

SUBJECTS

- > Phenomena
- Radars being covered
- Remedies
- Conclusions

PHENOMENA

- There is an abundance of literature in which adverse effects of wind turbines to both primary and secondary radar are described.
- > There have been wind turbine clutter measurements, also well described in the open literature.

Wind Turbine Robust Radar Systems

PHENOMENA PRIMARY RADAR

- Desensitisation overhead: detection threshold increases due to the reception of wind turbine clutter.
- > Shadow: decreased sensitivity behind a wind turbine.
- > False tracks, initiated by wind turbines.
- > Track seduction: tracks get stuck in wind farms.
- > Ghost targets due to reflection against wind turbines.
- > Receiver saturation.
- > Processor overload.

PHENOMENA SECONDARY RADAR

- > Erroneous bearing estimate.
- > Ghost targets due to reflection against wind turbines.
- > Shadow: decreased sensitivity behind a wind turbine.

Wind Turbine Robust Radar Systems

PHENOMENA

PHENOMENA BLADE FLASHES

Wind Turbine Robust Radar Systems

RADARS BEING COVERED

- > Radars for the air picture.
- > Primary 'civilian' ATC radars: approach / en route surveillance radars.
- > Monopulse mode-S SSR.

REMEDIES FOR PRIMARY RADARS

- 1. Desensitisation overhead: detection threshold increases due to the reception of wind turbine clutter.
 - More advanced CFAR filtering, e.g., ordered statistics CFAR.
 - Cluttermap per Doppler filter.
 - Parallel receive beams rather than beamswitching on receive (2D \rightarrow 3D).
 - Range dependent receive beam adaptation (e.g. 'nulling').
- 2. Shadow: decreased sensitivity behind a wind turbine.
 - Fill-in radar.
 - Sensor fusion.
- 3. False tracks, initiated by wind turbines.
 - Track Initiation Inhibit (TII).
- 4. Track seduction: tracks get stuck in wind farms.
 - Range azimuth gating (RAG), may require a wind turbine table.
 - Increased instantaneous bandwidth, e.g. 4 MHz rather than 1 MHz.
 - High range resolution fill-in radar (e.g. X-band)
- 5. Ghost targets due to reflection against wind turbines.
 - Sensor fusion.

Wind Turbine Robust Radar Systems

REMEDIES SECONDARY RADARS

- 1. Erroneous bearing estimate.
 - Sensor fusion
- 2. Ghost targets due to reflection against wind turbines.
 - Sensor fusion, selective interrogation (mode-S)

CONCLUSIONS

- > State-of-the-art radars surveillance radars are significantly more robust than their ancestors.
- > Certain techniques are familiar in 'military' radar systems.
- The process to modernize the systems took approximately 15 years.
- > Sensor fusion is a key component to mitigate adverse effects due to the reception of wind turbine clutter.
- > SEAs and DEAs are still necessary.

Wind Turbine Robust Radar Systems

