

EµN

[
ηi(x)η j(y)

]
≤ C. (5.4.7)

Moreover, recalling the duality functions given in (5.3.3) and defining the configuration ξ = δ(x,i) + δ(y, j) for
(x, i) , (y, j), we have that D(ξ, ηt) = ηi(x, t)η j(y, t) and thus, using the classical self-duality relation,

EµN

[
ηi(x, t)η j(y, t)

]
= EµN [D(ξ, ηt)] =

∫
X

Eη[D(ξ, ηt)] dµN(η)

=

∫
X

Eξ[D(ξt, η)] dµN(η) = Eξ
[
EµN [D(ξt, η)]

]
.

Labeling the particles in the dual configuration as (Xt, it) and (Yt, jt) with initial conditions (X0, i0) = (x, i) and
(Y0, j0) = (y, j), we obtain

EµN

[
ηi(x, t)η j(y, t)

]
= Eξ

[
EµN [ηit (Xt)η jt (Yt)1(Xt ,it),(Yt , jt)] + EµN [ηit (Xt)(ηit (Xt) − 1)1(Xt ,it)=(Yt , jt)]

]
≤ Eξ

[
EµN [ηit (Xt)η jt (Yt)]

]
≤ Eξ

 sup
(x,i),(y, j)∈Z×{0,1}

EµN [ηi(x)η j(y)]
 ≤ C, (5.4.8)

where we used (5.4.7) in the last inequality. Similarly, for ξ = δ(x,i) and (Xt, it) the dual particle with initial
condition (X0, i0) = (x, i), we have that EµN

[
ηi(x, t)

]
≤ EµN

[
D(ξ, ηt)

]
= Eξ[EµN [ηit (Xt)]]. Using that ηi(x) ≤ ηi(x)2

for any (x, i) ∈ Z × I and using (5.4.1), we obtain (5.4.6). The proof is concluded after showing the following:

(i) Tightness holds for the sequence of distributions of the processes {XN
i }N∈N, denoted by {QN}N∈N.

(ii) All limit points coincide and are supported by the unique path Xi(t, dx) = ρi(x, t) dx, with ρi the unique weak
(and in particular strong) bounded and continuous solution of (5.4.2).

While for (i) we provide an explanation, we skip the proof of (ii) because it is standard and is based on PDE
arguments, namely, the existence and the uniqueness of the solutions in the class of continuous-time functions
with values in Cb(R, σ) (we refer to [153, Lemma 8.6 and 8.7] for further details), and the fact that Assumption
5.4.1(i) ensures that the initial condition of (5.4.2) is also matched.

Tightness of the sequence {QN}N∈N follows from the compact containment condition on the one hand, i.e., for any
δ > 0 and t > 0 there exists a compact set K ⊂ M, with M the space of Radon measures, such that

PµN (XN
i (t) ∈ K) > 1 − δ ∀N ∈ N,
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and the equi-continuity condition on the other hand, i.e.,

lim sup
N→∞

PµN (ω(XN
i , δ,T )) ≥ e) ≤ e

for ω(α, δ,T ) := sup{dM(α(s), α(t)) : s, t ∈ [0,T ], |s − t| ≤ δ} with dM the metric on Radon measures defined as

dM(ν1, ν2) :=
∑
j∈N

2− j
(
1 ∧

∣∣∣∣∣∫
R

φ jdν1 −

∫
R

φ jdν2

∣∣∣∣∣)
for an appropriately chosen sequence of functions (φ j) j∈N in C∞c (R). We refer to [153, Section A.10] for details on
the above metric and to the proof of [153, Lemma 8.5] for the equi-continuity condition. We conclude by proving
the compact containment condition. Define

K :=
{
ν ∈ M s.t. ∃ k ∈ N s.t. ν[−`, `] ≤ A(2` + 1)`2 ∀ ` ∈ [k,∞] ∩ N

}
with A > 0 such that Cπ

6A < δ. By [153, Proposition A.25], we have that K is a pre-compact subset of M. Moreover,
by the Markov inequality and Assumption 5.4.1(ii), it follows that

PµN (XN
i (t) ∈ K̄c) ≤

∑
`∈N

PµN

(
XN

i (t)([−`, `]) ≥ A(2` + 1)`2
)
≤

∑
`∈N

1
A(2` + 1)`2EµN

[
XN

i (t)([−`, `])
]

=
∑
`∈N

1
A(2` + 1)`2

∑
x∈[−`,`]∩ ZN

EµN

[
ηi(x, tN2)

]
≤

∑
`∈N

1
A(2` + 1)`2

2`N + 1
N

C ≤
C
A

∑
`∈N

1
`2 < δ,

and, thus, PµN (XN
i (t) ∈ K) > 1 − δ for any N, concluding the proof. �

Remark 5.4.2. [Total density] (i) If ρ0, ρ1 are smooth enough and satisfy (5.4.2), then by taking extra derivatives
we see that the total density ρ := ρ0 + ρ1 satisfies the thermal telegrapher equation

∂t (∂tρ + 2Υρ) = −ε∆(∆ρ) + (1 + ε)∆ (∂tρ + Υρ) , (5.4.9)

which is second order in ∂t and fourth order in ∂x (see [4, 95] for a derivation). Note that (5.4.9) shows that the
total density does not satisfy the usual diffusion equation. This fact will be investigated in detail in the next section,
where we will analyse the non-Fick property of ρ.
(ii) If ε = 1, then the total density ρ satisfies the heat equation ∂tρ = ∆ρ.
(iii) If ε = 0, then (5.4.9) reads

∂t (∂tρ + 2Υρ) = ∆ (∂tρ + Υρ) ,

which is known as the strongly damped wave equation. The term ∂t(2λρ) is referred to as frictional damping, the
term ∆(∂tρ) as Kelvin-Voigt damping (see [39]). ♠

Remark 5.4.3. [Literature] We mention in passing that in [111] hydrodynamic scaling of interacting particles
with internal states has been considered in a different setting and with a different methodology. ♠

5.5 Existence, uniqueness and representation of the solution of the double diffu-
sivity model

The existence and uniqueness of a continuous-time solution (ρ0(t), ρ1(t)) with values in Cb(R, σ) of the system
in (5.4.2) can be proved by standard Fourier analysis. Below we recall some known results that have a more
probabilistic interpretation.

Stochastic representation of the solution. The system in (5.4.2) fits in the realm of switching diffusions (see
e.g. [161]), which are widely studied in the mathematical finance literature. Indeed, let {it : t ≥ 0} be the pure jump
process on state space I = {0, 1} that switches at rate Υ, whose generator acting on bounded functions g : I → R is

(Ag)(i) := Υ(g(1 − i) − g(i)), i ∈ I.

Let {Xt : t ≥ 0} be the stochastic process on R solving the stochastic differential equation

dXt = ψ(it) dWt,
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where Wt = B2t with {Bt : t ≥ 0} standard Brownian motion, and ψ : I → {D0,D1} is given by

ψ := D0 1{0} + D1 1{1},

with D0 = 1 and D1 = ε in our setting. Let L = Lε,Υ be the generator defined by

(L f )(x, i) := lim
t↓0

1
t
Ex,i[ f (Xt, it) − f (x, i)]

for f : R × I → R such that f (·, i) ∈ C2
0(R). Then, via a standard computation (see e.g. [81, Eq.(4.4)]), it follows

that
(L f )(x, i) = ψ(i)(∆ f )(x, i) + Υ[ f (x, 1 − i) − f (x, i)]

=

∆ f (x, 0) + Υ [ f (x, 1) − f (x, 0)], i = 0,
ε∆ f (x, 1) + Υ [ f (x, 0) − f (x, 1)], i = 1.

We therefore have the following result that corresponds to [81, Chapter 5, Section 4, Theorem 4.1](see also [161,
Theorem 5.2]).

Theorem 5.5.1. [Stochastic representation of the solution] Suppose that ρ̄i : R → R for i ∈ I are continuous
and bounded. Then (5.4.2) has a unique solution given by

ρi(x, t) = E(x,i)[ρ̄it (Xt)], i ∈ I.

Note that if there is only one particle in the system (5.2.1), then we are left with a single random walk, say
{Yt : t ≥ 0}, whose generator, denoted by A, acts on bounded functions f : Z × I → R as

(A f )(y, i) = ψ(i)

∑
z∼y

[ f (z, i) − f (y, i)]

 + Υ [ f (y, 1 − i) − f (y, i)].

After we apply the generator to the function f (y, i) = y, we get

(A f )(y, i) = 0,

i.e., the position of the random walk is a martingale. Computing the quadratic variation via the carré du champ, we
find

A(Y2
t ) = ψ(it)[(Yt + 1)2 − Y2

t ] + ψ(it)[(Yt − 1)2 − Y2
t ] = 2ψ(it).

Hence the predictable quadratic variation is given by∫ t

0
ds 2ψ(is).

Note that for ε = 0 the latter equals the total amount of time the random walk is not dormant up to time t.

When we diffusively scale the system (scaling the reaction term was done at the beginning of Section 5.4), the
quadratic variation becomes ∫ tN2

0
dsψ(iN,s) =

∫ t

0
dr ψ(ir).

As a consequence, we have the following invariance principle:

Given the path of the process {it : t ≥ 0},

lim
N→∞

YN2t

N
= W∫ t

0 dr
√
ψ(ir),

where Wt = B2t with {Bt : t ≥ 0} is standard Brownian motion.

Thus, if we knew the path of the process {ir : r ≥ 0}, then we could express the solution of the system in (5.4.2)
in terms of a time-changed Brownian motion. However, even though {ir : r ≥ 0} is a simple flipping process, we
cannot say much explicitly about the random time

∫ t
0 dr

√
ψ(ir). We therefore look for a simpler formula, where

the relation to a Brownian motion with different velocities is more explicit. We achieve this by looking at the
resolvent of the generator L. In the following, we denote by {S t, t ≥ 0} the semigroup on Cb(R) of {Wt : t ≥ 0}.
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Proposition 5.5.2. [Resolvent] Let f : R × I → R be a bounded and smooth function. Then, for λ > 0, ε ∈ (0, 1]
and i ∈ I,

(λI − L)−1 f (x, i)

=

∫ ∞

0
dt

1
ε i e−

1+ε
ε
`(Υ,λ)t

(
cosh(tcε(Υ, λ)) +

1 − ε
ε

`ε(Υ, λ)
sinh(tcε(Υ, λ))

cε(λ)

)
(S t f (·, i))(x)

+

∫ ∞

0
dt e−

1+ε
ε
`(Υ,λ)t

(
Υ

ε
sinh(tcε(Υ, λ))

)
(S t f (·, 1 − i))(x),

(5.5.1)

where cε(Υ, λ) =

√(
1−ε
ε

)2
`(Υ, λ)2 + Υ2

ε
and `(Υ, λ) = Υ+λ

2 , while for ε = 0,

(λI − L)−1 f (x, i) =

∫ ∞

0
dt e−λ

2Υ+λ
Υ+λ

t
((

Υ
λ+Υ

)i
(S t f (·, 0))(x) +

(
Υ

Υ+λ

)i+1
(S t f (·, 1))(x)

)
. (5.5.2)

Proof. The proof is split into two parts.

Case ε > 0. We can split the generator L as

L = ψ(i)L̃ = ψ(i)
(
∆ +

1
ψ(i)

A
)

= ψ(i)(∆ + Ã),

i.e., we decouple Xt and it in the action of the generator. We can now use the Feynman-Kac formula to express the
resolvent of the operator L in terms of the operator L̃. Denoting by Ẽ the expectation of the process with generator
L̃, we have, for λ ∈ R,

(λI − L)−1 f (x, i) =

(
λI
ψ
− L̃

)−1 (
f (x, i)
ψ(i)

)
=

∫ ∞

0
dt Ẽ(x,i)

[
e−

∫ t
0 ds λ

ψ(is )
f (Xt, it)
ψ(it)

]
,

and by the decoupling of Xt and it under L̃, we get

(λI − L)−1 f (x, i) (5.5.3)

=

∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0 ds 1

ψ(is )
1{0}(it)
ψ(it)

]
(S t f (·, 0))(x) +

∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0

1
ψ(is)

1{1}(it)
ψ(it)

]
(S t f (·, 1))(x) (5.5.4)

=

∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0 ds 1

ψ(is ) 1{0}(it)
]

(S t f (·, 0))(x) +
1
ε

∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0 ds 1

ψ(is ) 1{1}(it)
]

(S t f (·, 1))(x). (5.5.5)

Defining

A :=
[
−Υ Υ

Υ −Υ

]
, ψε :=

[
1 0
0 ε

]
,

and using again the Feynman-Kac formula, we have

(λI − L)−1
[

f (x, 0)
f (x, 1)

]
=

∫ ∞

0
dt Kε(t, λ)

[
(S t f (·, 0))(x)
(S t f (·, 1))(x)

]
with Kε(t, λ) = etψ−1

ε (−λI+A)ψ−1
ε .

Using the explicit formula for the exponential of a 2 × 2 matrix (see e.g. [19, Corollary 2.4]), we obtain

etψ−1
ε (−λI+A) = e−

1+ε
ε
`(Υ,λ)t

 cosh(tcε(Υ, λ)) + 1−ε
ε
`(Υ, λ) sinh(tcε (Υ,λ))

cε (Υ,λ) Υ
sinh(tcε (Υ,λ))

cε (Υ,λ)
Υ
ε

sinh(tcε (Υ,λ))
cε (Υ,λ) cosh(tcε(Υ, λ)) − 1−ε

ε
`(Υ, λ) sinh(tcε (Υ,λ))

cε (Υ,λ)

 (5.5.6)

with cε(Υ, λ) =

√(
1−ε
ε

)2
`(Υ, λ)2 + Υ2

ε
and `(Υ, λ) = Υ+λ

2 , from which we obtain (5.5.1).

Case ε = 0. We derive K0(t, λ) by taking the limit ε ↓ 0 in the previous expression, i.e., K0(t, λ) = limε↓0 Kε(t, λ).
We thus have that K0(t, λ) is equal to

lim
ε↓0

e−
1+ε
ε
`(Υ,λ)t

 cosh(tcε(Υ, λ)) + 1−ε
ε
`(Υ, λ) sinh(tcε (Υ,λ))

cε (Υ,λ)
Υ
ε

sinh(tcε (Υ,λ))
cε (Υ,λ)

Υ
ε

sinh(tcε (Υ,λ))
cε (Υ,λ)

1
ε

cosh(tcε(Υ, λ)) − 1−ε
ε2 `(Υ, λ) sinh(tcε (Υ,λ))

cε (Υ,λ)


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= e−λ
2Υ+λ
Υ+λ

t

 1 Υ
Υ+λ

Υ
Υ+λ

(
Υ

Υ+λ

)2

 ,
from which (5.5.2) follows. �

Remark 5.5.3. [Symmetric layers] Note that for ε = 1 we have

(λI − L)−1 f (x, i) =

∫ ∞

0
dt e−λt

(
1+e−2Υt

2 (S t f (·, i))(x) + 1−e−2Υt

2 (S t f (·, 1 − i))(x)
)
.

♠

We conclude this section by noting that the system in (5.4.2) was studied in detail in [4, 95]. By taking Fourier and
Laplace transforms and inverting them, it is possible to deduce explicitly the solution, which is expressed in terms
of solutions to the classical heat equation. More precisely, using formula [95, Eq.2.2], we have that

ρ0(x, t) = e−Υt (S t ρ̄0)(x) +
Υ

1 − ε
e−Υt

∫ t

εt
ds

(( s − εt
t − s

)1/2
I1(υ(s)) (S s ρ̄0)(x) + I0(υ(s)) (S s ρ̄1)(x)

)
(5.5.7)

and

ρ1(x, t) = e−Υt(S εt ρ̄1)(x) +
Υ

1 − ε
e−σt

∫ t

εt
ds

(( s − εt
t − s

)−1/2
I1(υ(s)) (S s ρ̄1)(x) + I0(υ(s)) (S s ρ̄0)(x)

)
, (5.5.8)

where υ(s) = 2Υ
1−ε ((t − s)(s − εt))1/2, and I0(·) and I1(·) are the modified Bessel functions.
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Chapter 6

Orthogonal polynomial duality of
boundary driven particle systems and
non-equilibrium correlations

6.1 Introduction

Exactly solvable models have played an important role in the understanding of fundamental properties of non-
equilibrium steady states such as the presence of long-range correlations and the non-locality of large deviation
free energies [55, 57, 21, 86]. As explained in Chapter 1, an important class of particle systems which is slightly
broader than exactly solvable models are the models which satisfy self-duality or, more generally, duality prop-
erties. Recall that (see Section 2.5.2) such systems when coupled to appropriate reservoirs are dual to systems
where the reservoirs are replaced by absorbing boundaries, and the computation of n-point correlation functions in
the original system reduces to the computation of absorption probabilities in a dual system with n particles. Even
when these absorption probabilities cannot be obtained in closed form, e.g. when Bethe ansatz is not available, still
the connection between the non-equilibrium system coupled to reservoirs and the absorbing dual turns out to be
very useful to obtain macroscopic properties such as the hydrodynamic limit, fluctuations, mixing and propagation
of chaos and local equilibrium (see e.g. [88, 117, 141, 79, 82]).

In recent works (self-)duality with orthogonal polynomials (see Section 2.5.1) has been studied in several particle
systems including generalized symmetric exclusion processes (SEP), symmetric inclusion process (SIP) and asso-
ciated diffusion processes such as the Brownian momentum process. Orthogonal polynomials in the occupation
number variables are a natural extension of the higher order correlation functions studied in SEP in [57]. Orthog-
onal polynomial duality is very useful in the study of fluctuation fields [11, 40], identifies a set of functions with
positive time dependent correlations and is useful in the study of speed of relaxation to equilibrium [35]. So far,
orthogonal polynomial duality has not been obtained in the context of boundary driven systems.

In this chapter we start extending the classical dualities from [32] for a generalized class of boundary driven
systems, where we allow both for edge disorder and well-chosen site disorder. We then use a symmetry of the dual
absorbing system in order to derive duality with orthogonal polynomials for these systems.

More precisely, we consider three classes of interacting particle systems: partial symmetric exclusion [74] where
we allow edge-dependent conductances and a site-varying maximal occupancy, symmetric inclusion where we
allow edge-dependent conductances and a site-varying “attraction parameter”, and independent walkers. We cou-
ple these systems to two reservoirs, with reservoir parameters θL and θR. The precise meaning of the reservoir
parameters θL and θR will be explained in detail later; for the moment one can think of them – roughly – as being
proportional to the densities of left and right reservoirs, respectively. Moreover, the bulk system can be defined on
any graph. Hence, our setting includes the standard one of a chain coupled to reservoirs at left and right ends, but it
is in no way restricted to that setting. The only important geometrical requirement is the presence of precisely two
reservoirs. When θL = θR = θ the system is in equilibrium, with a unique reversible product measure µθ. When
θL , θR the system evolves towards a unique non-equilibrium stationary measure µθL,θR . At stationarity, by means
of classical dualities with a dual system that has two absorbing sites, corresponding to the reservoirs in the original

79
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system, we obtain correlation inequalities, thereby extending and strengthening those from [85]. In particular, the
dual particle system dynamics does not depend on the reservoir parameters θL and θR.

Next, for the same pair of boundary driven and purely absorbing systems, we introduce orthogonal polynomial
dualities. The orthogonal duality functions are in product form and the factors associated to the bulk sites are the
same orthogonal polynomials as those appearing for the same particle systems not coupled to reservoirs (see e.g.
[78, 146]), while the remaining factors corresponding to the absorbing sites have a form depending on the reservoir
parameters. The orthogonal polynomials carry themselves a parameter θ which corresponds to the equilibrium
reversible product measure µθ w.r.t. which they are orthogonal.

We then give various applications of these orthogonal polynomial dualities to properties of correlation functions
in the non-equilibrium stationary measure µθL,θR . First we prove that the correlations of order n of the occupation
variables at different locations x1, . . . , xn, as well as the cumulants of order n, are of the form (θL − θR)n multiplied
by a universal function ψ which depends only on x1, . . . , xn and the dual particle system dynamics, thus, not
depending on θL and θR. We prove, in fact, a stronger result, namely that whenever the system is started from a
local equilibrium product measure, then, at any later time t > 0, the n-point correlations are of the form (θL − θR)n

multiplied by a universal function ψt which, again, does not depend on the reservoir parameters θL and θR, but only
on the dual system dynamics.

Finally, we relate the joint moment generating function of the occupation variables to an expectation in the absorb-
ing dual. Despite the fact that this quantity can in general not be obtained in analytic form, the relation is useful,
both from the point of view of simulations, as well as from the point of view of computing macroscopic limits such
as density fluctuation fields and large deviations of the density profile.

6.1.1 Summary of main results, related works and organization of the chapter

As a conclusion of this introduction, we summarize more schematically here, for the convenience of the reader,
our main contributions in relation to previous works and how we organize the rest of the chapter.

We introduce a class of boundary driven particle systems in a general inhomogeneous framework – generaliz-
ing, in particular, those considered in, e.g., [32, 57] – showing that classical dualities may be extended beyond
homogeneous systems. As a first main result, employing these classical dualities, we show that correlations of
interacting systems are monotone in time when starting from suitable local equilibrium product measures. As a
consequence, we deduce a family of correlation inequalities, improving on those established for homogeneous
symmetric exclusion and inclusion processes in, e.g., [83, 85, 126].

As a second main result, in our context of boundary driven systems, we derive the orthogonal polynomial dualities,
previously studied in [79, 146, 34, 90] for closed systems. To this purpose, we develop a new method, which is of
independent interest and is based on the relation between orthogonal and classical duality functions. For further
details, we refer to the discussion following Theorem 6.4.1.

As a third main result, by suitably tilting these orthogonal dualities, we show that n-point non-equilibrium station-
ary correlations and cumulants exhibit a universal factorized structure, one factor consisting in a simple expression
in the reservoir parameters and the other factor depending only on the underlying geometry of the system. This
result holds for both boundary driven exclusion and inclusion processes in presence of edge and site disorder.
In particular, for these more general systems, this result recovers the same structure previously obtained for the
boundary driven one-dimensional SEP in [57] by means of the explicit knowledge via matrix formulation of the
non-equilibrium steady state.

The rest of the chapter is organized as follows. In Section 6.2 we define the boundary driven particle systems
and their dual absorbing processes as well as introducing the classical duality functions. In Section 6.3 we study
properties and correlation inequalities for the equilibrium and non-equilibrium stationary measures. In Section
6.4 we derive orthogonal duality functions between the boundary driven and the absorbing systems. In Section
6.5 we obtain the aforementioned universal expression for the higher order correlations in the non-equilibrium
steady state. In the same section, the same structure is recovered for more general correlations at finite times
when started from a local equilibrium product measure. Section 6.6 is devoted to a relation between weighted
exponential generating functions of the occupation variables at stationarity and the correlation functions obtained
in the previous section. In conclusion, Section 6.7 contains part of the proof of Theorem 7.3.1 in Section 6.3.
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6.2 Setting

In this section, we start by introducing the common geometry and the disorder on which the particle dynamics
takes place. Then, we couple this “bulk” system to two reservoirs at possibly different densities.

6.2.1 Boundary driven particle systems

We consider three particle systems with either an exclusion, inclusion or no interaction. All these systems will
evolve on a set of sites V = {1, . . . ,N} (N ∈ N) and the rate of particle exchanges between two sites x and y ∈ V
will be proportional to some given (symmetric) conductance ω{x,y} ∈ [0,∞). Sites x and y ∈ V for which ω{x,y} , 0
will be considered as connected, indicated by x ∼ y. In what follows, we will assume that ω{x,x} = 0 for all x ∈ V
and that the induced graph (V,∼) is connected. We will further attach to each site x ∈ V a value αx ∈ N. While
the conductances ω = {ω{x,y} : x, y ∈ V} represent the bond disorder, the collection α = {αx : x ∈ V} stands for the
site disorder. This disorder may be thought, e.g., as a realization of a random environment (see, e.g., [141, 74]);
however, our work in this chapter is not focusing on homogenization properties arising from the randomness of
the disorder. Instead, we consider the disorder as deterministic and parameterizing the model all throughout the
chapter.

The set V endowed with the disorder (ω,α) is referred to as bulk of the system. This bulk is in contact with a left
and a right reservoir through respectively site 1 and site N ∈ V . Particle exchanges between the bulk sites and the
reservoirs is tuned by a set of non-negative parameters ωL, ωR, θL, θR, αL and αR as explained in the paragraph
below.

Particle dynamics

In this setting, for each choice of the parameter σ ∈ {−1, 0, 1}, we introduce a boundary driven particle system
{ηt : t ≥ 0} as a Markov process with X, given by

X =


∏
x∈V

{0, . . . , αx} if σ = −1

∏
x∈V

{0, 1, . . .} = NV
0 otherwise ,

denoting the configuration space, with η ∈ X standing for a particle configuration and with η(x) indicating the
number of particles at site x ∈ V for the configuration η ∈ X. The particle dynamics is described by the infinitesimal
generator L, whose action on bounded functions f : X → R reads as follows:

L f (η) = Lbulk f (η) +LL,R f (η) . (6.2.1)

In the above expression, the generator Lbulk describes the bulk part of the dynamics and is given by

Lbulk f (η) =
∑
x∼y

ω{x,y}L{x,y} f (η) (6.2.2)

where the summation above runs over the unordered pairs of sites and with the single-bond generator L{x,y} given
by

L{x,y} f (η) = η(x) (αy + ση(y)) ( f (ηx,y) − f (η))
+ η(y) (αx + ση(x)) ( f (ηy,x) − f (η)) ,

where ηx,y = η − δx + δy ∈ X, i.e. the configuration in which a particle (if any) has been removed from x ∈ V and
placed at y ∈ V . The boundary part of the dynamics is described by the generator LL,R in (6.2.1) as follows:

LL,R f (η) = ωLLL f (η) + ωRLR f (η) , (6.2.3)

with

LL f (η) = η(1) (αL + σαLθL) ( f (η1,−) − f (η))

+ αLθL (α1 + ση(1)) ( f (η1,+) − f (η)) (6.2.4)
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and

LR f (η) = η(N) (αR + σαRθR)
(

f (ηN,−) − f (η)
)

+ αRθR

(
αN + ση(N)) ( f (ηN,+) − f (η)

)
, (6.2.5)

where ηx,− ∈ X, resp. ηx,+ ∈ X, denotes the configuration obtained from η by removing, resp. adding, a particle
from, resp. to, site x ∈ V . In the above dynamics, creation and annihilation of particles occurs at sites x = 1 and
x = N due to the interaction with a reservoir.

We note that, depending on the choice of the value σ ∈ {−1, 0, 1} in the definition of the generator L in (6.2.1), we
recover either the symmetric partial exclusion process (SEP) for σ = −1, a system of independent random walkers
(IRW) for σ = 0 or the symmetric inclusion process (SIP) for σ = 1 in contact with left and right reservoirs and in
presence of disorder.

Figure 6.1: Schematic description of the partial exclusion process (SEP) dynamics in contact with left and right
reservoirs.

The parameters α = {αx : x ∈ V} ⊂ N have the interpretation of maximal occupancies for SEP (σ = −1) of the
sites of V (see Fig. 6.1). For IRW (σ = 0) and SIP (σ = 1), αx ∈ N stands for the site attraction parameter of
the site x ∈ V . We observe that the choice α ⊂ N rather than (0,∞) is needed only in the context of the exclusion
process; however, for the sake of uniformity of notation, we adopt N-valued site parameters α for all three choices
of σ ∈ {−1, 0, 1}.

Moreover, while ωL and ωR shall be interpreted as conductances between the boundaries and the associated bulk
sites, the parameters αL > 0 and αR > 0 are the boundary analogues of the bulk site parameters α. The parameters
θL and θR are responsible for the scaling of the reservoirs’ densities ρL and ρR, i.e.

ρL = αLθL and ρR = αRθR , (6.2.6)

and, for this reason, we refer to them as scale parameters. In particular, while in general we only require that

θL , θR ∈ [0,∞) ,

for the case of the exclusion process (σ = −1), we need to further impose

θL , θR ∈ [0, 1]

to prevent the rates in (6.2.4) and (6.2.5) to become negative.

Remark 6.2.1 (notational comparison with [32]). If we choose ω{x,y} = 1{|x−y|=1} and

αx =


2 j if σ = −1 for some 2 j ∈ N
1 if σ = 0
2k if σ = 1 for some k > 0 ,

(6.2.7)
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for all x, y ∈ V, we recover exactly the same bulk dynamics of the models studied in [32]. For what concerns the
reservoir dynamics, the authors of [32] employ the following notation (see e.g. [32, Figs. 1–2])

α := αLθL

γ := αRθR

β := αR + σαRθR

δ := αL + σαLθL .

However, we believe that the parametrization of the bulk-boundary interaction through αL, αR, θL and θR yields
more transparent formulas as, for instance, for the duality functions in presence of disorder.

Remark 6.2.2 (more general reservoirs geometries). We emphasize that our results may be stated for boundary
driven particle systems with the same bulk dynamics – as described by the generator L – and a more general
boundary part of the dynamics, in which creation and annihilation of particles due to the reservoir interaction
occur at more than two bulk sites. More precisely, the results stated in this section and Sections 6.3 and 6.4
below – namely, the duality relations and the correlation inequalities – naturally extend if LL,R in (6.2.1),(6.2.3) is
replaced by

Lres f (η) =
∑
x∈V

ωres
x L

res
x f (η) ,

with

Lres
x f (η) := η(x)

(
αres

x + σαres
x θres

x
) (

f (ηx,−) − f (η)
)

+ αres
x θres

x (αx + ση(x))
(
f (ηx,+) − f (η)

)
,

for some set of non-negative parameters αres = {αres
x : x ∈ V}, θres = {θres

x : x ∈ V} and ωres = {ωres
x : x ∈ V}.

Also the results in Sections 6.5 and 6.6 below extend to this more general boundary dynamics as long as the scale
parameters θres = {θres

x : x ∈ V} take at most two values, say θL and θR.

6.2.2 Duality

In this section, for each one of the particle systems presented in the section above, we derive two types of duality
relations with a particle system in contact with purely absorbing boundaries. Recall that by duality relation for
the particle system {ηt : t ≥ 0} on X, we mean that there exist a dual particle system {ξt : t ≥ 0} on X̂ and a
measurable function D : X̂ × X → R – referred to as duality function – for which the following relation holds: for
all configurations η ∈ X, ξ ∈ X̂ and times t ≥ 0, we have

Êξ
[
D(ξt, η)

]
= Eη

[
D(ξ, ηt)

]
, (6.2.8)

where Êξ, resp. Eη, denotes expectation w.r.t. the law P̂ξ of {ξt : t ≥ 0} with initial condition ξ0 = ξ, resp. the law
Pη of {ηt : t ≥ 0} with initial condition η0 = η. More in general, for a given probability measure µ on X, Eµ denotes
the expectation w.r.t. the law Pµ of {ηt : t ≥ 0} initially distributed according to µ. Notice that, with a slight abuse
of notation, when we write Eµ

[
D(ξ, η)

]
we mean

∑
η∈X D(ξ, η) µ(η).

Moreover, recall that if L̂ and L denote the infinitesimal generators associated to the processes {ξt : t ≥ 0} and
{ηt : t ≥ 0} respectively, the duality relation (6.2.8) is equivalent to the following relation: for all configurations
η ∈ X and ξ ∈ X̂, we have

L̂leftD(ξ, η) = LrightD(ξ, η) , (6.2.9)

where the subscript “left”, resp. “right”, indicates that the generator acts as an operator on the function D(·, ·),
viewed as a function of the left, resp. right, variables. More precisely,

L̂leftD(ξ, η) = L̂D(·, η)(ξ) and LrightD(ξ, η) = LD(ξ, ·)(η) .

In what follows, first we present the dual particle systems and, then, the duality relations. More specifically,
we study in Sections 6.2.2 and 6.4 below, duality relations with two types of duality functions, which we call,
respectively, “classical” and “orthogonal” for reasons that will be explained below.
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Dual particle system with purely absorbing boundaries

For each choice of σ ∈ {−1, 0, 1}, we define a particle system with purely absorbing reservoirs, which we prove to
be dual (see Propositions 6.2.3 and 6.4.1 below) to the corresponding system in contact with reservoirs of Section
6.2.1. For such systems, particles hop on V ∪ {L,R} following the same bulk dynamics as the particle systems of
Section 6.2.1 but having {L,R} as absorbing sites. More in detail, {ξt : t ≥ 0} denotes such particle systems having

X̂ = X × N{L,R}0 (6.2.10)

as configuration space and infinitesimal generator L̂ given by

L̂ f (ξ) = L̂bulk f (ξ) + L̂L,R f (ξ) , (6.2.11)

where, for all bounded functions f : X̂ → R,

L̂bulk f (ξ) =
∑
x∼y

ω{x,y} L̂{x,y} f (ξ)

=
∑
x∼y

ω{x,y}

 ξ(x) (αy + σξ(y)) ( f (ξx,y) − f (ξ))

+ ξ(y) (αx + σξ(x)) ( f (ξy,x) − f (ξ))

 ,

and

L̂L,R f (ξ) = ωL L̂L f (ξ) + ωR L̂R f (ξ)

= ωL αL ξ(1)
(

f (ξ1,L) − f (ξ)
)

+ ωR αR ξ(N)
(

f (ξN,R) − f (ξ)
)
,

with, for all x, y ∈ V ∪ {L,R}, ξx,y = ξ − δx + δy ∈ X̂.

For all configurations ξ ∈ X̂, let |ξ| denote the total number of particles of the configuration ξ, i.e.

|ξ| := ξ(L) + ξ(R) +
∑
x∈V

ξ(x) . (6.2.12)

Once the total number of particles is fixed, due to the conservation of particles under the dynamics, the assumption
of connectedness of the graph (V,∼) (see Section 6.2.1) and the positivity of ωL and ωR, the particle system
{ξt : t ≥ 0} is irreducible on

X̂n :=
{
ξ ∈ X̂ : |ξ| = n

}
whenever n = |ξ0| and admits a unique stationary measure fully supported on configurations{

ξ ∈ X̂n : ξ(x) = 0 for all x ∈ V
}
,

i.e. all particles will get eventually absorbed in the sites {L,R}. Furthermore, the evolution of the particle systems
{ξt : t ≥ 0} does not depend on θL and θR, but only on the following set of parameters:

ω = {ω{x,y} : x, y ∈ V} , (6.2.13)

α = {αx : x ∈ V} and {ωL, ωR, αL, αR} . (6.2.14)

For this reason, in the sequel we will refer to V ∪ {L,R} endowed with the above parameters as the underlying
geometry of our particle systems.

Classical dualities

In this section, we generalize to the disordered setting the duality relations already appearing in e.g. [32]. In
particular, these duality functions are in factorized – jointly in the original and dual configuration variables – form
over all sites, i.e., for all η ∈ X and ξ ∈ X̂,

D(ξ, η) = dL(ξ(L)) ×

∏
x∈V

dx(ξ(x), η(x))

 × dR(ξ(R)) , (6.2.15)
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with the factors {dx(·, ·) : x ∈ V} ∪ {dL(·), dR(·)} named single-site duality functions. As already mentioned in the
introduction, we refer to them as “classical” because the duality functions consist in weighted factorial moments
of the occupation variables of the configuration η generalizing to IRW and SIP the renown duality relations for the
symmetric simple exclusion process, see e.g. [126, Theorem 1.1, p. 363].

The precise form of these classical duality functions is contained in the following proposition. The proof of this
duality relation boils down to directly check identity (6.2.9) and we omit it being it a straightforward rewriting
of the proof of [32, Theorem 4.1]. We remark that in (6.2.17) below and in the rest of the chapter, we adopt the
conventions 00 := 1, Γ(v+`)

Γ(v) := v(v + 1) · · · (v + ` − 1) for v ≥ 0 and ` ∈ N0, while

Γ(v + `)
Γ(v)

:=


1 if ` = 0
v(v + 1) · · · (v + ` − 1) if ` ∈ {1, ..., |v|}
0 otherwise ,

for v ∈ Z ∩ (−∞, 0) and ` ∈ N0.

Proposition 6.2.3 (classical duality functions). For each choice of σ ∈ {−1, 0, 1}, letL and L̂ be the infinitesimal
generators given in (6.2.1) and (6.2.11), respectively, associated to the particle systems {ηt : t ≥ 0} and {ξt : t ≥ 0}.
Then the duality relations in (6.2.8) and (6.2.9) hold with the duality function Dc` : X̂ ×X → R defined as follows:
for all configurations η ∈ X and ξ ∈ X̂,

Dc`(ξ, η) = dc`
L (ξ(L)) ×

∏
x∈V

dc`
x (ξ(x), η(x))

 × dc`
R (ξ(R)) ,

where, for all x ∈ V and k, n ∈ N0,

dc`
x (k, n) =

n!
(n − k)!

1
wx(k)

1{k≤n} (6.2.16)

and

dc`
L (k) = (θL)k and dc`

R (k) = (θR)k , (6.2.17)

where

wx(k) =



αx!
(αx − k)!

1{k≤αx} if σ = −1

αk
x if σ = 0

Γ(αx + k)
Γ(αx)

if σ = 1 .

(6.2.18)

6.3 Equilibrium and non-equilibrium stationary measures

The long run behavior of the boundary driven particle systems of Section 6.2.1, encoded in their stationary mea-
sures, is explicitly known when the particle systems are not in contact with the reservoirs. Indeed, if ωL = ωR = 0,
the particle systems {ηt : t ≥ 0} admit a one-parameter family of stationary – actually reversible – product measures

{µθ = ⊗x∈V νx,θ : θ ∈ Θ} (6.3.1)

with Θ = [0, 1] if σ = −1 (SEP) and Θ = [0,∞) if σ = 0 (IRW) and σ = 1 (SIP) and marginals given, for all
x ∈ V , by

νx,θ ∼


Binomial(αx, θ) if σ = −1

Poisson(αxθ) if σ = 0

Negative-Binomial(αx,
θ

1+θ
) if σ = 1 .

(6.3.2)

More concretely, for all n ∈ N0,

νx,θ(n) =
wx(n)
zx,θ

(
θ

1+σθ

)n

n!
, (6.3.3)
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with the functions {wx : x ∈ V} as given in (6.2.18) and

zx,θ =


(1 − θ)−αx if σ = −1

eαxθ if σ = 0
(1 + θ)αx if σ = 1 ,

(6.3.4)

where, for σ = −1, we set νx,1(n) := 1{n=αx}. Reversibility of these product measures for the dynamics induced by
L in (6.2.1) follows by a standard detailed balance computation (see e.g. [32] for an analogous statement with site-
independent parameters α). We note that, in analogy with (6.2.6), the parameterization of these product measures
and corresponding marginals is chosen in such a way that the density of particles

ρx := Eµθ [η(x)] (6.3.5)

at site x ∈ V w.r.t. µθ is given by the product of αx and θ, i.e.

ρx = αxθ , x ∈ V . (6.3.6)

6.3.1 Equilibrium stationary measure

In presence of interaction with only one of the two reservoirs, e.g. ωL > 0 and ωR = 0 and with scale parameters
given by θL and θR, respectively, the same detailed balance computation shows that the systems have µθ (see (6.3.1))
with θ = θL as reversible product measures. The stationary measures remain the same as long as the systems are in
contact with both reservoirs, i.e. ωL, ωR > 0, and the two reservoirs are given equal scale parameters θL = θR ∈ Θ.
We refer to such stationary measures as equilibrium stationary measures.

6.3.2 Non-equilibrium stationary measures

As for non-equilibrium stationary measures, i.e. the stationary measures of the particle systems when ωL, ωR > 0
and θL , θR, none of the measures {µθ = ⊗x∈V νx,θ : θ ∈ Θ} above is stationary. However, for each of the particle
systems, the non-equilibrium stationary measure exists, is unique and we denote it by µθL,θR . Moreover, while for
the case of independent random walkers µθL,θR is in product form, for the case of exclusion and inclusion particle
systems in non-equilibrium µθL,θR is non-product and has non-zero two-point correlations. This is the content of
Theorem 7.3.1 below. In particular, the result on two-point correlations (item (b)) will be complemented with the
study of the signs of such correlations in Theorem 6.3.4 and Lemma 6.3.5 below. We recall that, for the special
case of the exclusion process with α = {αx : x ∈ V} satisfying αx = 1 for all x ∈ V and with nearest-neighbor
unitary conductances, i.e.

ω{x,y} = 1{|x−y|=1} , x, y ∈ V ,

the unique non-product non-equilibrium stationary measure µθL,θR has been characterized in terms of a matrix
formulation (see e.g. [55] and [125, Part III. Section 3]). Goal of Section 6.5 below is to provide a partial char-
acterization of the non-equilibrium stationary measure of these systems by expressing suitably centered factorial
moments – related to the orthogonal duality functions of Section 6.4 below – in terms of the product of a suitable
power of (θL − θR) and a coefficient which does not depend on neither θL nor θR.

In what follows, for all x ∈ V , we introduce the non-equilibrium stationary profile of the classical duality functions:

θ̄x := EµθL ,θR

[
η(x)
αx

]
= EµθL ,θR

[
Dc`(δx, η)

]
. (6.3.7)

We recall that P̂ξ denotes the law of the dual particle system started from the deterministic configuration ξ ∈ X̂.
Then, by stationarity and duality (Proposition 6.2.3), we obtain, for all x ∈ V ,

θ̄x = lim
t→∞
EµθL ,θR

[
ηt(x)
αx

]
= p̂∞(δx, δL) θL + p̂∞(δx, δR) θR = θR + p̂∞(δx, δL) (θL − θR) , (6.3.8)

where, for all ξ, ξ′ ∈ X̂, p̂∞(ξ, ξ′) := limt→∞ p̂t(ξ, ξ′), with

p̂t(ξ, ξ′) := P̂ξ(ξt = ξ′) .
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Equivalently, stationarity and duality imply that {θ̄x : x ∈ V} solves the following difference equations: for all
x ∈ V , ∑

y∈V

ω{x,y} αy (θ̄y − θ̄x) + 1{x=1} ωL αL (θL − θ̄1) + 1{x=N} ωR αR (θR − θ̄N) = 0 . (6.3.9)

Consequently, because of the connectedness of (V,∼), if θL = θR, then θ̄x = θL = θR for all x ∈ V , while θL , θR

implies that there exist x, y ∈ V such that θ̄x , θ̄y and, moreover, that θ̄x > 0 for all x ∈ V .

Remark 6.3.1 (non-equilibrium stationary profile for a chain). In the particular instance of a chain, i.e.

ω{x,y} > 0 if and only if |x − y| = 1 ,

the solution to the system (6.3.9) is given by:

θ̄x = θR + p̂∞(δx, δL) (θL − θR)

= θR +


1

ωRαRαN
+

∑N−1
y=x

1
ω{y,y+1}αyαy+1

1
ωLαLα1

+

(∑N−1
y=1

1
ω{y,y+1}αyαy+1

)
+ 1

ωRαRαN

 (θL − θR) .

If, additionally, the conductances and site parametersω and α are constant, αL = αR = αx and ωL = ωR = ω{x,x+1},
the profile x 7→ θ̄x is linear (cf. [32, Eq. (4.24)]):

θ̄x = θR +

(
1 −

x
N + 1

)
(θL − θR) . (6.3.10)

Before stating the main result of this section, we introduce the following definition.

Definition 6.3.2 (local equilibrium product measure). Given θ̄ := {θ̄x : x ∈ V} the stationary profile introduced in
(6.3.8), we define the following product measure

µθ̄ := ⊗x∈V νx,θ̄x
, (6.3.11)

and refer to it as the local equilibrium product measure.

Theorem 6.3.3. For each choice of σ ∈ {−1, 0, 1} and provided that ωL ∨ ωR > 0, for all θL, θR ∈ Θ there exists a
unique stationary measure µθL,θR for the particle system {ηt : t ≥ 0}. Moreover,

(a) If σ = 0 (IRW), the stationary measure µθL,θR is in product form and is given by

µθL,θR = µθ̄ . (6.3.12)

(b) If either σ = −1 (SEP) or σ = 1 (SIP) and, additionally, ωL, ωR > 0 and θL , θR, there exists x, y ∈ V with
x , y for which

EµθL ,θR

[(
η(x)
αx
− θ̄x

) (
η(y)
αy
− θ̄y

)]
, 0 .

As a consequence, the unique non-equilibrium stationary measure µθL,θR is not in product form.

Proof. The proof of existence and uniqueness of the stationary measure µθL,θR is trivial for the exclusion process,
which is a finite state irreducible Markov chain. We postpone the proof for the case of independent random
walkers and inclusion process to Section 6.7. Although this result is standard, it does not appear, to the best of our
knowledge, in the literature.

For what concerns item (a) in which σ = 0, let us compute, for all ξ ∈ X̂,∑
η∈X

LrightDc`(ξ, η) µθ̄(η) .

By duality, the following relation (cf. e.g. [146])∑
n∈N0

dc`
x (k, n) νx,θ̄x

(n) = (θ̄x)k , (6.3.13)
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which holds for all x ∈ V and k ∈ N0 if σ ∈ {0, 1} while k ∈ {0, . . . , αx} if σ = −1, we obtain, for all ξ ∈ X̂,∑
η∈X

LrightDc`(ξ, η) µθ̄(η) =
∑
η∈X

L̂leftDc`(ξ, η) µθ̄(η)

=
∑
x∈V

∑
η∈X

Dc`(ξ − δx, η) µθ̄(η)

 ξ(x)


∑

y∈V ω{x,y} αy (θ̄y − θ̄x)

+1{x=1} ωL αL (θL − θ̄1)

+1{x=N} ωR αR (θR − θ̄N)

 = 0 ,

where the last identity follows from (6.3.9). Because the products of Poisson distributions are completely charac-
terized by their factorial moments {Dc`(ξ, ·) : ξ ∈ X̂}, we get (7.3.1).

For item (b) in which σ , 0, let us suppose by contradiction that all two-point correlations are zero, i.e. for all
x, y ∈ V with x , y,

EµθL ,θR

[
η(x)
αx

η(y)
αy

]
= EµθL ,θR

[
Dc`(δx + δy, η)

]
= θ̄xθ̄y . (6.3.14)

If we use the following shortcut

θ̄′′x := EµθL ,θR
[
Dc`(2δx, η)

]
,

by stationarity, duality and (6.3.14), we obtain, for all x ∈ V ,∑
η∈X

LrightDc`(2δx, η) µθL,θR (η) =
∑
η∈X

L̂leftDc`(2δx, η) µθL,θR (η)

= 2
∑
y∈V

ω{x,y}αy(θ̄x θ̄y − θ̄
′′
x ) + 2

{
1{x=1}ωLαL(θLθ̄1 − θ̄

′′
1 ) + 1{x=N}ωRαR(θRθ̄N − θ̄

′′
N)

}
= 0 .

By adding and subtracting

2

∑y∈V ω{x,y}αy(θ̄x)2 + 1{x=1}ωLαL(θ̄1)2 + 1{x=N}ωRαR(θ̄N)2


to the identity above and by relation (6.3.9), we get

(
(θ̄x)2 − θ̄′′x

)
2

∑y∈V ω{x,y}αy + 1{x=1}ωLαL + 1{x=N}ωRαR

 = 0 .

Because the above identity holds for all x ∈ V and by the positivity of the expression in curly brackets due to the
connectedness of (V,∼), we get

θ̄′′x = (θ̄x)2 , for all x ∈ V . (6.3.15)

In view of (6.3.14), (6.3.15), stationarity of µθL,θR and duality, we have∑
η∈X

LrightDc`(δx + δy, η) µθL,θR (η) =
∑
η∈X

L̂leftDc`(δx + δy, η) µθL,θR (η)

= θ̄y


∑

z∈V ω{x,z} αz (θ̄z − θ̄x)

+1{x=1} ωL αL (θL − θ̄1)

+1{x=N} ωR αR (θR − θ̄N)

 + θ̄x


∑

z∈V ω{y,z} αz (θ̄z − θ̄y)

+1{y=1} ωL αL (θL − θ̄1)

+1{y=N} ωR αR (θR − θ̄N)

 + σω{x,y}(θ̄x − θ̄y)2

= σω{x,y}(θ̄x − θ̄y)2 . (6.3.16)

Therefore, because σ ∈ {−1, 1}, as a consequence of the connectedness of (V,∼), we have

∑
x∼y

∑
η∈X

LrightDc`(δx + δy, η) µθL,θR (η)

 = σ
∑
x∼y

ω{x,y} (θ̄x − θ̄y)2 = 0 (6.3.17)
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if and only if

θ̄x = θ̄y , for all x, y ∈ V . (6.3.18)

However, because θL , θR, the latter condition (6.3.18) contradicts the claim below (6.3.9) .

�

6.3.3 Two-point correlations in the non-equilibrium steady state

In the following theorem we prove that as soon as the system has interaction, i.e. σ ∈ {−1, 1}, the local equilibrium
product measure expectations of classical duality functions decrease (resp. increase) for exclusion (resp. inclusion)
in the course of time. This implies, in particular, negative (resp. positive) two-point correlations for exclusion
(resp. inclusion) particle systems. This strengthens previous results on correlation inequalities in [85], indeed here
we obtain strict inequalities. The proof of this theorem is based on Lemma 6.3.5 below, which is of interest in
itself because it provides an explicit expression of the l.h.s. in (6.3.19).

Theorem 6.3.4 (sign of two-point correlations). If ωL, ωR > 0 and ξ ∈ X̂ is such that
∑

x∈V ξ(x) ≥ 2, then, for all
θL, θR ∈ Θ with θL , θR and t > 0,

d
dt
Eµθ̄

[
Dc`(ξ, ηt)

] < 0 if σ = −1
> 0 if σ = 1 .

(6.3.19)

As a consequence, for all x, y ∈ V with x , y,

EµθL ,θR

[(
η(x)
αx
− θ̄x

) (
η(y)
αy
− θ̄y

)] < 0 if σ = −1
> 0 if σ = 1 .

Proof. The local equilibrium product measures µθ̄ satisfy the hypothesis of Lemma 6.3.5 below (cf. (6.3.13)).
Then, by the claim after (6.3.9) and the assumption θL , θR, (6.3.19) is recovered as a consequence of the first
equality of (6.3.21) from the same lemma. �

Lemma 6.3.5. For all n ∈ N, let µ be a probability measure on X such that

Eµ
[
Dc`(ξ, η)

]
= H(ξ, θ̄) (6.3.20)

holds for all ξ ∈ X̂ with |ξ| ≤ n, where θ̄ = {θ̄x : x ∈ V} and, for all θ = {θx : x ∈ V} ⊂ Θ,

H(ξ, θ) := (θL)ξ(L)

∏
x∈V

(θx)ξ(x)

 (θR)ξ(R) .

Then

d
dt
Eµ

[
Dc`(ξ, ηt)

]
= σ

∑
x∼y

ω{x,y}
(
θ̄y − θ̄x

)2
Êξ

[
ξt(x)
θ̄x

ξt(y)
θ̄y
Eµ

[
Dc`(ξt, η)

]]
= σ

∑
x∼y

ω{x,y} Êξ

[(
θ̄y − θ̄x

)2
∂2
θxθy

H(ξt, θ̄)
]

(6.3.21)

holds for all ξ ∈ X with |ξ| ≤ n and t ≥ 0.

Proof. By duality, we obtain, for all ξ ∈ X̂,

d
dt
Eµ

[
Dc`(ξ, ηt)

]
=

∑
η∈X

LrightEη
[
Dc`(ξ, ηt)

]
µ(η)

=
∑
η∈X

LrightÊξ
[
Dc`(ξt, η)

]
µ(η) =

∑
η∈X

Êξ
[
L̂leftDc`(ξt, η)

]
µ(η)

=
∑
x∈V

Êξ

ξt(x)


∑

y∈V ω{x,y} αy

(
Eµ

[
Dc`(ξx,y

t , η)
]
− Eµ

[
Dc`(ξt, η)

])
+ 1{x=1}ωL αL (Eµ

[
Dc`(ξ1,L

t , η)
]
− Eµ

[
Dc`(ξt, η)

]
)

+ 1{x=N}ωR αR (Eµ
[
Dc`(ξN,R

t , η)
]
− Eµ

[
Dc`(ξt, η)

]
)



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+ σ
∑
x∈V

Êξ

∑
y∈V

ω{x,y}ξt(x) ξt(y)
(
Eµ

[
Dc`(ξx,y

t , η)
]
− Eµ

[
Dc`(ξt, η)

]) .
By (6.3.20), for all x, y ∈ V and ξ ∈ X̂ with |ξ| ≤ n, we have

Eµ
[
Dc`(ξx,y, η)

]
− Eµ

[
Dc`(ξ, η)

]
=
Eµ

[
Dc`(ξ, η)

]
θ̄x

(
θ̄y − θ̄x

)
,

and, similarly,

Eµ
[
Dc`(ξ1,L, η)

]
− Eµ

[
Dc`(ξ, η)

]
=
Eµ

[
Dc`(ξ, η)

]
θ̄1

(
θL − θ̄1

)
Eµ

[
Dc`(ξN,R, η)

]
− Eµ

[
Dc`(ξ, η)

]
=
Eµ

[
Dc`(ξ, η)

]
θ̄N

(
θR − θ̄N

)
.

As a consequence, we further obtain

d
dt
Eµ

[
Dc`(ξ, ηt)

]
=

∑
η∈X

LrightEη
[
Dc`(ξ, ηt)

]
µ(η)

=
∑
x∈V

Êξ

ξt(x)
θ̄x
Eµ

[
Dc`(ξt, η)

] 
∑

y∈V ω{x,y} αy

(
θ̄y − θ̄x

)
+1{x=1}ωLαL

(
θL − θ̄1

)
+1{x=N}ωRαR

(
θR − θ̄N

)



+ σ
∑
x∼y

ω{x,y}
(
θ̄y − θ̄x

)2
Êξ

[
ξt(x)
θ̄x

ξt(y)
θ̄y
Eµ

[
Dc`(ξt, η)

]]
.

The observation that each of the expressions between curly brackets above equals zero because of the choice of the
scale parameters {θ̄x : x ∈ V} (cf. (6.3.7) and (6.3.9)) concludes the proof. �

Remark 6.3.6. (a) For all ξ ∈ X̂ with
∑

z∈V ξ(z) ≥ 2, for all times t > 0 and for all sites x, y ∈ V, the geometric
assumption on the connectedness of (V,∼) implies that

P̂ξ (ξt(x)ξt(y) > 0) > 0 .

As a consequence, the sign of the time derivative in (6.3.21) for ξ ∈ X̂ with
∑

z∈V ξ(z) ≥ 2 and for t > 0 is
determined by σ ∈ {−1, 0, 1}. In particular, if the probability measure µ and the configuration ξ ∈ X̂ are
given as in Theorem 6.3.4, the convergence

Eµ
[
Dc`(ξ, ηt)

]
−→
t→∞
EµθL ,θR

[
Dc`(ξ, η)

]
is strictly monotone in time: decreasing for σ = −1 and increasing for σ = 1.

(b) In the particular situation in which ξ = δx + δy for some x, y ∈ V and the probability measure µ satisfies the
hypothesis of Theorem 6.3.4 for n ≥ 2, the expression in (6.3.21) further simplifies yielding, for all t > 0,

Eµ
[
Dc`(δx + δy, ηt)

]
− θ̄xθ̄y

= Eµ
[
Dc`(δx + δy, ηt)

]
− Eµ

[
Dc`(δx + δy, η0)

]
= σ

∫ t

0

∑
z∼w

ω{z,w}
(
θ̄w − θ̄z

)2
Êξ=δx+δy

[
ξs(z)ξs(w)

]
ds

= σ

∫ t

0

∑
z∼w

ω{z,w}
(
θ̄w − θ̄z

)2
P̂ξ=δx+δy (ξs(z) = 1 and ξs(w) = 1) ds . (6.3.22)

If, additionally, we impose

αx = αL = αR and ωL = ωR = 1 and ω{x,y} = 1{|x−y|=1} ,

for all x, y ∈ V, we further get (cf. (6.3.10))

Eµ
[
Dc`(δx + δy, ηt)

]
− θ̄xθ̄y = σ

(θL − θR)2

(N + 1)2

∫ t

0
P̂ξ=δx+δy

N−1∑
z=1

ξs(z)ξs(z + 1) = 1

 ds . (6.3.23)
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6.4 Orthogonal dualities

By orthogonal dualities we refer to a specific subclass of duality functions D(ξ, η) in the form (6.2.15). This
subclass consists of jointly factorized functions whose each “bulk” single-site duality function

(k, n) ∈ N0 × N0 7→ dx(k, n) ∈ R

is a family of polynomials in the n-variables and orthogonal w.r.t. a suitable probability measure νx on N0, i.e. for
all k, ` ∈ N0,

∞∑
n=0

dx(k, n) dx(`, n) νx(n) = 1{k=`}‖dx(k, ·)‖2L2(νx) .

Orthogonal duality functions for exclusion, inclusion and independent particle systems with no interaction with
reservoirs have been first introduced in [78] by direct computations and then characterized in [146] through gen-
erating function techniques. There, the dual particle system has the same law of the original particle system;
therefore, orthogonal dualities are actually self-dualities. Moreover, for each σ ∈ {−1, 0, 1}, these jointly factor-
ized orthogonal dualities consist of products of hypergeometric functions of the following two types: either

2F0

[
−k − n
−

;−u
]

:=
k∑
`=0

(
k
`

) (
n!

(n − `)!
1{`≤n}

)
u` (6.4.1)

or

2F1

[
−k − n

v
; u

]
:=

k∑
`=0

(
k
`

) (
Γ(v)

Γ(v + `)
n!

(n − `)!
1{`≤n}

)
u` , (6.4.2)

with k, n ∈ N0 and u, v ∈ R. More specifically, these orthogonal single-site self-duality functions are Kravchuk
polynomials for SEP (σ = −1), Charlier polynomials for IRW (σ = 0) and Meixner polynomials for SIP (σ = 1)
(see e.g. [108]). It turns out that such single-site self-duality functions are orthogonal families w.r.t. the single-
site marginals of the stationary (actually reversible) product measures of the corresponding particle system; in
particular, Kravchuk polynomials are orthogonal w.r.t. Binomial distributions, Charlier polynomials w.r.t. Poisson
distributions and Meixner polynomials w.r.t. Negative Binomial distributions. More precisely, because in this
setting there exists a one-parameter family of stationary product measures for each of the three particle systems
(see also Section 6.3 above), this corresponds to the existence of a one-parameter family of orthogonal duality
functions.

This correspondence between orthogonal duality functions and stationary measures may suggest that, knowing a
stationary measure of a particle system, an orthogonal family of observables of this system would correspond,
in general, to duality functions. This program, however, besides not being generally verifiable, does not apply
to the case of particle systems in contact with reservoirs, for which the non-equilibrium stationary measures are,
generally speaking, not in product form and not explicitly known (see also Section 6.3.2).

Nevertheless, from an algebraic point of view (see e.g. [83]), new duality relations may be generated from the
knowledge of a duality relation and a symmetry of one of the two generators involved in the duality relation. In
brief, given the following duality relation

L̂leftD(ξ, η) = LrightD(ξ, η)

for all ξ ∈ X̂, η ∈ X, and a symmetry K̂ for the generator L̂, i.e., for all f : X̂ → R and ξ ∈ X̂,

K̂ L̂ f (ξ) = L̂ K̂ f (ξ) , (6.4.3)

then, if F(K̂) with F : R → R is a well-defined operator, the function (F(K̂))leftD(ξ, η) is a duality function
between L and L̂. Indeed, for all η ∈ X and ξ ∈ X̂, we have

L̂left(F(K̂))leftD(ξ, η) = (F(K̂))leftL̂leftD(ξ, η)

= (F(K̂))leftLrightD(ξ, η)

= Lright(F(K̂))leftD(ξ, η) .
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This latter approach is the one we follow here (Theorem 6.4.1 below) to recover a one-parameter family of orthog-
onal duality functions for boundary driven particle systems. Its proof combines two ingredients: first, as already
proved in [37], we observe that the so-called annihilation operator on V ∪ {L,R} given, for all f : X̂ → R, by

K̂ f (ξ) = K̂bulk f (ξ) + K̂L,R f (ξ) , (6.4.4)

where

K̂bulk f (ξ) =
∑
x∈V

K̂x f (ξ) =
∑
x∈V

ξ(x) f (ξ − δx)

and

K̂L,R f (ξ) = K̂L f (ξ) + K̂R f (ξ) = ξ(L) f (ξ − δL) + ξ(R) f (ξ − δR) ,

is a symmetry for the generator L̂ associated to the particle systems with purely absorbing reservoirs and defined
in (6.2.11). Then, we obtain the candidate orthogonal dualities by acting with suitable exponential functions of
this symmetry K̂ on the classical duality functions appearing in Proposition 6.2.3. We recall that in (6.4.6) below,
the convention 00 := 1 holds.

Theorem 6.4.1 (orthogonal duality functions). For each choice of σ ∈ {−1, 0, 1}, letL and L̂ be the infinitesimal
generators given in (6.2.1) and (6.2.11), respectively, associated to the particle systems {ηt : t ≥ 0} and {ξt : t ≥ 0}.
Then the duality relations in (6.2.8) and (6.2.9) hold with the duality functions Dor

θ : X̂ × X → R defined, for all
θ ∈ Θ, as follows: for all configurations η ∈ X and ξ ∈ X̂,

Dor
θ (ξ, η) = dor

L,θ(ξ(L)) ×

∏
x∈V

dor
x,θ(ξ(x), η(x))

 × dor
R,θ(ξ(R))

where, for all x ∈ V and k, n ∈ N0,

dor
x,θ(k, n) = (−θ)k ×



2F1

[
−k − n
−αx

;
1
θ

]
σ = −1

2F0

[
−k − n
−

;−
1
θαx

]
σ = 0

2F1

[
−k − n
αx

;−
1
θ

]
σ = 1 ,

(6.4.5)

and

dor
L,θ(k) = (θL − θ)k and dor

R,θ(k) = (θR − θ)k . (6.4.6)

Proof. We start with the observation that, for each σ ∈ {−1, 0, 1}, the commutation relation (6.4.3) between the
annihilation operator K̂ in (6.4.4) and the generator L̂ (6.2.11) holds (for a detailed proof, we refer to e.g. [37,
Section 5]).

As a consequence, for all θ ∈ Θ, the following function

(e−θK̂ )leftDc`(ξ, η) (6.4.7)

is a duality function between L and L̂. In particular, recalling the definitions of single-site classical duality func-
tions in (6.2.16)–(6.2.17) and hypergeometric functions in (6.4.1)–(6.4.2), due to the factorized form of both sym-
metry e−θK̂ and classical duality function, the combination of

(e−θK̂L )dc`
L (k) =

k∑
`=0

(
k
`

)
dc`

L (`) (−θ)k−` = (θL − θ)k

(e−θK̂R )dc`
R (k) =

k∑
`=0

(
k
`

)
dc`

R (`) (−θ)k−` = (θR − θ)k
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and

(e−θK̂x )leftdc`
x (k, n) =

k∑
`=0

(
k
`

)
dc`

x (`, n) (−θ)k−` = (−θ)k



2F1

[
−k − n
−αx

;
1
θ

]
σ = −1

2F0

[
−k − n
−

;−
1
θαx

]
σ = 0

2F1

[
−k − n
αx

;−
1
θ

]
σ = 1 ,

(6.4.8)

for all x ∈ V , concludes the proof. �

The above method to derive the orthogonal duality functions may be summarized as consisting in the application
on the classical duality functions of a suitable symmetry on the “left” dual variables ξ. This approach differs from
all those previously employed in the context of closed systems: e.g., [78] is based on solving suitable recurrence
relations, [146] on computing generating functions, while [34] on acting with suitable unitary symmetries on
the “right” variables η. The main advantage of our method is that it works in both contexts of closed and open
systems with no substantial alteration, since the annihilation operator is a commutator of the dual generator in both
situations.

Remark 6.4.2. To provide the reader with a further interpretation of orthogonal dualities, we note that the follow-
ing formula connecting orthogonal and classical dualities is reminiscent of the Newton binomial formula:

dor
x,θ(k, n) =

k∑
`=0

(
k
`

)
dc`

x (`, n) (−θ)k−` . (6.4.9)

In particular, setting θ = 0 and recalling the convention 00 := 1,

dor
x,θ=0(k, n) =

k∑
`=0

(
k
`

)
dc`

x (`, n) (−0)k−` = dc`
x (k, n) , (6.4.10)

i.e., the classical duality functions, Dc`(ξ, η), may be seen as a particular instance of the orthogonal duality func-
tions if the scale parameter θ ∈ Θ is set equal to zero, Dor

θ=0(ξ, η) (cf. [146, §4.1.1 & §4.1.2]).

Remark 6.4.3 (orthogonality relations). In general, the orthogonal duality functions of Theorem 6.4.1 are not
orthogonal w.r.t. the stationary measure of the particle dynamics in non-equilibrium. In fact, for each choice of
σ ∈ {−1, 0, 1} and θ ∈ Θ, the orthogonal duality function Dor

θ (ξ, η) gives rise to an orthogonal basis {eξ : ξ ∈ Ŷ} of
L2(X, µθ), where µθ is given in (6.3.1),

eξ := Dor
θ (ξ, ·) and Ŷ := {ξ ∈ X̂ : ξ(L) = ξ(R) = 0} . (6.4.11)

In equilibrium, i.e. θL = θR = θ ∈ Θ, we have seen (see Section 6.3) that the measure µθ is stationary for the particle
system {ηt : t ≥ 0}. In non-equilibrium, i.e. θL , θR, µθ fails to be stationary. Nevertheless, the aforementioned
orthogonality relations still hold in both contexts, regardless of the stationarity of µθ.

As an immediate consequence of Theorem 6.4.1, we can compute the following expectations of the orthogonal
duality functions.

Proposition 6.4.4. Let b ∈ R such that
θ := θR + b(θL − θR) ∈ Θ . (6.4.12)

Then, for all t ≥ 0 and for all configurations ξ ∈ X̂, we have

Eµθ
[
Dor
θ (ξ, ηt)

]
= (θL − θR)|ξ|φt,b(ξ) , (6.4.13)

where µθ is the product measure (cf. (6.3.1)) with scale parameter θ = θR + b (θL − θR) and

φt,b(ξ) := (−b)|ξ| Êξ

(b − 1
b

)ξt(L)

1{ξt(L)+ξt(R)=|ξ|}

 .
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Moreover, for all configurations ξ ∈ X̂, we have

EµθL ,θR

[
Dor
θ (ξ, η)

]
= (θL − θR)|ξ| φb(ξ) , (6.4.14)

where

φb(ξ) := (−b)|ξ| Êξ

(b − 1
b

)ξ∞(L) .
In particular, φb,t and φb do not depend on neither θL nor θR, but only on b, σ ∈ {−1, 0, 1} and the underlying
geometry of the system.

Proof. As a consequence of duality (Theorem 6.4.1), we obtain

Eµθ
[
Dor
θ (ξ, ηt)

]
= Êξ

[
Eµθ

[
Dor
θ (ξt, η)

]]
= Êξ

[
(θL − θ)ξt(L) (θR − θ)ξt(R) 1{ξt(L)+ξt(R)=|ξ|}

]
= Êξ

[
(θL − θ)ξt(L) (θR − θ)|ξ|−ξt(L) 1{ξt(L)+ξt(R)=|ξ|}

]
= (θR − θ)|ξ| Êξ

[
(θL − θ)ξt(L) (θR − θ)−ξt(L) 1{ξt(L)+ξt(R)=|ξ|}

]
, (6.4.15)

where in the second identity we have used orthogonality of the single-site duality functions dor
x,θ(k, ·) w.r.t. the

marginal νx,θ (see also Remark 6.4.3) and the observation that

dor
x,θ(0, ·) ≡ 1 , x ∈ V .

Inserting θ = θR + b(θL − θR) (cf. (6.4.12)) in the last line of (6.4.15), we get (6.4.13). By sending t → ∞, the
uniqueness of the stationary measure yields (6.4.14). �

Remark 6.4.5. For the choice b = 1
2 and, thus, θ = θL+θR

2 , (6.4.13) and (6.4.14) further simplify as

Eµθ
[
Dor
θ (ξ, ηt)

]
=

(
θL − θR

2

)|ξ|
Êξ

[
(−1)|ξ|−ξt(L) 1{ξt(L)+ξt(R)=|ξ|}

]
(6.4.16)

and

EµθL ,θR

[
Dor
θ (ξ, η)

]
=

(
θL − θR

2

)|ξ|
Êξ

[
(−1)|ξ|−ξ∞(L)

]
. (6.4.17)

6.5 Higher order correlations in non-equilibrium

In this section, we study higher order space correlations for the non-equilibrium stationary measures presented in
Section 6.3. In particular, we show in Theorem 6.5.1 below, by using the orthogonal duality functions of Section
6.4, that the n-point correlation functions in non-equilibrium may be factorized into a first term, namely (θL − θR)n,
and a second term, which we call ψ and which is independent of the values θL and θR. This result may be seen as a
higher order generalization of the decomposition obtained for the simple symmetric exclusion process in [57, Eqs.
(2.3)–(2.8)]. There the authors exploit the matrix formulation of the non-equilibrium stationary measure to recover
the explicit expression for the first, second and third order correlation functions.

While the coefficients ψ in (6.5.3) for the case of independent random walkers are identically zero (see item
(b) after Theorem 6.5.1 below), for the interacting case (σ ∈ {−1, 1}) they are expressed in terms of absorption
probabilities of both interacting and independent dual particles. These absorption probabilities – apart from some
special instances, see e.g. [57] and [32, Section 6.1] – are not explicitly known. Nonetheless, Theorem 6.5.1 – and
the related Theorem 6.5.6 – highlight the common structure of the higher order correlations for all three particle
systems considered in this chapter. In particular, this common structure arises for all values of the parameters θL

and θR ∈ Θ and with all disorders (ω,α) and parameters {ωL, ωR, αL, αR} as in (6.2.13)–(6.2.14). Moreover, along
the same lines, we show that all higher order space correlations at any finite time t > 0 for the particle system
started from suitable product measures exhibit the same structure. This is the content of Theorem 6.5.6 in Section
6.5.2 below. In fact, we derive Theorem 6.5.1 on the structure of stationary correlations from the more general
result stated in Theorem 6.5.6, whose proof is deferred to Section 6.5.3.



6.5. Higher order correlations in non-equilibrium 95

6.5.1 Stationary non-equilibrium correlations and cumulants

For each choice of σ ∈ {−1, 0, 1}, we recall that µθL,θR denotes the non-equilibrium stationary measure of the
particle system {ηt : t ≥ 0} with generator L given in (6.2.1). Moreover, let us recall the definition of {θ̄x : x ∈ V}
in (6.3.7) and introduce the following ordering of dual configurations: for all ξ ∈ X̂,

ζ ≤ ξ if and only if ζ ∈ X̂ and
ζ(L) ≤ ξ(L) , ζ(R) ≤ ξ(R)
ζ(x) ≤ ξ(x) , for all x ∈ V .

(6.5.1)

Analogously, we say that ζ < ξ if ζ ≤ ξ and at least one of the inequalities in (6.5.1) is strict. Finally, given
ξ, ζ ∈ X̂, let ξ ± ζ denote the configuration with ξ(x) ± ζ(x) particles at site x, for all x ∈ V ∪ {L,R}, as long as
ξ ± ζ ∈ X̂.

In what follows, for all choices of σ ∈ {−1, 0, 1}, P̂ and Ê denote the law and expectation, respectively, of the dual
process with either exclusion (σ = −1), inclusion (σ = 1) or no interaction (σ = 0), while we adopt P̂IRW and ÊIRW

to refer to the law and corresponding expectation, respectively, of the dual process consisting of non-interacting
random walks (σ = 0).

Theorem 6.5.1 (stationary correlation functions). For all n ∈ N with n ≤ |V | and for all x1, . . . , xn ∈ V with
xi , x j if i , j, by setting

ξ = δx1 + · · · + δxn ,

we have

EµθL ,θR

 n∏
i=1

(
η(xi)
αxi

− θ̄xi

) = (θL − θR)n ψ(ξ)

= (θL − θR)n ψ(δx1 + · · · + δxn ) , (6.5.2)

where
ψ(ξ) =

∑
ζ≤ξ

(−1)|ξ|−|ζ | P̂IRW
ξ−ζ ((ξ − ζ)∞(L) = |ξ − ζ |) P̂ζ(ζ∞(L) = |ζ |) . (6.5.3)

In particular, ψ(ξ) ∈ R and it does not depend on neither θL nor θR, but only on σ ∈ {−1, 0, 1} and the underlying
geometry (see Eqs. (6.2.13)–(6.2.14)) of the system.

As an immediate consequence we have the following corollary on the stationary non-equilibrium joint cumulants.

Corollary 6.5.2 (joint cumulants). For all n ∈ N and x1, . . . , xn ∈ V with xi , x j if i , j, let κ(δx1 + . . . + δxn )
denote the joint cumulant of the random variables{

η(xi)
αxi

− θ̄xi : x1, . . . , xn ∈ V
}
.

Then, we have

κ(δx1 + · · · + δxn ) = (θL − θR)n ϕ(δx1 + · · · + δxn ) ,

where ϕ(δx1 + · · · + δxn ) ∈ R does not depend on neither θL nor θR, but only on σ ∈ {−1, 0, 1} and the underlying
geometry of the system.

Proof. After recalling that

κ(δx1 + · · · + δxn ) =
∑
γ∈T

(|γ| − 1)! (−1)|γ|−1
∏
U∈γ

EµθL ,θR

∏
y∈U

(
η(y)
αy
− θ̄y

) ,
where T = T ({x1, . . . , xn}) denotes the set of partitions of {x1, . . . , xn} ⊂ V , the result follows by (6.5.2) with
ϕ({x1, . . . , xn}) given by

ϕ(δx1 + · · · + δxn ) =
∑
γ∈T

(|γ| − 1)! (−1)|γ|−1
∏
U∈γ

ψ(U) ,

where ψ(U) := ψ(
∑

x∈U δx). �
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Properties of the function ψ

We collect below some further properties of the coefficients ψ in (6.5.2):

(a) For all σ ∈ {−1, 0, 1}, if |ξ| = 0, i.e. the dual configuration is empty, then ψ(ξ) = 1.

(b) For σ = 0, ψ(ξ) = 0 for all ξ ∈ X̂ such that |ξ| ≥ 1.

(c) For all σ ∈ {−1, 0, 1} and for all x ∈ V , ψ(δx) = 0.

(d) If σ ∈ {−1, 1} and θL , θR, as a consequence of Theorem 6.3.4 and (θL − θR)2 > 0, ψ(δx + δy) is negative for
σ = −1 and positive for σ = 1 for all x, y ∈ V .

(e) Because ψ(δx1 + · · ·+δxn ) depends only on the underlying geometry of the system and not on θL, θR, exchang-
ing the role of θL and θR does not affect the value of the stationary n-point correlation functions if n ∈ N is
even, while it involves only a change of sign if n ∈ N is odd. More precisely, for all n ∈ N and x1, . . . , xn ∈ V ,

EµθL ,θR

 n∏
i=1

(
η(xi)
αxi

− θ̄xi

) = (−1)n EµθR ,θL

 n∏
i=1

(
η(xi)
αxi

− θ̄xi

) .
(f) As we will see in the course of the next section 6.5.2, ψ(ξ) in (6.5.2)–(6.5.3) can be defined for any ξ ∈ X̂

and equivalently expressed in terms of a parameter b ∈ R. More precisely, given ξ ∈ X̂ and b ∈ R, we have

ψ(ξ) =
∑
ζ≤ξ

(−1)|ξ|−|ζ |
∏

x∈V

(
ξ(x)
ζ(x)

)
( p̂∞(δx, δL) − b)ξ(x)−ζ(x)

 Êζ [(1 − b)ζ∞(L)(−b)ζ∞(R)
]
. (6.5.4)

Notice that, by setting ξ = δx1 + · · · + δxn with xi , x j if i , j, all the binomial coefficients in (6.5.4) are
equal to one. The choice b = 0 corresponds then to the expression on the l.h.s. of (6.5.2), while choosing
b = 1 leads to

ψ(ξ) =
∑
ζ≤ξ

(−1)|ζ | P̂IRW
ξ−ζ ((ξ − ζ)∞(R) = |ξ − ζ |) P̂ζ(ζ∞(R) = |ζ |) . (6.5.5)

In particular, since ψ(ξ) does not depend on b, we have that

dψ(ξ)
db

= 0 , (6.5.6)

which is an equation giving information on the absorption probabilities. If we consider, for instance, the
case ξ = δx + δy with x , y, (6.5.4) and (6.5.6) yield

2 P̂ξ=δx+δy (ξ∞(L) = 2) + P̂ξ=δx+δy (ξ∞(L) = 1) = p̂∞(δx, δL) + p̂∞(δy, δL) , (6.5.7)

which corresponds to the recursive relation found in [37, Proposition 5.1]. More generally, by matching the
two expressions of ψ(ξ) for ξ = δx1 + · · ·+ δxn with xi , x j if i , j, in (6.5.3) and (6.5.5), the relation that we
find is

P̂ξ (ξ∞(L) = |ξ|) − (−1)|ξ| P̂ξ (ξ∞(R) = |ξ|)

=
∑
ζ<ξ

 P̂
IRW
ξ−ζ ((ξ − ζ)∞(R) = |ξ − ζ |) P̂ζ(ζ∞(R) = |ζ |)

−(−1)|ξ| P̂IRW
ξ−ζ ((ξ − ζ)∞(L) = |ξ − ζ |) P̂ζ(ζ∞(L) = |ζ |)

 .

In other words, the above equation relates the probabilities of having all |ξ| dual particles absorbed at the
same end with a linear combination of analogous probabilities for systems with a strictly smaller number of
particles.
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6.5.2 Correlations at finite times and proof of Theorem 6.5.1

Theorem 6.5.1 follows from a more general result. This is the content of Theorem 6.5.6 below. There, we show
that a decomposition reminiscent of that in (6.5.2) holds also for expectations at some fixed positive time of
generalizations of the n-point correlation functions of Theorem 6.5.1 when the particle system starts from a suitable
product measure. The aforementioned generalizations of the correlation functions are constructed by suitably
recombining the orthogonal duality functions of Section 6.4 so to obtain a family of functions orthogonal w.r.t.
what we call “interpolating product measures” given in the following definition.

Definition 6.5.3 (interpolating product measures). We call interpolating product measure with interpolating pa-
rameters

β = {βx : x ∈ V} (6.5.8)

the measure given by

µθL,θR,β := ⊗x∈V νx,θx , (6.5.9)

with

θx := θR + βx(θL − θR) , (6.5.10)

where the marginals {νx,θ : x ∈ V} appearing in (6.5.9) are those given in (6.3.2) and β in (6.5.8)–(6.5.10) is chosen
such that, for each choice of σ ∈ {−1, 0, 1}, the product measure µθL,θR,β is a probability measure, i.e., for all x ∈ V,
the following conditions hold:

βx ∈ R and θx = θR + βx(θL − θR) ∈ Θ . (6.5.11)

In particular, if we choose

βx = p̂∞(δx, δL) =: β̄x , x ∈ V ,

as corresponding interpolating product measure we recover the local equilibrium product measure µθ̄ (Definition
6.3.2):

µθL,θR,β̄ = µθ̄ . (6.5.12)

Let us now introduce what we call the “interpolating orthogonal functions”.

Definition 6.5.4 (interpolating orthogonal functions). Recalling the definition of orthogonal polynomial dualities
in (6.4.5)–(6.4.6) and the definition of interpolating parameters β in (6.5.8), we define the interpolating orthogonal
function with interpolating parameters β as follows:

Dor
θL,θR,β

(ξ, η) := dor
L,θL

(ξ(L)) ×

∏
x∈V

dor
x,θx

(ξ(x), η(x))

 × dor
R,θR

(ξ(R)) , (6.5.13)

where the parameters {θx : x ∈ V} are defined in terms of θL, θR and β as in (6.5.10).

In analogy with (6.5.12), we define

Dor
θ̄

(ξ, η) := Dor
θL,θR,β̄

(ξ, η) = dor
L,θL

(ξ(L)) ×

∏
x∈V

dor
x,θ̄x

(ξ(x), η(x))

 × dor
R,θR

(ξ(R)) . (6.5.14)

Remark 6.5.5. We note that, despite the analogy in notation, in general these functions are not duality functions
for the particle system {ηt : t ≥ 0}, unless we assume the system to be at equilibrium, i.e. θL = θR = θ ∈ Θ. Only in
the latter case, Dor

θL,θR,β
(ξ, η) = Dor

θ (ξ, η) for all choices of β.

With the definition (6.5.13), we have (cf. Remark 6.4.3) that

Dor
θL,θR,β

(ξ, ·) = 0 , if ξ ∈ X̂ \ Ŷ , (6.5.15)

and that the family of functions {
Dor
θL,θR,β

(ξ, ·) : ξ ∈ Ŷ
}

is an orthogonal basis in L2(X, µθL,θR,β). Now we are ready to state the main result of this section, whose Theorem
6.5.1 is a particular instance.
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Theorem 6.5.6. Let us consider two set of interpolating parameters

β = {βx : x ∈ V} and β′ =
{
β′x : x ∈ V

}
both satisfying (6.5.10). Then, for all ξ ∈ Ŷ ⊂ X̂ and t ≥ 0, we have

EµθL ,θR ,β
[
Dor
θL,θR,β

′ (ξ, ηt)
]

= (θL − θR)|ξ| ψt,β,β′ (ξ) , (6.5.16)

where

ψt,β,β′ (ξ) :=
∑
ζ≤ξ

(−1)|ξ|−|ζ |
∏

x∈V

(
ξ(x)
ζ(x)

)
(β′x)ξ(x)−ζ(x) Êζ

1{ζt(R)=0}

∏
x∈V

(βx)ζt(x)

 , (6.5.17)

and ψt,β,β′ (ξ) does not depend on neither θL nor θR, but only on β, β′, σ ∈ {−1, 0, 1} and the underlying geometry
of the system. Moreover, by sending t to infinity in (6.5.16) we obtain, for all ξ ∈ Ŷ ⊂ X̂,

EµθL ,θR

[
Dor
θL,θR,β

′ (ξ, η)
]

= (θL − θR)|ξ| ψβ′ (ξ) , (6.5.18)

where

ψβ′ (ξ) :=
∑
ζ≤ξ

(−1)|ξ|−|ζ |
∏

x∈V

(
ξ(x)
ζ(x)

)
(β′x)ξ(x)−ζ(x)

 P̂ζ [ζ∞(L) = |ζ |
]
. (6.5.19)

Again, ψβ′ (ξ) is independent of θL and θR.

Remark 6.5.7. From the proof of Theorem 6.5.6, the results of the theorem extend to configurations ξ ∈ X̂ \ Ŷ
and, by (6.5.15),

ψt,β,β′ (ξ) = 0 , if ξ ∈ X̂ \ Ŷ . (6.5.20)

Before moving to the next section, Section 6.5.3, in which we provide the proof of Theorem 6.5.6, we show how
this latter result implies Theorem 6.5.1.

Proof of Theorem 6.5.1. Recall that, by the definitions of hypergeometric functions (6.4.1)–(6.4.2) and of single-
site orthogonal duality functions in (6.4.5), we have, for all n ∈ N and η ∈ X,

Dor
θ̄

(δx1 + · · · + δxn , η) =

n∏
i=1

(
η(xi)
αxi

− θ̄i

)
(6.5.21)

anytime x1, . . . , xn ∈ V with xi , x j if i , j. By choosing for any x ∈ V , β′x = p̂∞(δx, δL), the result follows
immediately from Theorem 6.5.6. �

Probabilistic interpretation of the function ψ

Theorem 6.5.1 may be seen as a particular instance of Theorem 6.5.6 with the choice t = ∞, ξ ∈ X̂ consisting of
finitely many particles all sitting at different sites in the bulk and β′x = p̂∞(δx, δL) for every x ∈ V . In fact, Theorem
6.5.6 extends the relation (6.5.2) to all ξ ∈ X̂, i.e.

EµθL ,θR

[
Dor
θ̄

(ξ, η)
]

= (θL − θR)|ξ| ψ(ξ) , (6.5.22)

with,

ψ(ξ) :=
∑
ζ≤ξ

(
ξ

ζ

)
(−1)|ξ|−|ζ | P̂IRW

ξ−ζ ((ξ − ζ)∞(L) = |ξ − ζ |) P̂ζ (ζ∞(L) = |ζ |) , (6.5.23)

where
(
ξ
ζ

)
:=

∏
x∈V

(
ξ(x)
ζ(x)

)
and P̂IRW refers to the law of the dual process for σ = 0, consisting of non-interacting

random walks.

In order to obtain a more probabilistic interpretation of (6.5.23), we define
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(a) the probability measure γξ on X̂ given by

γξ(ζ) =

(
ξ
ζ

)
2|ξ|

1{ζ≤ξ}, (6.5.24)

i.e. the distribution of uniformly chosen sub-configuration of ξ (i.e. ζ ≤ ξ);

(b) the function Ψξ : X̂ → R given by

Ψξ(ζ) := 1{ζ≤ξ} P̂IRW
ξ−ζ ((ξ − ζ)∞(L) = |ξ − ζ |) P̂ζ (ζ∞(L) = |ζ |) ,

i.e., the function that assigns to any ζ ≤ ξ the probability that, in a system composed by the superposition
of the configuration ζ of interacting dual particles and the configuration ξ − ζ of independent dual random
walks, independent between each other, all the particles are eventually absorbed at L.

The function ψ(ξ) in (6.5.23) can, then, be rewritten as follows:

ψ(ξ) = 2|ξ|
∑
ζ∈X̂

(−1)|ξ−ζ | Ψξ(ζ) γξ(ζ) .

Similarly, for all t ≥ 0, ξ ∈ X̂ and for the special choice

β = β′ and βx = β′x = p̂∞(δx, δL) ,

the identity in (6.5.16) yields, as a particular case,

Eµθ̄

[
Dor
θ̄

(ξ, ηt)
]

= (θL − θR)|ξ| ψt(ξ) , (6.5.25)

where

ψt(ξ) :=
∑
ζ≤ξ

(−1)ξ−ζ P̂IRW
ξ−ζ ((|ξ| − |ζ |)∞(L) = |ξ − ζ |) Êζ

[̂
PIRW
ζt

(ζ∞(L) = |ζ |)
]

= 2|ξ|
∑
ζ∈X̂

(−1)|ξ|−|ζ |Ψt,ξ(ζ) γξ(ζ) , (6.5.26)

where the integral in the last identity is w.r.t. the probability measure γξ defined in (6.5.24) and

Ψt,ξ(ζ) := 1{ζ≤ξ}P̂IRW
ξ−ζ ((ξ − ζ)∞(L) = |ξ| − |ζ |) Êζ

[̂
PIRW
ζt

(ζ∞(L) = |ζ |)
]
.

6.5.3 Proof or Theorem 6.5.6

We prove Theorem 6.5.6 in two steps.

First we obtain a formula to relate the functions Dor
θL,θR,β

′ (ξ, η) in (6.5.13) appearing in the statement of Proposition
6.5.6 to the orthogonal duality functions Dor

θ (ξ, η) in Section 6.4, for some θ ∈ Θ.

Lemma 6.5.8. For each choice of σ ∈ {−1, 0, 1} and b ∈ R, we define

θ := θR + b(θL − θR) . (6.5.27)

Then, for all configurations η ∈ X and ξ ∈ X̂,

Dor
θL,θR,β

′ (ξ, η) =
∑
ζ≤ξ

(θL − θR)|ξ|−|ζ | (−1)|ξ|−|ζ | Eβ′,b(ζ, ξ) Dor
θ (ζ, η) ,

where Eβ′,b(ζ, ξ) is defined as

Eβ′,b(ζ, ξ) := EL,b(ζ(L), ξ(L)) ×

∏
x∈V

Ex,β′x,b(ζ(x), ξ(x))

 × ER,b(ζ(R), ξ(R)) , (6.5.28)
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where, for all x ∈ V,

Ex,β′x,b(`, k) :=
(
k
`

)
(β′x − b)k−`1{`≤k} ,

and

EL,b(`, k) :=
(
k
`

)
(1 − b)k−`1{`≤k}

ER,b(`, k) :=
(
k
`

)
(−b)k−`1{`≤k} .

Proof. By definition of the orthogonal duality functions in Theorem 6.4.1 (see also (6.4.7)) and of the functions
Dor
θL,θR,β

′ in (6.5.13), we have

Dor
θ =

(
e−θK̂

)
left

Dc`

and

Dor
θL,θR,β

′ =

(
e−θLK̂L−

(∑
x∈V θ

′
xK̂x

)
−θRK̂R

)
left

Dc` ,

where
θ′x := θR + β′x (θL − θR) , x ∈ V .

Next, we get

Dor
θL,θR,β

′ =

(
e−θLK̂L−

(∑
x∈V θ

′
xK̂x

)
−θRK̂R+θK̂

)
left

(
e−θK̂

)
left

Dc`

=

(
e−(θL−θ)K̂L−

(∑
x∈V (θ′x−θ)K̂x

)
−(θR−θ)K̂R

)
left

Dor
θ ,

where the latter identity is a consequence of the fact that all the operators {K̂x : x ∈ V} ∪ {K̂L, K̂R} commute.
The expressions in terms of (θL − θR) of the parameters {θ′x : x ∈ V} in (6.5.11) and θ in (6.5.27) yield the final
result. �

Then, we derive an analogue of Theorem 6.5.6 for the orthogonal duality functions.

Lemma 6.5.9. For each choice of σ ∈ {−1, 0, 1} and b ∈ R and θ ∈ R as in (6.5.27) and such that θ ∈ Θ, we have,
for all configurations ζ ∈ X̂,

EµθL ,θR ,β
[
Dor
θ (ζ, ηt)

]
= (θL − θR)|ζ | φt,β,b(ζ) , (6.5.29)

where φt,β,b(ζ) ∈ R is defined as

φt,β,b(ζ) := Êζ

(1 − b)ζt(L) ×

∏
x∈V

(βx − b)ζt(x)

 × (−b)ζt(R)

 (6.5.30)

and, in particular, it does not depend on neither θL nor θR, but only on β, b, σ ∈ {−1, 0, 1} and the underlying
geometry of the system.

Proof. Recall the definition of µθL,θR,β in (6.5.9) and of the scale parameters {θx : x ∈ V} in (6.5.10). By duality
(Theorem 6.4.1), we have

EµθL ,θR ,β
[
Dor
θ (ζ, ηt)

]
=

∑
ζ′∈X̂

p̂t(ζ, ζ′)EµθL ,θR ,β
[
Dor
θ (ζ′, η)

]

=
∑
ζ′∈X̂

p̂t(ζ, ζ′)

(θL − θ)ζ
′(L) ×

∏
x∈V

(θx − θ)ζ
′(x)

 × (θR − θ)ζ
′(R)

 ,
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where this last identity is a consequence of∑
n∈N0

dor
x,θ(k, n) νx,θx (n) = (θx − θ)k

for all x ∈ V and k ∈ {0, . . . , αx} if σ = −1 and k ∈ N0 if σ ∈ {0, 1} (see e.g. [146]). We obtain (6.5.29) with the
function φt,β,b as in (6.5.30) by rewriting in terms of the parameters β and b the expression above between curly
brackets. �

A combination of Lemma 6.5.8 and Lemma 6.5.9 concludes the proof of Theorem 6.5.6. Indeed,

EµθL ,θR ,β
[
Dor
θL,θR,β

′ (ξ, ηt)
]

=
∑
ζ≤ξ

(θL − θR)|ξ|−|ζ | (−1)|ξ|−|ζ | Eβ′,b(ζ, ξ)EµθL ,θR ,β
[
Dor
θ (ζ, ηt)

]
= (θL − θR)|ξ|

∑
ζ≤ξ

(−1)|ξ|−|ζ |Eβ′,b(ζ, ξ) φt,β,b(ζ) ,

which yields (6.5.16) with ψt,β,β′ (ξ) given by

ψt,β,β′ (ξ) =
∑
ζ∈X̂

(−1)|ξ|−|ζ |Eβ′,b(ζ, ξ) φt,β,b(ζ) . (6.5.31)

We note that, because the l.h.s. in (6.5.16) and (θL − θR)|ξ| do not depend on the parameter b ∈ R, the whole
expression in (6.5.31) is independent of b, and in particular, we obtain (6.5.16) for the choice b = 0. By passing
to the limit as t goes to infinity on both sides in (6.5.16), by uniqueness of the stationary measure µθL,θR , we obtain
(6.5.18)–(6.5.19).

6.6 Exponential moments and generating functions

In this section we use the fact that the orthogonal dualities have explicit and simple generating functions in order
to produce a formula for the joint moment generating function of the occupation variables in the non-equilibrium
stationary state, in terms of the absorbing dual started from a random configuration ξ of which the distribution is
related to the reservoir parameters. We recall that Θ = [0, 1] if σ = −1 and Θ = [0,∞) if σ ∈ {0, 1}.

Theorem 6.6.1. Let λ = {λx : x ∈ V} ∈ RN be such that, for all x ∈ V,

Λx := 1 +
λx

1 + σλx(1 + θ̄x)
≥ 0 , (6.6.1)

and

κx :=
λx(θL − θR)

1 + σλx (1 − (θL − θR))
∈ Θ . (6.6.2)

Then, we have

EµθL ,θR

∏
x∈V

(Λx)η(x)

 =

∏
x∈V

JθL,θR,λx

Eµk [ψ], (6.6.3)

and, for all t ≥ 0,

Eµθ̄

∏
x∈V

(Λx)ηt(x)

 =

∏
x∈V

JθL,θR,λx

Eµk [ψt], (6.6.4)

where ψ and ψt are given in (6.5.2) and (6.5.26), respectively, µk = ⊗x∈Vνx,κx is the probability measure defined in
(6.3.1) with parameters κ = {κx : x ∈ V}, viewed as a probability measure on X̂ concentrated on Ŷ, and

JθL,θR,λx :=


eαxλx(θ̄x+(θL−θR)) if σ = 0(

1 + σλx(1 + θ̄x)
1 + σλx(1 − (θL − θR))

)σαx

if σ ∈ {−1, 1} .
(6.6.5)
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Remark 6.6.2 (conditions (6.6.1) & (6.6.2)). Condition (6.6.1) is obtained for

λx ⊂



(
−∞,

1
1 + θx

]
∪

[
1
θx
,∞

)
if σ = −1

[−1,∞) if σ = 0(
−∞,−

1
1 + θx

]
∪

[
−

1
2 + θx

,∞

)
if σ = 1 ,

(6.6.6)

while condition (6.6.2) for

(i) Case θL − θR ≥ 0 :

1
λx
⊂


[1,∞) if σ = −1
[0,∞) if σ = 0
[θL − θR − 1,∞) if σ = 1 ,

(6.6.7)

(ii) Case θL − θR ≤ 0 :

1
λx
⊂


(−∞, 1 − θL + θR] if σ = −1
(−∞,−1) if σ = 0
(−∞, θL − θR − 1] if σ = 1.

(6.6.8)

We devote the remaining of this section to the proof of Theorem 6.6.1. To this purpose, let us recall the definition
of {wx : x ∈ V} and {zx,· : x ∈ V} in (6.2.18) and (6.3.4), respectively.

Definition 6.6.3 (single-site generating functions). For each choice of σ ∈ {−1, 0, 1}, for all x ∈ V and for all
functions f : N0 → R, we define

(Υx f ) (λ) :=
∞∑

k=0

wx(k)
k!

(
λ

1+σλ

)k

zx,λ
f (k), (6.6.9)

(ΥL f )(λ) :=
∞∑

k=0

(αLλ)k

k!
f (k) e−αLλ

and

(ΥR f )(λ) :=
∞∑

k=0

(αRλ)k

k!
f (k) e−αRλ

for all λ ∈ R such that the above series absolutely converge. Moreover, we define

Υ := ΥL ⊗ (⊗x∈VΥx) ⊗ ΥR , (6.6.10)

acting on functions f : NN+2
0 → R.

Remark 6.6.4. If λ ∈ Θ then, for all x ∈ V and f : N0 → R,

(Υx f ) (λ) = Eνx,λ [ f ] ,

where νx,λx is given in (6.3.3).

As a first step, we investigate the action of the operators {Υx : x ∈ V} on the duality functions.

Lemma 6.6.5 (duality and generating functions). For each choice of σ ∈ {−1, 0, 1}, for all θ ∈ Θ and for all
x ∈ V,

(Υx)left dc`
x (·, n)(λ) =

(
1 + λ

1+σλ

)n

zx,λ
(6.6.11)
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and

(Υx)left dor
x,θ(·, n)(λ) =

(
1 + λ

1+σλ(1+θ)

)n

zx,λ(1+θ)
. (6.6.12)

Moreover

ΥleftDor
θ (·, η)(λ) = e−αLλL(1+θ−θL)

∏
x∈V

(
1 + λx

1+σλx(1+θ)

)η(x)

zx,λx(1+θ)

 e−αRλR(1+θ−θR) ,

and, analogously,

ΥleftDor
θ̄

(·, η)(λ) = e−αLλL

∏
x∈V

(
1 + λx

1+σλx(1+θ̄x)

)η(x)

zx,λx(1+θ̄x)

 e−αRλR . (6.6.13)

Remark 6.6.6. In order to guarantee the absolute convergence of the series in the definition of the operators Υ in
Definition 6.6.3, for the case σ = 1 we have to choose λ and θ such that∣∣∣∣∣ θλ

1 + λ

∣∣∣∣∣ < 1 .

Proof. By (6.4.10), we prove (6.6.12) from which, by setting θ = 0, (6.6.11) follows. By definition of Υx in (6.6.9),
relation (6.4.9) and the form of the functions {wx : x ∈ V} (see (6.2.18)), we obtain

(Υx)left dor
x,θ(·, n)(λ) =

∞∑
k=0

wx(k)
k!

(
λ

1+σλ

)k

zx,λ
dor

x,θ(k, n)

=

n∑
`=0

(
n
`

) ( λ
1+σλ

)`
zx,λ

∞∑
k=`

wx(k)
wx(`)(k − `)!

(
−θλ

1 + σλ

)k−`

=

n∑
`=0

(
n
`

) ( λ
1+σλ

)`
zx,λ

Fx(θ, λ, `) ,

where, as long as
∣∣∣ θλ1+λ

∣∣∣ < 1 if σ = 1 and for all λ ∈ R otherwise,

Fx(θ, λ, `) =


(

1 + σλ(1 + θ)
1 + σλ

)−(σαx+`)

if σ ∈ {−1, 1}

e−αxθλ if σ = 0 .

�

Proof of Theorem 6.6.1. We start by proving (6.6.4). First, by (6.6.13), the l.h.s. in (6.6.4) equals

l.h.s. in (6.6.4) = Eµθ̄

[
ΥleftDor

θ̄
(·, ηt)(λ)

]
eαLλL+αRλR

∏
x∈V

zx,λx(1+θ̄x)


= Υ

(
(θL − θR)|·| ψt(·)

)
(λ) eαLλL+αRλR

∏
x∈V

zx,λx(1+θ̄x)

 ,
where in the second identity we have exchanged Υleft and the expectation w.r.t. η – two operators acting on different
variables – together with (6.5.25). By the definition of Υ (cf. Definition 6.6.3) and (6.5.20) (cf. (6.4.11)), we further
get

l.h.s. in (6.6.4) =
∑
ξ∈Ŷ

∏
x∈V

wx(ξ(x))
(ξ(x))!

(
λx(θL−θR)

1+σλx

)ξ(x)

zx,λx

ψt(ξ)

∏
x∈V

zx,λx(1+θ̄x)

 ,
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which, by the definition of µκ (cf. the statement of the theorem), equals

l.h.s. in (6.6.4) =

∏
x∈V

zx,λx(1+θ̄x)zx,κx

zx,λx

∑
ξ∈X̂

µκ(ξ)ψt(ξ) .

The explicit form of {zx,· : x ∈ V} given in (6.3.4) yields (6.6.4). Sending t → ∞ in (6.6.4), by the uniqueness of
the stationary measure, we obtain (6.6.3). �

6.7 Existence and uniqueness of the stationary measure

In this section, we treat with full details the issue of existence and uniqueness of the stationary measure for IRW
and SIP in equilibrium and non-equilibrium. In what follows we take either σ = 0 or σ = 1.

We recall that a probability measure µ on the countable spaceX (endowed with the discrete topology) is the unique
stationary measure for the particle system {ηt : t ≥ 0} if, for all bounded functions f : X → R and for all probability
measures µ′ on X, the following holds:

lim
t→∞
Eµ′

[
f (ηt)

]
= Eµ

[
f (η)

]
. (6.7.1)

Out of all probability measures µ on X, we say that µ is tempered if it is characterized by the integrals

Eµ
[
Dc`(ξ, η)

]
, for all ξ ∈ X̂ .

To the purpose of determining whether a probability measure µ is tempered or not, we adopt the following strategy.
First, we recall that the functions {Dc`(ξ, ·) : ξ ∈ X̂} are weighted products of factorial moments of the variables
{η(x) : x ∈ V} (see Proposition 6.2.3). Then, we express these weighted factorial moments in terms of moments.
We conclude by means of a multidimensional Carleman’s condition.

By following the aforementioned ideas, we provide in the following lemma a sufficient condition for a measure to
be tempered.

Lemma 6.7.1. Let µ be a probability measure on X. If there exists θ ∈ Θ = [0,∞) such that

Eµ
[
Dc`(ξ, η)

]
≤ θ|ξ| (6.7.2)

for all ξ ∈ X̂, then µ is tempered.

Proof. Let us start by expressing the moments of η(x) in terms of single-site classical duality functions in (6.2.16):
for all x ∈ V and for all k, n ∈ N0,

nk =

k∑
`=0

{
k
`

}
dc`

x (`, n) wx(`) ,

where
{
k
`

}
denotes the Stirling number of the second kind given by

{
k
`

}
=

1
`!

∑̀
j=0

(−1)`− j
(
`

j

)
jk . (6.7.3)

In view of (6.7.2), we obtain

Eµ
[
(η(x))k

]
=

k∑
`=0

{
k
`

}
Eµ

[
Dc`(`δx, η)

]
wx(`)

≤

k∑
`=0

wx(`)
`!
Eµ

[
Dc`(`δx, η)

] ∑̀
j=0

(
`

j

)
jk

≤ kk
k∑
`=0

(2θ)`

`!
wx(`) .
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By recalling the definition of wx(`) in (6.2.18), in both cases with σ = 0 and σ = 1, we get

Eµ
[
(η(x))k

]
≤ (axk)k , (6.7.4)

for all k ∈ N, with ax = (1 + 2θαx) for σ = 0 and ax = bαxc!(1 + 2θ)bαxc+1 for σ = 1. Therefore, if mx(k) :=
Eµ

[
(η(x))k

]
, (6.7.4) yields

∞∑
k=1

mx(2k)−
1
2k ≥

1
ax

∞∑
k=1

1
2k

= ∞ .

Because the above condition holds for all x ∈ V , the multidimensional Carleman condition (see e.g. [150, Theorem
14.19]) applies. Hence, µ is completely characterized by the moments {mx(k) : x ∈ V, k ∈ N} and, in turn, is
tempered. �

Now, by means of duality, we observe that, for all η ∈ X and ξ ∈ X̂ with |ξ| = k,

lim
t→∞
Eη

[
Dc`(ξ, ηt)

]
= lim

t→∞
Êξ

[
Dc`(ξt, η)

]
=

k∑
`=0

θ`L θ
k−`
R P̂ξ (ξ∞ = `δL + (k − `)δR) . (6.7.5)

We note that the expression above does not depend on η ∈ X and, moreover,

lim
t→∞
Eη

[
Dc`(ξ, ηt)

]
≤ (θL ∨ θR)|ξ|

for all ξ ∈ X̂. Therefore, by Lemma 6.7.1, there exists a unique probability measure µ? on X such that

Eµ?
[
Dc`(ξ, η)

]
=

|ξ|∑
`=0

θ`L θ
|ξ|−`
R P̂ξ (ξ∞ = `δL + (|ξ| − `)δR) .

Furthermore, because the convergence in (6.7.5) for all ξ ∈ X̂ implies convergence of all marginal moments and
because the limiting measure is uniquely characterized by these limiting moments, then, for all f : X → R bounded
and for all η ∈ X, we have

lim
t→∞
Eη

[
f (ηt)

]
= Eµ?

[
f (η)

]
. (6.7.6)

By dominated convergence, (6.7.6) yields, for all probability measures µ on X and f : X → R,

lim
t→∞
Eµ

[
f (ηt)

]
= Eµ

[
lim
t→∞
Eη

[
f (ηt)

]]
= Eµ?

[
f (η)

]
,

i.e. µ? is the unique stationary measure of the process {ηt : t ≥ 0}. �





Chapter 7

Boundary driven switching interacting
particle systems: scaling limits, uphill
diffusion and boundary layer

7.1 Introduction

In this chapter we consider a finite version of the switching interacting particle systems introduced in Defini-
tion 5.2.1 to which boundary reservoirs are added. From the point of view of non-equilibrium systems driven by
boundary reservoirs, switching interacting particle systems have not been studied. On the one hand, such systems
have both reaction and diffusion and therefore exhibit a richer non-equilibrium behaviour. On the other hand, the
macroscopic equations are linear and exactly solvable in one dimension, and so these systems are simple enough
to make a detailed microscopic analysis possible. As explained in Chapter 5, the system can be viewed as an
interacting particle system on two layers. Therefore duality properties are available, which allows for a detailed
analysis of the system coupled to reservoirs, dual to an absorbing system. In one dimension the analysis of the
microscopic density profile reduces to a computation of the absorption probabilities of a simple random walk on
a two-layer system absorbed at the left and right boundaries. From the analytic solution, we can identify both the
density profile and the current in the system. This leads to two interesting phenomena. The first phenomenon is
uphill diffusion (see e.g. [43, 44, 45, 51, 113]), i.e., in a well-defined parameter regime the current can go against
the particle density gradient: when the total density of particles at the left end is higher than at the right end, the
current can still go from right to left. The second phenomenon is boundary-layer behaviour: in the limit as ε ↓ 0,
in the macroscopic stationary profile the densities in the top and bottom layer are equal, which for unequal bound-
ary conditions in the top and bottom layer results in a discontinuity in the stationary profile. Corresponding to
this jump in the macroscopic system, we identify a boundary layer of size

√
ε log(1/ε) in the microscopic system

where the densities are unequal. The quantification of the size of this boundary layer is an interesting corollary of
the exact macroscopic stationary profile that we obtain from the microscopic system via duality.

7.2 The system with boundary reservoirs

Section 7.2.1 defines the model. Section 7.2.2 identifies the dual and the stationary measures. Section 7.3 derives
the non-equilibrium density profile, both for the microscopic system and the macroscopic system, and offers vari-
ous simulations. In Section 7.4 we compute the stationary horizontal current of slow and fast particles both for the
microscopic system and the macroscopic system. Section 7.5 shows that in the macroscopic system, for certain
choices of the rates, there can be a flow of particles uphill, i.e., against the gradient imposed by the reservoirs.
Thus, as a consequence of the competing driving mechanisms of slow and fast particles, we can have a flow of
particles from the side with lower density to the side with higher density.

7.2.1 Model

We consider the same system as in Definition 5.2.1, but restricted to V := {1, . . . ,N} ⊂ Z. In addition, we set
V̂ := V ∪ {L,R} and attach a left-reservoir to L and a right-reservoir to R, both for fast and slow particles. To be
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more precise, there are four reservoirs (see Fig. 7.2):

Figure 7.1: Representation via slow and fast particles moving on V .Case σ = 0, ε > 0.

(i) For the fast particles, a left-reservoir at L injects fast particles at x = 1 at rate ρL,0(1 + ση0(1, t)) and a
right-reservoir at R injects fast particles at x = N at rate ρR,0(1 + ση0(N, t)). The left-reservoir absorbs fast
particles at rate 1 + σρL,0, while the right-reservoir does so at rate 1 + σρR,0.

(ii) For the slow particles, a left-reservoir at L injects slow particles at x = 1 at rate ρL,1(1 + ση1(1, t)) and a
right-reservoir at R injects slow particles at x = N at rate ρR,1(1 + ση1(N, t)). The left-reservoir absorbs fast
particles at rate 1 + σρL,1, while the right-reservoir does so at rate 1 + σρR,1.

Inside V , the particles move as before.

For i ∈ I, x ∈ V and t ≥ 0, let ηi(x, t) denote the number of particles in layer i at site x at time t. For σ ∈ {−1, 0, 1},
the Markov process {η(t) : t ≥ 0} with

η(t) = {η0(x, t), η1(x, t)}x∈V
has state space

X =

{0, 1}V × {0, 1}V , σ = −1,
NV

0 × N
V
0 , σ = 0, 1,

and generator
L := Lε,γ,N = Lbulk + Lres (7.2.1)

with

Lbulk := Lbulk
0 + εLbulk

1 + γLbulk
0l1 (7.2.2)

acting on bounded cylindrical functions f : X → R as

(Lbulk
0 f )(η) =

N−1∑
x=1

{
η0(x)(1 + ση0(x + 1))

[
f (η0 − δx + δx+1, η1) − f (η0, η1)

]

Figure 7.2: Representation via particles moving on V × I. Case σ = 0, ε > 0.
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+ η0(x + 1)(1 + ση0(x))
[
f (η0 − δx+1 + δx, η) − f (η0, η1)

]}
,

(Lbulk
1 f )(η) =

N−1∑
x=1

{
η1(x)(1 + ση1(x + 1))

[
f (η0, η1 − δx + δx+1) − f (η0, η1)

]
+ η1(x + 1)(1 + ση1(x))

[
f (η0, η1 − δx+1 + δx) − f (η0, η1))

]}
,

(Lbulk
0l1 f )(η) =

N∑
x=1

{
η0(x)(1 + ση1(x))

[
f (η0 − δx, η1 + δx) − f (η0, η1)

]
+ η1(x)(1 + ση0(x))

[
f (η0 + δx, η1 − δx) − f (η0, η1))

]}
,

and

Lres := Lres
0 + Lres

1 (7.2.3)

acting as

(Lres
0 f )(η) = η0(1)(1 + σρL,0)

[
f (η0 − δ1, η1) − f (η0, η1)

]
+ ρL,0(1 + ση0(1))

[
f (η0 + δ1, η1) − f (η0, η1)

]
+ η0(N)(1 + σρR,0)

[
f (η0 − δN , η1) − f (η0, η1)

]
+ ρR,0(1 + ση0(N))

[
f (η0 + δN , η) − f (η0, η1)

]
,

(Lres
1 f )(η) = η1(1)(1 + σρL,1)

[
f (η0, η1 − δ1) − f (η0, η1)

]
+ ρL,1(1 + ση1(1))

[
f (η0, η1 + δ1) − f (η0, η1)

]
+ η1(N)(1 + σρR,1)

[
f (η0, η1 − δN) − f (η0, η1)

]
+ ρR,1(1 + σρR,N)

[
f (η0, η1 + δN) − f (η0, η1)

]
.

7.2.2 Duality

In [32] it was shown that the partial exclusion process, a system of independent random walks and the symmetric
inclusion processes on a finite set V , coupled with proper left and right reservoirs, are dual to the same particle
system but with the reservoirs replaced by absorbing sites. As remarked in [76], the same result holds for more
general geometries, consisting of inhomogeneous rates (site and edge dependent), and for many proper reservoirs.
Our model is a particular instance of the case treated in [76, Remark 2.2]), because we can think of the rate as
conductances attached to the edges.

More precisely, we consider the system where particles jump on two copies of

V̂ := V ∪ {L,R}

and follow the same dynamics as before in V , but with the reservoirs at L and R absorbing. We denote by ξ the
configuration

ξ = (ξ0, ξ1) := ({ξ0(x)}x∈V̂ , {ξ1(x)}x∈V̂ ),

where ξi(x) denotes the number of particles at site x in layer i. The state space is X̂ = NV̂
0 × N

V̂
0 , and the generator

is
L̂ := L̂ε,γ,N = L̂bulk + L̂L,R (7.2.4)

with

L̂bulk := L̂bulk
0 + ε L̂bulk

1 + γL̂bulk
0l1

acting on cylindrical functions f : X → R as

(L̂bulk
0 f )(ξ) =

N−1∑
x=1

{
ξ0(x)(1 + σξ0(x + 1))

[
f (ξ0 − δx + δx+1, ξ1) − f (ξ0, ξ1)

]
+ ξ0(x + 1)(1 + σξ0(x))

[
f (ξ0 − δx+1 + δx, ξ1) − f (ξ0, ξ1)

]}
,
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(L̂bulk
1 f )(ξ) =

N−1∑
x=1

{
ξ1(x)(1 + σξ1(x + 1))

[
f (ξ0, ξ1 − δx + δx+1) − f (ξ0, ξ1)

]
+ ξ1(x + 1)(1 + σξ1(x))

[
f (ξ0, ξ1 − δx+1 + δx) − f (ξ0, ξ1)

]}
,

(L̂bulk
0l1 f )(η) =

N∑
x=1

{
ξ0(x)(1 + σξ1(x))

[
f (ξ0 − δx, ξ1 + δx) − f (ξ0, ξ1)

]
+ ξ1(x)(1 + σξ0(x))

[
f (ξ0 + δx, ξ1 − δx) − f (ξ0, ξ1)

]}
,

and

L̂L,R = L̂L,R
0 + L̂L,R

1

acting as

(L̂L,R
0 f )(ξ) = ξ0(1)

[
f (ξ0 − δ1, ξ1) − f (ξ0, ξ1)

]
+ ξ0(N)

[
f (ξ0 − δN , ξ1) − f (ξ0, ξ1)

]
,

(L̂L,R
1 f )(ξ) = ξ1(1)

[
f (ξ0, ξ1 − δ1) − f (ξ0, ξ1)

]
+ ξ1(N)

[
f (ξ0, ξ1 − δN) − f (ξ0, ξ1)

]
.

Proposition 7.2.1. [Duality] [32, Theorem 4.1] and [76, Proposition 2.3] The Markov processes

{η(t) : t ≥ 0}, η(t) = {η0(x, t), η1(x, t)}x∈V ,
{ξ(t) : t ≥ 0}, ξ(t) = {ξ0(x, t), ξ1(x, t)}x∈V̂ ,

with generators L in (7.2.1) and L̂ in (7.2.4) are dual. Namely, for all configurations η ∈ X, ξ ∈ X̂ and times t ≥ 0,

Eη[D(ξ, ηt)] = Eξ[D(ξt, η)],

where the duality function is given by

D(ξ, η) :=

∏
i∈I

d(L,i)(ξi(L))

 × ∏
x∈V

d(ξi(x), ηi(x))

 × ∏
i∈I

d(R,i)(ξi(R))

 ,
where, for k, n ∈ N and i ∈ I, d(·, ·) is given in (5.3.4) and

d(L,i)(k) =
(
ρL,i

)k , d(R,i)(k) =
(
ρR,i

)k .

The proof boils down to checking that the relation

L̂D(·, η)(ξ) = LD(ξ, ·)(η)

holds for any ξ ∈ X and ξ ∈ X̂, as follows from a rewriting of the proof of [32, Theorem 4.1].

Remark 7.2.2. [Choice of reservoir rates] (i) Note that we have chosen the reservoir rates to be 1 both for fast
and slow particles. We did this because we view the reservoirs as an external mechanism that injects and absorbs
neutral particles, while the particles assume their type as soon as they are in the bulk of the system. In other words,
in the present context we view the change of the rate in the two layers as a change of the viscosity properties of the
medium is which the particles evolve, instead of a property of the particles themselves.
(ii) If we would tune the reservoir rate of the slow particles to be ε, then the duality relation mentioned above
would still holds, with the difference that the dual system would have ε as the rate of absorption for the slow
particles. This change of the reservoir rates does not affect our results on the non-Fick properties of the model (see
Section 7.5 below) and on the size of the boundary layer (see Section 7.6 below). Indeed, the limiting macroscopic
properties we get by changing the rate of the reservoir of the slow particles are the same as the ones we derive later
(i.e., the macroscopic boundary-value problem is the same for any choice of reservoir rate). Note that we do not
rescale the reservoir rate when we rescale the system to pass from microscopic to macroscopic, which implies that
our macroscopic equation has a Dirichlet boundary condition (see (7.3.40) below). ♠

Also in the context of boundary-driven systems, duality is an essential tool to perform explicit computations. We
refer to [107] and [32], where duality for boundary-driven systems was used to compute the stationary profile, by
looking at the absorption probabilities of the dual. This is the approach we will follow in the next section. We
remark that, for the inclusion process and for generalizations of the exclusion process, duality is the only available
tool to characterize properties of the non-equilibrium steady state (such as the stationary profile), whereas other
more direct methods (such as the matrix formulation in e.g. [55]) are not applicable in this setting.
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7.3 Non-equilibrium stationary profile

Also the existence and uniqueness of the non-equilibrium steady state has been established in [76, Theorem 3.3]
for general geometries, and the argument in that paper can be easily adapted to our setting.

Theorem 7.3.1. [Stationary measure] [76, Theorem 3.3(a)] For σ ∈ {−1, 0, 1} there exists a unique stationary
measure µstat for {η(t) : t ≥ 0}. Moreover, for σ = 0 and for any values of {ρL,0, ρL,1, ρR,0, ρR,1},

µstat =
∏

(x,i)∈V×I

ν(x,i), ν(x,i) = Poisson(θ(x,i)), (7.3.1)

while, for σ ∈ {−1, 1}, µstat is in general not in product form, unless ρL,0 = ρL,1 = ρR,0 = ρR,1, for which

µstat =
∏

(x,i)∈V×I

ν(x,i),θ, (7.3.2)

where ν(x,i),θ is given in (6.3.2).

Proof. For σ = −1, the existence and uniqueness of the stationary measure is trivial by the irreducibility and the
finiteness of the state space of the process. For σ ∈ {0, 1}, recall from [76, Appendix A] that a probability measure
µ on X is said to be tempered if it is characterized by the integrals

{
Eµ[D(ξ, η)] : ξ ∈ X̂

}
and that if there exists a

θ ∈ [0,∞) such that Eµ[D(ξ, η)] ≤ θ|ξ| for any ξ ∈ X̂. By means of duality we have that, for any η ∈ X and ξ ∈ X̂,

lim
t→∞
Eη[D(ξ, ηt)] = lim

t→∞
Êξ[D(ξt, η)]

=

|ξ|∑
i0=0

i0∑
i0,L=0

|ξ|−i0∑
j1,L=0

ρ
i0,L
L,0 ρ

i0−i0,L
R,0 ρ

i1,L
L,1 ρ

|ξ|−i0−i1,L
R,1 (7.3.3)

× P̂ξ
(
ξ∞ = i0,Lδ(L,0) + (i0 − i0,L)δ(R,0) + i1,Lδ(L,1) + (|ξ| − i0 − i1,L)δ(R,1)

)
, (7.3.4)

from which we conclude that limt→∞ Eη[D(ξ, ηt)] ≤ max{ρL,0, ρR,0, ρL,1, ρR,1}
|ξ|. Let µs be the unique tempered

probability measure such that for any ξ ∈ X̂, Eµstat [D(ξ, η)] coincides with (7.3.3). From the convergence of the
marginal moments in (7.3.3) we conclude that, for any f : X → R bounded and for any η ∈ X,

lim
t→∞
Eη[ f (ηt)] = Eµstat [ f (η)].

Thus, a dominated convergence argument yields that for any probability measure µ on X,

lim
t→∞
Eµ[ f (ηt)] = Eµstat [ f (η)],

giving that µstat is the unique stationary measure. The explicit expression in (7.3.1) and (7.3.2) follows from similar
computations as in [32], while, arguing by contradiction as in the proof of [76, Theorem 3.3], we can show that
the two-point truncated correlations are non-zero for σ ∈ {−1, 1} whenever at least two reservoir parameters are
different. �

Stationary microscopic profile and absorption probability

In this section we provide an explicit expression for the stationary microscopic density of each type of particle. To
this end, let µstat be the unique non-equilibrium stationary measure of the process

{η(t) : t ≥ 0}, η(t) := {η0(x, t), η1(x, t)}x∈V ,

and let {θ0(x), θ1(x)}x∈V be the stationary microscopic profile, i.e., for x ∈ V and i ∈ I,

θi(x) = Eµstat [ηi(x, t)]. (7.3.5)

Write Pξ (and Eξ) to denote the law (and the expectation) of the dual Markov process

{ξ(t) : t ≥ 0}, ξ(t) := {ξ0(x, t), ξ1(x, t)}x∈V̂ ,

starting from ξ = {ξ0(x), ξ1(x)}x∈V̂ . For x ∈ V , set

~px :=
[

p̂(δ(x,0), δ(L,0)) p̂(δ(x,0), δ(L,1)) p̂(δ(x,0), δ(R,0)) p̂(δ(x,0), δ(R,1))
]T
,

~qx :=
[

p̂(δ(x,1), δ(L,0)) p̂(δ(x,1), δ(L,1)) p̂(δ(x,1), δ(R,0)) p̂(δ(x,1), δ(R,1))
]T
,

(7.3.6)
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where

p̂(ξ, ξ̃) = lim
t→∞
Pξ(ξ(t) = ξ̃), ξ = δ(x,i) for some (x, i) ∈ V × I, ξ̃ ∈ {δ(L,0), δ(L,1), δ(R,0), δ(R,1)}, (7.3.7)

and let
~ρ :=

[
ρ(L,0) ρ(L,1) ρ(R,0) ρ(R,1)

]T
. (7.3.8)

Note that p̂(δ(x,i), ·) is the probability of the dual process, starting from a single particle at site x at layer i ∈ I, of
being absorbed at one of the four reservoirs. Using Proposition 7.2.1 and Theorem 7.3.1, we obtain the following.

Corollary 7.3.2. [Dual representation of stationary profile] For x ∈ V, the microscopic stationary profile is
given by

θ0(x) = ~px · ~ρ,

θ1(x) = ~qx · ~ρ,
x ∈ {1, . . . ,N}, (7.3.9)

where ~px, ~qx and ~ρ are as in (7.3.6)–(7.3.8).

We next compute the absorption probabilities associated to the dual process in order to obtain a more explicit
expression for the stationary microscopic profile {θ0(x), θ1(x)}x∈V . The absorption probabilities p̂(· , ·) of the dual
process satisfy

(L̂p̂)(·, ξ̃)(ξ) = 0 ∀ ξ ∈ X̂,

where L̂ is the dual generator defined in (7.2.4), i.e., they are harmonic functions for the generator L̂.

In matrix form, the above translates into the following systems of equations:

~p1 =
1

2 + γ
(~p0 + ~p2) +

γ

2 + γ
~q1,

~q1 =
ε

(1 + ε) + γ
~q2 +

1
(1 + ε) + γ

~q0 +
γ

(1 + ε) + γ
~p1,

~px =
1

2 + γ
(~px−1 + ~px+1) +

γ

2 + γ
~qx, x ∈ {2, . . . ,N − 1},

~qx =
ε

2ε + γ
(~qx−1 + ~qx+1) +

γ

2ε + γ
~px, x ∈ {2, . . . ,N − 1},

~pN =
1

2 + γ
(~pN−1 + ~pN+1) +

γ

2 + γ
~qN ,

~qN =
ε

(1 + ε) + γ
~qN−1 +

1
(1 + ε) + γ

~qN+1 +
γ

(1 + ε) + γ
~pN ,

(7.3.10)

where
~p0 :=

[
1 0 0 0

]T
, ~q0 :=

[
0 1 0 0

]T
,

~pN+1 :=
[

0 0 1 0
]T
, ~qN+1 :=

[
0 0 0 1

]T
.

We divide the analysis of the absorption probabilities into two cases: ε = 0 and ε > 0.

Case ε = 0.

Proposition 7.3.3. [Absorption probability for ε = 0] Consider the dual process

{ξ(t) : t ≥ 0}, ξ(t) = {ξ0(x, t), ξ1(x, t)}x∈V ,

with generator L̂ε,γ,N (see (7.2.4)) with ε = 0. Then for the dual process, starting from a single particle, the
absorption probabilities p̂(·, ·) (see (7.3.7)) are given by

p̂(δ(x,0), δ(L,0)) =
1 + γ

1 + 2γ

(
(1 + N) + (1 + 2N) γ

1 + N + 2Nγ
−

1 + 2γ
1 + N + 2Nγ

x
)
,

p̂(δ(x,0), δ(L,1)) =
γ

1 + 2γ

(
(1 + N) + (1 + 2N) γ

1 + N + 2Nγ
−

1 + 2γ
1 + N + 2Nγ

x
)
,

p̂(δ(x,0), δ(R,0)) =
1 + γ

1 + 2γ

(
−γ

1 + N + 2Nγ
+

1 + 2γ
1 + N + 2Nγ

x
)
,

p̂(δ(x,0), δ(R,1)) =
γ

1 + 2γ

(
−γ

1 + N + 2Nγ
+

1 + 2γ
1 + N + 2Nγ

x
)
,

(7.3.11)
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p̂(δ(1,1), δ(L,0)) =
γ (N − γ + 2Nγ)

(1 + 2γ)(1 + N + 2Nγ)
, p̂(δ(1,1), δ(L,1)) =

1 + N + (1 + 3N)γ − (1 − 2N)γ2

(1 + 2γ)(1 + N + 2Nγ)
,

p̂(δ(1,1), δ(R,0)) =
γ(1 + γ)

(1 + 2γ)(1 + N + 2Nγ)
, p̂(δ(1,1), δ(R,1)) =

γ2

(1 + 2γ)(1 + N + 2Nγ)
,

(7.3.12)

and
p̂(δ(x,1), δ(β,i)) = p̂(δ(x,0), δ(β,i)), x ∈ {2, . . . ,N − 1}, (β, i) ∈ {L,R} × I, (7.3.13)

and
p̂(δ(N,1), δ(L,0)) = p̂(δ(1,1), δ(R,0)), p̂(δ(N,1), δ(L,1)) = p̂(δ(1,1), δ(R,1)),
p̂(δ(N,1), δ(R,0)) = p̂(δ(1,1), δ(L,0)), p̂(δ(N,1), δ(R,1)) = p̂(δ(1,1), δ(L,1)).

(7.3.14)

Proof. Note that, for ε = 0, from the linear system in (7.3.10) we get

~px+1 − ~px = ~px − ~px−1,

~qx = ~px,
x ∈ {2, . . . ,N − 1}. (7.3.15)

Thus, if we set ~c = ~p2 − ~p1, then it suffices to solve the following 4 linear equations with 4 unknowns ~p1, ~c, ~q1, ~qN :

~p1 =
1

2 + γ
(~p0 + ~p1 + ~c) +

γ

2 + γ
~q1,

~q1 =
1

1 + γ
~q0 +

γ

1 + γ
~p1,

~p1 + (N − 1)~c =
1

2 + γ
(~p1 + (N − 2)~c + ~pN+1) +

γ

2 + γ
~qN ,

~qN =
1

1 + γ
~qN+1 +

γ

1 + γ
(~p1 + (N − 1)~c).

(7.3.16)

Solving the above equations we get the desired result. �

As a consequence, we obtain the stationary microscopic profile for the original process {η(t) : t ≥ 0}, η(t) =

{η0(x, t), η1(x, t)}x∈V when ε = 0.

Theorem 7.3.4. [Stationary microscopic profile for ε = 0]
The stationary microscopic profile {θ0(x), θ1(x)}x∈V (see (7.3.5)) for the process {η(t) : t ≥ 0}with η(t) = {η0(x, t), η1(x, t)}x∈V
with generator Lε,γ,N (see (7.2.1)) and ε = 0 is given by

θ0(x) =
1 + γ

1 + 2γ

[(
(1+N)+(1+2N) γ

1+N+2Nγ −
1+2γ

1+N+2Nγ x
)
ρL,0 +

(
−γ

1+N+2Nγ +
1+2γ

1+N+2Nγ x
)
ρR,0

]
+

γ

1 + 2γ

[(
(1+N)+(1+2N) γ

1+N+2Nγ −
1+2γ

1+N+2Nγ x
)
ρ(L,1) +

(
−γ

1+N+2Nγ +
1+2γ

1+N+2Nγ x
)
ρ(R,1)

] (7.3.17)

and

θ1(1) =
γ

1 + γ
θ0(1) +

1
1 + γ

ρ(L,1),

θ1(x) = θ0(x), x ∈ {2, . . . ,N − 1},

θ1(N) =
γ

1 + γ
θ0(N) +

1
1 + γ

ρ(R,1).

(7.3.18)

Proof. The proof directly follows from Corollary 7.3.2 and Proposition 7.3.3. �

Case ε > 0. We next compute the absorption probabilities for the dual process and the stationary microscopic
profile for the original process when ε > 0.

Proposition 7.3.5. [Absorption probability for ε > 0] Consider the dual process

{ξ(t) : t ≥ 0}, ξ(t) = {ξ0(x, t), ξ1(x, t)}x∈V ,
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with generator L̂ε,γ (see (7.2.4)) with ε > 0. Let p̂(·, ·) (see (7.3.7)) be the absorption probabilities of the dual
process starting from a single particle, and let (~px, ~qx)x∈V be as defined in (7.3.6). Then

~px = ~c1 x + ~c2 + ε(~c3 α
x
1 + ~c4 α

x
2),

~qx = ~c1 x + ~c2 − (~c3 α
x
1 + ~c4 α

x
2),

x ∈ V, (7.3.19)

where α1, α2 are the two roots of the equation

εα2 − (γ(1 + ε) + 2ε)α + ε = 0, (7.3.20)

and ~c1, ~c2, ~c3, ~c4 are vectors that depend on the parameters N, ε, α1, α2 (see (7.6.18) for explicit expressions).

Proof. Applying the transformation

~τx := ~px + ε~qx, ~sx := ~px − ~qx, (7.3.21)

we see that the system in (7.3.10) decouples in the bulk (i.e., the interior of V), and

~τx =
1
2

(~τx+1 + ~τx−1), ~sx =
ε

γ(1 + ε) + 2ε
(~sx+1 + ~sx−1), x ∈ {2, . . . ,N − 1}. (7.3.22)

The solution of the above system of recursion equations takes the form

~τx = ~A1x + ~A2, ~sx = ~A3α
x
1 + ~A4α

x
2, (7.3.23)

where α1, α2 are the two roots of the equation

εα2 − (γ(1 + ε) + 2ε)α + ε = 0. (7.3.24)

Rewriting the four boundary conditions in (7.3.10) in terms of the new transformations, we get[
~A1 ~A2 ~A3 ~A4

]
= (1 + ε)(M−1

ε )T , (7.3.25)

where Mε is given by

Mε :=


0 1 ε ε

1 − ε 1 (ε − 1)α1 − ε (ε − 1)α2 − ε
N + 1 1 εαN+1

1 εαN+1
2

N + ε 1 −αN
1 (εα1 + (1 − ε)) −αN

2 (εα2 + (1 − ε))

 . (7.3.26)

Since ~px = 1
1+ε

(~τx + ε~sx) and ~qx = 1
1+ε

(~τx − ~sx), by setting

~ci =
1

1 + ε
~Ai, i ∈ {1, 2, 3, 4},

we get the desired identities. �

Without loss of generality, from here onwards, we fix the choices of the roots α1 and α2 of the quadratic equation
in (7.3.20) as

α1 = 1 +
γ

2

(
1 +

1
ε

)
−

√[
1 +

γ

2

(
1 +

1
ε

)]2

− 1, α2 = 1 +
γ

2

(
1 +

1
ε

)
+

√[
1 +

γ

2

(
1 +

1
ε

)]2

− 1. (7.3.27)

Note that, for any ε, γ > 0, we have
α1α2 = 1. (7.3.28)

As a corollary, we get the expression for the stationary microscopic profile of the original process.

Theorem 7.3.6. [Stationary microscopic profile for ε > 0]
The stationary microscopic profile {θ0(x), θ1(x)}x∈V (see (7.3.5)) for the process {η(t) : t ≥ 0} and η(t) = {η0(x, t), η1(x, t)}x∈V
with generator Lε,γ,N (see (7.2.1)) with ε > 0 is given by

θ0(x) = (~c1 . ~ρ)x + (~c2 . ~ρ) + ε(~c3 . ~ρ)αx
1 + ε(~c4 . ~ρ)αx

2,

θ1(x) = (~c1 . ~ρ)x + (~c2 . ~ρ) − (~c3 . ~ρ)αx
1 − (~c4 . ~ρ)αx

2,
x ∈ V, (7.3.29)

where (~ci)1≤i≤4 are as in (7.6.18), and

~ρ :=
[
ρ(L,0) ρ(L,1) ρ(R,0) ρ(R,1)

]T
.
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Proof. The proof follows directly from Corollary 7.3.2 and Proposition 7.3.5. �

Remark 7.3.7. [Symmetric layers] For ε = 1, the inverse of the matrix Mε in the proof of Proposition 7.3.5 takes
a simpler form. This is because for ε = 1 the system is fully symmetric. In this case, the explicit expression of the
stationary microscopic profile is given by

θ0(x) =
1
2

N + 1 − x
N + 1

+
αN+1−x

2 − αN+1−x
1

αN+1
2 − αN+1

1

 ρL,0 +
1
2

 x
N + 1

+
αx

2 − α
x
1

αN+1
2 − αN+1

1

 ρR,0

+
1
2

N + 1 − x
N + 1

−
αN+1−x

2 − αN+1−x
1

αN+1
2 αN+1

1

 ρ(L,1) +
1
2

 x
N + 1

−
αx

2 − α
x
1

αN+1
2 − αN+1

1

 ρ(R,1)

(7.3.30)

and

θ1(x) =
1
2

N + 1 − x
N + 1

−
αN+1−x

2 − αN+1−x
1

αN+1
2 − αN+1

1

 ρL,0 +
1
2

 x
N + 1

−
αx

2 − α
x
1

αN+1
2 − αN+1

1

 ρR,0

+
1
2

N + 1 − x
N + 1

+
αN+1−x

2 − αN+1−x
1

αN+1
2 − αN+1

1

 ρ(L,1) +
1
2

 x
N + 1

+
αx

2 − α
x
1

αN+1
2 − αN+1

1

 ρ(R,1).

(7.3.31)

However, note that

θ0(x) + θ1(x) = 2[(~c1.~ρ)x + (~c2.~ρ)] − (1 − ε)[(~c3 . ~ρ)αx
1 − (~c4 . ~ρ)αx

2],

which is linear in x only when ε = 1, and

θ0(x) − θ1(x) = (1 + ε)[(~c3 . ~ρ)αx
1 + (~c4 . ~ρ)αx

2],

which is purely exponential in x. ♠

Stationary macroscopic profile and boundary-value problem

In this section we rescale the finite-volume system with boundary reservoirs, in the same way as was done for the
infinite-volume system in Section 5.4 when we derived the hydrodynamic limit (i.e., space is scaled by 1/N and the
switching rate γN is scaled such that γN N2 → Υ > 0), and study the validity of Fick’s law at stationarity on macro-
scopic scale. Before we do that, we justify below that the current scaling of the parameters is indeed the proper
choice, in the sense that we obtain non-trivial pointwise limits (macroscopic stationary profiles) of the microscopic
stationary profiles found in previous sections, and that the resulting limits (when ε > 0) satisfy the stationary
boundary-value problem given in (5.4.2) with boundary conditions ρstat

0 (0) = ρL,0, ρ
stat
0 (1) = ρR,0, ρ

stat
1 (0) = ρL,1

and ρstat
1 (1) = ρR,1.

We say that the macroscopic stationary profiles are given by functions ρstat
i : (0, 1) → R for i ∈ I if, for any

y ∈ (0, 1),
lim

N→∞
θ(N)

0 (dyNe) = ρstat
0 (y), lim

N→∞
θ(N)

1 (dyNe) = ρstat
1 (y). (7.3.32)

Theorem 7.3.8. [Stationary macroscopic profile] Let (θ(N)
0 (x), θ(N)

1 (x))x∈V be the stationary microscopic profile
(see (7.3.5)) for the process {η(t) : t ≥ 0}, η(t) = {η0(x, t), η1(x, t)}x∈V with generator Lε,γN ,N (see (7.2.1)), where γN

is such that γN N2 → Υ as N → ∞ for some Υ > 0. Then, for each y ∈ (0, 1), the pointwise limits (see Fig. 7.3)

ρstat
0 (y) := lim

N→∞
θ(N)

0 (dyNe), ρstat
1 (y) := lim

N→∞
θ(N)

1 (dyNe), (7.3.33)

exist and are given by
ρstat

0 (y) = ρL,0 + (ρR,0 − ρL,0)y, y ∈ (0, 1),
ρstat

1 (y) = ρstat
0 (y), y ∈ (0, 1),

(7.3.34)

when ε = 0, while

ρstat
0 (y) =

ε

1 + ε

[
sinh

[
Bε,Υ (1 − y)

]
sinh

[
Bε,Υ

] (ρ(L,0) − ρ(L,1)) +
sinh

[
Bε,Υ y

]
sinh

[
Bε,Υ

] (ρ(R,0) − ρ(R,1))
]

+
1

1 + ε

[
ρ(R,0) y + ρ(L,0) (1 − y)

]
+

ε

1 + ε

[
ρ(R,1) y + ρ(L,1) (1 − y)

]
,

(7.3.35)
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ρstat
1 (y) =

1
1 + ε

[
sinh

[
Bε,Υ (1 − y)

]
sinh

[
Bε,Υ

] (ρ(L,1) − ρ(L,0)) +
sinh

[
Bε,Υ y

]
sinh

[
Bε,Υ

] (ρ(R,1) − ρ(R,0))
]

+
1

1 + ε

[
ρ(R,0) y + ρ(L,0) (1 − y)

]
+

ε

1 + ε

[
ρ(R,1) y + ρ(L,1) (1 − y)

]
,

(7.3.36)

when ε > 0, where Bε,Υ :=
√

Υ(1 + 1
ε
). Moreover, when ε > 0, the two limits in (7.3.33) are uniform in (0, 1).

Proof. For ε = 0, it easily follows from (7.3.17) plus the fact that γN N2 → Υ > 0 and dyNe
N → y uniformly in (0, 1)

as N → ∞, that
lim

N→∞
sup

y∈(0,1)

∣∣∣θ(N)
0 (dyNe) − [ρ(L,0) + (ρ(R,0) − ρ(L,0)) y]

∣∣∣ = 0,

and since θ1(x) = θ0(x) for all x ∈ {2, . . . ,N − 1}, for fixed y ∈ (0, 1), we have

lim
N→∞

θ(N)
1 (dyNe) = ρstat

0 (y).

When ε > 0, since γN N2 → Υ > 0 as N → ∞, we note the following:

γN
N→∞
−→ 0,

lim
N→∞

α1 = lim
N→∞

α2 = 1,

lim
N→∞

αN
1 = e−Bε,Υ , lim

N→∞
αN

2 = eBε,Υ .

(7.3.37)

Consequently, from the expressions of (~ci)1≤i≤4 defined in (7.6.18), we also have

lim
N→∞

N~c1 =
1

1 + ε

[
−1 −ε 1 ε

]T
, lim

N→∞
~c2 =

1
1 + ε

[
1 ε 0 0

]T
,

lim
N→∞

~c3 =
1

1 + ε

[ eBε,Υ

eBε,Υ−e−Bε,Υ
− eBε,Υ

eBε,Υ−e−Bε,Υ
− 1

eBε,Υ−e−Bε,Υ
1

eBε,Υ−e−Bε,Υ

]T
,

lim
N→∞

~c4 =
1

1 + ε

[
− e−Bε,Υ

eBε,Υ−e−Bε,Υ
e−Bε,Υ

eBε,Υ−e−Bε,Υ
1

eBε,Υ−e−Bε,Υ
− 1

eBε,Υ−e−Bε,Υ

]T
.

(7.3.38)

Combining the above equations with (7.3.29), and the fact that dyNe
N → y uniformly in (0, 1) as N → ∞, we get the

desired result. �

Remark 7.3.9. [Non-uniform convergence] Note that for ε > 0 both stationary macroscopic profiles, when
extended continuously to the closed interval [0, 1], match the prescribed boundary conditions. This is different
from what happens for ε = 0, where the continuous extension of ρstat

1 to the closed interval [0, 1] equals ρstat
0 (y) =

ρL,0 + (ρR,0 − ρL,0)y, which does not necessarily match the prescribed boundary conditions unless ρ(L,1) = ρ(L,0) and
ρ(R,1) = ρ(R,0). Moreover, as can be seen from the proof above, for ε > 0, the convergence of θi to ρi is uniform in
[0, 1], i.e.,

lim
N→∞

sup
y∈[0,1]

∣∣∣ ρstat
0 (y) − θ(N)

0 (dyNe)
∣∣∣ = 0, lim

N→∞
sup

y∈[0,1]

∣∣∣ ρstat
1 (y) − θ(N)

1 (dyNe)
∣∣∣ = 0,

while for ε = 0, the convergence of θ1 to ρ1 is not uniform in [0, 1] when either ρ(L,0) , ρ(L,1) or ρ(R,0) , ρ(R,1).

Also, if ρstat,ε
i (·) denotes the macroscopic profile defined in (7.3.35)−(7.3.36), then for ε > 0 and i ∈ {0, 1}, we have

lim
ε→0

ρstat,ε
i (y)→ ρstat,0

i (y) (7.3.39)

for fixed y ∈ (0, 1) and i ∈ {0, 1}, where ρstat,0
i (·) is the corresponding macroscopic profile in (7.3.34) for ε = 0.

However, this convergence is also not uniform for i = 1 when ρ(L,0) , ρ(L,1) or ρ(R,0) , ρ(R,1). ♠

In view of the considerations in Remark 7.3.9, we next concentrate on the case ε > 0. The following result tells us
that for ε > 0 the stationary macroscopic profiles satisfy a stationary PDE with fixed boundary conditions and also
admit a stochastic representation in terms of an absorbing switching diffusion process.

Theorem 7.3.10. [Stationary boundary value problem] Consider the boundary value problem0 = ∆u0 + Υ(u1 − u0),
0 = ε∆u1 + Υ(u0 − u1),

(7.3.40)
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with boundary conditions u0(0) = ρL,0, u0(1) = ρR,0,

u1(0) = ρL,1, u1(1) = ρR,1,
(7.3.41)

where ε,Υ > 0, and the four boundary parameters ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1) are also positive. Then the PDE admits
a unique strong solution given by

ui(y) = ρstat
i (y), y ∈ [0, 1], (7.3.42)

where (ρstat
0 (·), ρstat

1 (·)) are as defined in (7.3.33). Furthermore, (ρstat
0 (·), ρstat

1 (·)) has the stochastic representation

ρstat
i (y) = E(y,i)[Φiτ (Xτ)], (7.3.43)

where {it : t ≥ 0} is the pure jump process on state space I = {0, 1} that switches at rate Υ, the functions
Φ0,Φ1 : I → R+ are defined as

Φ0 = ρ(L,0) 1{0} + ρ(R,0) 1{1}, Φ1 = ρ(L,1) 1{0} + ρ(R,1) 1{1},

{Xt : t ≥ 0} is the stochastic process [0, 1] that satisfies the SDE

dXt = ψ(it) dWt

with Wt = B2t and {Bt : t ≥ 0} standard Brownian motion, the switching diffusion process {(Xt, it) : t ≥ 0} is killed
at the stopping time

τ := inf{t ≥ 0 : Xt ∈ I},

and ψ : I → {1, ε} is given by ψ := 1{0} + ε 1{1}.

Proof. It is straightforward to verify that for ε > 0 the macroscopic profiles ρ0, ρ1 defined in (7.3.35)−(7.3.36) are
indeed uniformly continuous in (0, 1) and thus can be uniquely extended continuously to [0, 1], namely, by defining
ρstat

i (0) = ρ(L,i), ρ
stat
i (1) = ρ(R,i) for i ∈ I. Also ρstat

i ∈ C∞([0, 1]) for i ∈ I and satisfy the stationary PDE (7.3.40),
with the boundary conditions specified in (7.3.41).

The stochastic representation of a solution of the system in (7.3.40) follows from [81, p385, Eq.(4.7)]. For the sake
of completeness, we give the proof of uniqueness of the solution of (7.3.40). Let u = (u0, u1) and v = (v0, v1) be
two solutions of the stationary reaction diffusion equation with the specified boundary conditions in (7.3.41). Then
(w0,w1) := (u0 − v0, u1 − v1) satisfies 0 = ∆w0 + Υ(w1 − w0),

0 = ε∆w1 + Υ(w0 − w1),
(7.3.44)

with boundary conditions
w0(0) = w0(1) = w1(0) = w1(1) = 0. (7.3.45)

Multiplying the two equations in (7.3.44) with w0 and w1, respectively, and using the identity

wi∆wi = ∇ · (wi∇wi) − |∇wi|
2, i ∈ I,

we get 0 = ∇ · (w0∇w0) − |∇w0|
2 + Υ(w1 − w0)w0,

0 = ε∇ · (w1∇w1) − ε|∇w1|
2 + Υ(w0 − w1)w1.

(7.3.46)

Integrating both equations by parts over [0, 1], we get

0 = −[w0(1)∇w0(1) − w0(0)∇w0(0)] −
∫ 1

0
dy |∇w0(y)|2 + Υ

∫ 1

0
dy (w1(y) − w0(y))w0(y),

0 = −ε[w1(1)∇w1(1) − w1(0)∇w1(0)] − ε
∫ 1

0
dy |∇w1(y)|2 + Υ

∫ 1

0
dy (w0(y) − w1(y))w1(y).

(7.3.47)

Adding the above two equations and using the zero boundary conditions in (7.3.45), we have∫ 1

0
dy |∇w0(y)|2 + ε

∫ 1

0
dy |∇w1(y)|2 + Υ

∫ 1

0
dy [w1(y) − w0(y)]2 = 0. (7.3.48)

Since both w0 and w1 are continuous and ε > 0,Υ > 0, it follows that

w0 = w1, ∇w0 = ∇w1 = 0, (7.3.49)

and so w0 = w1 ≡ 0. �
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Note that, as a result of Theorem 7.3.10, the four absorption probabilities of the switching diffusion process
{(Xt, it) : t ≥ 0} starting from (y, i) ∈ [0, 1] × I are indeed the respective coefficients of ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1)
appearing in the expression of ρstat

i (y). Furthermore note that, as a consequence of Theorem 7.3.10 and the results
in [95, Section 3], the time-dependent boundary-value problem∂tρ0 = ∆ρ0 + Υ(ρ1 − ρ0),

∂tρ1 = ε∆ρ1 + Υ(ρ0 − ρ1),
(7.3.50)

with initial conditions ρ0(x, 0) = ρ̄0(x),
ρ1(x, 0) = ρ̄1(x),

(7.3.51)

and boundary conditions ρ0(0, t) = ρL,0, ρ0(1, t) = ρR,0,

ρ1(0, t) = ρL,1, ρ1(1, t) = ρR,1,
(7.3.52)

admits a unique solution given by ρ0(x, t) = ρhom
0 (x, t) + ρstat

0 (x),
ρ1(x, t) = ρhom

1 (x, t) + ρstat
1 (x),

(7.3.53)

where

ρhom
0 (x, t) = e−Υth0(x, t) +

Υ

1 − ε
e−Υt

∫ t

εt
ds

(( s − εt
t − s

)1/2
I1(υ(s))h0(x, s) + I0(υ(s))h1(x, s)

)
, (7.3.54)

ρhom
1 (x, t) = e−Υth1(x, εt) +

Υ

1 − ε
e−Υt

∫ t

εt
ds

(( s − εt
t − s

)−1/2
I1(υ(s))h1(x, s) + I0(υ(s))h0(x, s)

)
, (7.3.55)

υ(s) = 2Υ
1−ε ((t − s)(s − εt))1/2, I0(·) and I1(·) are the modified Bessel functions, h0(x, t), h1(x, t) are the solutions of

∂th0 = ∆h0,

∂th1 = ∆h1,

h0(x, 0) = ρ̄0(x) − ρstat
0 (x),

h1(x, 1) = ρ̄1(x) − ρstat
1 (x),

h0(0, t) = h0(1, t) = h1(0, t) = h1(1, t) = 0,

(7.3.56)

and ρstat
0 (x), ρstat

1 (x) are given in (7.3.36).

We conclude this section by proving that the solution of the time-dependent boundary-value problem in (7.3.50)
converges to the stationary profile in (7.3.36).

Proposition 7.3.11. [Convergence to stationary profile] Let ρhom
0 (x, t) and ρhom

1 (x, t) be as in (7.3.54) and (7.3.55),
respectively, i.e., the solutions of the boundary-value problem (7.3.50) with zero boundary conditions and initial
conditions given by ρhom

0 (x, 0) = ρ̄0(x) − ρstat
0 (x) and ρhom

1 (x, 0) = ρ̄1(x) − ρstat
1 (x). Then, for any k ∈ N,

lim
t→∞

[
‖ρhom

0 (x, t)‖Ck(0,1) + ‖ρhom
1 (x, t)‖Ck(0,1)

]
= 0.

Proof. We start by showing that

lim
t→∞

[
‖ρhom

0 (x, t)‖L2(0,1) + ‖ρhom
1 (x, t)‖L2(0,1)

]
= 0. (7.3.57)

Multiply the first equation of (7.3.50) by ρ0 and the second equation by ρ1. Integration by parts yields
∂t

(∫ 1
0 dx ρ2

0

)
= −

∫ 1
0 dx |∂xρ0|

2 + Υ
∫ 1

0 dx (ρ1ρ0 − ρ
2
0),

∂t

(∫ 1
0 dx ρ2

1(x, t)
)

= −ε
∫ 1

0 dx |∂xρ1|
2 + Υ

∫ 1
0 dx (ρ0ρ1 − ρ

2
1).

(7.3.58)

Summing the two equations and defining E(t) :=
∫ 1

0 dx (ρ0(x, t)2 + ρ1(x, t)2), we obtain

∂tE(t) = −

(∫ 1

0
dx |∂xρ0|

2 + ε

∫ 1

0
dx |∂xρ1|

2
)
− Υ

∫ 1

0
dx (ρ0 − ρ1)2. (7.3.59)



7.4. The stationary current 119

By the Poincaré inequality (i.e.,
∫ 1

0 dx |∂xρi(x, t)|2 ≥ Cp
∫ 1

0 dx |ρi(x, t)|2, with Cp > 0) we have ∂tE(t) ≤ −εCpE(t),
from which we obtain

E(t) ≤ e−CptE(0),

and hence (7.3.57).

From [142, Theorem 2.1] it follows that

A :=
[

∆ − Υ Υ

Υ ε∆ − Υ

]
,

with domain D(A) = H2(0, 1) ∩ H1
0(0, 1), generates a semigroup {St : t ≥ 0}. If we set ~ρ(t) = St(~̄ρhom), with

~̄ρhom = ~̄ρ − ~ρstat, then by the semigroup property we have

~ρ(t) = St−1(S1/k)k(~̄ρhom), t ≥ 1,

and hence Ak~ρ(t) = St−1(AS1/k)k(~̄ρhom). If we set ~p := (AS1/k)k(~̄ρhom), then we obtain, by [142, Theorem 5.2(d)],

‖Ak~ρ(t)‖L2(0,1) ≤ ‖St−1~p‖L2(0,1),

where limt→∞ ‖St−1~p‖L2(0,1) = 0 by the first part of the proof. The compact embedding

D(Ak) ↪→ H2k(0, 1) ↪→ Ck(0, 1), k ∈ N,

concludes the proof. �

7.4 The stationary current

In this section we compute the expected current in the non-equilibrium steady state that is induced by different
densities at the boundaries. We consider the microscopic and macroscopic systems, respectively.

Microscopic system. We start by defining the notion of current. The microscopic currents are associated with
the edges of the underlying two-layer graph. In our setting, we denote by J0

x,x+1(t) and J1
x,x+1(t) the instantaneous

current through the horizontal edge (x, x+1), x ∈ V , of the bottom layer, respectively, top layer at time t. Obviously,

J0
x,x+1(t) = η0(x, t) − η0(x + 1, t), J1

x,x+1(t) = ε[η1(x, t) − η1(x + 1, t)].

We are interested in the stationary currents J0
x,x+1, respectively, J1

x,x+1, which are obtained as

J0
x,x+1 = Estat[η0(x) − η0(x + 1)], J1

x,x+1 = εEstat[η1(x) − η1(x + 1)], (7.4.1)

where Estat denotes expectation w.r.t. the unique invariant probability measure of the microscopic system {η(t) : t ≥
0} with η(t) = {η0(x, t), η1(x, t)}x∈V . In other words, J0

x,x+1 and J1
x,x+1 give the average flux of particles of type 0 and

type 1 across the bond (x, x + 1) due to diffusion.

Of course, the average number of particle at each site varies in time also as a consequence of the reaction term:

d
dt
E[η0(x, t)] = E[J0

x−1,x(t) − J0
x,x+1(t)] + γ(E[η1(x, t)] − E[η0(x, t)]),

d
dt
E[η1(x, t)] = E[J1

x−1,x(t) − J1
x,x+1(t)] + γ(E[η0(x, t)] − E[η1(x, t)]).

Summing these equations, we see that there is no contribution of the reaction part to the variation of the average
number of particles at site x:

d
dt
E[η0(x, t) + η1(x, t)] = E[Jx−1,x(t) − Jx,x+1(t)].

The sum
Jx,x+1 = J0

x,x+1 + J1
x,x+1, (7.4.2)

with J0
x,x+1 and J1

x,x+1 defined in (7.4.1), will be called the stationary current between sites at x, x + 1, x ∈ V , which
is responsible for the variation of the total average number of particles at each site, regardless of their type.
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Proposition 7.4.1. [Stationary microscopic current] For x ∈ {2, . . . ,N − 1} the stationary currents defined in
(7.4.1) are given by

J0
x,x+1 = −

1+γ
1+N+2Nγ [ρ(R,0) − ρ(L,0)] −

γ
1+N+2Nγ [ρ(R,1) − ρ(L,1)], J1

x,x+1 = 0, (7.4.3)

when ε = 0 and by
J0

x,x+1 = −~c1 · ~ρ − ε[(~c3 · ~ρ)αx
1(α1 − 1) + (~c4 · ~ρ)αx

2(α2 − 1)],

J1
x,x+1 = −ε~c1 · ~ρ + ε[(~c3 · ~ρ)αx

1(α1 − 1) + (~c4 · ~ρ)αx
2(α2 − 1)],

(7.4.4)

when ε > 0, where ~c1, ~c3, ~c4 are the vectors defined in (7.6.18) of Section 7.6.1, and α1, α2 are defined in (7.3.27).
As a consequence, the current Jx,x+1 = J0

x,x+1 + J1
x,x+1 is independent of x and is given by

Jx,x+1 = −
1+γ

1+N+2Nγ [ρ(R,0) − ρ(L,0)] −
γ

1+N+2Nγ [ρ(R,1) − ρ(L,1)] (7.4.5)

when ε = 0 and
Jx,x+1 = −(1 + ε)

[
C1 (ρR,0 − ρL,0) + ε C2 (ρR,1 − ρL,1)

]
(7.4.6)

when ε > 0, where

C1 =
[α1(1 − ε)(αN−1

1 − 1) + ε (αN+1
1 − 1)]

α1(1 − ε)(αN−1
1 − 1)(N + 1) + 2ε (αN+1

1 − 1)(N + ε)
,

C2 =
(αN+1

1 − 1)

α1(1 − ε)(αN−1
1 − 1)(N + 1) + 2ε (αN+1

1 − 1)(N + ε)
.

(7.4.7)

Proof. From (7.4.1) we have

J0
x,x+1 = θ0(x) − θ0(x + 1), J1

x,x+1 = ε[θ1(x) − θ1(x + 1)], (7.4.8)

where θ0(·), θ1(·) are the average microscopic profiles. Thus, when ε = 0, the expressions of J0
x,x+1, J

1
x,x+1 and

consequently Jx,x+1 follow directly from (7.3.17).

For ε > 0, using the expressions of θ0(·), θ1(·) in (7.3.29), we see that

J0
x,x+1 = θ0(x) − θ0(x + 1) = −~c1 · ~ρ − ε[(~c3 · ~ρ)αx

1(α1 − 1) + (~c4 · ~ρ)αx
2(α2 − 1)],

J1
x,x+1 = ε[θ1(x) − θ1(x + 1)] = −ε~c1 · ~ρ + ε[(~c3 · ~ρ)αx

1(α1 − 1) + (~c4 · ~ρ)αx
2(α2 − 1)],

(7.4.9)

where ~c1, ~c3, ~c4 are the vectors defined in (7.6.18) of Section 7.6.1, and α1, α2 are defined in (7.3.27). Adding the
two equations, we also have

Jx,x+1 = J0
x,x+1 + J1

x,x+1 = −(1 + ε)~c1 · ~ρ = (1 + ε)
[
C1 (ρR,0 − ρL,0) + ε C2 (ρR,1 − ρL,1)

]
, (7.4.10)

where C1,C2 are as in (7.4.7). �

Macroscopic system. The microscopic current scales like 1/N. Indeed, the currents associated to the two layers
in the macroscopic system can be obtained from the microscopic currents, respectively, by defining

J0(y) = lim
N→∞

NJ0
byNc,byNc+1, J1(y) = lim

N→∞
NJ1
byNc,byNc+1. (7.4.11)

Below we justify the existence of the two limits and thereby provide explicit expressions for the macroscopic
currents.

Proposition 7.4.2. [Stationary macroscopic current] For y ∈ (0, 1) the stationary currents defined in (7.4.11)
are given by

J0(y) = −
[
(ρR,0 − ρL,0)

]
, J1(y) = 0, (7.4.12)

when ε = 0 and by

J0(y) =
εBε,Υ
1 + ε

[
cosh

[
Bε,Υ (1 − y)

]
sinh

[
Bε,Υ

] (ρ(L,0) − ρ(L,1)) −
cosh

[
Bε,Υ y

]
sinh

[
Bε,Υ

] (ρ(R,0) − ρ(R,1))
]

−
1

1 + ε

[
(ρ(R,0) − ρ(L,0)) + ε(ρ(R,1) − ρ(L,1))

] (7.4.13)
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and

J1(y) = −
εBε,Υ
1 + ε

[
cosh

[
Bε,Υ (1 − y)

]
sinh

[
Bε,Υ

] (ρ(L,0) − ρ(L,1)) −
cosh

[
Bε,Υ y

]
sinh

[
Bε,Υ

] (ρ(R,0) − ρ(R,1))
]

−
ε

1 + ε

[
(ρ(R,0) − ρ(L,0)) + ε(ρ(R,1) − ρ(L,1))

] (7.4.14)

when ε > 0. As a consequence, the total current J(y) = J0(y) + J1(y) is constant and is given by

J(y) = −
[
(ρR,0 − ρL,0) + ε (ρR,1 − ρL,1)

]
. (7.4.15)

Proof. For ε = 0 the claim easily follows from the expressions of J0
x,x+1, J

1
x,x+1 given in (7.4.3) and the fact that

γN → 0 as N → ∞.

When ε > 0, we first note the following:

γN N2 N→∞
−→ Υ > 0,

lim
N→∞

α1 = lim
N→∞

α2 = 1,

lim
N→∞

N(α1 − 1) = −Bε,Υ, lim
N→∞

N(α2 − 1) = Bε,Υ,

lim
N→∞

αN
1 = e−Bε,Υ , lim

N→∞
αN

2 = eBε,Υ .

(7.4.16)

Consequently, from the expressions for (~ci)1≤i≤4 defined in (7.6.18), we also have

lim
N→∞

N~c1 =
1

1 + ε

[
−1 −ε 1 ε

]T
,

lim
N→∞

~c3 =
1

1 + ε

[ eBε,Υ

eBε,Υ−e−Bε,Υ
− eBε,Υ

eBε,Υ−e−Bε,Υ
− 1

eBε,Υ−e−Bε,Υ
1

eBε,Υ−e−Bε,Υ

]T
,

lim
N→∞

~c4 =
1

1 + ε

[
− e−Bε,Υ

eBε,Υ−e−Bε,Υ
e−Bε,Υ

eBε,Υ−e−Bε,Υ
1

eBε,Υ−e−Bε,Υ
− 1

eBε,Υ−e−Bε,Υ

]T
.

(7.4.17)

Combining the above equations with (7.4.4), we have

J0(y) = lim
N→∞

NJ0
byNc,byNc+1

= −εBε,Υ
[(

lim
N→∞

~c4 · ~ρ
)

eBε,Υy −
(

lim
N→∞

~c3 · ~ρ
)

e−Bε,Υy
]
−

(
lim

N→∞
N~c1 · ~ρ

)
=
εBε,Υ
1 + ε

[
cosh

[
Bε,Υ (1 − y)

]
sinh

[
Bε,Υ

] (ρ(L,0) − ρ(L,1)) −
cosh

[
Bε,Υ y

]
sinh

[
Bε,Υ

] (ρ(R,0) − ρ(R,1))
]

−
1

1 + ε

[
(ρ(R,0) − ρ(L,0)) + ε(ρ(R,1) − ρ(L,1))

]
(7.4.18)

and, similarly,

J1(y) = lim
N→∞

NJ1
byNc,byNc+1

= εBε,Υ
[(

lim
N→∞

~c4 · ~ρ
)

eBε,Υy −
(

lim
N→∞

~c3 · ~ρ
)

e−Bε,Υy
]
− ε

(
lim

N→∞
N~c1 · ~ρ

)
= −

εBε,Υ
1 + ε

[
cosh

[
Bε,Υ (1 − y)

]
sinh

[
Bε,Υ

] (ρ(L,0) − ρ(L,1)) −
cosh

[
Bε,Υ y

]
sinh

[
Bε,Υ

] (ρ(R,0) − ρ(R,1))
]

−
ε

1 + ε

[
(ρ(R,0) − ρ(L,0)) + ε(ρ(R,1) − ρ(L,1))

]
.

(7.4.19)

Adding J0(y) and J1(y), we obtain the total current

J(y) = J0(y) + J1(y) = −
[
(ρR,0 − ρL,0) + ε (ρR,1 − ρL,1)

]
, (7.4.20)

which is indeed independent of y. �

Remark 7.4.3. [Currents] Combining the expressions for the density profiles and the current, we see that

J0(y) = −
dρ0

dy
(y), J1(y) = −ε

dρ1

dy
(y).

♠
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7.5 Discussion: Fick’s law and uphill diffusion

In this section we discuss the behaviour of the boundary-driven system as the parameter ε is varied. For simplicity
we restrict our discussion to the macroscopic setting, although similar comments hold for the microscopic system
as well.

In view of the previous results, we can rewrite the equations for the densities ρ0(y, t), ρ1(y, t) as
∂tρ0 = −∇J0 + Υ(ρ1 − ρ0),
∂tρ1 = −∇J1 + Υ(ρ0 − ρ1),
J0 = −∇ρ0,

J1 = −ε∇ρ1,

which are complemented with the boundary values (for ε > 0)ρ0(0, t) = ρL,0, ρ0(1, t) = ρR,0,

ρ1(0, t) = ρL,1, ρ1(1, t) = ρR,1.

We will be concerned with the total density ρ = ρ0 + ρ1, whose evolution equation does not contain the reaction
part, and is given by ∂tρ = −∇J,

J = −∇(ρ0 + ερ1),
(7.5.1)

with boundary values ρ(0, t) = ρL = ρL,0 + ρR,0,

ρ(1, t) = ρR = ρR,0 + ρR,1.
(7.5.2)

Non-validity of Fick’s law. From (7.5.1) we immediately see that Fick’s law of mass transport is satisfied if and
only if ε = 1. When we allow diffusion and reaction of slow and fast particles, i.e., 0 ≤ ε < 1, Fick’s law breaks
down, since the current associated to the total mass is not proportional to the gradient of the total mass. Rather, the
current J is the sum of a contribution J0 due to the diffusion of fast particles of type 0 (at rate 1) and a contribution
J1 due to the diffusion of slow particles of type 1 (at rate ε). Interestingly, the violation of Fick’s law opens up the
possibility of several interesting phenomena that we discuss in what follows.

Equal boundary densities with non-zero current. In a system with diffusion and reaction of slow and fast
particles we may observe a non-zero current when the total density has the same value at the two boundaries. This
is different from what is observed in standard diffusive systems driven by boundary reservoirs, where in order to
have a stationary current it is necessary that the reservoirs have different chemical potentials, and therefore different
densities, at the boundaries.

Let us, for instance, consider the specific case when ρL,0 = ρR,1 = 2 and ρL,1 = ρR,0 = 4, which indeed implies equal
densities at the boundaries given by ρL = ρR = 6. The density profiles and currents are displayed in Fig. 7.3 for
two values of ε, which shows the comparison between the Fick-regime ε = 1 (left panels) and the non-Fick-regime
with very slow particles ε = 0.001 (right panels).

On the one hand, in the Fick-regime the profile of both types of particles interpolates between the boundary values,
with a slightly non-linear shape that has been quantified precisely in (7.3.35)–(7.3.36). Furthermore, in the same
regime ε = 1, the total density profile is flat and the total current J vanishes because J0(y) = −J1(y) for all
y ∈ [0, 1].

On the other hand, in the non-Fick-regime with ε = 0.001, the stationary macroscopic profile for the fast particles
interpolates between the boundary values almost linearly (see (7.3.39)), whereas the profile for the slow particles
is non-monotone: it has two bumps at the boundaries and in the bulk closely follows the other profile. This non-
monotonicity in the profile of the slow particles is due to the non-uniform convergence in the limit ε ↓ 0, as pointed
out in the last part of Remark 7.3.9. As a consequence, the total density profile is not flat and has two bumps at the
boundaries. Most strikingly, the total current is J = −2, since now the current of the bottom layer J0 is dominating,
while the current of the bottom layer J1 is small (order ε).
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Figure 7.3: Macroscopic profiles of the densities for slow and fast particles (top panels), macroscopic profile of the total
density (central panels), and the currents (bottom panels). Here, ρ(L,0) = 2, ρ(L,1) = 4, ρ(R,0) = 4 and ρ(R,1) = 2,Υ = 1. For the
panels in the left column, ε = 1 and for the panels in the right column, ε = 0.001.

Unequal boundary densities with uphill diffusion. As argued earlier, since the system does not always obey
Fick’s law, by tuning the parameters ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1) and ε, we can push the system into a regime where
the total current is such that J < 0 and the total densities are such that ρR < ρL, where ρR = ρ(R,0) + ρ(R,1) and
ρL = ρ(L,0) + ρ(L,1). In this regime, the current goes uphill, since the total density of particles at the right is lower
than at the left, yet the average current is negative.

For an illustration, consider the case when ρL,1 = 6, ρR,0 = 4 and ρL,0 = ρR,1 = 2, which implies ρL = 8 and
ρR = 6 and thus ρR < ρL. The density profiles and currents are shown in Fig. 7.4 for two values of ε, in particular, a
comparison between the Fick-regime ε = 1 (left panels) and the non-Fick-regime with very slow particles ε = 0.001
(right panels). As can be seen in the figure, when ε = 1, the system obeys Fick’s law: the total density linearly
interpolates between the two total boundary densities 8 and 6, respectively. The average total stationary current is
positive as predicted by Fick’s law. However, in the uphill regime, the total density is non-linear and the gradient
of the total density is not proportional to the total current, violating Fick’s law. The total current is negative and
is effectively dominated by the current of the fast particles. It will be shown later that the transition into the uphill
regime happens at the critical value ε =

|ρ(R,0)−ρ(L,0) |

|ρ(R,1)−ρ(L,1) |
= 1

2 . In the limit ε ↓ 0 the total density profile and the current
always get dominated in the bulk by the profile and the current of the fast particles, respectively. When ε < 1

2 ,
even though the density of the slow particles makes the total density near the boundaries such that ρR < ρL, it is
not strong enough to help the system overcome the domination of the fast particles in the bulk, and so the effective
total current goes in the same direction as the current of the fast particles, producing an uphill current.
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Figure 7.4: Macroscopic profiles of the densities for slow and fast particles (top panels), macroscopic profile of the total
density (central panels), and the currents (bottom panels). Here, ρ(L,0) = 2, ρ(L,1) = 6, ρ(R,0) = 4 and ρ(R,1) = 2,Υ = 1. For the
panels in the left column, ε = 1 and for the panels in the right column, ε = 0.001.

The transition between downhill and uphill. We observe that for the choice of reservoir parameters ρL,1 =

6, ρR,0 = 4 and ρL,0 = ρR,1 = 2, the change from downhill to uphill diffusion occurs at ε =
|ρ(R,0)−ρ(L,0) |

|ρ(R,1)−ρ(L,1) |
= 1

2 . The
density profiles and currents are shown in Fig. 7.5 for two additional values of ε, one in the “mild” downhill regime
J > 0 for ε = 0.75 (left panels), the other in the “mild” uphill regime J < 0 for ε = 0.25 (right panels). In the uphill
regime (right panel), i.e., when ε = 0.75, the “mild” non-linearity of the total density profile is already visible,
indicating the violation of Fick’s law.
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Figure 7.5: Macroscopic profiles of the densities for slow and fast particles (top panels), macroscopic profile of the total
density (central panels), and the currents (bottom panels) in the “mild” downhill and the “mild” uphill regime. Here, ρ(L,0) =

2, ρ(L,1) = 6, ρ(R,0) = 4 and ρ(R,1) = 2,Υ = 1. For the panels in the left column, ε = 0.75 and for the panels in the right column,
ε = 0.25.

Identification of the uphill regime. We define the notion of uphill current below and identify the parameter
ranges for which uphill diffusion occurs.

Definition 7.5.1. [Uphill diffusion] For parameters ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1) and ε > 0, we say the system has an
uphill current in stationarity if the total current J and the difference between the total density of particles in the right
and the left side of the system given by ρR − ρL have the same sign, where it is understood that ρR = ρ(R,0) + ρ(R,1)
and ρL = ρ(L,0) + ρ(L,1). ♠

Proposition 7.5.2. [Uphill regime] Let a0 := ρ(R,0) − ρ(L,0) and a1 := ρ(R,1) − ρ(L,1). Then the macroscopic system
admits an uphill current in stationarity if and only if

a2
0 + (1 + ε) a0a1 + εa2

1 < 0. (7.5.3)

If, furthermore, ε ∈ [0, 1], then

(i) either
a0 + a1 > 0 with a0 < 0, a1 > 0

or
a0 + a1 < 0 with a0 > 0, a1 < 0,

(ii) ε ∈
[
0,− a0

a1

]
.

Proof. Note that, by (7.4.15), there is an uphill current if and only if a0 + a1 and a0 + εa1 have opposite signs. In
other words, this happens if and only if

(a0 + a1)(a0 + ε a1) = a2
0 + (1 + ε) a0a1 + εa2

1 < 0.
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The above constraint forces a0a1 < 0. Further simplification reduces the parameter regime to the following four
cases:

• a0 + a1 > 0 with a0 < 0, a1 > 0 and ε < − a0
a1

,

• a0 + a1 < 0 with a0 > 0, a1 < 0 and ε < − a0
a1

,

• a0 + a1 > 0 with a0 > 0, a1 < 0 and ε > − a0
a1

,

• a0 + a1 < 0 with a0 < 0, a1 > 0 and ε > − a0
a1

.

Under the assumption ε ∈ [0, 1], only the first two of the above four cases survive. �

7.6 The width of the boundary layer

We have seen that for ε = 0 the microscopic density profile of the fast particles θ0(x) linearly interpolates between
ρL,0 and ρR,0, whereas the density profile of the slow particles satisfies θ1(x) = θ0(x) for all x ∈ {2, . . . ,N − 1}.
In the macroscopic setting this produces a continuous macroscopic profile ρstat

0 (y) = ρL,0 + (ρR,0 − ρL,0)y for the
bottom-layer, while the top-layer profile develops two discontinuities at the boundaries when either ρ(L,0) , ρ(L,1)
or ρ(R,0) , ρ(R,1). In particular,

ρstat
1 (y)→

[
ρL,0 + (ρR,0 − ρL,0)y

]
1(0,1)(y) + ρL,11{1}(y) + ρR,11{0}(y), ε ↓ 0,

for y ∈ [0, 1]. For small but positive ε, the curve is smooth and the discontinuity is turned into a boundary layer. In
this section we investigate the width of the left and the right boundary layers as ε ↓ 0. To this end, let us define

WL := |ρ(L,0) − ρ(L,1)|, WR := |ρ(R,0) − ρ(R,1)|. (7.6.1)

Note that, the profile ρ1 develops a left boundary layer if and only if WL > 0 and, similarly, a right boundary layer
if and only if WR > 0.

Definition 7.6.1. We say that the left boundary layer is of size fL(ε) if there exists C > 0 such that, for any c > 0,

lim
ε↓0

RL(ε, c)
fL(ε)

= C,

where RL(ε, c) = sup
{
y ∈

(
0, 1

2
)

:
∣∣∣∣ d2

dy2 ρ
stat
1 (y)

∣∣∣∣ ≥ c
}
. Analogously, we say that the right boundary layer is of size

fR(ε) if there exists C > 0 such that, for any c > 0,

lim
ε↓0

1 − RR(ε, c)
fR(ε)

= C,

where RR(ε, c) = inf
{
y ∈

( 1
2 , 1

)
:
∣∣∣∣ d2

dy2 ρ
stat
1 (y)

∣∣∣∣ ≥ c
}
.

The widths of the two boundary layers essentially measure the deviation of the top-layer density profile (and
therefore also the total density profile) from the bulk linear profile corresponding to the case ε = 0. In the following
proposition we estimate the sizes of the two boundary layers.

Proposition 7.6.2. [Width of boundary layers] The widths of the two boundary layers are given by

fL(ε) = fR(ε) =
√
ε log(1/ε), (7.6.2)

where fL(ε), fR(ε) are defined as in Definition 7.6.1.

Proof. Note that, to compute fL(ε), it suffices to keep WL > 0 fixed and put WR = 0, where WL,WR are as in
(7.6.1). Let y(ε, c) ∈ (0, 1

2 ) be such that, for some constant c > 0,∣∣∣∣∣∣ d2

dy2 ρ
stat
1 (y)

∣∣∣∣∣∣ ≥ c, (7.6.3)

or equivalently, since ε∆ρ1 = Υ(ρ1 − ρ0),

|ρstat
1 (y) − ρstat

0 (y)| ≥
cε
Υ
. (7.6.4)



7.6. The width of the boundary layer 127

Recalling the expressions of ρstat
0 (·) and ρstat

1 (·) for positive ε given in (7.3.35)−(7.3.36), we get∣∣∣∣∣∣∣∣∣
sinh

[√
Υ(1 + 1

ε
)(1 − y)

]
sinh

[√
Υ(1 + 1

ε
)
] (ρ(L,0) − ρ(L,1)) +

sinh
[√

Υ(1 + 1
ε
) y

]
sinh

[√
Υ(1 + 1

ε
)
] (ρ(R,0) − ρ(R,1))

∣∣∣∣∣∣∣∣∣ ≥
cε
Υ
. (7.6.5)

Using (7.6.1) plus the fact that WR = 0, and setting Bε,Υ :=
√

Υ
(
1 + 1

ε

)
, we see that

sinh
[
Bε,Υ(1 − y)

]
≥

cε
ΥWL

sinh
[
Bε,Υ

]
. (7.6.6)

Because sinh(·) is strictly increasing, (7.6.6) holds if and only if

y(ε, c) ≤ 1 −
1

Bε,Υ
sinh−1

[
cε

ΥWL
sinh

( Bε,Υ
2

)]
. (7.6.7)

Thus, for small ε > 0 we have

RL(ε, c) = 1 −
1

Bε,Υ
sinh−1

[
cε

ΥWL
sinh

( Bε,Υ
2

)]
, (7.6.8)

where RL(ε, c) is defined as in Definition 7.6.1. Since sinh−1 x = log(x +
√

x2 + 1) for x ∈ R, we obtain

RL(ε, c) =

√
ε

√
Υ(1 + ε)

log


Nε,Υ +

√
N2
ε,Υ + 1

εCNε,Υ +
√

(εCNε,Υ)2 + 1


=

√
ε

√
Υ(1 + ε)

log(1/ε) +

√
ε

√
Υ(1 + ε)

log

 1 +
√

1 + (1/Nε,Υ)2

C +
√

C2 + (1/(εNε,Υ))2


=

√
ε

√
Υ(1 + ε)

log(1/ε) + Rε,Υ,WL ,

(7.6.9)

where Nε,Υ := sinh
( Bε,Υ

2

)
,C := c

ΥWL
, and the error term is

Rε,Υ,WL :=
√
ε

√
Υ(1 + ε)

log

 1 +
√

1 + (1/Nε,Υ)2

C +
√

C2 + (1/(εNε,Υ))2

 .
Note that, since εNε,Υ → ∞ as ε ↓ 0, we have

lim
ε↓0

Rε,Υ,WL
√
ε

=
1
√

Υ
log(1/C) < ∞. (7.6.10)

Hence, combining (7.6.9)−(7.6.10), we get

lim
ε↓0

RL(ε, c)
√
ε log(1/ε)

= lim
ε↓0

1
√

Υ(1 + ε)
+ lim

ε↓0

Rε,Υ,WL
√
ε log(1/ε)

=
1
√

Υ
(7.6.11)

and so, by Definition 7.6.1, fL(ε) =
√
ε log(1/ε).

Similarly, to compute fR(ε), we first fix WL = 0,WR > 0 and note that, for some c > 0, we have, by using (7.6.5),

|∂2ρstat
1 (y)| ≥ c if and only if sinh

[
Bε,Υ y

]
≥ cε

ΥWR
sinh

[
Bε,Υ

]
. (7.6.12)

Hence, by appealing to the strict monotonicity of sinh(·), we obtain

RR(ε, c) = inf
{

y ∈
( 1

2 , 1
)

:

∣∣∣∣∣∣ d2

dy2 ρ
stat
1 (y)

∣∣∣∣∣∣ ≥ c
}

=
1

Bε,Υ
sinh−1

[
cε

ΥWR
sinh

( Bε,Υ
2

)]
. (7.6.13)

Finally, by similar computations as in (7.6.9)–(7.6.11), we see that

lim
ε↓0

1 − RR(ε, c)√
ε log(1/ε)

=
1
√

Υ
(7.6.14)

and hence fR(ε) =
√
ε log(1/ε). �
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7.6.1 Inverse of the boundary-layer matrix

The inverse of the matrix Mε defined in (7.3.26) is given by (α1 and α2 are as in (7.3.27))

M−1
ε :=

1
Z


−m13 −m14 m13 m14
m21 m22 m23 m24

m31(α2) m32(α2) m33(α2) m34(α2)
−m31(α1) −m32(α1) −m33(α1) −m34(α1)

 , (7.6.15)

where

Z := αN+1
1 [α2(1 − ε)(αN−1

2 + 1) + 2ε(αN+1
2 + 1)] [α2(1 + N)(1 − ε)(αN−1

2 − 1) + 2ε(N + ε)(α1+N
2 − 1)],

m13 := αN+1
1 [α2(1 − ε)(αN−1

2 + 1) + 2ε(αN+1
2 + 1)] [α2(1 − ε)(αN−1

2 − 1) + ε(αN+1
2 − 1)],

m14 := ε αN+1
1 [α2(1 − ε)(αN−1

2 + 1) + 2ε(αN+1
2 + 1)] (αN+1

2 − 1),

m21 := (1 + N)(1 − ε)2(αN−1
2 − αN−1

1 ) − ε(1 − ε)2(α2 − α1)

+ ε2(1 + 2N + ε)(αN+1
2 − αN+1

1 ) + ε(1 − ε)(2 + 3N + ε)(αN
2 − α

N
1 ),

m22 := ε [(1 − ε)(1 + N)(αN
2 − α

N
1 ) + ε(1 + 2N + ε)(αN+1

2 − αN+1
1 )],

m23 := ε (1 − ε)[(N + ε)(α2 − α1) − (1 − ε)(αN
2 − α

N
1 ) − ε(αN+1

2 − αN+1
1 )],

m24 := −ε(1 − ε)[(1 + N)(α2 − α1) + ε (αN+1
2 − αN+1

1 )],

(7.6.16)

and the polynomials m31(z),m32(z),m33(z),m34(z) are defined as

m31(z) := −(1 − ε)2 z − ε (1 − ε) + (1 − ε)(N + ε) zN − ε(1 − 2N − 3ε) zN+1,

m32(z) := −(1 − ε)(1 + N)zN − ε (1 − ε) − ε(1 + 2N + ε) zN+1,

m33(z) := (1 − ε)2 zN + ε (1 − ε) zN+1 − (1 − ε)(N + ε) z + ε(1 − 2N − 3ε),

m34(z) := (1 + N)(1 − ε) z + ε (1 − ε) zN+1 + ε(1 + 2N + ε).

(7.6.17)

We remark that most of the terms appearing in the inverse simplify because of (7.3.28). We define the four vectors
~c1, ~c2, ~c3, ~c4 as the respective rows of M−1

ε , i.e.,

~c1 := (M−1
ε )T~e1, ~c2 := (M−1

ε )T~e2,

~c3 := (M−1
ε )T~e3, ~c4 := (M−1

ε )T~e4,
(7.6.18)

where
~e1 :=

[
1 0 0 0

]T
, ~e2 :=

[
0 1 0 0

]T
,

~e3 :=
[

0 0 1 0
]T
, ~e4 :=

[
0 0 0 1

]T
.
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From many to few in the continuum:
closed and open systems
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Chapter 8

Intertwining and Duality for Consistent
Markov Processes

8.1 Introduction

As mentioned in the introduction of this manuscript, the language and formulation of duality in terms of occupa-
tion variables at discrete lattice sites clearly breaks down in many natural settings of e.g. particles moving in the
continuum, such as interacting Brownian motions or more general interacting Markov processes. In this chapter we
develop a more general approach to self-duality that can lead to results also in the continuum, on very general state
spaces. First we find a language in which the basic duality properties of discrete systems, including the orthogonal
dualities, can be restated in such a way that they make sense in the continuum. Second we understand under which
assumptions these generalized relations are valid, including many more systems in the class of self-dual Markov
processes.

8.1.1 The role of consistency

In [37], the notion of consistency (see also [107]) was connected to self-duality in the context of discrete interacting
particle systems. In particular, for the three basic particle systems having self-duality (SEP, SIP and IRW), the
“classical” dualities can all be derived from the same intertwining, which in turn is derived from consistency.
Consistency roughly means that the time evolution commutes with the operation of randomly selecting a given
number of particles out of the system. Equivalently, up to permutations, it implies that in a system of n particles,
the k particle evolution is coinciding with the evolution of k particles out of these n particles, i.e., the effect of
the interactions with the other n − k particles is “wiped out”. This is a remarkable property, trivially valid for
independent particles, but also for interacting systems with special symmetries, such as the SEP and SIP.

The consistency property appeared (under a slightly different form) in the literature on stochastic flows [121],
[149] including e.g. interacting Brownian motions, the Brownian web, and the Howitt-Warren flow. It also played
a crucial role in the analysis of the KMP model ([107]). Therefore, the consistency property seems the natural
starting point for establishing self-dualities for conservative particle systems in a general state space. Because we
want to consider evolution of configurations of particles, we are naturally led to the context of point processes
([120]).

8.1.2 Summary of Main Results of the chapter

The main contributions of this chapter are summarized below.

1. We introduce a new framework in which self-duality type relations, more precisely self-intertwining rela-
tions, with respect to polynomials can be formulated for particle systems evolving on a general Borel space,
thus also on Rd. This framework also provides a new approach to self-duality.

2. We provide necessary and sufficient conditions to have self-intertwining relations with generalized falling
factorial polynomials as intertwiners. In particular, we provide new self-intertwining results for systems such
as independent and interacting Brownian motions. Moreover, from this new approach, the known self-duality
functions for classical conservative interacting particle systems (i.e., SEP, IRW, SIP and the inhomogeneous
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version of these processes) are recovered. Our approach is thus unifying and avoids the need of ad hoc
computations for each system when proving duality.

3. We prove that, assuming reversibility for the particle system, the Gram-Schmidt orthogonalization procedure
is a symmetry for the particle dynamics of a consistent process. As a consequence, orthogonalizing the pre-
viously introduced falling factorial polynomial self-intertwinings, we show orthogonal self-intertwinings in
the same context of consistent particle systems on general state spaces. In doing so, we also show some prop-
erties of generalized orthogonal polynomials which are of independent interest. Again, our new machinery
allows to recover all the known orthogonal duality functions for classical interacting particle systems.

4. We introduce and study a new process in the continuum, called generalized symmetric inclusion process, for
which all our self-intertwining results apply. It turns out that the reversible measures of the generalized inclu-
sion process are the distributions of the so-called Pascal point processes. We prove that generalized Meixner
polynomials are self-intertwiners for the generalized symmetric inclusion process and some properties of
these orthogonal polynomials are derived in a novel and simple way.

These self-intertwining results open doors to many potential future applications to the study of properties of par-
ticles systems in general state spaces, including characterization of the stationary measures and their attractors
(see, e.g., [126, Chapter 8]), hydrodynamic limits (see, e.g., [47, Chapter 2]) and fluctuations (see, e.g., [11]), and
boundary driven non-equilibrium systems (see, e.g., [107, 75]).

8.1.3 Organization of the chapter

This chapter is organized as follows. In Section 8.2 we introduce the general setting and the class of Markov
processes under consideration. We then state the two main theorems, the two self-intertwining results where the
intertwiners are respectively, generalized falling factorial and orthogonal polynomials. We also provide the proof
of some properties of the generalized orthogonal polynomials. In Section 8.3 we list some examples of known
processes which satisfy the assumptions of our main theorems. In particular we show how the known self-duality
relations for exclusion and inclusion process follow from our general results. In Section 8.4 we introduce and study
a continuum version of the inclusion process. In particular we identify its reversible distribution, we show that it
satisfies the assumptions of the two intertwiner results, and finally we exhibit the relation between the generalized
orthogonal polynomials and the Meixner polynomials.

8.2 Self-Intertwining Relations

In this section, we start by introducing the setting and the class of processes that we consider, namely the consistent
and conservative Markov processes. Then, in Section 8.2.2, we introduce the generalized falling factorial polyno-
mials and we state and prove our first main result, a self-intertwining relation. In Section 8.2.3, after providing the
construction of generalized orthogonal polynomials, we state and prove a second self-intertwining relation.

8.2.1 Setting and Consistent Markov Processes

Throughout this article we investigate Markov processes whose state space consists of configurations of non-
labelled particles in some general measurable space (E,E). To avoid the technical difficulties associated with
infinitely many particles (for example, a rigorous construction of interacting dynamics), we consider configurations
of finitely many particles only.

We follow modern point process notation in modelling such configurations as finite counting measures on (E,E).
Thus, let N<∞ be the space of finite counting measures, i.e., the space of finite measures that assign values in
N0 to every set B ∈ E. The space is equipped with the σ-algebra N<∞ generated by the counting variables
N<∞ 3 η 7→ η(B), B ∈ E. Assumptions on (E,E) are needed to ensure that every counting measure is a sum of
Dirac measures, therefore we assume throughout the article that (E,E) is a Borel space (see [120, Definition 6.1]).
The reader may think of a Polish space or Rd. It is well-known (see, e.g., [120, Chapter 6] or [100, Section 1.1])
that for a Borel space, every finite counting measure η ∈ N<∞ is either zero or of the form η = δx1 + · · · + δxn for
some n ∈ N and x1, . . . , xn ∈ E. In particular, the total mass η(E) corresponds to the total number of particles.

For our purpose, a Markov process with state space N<∞ is a collection (Ω,F, (ηt)t≥0, (Pη)η∈N<∞
), where (Ω,F) is a

measurable space, ηt : (Ω,F)→ (N<∞,N<∞) is a measurable map for all t ≥ 0 and for η ∈ N<∞, Pη are probability
measures on (Ω,F) such that Pη(η0 = η) = 1. The Markov property is implicitly assumed to be satisfied with
respect to the natural filtration Ft := σ(ηs, 0 ≤ s ≤ t).
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We focus on a special class of Markov processes, which has been considered in [37, 121, 107, 149], namely
consistent Markov processes. Intuitively speaking, consistency refers to the fact that the removal of a particle
uniformly at random commutes with the time-evolution of the process. In order to precisely define the concept of
consistent Markov process we introduce the lowering operator

A f (η) :=
∫

f (η − δx)η(dx), η ∈ N<∞

acting on functions f ∈ G, where G denotes the set of measurable functions f : N<∞ → R such that the restriction
of f to every n-particle sector Nn := {η ∈ N<∞ : η(E) = n} is bounded. Note A is well-defined and that A f ∈ G
for f ∈ G.

Definition 8.2.1 (Consistent Markov process). Let (ηt)t≥0 be a Markov process on N<∞ with Markov semigroup
(Pt)t≥0. The process (ηt)t≥0 said to be consistent if for all t ≥ 0 and bounded and measurable function f : N<∞ → R

PtA f (η) = APt f (η), η ∈ N<∞. (8.2.1)

Notice that (8.2.1) can be written as

Eη

(∫
f (ηt − δx)ηt(dx)

)
=

∫
Eη−δx ( f (ηt))η(dx),

where on the left hand-side we first evolve the system and after we remove uniformly at random a particle, while
on the right hand-side we first remove uniformly at random a particle from the initial configuration and then we
let evolve the process from the new initial state. We refer to [37, Theorem 2.7 and Theorem 3.2] for further
characterizations of consistency in terms of the infinitesimal generator L, namely LA = AL, and to Section 8.3
and 8.4 for some examples of consistent Markov processes.

For our results we need the following set of assumptions.

Assumption 8.2.1. We assume that (ηt)t≥0 is a Markov process on N<∞ with Markov semigroup (Pt)t≥0, such that

1. it is consistent;

2. it is conservative, i.e. if η0 ∈ N<∞ then ηt(E) = η0(E) for all t ≥ 0.

Notice that Assumption 8.2.1 (2) yields Pt f ∈ G for all f ∈ G and thus, by Assumption 8.2.1 (1), we obtain
PtA f (η) = APt f (η) for f ∈ G and η ∈ N<∞.

Let us briefly explain how consistency as defined in Definition 8.2.1 relates to a stronger form of consistency
reminiscent of Kolmogorov’s consistency theorem. Often the process (ηt)t≥0 comes from a process for labelled
particles, as is the case for the independent random walkers in Section 3.2.1. Strong consistency, called com-
patibility by Le Jan and Raimond [121, Definition 1.1], roughly means that time evolution and removal of any
deterministic particle commute—there is no need to choose the particle to be removed uniformly at random.

Precisely, suppose that for each n ∈ N, we are given a transition function (p[n]
t )t≥0 on (En,En) that preserves

permutation invariance. Then one can define a transition function (Pt)t≥0 on (N<∞,N<∞) by Pt(0, B) = 1B(0) and

Pt(δx1 + · · · + δxn , B) = p[n]
t

(
x1, . . . , xn; ι−1

n (B)
)
, (x1, x2, . . . , xn) ∈ En, B ∈ N<∞ (8.2.2)

where ιn : En → N<∞ is the map given by ιn(x1, . . . , xn) = δx1 + · · · + δxn .

Definition 8.2.2. The family (p[n]
t )t≥0 is strongly consistent if for all n ∈ N, i ∈ {1, . . . , n}, and (x1, . . . , xn) ∈ En,

the image of the measure En 3 B 7→ p[n]
t (x1, . . . , xn; B) under the map from En to En−1 that consists of omission of

xi is equal to the measure En−1 3 B 7→ p[n−1]
t (x1, . . . , x̂i, . . . , xn; B), where x̂i means omission of the variable xi.

An elementary but important observation is that strong consistency of the family (p[n]
t )t≥0 implies consistency

of (Pt)t≥0 in the sense of Definition 8.2.1. The observation yields a whole class of consistent processes, see
Section 8.3.3.

Theorem 8.2.5 uses both (Pt)t≥0 and a semigroup (p[n]
t )t≥0 for labelled particles. As we wish to use the semigroup

(Pt)t≥0 as our starting point, let us mention that (8.2.2) implies

(Pt f )(δx1 + · · · + δxn ) =
(
p[n]

t fn
)
(x1, . . . , xn) (8.2.3)
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whenever fn = f ◦ ιn and f : N<∞ → R is measurable and non-negative or bounded. This determines the action
of (p[n]

t )t≥0 on the space Fn of bounded, measurable, permutation invariant functions fn uniquely. Therefore, given
a conservative semigroup (Pt)t≥0 on N<∞ we may take (8.2.3) as the definition of an associated semigroup on the
space of bounded permutation invariant functions Fn. For n = 0, we set F0 := R and let p[0]

t be the identity operator
on R, for all t ≥ 0.

8.2.2 Generalized Falling Factorial Polynomials

Let η =
∑m

i=1 δxi ∈ N, n ∈ N, and recall (see (3.2.4) above) that η(n) denotes the n-th factorial measure of η, i.e.

η(n) :=
∑,

1≤i1,...,in≤m

δ(xi1 ,...,xin ),

where η = 0 yields η(r) = 0.

Definition 8.2.3. For n ∈ N and measurable fn : En → R we define the associated generalized falling factorial
polynomial as follows

Jn( fn, η) :=
∫

fn(x1, . . . , xn)η(n)(d(x1, . . . , xn)), η ∈ N<∞.

For n = 0 and f0 ∈ R we set J0( f0, η) :=
∫

f0 dη(0) := f0.

In particular, we have Jn( fn, · ) ∈ G for fn ∈ Fn.

Remark 8.2.4. The fact that Jn generalizes falling factorial polynomials becomes evident when considering fn =

1⊗d1
B1
⊗ · · · ⊗ 1⊗dN

BN
for pairwise disjoint sets B1, . . . , BN ∈ E, N ∈ N and d1 . . . , dN ∈ N0, d1 + . . . + dN =: n. Indeed,

it follows from the definition of the factorial measure that

Jn(1⊗d1
B1
⊗ · · · ⊗ 1⊗dN

BN
, η) = (η(B1))d1 · · · (η(BN))dN , η ∈ N<∞ (8.2.4)

where (a)k := a(a− 1) · · · (a− k + 1), a ∈ R, k ∈ N, (a)0 := 1, denotes the falling factorial. Equation (8.2.4) will be
used in Section 8.3 below to recover known self-duality functions for particle systems on finite set from the abstract
Theorem 8.2.5. We refer to [72] for further properties of the generalized falling factorial polynomials.

Our first main result is an intertwining relation between the Markov semigroup (Pt)t≥0 and (p[n]
t )t≥0, with the gen-

eralized falling factorial polynomials Jn defined above as intertwiner. Thus, we view the result as a generalization
of the self-duality relations for interacting particle systems on a finite set where the self-duality functions consist in
weighted falling factorial moments of the occupation variables (see, e.g., [126, Theorem 1.1, p.363], (2.5.5) above
and Section 8.3.1 below) .

Theorem 8.2.5 (Self-intertwining relation). Let (ηt)t≥0 be a Markov process satisfying Assumption 8.2.1. We then
have

Pt Jn( fn, · )(η) = Jn(p[n]
t fn, η), η ∈ N<∞ (8.2.5)

for each fn ∈ Fn, n ∈ N0 and t ≥ 0.

Proof. Let us define the lowering operatorAr−1,r acting on functions fr−1 ∈ Fr−1 as

Ar−1,r fr−1(x1, . . . , xr) :=
r∑

k=1

fr−1(x1, . . . , xk−1, xk+1, . . . , xr)

for x1, . . . , xr ∈ E and r ≥ 2 and A0,1 f0 := f01, f0 ∈ R for r = 1. We then have, as a direct consequence of
consistency of (ηt)t≥0, that p[r]

t Ar−1,r fr−1 = Ar−1,r p[r−1]
t fr−1, r ∈ N. Denoting for all r ≥ n ≥ 0,

An,r fn :=

An,n+1 · · ·Ar−1,r fn r > n
fn n = r

,

for all fn ∈ Fn, one obtains, by induction, that

p[r]
t An,r fn = An,r p[n]

t fn.

The proof is concluded by noticing that for all n ≤ r, x1, . . . , xr ∈ E,

Jn( fn, δx1 + . . . + δxr ) =
n!

(r − n)!
An,r fn(x1, . . . , xr). �
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Remark 8.2.6. A close look at the proof reveals that the relation in Theorem 8.2.5 is in fact an equivalence: A
conservative process is consistent if and only if the self-intertwining relation (8.2.5) holds true for all n, fn, t. The
equivalence is closely related to Theorem 4.3 in [37] in the discrete setting.

Theorem 8.2.5 can be rephrased in a number of ways. The first rephrasing is in terms of kernels and justifies the
denomination intertwining. Let Λn : N<∞ × E

n → R+ be the kernel given by Λn(η, B) := η(n)(B) = Jn(1B, η). Then,
PtΛn = Λn p[n]

t meaning that ∫
Pt(η, dξ)Λn(ξ, B) =

∫
Λn(η, dx)p[n]

t (x, B)

for all η ∈ N<∞ and all permutation invariant sets B ∈ En. Hence, the kernel Λn(η, B) = Jn(1B, η) intertwines
the semigroups (Pt) and (p[n]

t ). The second rephrasing uses the semi-group (Pt) only, which makes the “self” in
self-intertwining spring to the eye. Set

K( f , η) := f (0) +

∞∑
n=1

1
n!

∫
f (δx1 + . . . + δxn )η(n)(d(x1, . . . , xn))

for measurable bounded f : N<∞ → R and η ∈ N<∞. Note that the integral vanishes for n > η(E) and K( f , · ) ∈ G
for f ∈ G. The function K( f , · ) is also known as K-transform of f (cf. [123]) and by linearity, it follows from
(8.2.3) and (8.2.5) that K intertwines (Pt)t≥0 with itself, i.e.,

PtK( f , · )(η) = K(Pt f , η). (8.2.6)

for f ∈ G, η ∈ N<∞. For free Kawasaki dynamics, which is a special case of independent particles, this result is in
fact known (see [110, Section 3.2]).

In terms of expectations, the self-intertwining relation becomes

Eη

[∫
f (δx1 + . . . + δxn )η(n)

t (d(x1, . . . , xn))
]

=

∫
Eδx1 +...+δxn

[
f (ηt)

]
η(n)(d(x1, . . . , xn))

for measurable, bounded f : Nn → R, n ∈ N0 and t ≥ 0.

To conclude we note a corollary on the time-evolution of correlation functions and explain the relation with Propo-
sition 3.2.2.

Corollary 8.2.7. Under the assumptions of Theorem 8.2.5, the following holds true for every initial condition
η ∈ N<∞. Let αt

n(B) := Eη[η
(n)
t (B)] be the n-th factorial moment measure of the process (ηt)t≥0 started in η. Then

αt
n(B) =

∫
α0

n(dx)p[n]
t (x, B)

for all n ∈ N, t ≥ 0, and permutation-invariant sets B ∈ En.

Of course for deterministic initial condition η the time-zero factorial moment measure is just α0
n = η(n), but in the

form given above the relation generalizes to random initial conditions.

Proof. We have

αt
n(B) = Eη

[
Jn(1B, ηt)

]
= Jn(p[n]

t 1B, η) =

∫
η(n)(dx)(p[n]

t 1B)(x) =

∫
α0

n(dx)p[n]
t (x, B). �

A generalized version of Proposition 3.2.2 is recovered under the additional condition that for some σ-finite mea-
sure λ on E and each n ∈ N, there exists a measurable function u[n]

t : E × E → R+ with u[n]
t (x, y) = u[n]

t (y, x) on
E × E and

p[n]
t (x, B) =

∫
B

u[n]
t (x, y)λ⊗n(dy) (8.2.7)

for all t > 0, x ∈ En, and permutation invariant set B ∈ En. This assumption shares similarites with the notion
of duality from probabilistic potential theory, see Blumenthal and Getoor [26, Chapter VI]; we emphasize that the
latter notion of (self-)duality with respect to a measure is stronger than reversibility of the measure. The additional
condition is satisfied for example by independent reversible diffusions. Corollary 8.2.7, (8.2.7), and the symmetry
of u[n]

t yield

Eη
[
η(n)

t (B)
]

=

∫
B

(∫
En

u[n]
t (y, x)η(n)(dx)

)
λ⊗n(dy). (8.2.8)

This relation generalizes Proposition 3.2.2.
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8.2.3 Generalized Orthogonal Polynomials

In this section we generalize the orthogonal self-duality relation introduced in Section 3.2.1 to the class of Markov
processes on N<∞ satisfying Assumption 8.2.1. More precisely, assuming that there exists a reversible measure ρ,
we show another self-intertwining relation where the intertwiner satisfies an orthogonality relation with respect to
this measure. The intertwiner is a so-called generalized orthogonal polynomial, a well studied object in the infinite
dimensional analysis literature (see, e.g., [151], [160] and [128]). We thus start by constructing the generalized
orthogonal polynomials, following closely [128].

Let ρ be a probability measure on (N<∞,N<∞). We use the shorthand L2(ρ) := L2(N<∞,N<∞, ρ). Through the rest
of the section we assume that all moments of the total number of particles are finite.

Assumption 8.2.2. Assume
∫
η(E)nρ(dη) < ∞ for all n ∈ N.

Assumption 8.2.2 implies that every map η 7→ η⊗n( fn) =
∫

fndη⊗n, with fn : En → R a bounded measurable
function, is in L2(ρ).

Orthogonal polynomials in a single real variable can be constructed by an orthogonalization procedure. This
definition extends to the infinite-dimensional setting: generalized orthogonal polynomals are defined by taking an
orthogonal projection onto a proper subspace of generalized polynomials, see [128] and references therein. We
thus define the space Pn of generalized polynomials (with bounded coefficients) of degree less or equal than n ∈ N0
as the set of linear combinations of maps η 7→

∫
fkdη⊗k, k ≤ n, with bounded measurable fk : Ek → R+, with the

convention η⊗0( f0) := f0 ∈ R. Thus the set P0 consists of the constant functions. We refer to the functions fk as
coefficients.

Assumption 2 guarantees that every polynomial is square-integrable, i.e., Pn is a subspace of L2(ρ). In general it
is not closed, we write Pn for its closure in L2(ρ). The linear space Pn and its closure have the same orthogonal
complement P⊥n = Pn

⊥
in L2(ρ).

The next definition is equivalent to a definition from [128, Section 5].

Definition 8.2.8 (Generalized orthogonal polynomials). For n ∈ N and fn : En → R a bounded measurable
function we define the associated generalized orthogonal polynomial as follows

In( fn, · ) := orthogonal projection of (η 7→ η⊗n( fn)) onto Pn−1
⊥
.

Equivalently,
In( fn, η) = η⊗n( fn) − Q(η)

with Q ∈ Pn−1 the orthogonal projection of η 7→ η⊗n( fn) onto Pn−1. Notice that In( fn, η) is only defined up to ρ-null
sets.

Remark 8.2.9 (Wick dots and multiple stochastic integrals). In the literature (see, e.g., [128, Section 5]) the
generalized orthogonal polynomial In( fn, η) is often denoted by : η⊗n( fn) : (“Wick dots”). When ρ is the distribution
of a Poisson point process with intensity measure λ, the generalized orthogonal polynomial is given by a multiple
stochastic integral with respect to the compensated Poisson measure η − λ (see the references provided at the end
of Section 3.2.1), hence the notation In( fn, η). The notation has the advantage of being analogous to the one used
for the self-intertwiner Jn in Section 8.2.2, which is why we keep it.

Remark 8.2.10 (Orthogonality relation). It follows from the definition that∫
In( fn, · )Im(gm, · ) dρ = 0

for n , m. Moreover fn 7→ In( fn, · ) extends to a unitary operator on the space of permutation invariant functions
that are square integrable with respect to some measure λn (see, e.g., [128, Corollary 5.2] for further details).
When ρ is the distribution of a Poisson process with intensity measure λ, the measure λn is the product λn = λ⊗n,
but in general the measure λn is more complicated.

Remark 8.2.11 (Chaos decompositions and Lévy white noise). Generalized orthogonal polynomials appear natu-
rally in the study of non-Gaussian white noise [16, 17], they are used to prove chaos decompositions. The relation
between polynomial chaos and chaos decompositions in terms of multiple stochastic integrals with respect to power
jump martingales [140] is investigated in detail [128]. Chaos decompositions play a role in the study of Lévy white
noise and stochastic differential equations driven by Lévy white noise [58, 127, 137].
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We complement the definition of the generalized orthogonal polynomials by two propositions on their properties.
The first proposition says that the orthogonal polynomials can also be obtained by an orthgonal projection of the
generalized falling factorial polynomials η 7→ Jn( fn, η) instead of η 7→ η⊗( fn). This observation plays an important
role in the proof of Theorem 8.2.15.

Proposition 8.2.12. The following identities hold

Pn =

η 7→ n∑
k=0

Jk( fk, η) : fk ∈ Fk, k ∈ {0, . . . , n}, n ∈ N0

, (8.2.9)

In( fn, · ) = orthogonal projection of Jn( fn, · ) onto Pn−1
⊥
, fn ∈ Fn. (8.2.10)

We note that (8.2.9) is a direct consequence of the fact that Jk( fk, · ) can be written as linear combination of integrals
with respect to the product measure of degree ≤ k and vice versa, see [72, Eq. (3.1)-(3.3)]. We provide a complete
proof of the above proposition in Section 8.2.4.

The second proposition applies under an additional assumption of complete independence. A finite point process
ζ is completely independent (or completely orthogonal) [120] if the counting variables ζ(A1), . . . , ζ(Am) associ-
ated with pairwise disjoint regions A1, . . . , Am ∈ E, m ∈ N, are independent. Complete independence implies a
factorization property of generalized orthogonal polynomials with disjointly supported coefficients.

Proposition 8.2.13. Suppose that ρ is the distribution of some finite completely independent point process. Let
N ≥ 2, A1, . . . , AN ∈ E pairwise disjont, and d1, . . . , dN ∈ N0. Further let fi : Edi → R, i = 1, . . . ,N be bounded
measurable functions that vanish on Edi \ Adi

i . Set n := d1 + · · · + dN . Then

In( f1 ⊗ . . . ⊗ fn, η) = Id1 ( f1, η) · · · Idn ( fn, η) (8.2.11)

for ρ-almost all η ∈ N<∞.

The proposition is proven in Section 8.2.4. For special cases of measures ρ that give rise to orthogonal polynomials
of Meixner’s type, a similar factorization property is found, for example, in [129, Lemma 3.1]. Our proposition
instead holds true for all distributions of completely independent point processes.

Remark 8.2.14. A particularly relevant case is when fi is the indicator of Adi
i . Then Proposition 8.2.13 says

that the orthogonalized version of η 7→
∏n

i=1 η(Ai)di is equal to the product of the orthogonalized versions of
η 7→ η(Ai)di . When ρ is the distribution of a Poisson or Pascal point process (see Sections 8.3 and 8.4 below),
the orthogonalized version of η(Ai)di is in fact a univariate orthogonal polynomial in the variable η(Ai) ∈ N0
and we obtain a product of univariate orthogonal polynomials, see (8.3.5) and (8.4.3). In general, however, the
orthogonalized version of η(Ai)di need not be a univariate polynomial.

We now state the second main theorem of this section, which is the analogue of Theorem 8.2.5 but where the
self-intertwiner is the generalized orthogonal polynomial introduced above.

Theorem 8.2.15 (Self-intertwining relation). Let (ηt)t≥0 be a Markov process on N<∞ that satisfies Assump-
tion 8.2.1, i.e. it is consistent and conservative. Let ρ be a reversible probability measure for (ηt)t≥0 that satisfies
Assumption 8.2.2. Then,

PtIn( fn, ·)(η) = In(p[n]
t fn, η) (8.2.12)

for ρ-almost all η ∈ N<∞, all t ≥ 0, and all fn ∈ Fn.

Proof. To lighten notation, we drop the second variable In( fn, · ) and write In( fn) when we refer to the function in
L2(ρ), similarly for Jn( fn). Let Πn−1 be the orthogonal projection in L2(ρ) onto Pn−1, and id the identity operator
in L2(ρ). By Proposition 8.2.12,

In( fn) = (id − Πn−1)Jn( fn).

The theorem follows once we know that the semigroup Pt commutes with the projection Πn−1 i.e.

PtΠn−1 = Πn−1Pt (8.2.13)

since then, (8.2.12) is obtained as follows

PtIn( fn) = Pt(id − Πn−1)Jn( fn) = (id − Πn−1)Pt Jn( fn) = (id − Πn−1)Jn(p[n]
t fn) = In(p[n]

t fn)
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where we used Proposition 8.2.12 in the first and the fourth equality and Theorem 8.2.5 in the third equality.

Let k ≤ n − 1 and let us recall the characterization of Pn given in Proposition 8.2.12. Using Theorem 8.2.5
combined with the fact that p[k]

t fk ∈ Fk for all fk ∈ Fk, we have that Pt Jk( fk, · ) = Jk(p[k]
t fk, · ) ∈ Pn−1. Thus, for

all t ≥ 0 and n ∈ N0, PtPn−1 ⊂ Pn and by the boundedness of Pt on L2(ρ) we obtain

PtPn−1 ⊂ Pn−1. (8.2.14)

The operator Pt is self-adjoint in L2(ρ) because of the reversibility of ρ. It is a general fact that a bounded self-
adjoint operator that leaves a closed vector space invariant commutes with the orthogonal projection onto that
space. Let us check this fact for our concrete operators and spaces. For f ∈ Pn−1

⊥
, by the self-adjointness of Pt on

L2(ρ) and (8.2.14), we have, for all g ∈ Pn, that
∫

(Pt f )gdρ =
∫

f (Ptg)dρ = 0 and thus

PtPn−1
⊥
⊂ Pn−1

⊥
. (8.2.15)

We then have, using (8.2.14), (8.2.15) and f − Πn−1 f ∈ Pn−1
⊥

that, for all f ∈ L2(ρ),

Πn−1Pt f = Πn−1PtΠn−1 f + Πn−1Pt( f − Πn−1 f ) = PtΠn−1 f .

This completes the proof of (8.2.13) and the proof of the theorem. �

8.2.4 Properties of Generalized Orthogonal Polynomials. Proof of Propositions 8.2.12 and 8.2.13

This section is devoted to the proof of Propositions 8.2.12 and 8.2.13.

Orthogonalization of Generalized Falling Factorial Polynomials Proposition 8.2.12 follows from explicit for-
mulas that link factorial measures η(n) and product measure η⊗n. These relations are similar to relations between
moments and factorial moments of integer-valued random variables with Stirling numbers, see [46, Chapter 5]. A
systematic treatment in terms of Stirling operators is found in [72].

Proof of (8.2.9). In order to show that Pn is the linear hull of generalized falling factorials Jk( fk, η), k ≤ n, it is
enough to check that every monomial η 7→ η⊗n( f ) is a linear combination of falling factorials of degree k ≤ n and
vice-versa.

Let η = δx1 + · · · + δxκ ∈ N<∞ and f : En → R a bounded measurable function. Then

η⊗n( fn) =
∑

1≤i1,...,in≤κ

fn(xi1 , . . . , xin ).

Every multi-index (i1, . . . , in) on the right side gives rise to a set partition σ of {1, . . . , n} in which k and ` belong
to the same block if and only if ik = i`. Denote by Σn the set of partitions of {1, . . . , n}. For σ ∈ Σn, let |σ| be the
number of blocks of the set partition. Further let ( fn)σ : E |σ| → R be the function obtained from fn by identifying,
in order of occurrence, those arguments which belong to the same block of σ. Grouping multi-indices (i1, . . . , in)
that give rise to the same partition σ, we find∫

fndη⊗n =
∑
σ∈Σn

∫
( fn)σ dη(|σ|)

(compare [46, Exercise 5.4.5]) and conclude that η⊗n( fn) is a linear combination of generalized falling factorials of
degrees |σ| ≤ n.

Conversely, ∫
fndη(n) =

∑
σ∈Σn

(−1)n−|σ|
∫

( fn)σ dη⊗|σ| (8.2.16)

hence the falling factorial of degree n on the left side is a linear combination of monomials η⊗k(gk) of degree
k ≤ n. �

Proof of (8.2.10). For n = 0 the identities J0( f0, η) = f0 = η⊗0( f0) yield (8.2.10). For n ∈ N, we notice that
(8.2.16) implies ∫

fndη(n) =

∫
fndη⊗n + Q(η)

for some Q ∈ Pn−1, given by a sum over set partitions with a number of blocks |σ| ≤ n − 1. It follows that
η 7→ Jn( fn, η) and η 7→ η⊗n( fn) have the same orthogonal projections onto (Pn−1)⊥. �
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Factorization Property of Generalized Orthogonal Polynomials In order to exploit the complete indepen-
dence, it is helpful to check that if f : En → R is supported in An, then In( f , η) depends only on what happens
inside A. We show a bit more. Let Pn(A) ⊂ Pn be the space of linear combinations of maps η 7→ η⊗k( fk), k ≤ n,
with bounded measurable fk : E → R vanishing on Ek \ Ak. Notice that every function F ∈ Pn(A) depends only
on the restriction ηA, defined by ηA(B) := η(A ∩ B).

Lemma 8.2.16. Let d ∈ N, A ∈ E, and f : Ed → R a bounded measurable function that vanishes outside Ed \ Ad.
Then there exists a map Q ∈ Pd−1(A) such that Id( f , η) = η⊗d( f ) − Q(η) for ρ-almost all η ∈ N<∞.

Proof. Let Q be the orthogonal projection of η 7→ η⊗d( f ) onto Pd−1(A). Then Q ∈ Pd−1(A) and the difference
F(η) := η⊗d( f ) − Q(η) is orthogonal to Pd−1(A). We exploit the complete independence to show that F is actually
orthogonal to the bigger space Pd−1.

Let n ∈ {1, . . . , d − 1}. If C ∈ En is of the form C1 ×C2 with Ci ∈ E
si where s1, s2 ∈ N0 and C1 ⊂ A, C2 ⊂ Ac, then

η⊗n(C) = η⊗s1 (C1)η⊗s2 (C2) and by the complete independence (notice F(η) = F(ηA))∫
F(η)η⊗n(C)ρ(dη) =

(∫
F(η)η⊗s1 (C1)ρ(dη)

)(∫
η⊗s2 (C2)ρ(dη)

)
.

The first integral on the right side vanishes because of C1 ⊂ As1 , s1 ≤ d − 1, and F ⊥ Pd−1(A). Therefore F is
orthogonal to η 7→ η⊗n(C).

More generally, every set C ∈ En is the disjoint union of Cartesian products C1 × · · · × Cn in which every Ci

is either contained in A or in Ac. Taking linear combinations and exploiting that η⊗n(g) does not change if we
permute variables in g, we find that F is orthogonal to η⊗n(C) for all C ∈ En and then, by the usual measure-
theoretic arguments, to all maps η 7→ η⊗n(g), g : En → R bounded and measurable. The map F is also orthogonal
to all constant functions because every constant function is in Pd−1(A).

Hence, taking linear combinations of maps η⊗n( fn), n ∈ {0, . . . , d − 1}, we see that F is orthogonal to the space
Pd−1. As F(η) = η⊗n( f ) − Q(η) with Q ∈ Pd−1, it follows that In( f , η) = F(η) for ρ-almost all η. �

When evaluating the product of two generalized orthgonal polynomials In( f , η) using Lemma 8.2.16, it is important
to know that the product of two polynomials is again a polynomial.

Lemma 8.2.17. Let A and B be two disjoint measurable subsets of E and m, n ∈ N0. Pick F ∈ Pm(A) and
G ∈ Pn(B). Then FG is in Pm+n(A ∪ B).

Proof. Write || · || for the L2(ρ)-norm. Let (Fk)k∈N and (Gk)k∈N be sequences in Pm(A) and Pn(B), respectively, with
||F − Fk || → 0 and ||G −Gk || → 0. We have Fk(η) = Fk(ηA) for all k and η hence F(η) = F(ηA) for ρ-almost all η.
Similarly Gk and G depend on ηB only. The triangle inequality and the complete independence yield

||FG − FkGk || ≤ ||(F − Fk)G|| + ||Fk(G −Gk)||
= ||F − Fk || ||G|| + ||Fk || ||G −Gk || → 0.

As each product FkGk is in Pm+n(A ∪ B), the limit FG is in the closure Pm+n(A ∪ B). �

Proof of Proposition 8.2.13. It is enough to treat the case N = 2; the general case follows by an induction over N.
Let A1 and A2 be two disjoint measurable subsets in E. Let d1, d2 be two integers and fi : Edi → R, i = 1, 2 be two
bounded measurable functions that vanish outside Ad1

1 and Ad2
2 respectively. By Lemma 8.2.16, there exist maps

Qi ∈ Pdi−1(Ai), i = 1, 2, such that

Id1 ( f1, η) = η⊗d1 ( f1) − Q1(η), Id2 ( f2, η) = η⊗d2 ( f2) − Q2(η)

for ρ-almost all η. Therefore by Lemma 8.2.17, we have

Id1 ( f1, η)Id2 ( f2, η) = η⊗d1 ( f1)η⊗d2 ( f2) − Q(η) (8.2.17)

with Q ∈ Pd1+d2−1. Let s1, s2 ∈ N0 and C1 ∈ E
s1 , C2 ∈ E

s2 with s1 + s2 ≤ d1 + d2 − 1 and C1 ⊂ As1
1 , C2 ⊂ (Ac

1)s2 .
Then, by the complete independence,∫

Id1 ( f1, η)Id2 ( f2, η) η⊗(s1+s2)(C1 ×C2)ρ(dη) =

2∏
i=1

∫
Idi ( fi, η) η⊗si (Ci)ρ(dη).
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We must have s1 ≤ d1 − 1 or s2 ≤ d2 − 1, therefore at least one of the integrals on the right side vanishes
and the product Id1 ( f1, η)Id2 ( f2, η) is orthogonal to η⊗n(C). We conclude with an argument similar to the proof
of Lemma 8.2.16 that Id1 ( f1, η)Id2 ( f2, η) is in fact orthogonal to Pd1+d2−1. It follows that the product is equal to
Id1+d2 ( f1 ⊗ f2, η) for ρ-almost all η. �

8.3 Examples

In this section we provide some examples of known consistent and conservative Markov processes, i.e. of pro-
cesses satisfying Assumption 8.2.1. Moreover, we also provide the reversible distribution of those processes, when
known, and we specify when the assumptions of Theorem 8.2.15 are also satisfied. In particular, we recover known
self-duality functions of systems of particles hopping on a finite set. In the next section, we introduce a new pro-
cess, which generalizes the inclusion process (see, e.g., [84] where the SIP is introduced) for which both main
theorems apply.

Before doing that, we recall the definition of the Charlier and Meixner polynomials, see e.g. [108], which are
polynomials orthogonal with respect to the Poisson and negative binomial distribution. Differently from the usual
definition in the literature, we normalize orthogonal polynomials to be monic where a polynomial p(x) = a0 +

a1x + . . . + anxn is called monic if an = 1. These sequences of orthogonal polynomials can be expressed by using
the generalized hypergeometric function given by

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣ z
)

:=
∞∑

k=0

(a1)(k) · · · (ap)(k)

(b1)(k) · · · (bq)(k)

zk

k!

for a1, . . . , ap, b1, . . . , bq, z ∈ R, p, q ∈ N, where we remind the reader that (a)(0) := 1 and (a)(k) := a(a + 1) · · · (a +

k − 1) denotes the rising factorial (also called Pochhammer symbol). Similarly, we recall the falling factorial
defined by (a)k := a(a − 1) · · · (a − k + 1), (a)0 := 1.

1. The monic Charlier polynomials are given by

Cn(x;α) := (−α)n
2F0

(
−n,−x
−

∣∣∣∣∣− 1
α

)
=

n∑
k=0

(
n
k

)
(−α)n−k(x)k, x ∈ N0

for n ∈ N0 and α > 0 and they satisfy the orthogonality relation

∞∑
`=0

Cn(`;α)Cm(`;α)Poisson(α)({`}) = 1{n=m}α
nn!

for n,m ∈ N0, i.e., Cn( · ;α) are orthogonal polynomials with respect to the Poisson distribution Poisson(α)({`}) =

e−α α
`

`! . ` ∈ N0.

2. The monic Meixner polynomials are given by

Mn(x; a; p) := (a)(n)
(
1 −

1
p

)−n

2F1

(
−x,−n

a

∣∣∣∣∣ 1 − 1
p

)
=

n∑
k=0

(
n
k

) (
1 −

1
p

)k−n

(a + k)(n−k)(x)k, x ∈ N0

for n ∈ N0, a > 0, p ∈ (0, 1) and they satisfy the orthogonality relation

∞∑
`=0

Mn(`; a; p)Mm(`; a; p)Negative-Binomial(a, p)({`}) = 1{n=m}
pnn!(a)(n)

(1 − p)2n (8.3.1)

for n,m ∈ N0, i.e., (Mn( · ; a; p))n∈N0 are orthogonal polynomials with respect to the generalized negative
binomial distribution

Negative-Binomial(a, p)({`}) = (a)(`) p`

`!
(1 − p)a, ` ∈ N0.

8.3.1 Interacting Particle Systems on a Finite Set

Let E be a non-empty finite set and identify ξ ∈ N<∞ with (ξk)k∈E := (ξ({x}))x∈E ∈ N
E
0 . Let η be a Markov process

on N<∞ satisfying Assumption 8.2.1 and ρ be a reversible probability measure satisfying Assumption 8.2.2. We
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then have that Dcheap(ξ, η) := 1{η=ξ}
ρ({ξ}) , for η, ξ ∈ N<∞ is the so-called cheap or trivial self-duality function ([37,

Eq. (4.2)]). In this section we recover well-known self-duality functions of systems of particles hopping on a finite
set by applying the intertwiners Jn and In to the cheap duality function. Note that

Dcheap
n (ξ, x) := Dcheap

ξ, n∑
k=1

δxk

 , ξ ∈ N<∞, x = (x1, . . . , xn) ∈ En, n ∈ N,

is a duality functions for (Pt)t≥0 and the n-particle semigroup (p[n]
t )t≥0, i.e., PtD

cheap
n ( · , x)(ξ) = p[n]

t Dcheap
n (ξ, · )(x)

for each ξ ∈ NE
0 , x ∈ En, n ∈ N. Putting Dcheap

0 (ξ, ) := Dcheap (ξ, 0) yields PtD
cheap
0 ( · , )(ξ) = p[0]

t Dcheap
0 (ξ, ).

It is well-known that applying an intertwiner to a duality function, for instance Dcheap
n (ξ, x), yields again a self-

duality function, see e.g. [34, Theorem 2.5] or [84, Remark 2.7].

Proposition 8.3.1. Let ρ =
⊗

k∈E ρk where ρk are probability measures on N0 satisfying ρk({`}) > 0 for each
` ∈ N0. Consider for each ρk the sequence of monic orthogonal polynomials (Pn( · , ρk))n∈N0 . Then,

1. applying Jn to Dcheap
n yields

D
cl
n (ξ, η) :=

1
n!

Jn(Dcheap
n (ξ, · ), η) = 1{ξ(E)=n}

∏
x∈E

1
ρx({ξx})ξx!

(ηx)ξx , n ∈ N0, ξ, η ∈ N<∞;

2. applying In to Dcheap
n yields

D
ort
n (ξ, η) :=

1
n!

In(Dcheap
n (ξ, · ), η) = 1{ξ(E)=n}

∏
x∈E

1
ρx({ξx})ξx!

Pξx (ηx, ρx), n ∈ N0, ξ, η ∈ N<∞.

As a consequence, Theorem 8.2.5 and Theorem 8.2.15 yield that Dcl
n and Dort

n satisfy (3.2.1), i.e., they are self-
duality functions for (Pt)t≥0 for each n ≥ N0. Moreover, summing over n in Dcl

n and Dort
n , we obtain the self-duality

functions

D
cl(ξ, η) :=

∏
x∈E

1
ρx({ξx})ξx!

(ηx)ξx , ξ, η ∈ N<∞, (8.3.2)

D
ort(ξ, η) :=

∏
x∈E

1
ρx({ξx})ξx!

Pξx (ηx, ρx), ξ, η ∈ N<∞. (8.3.3)

Proof. Without loss of generality, let E = {1, . . . ,N} and fix ξ ∈ NN
0 , n ∈ N.

1. Note that

1{ξ=δx1 +...+δxn }
= 1{ξ(E)=n}

n!
ξ1! · · · ξN!

˜1⊗ξ1
{1} ⊗ · · · ⊗ 1⊗ξN

{N} (x1, . . . , xn), x1, . . . , xn ∈ E (8.3.4)

where ˜1⊗ξ1
{1} ⊗ · · · ⊗ 1⊗ξN

{N} denotes the symmetrization of 1⊗ξ1
{1} ⊗ · · · ⊗ 1⊗ξN

{N} . Hence, using (8.2.4), we obtain

1
n!

Jn(Dcheap
n (ξ, · ), η) =

1{ξ(E)=n}

ρ({ξ})ξ1! · · · ξN!

∫
1⊗ξ1
{1} ⊗ · · · ⊗ 1⊗ξN

{N} dη(n)

= 1{ξ(E)=n}

N∏
x=1

1
ρx({ξx})ξx!

(ηx)ξx .

for each ξ ∈ NN
0 .

2. Let Pn := Pn ∩ Pn−1
⊥

. By the orthogonal decomposition

Pn =
⊕

d1+...+dN =n

span
{
Pd1 ( · , ρ1) ⊗ · · · ⊗PdN ( · , ρN)

}
we obtain that the projection of NN

0 3 η 7→
∫

1⊗ξ1
{1} · · · 1

⊗ξN
{N} dη⊗n = η

ξ1
1 · · · η

ξN
N onto Pn is equal to η 7→

Pξ1 (η1, ρ1) · · ·PξN (η1, ρN). Therefore, using (8.3.4)

1
n!

In(Dcheap
n (ξ, · ), η) =

1{ξ(E)=n}

ρ({ξ})ξ1! · · · ξN!
In(1⊗ξ1

{1} ⊗ · · · ⊗ 1⊗ξN
{N} , η)
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= 1{ξ(E)=n}

N∏
x=1

1
ρx({ξx})ξx!

Pξx (ηx, ρx)

for each η ∈ NN
0 .

�

We consider three prominent examples of consistent and conservative Markov processes on NE
0 . For a characteri-

zation of consistent particle system on countable E we refer to [37, Theorem 3.3]. Let |E| ≥ 2, c = {c{x,y}, x, y ∈ E}
be a set of symmetric and non-negative conductances, such that (E, c) is connected and let (αy)y∈E ⊂ N. Then, for
σ ∈ {−1, 0, 1}, the Markov process with infinitesimal generator acting on functions f : N<∞ → R as

L f (η) =
∑
x,y∈E

c{x,y}
(

f (η − δy + δx) − f (η)
)

(αy + ση({y}))η({x}), η ∈ N<∞

is a consistent and conservative process. In particular, for σ = −1, we obtain the inhomogeneous partial exclusion
process (SEP) (see, e.g., [74, Eq. (1.3)]), for σ = 0 a system of independent random walkers (IRW) and for σ = 1
the inhomogeneous inclusion process SIP (see, e.g., [? , Eq. (2.2)]).

By a simple detailed balance computation one can show that, for those processes, there exists a one parameter
family {ρθ, θ ∈ Θ} with Θ = (0, 1] for σ = −1 and Θ = (0,∞) for σ ∈ {0, 1} of reversible measures, namely (cf. [?
, Eq. (3.1)]) ρθ :=

⊗
x∈E ρx,θ with

ρx,θ =


Binomial(αx, θ) if σ = −1

Poisson(αxθ) if σ = 0

Negative-Binomial
(
αx,

θ
1+θ

)
if σ = 1 .

Using that ρx,θ({n}) =
wx(n)
zx,θ

(
θ

1+σθ

)n 1
n! where

wx(n) :=


(αx)n if σ = −1
αn

x if σ = 0
(αx)(n) if σ = 1

and zx,θ :=


(1 − θ)−αx if σ = −1
eαxθ if σ = 0
(1 + θ)αx if σ = 1

in (8.3.2) we obtain

D
cl(ξ, η) =

(
θ

1 + σθ

)−ξ(E)
∏

x∈E

zx,θ

∏
x∈E

(ηx)ξx

wx(ξx)

which are the classical duality functions for (ηt)t≥0 (see, e.g., [76, Eq. (2.16)]). Notice that, due to Assump-
tion 8.2.1 (2), the term

(
θ

1+σθ

)−ξ(E) (∏
k∈E zk,θ

)
is constant in time and, thus, it does not play any role in the duality

relation.

For these systems, the self-dualities provided by (8.3.3) coincide (up to a multiplicative constant depending on the
total number of particles which is a conserved quantity) to the orthogonal dualities studied in [146], [78] and [76]
which are given by product of Charlier polynomials for σ = 0, products of Meixner polynomials for σ = −1 and
products of Krawtchouk polynomials (see, e.g., [108, Eq. (9.11.1)]) for σ = −1. Indeed, considering, for instance,
the system of independent random walks, the self-duality function of (8.3.3) turns into

D
ort(ξ, η) =

∏
k∈E

1
ρk({ξk})ξk!

Cξk (ηk, αk)

=
∏
k∈E

1

e−αkα
ξk
k

(−αk)ξk
2F0

(
−ξk,−ηk

−

∣∣∣∣∣− 1
αk

)
= eα(E)(−1)ξ(E)

∏
k∈E

2F0

(
−ξk,−ηk

−

∣∣∣∣∣− 1
αk

)
coinciding with the orthogonal self-dualities given in literature mentioned above. The same holds also for the
exclusion and the inclusion process.
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8.3.2 Independent Markov Processes

Every system of independent Markov processes (e.g. the free Kawasaki dynamics [110], independent Brownian
motions) is consistent and conservative. For independent particles, our theorems results allow us to recover known
results on intertwining with Lenard’s K-transform and multiple stochastic integrals, see [110, 158] and the refer-
ences therein. Our contribution is the proof that these intertwining relations correspond exactly to classical and
orthogonal dualities for independent random walkers on lattices from [47, Proposition 2.9.4] and [78, Theorem 4].

Let (pt)t≥0 be a Markov transition function on (E,E). The transition function for n independent labelled particles
with one-particle evolution governed by (pt)t≥0 has transition function p⊗n

t uniquely determined by

p⊗n
t

(
x1, . . . , xn; A1 × · · · × An) =

n∏
i=1

pt(xi; Ai) x1, . . . , xn ∈ E, A1, . . . , An ∈ E.

The family of transition functions (p⊗n
t )t≥0, n ∈ N is strongly consistent and therefore the associated conservative

transition function (Pt)t≥0 (see (8.2.2)) is consistent.

Hence, Theorem 8.2.5 applied to the process (ηt)t≥0 with transition function (Pt)t≥0 yields the self-intertwining
relation Pt Jn( fn, · )(η) = Jn(p[n]

t fn, η) or more concretely,

Eη
[∫

fndη(n)
t

]
=

∫
(p⊗n

t fn)dη.

The relation holds true for all t ≥ 0, all initial values η ∈ N<∞, and all fn ∈ Fn. As noted in (8.2.6), it implies
that Lenard’s K-transform and the semigroup (Pt)t≥0 commute. Hence, for free Kawasaki dynamics, we recover a
relation from [110, Section 3.2].

If we find a σ-finite reversible measure λ for the one-particle dynamics (pt)t≥0, then the distribution of a Pois-
son process with intensity measure λ, denoted by πλ, is reversible for (ηt)t≥0. This property is a version of
Doob’s Theorem (cf. [47, Theorem 2.9.5]) and of the displacement theorem (cf. [105]). Moreover, λ⊗n is re-
versible for (p⊗n

t )t≥0. For finite λ, the assumptions of Theorem 8.2.15 are satisfied and the self-intertwining relation
PtIn( fn, · )(η) = In(p⊗n

t fn, η) holds for πλ-almost all η ∈ N<∞, all fn ∈ Fn and all t ≥ 0.

The construction of the generalized orthogonal polynomial with respect to the Poisson point process is standard
and it is well-known that the orthogonality relation∫

In( fn, · )Im(gm, · ) dπλ = 1{n=m}n!
∫

fngmdλ⊗n

holds for bounded fn ∈ Fn, gm ∈ Fm, n,m ∈ N0, with
∫

f0g0dλ⊗0 := f0g0, and they generalize the Charlier
polynomial in the following sense (see, e.g., [119, Eq. (3.3)],

In(1⊗d1
B1
⊗ · · · ⊗ 1⊗dN

BN
, η) =

N∏
k=1

Cdk (η(Bk); λ(Bk)) (8.3.5)

for πλ-almost all η ∈ N<∞, d1 + . . . + dN = n and all pairwise disjoint B1, . . . , BN ∈ E. Yet another viewpoint
is that In( fn, · ) are multiple stochastic integrals with respect to the compensated Poisson measure η − λ. The
reader interested in the relation between the generalized orthogonal polynomials In( fn, · ) and multiple Wiener-Itô
integrals, chaos decompositions, and Fock spaces is referred to [118], [136] and [128].

In the language of multiple stochastic integrals, the intertwining relation from Theorem 8.2.15 says that applying
the semigroup to the n-fold integral of fn is the same as the n-fold integral of p⊗n

t fn.

8.3.3 The Howitt–Warren Flow and a Consistent Family of Sticky Brownian Motions

As noted in Section 8.2.1, every strongly consistent family (p[n]
t )t≥0, n ∈ N, of transition functions induces a

consistent semigroup (Pt)t≥0. Strongly consistent families have been studied in the context of stochastic flows: Le
Jan and Raimond [121] investigate a one-to-one correspondence between strong consistency families and stochastic
flows of kernels.

A particular and well studied case is the Howitt–Warren flow. It is a stochastic flow of kernels whose n point mo-
tions is given by a family of n interacting Brownian motions that interact, roughly, by sticking together for a while
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when they meet. The interacting diffusions can be constructed, for example, as solutions to a martingale prob-
lem [97]. Theorem 8.2.5 applies to the semigroup (Pt)t≥0 induced by the strongly consistent family of transitions
functions (p[n]

t )t≥0, n ∈ N, for n sticky Brownian motions.

The dynamics of sticky Brownian motion depends on a choice of parameters and includes diffusions with a drift.
For zero drift and a special choice of parameters, Brockington and Warren [31] prove, using a Bethe ansatz,
an explicit formula for transition probabilities and the reversibility of the n-point motions with respect to some
explicit measure m(n)

θ . They work on the Weyl chambers W̄n := {x ∈ Rn : x1 ≥ . . . ≥ xn} and show that the
transition function is of the form p[n]

t (x, dy) = u(n)
t (x, y)m(n)

θ (dy) for some symmetric function u(n)
t (x, y) = u(n)

t (y, x).
With this the self-intertwining relation from Theorem 8.2.5 can be rewritten as

Eη

[∫
W̄r

fr(y)η(r)(dy)
]

=

∫
W̄r

fr(y)
[∫

W̄r
u(r)

t (y, x)η(r)(dx)
]

m(r)
θ (dy). (8.3.6)

Thus we obtain an identity analogous to (3.2.7) and (8.2.8).

As the reversible measures m(n)
θ from [31] have infinite total mass, it is not possible to construct from them a

reversible measure supported on configurations of finitely many particles and Theorem 8.2.15 on orthogonal inter-
twining relations is not applicable. We leave the study of the orthogonal self-intertwining relation for the system
of sticky Brownian motions for future research.

For other examples of strongly consistent families, beyond sticky Brownian motions, we refer to [121] and [149].

8.4 Generalized Symmetric Inclusion Process

As an example of interacting system of particles jumping on a general Borel space (E,E), we introduce here a new
process which is a natural extension of the SIP. Coherently with the setting of this chapter, we consider the finite
particle case only. Extension to the infinite particle case is not part of the scope of the present work and it is left
for future research.

The SIP on countable sets was introduced in [83] as a dual process of a model of heat conduction, which shares
some features with the well-studied KMP model (see [107]). The process also appears, with a different interpre-
tation, in mathematical population genetics. Indeed, in [33, Section 5], it is proved that the generator of the SIP
coincide with the generator of an instance of the Moran model, which is dual to the Wright-Fisher diffusion pro-
cess. Moreover, the scaling limit of the Moran model is the celebrated Fleming-Viot superprocess (see [60] and
references therein) which has been studied using duality as well.

8.4.1 Introducing the gSIP

Let α be a finite, non-zero measure on E and c : E × E → R+ a bounded symmetric function with c(x, x) = 0 for
all x ∈ E. The generalized symmetric inclusion process (gSIP) is the process with formal generator

L f (η) =

" (
f (η − δx + δy) − f (η)

)
c(x, y)(α + η)(dy)η(dx). (8.4.1)

It is a continuous-time jump process with jump kernel

Q(η, B) =

"
1B(η − δx + δy)c(x, y)(α + η)(dy)η(dx) (8.4.2)

and it can be viewed, when E = Rd, as a particular case of a Kawasaki dynamics (see, e.g., [109]). Notice
that Q(η, E) < ∞ for finite measures α and finite configurations η ∈ N<∞. Accordingly the process (ηt)t≥0 can
be constructed with the usual jump-hold construction and the semigroup (Pt)t≥0 is the minimal solution of the
backward Kolmogorov equation, see Feller [69].

The process is non-explosive because the particle number is conserved and sup{Q(η, E) : η(E) = n} < ∞ for every
particle number n ∈ N0. Therefore the minimal solution (Pt)t≥0 is a Markov semigroup (Pt(η, E) = 1 rather than
≤ 1) and it is in fact the unique solution of the backward Kolmogorov equation.

Remark 8.4.1. 1. As we will see later, the gSIP (ηt)t≥0 has the following connection to the well-known SIP of
particles hopping on a finite set. Let A1, . . . , Am ∈ E, m ∈ N be a partition of E and let c be constant on
Ai × A j and equal to di j for each i, j. Then, the process (ηt(A1), . . . , ηt(Am)) starting at η0 ∈ N<∞ behaves
like a SIP on the finite set {1, . . . ,m} with initial configuration (η0(A1), . . . , η0(Am)) and transition rates di j.
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2. Notice that a direct generalization of the Exclusion process analogous to the gSIP, would not be meaningful
in general, because the probability to jump on already occupied points is zero whenever the jumping kernel
of the single particle is not atomic. Thus an exclusion rule miming the one in the discrete setting cannot be
modelled in the continuum.

3. The dynamics can be described informally as follows. Starting from an initial configuration η0 = η with
n = η(E) points x1, . . . , xn, set

qi0 :=
∫

c(xi, y)α(dy), qi j := c(xi, x j), zi :=
n∑

j=0

qi j, z :=
n∑

i=1

zi

and do the following:

(a) Wait for an exponential time with parameter Q(η, E) = z.

(b) When time is up, choose one out of the n points x1, . . . , xn of η. The point xi is chosen with probability
zi/z. Move the chosen point x = xi to a new location y:

• With probability qi j/zi, the new location y is equal to y = x j.

• With probability qi0/zi, the new location y is chosen according to the probability measure α(E)−1α(dy).

Then, repeat. The resulting process (ηt)t≥0 and the associated semigroup (Pt)t≥0, given by the minimal
solution to the backward Kolmogorov equation, is in fact the unique solution.

8.4.2 Reversibility and Intertwiners for the gSIP

Fix p ∈ (0, 1). A Pascal point process with parameters p and α is a point process with the following properties:

1. If B1, . . . , Bm ∈ E are disjoint then ζ(B1), . . . , ζ(Bm) are independent.

2. For every B ∈ E, the distribution of ζ(B) is given by a negative binomial law:

P
(
ζ(B) = k

)
=

(
1 − p

)α(B)
α(B)

(
α(B) + 1

)
· · ·

(
α(B) + k − 1

) pk

k!
, k ∈ N0.

For k = 0, the equation is to be read as P(ζ(B) = 0) = (1 − p)α(B).

The Pascal distribution is the distribution of a Pascal point process and it is a direct generalization of the product
measure of negative binomial distributions that is reversible for SIP. Indeed, the measure⊗x∈ENegative-Binomial(αx, p),
αx > 0 can be seen as a Pascal distribution. Property (1) follows immediately whereas (2) follows from the fact that
if nx ∼ Negative-Binomial(αx, p) and ny ∼ Negative-Binomial(αy, p), with nx and ny independent for x , y ∈ E,
then nx + ny ∼ Negative-Binomial(αx + αy, p).

Theorem 8.4.2. Let α be a finite measure on E. Then

1. the generalized symmetric inclusion process with formal generator (8.4.1) is a consistent Markov process
and thus the intertwining relation (8.2.5) with generalized falling factorials holds;

2. for every p ∈ (0, 1), the Pascal distribution ρ with parameters α and p is reversible and thus, the intertwining
relation (8.2.12) with generalized orthogonal polynomials holds.

Notice that we have a family of reversible measures, indexed by p ∈ (0, 1), moreover the reversible Pascal distri-
butions do not depend on the function c(x, y) in the dynamics.

Theorem 8.4.2(ii) is complemented by a concrete relation of the abstract generalized orthogonal polynomials
In( fn, ·) with the univariate Meixner polynomials defined in Section 8.3.1. Generalized orthogonal polynomials of
Meixner’s type have been studied intensely in the context of non-Gaussian white noise [16, 17]. Connections with
quantum probability and representations of ∗-Lie algebras and current algebras are investigated in [2, 1].

The following proposition is a variant of Lemma 3.1 in [129]. We give a self-contained proof in Section 8.4.4 that
does not use the machinery of Jacobi fields or distribution theory.

Proposition 8.4.3. The intertwiner In is related to the Meixner polynomials via

In(1⊗d1
B1
⊗ · · · ⊗ 1⊗dN

BN
, η) =

N∏
k=1

Mdk (η(Bk);α(Bk); p) . (8.4.3)
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for ρ-almost all η ∈ N<∞ and all pairwise disjoint B1, . . . , BN ∈ E, n ∈ N0, d1, . . . , dN , N ∈ N with d1 + . . .+dN = n.

We define a measure λn on En that replaces the product measure λ⊗n in the Poisson-Charlier case. Let Σn be the
collection of set partitions of {1, . . . , n}. For σ ∈ Σn and g : En → R, let |σ| be the number of blocks of the partition
σ and gσ : E |σ| → R the function obtained by identifying, in order of occurrence, those arguments that belong to
the same block of σ. Define

λn(B) =
∑
σ∈Σn

∏
A∈σ

(|A| − 1)!

 ∫ (1B)σ dα⊗|σ|, B ∈ En. (8.4.4)

For example λ1 = α and

λ2(B) =

"
1B(x, y)α(dx)α(dy) +

∫
1B(x, x)α(dx)

for all B ∈ E2. Further set
∫

f0g0 dλ0 := f0g0 for f0, g0 ∈ F0 = R.

The following proposition generalizes the univariate orthogonality relation (8.3.1). It is similar to Corollary 5.2 in
[129], we provide a self-contained proof in Section 8.4.4.

Proposition 8.4.4. The following orthogonality relations holds∫
In( fn, · )Im(gm, · ) dρ = 1{n=m}

pnn!
(1 − p)2n

∫
fngm dλn (8.4.5)

for fn ∈ Fn, gm ∈ Fm, n,m ∈ N0.

Remark 8.4.5 (Sequential construction of λn). For n ∈ N, define a kernel kn,n+1 : En × En+1 → R+ by

kn,n+1(x1, . . . , xn; B) =

∫
1B(x1, . . . , xn, y)α(dy) +

n∑
i=1

1B(x1, . . . , xn, xi).

Then λn+1 = λnkn,n+1 meaning that λn+1(B) =
∫

En λn(dx)kn,n+1(x, B) for all B ∈ En+1. Thus λn is formed by adding
points one by one; at each step, a new point either joins a pile of existing points or is placed at a new location
y. This relation on the one hand connects to the very definition of the dynamics of the gSIP and on the other
hand is reminiscent of the Chinese restaurant process used in sequential constructions for random partitions [144,
Chapter 3]. Notice that, upon normalization by the total mass of λn, (8.4.4) gives rise to a probability measure on
the set Σn of partitions, related to the Ewens sampling formula.

8.4.3 Proof of Theorem 8.4.2

Here we prove Theorem 8.4.2. In addition, we remind the reader of an explicit description of the Pascal process as
a compound Poisson process.

Consistency (Proof of Theorem 8.4.2(i)) We start by proving that the gSIP is consistent (see Definition 8.2.1).
Since we consider the finite particle case only, it is enough to check the commutation property in Definition 8.2.1
for the generator instead of the semigroup, i.e.,AL f (η) = LA f (η) for all f ∈ G and η ∈ N<∞. Indeed, decompose
the generator as L = L1 + L2 with

L1 f (η) :=
" (

f (η − δx + δy) − f (η)
)

c(x, y)α(dy)η(dx)

and
L2 f (η) :=

" (
f (η − δx + δy) − f (η)

)
c(x, y)η(dy)η(dx).

Notice that L1 is the generator of a system of independent Markov processes, namely, independent random walkers
with transition kernel given by c(x, y)α(dy). Thus, it is straightforward to check that AL1 f (η) = L1A f (η). It
remains to show that

AL2 f (η) = L2A f (η). (8.4.6)

First, we compute

L2A f (η)
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=

$
f (η − δx + δy − δz)η(dz)c(x, y)η(dy)η(dx) −

"
f (η − 2δx + δy)c(x, y)η(dy)η(dx)

+

"
f (η − δx)c(x, y)η(dy)η(dx) −

$
f (η − δz)η(dz)c(x, y)η(dy)η(dx)

second,

AL2 f (η) =

$ (
f (η − δz − δx + δy) − f (η − δz)

)
c(x, y)(η − δz)(dy)(η − δz)(dx)η(dz)

= L2A f (η)

−

"
( f (η − δx) − f (η − δz)) c(x, z)η(dx)η(dz) +

∫
( f (η − δz) − f (η − δz)) c(z, z)η(dz).

Because the last two integrals above are both 0, we obtain (8.4.6) and the proof is concluded. �

Explicit Representation of the Pascal Process. The Pascal process, also called negative binomial process, is
a well-known point process (cf. [154], [112]). For the reader’s convenience we recall the construction of that
process.

Fix p ∈ (0, 1) and a finite measure α. Note that the Pascal point process has the structure of a measure-valued Lévy
process, since ζ(A1), . . . , ζ(An) are independent for pairwise disjoint A1, . . . , An ∈ E and the distribution of ζ(A)
only depends on α(A), A ∈ E. For more details, see [104, 105, 100],

More precisely, the Pascal process can be constructed in the following way, compound Poisson process (see [120,
Chapter 15]), i.e.,

ζ(A) :=
∫

A×N
y ξ(d(x, y)), A ∈ E

where ξ is a Poisson point process on E ×N with intensity measure λ := α⊗ ν where the Lévy measure is given by
ν :=

∑∞
n=1

pn

n δn. It can readily checked that the Laplace functional is given by

Lζ( f ) := E
[
e−

∫
f dζ

]
= exp

(∫ (
e−y f (x) − 1

)
λ(d(x, y))

)
= exp

(
−

∫
Φ( f (x))α(dx)

)
(8.4.7)

with Φ(y) := log
(

1−pe−y

1−p

)
, y ≥ 0. Equation (8.4.7) implies for A ∈ E

E
(
e−ζ(A)s

)
= exp

(
−

∫
Φ(s1A(x))α(dx)

)
= exp (−α(A)Φ(s)) =

(
1 − p

1 − pe−s

)α(A)

, s > 0

which is the Laplace transform of a negative binomial distributed random variable with parameters α(A) and p.
Moreover, (8.4.7) implies the independence of ζ(A1), . . . , ζ(An) immediately.

Reversible Measure (Proof of Theorem 8.4.2(ii)). Let Qc = Q be the jump kernel from (8.4.2). It is enough to
check the detailed balance relation

ρ ⊗ Qc(A ×B) = ρ ⊗ Qc(B ×A ) A ,B ∈ N<∞, (8.4.8)

where
ρ ⊗ Qc(A ×B) =

∫
A
ρ(dη)

"
1B(η − δx + δy)c(x, y)(α + η)(dy)η(dx).

The proof idea is that for particularly simple choices of c(x, y) and A ,B, the relation (8.4.8) boils down to a
detailed balance relation for a discrete inclusion process.

We start with some preliminary observations. First, it is enough to prove (8.4.8) for functions c of the form

c(x, y) =

r∑
i, j=1

di j1Ci (x)1C j (y) (8.4.9)

with r ∈ N, symmetric non-negative weights di j = d ji ≥ 0, and sets A1, . . . , Ar ∈ E. Indeed, the set M of
non-negative measurable functions f : E × E → R+ for which the symmetrized function c(x, y) := 1

2 ( f (x, y) +
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f (y, x)) satisfies (8.4.8) is closed under pointwise monotone limits. If (8.4.8) holds true for all functions c of the
form (8.4.9), then M contains all indicators 1A×B, A, B ∈ E. The monotone class theorem then implies that M
contains all bounded non-negative measurable functions.

Second, by the π-λ theorem, it is enough to check (8.4.8) for sets of the form

A =

k⋂
j=1

{
η ∈ N<∞ : η(A j) = m j

}
, B =

⋂̀
j=1

{
η ∈ N<∞ : η(B j) = n j

}
(8.4.10)

with k, ` ∈ N, Ai, B j ∈ E, and mi, n j ∈ N0.

Third, for the relation (8.4.8) to hold true for all c(x, y) of the form (8.4.9) and all sets A , B of the form (8.4.10),
it is enough to consider the situation where r = k = `, Ai = Bi = Ci, and the sets A1, . . . , Ar are pairwise disjoint,
as the general case follows by taking linear combinations.

In the situation of the last paragraph, we compute, for η ∈ A , and assuming all diagonal elements dii vanish,

Qc(η,B) =

r∑
i, j=1

di j

∫
Ai

∫
A j

1B(η − δx + δy)(α + η)(dy)
 η(dx)

=

r∑
i, j=1

di jη(Ai)
(
α(A j) + η(A j)

)
1{η(Ai)−1=ni}1{η(A j)+1=n j}

∏
s<{i, j}

1{η(As)=ns}

=
∑

1≤i, j≤r:
i, j

di jmi(α(A j) + m j)δmi−1,niδm j+1,n j

∏
s<{i, j}

δms,ns , (8.4.11)

and we recognize the transition rates of the SIP with state space Nr
0. For non-zero diagonal elements, we need to

add
r∑

i=1

diimi(α(Ai) + mi)
r∏

s=1

δmi,ni . (8.4.12)

We denote the sum of (8.4.11) and (8.4.12) q(m, n). Notice that for non-zero dii we may have q(m,m) > 0.

Abbreviate α(A j) =: α j. For j ∈ {1, . . . , r} and m j ∈ N0, set

π j(m j) := ρ
(
{η : η(A j) = m j}

)
= (1 − p)α jα j(α j + 1) · · · (α j + m j − 1)

pm j

m j!
.

Further set π(m) = π1(m1) · · · πr(mr). Then

ρ ⊗ Qc(A ,B) = π(m)q(m, n).

A similar computation shows ρ⊗Qc(B,A ) = π(n)q(n,m). The symmetry relation (8.4.8) now reads π(m)q(m, n) =

π(n)q(n,m) which is the detailed balance relation for the SIP. �

8.4.4 Properties of Generalized Meixner Polynomials. Proof of Propositions 8.4.3 and 8.4.4

Let p ∈ (0, 1). Note that the generating function of monic Meixner polynomials, given by (see, e.g., [108])

et(x, a) :=
∞∑

n=0

tn

n!
Mn(x; a; p) =

(
1 − p + t

1 − p + tp

)x (
1 − p

1 − p + tp

)a

, t, a > 0, x ∈ N0,

satisfies et(x+y, a+b) = et(x, a)et(y, b) for each t > 0, x, y ∈ N0, a, b > 0. As a consequence, we get the convolution
property (see, e.g., [5])

Mn(x + y; a + b; p) =

n∑
k=0

(
n
k

)
Mk(x; a; p)Mn−k(y; b; p). (8.4.13)

Proof of Proposition 8.4.3. By the factorization property from Proposition 8.2.13 it is enough to show

I1(1Ad , η) = Md(η(A);α(A); p) (8.4.14)
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for all d ∈ N and A ∈ E. As we have chosen our univariate Meixner polynomials Md to have leading coefficient
one, we know that Md(η(A);α(A); p) is equal to η(A)d plus some polynomial in η(A) of degree ≤ d − 1. Therefore
(8.4.14) follows once we know that the map η 7→Md(η(A);α(A); p) is orthogonal to the space Pd−1. We shall see
that this identity follows from the convolution property (8.4.13) and the complete independence.

We check first that η 7→ Md(η(A);α(A); p) is orthogonal in L2(ρ) to all maps η 7→ η⊗m(C), for every m ≤ d −
1 and C ∈ Em with C ⊂ Am. When C = Am, we are looking at two univariate polynomials in the variable
x = η(A) and the orthogonality relation follows from the orthogonality of the univariate Meixner polynomials
x 7→ Md(η(A);α(A); p) to the monomial x 7→ xm. The orthogonality to constant functions (m = 0) follows from
univariate orthogonality as well.

Next consider the case C = Cd1
1 × · · · × CdN

N with N ∈ N, d1, . . . , dN ∈ N with d1 + · · · + dN ≤ d − 1 and pairwise
disjoint measurable sets Ci ⊂ A. Suppose first that C1 ∪ · · · ∪ CN = A. We use the convolution property (8.4.13)
and the complete independence of the Pascal point process to find

∫
Md(η(A);α(A); p)η⊗m(C)ρ(dη) =

∑
k1+···+kN =m

(
m

k1, . . . , kN

) N∏
i=1

∫
Mki

(
η(Ci);α(Ci); p

)
η⊗di (Ci)ρ(dη). (8.4.15)

In each summand, we must have di < ki for at least one i ∈ {1, . . . ,N} and therefore by the orthogonality of
univariate Meixner polynomials, at least one of the integrals on the right side above vanish. As a consequence,∫

Md(η(A);α(A); p)η⊗m(C)ρ(dη) = 0 (8.4.16)

This holds true as well when each Ci is contained in A and CN+1 := A \ (C1 ∪ · · · ∪CN) is non-empty. In that case
we use a similar decomposition but now the sum on the right side of (8.4.15) is over (k1, . . . , kN+1) and the product
has an additional factor

∫
MkN+1 (η(CN+1);α(CN+1); p)ρ(dη).

Every Cartesian product C = D1×· · ·×Dm contained in Am is a disjoint union of finitely many Cartesian products in
which any two distinct factors are either distinct or equal. Therefore, by linearity, the orthogonality relation (8.4.16)
extends to all such sets. The functional monotone class theorem yields the orthogonality of the generalized Meixner
polynomial to all maps of the form η 7→ η⊗m( fm) with bounded measurable fm : Em → R supported in Am and then,
by linearity, the orthogonality to all linear combinations of such maps.

In the notation of Lemma 8.2.16 below, we have checked the orthogonality of Md(η(A);α(A); p) to Pd−1(A).
Using complete independence and arguments similar to the proof of Lemma 8.2.16, we conclude that the Meixner
polynomial is in fact orthogonal to Pd−1. This completes the proof of the proposition. �

Proof of Proposition 8.4.4. The orthogonality of In( fn, · ) and Im(gm, · ) for m , n is an immediate consequence
of the definition of generalized orthogonal polynomials, it does not use any properties of the Pascal distribution ρ.
Thus we need only treat the case m = n.

Using linearity and the monotone class theorem as in the proof of Proposition 8.4.3, one finds that it suffices to show
the orthogonality relation for functions f̃n, g̃n that are symmetrized versions of indicator functions fn, gn : En → R
of the form

fn = 1⊗d1
B1
⊗ · · · ⊗ 1⊗dN

BN
, gn = 1⊗d′1

B1
⊗ · · · ⊗ 1⊗d′N

BN

with B1, . . . , BN ∈ E disjoint, and
∑N

i=1 di =
∑N

i=1 d′i = n. The symmetrization of fn is given by

f̃n(x1, . . . , xn) =
1
n!

∑
σ∈Sn

fn(xσ(1), . . . , xσ(n)),

the symmetrization g̃n of gn is defined in a similar way. Notice that In( f̃n, η) = In( fn, η) and In(g̃n, η) = In(gn, η) but
in general

∫
f̃ng̃ndλn ,

∫
fngndλn.

Proposition 8.4.3, the complete independence, and the orthogonality relation (8.3.1) for univariate Meixner poly-
nomials yield ∫

In( f̃n, η) In(g̃n, η) ρ(dη) =

N∏
i=1

1{di=d′i }
di!pdi

(1 − p)2di
(α(Bi))(di). (8.4.17)
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If di , d′i for at least one i, then the right side is zero, moreover f̃n g̃n vanishes identically. Hence in that case∫
In( f̃n, η) In(g̃n, η) ρ(dη) = 0 =

∫
f̃ng̃ndλn.

and the required equality holds true.

If di = d′i for all i, then fn = gn on En. By the definition of λn, we have∫
f 2
n dλn = λn(Bd1

1 × · · · × Bdn
n ) =

N∏
i=1

(α(Bi))(di)

hence (8.4.17) gives ∫ (
In( f̃n, η)

)2
ρ(dη) =

( N∏
i=1

di!
) ∫

f 2
n dλn. (8.4.18)

Next we check that the product of factorials on the right side disappears when fn is replaced by the symmetrized
function f̃n. For σ ∈ Sn and x = (x1, . . . , xn) ∈ En, let xσ := (xσ(1), . . . , xσ(n)). Then, by the permutation invariance
of the measure λn, we have∫

f̃ 2
n dλn =

1
n!2

∑
σ,τ∈Sn

∫
fn(xσ) fn(xτ)λn(dx) =

1
n!

∑
π∈Sn

∫
fn(xπ) fn(x)λn(dx).

Because of the disjointness of the sets Bi, the product fn(xπ) fn(x) vanishes unless π leaves the sets {1, . . . , d1},
{d1+1, . . . , d1+d2−1} etc. invariant, and in the latter case fn(xπ) fn(x) = fn(x)2. The number of relevant permutations
is equal to d1! · · · dN!. As a consequence,∫

f̃ 2
n dλn =

1
n!

( N∏
i=1

di!
) ∫

f 2
n dλn.

By (8.4.18), we get ∫ (
In( f̃n, η)

)2
ρ(dη) =

n!pn

(1 − p)2n

∫
f̃ 2
n dλn

which is the required equality (remember f̃n = g̃n). �
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Chapter 9

Boundary driven Markov gas: duality and
scaling limits

9.1 Introduction

9.1.1 Background and motivation

As explained in Chapter 1, boundary driven systems are important in the study of non-equilibrium steady states
[21, 54, 122]. In the context of interacting particle systems on finite graphs, boundary driving means that one adds
reservoirs at the boundaries, where particles can enter and leave the system. This is usually modeled via birth and
death processes, where the birth and death rates are chosen in a manner adapted to the system. This means that the
stationary measure of the reservoirs is a marginal of the stationary measure of the system. The simplest setting is a
one-dimensional chain, where the action of the reservoirs is modeled by letting particles enter and leave the system
at left and right end. The stationary distribution of such non-equilibrium systems and its macroscopic properties
(e.g. the density profile, the current and their large deviations) are then the usual objects of study.

In the discrete setting of finite graphs, boundary driven systems of independent particles (and more generally
zero-range processes) have a special status, because the non-equilibrium steady states are inhomogeneous product
measures, in the case of independent particles product of Poisson distributions. For one dimensional systems, the
parameters of these product measures then interpolate linearly between the densities λL and λR of the left reservoir
and right reservoir. For a class of particle systems (including independent particles), one has the property of duality
[47], which allows to express the n-point time-dependent correlation functions in terms of the evolution of n (dual)
particles. In the discrete setting, these dual particles evolve on a larger system, where absorbing extra sites have
been added, representing the action of reservoirs of the original system. Duality has been an essential tool to
study detailed properties of different boundary driven systems such as the so-called KMP model (see [107]), the
Exclusion process and the Inclusion process (see [75], [76], [79], [80]). See[32] for an account of dualities in the
discrete boundary driven setting. Given the broad applicability of duality there is the need to extend it to continuum
systems.

In Chapter 8 we started the study of self-duality beyond the discrete setting, i.e., self-duality of general independent
Markov processes evolving as point configurations, which is the analogue of particle configurations in the discrete
setting. There, self-duality turned out to be a general property of the evolution of the n-th factorial moment
measure, which can be expressed via the evolution of n (dual) particles. In Chapter 8 we considered the setting
of closed systems with a conserved number of particles. The goal of this chapter will be to initiate the analysis
of duality for boundary-driven systems in the continuum, starting from the case of independent particles. We
believe that the framework we build here can be used as well for boundary driven interacting particle systems in
the continuum, but we leave this for future research.

The problem of modeling reservoirs in the continuum is more involved than in the discrete setting. Indeed, as
explained in the introduction of the thesis (see Section 3.2.2), the addition of reservoirs in the continuum for a
systems of independent Brownian motions on (0, 1) does not make sense. In [20] the boundary-driven Brownian
gas on [0, 1] has been defined as a system of independent Brownian motions absorbed at 0 and at 1, to which is
super–imposed an independent Poisson point process which adds particles on (0, 1) with well-chosen intensity.
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The creation of particles no longer takes place at the boundaries only, rather particles are created everywhere in
(0, 1) with an intensity that guarantees the prescribed densities of the reservoirs. The authors in [20] then proceed
by proving that this process is Markov.

In this chapter we establish in the setting of the boundary driven Brownian gas, the kind of duality results proved
in [32, 76] for discrete boundary driven systems. To do this, we use the set-up introduced in Chapter 8 for closed
systems in the continuum and extend it to the boundary driven Brownian gas. In particular we show that the time-
dependent n-th factorial moment measures of this system can be written in terms of n dual Brownians, absorbed
at the boundaries. Next, a second aim is to generalize this duality to the abstract setting of general boundary
driven systems of independent particles in the continuum. For this we will need to generalize the construction of
Bertini and Posta [20] first to systems of independent diffusion processes evolving on regular domain D ⊂ Rd and
second to systems of general independent Markov processes which are allowed to jump and which thus can leave
D without hitting its boundary. As a by-product of such general construction and our duality relations two results
will follow. We shall prove that in the discrete setting of a one-dimensional chain, modelling the reservoirs as:
i) birth and death processes at the boundaries or ii) by a Poissonian addition of particles everywhere, are indeed
equivalent processes. Furthermore the boundary driven Brownian gas (in the continuum) arises as the diffusive
scaling limit of the model with birth and death processes (in the discrete) when the intensities are also scaled with
the system size.

9.1.2 Duality results for Independent Random Walks

For readers convenience we recall the standard dualities of independent particles in the discrete setting, both in the
case of closed and open systems.

Closed systems. Let us consider a system of simple independent random walks, namely the Markov process
{ηt, t ≥ 0} with ηt = {ηt(x)}x∈Zd ∈ NZ

d
where

ηt(x) B number of particles at x at time t ≥ 0

whose generator acts on bounded and local functions f : NZ
d
→ R as

(L f )(η) =
∑
‖x−y‖=1

1
2

[
η(x)( f (η + δx − δy) − f (η)) + η(y)( f (η + δy − δx) − f (η))

]
. (9.1.1)

Here the sum is restricted to nearest neighbour sites and η + δx − δy denotes the configuration where a particle has
been moved from x to y in the configuration η. We then have that {ηt, t ≥ 0} is self-dual with self-duality function
given by

Dcl(ξ, η) =
∏
x∈Zd

d(ξ(x), η(x)) (9.1.2)

for ξ, η ∈ NZ
d

with single-site self-duality function given by

d(k, n) = (n)k1{k≤n} :=
n!

(n − k)!
1{k≤n}. (9.1.3)

If we denote by EIRW
η the expectation w.r.t. the law of the process evolving according to the generator given

in (9.1.1) and starting from η ∈ NZ
d
, the self-duality relation is then expressed in the following way: for any

η, ξ ∈ NZ
d

and for any t ≥ 0,
EIRW
ξ [Dcl(ξt, η)] = EIRW

η [Dcl(ξ, ηt)]. (9.1.4)

The self-duality functions given in (9.1.2), that we refer to as classical self-dualities are products of falling factorial
polynomials and they have been used to prove the hydrodynamic limit (see [47]) and in the previous chapter they
have been generalized to the context of systems of independent particles evolving in the continuum (e.g., Rd, and
more generally in Borel spaces).

Open systems. Let us further consider a system of simple independent random walks on a finite chain VN :=
{1, . . . ,N} where the boundary points {1, N} are in contact with reservoirs with intensity parameters λL, λR ∈

(0,∞). Namely, we consider the Markov process {ζt, t ≥ 0} with state space NVN and whose generator acts on
functions f : NVN → R as

Lres f (ζ) = Lbulk f (ζ) + Lleft f (ζ) + Lright f (ζ) (9.1.5)



9.1. Introduction 157

where Lbulk denotes the generator of continuous-time symmetric independent random walkers jumping with rate
1
2 over the edges (i, i + 1), i ∈ {1, . . . ,N − 1} and where Lleft, Lright denote the boundary generators, modelling the
contact with the reservoirs, which are given by

Lleft f (ζ) = ζ(1)[ f (ζ − δ1) − f (ζ)] + λL[ f (ζ + δ1) − f (ζ)]

and
Lright f (ζ) = ζ(N)[ f (ζ − δN) − f (ζ)] + λR[ f (ζ + δN) − f (ζ)].

These generators describe the exit and entrance of particles via the reservoirs at left and right boundaries of the
chain. Each particle can leave the system through the right or left end at rate 1, and at rate λL (resp. λR) particles
enter the system at the left (resp. right) end. In the following we shall call the process ζt the “reservoir process
with parameters λL, λR”.

In[32] the authors proved that the reservoir process with parameters λL, λR is dual to a system of independent
random walkers on the lattice {0, . . . ,N + 1} with absorbing boundaries. In the dual process the absorbing sites 0
and N + 1 replace the reservoirs of the original process. With abuse of notation we shall use, for the dual process,
the name {ξt, t ≥ 0} as in the previous paragraph, although now, in the boundary-driven context, the dual has
absorbing boundary sites. The duality function DλL,λR can be written as

DλL,λR (ξ, ζ) = λ
ξ(0)
L λ

ξ(N+1)
R Dcl(ξ, ζ) (9.1.6)

where ξ ∈ N{0,...,N+1}, ζ ∈ N{1,...,N} and Dcl(·, ·) is given in (9.1.2) but now the product is over VN and not over Zd,
namely

Dcl(ξ, ζ) =

N∏
i=1

d(ξ(i), ζ(i))

with d(k, n) = n!
(n−k)! 1k≤n. Let us denote by Eres

ζ the expectation in the reservoir process with parameters λL, λR

starting from ζ ∈ N{1,...,N}. Moreover we denote by Eabs
ξ the expectation in the dual process starting from an initial

configuration ξ ∈ N{0,...,N+1}. Then we have the following duality result: for any ζ ∈ NVN , ξ ∈ N{0,...,N+1} and t ≥ 0

Eres
ζ

[
DλL,λR (ξ, ζt)

]
= Eabs

ξ

[
DλL,λR (ξt, ζ)

]
(9.1.7)

or equivalently
Eres
ζ

[
λ
ξ(0)
L λ

ξ(N+1)
R Dcl(ξ, ζt)

]
= Eabs

ξ

[
λ
ξt(0)
L λ

ξt(N+1)
R Dcl(ξt, ζ)

]
. (9.1.8)

The main aim of this chapter is to extend the above duality result to general systems of boundary-driven indepen-
dent particles. The random walk dynamics of each particle will be replaced by a generic Markov process. As a
consequence we shall consider boundary driven systems of independent particles evolving not necessarily on the
lattice, rather on generic regular domains D ⊂ Rd, d ≥ 1.

9.1.3 Outline

The rest of the chapter is organized as follows. In Section 2 we introduce basic notations. As a preliminary step, in
Section 3 we present duality results for closed systems of independent particles in the continuum. First we recall
a self-duality result from Chapter 8. Second, we prove a duality result, where the dual system is deterministic
and follows the backward Kolmorogov equation associated to the single particle; we then use this duality result
to provide a simple proof of the Doob’s theorem. Section 4 contains the main result of this chapter regarding
boundary driven systems. We start by recalling the definition of the boundary driven Brownian gas on [0, 1],
introduced in [20]. We then generalize this construction to general independent diffusion processes moving on
regular domains D ⊂ Rd and finally to general independent Markov processes which can make jumps and thus can
exit D without hitting its boundary. For those systems we formulate, with increasing generality, the duality results
in Theorems 9.4.1, 9.4.2 and 9.4.6, and in particular we use Theorem 9.4.2 to characterize the unique invariant
measure of the systems. In Section 5, we use the duality result to show that the boundary-driven Brownian gas
introduced in [20] is the scaling limit of the reservoir process of independent random walks with generator (9.1.5).
Namely, we prove that the latter equals in distribution the ‘boundary driven random walk gas’ and that, when the
parameters are scaled as λL/N, λR/N, it converges on the diffusive scale to the boundary driven Brownian gas with
parameters λL, λR. Finally, in Section 6, orthogonal dualities are treated, extending to the continuum results from
[76].
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9.2 Setting and Notations

We will work in the context of independent particles moving in a state space E, which is assumed to be a Polish
space, equipped with its Borel σ-algebra E. In the relevant examples, E = Rd, or E is a closed subset of Rd with
regular boundary, or in the discrete setting E = Zd or a finite graph. However, for the general duality results which
we state here, there is no need to restrict to the finite dimensional setting.

9.2.1 Labeled independent particles

A single particle is moving as a Markov process {Xt : t ≥ 0} on E. A finite number of (labeled) independent
particles is the process Xt = (Xt(1), . . . , Xt(N)) arising from joining N independent copies of {Xt : t ≥ 0}, possibly
starting from different initial locations X0(i) = xi ∈ E. We denote by Ex1,...,xN the expectation of {Xt, t ≥ 0} starting
from (x1, . . . , xN), by S t the semigroup of the Markov process {Xt : t ≥ 0}, defined via S t f (x) = Ex f (Xt), and by
S ⊗N

t the associated semigroup of N independent copies of {Xt : t ≥ 0}. By independence we have

S ⊗N
t

N∏
i=1

fi(xi) =

N∏
i=1

Exi

[
fi(Xt(i))

]
=

N∏
i=1

S t fi(xi).

We denote by S ∗t the dual semigroup working on measures µ (on (E,E)), defined via∫
f dS ∗t µ =

∫
S t f dµ. (9.2.1)

We remind the reader that we call a σ-finite measure m on E reversible if∫
E

S t f g dm =

∫
E

f S tg dm

for any f , g ∈ L2(E,m) and t > 0. Moreover, we say that the Markov process {Xt, t ≥ 0} is strongly reversible if
there exists a reversible σ-finite measure m such that the transition probability measure is absolutely continuous
w.r.t. m, i.e., there exists a transition density

pt : E × E → [0,∞)

such that, for all t > 0,

S t f (x) =

∫
f (y)pt(x, y)m(dy) =

∫
f (y)pt(y, x)m(dy) (9.2.2)

where the symmetry pt(x, y) = pt(y, x) follows from the assumed reversibility of m. Relevant examples to keep
in mind are i) Brownian motion, where m is the Lebesgue measure; ii) symmetric random walk, where m is the
counting measure; iii) the Ornstein Uhlenbeck process, where m is the Gaussian measure.

9.2.2 Point configurations

As in the previous chapter, it is convenient for our purposes to describe the motion of independent particles modulo
permutation, i.e. via configurations. More precisely, the initial configuration associated to N labeled particle
positions (x1, . . . , xN) ∈ EN is defined as

η =

N∑
i=1

δxi , (9.2.3)

which is viewed as a point configuration on E. The configuration at time t is then defined as

ηt =

N∑
i=1

δXt(i) (9.2.4)

where X0(i) = xi. Notice that by the fact that the independent particles are indistinguishable, {ηt, t ≥ 0} is a Markov
process on the space of point configurations with total mass N. More generally, if we have a point configuration
on E, with potentially infinitely many particles, i.e., η =

∑N
i=1 δxi where we now also allow N = ∞, then we define

the configuration at time t > 0 as in (9.2.4). In case we work with infinitely many particles, we have to assume that
the initial configuration is such that no explosions take place, i.e., such that at any time t > 0, the configuration
ηt =

∑N
i=1 δXt(i) is a well-defined point configuration. In this chapter, however, in order to avoid technicalities, we
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will restrict to systems with finitely many particles. We denote by Eη the expectation in the configuration process
{ηt, t ≥ 0}.

For a configuration η we recall that its associated n-th factorial measure is defined by

η(n) :=
∑,

1≤i1,...,in≤N

δ(xi1 ,...,xin ) (9.2.5)

where the superscript,means that the summation is over n mutually distinct indexes i1, . . . , in taken from {1, . . . ,N},
with N = η(E). The measure η(n) is a point-measure on En. Intuitively speaking, η(n) corresponds to un-normalized
sampling of n different particles out of the configuration η and takes the name factorial from the following identity:
for any B ∈ E

η(n)(Bn) = (η(B))n

with (m)n := m(m − 1) · · · (m − n + 1) denoting the n-th falling factorial.

An important object of study is the expectation E[η(n)] that is called the n-th factorial moment measure. Here E
refers to the average w.r.t. the randomness of the distribution of points in η. We have that E[η(n)] is a measure on
En, and, in particular,

E[η(n)(Bn)] = E[(η(B))n]

provides the n-th factorial moment of the number of points of B ∈ E. An important special case is when the points
in η are distributed according to a Poisson point process with intensity measure λ: it is well know (see, e.g., [120,
(4.11)] ) that in this case one has

E[η(n)] = λ⊗n (9.2.6)

which is a particular instance of the Mecke’s equation.

In the next sections we will study, by duality, the expectation of the n-th factorial measure of the configuration at
time t, i.e. Eη[η

(n)
t ], which will be called the n-th factorial moment measure at time t.

9.3 General duality results for independent particles

In this section we review some known duality results for closed (i.e., without reservoirs) systems of independent
particles: namely self-duality and duality w.r.t. deterministic systems.

9.3.1 Intertwining and self-duality

We now re-state an intertwining and a self-duality result for independent particles taken from Chapter 8 of which
we provide here an alternative proof which relies on generating functions. This generating function approach
is well suited to study boundary driven systems in Section 9.4 below. As already mentioned, in order to avoid
technicalities, the results below are stated for finitely many particles. However, whenever the infinitely many
particle limit is well-defined, by passing to this limit, the result extends immediately to the infinite case.

Theorem 9.3.1. Let η be a finite point configuration as defined in (9.2.3). Assume that the particles evolve inde-
pendently according to the Markov process {Xt : t ≥ 0}.

a) (Intertwining) The following identity holds

Eη[η
(n)
t ] = (S ⊗n

t )∗η(n), (9.3.1)

where S ∗t is the dual semigroup defined in (9.2.1).

b) (Self-duality) If {Xt : t ≥ 0} is strongly reversible with reversible measure m then one can express the density
of n-th factorial moment measure Eη[η

(n)
t ] w.r.t. m⊗n via

dEη[η
(n)
t ]

dm⊗n (z1, . . . , zn) =

∫ n∏
i=1

pt(zi, yi)η(n)(d(y1, . . . , yn)), (9.3.2)

where pt(·, ·) is the transition density defined in (9.2.2).
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Proof. We start from the following identity from [120, Lemma 4.11], for a general finite random point configura-
tion. Let u : E → (0, 1) then

exp
(∫

log(1 − u(z))η(dz)
)

= 1 +

∞∑
n=1

(−1)n

n!

∫
u⊗n(z1, . . . , zn)η(n)(d(z1, . . . , zn)). (9.3.3)

We can now use this identity to prove (9.3.1). Let us adopt the abbreviation ut(z) = S tu(z) = Ez[u(Xt)]. Using the
independence of the processes Xt(i), i ∈ {1, . . . ,N}, we compute

Eη

[
exp

(∫
log(1 − u(z))ηt(dz)

)]
= Ex1,...,xN

∏
i

(1 − u(Xt(i)))


=

∏
i

Exi [1 − u(Xt(i))] =
∏

i

(1 − ut(xi)) = exp
(∫

log(1 − ut(z))η(dz)
)

= 1 +

∞∑
n=1

(−1)n

n!

∫
u⊗n

t (z1, . . . , zn)η(n)(d(z1, . . . , zn))

= 1 +

∞∑
n=1

(−1)n

n!

∫
u⊗n(z1, . . . , zn)(S ⊗n

t )∗η(n)(d(z1, . . . , zn)), (9.3.4)

where we used (9.3.3) in the fourth identity. On the other hand, using (9.3.3) once more, we have

Eη

[
exp

(∫
log(1 − u(z))ηt(dz)

)]
= 1 +

∞∑
n=1

(−1)n

n!

∫
u⊗n(z1, . . . , zn)Eη[η

(n)
t ](d(z1, . . . , zn)) (9.3.5)

and therefore, from (9.3.5) and (9.3.4) we conclude

1 +

∞∑
n=1

(−1)n

n!

∫
u⊗n(z1, . . . , zn)Eη[η

(n)
t ](d(z1, . . . , zn))

= 1 +

∞∑
n=1

(−1)n

n!

∫
u⊗n(z1, . . . , zn)(S ⊗n

t )∗η(n)(d(z1, . . . , zn)). (9.3.6)

Because this holds for all u, identifying term by term in the above series and using a standard density argument
for symmetric functions (linear combinations of functions of the form u(z1)u(z2) . . . u(zn) are dense in the set of
symmetric functions), we obtain (9.3.1).

If in addition we assume strong reversibility, we then have, for any f : En → R bounded,∫
f (z1, . . . , zn)Eη[η

(n)
t ](d(z1, . . . , zn)) =

∫
f (z1, . . . , zn)(S ⊗n

t )∗η(n)(d(z1, . . . , zn))

=

∫
(S ⊗n

t f )(z1, . . . , zn)η(n)(d(z1, . . . , zn))

=

∫ ∫ f (y1, . . . , yn)
n∏

i=1

pt(zi, yi)m⊗n(d(y1, . . . , yn))

 η(n)(d(z1, . . . , zn))

=

∫ ∫ f (z1, . . . , zn)
n∏

i=1

pt(zi, yi)η(n)(d(y1, . . . , yn))

 m⊗n(d(z1, . . . , zn)),

from which (9.3.2) follows. �

Remark 9.3.2. As noticed in [73, Remark 2.3(iii)], for the system of independent random walks on Zd with
generator given in (9.1.1), (9.3.2) is equivalent to the classic self-duality relation (9.1.4). Indeed for a singleton
(z1, . . . , zn), zi ∈ Z

d, we have the relation (see [73, Lemma 2.1])

η(n)({(z1, . . . , zn)}) = Dcl(δz1 + . . . + δzn , η) (9.3.7)

with Dcl defined in (9.1.2) and thus

Eη[η
(n)
t ]({(z1, . . . , zn)}) = EIRW

η [Dcl(δz1 + . . . + δzn , ηt)]
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and ∫ n∏
i=1

pt(zi, yi) η(n)(d(y1, . . . , yn))||| = EIRW
δz1 +...+δzn

[Dcl(ξt, η)],

where ξt denotes the configuration of independent random walks at time t starting from ξ0 = δz1 + . . . + δzn .

9.3.2 Duality w.r.t. the associated deterministic system

The so-called “associated deterministic system” is a dynamical system on functions f : E → R which follows the
flow of the Kolmogorov backwards equation of the Markov process {Xt, t ≥ 0}. More precisely for f : E → R we
define ft(x) = S t f (x) = Ex[ f (Xt)]. This flow ft is the solution of the system of ODE given by

d ft(x)
dt

= L ft(x), (9.3.8)

withL being the Markov generator associated to {S t, t ≥ 0}. Notice that, by the Markov semigroup property, ft > 0
when f > 0. For f : E → (0,∞) and a labeled process {Xt, t ≥ 0} = {(Xt(1), . . . , Xt(N)), t ≥ 0} initialised from
X = (x1, . . . , xN), we define the function

D( f ,Xt) =

N∏
i=1

f (Xt(i)) (9.3.9)

or, alternatively, in terms of the point configuration process {ηt, t ≥ 0} we set

D( f , ηt) := e
∫

log f dηt .

Duality between the configuration process and the deterministic system is then formulated as follows.

Theorem 9.3.3. The process {Xt : t ≥ 0} is dual to the deterministic evolution on functions f : E → (0,∞) defined
via ft(x) = S t f (x) = Ex[ f (Xt)], with duality functionD( f ,X) =

∏N
i=1 f (X(i)), i.e.,

EX
[
D( f ,Xt)

]
= D( ft,X), (9.3.10)

or, equivalently, in terms of the point configuration process

Eη
[
D( f , ηt)

]
= D( ft, η). (9.3.11)

Proof. The proof is straightforward, indeed by the independence of the particles and by the definition of ft, we
have

EX

 N∏
i=1

f (Xt(i))

 =

N∏
i=1

EX
[
f (Xt(i))

]
=

N∏
i=1

ft(xi).

�

Doob’s theorem

Let us now consider the connection between the duality result of Section 9.3.2 with the time evolution of Poisson
point processes. It is well-known that independent Markovian particle evolutions preserve Poisson processes: we
refer to this result as Doob’s theorem but it can also be viewed as a consequence of the random displacement
theorem (see, e.g., [120]).

We briefly recall the definition of a Poisson point process. For a function ρ : E → [0,∞) and a σ-finite measure m
on (E,E) the Poisson point process with intensity measure ρ(z)m(dz) is defined as the random point configuration
η =

∑N
i=1 δxi , defined on a probability space (Ω,A,P) such that

1. For every ω ∈ Ω, the map E 3 A→ η(ω, A) is a N-valued measure on the σ-algebra E.

2. For A1, . . . An ∈ E, n disjoint measurable subsets of E, {η(Ai), i = 1, . . . , n} are independent Poisson random
variables with parameter mi =

∫
Ai
ρ(z)m(dz).
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See [120] for background on Poisson point processes. We denote byPρ the probability in the Poisson point process
with intensity measure ρ(z)m(dz) on the space of point configurations.

We recall the reader that a Poisson point process is uniquely characterized by its Laplace functional, i.e., by∫ (
e
∫

E f (z)η(dz)
)
Pρ(dη) = e

∫
(e f (z)−1)ρ(z)m(dz) (9.3.12)

for all f for which the integral
∫

(e f (z) − 1)ρ(z)m(dz) is finite.

We denote by EPρ the expectation of the process of independent particles moving according to the Markovian
dynamics corresponding to the semigroup S t whose associated point configuration is initially distributed as Pρ.
The following result then proves Doob’s theorem via the duality (9.3.10).

Theorem 9.3.4. Let {Xt, t ≥ 0} = {(Xt(1), . . . , Xt(N)), t ≥ 0} be a system of independent particles initialized at
time zero from a Poisson point configuration with intensity measure ρ(z)m(dz), where m is a reversible measure of
the Markov process {Xt : t ≥ 0}. Then the distribution of the N particles at time t ≥ 0, namely the random point
configuration

∑
i δXt(i), is a Poisson point configuration with intensity measure ρt(z)m(dz), where

ρt(z) = Ez[ρ(Xt)] = S tρ(z).

More generally, if m is a stationary measure of {Xt : t ≥ 0}, the Poisson point process is mapped to a Poisson point
process with intensity measure

ρt = S ∗t ρ,

where S ∗t denotes the adjoint semigroup of S t.

Proof. Using (9.3.11) and (9.3.12), we obtain∫
Eη

[
e
∫

log f (z)ηt(dz)
]
Pρ(dη) =

∫
Eη[D( f , ηt)]Pρ(dη)

=

∫
e
∫

log ft(z)η(dz)Pρ(dη)

= e〈( ft−1),ρ〉L2(m)

= e〈( f−1),S ∗t ρ〉L2(m) (9.3.13)

From this we infer that ηt is again a Poisson point process with intensity ρt(z)m(dz) where ρt(z) = Ez[ρ(X(t))] if S t

is self adjoint in L2(m) and ρt(z) = S ∗t ρ(z) in the general case. �

Corollary 9.3.5. In the setting of Theorem 9.3.4, the Poisson point processes with intensity measure ρ · m(dz)
parametrized by a constant ρ > 0 are reversible for {Xt, t ≥ 0}. More generally, if m is a stationary measure of
{Xt : t ≥ 0}, the Poisson point process is stationary if and only if

S ∗t ρ = ρ.

Proof. When ρ is constant we have, using (9.3.11) and (9.3.12),

EPρ
(
Eη

[
e
∫

log f dηt
]

e
∫

log gdη
)

= EPρ
(
e
∫

log S t f dηe
∫

log gdη
)

= EPρ
(
e
∫

log((S t f )g)dη
)

= eρ
∫

((S t f )g−1)dm

and using the self-adjointness of S t we obtain

eρ
∫

((S t f )g−1)dm = eρ
∫

((S tg) f−1)dm = EPρ
(
Eη

[
e
∫

log gdηt
]

e
∫

log f dη
)

which implies reversibility of Pρ.

The second statement follows immediately from Theorem 9.3.4. �
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9.4 Duality for boundary driven systems of independent particles

In this section we will present a duality result for boundary driven systems of independent particles which gener-
alizes previous results of that type obtained only in the discrete setting[32], [76]. In Section 9.4.1, we recall the
definition of the boundary driven Brownian gas recently introduced in [20] and we state a duality result in this
context (see Theorem 9.4.1 below). In Section 9.4.2 we consider more general systems of independent diffusion
processes on regular domains D ⊂ Rd. We prove first an intertwining result and secondly a duality result under
an extra assumption on the transition probabilities of a single particle. In Section 9.4.3 we introduce a further
generalization of the construction of Bertini and Posta in [20], namely boundary driven Markov processes with
jumps, which can exit the domain without hitting its boundary.

9.4.1 The boundary driven Brownian gas on [0, 1]: definition and duality

Let E = [0, 1] and denote by {Wt, t ≥ 0} a standard Brownian motion absorbed upon hitting 0 or 1. Let us denote
by τ0, τ1 the hitting times of 0, resp. 1, of {Wt, t ≥ 0}. We denote by Pabs

x and by S t respectively the distribution of
the trajectories of {Wt, t ≥ 0} starting from x ∈ [0, 1] and the semigroup of the process. It is well known that the
transition probability pt(·, ·) : [0, 1] × B([0, 1])→ [0, 1] of the absorbed Brownian motion satisfies

pt(x, dy) = pt(x, y) dy ∀x, y ∈ (0, 1) (9.4.1)

with pt(x, y) = pt(y, x) a symmetric function referred as transition density (see, e.g., [30, p. 122] for an explicit
formula of pt(x, y)). With a slight abuse of notation we denote by pt(x, 0) (respectively pt(x, 1)) the probability,
starting from x ∈ [0, 1], of being absorbed at 0 (resp. at 1) by the time t ≥ 0. We then have, for any x ∈ (0, 1),∫ 1

0
pt(x, y) dy + pt(x, 0) + pt(x, 1) = 1 (9.4.2)

and for any f : [0, 1]→ R bounded

S t f (x) =

∫ 1

0
pt(x, y) f (y) dy + f (0)pt(x, 0) + f (1)pt(x, 1).

For ξ :=
∑N

i=1 δxi , xi ∈ (0, 1) and N ∈ N, we then consider the point configuration (on [0, 1]) valued Markov process
given by ξt :=

∑N
i=1 δWt(i) ,

ξ0 = ξ

where {Wt(i)}t≥0 are independent copies of {Wt}t≥0 such that W0(i) = xi for any i ∈ [N]. The transition function
Pt(ξ, ·) of the process {ξt, t ≥ 0} is then given by the image of ⊗N

i=1 pt(xi, ·) under the mapping (xi)N
i=1 →

∑N
i=1 δxi . For

x = (x1, . . . , xN) ∈ (0, 1)N, we denote by Eabs
x the expectation in the process {ξt, t ≥ 0} starting from ξ0 =

∑N
i=0 δxi .

Finally, let Θt be a Poisson point configuration on (0, 1) with time dependent intensity λt(dx) given by

λt(dx) = λ(t, x) dx (9.4.3)

and

λ(t, x) = λLP
abs
x (τ0 ≤ t) + λRP

abs
x (τ1 ≤ t)

= λLpt(x, 0) + λRpt(x, 1) (9.4.4)

for some λ = (λL, λR) ∈ R2
+. Moreover {ξt}t≥0 and {Θt}t≥0 are independent. The process {Θt}t≥0, by adding particles

in the bulk (0, 1), models in turn the effect of the reservoirs at 0 and 1 (cf. [20, (2.1), (2.2)]). The boundary driven
Brownian gas is then defined, for any t > 0, by

ηt = ξt

∣∣∣
(0,1) + Θt (9.4.5)

viewed as a point configuration on (0, 1) and such that η0 = ξ0
∣∣∣
(0,1). Here ξt

∣∣∣
(0,1) denotes the restriction of the point

configuration ξt to (0, 1).

The motivation for this definition can be found in [20]. In Section 9.5.2 below we will show how the boundary
driven Brownian gas arises as a scaling limit of the reservoir process on a chain {1, . . . ,N} defined in (9.1.5).
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Let us recall that η(n) denotes the n-th factorial measure corresponding to the initial configuration η0 = η made of
N particles, and η(n)

t denotes the n-th factorial measure corresponding to ηt, i.e. the configuration at time t with Nt

particles. We denote by Eλη the expectation in the process defined via (9.4.5) initialized from η. We will use the
following abbbreviations: x = (x1, . . . , xn), for I = (i1, . . . , ik) ⊂ {1, . . . , n} we put xI = (xi1 , . . . , xik ) and we write
[k] for {1, . . . , k}. We shall also use the following shorthand for the transition density in the rest of the chapter

p
(n)
t (x, y) =

n∏
i=1

pt(xi, yi). (9.4.6)

For the boundary driven Brownian gas the following duality result holds, where the dual process is a system of
independent absorbed Brownian motions.

Theorem 9.4.1. For the boundary driven Brownian gas {ηt, t ≥ 0}, the n-th factorial moment measure at time t > 0
is absolutely continuous w.r.t. m⊗n, with m denoting the Lebesgue measure on (0, 1) with the following density:

dEλη[η(n)
t ]

dm⊗n (z) =
∑
I⊂[n]

Eabs
zI

[
λ
ξt({0})
L λ

ξt({1})
R 1{ξt({0,1})=|I|}

] ∫
(0,1)n−|I|

p
(n−|I|)
t (z[n]\I , y)η(n−|I|)(dy). (9.4.7)

This result can be read as a duality relation in the spirit of (9.3.2): in order to know the n-th order factorial moment
measure at time t > 0, one has to follow (not more than) n dual particles. However, due to the presence of
reservoirs, we have factors

Eabs
zI

[
λ
ξt({0})
L λ

ξt({1})
R 1ξt({0,1})=|I|

]
which can be considered as corresponding to |I| “absorbed” dual particles. This result has to be compared with the
discrete setting, namely (9.1.8), where an analogous term multiplying the product of falling factorial polynomials
appears in the duality function and the process with reservoirs is dual to an absorbing process with two extra sites
associated to the reservoirs (see [32], [76] and [75]).

In the next subsection we state and prove a more general version of Theorem 9.4.1, which applies to independent
diffusions on regular domains D ⊂ Rd and includes also an intertwining result. (9.4.7) for the boundary driven
Brownian gas on (0, 1) will then follow as a particular case of Theorem 9.4.2.

9.4.2 Boundary driven diffusion processes: definition and duality

Let D be a regular domain of Rd, where by regular domain we mean an open, simply connected and bounded
subset D ⊂ Rd such that its boundary ∂D is Lipschitz. Let {Yt, t ≥ 0} be the diffusion process on Rd with generator

L =

d∑
i, j=1

∂

∂xi

(
ai, j(x)

∂

∂x j

)
+

d∑
i=1

bi(x)
∂

∂xi
(9.4.8)

with regular coefficient functions ai, j, b j and with a = (ai, j) symmetric, non-degenerate and positive definite. We
then denote by {Xt, t ≥ 0} the Markov process on D̄ = D ∪ ∂D with semigroup {S t, t ≥ 0}, evolving as {Yt, t ≥ 0}
on D and absorbed upon hitting ∂D. More specifically the regularity assumptions on the coefficients are that ∂2ai, j

∂xi∂x`

and ∂bi
∂x j

are locally uniformly Hölder continuous on D ∪ ∂D (see, e.g., [103]). Denote by Pabs
x (resp. Eabs

x ) the
distribution (resp. the expectation) of the trajectories of {Xt, t ≥ 0} starting from x ∈ D. We then assume that

Pabs
x (τ∂D < ∞) = 1, ∀x ∈ D (9.4.9)

where τ∂D denotes the hitting time of ∂D.

For ξ :=
∑N

i=1 δxi , xi ∈ D, we consider the point configuration (on D̄) valued Markov process given byξt :=
∑N

i=1 δXt(i) ,

ξ0 = ξ

where {Xt(i)}t≥0 are independent copies of {Xt}t≥0 such that X0(i) = xi for any i ∈ [N]. For x = (x1, . . . , xN) ∈ DN,
we denote by Eabs

x the expectation in the process {ξt, t ≥ 0} starting from ξ0 =
∑N

i=0 δxi .
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Let now λ : ∂D→ R+ be a bounded measurable function giving the reservoir intensity at any x ∈ ∂D. If λ satisfies
the just mentioned assumptions it is said to be regular. Finally we define Θt the Poisson point process on D with
time dependent intensity λt(dx) given by

λt(dx) =

(∫
∂D

λ(y)Px(τ∂D ≤ t, Xτ∂D ∈ dy)
)
µ(dx), (9.4.10)

for a finite measure µ on D. The boundary driven diffusion gas in the domain D with reservoir intensity λ and a
priori measure µ, denoted by {ηt, t ≥ 0}, is then given, for any t ≥ 0, byηt = ξt

∣∣∣
D

+ Θt ,

η0 = ξ0 =
∑N

i=1 δxi , xi ∈ D
(9.4.11)

viewed as a point configuration on D, where ξt

∣∣∣
D

is the restriction of ξt to D.

We denote by Eλη the expectation in the process defined via (9.4.11) initialized from η. Following the strategy of
[20], it can be shown that {ηt, t ≥ 0} is a Markov process when the transition probability pt(x, dy) of the process
{Xt, t ≥ 0} satisfies

pt(x, dy)m(dx) = pt(y, dx)m(dy) on D ×D (9.4.12)

for a finite measure m and for the reservoir intensity in (9.4.10) we choose µ = m. We refer to Section 9.7 below
for further details.

We are now ready to state the main results of this section, namely a general intertwining relation for the factorial
moment measure at time t > 0 of the boundary driven diffusion processes on a d-dimensional regular domain D
and a duality result, under an extra symmetry assumption on the transition probability of {Xt, t ≥ 0} (see (9.4.14)
below), generalizing Theorem 9.4.1.

Theorem 9.4.2. Let {ηt, t ≥ 0} be the boundary driven diffusion gas defined in (9.4.11). Then for all n ∈ N
and t ≥ 0, it holds:

a) for all bounded, measurable and permutation invariant f : Dn → R

Eλη

[∫
Dn

f (z)η(n)
t (dz)

]
=

n∑
k=0

(
n
k

) ∫
Dn

f (z)λ⊗k
t (dz[k]) ⊗ (S ⊗n−k

t )∗η(n−k)(dz[n]\[k]); (9.4.13)

b) assume further that the transition probability of {Xt, t ≥ 0} satisfies

pt(x, dy) = pt(x, y)m(dy) (9.4.14)

for a symmetric function pt(x, y) and a finite measure m on D. Then, choosing µ = m, the following holds

dEλη[η(n)
t ]

dm⊗n (z) =
∑
I⊂[n]

Eabs
zI

[
e
∫
∂D

log(λ)dξt 1{ξt(∂D)=|I|}

] ∫
Dn−|I|
p

(n−|I|)
t (z[n]\I , y)η(n−|I|)(dy) (9.4.15)

Remark 9.4.3. i) Notice that, if λ(x) ∈ {λL, λR} for any x ∈ ∂D and it is regular (as defined above), setting
∂DL = {x ∈ ∂D : λ(x) = λL}, we then have

dEλη[η(n)]

dm⊗n (z) =
∑
I⊂[n]

Eabs
zI

[
λ
ξt(∂DL)
L λ

ξt(∂D\∂DL)
R 1{ξt(∂E)=|I|}

] ∫
Dn−|I|
p

(n−|I|)
t (z[n]\I , y)η(n−|I|)(dy), (9.4.16)

which is the multidimensional analogue of (9.4.7) when there are two possible values for the reservoir
intensity.

ii) The multidimensional Brownian motion satisfies (9.4.14) with m given by the Lebesgue measure (see, e.g.
[14, Theorem 4.4]): thus the multidimensional boundary driven Brownian gas satisfies (9.4.15).

iii) In one dimension, all diffusion processes satisfy (9.4.14) (see, e.g. [30, pag.13]). In particular, consider the
diffusion process on R with generator

L f (y) =
1
2
σ2(y)

d2 f
dy2 (y) + b(y)

d f
dy

(y) (9.4.17)
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where the drift b and the diffusivity σ are continuous functions and with σ2(x) ≥ δ > 0 for each x ∈ (0, 1).
Then (9.4.14) holds with m given by

m(dx) =
1

σ2(x)
exp

(
2
∫ x

x0

b(y)
σ2(y)

dy
)

dx , (9.4.18)

for an arbitrary x0 ∈ (0, 1) (see, e.g. [30, pag.17]).

iv) We refer to [103] for conditions on the coefficients ai, j and bi in (9.4.8) ensuring that (9.4.14) holds.

Proof. Coherently with what we have done in Section 9.3.1, we provide a proof relying on generating functions
which uses the identity (9.3.3). Let u : D → R bounded and measurable. By the independence of Θt and ξt we
have

Eλη

[
exp

(∫
D

log(1 − u(z))ηt(dz)
)]

(9.4.19)

= EPλt

[
exp

(∫
D

log(1 − u(z))Θt(dz)
)]
Eabs
η

[
exp

(∫
D

log(1 − u(z))ξt

∣∣∣
D

(dz)
)]
,

where EPλt
denotes the expectation in the Poisson point process Θt. Notice in particular that Eη

[
exp

(∫
D

log(1 − u(z))ξt

∣∣∣
D

(dz)
)]

=

Eη
[
exp

(∫
D

log(1 − u(z))ξt(dz)
)]

and that for {ξt, t ≥ 0} Theorem 9.3.1 applies.

Using (9.3.3) combined with (9.2.6) and (9.3.1), we obtain

Eλη

[
exp

(∫
log(1 − u(z))ηt(dz)

)]
(9.4.20)

=

1 +

∞∑
n=1

(−1)n

n!

∫
u⊗n(z1, . . . , zn)λ⊗n

t (d(z1 . . . zn))


×

1 +

∞∑
n=1

(−1)n

n!

∫
u⊗n(z1, . . . , zn)(S ⊗n

t )∗η(n)(d(z1, . . . , zn))


= 1 +

∑
k,l

(−1)k+l

k! l!

∫
u⊗(k+l)(z1, . . . , zk+l) λ⊗k

t (d(z1, . . . , zk)) ⊗ (S ⊗l
t )∗η(l)(d(zk+1, . . . , zk+l)).

On the other hand we have

Eλη

[
exp

(∫
log(1 − u(z))ηt(dz)

)]
= 1 +

∞∑
n=1

(−1)n

n!

∫
u⊗n(z1, . . . , zn)Eλη[η(n)

t ](d(z1, . . . , zn)).

Then, via identification of the terms with n-fold tensor product of u in the last expression in (9.4.20) and the right
hand side of the above identity, we obtain the following equality for all n ∈ N:∫

u⊗n(z1, . . . , zn)Eλη[η(n)
t ](d(z1, . . . , zn))

=

n∑
k=0

(
n
k

) ∫
u⊗n(z1, . . . , zn)λ⊗k

t (d(z1, . . . , zk)) ⊗ (S ⊗(n−k)
t )∗η(n−k)(d(zk+1, . . . , zn)) (9.4.21)

Via the above mentioned density argument of linear combinations of u⊗n this implies (9.4.13).

Recalling the definition of λt(dz) we have that

λ⊗k
t (d(z1, . . . , zk)) =

 k∏
i=1

∫
∂D

λ(u)Pabs
zi

(τ∂D ≤ t, Xτ∂D ∈ du)

 µ⊗k(d(z1, . . . , zk))

= Eabs
z[k]

[
e
∫
∂D

log(λ)dξt 1{ξt(∂D)=k}

]
µ⊗k(d(z1, . . . , zk)).

If now we assume that (9.4.14) holds and choosing µ = m, we obtain, integrating a bounded and permutation
invariant function fn : Dn → R

Eλη

[∫
Dn

fn(z1, . . . , zn)η(n)
t (d(z1, . . . , zn))

]
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=

n∑
k=0

(
n
k

)
Eabs

z[k]

[
e
∫
∂D

log(λ)dξt 1{ξt(∂D)=k}

] ∫
Dn

fn(z)m⊗k(dz[k]) ⊗ (S ⊗(n−k)
t )∗η(n−k)(dz[n]\[k])

=

n∑
k=0

(
n
k

)
Eabs

z[k]

[
e
∫
∂D

log(λ)dξt 1{ξt(∂D)=k}

]
×

∫
Dn

(∫
Dn−k

fn(z[k], y)p(n−k)
t (z[n]\[k], y)m⊗n−k(dy)

)
m⊗k(dz[k]) ⊗ η(n−k)(dz[n]\[k])

where we recall that p(r)
t ((v1, . . . , vr), (u1, . . . , ur)) =

∏r
i pt(vi, ui). Exchanging the integrals and using the the

symmetry of the functions pt(·, ·) leads to

Eλη

[∫
Dn

fn(z1, . . . , zn)η(n)
t (d(z1, . . . , zn))

]
=

n∑
k=0

(
n
k

) ∫
Dn

m⊗k(dz[k]) ⊗ m⊗n−k(dy) fn(z[k], y)

×

(
Eabs

z[k]

[
e
∫
∂D

log(λ)dξt 1{ξt(∂D)=k}

] ∫
Dn−k
p

(n−k)
t (y, z[n]\[k]) η(n−k)(dz[n]\[k])

)
which, upon renaming the variables, can be rewritten as

Eλη

[∫
Dn

fndη(n)
t

]
=

∫
Dn

fn(z)

 n∑
k=0

(
n
k

)
Eabs

z[k]

[
e
∫
∂D

log(λ)dξt 1{ξt(∂D)=k}

]
×

∫
Dn−k
p

(n−k)
t (z[n]\[k], y) η(n−k)(dy)

)
m⊗n(dz).

By taking the symmetrization of the above expression in brackets in the right hand side we obtain (9.4.15) and the
proof is concluded . �

We conclude this section by looking at the evolution of a Poisson distributed particle cloud and by using duality to
show the existence and the uniqueness of the stationary distribution for the system of boundary driven independent
particles. Let ρ be a finite measure on D and denote by Pρ the Poisson point configuration with intensity ρ.

Theorem 9.4.4. Let {ηt, t ≥ 0} be the boundary driven diffusion gas in the domain D defined in (9.4.11) and let
µ(dx) be the finite measure on D appearing in (9.4.10).

i) If η0 is distributed according to Pρ, then ηt is the restriction to D of the Poisson process on D̄ with intensity

ρt = S ∗t ρ + λt (9.4.22)

with λt defined in (9.4.3).

ii) Assume further (9.4.12) and take µ = m. Then, the unique stationary measure for the boundary driven
diffusion process is given by the distribution of a Poisson point process with intensity

λ∞(dx) = h(x)m(dx)

where
h(x) = λ(∞, x) =

∫
∂D

λ(u)Pabs
x (Xτ∂D ∈ du).

Moreover, for any initial configuration η, the distribution of ηt converges weakly as t → ∞ to the distribution
of the Poisson point process with intensity λ∞(dx) = h(x)m(dx).

Remark 9.4.5. Notice that, when λ is a continuous function, h : D→ R given in Theorem 9.4.4(ii) is the solution
of the following Dirichlet problem Lh = 0 in D

h = λ on ∂D
(9.4.23)

where L is the generator given in (9.4.17). In particular, for the one-dimensional boundary driven Brownian gas,
L = 1

2
d2

dx2 and
λ∞(x) = λL(1 − x) + λRx.
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Proof. The evolution of Pρ under independent copies of absorbed particles {Xt, t ≥ 0} is equal to a Poisson point
process with intensity S ∗t ρ by the Doob’s theorem (Theorem 9.3.4). Therefore (9.4.22) follows from the fact that
the independent sum of two Poisson point processes is a Poisson point process with intensity measure the sum of
the intensity measures. Further, notice that for every finite measure µ on D, we have

(S ⊗n
t )∗µ⊗n −→ 0

as t → ∞ because eventually all the mass from µ will be absorbed at the boundary ∂D. Therefore, by taking the
limit t → ∞ in (9.4.13), only the term k = n survives and thus, the n-th factorial moment measures converge to
λ⊗n
∞ (dx) =

(∏n
i=1 h(xi)

)
µ⊗n(dx) with

h(x) = lim
t→∞

λ(t, x) =

∫
∂D

λ(u)Pabs
x (Xτ∂D ∈ du).

This shows that the limiting distribution of ηt is indeed Poisson with intensity measure λ∞. Since (9.4.12) implies
that {ηt, t ≥ 0} is Markov, we conclude that the distribution of the Poisson point process with intensity λ∞ is the
unique stationary measure. �

9.4.3 Boundary driven Markov gas

In this section we provide another extension of the construction of Bertini and Posta [20] for systems of particles
that can make jumps and thus, they do not necessarily hit the boundary when exiting a regular domain. Therefore,
instead of associating a reservoir parameter function λ to the boundary of the domain only, we need to associate
it rather to the complement of the domain. We therefore consider particles that evolve on a regular domain and
are absorbed upon hitting a point in the complement of this domain. The examples that we have in mind are jump
Markov processes (see, e.g., [110, Eq. 4]) with generator given by

L f (x) =

∫
Rd

a(x − y)
[
f (y) − f (x)

]
dy , (9.4.24)

with a(−x) = a(x) and f : Rd → R a Borel measurable function with compact support (a system of particles
evolving accordingly to (9.4.24) is then called free Kawasaki dynamics) and standard rotationally symmetric α
stable processes (see, e.g., [41]) with generator given by

L = ∆α/2 (9.4.25)

for α ∈ (0, 2).

Let {Yt, t ≥ 0} be a strong Markov process on Rd. Let D be regular domain of Rd (see Section 9.4.2 ) and define
Dext := Rd \D.

Let {Xt, t ≥ 0} be the Markov process on Rd with semigroup {S t, t ≥ 0} which evolves as {Yt, t ≥ 0} on D and is
absorbed upon hitting Dext. We denote by Pabs

x the distribution of the trajectories of {Xt, t ≥ 0} starting from x ∈ D,
by τDext the hitting time of the set Dext. We assume Pabs

x (τDext < ∞) = 1.

Let now λ : Dext → R+ be a bounded measurable function giving the reservoir intensity at any x ∈ Dext and let
µ(dx) be a finite measure on D. We then define the point configuration (on Rd) valued process {ξt, t ≥ 0} arising
from independent copies of the absorbed Markov process {Xt, t ≥ 0} starting from ξ0 =

∑
i δxi , xi ∈ D. I.e., for

ξ :=
∑N

i=1 δxi , xi ∈ D, we define ξt :=
∑N

i=1 δXt(i) ,

ξ0 = ξ

where {Xt(i)}t≥0 are independent copies of {Xt}t≥0 such that X0(i) = xi for any i ∈ [N]. For x = (x1, . . . , xN) ∈ DN,
we denote by Eabs

x the expectation in the process {ξt, t ≥ 0} starting from ξ0 =
∑N

i=1 δxi . Finally we define Θt, a
Poisson point process on D independent of ξt and with time dependent intensity λt(dx) given by

λt(dx) =

(∫
Dext

λ(y)Pabs
x (τDext ≤ t, XτDext ∈ dy)

)
µ(dx), (9.4.26)

which is supposed to be finite. The boundary driven Markov gas in the domain D with reservoir intensity λ,
denoted by {ηt, t ≥ 0}, is then given, for any t ≥ 0, by

ηt = ξt

∣∣∣
D

+ Θt, (9.4.27)
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viewed as a point configuration onD. We denote by Eλη the expectation in the process defined via (9.4.27) initialized
from η.

Also in this context, {ηt, t ≥ 0} is a Markov process when the transition probability pt(x, dy) of the process {Xt, t ≥
0} satisfies

pt(x, dy)m(dx) = pt(y, dx)m(dy) on D ×D (9.4.28)

for a finite measure m and for the reservoir intensity in (9.4.10) we choose µ = m (see Section 9.7 below).

We then have the following result generalizing Theorem 9.4.2. We omit the proof being a straightforward adapta-
tion of the proof of Theorem 9.4.2.

Theorem 9.4.6. Let {ηt, t ≥ 0} be boundary driven Markov gas defined in (9.4.27). Then for all n ∈ N and t ≥ 0,
it holds:

a) for all bounded, measurable and permutation invariant f : Dn → R

Eλη

[∫
Dn

f (z)η(n)
t (dz)

]
=

n∑
k=0

(
n
k

) ∫
Dn

f (z)λ⊗k
t (dz[k]) ⊗ (S ⊗n−k

t )∗η(n−k)(dz[n]\[k]); (9.4.29)

b) assume further that
pt(x, dy) = pt(x, y)m(dy) (9.4.30)

for a symmetric function pt(x, y) and a finite measure m on D. Then, choosing µ = m, the following holds

dEλη[η(n)
t ]

dm⊗n (z) =
∑
I⊂[n]

Eabs
zI

[
e
∫
Dext log(λ)dξt 1{ξt(Dext)=|I|}

] ∫
Dn−|I|
p

(n−|I|)
t (z[n]\I , y)η(n−|I|)(dy) (9.4.31)

Remark 9.4.7 (Examples). i) The process {Yt, t ≥ 0} with generator given in (9.4.24) is reversible with respect
to the Lebesgue measure (see, e.g., [110, Remark 2.7]) but (9.4.30) is not satisfied since each particle has a
positive probability to stay in the initial position during any time interval [0, t].

ii) A spherically symmetric α-stable processes on Rd with generator given in (9.4.25) is strongly reversible w.r.
to the Lebesgue measure (see, e.g. [41, Eq. 4.4]) and (9.4.30) is fulfilled.

9.5 The discrete case

In this section we consider the discrete analogue of the boundary driven Brownian gas. Here by “discrete” we mean
that the space on which the particles evolve is a lattice and the independent Brownians are replaced by independent
random walks. Our first aim will be to show that such a process is equal (in distribution) to the reservoirs process
{ζt, t ≥ 0} defined via the generator in (9.1.5). We will then show how the boundary driven Brownian gas arises as
a scaling limit of {ζt, t ≥ 0}.

9.5.1 On the equivalence of two definitions of boundary driven independent random walks

We consider the boundary driven Markov gas as explained in Section 9.4.3, where the process {Yt, t ≥ 0} is chosen
to be the rate 1

2 symmetric nearest neighbor random walk jumping on the integers and domainD = VN = {1, . . . ,N}
with boundary {0,N + 1}. The restriction to the nearest neighbor case is for simplicity only. The generalization to
independent walkers with generic jump rates c(x, y), x, y ∈ Z, absorbed upon leaving VN is straightforward and so
is the extension to more general graphs. Let ṼN := {0, . . . ,N + 1} = VN ∪ {0,N + 1} and {Xt, t ≥ 0} be the process
evolving as {Yt, t ≥ 0} on VN and absorbed when hitting 0 or N + 1. Notice that in this context of nearest neighbor
random walks, Dext reduces to {0,N + 1}. We start the process from an initial configuration η ∈ NVN , viewed as
a point configuration on VN , i.e. η =

∑
i δxi , where xi ∈ VN are the initial positions of the particles. We define its

time evolution as follows:
ηt = ξt

∣∣∣
VN

+ Θt. (9.5.1)

Here ξt is the point configuration on ṼN at time t arising from ξ0 = η when all the particles in η evolve as
independent copies of the process Xt defined above. For z = (z1, . . . , zn) ∈ Vn

N , we denote by Eabs
z the expectation
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in the process {ξt, t ≥ 0} started from
∑n

i=1 δzi . Further, for λ = (λL, λR) ∈ R2
+, Θt is a Poisson point process on VN

with intensity defined by

λt(dx) =
(
λLP

RW
x (Xt = 0) + λRP

RW
x (Xt = N + 1)

)
m(dx) (9.5.2)

with m(dx) denoting the counting measure and PRW
x the path-space measure of the absorbed random walk {Xt, t ≥

0}. Thus, {Θt({x}), x ∈ VN} are independent random variables which are Poisson distributed with parameter λt(x).
The process defined in (9.5.1) is the discrete analogue of the process defined in (9.4.5) and from Theorem (9.4.6)
applied to this context we have that

dEλη[η(n)
t ]

dm⊗n (z) =
∑
I⊂[n]

Eabs
zI

[
λ
ξt({0})
L λ

ξt({1})
R 1{ξt({0,N+1})=|I|}

] ∫
Vn−|I|

N

p
(n−|I|)
t (z[n]\I , y)η(n−|I|)(dy), (9.5.3)

where p(n)
t (z, y) =

∏n
i=1 P

RW
zi

(Xt = y) and Eλη denotes the expectation in the process {ηt, t ≥ 0} starting from η.

Let us now compare the process ηt with the process ζt, the reservoir process with parameters λL, λR introduced in
Section 9.1.2.

Theorem 9.5.1. Let η ∈ NVN . Then {ζt, t ≥ 0}, denoting the reservoir process with parameters λL, λR and generator
given in (9.1.5) started from η, and {ηt, t ≥ 0}, denoting the boundary driven Markov gas defined in (9.5.1) started
from η, are equal in distribution.

Notice that in the statement of the Theorem we are implicitly identifying the point configuration ηt with the vector
(ηt({x}))x∈VN of occupation variables.

Proof. In order to prove the result we will make use of the duality relations (9.1.7) and (9.5.3).

Indeed, it suffices to show that for all ξ =
∑n

i=1 δzi , zi ∈ N
VN one has for all η and t ≥ 0

Eres
η

 N∏
x=1

d(ξ({x}), ζt(x))

 = Eλη

 N∏
x=1

d(ξ({x}), ηt({x}))

 . (9.5.4)

By (9.1.6) and (9.1.7) we have

Eres
η

 N∏
x=1

d(ξ({x}), ζt(x))

 = Eabs
ξ

λξt({0})
L λ

ξt({N+1})
R

N∏
x=1

d (ξt({x}), ζ(x))

 .
On the other hand, by (9.3.7), we have

Eλη

 N∏
x=1

d(ξ({x}), ηt({x}))

 = Eλη[η(n)
t ({(z1, . . . , zn)})]

and by (9.5.3)

Eλη
[
η(n)

t ({z1, . . . , zn})
]

(9.5.5)

=
∑
I⊂[n]

Eabs
zI

[
λ
ξt({0})
L λ

ξt({1})
R 1{ξt({0,N+1})=|I|}

] ∫
Vn−|I|

N

p
(n−|I|)
t (z[n]\I , y)η(n−|I|)(dy). (9.5.6)

It thus remains to show that

∑
I⊂[n]

Eabs
zI

[
λ
ξt({0})
L λ

ξt({1})
R 1{ξt({0,N+1})=|I|}

] ∫
Vn−|I|

N

p
(n−|I|)
t (z[n]\I , y)η(n−|I|)(dy) = Eabs

ξ

λξt({0})
L λ

ξt({N+1})
R

∏
x∈VN

d (ξt({x}), η({x}))

 .
Notice that, for any I ⊂ [n], by (9.3.7), we have∫

Vn−|I|
N

p
(n−|I|)
t (z[n]\I , y)η(n−|I|)(dy) = Eabs

z[n]\I

 N∏
x=1

d(ξt({x}), η({x}))

 (9.5.7)
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We thus have,

Eλη
[
η(n)

t ({z1, . . . , zn})
]

=
∑
I⊂[n]

Eabs
zI

[
λ
ξt({0})
L λ

ξt({1})
R 1{ξt({0,N+1})=|I|}

]
Eabs

z[n]\I

 N∏
x=1

d(ξt({x}), η({x}))


= Eabs

z

λξt({0})
L λ

ξt({N+1})
R

N∏
x=1

d(ξt({x}), η({x}))

 ,
where we used (9.5.5) and (9.5.7) in the first equality and the independence of particles in the second equality. �

9.5.2 Scaling limit

In this section we show how the process of independent random walkers with reservoirs λL and λR, when appropri-
ately rescaled in space and time, and with rescaling of the reservoirs intensities, converges to the boundary driven
Brownian gas. We start with the following lemma.

Lemma 9.5.2. Consider {Θ(N)}N≥1 a sequence of Poisson point processes on (0, 1) with the intensity measures

λ(N)(dx) =

 1
N

N∑
i=1

aN( i
N )δi/N

 (dx) (9.5.8)

with aN : { 1
N , . . . ,

N−1
N , 1} → R+. Assume furthermore that whenever i/N → x ∈ [0, 1] then also

aN( i
N )→ α(x) (9.5.9)

where α : [0, 1] → R is a smooth function. Then as N → ∞, Θ(N) converges to the Poisson point process Θ with
intensity α(x)dx.

Proof. Because sequences of Poisson point processes converge when the sequences of their intensity measures
converge, it suffices to prove that (9.5.8) converges weakly to α(x)dx as N → ∞. Let f : [0, 1] → R continuous,
then ∫

f (x)λ(N)(dx) =
1
N

N∑
i=1

f ( i
N )aN( i

N )

By the condition on aN( i
N ), this sum converges to the Riemann integral

∫ 1
0 f (x)α(x)dx. �

We then have the following result.

Theorem 9.5.3. Consider the reservoir process {ζN,t, t ≥ 0} on the chain {1, . . . ,N}, with reservoirs parameters
λL
N ,

λR
N and generator given in (9.1.5). Define ηN,t(dx) the point configuration on [0, 1] via

ZN,t(dx) =

 N∑
i=1

ζN,tN2 (i)δi/N

 (dx) (9.5.10)

Assume that at time t = 0,

ZN,0 =

N∑
i=1

δx(N)
i /N (9.5.11)

where x(N)
i /N → xi ∈ (0, 1) for all i = 1, . . . ,N.

Then as N → ∞ the process {ZN,t(dx), t ≥ 0} converges (in the sense of convergence of finite dimensional distri-
butions) to the boundary driven Brownian gas with parameters λL, λR, started at the configuration

∑N
i=1 δxi .

Proof. As a consequence of Theorem 9.5.1, the reservoir process ζN,t equals (in distribution) the boundary driven
Markov gas ηN,t obtained as a sum of the configuration arising from letting the particles initially in the system
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evolve according to independent random walkers absorbed at 0 and N + 1, and adding an independent Poisson
point process on VN with intensity

λt(i) = λL
N P

RW
i (Xt = 0) + λR

N P
RW
i (Xt = N + 1) (9.5.12)

where {Xt, t ≥ 0} denotes the random walk on VN absorbed at the boundary {0,N + 1}. Therefore after diffusive
rescaling of space and time, the intensity of the Poisson point process on (0, 1) modelling the reservoirs effect
becomes

λ(N)
t (dx) =

N∑
i=1

(
λL
N P

RW
i (XtN2 = 0) + λR

N P
RW
i (XtN2 = N + 1)

)
δi/N(dx). (9.5.13)

Because the absorbed random walk XtN2/N converges weakly, as N → ∞, to the Brownian motion on [0, 1]
absorbed at the boundaries, we can apply Lemma 9.5.2 with

aN( i
N ) = λL P

RW
i (XtN2 = 0) + λR P

RW
i (XtN2 = N + 1)

which converges, in the sense given by (9.5.9), to

α(x) = λL P
abs
x (τL ≤ t) + λR P

abs
x (τR ≤ t) (9.5.14)

where τL, τR are the hitting times of 0, resp. 1, and Pabs
x the path space measure of Brownian motion started from x

and absorbed whenever hitting 0, 1. Therefore, the Poisson point processes (9.5.13) converge to the Poisson point
processes with intensity (9.5.14). Clearly, by the weak convergence of the absorbed random walk XtN2/N to the
absorbed Brownian motion, also the point configuration corresponding to the time evolution of the independent
walkers initially in the system converge to the point configuration arising by letting the particles initially in the
system evolve according to independent absorbed Brownian motions. Because the evolution of the particles ini-
tially in the system and the added Poisson process are independent, in the scaling limit, we obtain the sum of the
evolution of the particles initially in the system and an independent Poisson point process with intensity (9.5.14),
which is the boundary driven Brownian gas with reservoir parameters λL, λR. �

9.6 Orthogonal dualities

In order to have a complete analogy with the duality theory for independent random walks on a finite chain with
reservoirs, we now investigate orthogonal dualities for the boundary driven Brownian gas.

9.6.1 Known orthogonal dualities

Closed discrete systems. Orthogonal self-duality functions are well known for the system of simple symmetric
independent random walkers on Zd described in Section 9.1.2 (see [78], [146]). More precisely, for any θ > 0, the
factorized functions given by

Dor
θ (ξ, η) =

∏
x∈Zd

Cξ(x)(η(x), θ) (9.6.1)

where Ck(n, θ) are the Charlier polynomials defined as

Ck(n, θ) =

k∑
`=0

(
k
`

)
(−θ)k−`(n)` (9.6.2)

((n)` denotes the `-th falling factorial) are self-duality functions for the Markov process {ηt, t ≥ 0} with generator
given in (9.1.1). The dualities in (9.6.1) satisfy the following orthogonality relation w.r.t. the measure µrev

θ =

⊗x∈Zd Poisson(θ) which is reversible for {ηt, t ≥ 0}: for any ξ, ξ′ ∈ NZ
d∫

Dor
θ (ξ, η)Dor

θ (ξ′, η)dµrev
θ (η) = 1{ξ=ξ′}

ξ!
θ|ξ|

where ξ! :=
∏

x∈Zd ξ(x)! and |ξ| =
∑

x∈Zd ξ(x).

Notice that the relation between orthogonal and classical dualities is given by (see [76, Remark 4.2])

Dor
θ (ξ, η) =

∑
ξ′≤ξ

(−θ)|ξ|−|ξ
′ |

(
ξ

ξ′

)
Dcl(ξ′, η) =

∑
I⊂[n]

(−θ)n−|I|Dcl

∑
i∈I

δyi , η

 , (9.6.3)

where ξ′ ≤ ξ means that ξ′(x) ≤ ξ(x) for any x ∈ Zd and
(
ξ
ξ′

)
:=

∏
x∈Zd

(
ξ(x)
ξ′(x)

)
.
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Open discrete systems. Let us now reconsider the reservoir process with parameters λL, λR defined in Section
9.1.2. In Chapter 6, we proved that the following functions, for θ > 0,

Dor
res,θ(ξ, ζ) = (λL − θ)ξ(0)Dor

θ (ξ, ζ)(λR − θ)ξ(1) (9.6.4)

with
Dor
θ (ξ, ζ) =

∏
x∈ṼN

Cξ(x)(ζ(x), θ)

are duality functions between {ζt, t ≥ 0} the Markov process on VN = {1, . . . ,N} with generator given in (9.1.5)
and {ξt, t ≥ 0} the system of random walkers on ṼN = {0, . . . ,N + 1} absorbed at {0,N + 1}. Notice that the
orthogonality relation is w.r.t. µθ = ⊗x∈VN Poisson(θ) which is not stationary for the reservoir process with general
parameters λL, λR, but it is reversible for the reservoir process with parameters λL = λR = θ, the last case referred
as the reservoir process in equilibrium.

Closed systems in the continuum. Generalizations of orthogonal self-dualities for systems considered in Sec-
tion 9.3.1, namely closed systems of independent Markov processes on general Polish spaces E, has been studied
in Chapter 8. More precisely, let ηt =

∑N
i=1 δXt(i) with {Xt(i), t ≥ 0} independent copies of a Markov process on E

started from xi, strongly reversible w.r.t. to a measure m. Then, the measure defined for any t ≥ 0, n ∈ N and θ > 0
as

η(n),θ
t (dz) :=

∑
I⊂[n]

(−θ)n−|I| η(|I|)
t (dzI) m⊗

n−|I|
(dz[n]\I) (9.6.5)

satisfies the following duality relation (see Proposition 3.2.5)

dEλη[η(n),θ
t ]

dm⊗n (z1, . . . , zn) =

∫ n∏
i=1

pt(zi, yi)η(n),θ(d(y1, . . . , yn))

and generalizes the orthogonal self-dualities given in (9.6.1) in the following sense:

i) let
1B(z1, . . . , zn) :=

(
1⊗d1

B1
⊗ . . . ⊗ 1dK

BK

)
(z1, . . . , zn)

for B = {B1, . . . , BK} a family of mutually disjoint sets in E and {d1, . . . , dK} such
∑K

i=1 di = n, then

∫
1B(z1, . . . , zn) η(n),θ(d(z1, . . . , zn)) =

K∏
`=1

(−θm(B`))d` Cd` (η(B`); θm(B`)) (9.6.6)

with Ck(n, x) being the Charlier polynomials defined above.

ii) If we denote byPθm the distribution of a Poisson point process with intensity measure θm, then, the following
orthogonal relation holds

EPθm

[(∫
fndζ(n),θ

) (∫
gn′dζ(n′),θ

)]
= 1{n=n′} · n!

∫
fn gn d(θm)⊗n (9.6.7)

for ζ ∼ Pθm and fn : En → R, gn′ : En′ → R bounded and permutation invariant functions.

We refer to [120] for a proof of the two above facts.

The aim of the next section is to generalize the orthogonal dualities for the reservoir system given in (9.6.4) in the
context of the boundary driven Brownian gas on (0, 1).

9.6.2 Orthogonal dualities for the boundary driven Brownian gas

Let us now consider the boundary driven Brownian gas on (0, 1) with parameters λL and λR

ηt = ξt + Θt
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defined in Section 9.4.1. We have previously proved that the factorial measure η(n)
t is the right object to study

in order to have a duality result for boundary driven system. Inspired by the relation highlighted in the previous
subsection between classical and orthogonal dualities we now study for any n ∈ N and θ > 0

η(n),θ
t (dz) :=

∑
I⊂[n]

(−θ)n−|I| η(|I|)
t (dzI) m⊗

n−|I|
(dz[n]\I), (9.6.8)

viewed as a measure on (0, 1)n. Here m(dz) is the Lebesgue measure on (0, 1) and the orthogonality properties
(9.6.6) and (9.6.7) hold for (9.6.8) for, respectively, B = {B1, . . . , BK} a family of mutually disjoint sets in (0, 1) with
{d1, . . . , dK} such

∑K
i=1 di = n, and bounded and permutation invariant functions fn : (0, 1)n → R, gn′ : (0, 1)n′ → R.

Notice that the orthogonality relations holds true w.r.t. the intensity measure of the Poisson point process whose
distribution is reversible for the boundary driven Brownian gas in equilibrium, namely with λL = λR = θ.

Moreover, since we will integrate the above defined measure η(n),θ against p(n)
t (·, ·) : [0, 1]n × [0, 1]n → R, i.e. a

function defined on {0, 1} as well, we extend η(n),θ in the following way: we define m̄(dz) = m(dz) + δ0(dz) + δ1(dz)
and we denote

η[n],θ
t (dz) :=

∑
I⊂[n]

(−θ)n−|I| η(|I|)
t (dzI) m̄⊗

n−|I|
(dz[n]\I) (9.6.9)

whenever integrated against functions being non zero also at the boundary [0, 1]. Notice that
∫

[0,1] pt(x, y)m̄(dy) = 1

for any x ∈ [0, 1] and that we used the brackets [·] in the upper index of η[n],θ
t to emphasize the difference with

η(n),θ
t .

We then have the following theorem, providing orthogonal dualities between the boundary driven Brownian gas
and the system of independent Brownian motions on [0, 1] absorbed at the boundaries.

Theorem 9.6.1. For the boundary driven Brownian gas, the expectation of the measure given in (9.6.8) at time
t ≥ 0 is absolutely continuous w.r.t. m⊗n with the following density:

dEλη[η(n),θ
t ]

dm⊗n (z) =
∑
J⊂[n]

Eabs
zJ

[
λ
ξt({0})
L λ

ξt({N+1})
R 1{ξt(∂E)=|J|}

] ∫
En−|J|
p

(n−|J|)
t (z[n]\J , y)η[n−|J|],θ(dy). (9.6.10)

Proof. Using (9.6.8) and (9.4.7) we have

Eλη[η(n),θ
t ](dz) = Eλη

∑
I⊂[n]

(−θ)n−|I| η(|I|)
t (dzI) m⊗

n−|I|
(dz[n]\I)


=

∑
I⊂[n]

(−θ)n−|I|Eλη
[
η(|I|)

t (dzI)
]

m⊗
n−|I|

(dz[n]\I)

=
∑
I⊂[n]

(−θ)n−|I|

∑
J⊂I

Eabs
zJ

[
λ
ξt({0})
L λ

ξt({N+1})
R 1{ξt(∂E)=|J|}

]
×

∫
E |I|−|J|
p

(|I|−|J|)
t (zI\J , y) η(|I|−|J|)(dy)

)
m⊗

n−|J|
(dz[n]\J)

and by exchanging the order of the summation in the last expression above we obtain

Eλη[η(n),θ
t ](dz)

=
∑
J⊂[n]

Eabs
zJ

[
λ
ξt({0})
L λ

ξt({N+1})
R 1{ξt(∂E)=|J|}

]
×

 ∑
I⊂[n]\J

(−θ)n−|I|−|J|
∫

E |I|
p

(|I|)
t (zI , y) η(|I|)(dy)

 m⊗
n−|J|

(dz[n]\J)

We conclude by noticing that∑
I⊂[n]\J

(−θ)n−|I|−|J|
∫

E |I|
p

(|I|)
t (zI , y) η(|I|)(dy) =

∫
En−|J|
p

(n−|J|)(z[n]\J , y) η[n−|J|],θ(dy). (9.6.11)

which can be proved using (9.6.9). �
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Notice that the same result holds for any boundary driven system of strongly reversible Markov processes as the
ones treated in Section 9.4.2 and for the discrete system defined in (9.5.1).

We thus conclude the section by showing that indeed Theorem 9.6.1 generalizes the duality relation for the discrete
system w.r.t. the orthogonal dualities given in (9.6.4). Notice, indeed, that we have, from (9.6.8) and (9.6.4),

Eλη
[
η(n),θ

t ({z1, . . . , zn})
]

= Eλη
[
Dor
θ (ξ, ηt)

]
.

It thus remains to prove the following.

Proposition 9.6.2. Let ηt denote the process defined in (9.5.1). Then for all n ∈ N and z1, . . . , zn ∈ VN , denoting∑n
i=1 δzi = ξ, we have∑

J⊂[n]

Eabs
zJ

[
λ
ξt({0})
L λ

ξt({N+1})
R 1{ξt(∂E)=|J|}

] ∫
p

(n−|J|)
t (z[n]\J , y) η(n−|J|),θ(dy) = Eabs

ξ

[
Dor

res,θ (ξt, η)
]
. (9.6.12)

Proof. By the definition of η(n−|J|),θ we obtain∑
J⊂[n]

Eabs
zJ

[
λ
ξt({0})
L λ

ξt({N+1})
R 1{ξt(∂E)=|J|}

] ∫
p

(n−|J|)
t (z[n]\J , y) η(n−|J|),θ(dy)

=
∑
J⊂[n]

Eabs
zJ

[
λ
ξt({0})
L λ

ξt({N+1})
R 1{ξt(∂E)=|J|}

]  ∑
I⊂[n]\J

(−θ)n−|J|−|I|
∫

E |I|
p

(|I|)
t (zI , y) η(|I|)(dy)


=

∑
J⊂[n]

Eabs
zJ

[
λ
ξt({0})
L λ

ξt({N+1})
R 1{ξt(∂E)=|J|}

]  ∑
I⊂[n]\J

(−θ)n−|J|−|I| Eabs
zI

 N∏
x=1

d(ξt({x}), η({x}))




=
∑
J⊂[n]

∑
I⊂[n]\J

(−θ)n−|J|−|I| Eabs
zJ

[
λ
ξt({0})
L λ

ξt({N+1})
R 1{ξt(∂E)=|J|}

]
Eabs

zI

 N∏
x=1

d(ξt({x}), η({x}))


=

∑
U⊂[n]

(−θ)n−|U | Eabs
zU

λξt({0})
L λ

ξt({N+1})
R

N∏
x=1

d(ξt({x}), η({x}))

 , (9.6.13)

where in the last line we used the independence of the particles. Combining (9.6.13), (9.3.7) and (9.1.6) we get∑
J⊂[n]

Eabs
zJ

[
λ
ξt({0})
L λ

ξt({N+1})
R 1{ξt(∂E)=|J|}

] ∫
p

(n−|J|)
t (z[n]\J , y) η(n−|J|),θ(dy)

=
∑

U⊂[n]

(−θ)n−|U | Eabs
zU

[
λ
ξt({0})
L λ

ξt({N+1})
R Dcl(ξt, η)

]
=

∑
U⊂[n]

(−θ)n−|U | Eabs
zU

[
DλL,λR (ξt, η)

]
.

We then have, using again the independence of particles,∑
U⊂[n]

(−θ)n−|U | Eabs
zU

[
λ
ξt({0})
L λ

ξt({N+1})
R Dcl(ξt, η)

]
= Eabs

z

∑
ξ′≤ξt

(
ξt

ξ′

)
(−θ)n−ξ′(ṼN ) λ

ξ′({0})
L λ

ξ′({N+1})
R Dcl

(
ξ′
∣∣∣
VN
, η

)
= Eabs

z


ξt({0})∑
`=0

(
ξt({0})
`

)
(−θ)ξt({0})−` λ`L


 ∑
ξ′≤ξt |VN

(
ξt

∣∣∣
VN

ξ′

)
(−θ)ξt(VN )−ξ′(VN ) D cl (ξ′, η)

×

ξt({N+1})∑
r=0

(
ξt({N})

r

)
(−θ)ξt({N})−r λr

R




= Eabs
ξ

[
(λL − θ)ξt({0})(λR − θ)ξt({N+1})Dor

θ

(
ξt

∣∣∣
VN
, η

)]
where the third identity follows from (9.6.3). The proof is concluded by noticing that

(λL − θ)ξt({0})(λR − θ)ξt({N+1})Dor
θ

(
ξt

∣∣∣
VN
, η

)
= Dor

res,θ (ξt, η) .

�
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9.7 Markov property of the boundary driven independent particles

Theorem 9.7.1. Assume that

pt(x, dy)m(dx) = pt(y, dx)m(dy) on D ×D (9.7.1)

for some finite measure m(dx) on D. Denote by Pλt the law of a Poisson point process with intensity measure given
in (9.4.26) with the measure m in place of µ and let Pres

t : Ω × B(Ω)→ [0, 1], t ≥ 0 defined by

Pres
t (η, B) :=

∫
Θ+ξ∈B

Pλt (dΘ)Pt(η, dξ), (9.7.2)

where Pt denotes the semigroup of the process {ξt, t ≥ 0}. Then, the family Pres
t , t ≥ 0 is a time homogeneous

transition function on (Ω,B(Ω)) and there exists a Markov family with transition function Pres
t .

Proof. We need to show that Pres
t satisfies the Chapman-Kolmogorv equation, which, due to [20, Lemma A.3],

boils down to check that for any continuous function ψ with compact support strictly contained in D and for any
s, t > 0 ∫

Pres
s+t(η, dη̄)ei

∫
ψdη̄ =

∫ ∫
Pres

s (η, dζ)Pres
t (ζ, dη̄)ei

∫
ψdη̄.

By the definition of Pres
t+s and using (9.3.12), we have that the left hand side is equal to

exp
{∫

(eiψ − 1)dλt+s

}∫
Ps+t(η, dξ)ei

∫
ψdξ.

On the other hand, for the right hand side we have,∫ ∫
Pres

s (η, dζ)Pres
t (ζ, dη̄)ei

∫
ψdη̄

=

∫
Pλs (dΘ1)

∫
Ps(η, dξ1)

∫
Pλt (dΘ2)

∫
Pt(Θ1 + ξ1, dξ2)ei

∫
ψd(ξ2+Θ2)

= exp
{∫

(eiψ − 1)dλt

}∫
Pλs (dΘ1)

∫
Ps(η, dξ1)

∫
Pt(Θ1 + ξ1, dξ2)ei

∫
ψdξ2

= exp
{∫

(eiψ − 1)dλt

}
×

∫
Pλs (dΘ1)

∫
Ps(η, dξ1)

∫
Pt(Θ1, dξ2,1)ei

∫
ψdξ2,1

∫
Pt(ξ1, dξ2,2)ei

∫
ψdξ2,2

= exp
{∫

(eiψ − 1)dλt

}∫
Pλs (dΘ1)

∫
Pt(Θ1, dξ2,1)ei

∫
ψdξ2,1

∫
Pt+s(η, dξ)ei

∫
ψdξ

where we used the definition of Pres
t first, the independence of the particles after and finally the Champan-

Kolmogorov equation for Pt. Thus, it remains to show that∫
Pλs (dΘ1)

∫
Pt(Θ1, dξ2,1)ei

∫
ψdξ2,1 = exp

{∫
(eiψ − 1)dλt+s −

∫
(eiψ − 1)dλt

}
. (9.7.3)

By the independence of the particles and (9.3.12) follows that∫
Pλs (dΘ1)

∫
Pt(Θ1, dξ2,1)ei

∫
ψdξ2,1 = exp

{∫
S t(eiψ − 1)(x)λs(dx)

}
,

where S t denotes the semigroup of the absorbed Markov process upon hitting Dext and which is given by

S t f (x) =

∫
D

pt(x, dy) f (y) +

∫
Dext

f (z)Px(τDext ≤ t, XτDext ∈ dz)

for any f : D∗ → R bounded function. Being ψ zero at Dext we have that∫
S t(eiψ − 1)(x)λs(dx) =

∫ (∫
pt(x, dy)(eiψ(y) − 1)

)
λs(dx)
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and thus, (9.7.3) is given if one proves that∫
pt(x, dy)λs(dx) = λt+s(dy) − λt(dy). (9.7.4)

Using the definition of λs given in (9.4.26), we have that the left hand side of (9.7.4) is equal to[∫
pt(x, dy)

(∫
Dext

λ(z)Px(τDext ≤ s, XτDext ∈ dz)
)

m(dx)
]
.

Using the strong Markov property of the absorbed Markov process, we have

λt+s(dy) =

(∫
Dext

λ(z)Py(τDext ≤ t + s, XτDext ∈ dz)
)

m(dy)

=

(∫
Dext

λ(z)Py(τDext ≤ t, XτDext ∈ dz)
)

m(dy)

+

[∫
pt(y, dx)

(∫
Dext

λ(z)Px(τDext ≤ s, XτDext ∈ dz)
)

m(dy)
]

= λt(dy) +

[∫
pt(x, dy)

(∫
Dext

λ(z)Px(τDext ≤ s, XτDext ∈ dz)
)

m(dx)
]

where in the last identity we used the condition (9.7.1). Thus (9.7.4) follows, concluding the proof. �
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Mathematica Scandinavica, 98(2):237–261, 2006.



Bibliography 185
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[141] P. Nàndori. Local equilibrium in inhomogeneous stochastic models of heat transport. Journal of Statistical
Physics, 164(2):410–437, 2016.

[142] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied
Mathematical Sciences 44, Springer-Verlag, New York, 1983.

[143] P. Pietzonka, K. Kleinbeck, and U. Seifert. Extreme fluctuations of active brownian motion. New Journal
of Physics, 18:052001, 2016.

[144] J. Pitman. Combinatorial stochastic processes, volume 1875 of Lecture Notes in Mathematics. Springer,
Berlin, 2006.

[145] G. D. Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge University Press, 2nd
edition, 2014.

[146] F. Redig and F. Sau. Factorized Duality, Stationary Product Measures and Generating Functions. Journal
of Statistical Physics, 172(4):980–1008, 2018.

[147] F. Redig, E. Saada, and F. Sau. Symmetric simple exclusion process in dynamic environment: hydrodynam-
ics. Electronic Journal of Probability, 25(47):Paper No. 138, 2020.



186 Bibliography

[148] R. Rhodes. Stochastic homogenization of reflected stochastic differential equations. Electronic Journal of
Probability, 15:989–1023, 2010.

[149] E. Schertzer, R. Sun, and J. Swart. The Brownian web, the Brownian net, and their universality. In Advances
in disordered systems, random processes and some applications, pages 270–368. Cambridge Univ. Press,
Cambridge, 2017.
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Summary

Interacting particle systems (IPS) is a subfield of probability theory that provided a fruitful framework in which
several questions of physical interests have been answered with mathematical rigor. An interacting particle system
is a stochastic system consisting of a very large number of particles interacting with each other. The class of IPS
considered in this manuscript is the one of systems satisfying stochastic duality. Stochastic duality is a useful
tool in probability theory which allows to study a Markov process (the one that interests you) via another Markov
process, called dual process, which is hopefully easier to be studied. The connection between the two processes is
established via a function, the so-called duality function, which takes as input configurations of both processes. In
the context of IPS, one of the typical simplifications provided by stochastic duality is that a system with an infinite
number of particles can be studied via a finite number of particles (the simplification from many to few).

In this thesis, we extend the theory and the applications of stochastic duality in the following two contexts:

i) evolution of particles in space inhomogeneous settings and more precisely, processes in random environment
and processes in a multi-layer system;

ii) evolutions of particles in the continuum.

IPS in random environment

We introduce a new random environment for the exclusion process in Zd obtained by assigning a maximal oc-
cupancy αx to each site x ∈ Zd. This maximal occupancy is allowed to randomly vary among sites, and partial
exclusion occurs. We refer to random environment as the collection α = {αx, x ∈ Zd} and we denote the partial ex-
clusion process in the random environment α by SEP(α). We show that, under the assumption of ergodicity under
translation and uniform ellipticity of the environment, for almost every realization of α, the path-space hydrody-
namic limit of SEP(α) is a deterministic diffusion equation with a non-degenerate diffusion matrix not depending
on the realization of the environment. To this purpose, first we show that SEP(α) satisfies self-duality. Second,
by employing the technology developed for the random conductance model, we prove a homogenization result in
the form of an arbitrary starting point quenched invariance principle for a single particle in the same environment,
which is a result of independent interest. More precisely, we prove that for almost every realization of α, for all
T > 0, for any macroscopic point u ∈ Rd and for any sequence of points {xN}N∈N ⊆ Z

d such that xN
N → u as N → ∞,

the laws of the diffusively rescaled random walk in the environment α started from xN
N , converge weakly to the law

of the Brownian motion started from u ∈ Rd and with a non-degenerate covariance matrix Σ. Σ is deterministic and
does not depend of the realization of the environment α. Finally, the self-duality property of the partial exclusion
process allows us to transfer this homogenization result to the particle system.

We then consider symmetric partial exclusion and inclusion processes in a general graph V in contact with reser-
voirs, where we allow for both edge disorder ω = {ω{x,y} : x, y ∈ V} and site disorder α = {αx : x ∈ V}. This
disorder may be thought as a realization of a random environment. We extend the classical dualities to this context
and then we derive new orthogonal polynomial dualities. From the classical dualities, we derive the uniqueness of
the non-equilibrium steady state and obtain correlation inequalities. Starting from the orthogonal polynomial dual-
ities, we show universal properties of n-point correlation functions in the non-equilibrium steady state for systems
with at most two different reservoir parameters θL and θR, such as a chain with reservoirs at left and right ends.
Namely, denoting by µθL,θR the unique non-equilibrium steady state, we prove that for all distinct x1, . . . , xn in V

EµθL ,θR

 n∏
i=1

(
η(xi)
αxi

− θ̄xi

) = (θL − θR)n ψ(δx1 + · · · + δxn ) ,

where ψ(δx1 + · · · + δxn ) ∈ R does not depend on neither θL nor θR.
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IPS in a multi-layer system

We considers three classes of interacting particle systems on Z: independent random walks, the exclusion process
and the inclusion process. Particles are allowed to switch their jump rate (the rate identifies the type of particle)
between 1 (fast particles) and ε ∈ [0, 1] (slow particles). The switch between the two jump rates happens at rate
γ ∈ (0,∞). In the exclusion process, the interaction is such that each site can be occupied by at most one particle
of each type. In the inclusion process, the interaction takes places between particles of the same type at different
sites and between particles of different type at the same site. We derive the macroscopic limit equations for the
three systems, obtained after scaling space by N−1, time by N2, the switching rate by N−2, and letting N → ∞. The
limit equations for the macroscopic densities associated to the fast and slow particles is the well-studied double
diffusivity model, i.e. ∂tρ0 = ∆ρ0 + Υ(ρ1 − ρ0)

∂tρ1 = ε∆ρ1 + Υ(ρ0 − ρ1)

where ρi, i ∈ {0, 1}, are the macroscopic densities of the two types of particles, and Υ ∈ (0,∞) is the scaled switch-
ing rate. The above system was introduced in the 70s to model polycrystal diffusion (more generally, diffusion in
inhomogeneous porous media) and dislocation pipe diffusion, with the goal of overcoming the restrictions imposed
by Fick’s law. Non-Fick behaviour is immediate from the fact that the total density ρ = ρ0 + ρ1 does not satisfy the
classical diffusion equation, but the thermal telegrapher equation, i.e.

∂t (∂tρ + 2Υρ) = −ε∆(∆ρ) + (1 + ε)∆ (∂tρ + Υρ) .

Additional motivations to study multi–layer IPS comes from population genetics, where individuals can be either
active or dormant (see, e.g., [124]), and from models of interacting active random walks with an internal state
that changes randomly (e.g. activity, internal energy) and that determines their diffusion rate and or drift (see, e.g.
[114]).

We provide a discussion on the solution of the double diffusivity model, thereby connecting mathematical literature
applied to material science and financial mathematics.

In order to investigate the microscopic out–of–equilibrium properties,we analyse the system on [N] = {1, . . . ,N},
adding boundary reservoirs at sites 1 and N of fast and slow particles, respectively. Inside [N], particles move as
before, but now they are injected and absorbed at sites 1 and N with prescribed rates that depend on the particle
type. We compute the steady-state density profile and the steady-state current. This leads to two interesting
phenomena. The first phenomenon is uphill diffusion, i.e., in a well-defined parameter regime, the current can go
against the particle density gradient: when the total density of particles at the left end is higher than at the right
end, the current can still go from right to left. The second phenomenon is boundary-layer behaviour: in the limit
as ε ↓ 0, in the macroscopic stationary profile the densities in the top and bottom layer are equal, which for unequal
boundary conditions in the top and bottom layer results in a discontinuity in the stationary profile. Corresponding
to this jump in the macroscopic system, we identify a boundary layer of size

√
ε log(1/ε) in the microscopic system

where the densities are unequal. The quantification of the size of this boundary layer is an interesting corollary of
the exact macroscopic stationary profile that we obtain from the microscopic system via duality.

Systems of particles evolving in the continuum

Using the language of point process theory, we introduce a new framework in which self-duality type relations,
more precisely self-intertwining relations, with respect to polynomials can be formulated for particle systems
evolving on a general Borel space, thus also on Rd. This framework also provides a new approach to self-duality.
We thus first provide necessary and sufficient conditions to have self-intertwining relations with generalized falling
factorial polynomials as intertwiners. In particular, we provide new self-intertwining results for systems such
as independent and interacting Brownian motions. Moreover, from this new approach, the known self-duality
functions for classical conservative interacting particle systems are recovered. Our approach is thus unifying the
previous self-duality results for conservative systems and avoids the need of ad hoc computations for each system
when proving duality. Second, we prove that, assuming reversibility for the particle system, the Gram-Schmidt
orthogonalization procedure is a symmetry for the particle dynamics of a consistent process. As a consequence,
orthogonalizing the previously introduced falling factorial polynomial self-intertwinings, we show orthogonal self-
intertwinings in the same context of consistent particle systems on general state spaces. In doing so, we also show
some properties of generalized orthogonal polynomials which are of independent interest. We also introduce and
study a new process in the continuum, called generalized symmetric inclusion process, for which all our self-
intertwining results apply.
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Finally, inspired by the recent work of Bertini and Posta [20], who introduced the boundary driven Brownian gas
on [0, 1], we study stochastic duality for boundary driven systems of independent particles in a general setting.
The boundary-driven Brownian gas on [0, 1] is defined (see [20]) as a system of independent Brownian motions
absorbed at 0 and at 1, to which an independent Poisson point process is super–imposed, which adds particles on
(0, 1) with well-chosen intensity. For our aim, we need to generalize the construction of Bertini and Posta [20]
first to systems of independent diffusion processes evolving on regular domain D ⊂ Rd and second to systems of
general independent Markov processes which are allowed to jump and which thus can leave D without hitting its
boundary. We then prove duality for such systems with a dual process that is absorbed at the boundaries, thereby
creating a general framework that unifies dualities for boundary driven systems in the discrete and continuum
setting. In particular, we show that the time-dependent n-th factorial moment measures of the boundary driven
system can be written in terms of n dual particles, absorbed at the boundaries. We use duality first to show that
from any initial condition the systems evolve to the unique invariant measure, which is a Poisson point process with
intensity the solution of a Dirichlet problem. Second, we prove that in the discrete setting of a one-dimensional
chain, modelling the reservoirs as: i) birth and death processes at the boundaries or ii) by a Poissonian addition of
particles everywhere, are indeed equivalent processes. To conclude, we show that the boundary driven Brownian
gas (in the continuum) arises as the diffusive scaling limit of the model with birth and death processes (in the
discrete) when the intensities are also scaled with the system size.





Samenvatting

Interacterende deeltjessystemen (IDS) is een onderdeel van de kansrekening dat een rijk kader heeft verschaft
waarin verscheidene vragen, afkomstig uit natuurkundig belang, zijn beantwoord met wiskundige nauwkeurigheid.
Een interacterend deeltjessysteem is een stochastisch systeem bestaande uit een groot aantal deeltjes die interactie
op elkaar uitoefenen. De IDS die in dit manuscript worden beschouwd zijn de systemen die voldoen aan stochastis-
che dualiteit. Stochastische dualiteit is een handig hulpmiddel in de kansrekening waarmee een Markov process
(degene die jou interesseert) bestudeerd kan worden via een ander Markov process, het duale process genoemd, die
hopelijk gemakkelijker bestudeerd kan worden. De verbinding tussen de twee processen wordt gevormd door een
functie, de zogenaamde dualiteit functie, waarin configuraties van beide processen ingevoerd worden. Een typis-
che vereenvoudiging die geleverd wordt door stochastische dualiteit in de context van IDS, is dat een systeem met
oneindig veel deeltjes bestudeerd kan worden via eindig veel deeltjes (de vereenvoudiging van veel naar weinig).

In dit proefschrift breiden we de theorie en toepassingen van stochastische dualiteit uit in de volgende twee con-
texten:

i) evolutie van deeltjes in plaats-inhomogene zettingen en, preciezer, processen in willekeurige omgeving en
processen in een meerlaags systeem.

ii) evolutie van deeltjes in het continuüm.

IDS in willekeurige omgeving

We introduceren een nieuwe willekeurige omgeving voor het exclusie process in Zd verkregen door een maximale
bezetting αx toe te wijzen aan elke plek x ∈ Zd. Deze maximale bezetting mag willekeurig variëren, wat leidt tot
partiële exclusie. We refereren naar willekeurige omgeving als de collectie α := {αx : x ∈ Zd} en we noteren het
partiële exclusie process in de willekeurige omgeving α als SEP(α). We laten zien dat, onder de aanname van er-
godiciteit onder translatie en uniforme ellipticiteit van de omgeving, voor bijna alle α, de hydrodynamische limiet
in de padenruimte van SEP(α) een deterministische diffusievergelijking is met een niet-gedegenereerde diffusie
matrix, welke niet afhangt van de realisatie van de omgeving. Hiervoor laten we eerst zien dat SEP(α) voldoet
aan zelf-dualiteit. Daarna, door middel van een techniek gebruikt voor het willekeurige geleidingsmodel, bewijzen
we het homogenisatie resultaat in de vorm van willekeurig beginpunt gedoofd invariantie principe voor een enkel
deeltje in dezelfde omgeving, wat een resultaat is van afzonderlijke interesse. Exacter, we bewijzen dat voor bijne
alle realisaties α, voor alle T > 0, voor elk macroscopisch punt u ∈ Rd en voor elke rij punten {xN}N∈N ⊂ Z

d zodat
xN
N → u wanneer N → ∞, de verdelingen van de diffuus geschaalde toevalswandeling in de omgeving α startend

van xN
N zwak convergeert naar de verdeling van de Brownse beweging startend van u ∈ Rd met niet-gedegenereerde

covariantie matrix Σ. Σ is deterministisch en hangt niet af van de realisatie van de omgeving α. Tenslotte, met de
zelf-dualiteits eigenschap van het partiële exclusie process kunnen we dit homogenisatie resultaat overdragen naar
het deeltjessysteem.

Daarna beschouwen we symmetrische partiële exclusie en inclusie processen in een algemene graaf V in contact
met reservoirs, waar we zowel onregelmatigheden aan de randω = {ω{x,y} : x, y ∈ V} als aan de plaats α = {αx : x ∈
V} beschouwen. Deze onregelmatigheden kunnen gezien worden als een realisatie van een willekeurige omgeving.
We breiden de klassieke dualiteiten in deze context uit en daarna leiden we nieuwe dualiteiten af met orthogonale
polynomen. Vanuit de klassieke dualiteiten leiden we de de uniciteit van de stabiele toestand uit evenwicht af
en verkrijgen we correlatie ongelijkheden. Vanuit de dualiteiten met orthogonale polynomen laten we universele
eigenschappen van n-punts correlatie functies in de stabiele toestand uit evenwicht zien voor systemen met uiterst
twee verschillende reservoir parameters θL en θR, zoals een keten met reservoirs aan de twee uiteinden. Oftewel, als
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we µθL,θR noteren als de unieke stabiele toestand uit evenwicht, bewijzen we dat voor alle distinctieve x1, ..., xn ∈ V

EµθL ,θR

 n∏
i=1

(
η(xi)
αxi

− θ̄xi

) = (θL − θR)n ψ(δx1 + · · · + δxn ) ,

waar ψ(δx1 + · · · + δxn ) ∈ R niet afhangt van zowel θL als θR.

IDS in een meerlaags systeem

We beschouwen drie klassen van interacterende deeltjessystemen op Z: onafhankelijke toevalswandelingen, het
exclusie process en het inclusie process. Deeltjes kunnen hun sprongsnelheden schakelen (de snelheid bepaalt
het type deeltje) tussen 1 (snelle deeltjes) en ε ∈ [0, 1] (langzame deeltjes). De schakeling tussen sprongsnel-
heden gebeurt met snelheid γ ∈ (0,∞). In het exclusieprocess is de interactie zo dat elke plek enkel door één
deeltje per type bezet kan worden. In het inclusieprocess vindt de interactie plaats tussen deeltjes van hetzelfde
type op verschillende plekken en tussen verschillende typen op dezelfde plek. We herleiden de macroscopische
limietvergelijkingen voor de drie systemen, verkregen na het herschalen van de ruimte met N−1, de tijd met N2,
de schakelssnelheid met N−2 en daarna N → ∞. De limietvergelijkingen van de macroscopische dichtheden
geassocieerd met de snelle en langzame deeltjes is het goed bestudeerde dubbel diffisiviteits model, i.e.,∂tρ0 = ∆ρ0 + Υ(ρ1 − ρ0)

∂tρ1 = ε∆ρ1 + Υ(ρ0 − ρ1)

waar ρi, i ∈ {0, 1} de macroscopische dichtheden zijn van de twee typen deeltjes, en Υ ∈ (0,∞) de geschaalde
schakelsnelheid is. Het systeem boven was geı̈ntroduceerd in de jaren 70 om polykristal diffusie (algemener,
diffusie in inhomogene poreuze media) en dislocatie pijp diffusie te modelleren, met als doel het overkomen van
de restricties opgelegd door de wet van Fick. Non-Fick gedrag volgt direct uit het feit dat de totale dichtheid
ρ = ρ0 + ρ1 niet de klassieke diffusievergelijking volgt, maar de thermale telegraafvergelijking, i.e.,

∂t(∂tρ + 2Υρ) = −ε∆(∆ρ) + (1 + ε)∆(∂tρ + Υρ)

Aanvullende motivaties om meerlaagse IDS te bestuderen komen van populatiegenetica, waar individuen ofwel
actief of inactief kunnen zijn (zie, e.g., [124]), en van modellen van interacterende actieve toevalswandelingen
met een interne toestand die willekeurig verandert (e.g. activiteit, interne energie) wat hun diffusiesnelheid en/of
drijfkracht bepaald (zie, e.g., [114])

Wij voorzien een discussie over de oplossing van het dubbel diffusiviteitsmodel, waarbij we mathematische liter-
atuur, toegepast op materiaalwetenschap, verbinden met financiële wiskunde.

Om de microscopische eigenschappen buiten evenwicht the onderzoeken, analyseren we het systeem op [N] =

{1, ...,N}, met reservoirs voor snelle en langzame deetlejs aan de randen op de plekken 1 en N. Binnenin [N]
bewegen deeltjes zoals eerder, maar nu worden ze geinjecteerd en geabsorbeerd op de plekken 1 en N met
voorgeschreven snelheden die afhangen van het type deeltje. We berekenen het dichtheidsprofiel en de stroming
in stabiele toestand. Dit leidt tot twee interessante fenomenen. Het eerste fenomeen is bergopwaartse diffusie,
i.e., in een goed gedefinieerde regime kan de stroming tegen de helling van de dichtheid van deeltjes ingaan: wan-
neer de totale dichtheid van deeltjes aan de linkerkant hoger is dan aan de rechterkant, dan kan de stroming toch
nog van rechts naar links gaan. Het tweede fenomeen is rand-laags gedrag: in de limiet, wanneer ε ↓ 0, zijn
de dichtheden van de bovenste en onderste laag in het macroscopische stationaire profiel gelijk, wat bij ongelijke
randvoorwaarden in de bovenste en onderste laag resulteert in een discontinuı̈teit in het stationaire profiel. Corre-
sponderend aan deze sprong in het macroscopische system identificeren we een randlaag van grootte

√
ε log(1/ε)

in het microscopische systeem waar de dichtheden ongelijk zijn. De kwantificering van de grootte van deze rand-
laag is een interessante gevolgtrekking van het exacte macroscopische stationaire profiel dat we verkrijgen van het
microscopische systeem via dualiteit.

Deeltjessystemen die evolueren in het continuüm

Gebruikmakend van de taal van de punt process theorie introduceren we een nieuw kader waarin zelf-dualiteits
relaties, of preciezer zelf-verwevendheids relaties, met respect tot polynomen geformuleerd kunnen worden voor
deeltjessystemen die evolueren op een algemene Borel ruimte, dus ook op Rd. Dit kader biedt ook een nieuwe
aanpak van zelf-dualiteit. Daarvoor geven we dus eerst benodigde en voldoende voorwaarden voor een zelf-
verwevendheids relatie met algemene vallende faculteit polynomen als verwevendheid. We geven met name



Samenvatting 195

nieuwe zelf-verwevendheids resultaten voor systemen zoals onafhankelijke en interacterende Brownse beweg-
ingen. Verder, vanuit deze nieuwe aanpak krijgen we bekende zelf-dualiteits functies voor klassieke conservatieve
interacterende deeltjessystemen terug. Onze aanpak verenigd dus de vorige zelf-dualiteits resultaten voor con-
servatieve systemen en vermijdt de noodzaak van ad hoc berekeningen voor het bewijzen van dualiteit voor elk
systeem. Ten tweede, we bewijzne dat, uitgaande van reversibiliteit van het deeltjessysteem, het Gram-Schmidt or-
thogonalisatie process een symmetrie is voor de dynamiek van deeltjes in een consistent process. Als gevolg, door
de eerder geı̈ntroduceerde vallende faculteit polynoom zelf-verwevendheid te orthogonaliseren, laten we orthogo-
nale zelf-verwevendheid zien in dezelfde context van consistente deeltjessystemen op algemene toestandsruimtes.
Hierdoor laten we ook wat eigenschappen van algemene orthogonale polynomen zien, wat van onafhankelijk be-
lang is. We introduceren en bestuderen ook een nieuw process in het continuüm, genaamd het veralgemeniseerde
symmetrische inclusieprocess, waarvoor onze zelf-verwevendheids resultaten van toepassing zijn.

Ten slotte, geı̈nspireerd door het recente werk van Bertini en Posta [20], die het rand gedreven Brownse gas op
[0, 1] hebben geı̈ntroduceerd, bestuderen we stochastische dualiteit voor rand gedreven systemen van onafhanke-
lijke deeltjes in een algemene zetting. Het rand-gedreven Brownse gas op [0, 1] is gedefinieerd (zie [20]) als
een systeem van onafhankelijke Brownse bewegingen geabsorbeerd door 0 en door 1, waarnaar een onafhankelijk
Poisson punt process is gesuperponeerd wat deeltjes toevoegt op (0, 1) met een goed gekozen intensiteit. Voor ons
doel moeten we de constructie van Bertini en Posta [20] generaliseren, ten eerste naar systemen van onafhanke-
lijke diffusieprocessen evoluerend op het reguliere domein D ⊂ Rd en ten tweede naar systemen van algemene
onafhankelijke Markov processen die zijn toegestaan sprongen te maken en die D dus kunnen verlaten zonder de
randen te raken. Daarna bewijzen we dualiteit voor zulke systemen met een duaal process dat wordt geabsorbeerd
door de randen, waardoor we een algemeen kader vormen wat dualiteit voor rand gedreven systemen in de discrete
en continuüm zetting verenigd. In het bijzonder laten we zien dat de tijdsafhankelijke n-de faculteit-moment maten
van het rand gedreven systeem geschreven kunnen worden in termen van n duale deeltjes, geabsorbeerd door de
randen. We gebruiken dualiteit eerst om te laten zien dat de systemen vanaf elke beginvoorwaarde convergeren
naar de unieke invariante maat, wat een Poisson punt process is met als intensiteit de oplossing van een Dirich-
let probleem. Ten tweede bewijzen we dat, in de discrete zetting van een één-dimensionale ketting, de modellen
waar we de reservoirs modelleren als: i) geboorte- en overlijdensprocessen aan de randen of ii) een Poissoni-
aanse toevoeging van deeltjes overal, zijn inderdaad equivalente processen. Tot slot laten we zien dat het rand
gedreven Brownse gas (in het continuüm) voorkomt als de diffusieve schalingslimiet van het model met geboorte-
en overlijdensprocessen (in het discrete geval) wanneer de intensiteiten ook geschaald zijn met dezelfde grootte.
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Cristian Giardinà, your kind words always encouraged me and discussing with you has always been inspiring.
Thanks for showing me how to interact with different scientific communities (probabilists and physicists) and for
being always curious to understand my progresses. Thanks for opening yourself on private aspects of life as well:
our dinner in Paris in 2020 was of great inspiration. Thanks for welcoming me several times in Modena: combining
a beautiful math discussion with one (or more) sandwich with high quality mortadella is simply amazing.

Dear Frank(s) and Cristian, I really hope we can keep collaborating and spending time together.

The second biggest thanks goes to Federico Sau, who has been an additional supervisor and much more. Collab-
orating with you has been the most beautiful part of my PhD and you became one of the people that I admire the
most and a very important friend. Ti voglio bene.

A big thank you goes to all the members of my committee: not only for being so kind to accept to read and judge
this manuscript, but also for being part of my career at different stages and in different ways. Thanks Mark Peletier
for your precious suggestions on scientific writing, teaching, relating with students and speaking in public. Despite
we have not met often, your open and clear words had a big impact on my view on many aspects of our job. Thanks
Patrı́cia Gonçalves: coming to Lisbon in 2019 for the PSPDE conference has been of great inspiration and most of
all, meeting your smile, your energy, your kindness combined with your scientific talent and dedication settled a
great example to follow and admire. Thanks Jochen Blath for the curiosity and interest you showed in my work on
switching particles: for a young scientist like me it meant a lot and made me feel part of a community. Thanks for
the talks you gave in Oberwolfach and Bonn, which were very instructive and of great inspiration. Thanks Mark
Veraar for being present since when I was a master student in Erasmus and I met you thanks to Alex Amenta (to
whom I am also very grateful): your open suggestions and comments are guiding me since then. Thanks for the
mini-course on SPDEs you gave to the probability group in 2019 and for introducing me to Antonio, who became
a really good friend of mine. Your presence in DIAM was very important to me.

I deeply thank all my other collaborators. Thanks to Gioia Carinci, Stefan Wagner, Sabine Jansen and Shubhamoy
Nandan.

Between the many people, colleagues and friends, who contributed to make my PhD path so amazing, a special
thanks goes to Bart van Ginkel for his immense generosity and kindness, Antonio Agresti for his friendship and his

197



198 Acknowledgements

constant math-and-life support, Andrea Bertazzi for his honesty and the fruitful exchange of ideas and beautiful
moments and Chiara Franceschini for being such an enthusiastic and inclusive friend and colleague.

Thanks to Hidde van Wiechen for having visited me in Bonn and for having translated in Dutch my summary: I
wish you a lot of success for your PhD and to keep the same beautiful enthusiasm that you have.

Thanks to all my friends and my family that supported me outside the academic world. A special mention goes to
the Dujardinos and partners, Minha, Isaac, Nika, Edwin, Alex, Diana, Jefta and César: I love spending time with
you.

Thanks to Manu: it was great to have you here with me in the Netherlands, sing Le luci della centrale elettrica and
cook together.

Thanks to my mum and dad for being the best parents I could have ever imagined, and for supporting me, one from
the earth and one from the sky.

Through all the years of the PhD, there was a person who has been always on my side, ready to help me in all the
possible ways: reading and commenting my papers and the important emails, drawing pictures of particles hopping
on lattices, giving me career advices, supporting me after the rejections, celebrating with me the achievements. She
gave me the strength in the difficult moments, and she reminded me that in life there is not only math (and AC
Milan) but infinitely many other beautiful and interesting things. Thank you, Simona, for being the amazing person
you are and for making me not only a better scientist but also a better human being: it is a privilege to share my
life with you.



Curriculum Vitae

Simone Floreani was born in San Daniele del Friuli, in the province of Udine, Italy, on the 25th of October 1993.
After completing the high-school studies at Liceo Scientifico Giovanni Marinelli, he moved to Milan to acquire
the Bachelor in Mathematical Engineering at Politecnico di Milano.

He then obtained his Master in Mathematical Modelling for Engineering at the same university. He participated to
the Erasmus program at Delft University of Technology, where he followed the course entitled Interacting Particle
systems, taught by Frank Redig. He performed his Master thesis back in Italy under the supervision of professors
Luigi Ambrosio (Scuola Normal Superiore, Pisa) and Sandro Salsa (Politecnico di Milano).

After achieving his Master degree and conducting a few months of research at the Delft Center for Systems and
Control at TU Delft, in October 2018 Simone Floreani started his PhD in the applied probability group at TU
Delft, under the supervision of Frank Redig, Frank den Hollander and Cristian Giardinà. His research was sup-
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