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Abstract— The detection of multiple extended targets in
complex environments using high-resolution automotive radar is
considered. A data-driven approach is proposed where unlabeled
synchronized lidar data are used as ground truth to train a
neural network (NN) with only radar data as input. To this end,
the novel, large-scale, real-life, and multisensor RaDelft dataset
has been recorded using a demonstrator vehicle in different
locations in the city of Delft, The Netherlands. The dataset,
as well as the documentation and example code, is publicly
available for those researchers in the field of automotive radar
or machine perception. The proposed data-driven detector can
generate lidar-like point clouds (PCs) using only radar data from
a high-resolution system, which preserves the shape and size of
extended targets. The results are compared against conventional
constant false alarm rate (CFAR) detectors as well as variations of
the method to emulate the available approaches in the literature,
using the probability of detection, the probability of false
alarm, and the Chamfer distance (CD) as performance metrics.
Moreover, an ablation study was carried out to assess the impact
of Doppler and temporal information on detection performance.
The proposed method outperforms different baselines in terms
of CD, achieving a reduction of 77% against conventional CFAR
detectors and 28% against the modified state-of-the-art deep
learning (DL)-based approaches.

Index Terms— Automotive radar, deep learning (DL), point
cloud (PC) generation, radar dataset, radar target detection.

I. INTRODUCTION

IN THE domain of environmental sensing technology, radar
sensors can provide unique advantages over other sensors.

While lidar offers high-resolution imaging capabilities, making
it excellent for detailed environmental mapping, radar provides
superior performance in adverse weather conditions, such
as fog or rain, or in the case of low-light conditions [1].
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Furthermore, radar can accurately and directly measure
objects’ velocity via the Doppler effect. All this makes radar
a crucial sensor for vehicular autonomy [2].

A notable trend in automotive radar is the shift toward
imaging radar, which achieves high angular resolution in
both azimuth and elevation by leveraging a larger number
of antennas and thus a larger aperture [3]. Furthermore,
neural networks (NNs) and deep learning (DL) techniques are
increasingly being applied to signal and data processing [4].
These algorithms can excel in multiple steps of the radar
signal processing pipeline, such as detection [5], [6], [6],
[7], [8], [9], [10], [11], classification [12], [13], [14], and
signal enhancement [15], offering a richer interpretation of
radar data. However, their effectiveness relies on extensive
and high-quality datasets for training, to accurately identify
and react to diverse driving scenarios. To the best of authors’
knowledge, there is a lack of suitable public datasets for
radar practitioners where analog-to-digital converter (ADC)-
level data from large-aperture radars are collected using real
vehicles. Therefore, the first contribution of this article is the
introduction of RaDelft, a large-scale, real-world multisensory
dataset recorded in various driving scenarios in the city of
Delft, The Netherlands, which is publicly shared.

In terms of signal processing, challenges remain for the
integration of radar technology into automotive systems.
A primary hurdle in this context is the use of the well-
known constant false alarm rate (CFAR) detectors for
generating radar point clouds (PCs) from the dense radar
data cube. While CFAR detectors have proven optimal in
other environments [16], their application in the dynamic
and unpredictable conditions of road traffic scenarios suffers
from poor performance [7], [17]. Namely, they are designed
to maintain a constant rate of false alarms amidst varying
clutter, but they struggle to adapt to the rapidly changing
environments typical of roadways. Complications such as
nonuniform clutter (or the lack of reliable clutter models for
this task), target masking, and shadowing can significantly
reduce the effectiveness of CFAR detectors in automotive
radar settings. Additionally, CFAR detectors are constrained
by a fundamental limitation: they typically assume a fixed,
expected target size based on predefined guard and training
cell hyperparameters. However, in an automotive context, this
assumption is problematic as the size of potential targets
can widely vary, ranging from medium-sized objects such as
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Fig. 1. Typical radar processing pipeline, from the raw ADC samples to the output of classification and tracking steps. Nfast and Nslow are the number
of samples in a chirp and in a CPI, respectively. NVchan are the number of virtual channels, in an MIMO system the product of the number of Tx and Rx
channels. Nr , ND , Na , and Ne are the number of range, Doppler, azimuth, and elevation cells, respectively. Finally, Np is the number of points after the
detector, with the three spatial coordinates plus Doppler and power.

pedestrians to large vehicles such as trucks or buses. Moreover,
the perceived size of these targets in the radar’s angular
dimension changes with distance. Large objects occupying
multiple cells at close range can appear as simpler point-like
targets at further distances. This relationship between angular
target size and distance adds another layer of complexity
to using CFAR detectors in automotive radar, necessitating
alternative solutions to accurately detect and classify objects
under varying road conditions.

To address these limitations, the second contribution of this
work is to present a new data-driven radar target detector using
a unique cross-sensor supervision pipeline. The proposed data-
driven detector is initially trained with synchronized radar and
lidar data together, and can subsequently generate denser point
clouds using only raw data from a high-resolution automotive
radar. The proposed approach is extensively validated using
the aforementioned RaDelft dataset.

Compared to the initial results presented in our conference
submission [18], two additional contributions are presented
in this work. First, the proposed data-driven radar detector is
expanded to include temporal information across frames, and
a more rigorous analysis of the impact of each processing
block is included. Second, the multisensor dataset used
for validation, RaDelft, is presented and shared with the
broader research community, including example code for
easier utilization [19].

The rest of this article is organized as follows. As auto-
motive radar is part of a wider multidisciplinary field on
autonomous vehicles, clarifying the terminology used in
this work is important to prevent confusion. This is done
in Section II, which also briefly reviews the conventional
radar processing pipeline. Section III reviews the available
automotive radar datasets and summarizes the state of the art
of automotive radar detectors. Section IV introduces our new
publicly available dataset RaDelft, detailing its characteristics
for data-driven approaches. Our proposed data-driven detector
is presented in Section V. Section VI shows the results
of the proposed method and compares them with those of
conventional CFAR detectors. Finally, Section VII concludes
this article.

II. TERMINOLOGY AND RADAR
PROCESSING REVIEW

In this section, the terminology used in this work is first
clarified, followed by a brief review of the conventional radar
processing pipeline and its steps.

A. Terminology

In recent years, automotive radar has become part of a wider
multidisciplinary field in autonomous vehicles where scientists
from different backgrounds are cooperating. As different
research communities might use different terms [12], [20],
a list of definitions used in this work is provided here.

1) Raw radar data or ADC data refer to the complex
baseband samples the ADC provides at each receiver
channel.

2) Virtual channel or channel refers to one of the multiple
unique combinations of Tx–Rx antenna in a multi-in
multi-out (MIMO) radar, meaning the signal transmitted
from a Tx is received, downconverted, and sampled at
the Rx.

3) Radar frame refers to the set of ADC samples from
a coherent processing interval (CPI) of each virtual
channel. It has dimensions of Nfast × Nslow × NVchan,
where these are the number of samples in fast time, the
number of samples in slow time, and the number of
virtual channels, respectively.

4) Radar cube refers to the spherical coordinate, discretized
representation of the radar data, meaning the range,
azimuth, elevation, and Doppler estimation have already
been performed. Each cell in the radar cube contains a
scalar value indicating the reflected power in that cell.
The size of each cell is related to the characteristics
of the radar, such as the transmitted bandwidth or the
antenna array topology. In general, the cells do not have
the same size over the whole grid.

5) An extended target is a target occupying multiple cells
in one or several dimensions, in contrast to a point
target, which occupies a single cell. Point targets present
a clear peak in the estimation space (range–Doppler–
angle), while extended targets do not.

6) Detection is the binary decision problem determining
whether a radar cube cell contains only noise or noise
plus target. On the other hand, classification aims
to associate a class to each detected cell, such as
“pedestrian,” “vehicle,” or “light pole.” In general, these
two tasks are treated as two blocks in a conventional
radar processing pipeline.

7) 3-D occupancy grid refers to a binary cube, also in
spherical coordinates, which contains ones in voxels that
are occupied by detected targets, and zeros otherwise.
Such a 3-D occupancy grid could be generated directly
from a lidar point cloud, but also from a radar cube
through a detector as this work aims to. In the latter
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case, the resulting 3-D occupancy grid and the radar
cube share the same grid.

8) Point cloud refers to a set of Np points, each containing
L features that result from selecting only those cells
containing ones in a 3-D occupancy grid and converting
them to Cartesian coordinates. For radar point clouds,
it is typically assumed that L = 5, adding Doppler
and power information to the three spatial dimensions,
while for lidar point clouds, L = 4 since Doppler is not
provided.

B. Radar Processing Pipeline Review

The conventional radar processing pipeline is illustrated in
Fig. 1. The steps are as follows.

1) Range and Doppler spectral estimation is performed
from the baseband or ADC samples organized in fast-
time, slow-time, and channel dimensions. Usually, this
is achieved by applying a window with the fast Fourier
transform (FFT) algorithm independently in fast time
and slow time. However, this step may be enhanced by
compensating the range/Doppler migration due to ego-
vehicle and target motion [21].

2) Once a range–Doppler matrix is computed per channel,
the angle estimation is performed (1-D in azimuth or 2-D
in both azimuth and elevation, depending on the antenna
array topology). Direction of arrival (DoA) estimation is
a current area of widespread interest, with much active
research. Usually, digital beam-forming (DBF) is used
for simplicity by means of FFT-based implementation,
but many research works explore alternatives such as
compressive sensing approaches [22], [23], Doppler
beam sharpening [24], [25], or machine learning [26].
Sometimes, especially in real-time embedded systems,
the detection stage is performed before the angle
estimation to reduce the computational load [27],
sacrificing the increase in signal-to-noise ratio (SNR)
due to spatial coherent integration prior to detection.
This process outputs a 4-D radar cube.

3) The detection stage then identifies the cells that contain
the targets. Usually, a combination of a CFAR detector
in some dimensions and peak finding in the rest is used
though some works have also explored using machine
learning algorithms [5], [6], [6], [7], [8], [9], [10].
In this stage, the data are often sparse since most of
the space in the field of view (FoV) does not reflect
sufficient power or is simply empty. The detector outputs
a 3-D occupancy grid, but a conversion to point cloud
is usually performed since it is a convenient format for
visualizations or for dataset storage.

4) After the detection process and the generation of a point
cloud, additional steps can be implemented to extract
more task-relevant information. For instance, in the
automotive context, it is critical to know the nature
of each of the detected points to make the appropriate
decisions, meaning if this originated from a pedestrian,
a vehicle, or some road infrastructure, among others.
Therefore, it is common to apply a classifier on the point
cloud, usually based on DL techniques [12], [13], [14].

If needed for the application, tracking algorithms can
also be applied on the point cloud by using past
information to reduce the estimation noise, eliminate
false detections, and predict future target positions based
on the trajectory. In the automotive radar domain,
tracking algorithms have to deal with the problem
of the extended nature of targets over the angular
domain [28], [29].

III. RELATED WORK

This work introduces two contributions: the recording and
sharing of the RaDelft dataset and the proposed data-driven
detector. Therefore, two related work subsections are included
to review the state of the art and highlight the need for new
radar datasets and new detection algorithms.

A. Radar Datasets

Several automotive radar datasets have recently been
published for different tasks, covering many of the processing
steps listed in Section II-B. However, most of them are
unsuitable or, at the very least, limited for radar practitioners
since the data are already processed, often to the point
cloud level. Thus, it is impossible to apply signal processing
algorithms that operate on lower level data. Some datasets
also provide the radar cube data, but few give the raw
ADC data needed to test advanced signal processing methods.
Essentially, each already-performed processing step limits the
scope of the research that can be performed with that data.
On the other hand, this simplifies the steps needed to make it
suitable for other subsequent tasks.

A recent summary of the available automotive radar datasets
can be found in [30]. Nevertheless, in this article, only
those datasets providing data before the point cloud level of
processing are considered since they are the most useful for
radar practitioners. Table I summarizes such datasets. As can
be seen, most of these available datasets are recorded with
automotive radars with linear antenna arrays, meaning that
there is only azimuth resolution and no information about the
elevation of targets. While useful for some tasks, this type of
data is not representative of the data of the next-generation
4-D radars that are becoming the standard in the automotive
field. On the other hand, some datasets already include a
4-D imaging radar [6], [31], [32]. The RADial [31] dataset
provides ADC data level suitable for radar practitioners, but
the array topology used is not public, and thus advanced array
processing methods cannot be applied. The ColorRadar [32]
dataset uses a commercially available radar; therefore, its
datasheet is public. However, most of the scenes are recorded
indoors and without a vehicle. Moreover, camera information
is not provided. Finally, the K-Radar [6] dataset is the most
complete, providing range–azimuth–elevation–Doppler cubes,
many auxiliary sensors, and useful code to parse the data.
However, no ADC-level data are provided, which may limit
the potential research scope of the dataset.

Considering the limitations of the aforementioned public
datasets, this work presents a new dataset, RaDelft, aiming
to close the gaps in the existing available datasets collected
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TABLE I
AVAILABLE PUBLIC DATASETS PROVIDING EITHER ADC OR PREDETECTION DATA. IN THE DATA TYPE COLUMN, R, D, A, E, AND C STAND FOR RANGE,

DOPPLER, AZIMUTH, ELEVATION, AND CHANNEL, RESPECTIVELY, WHILE PC MEANS POINT CLOUD. IN THE ARRAY TYPE COLUMN, “DENSE”
MEANS THAT ALL THE HALF-WAVELENGTH SPACING IS FILLED WITH VIRTUAL ELEMENTS. IN THE OTHER SENSORS COLUMN, C, L,

AND O STAND FOR THE CAMERA, LIDAR, AND ODOMETRY, RESPECTIVELY

with a commercially available radar. Our dataset contains three
different levels of data processing, namely, ADC-level, radar
cubes, and point clouds as defined in Section II-A, such that
it can serve different future research directions. Additionally,
the dataset contains synchronized data from camera, lidar,
and odometry, recorded in real-world driving scenarios in the
city of Delft. Additional details are provided in Section IV,
specifically the sensors used and the developed radar signal
processing pipeline.

B. Radar Detectors

The radar detection problem can be formulated as a binary
decision task for each radar cube cell, whose objective is to
determine whether there is a target or only noise in that specific
cell. As mentioned in Section I, the automotive radar field
has particular challenges when tackling the detection problem.
First, the definition of clutter is not univocal in this application
since targets of very different natures should be detected,
including pedestrians, vehicles, bridges, potholes, road debris,
and buildings, among others. Second, since modern automotive
radars have high resolution in range, Doppler, and to some
extent angle, targets occupy more than a single cell, behaving
as extended targets. Finally, not only do the sizes of targets
to be detected have a large variance, but also, for the same
target, its perceived size can change over time. This is due
to two different physical phenomena: the dependence of the
angle estimation with its cosine with respect to the radar line
of sight, and the relationship of the Cartesian size of the cell
with the range due to the angle. Due to all these reasons,
conventional CFAR detectors are expected to perform poorly
in automotive radar data [7], [17].

In the past years, several works have been published
on detecting extended targets in radar data. Image-based

detector techniques have been explored in [38], but usually
rely on high-contrast data where sharp transitions occur
between noise and target. However, due to the finite length
nature of signals, spectral leakage in the Fourier processing
makes, in general, these transitions soft. Moreover, subspace
detectors for extended targets in range and Doppler have been
developed [39], [40], but still, an expected spread size of the
target energy is needed, in addition to a high computational
cost, making them unsuitable for real-time imaging automotive
radars.

Also, DL techniques have been applied to the radar
detection problem [5], [6], [6], [7], [8], [9], [11]. In [5], a DL
detector is proposed, outperforming several 2-D cell-averaging
(CA)-CFAR detectors, but only tested in simulated data.
Lin et al. [8] and Gao et al. [41] propose a similar network
structure using three autoencoders in three 2-D projections
(range–angle, range–Doppler, and angle–Doppler) using the
annotated dataset in [14] by a camera, avoiding full 3-D
detection. However, using camera detections as ground truth
may be limited due to the 2-D nature of camera images. Also,
Zheng et al. [11] propose a DL-based detector using bird-eye
view radar data, but focusing only on vehicle detection. On the
other hand, Cheng et al. [7] and Paek et al. [6] propose two
different NNs, but both use the lidar point cloud as ground
truth. Since lidar provides high-resolution 3-D point clouds,
it seems a more reasonable choice to serve as ground truth. The
proposed method in [7] uses an NN to detect targets only in the
range–Doppler dimensions, followed by the angle estimation
and a spatiotemporal filter to enhance the resulting point cloud.
On the other hand, in [6], a novel sparse approach to use an NN
to detect in the range–azimuth–elevation space is presented.
However, the Doppler information is collapsed into a single
value, preventing the network from learning the possible
angular estimation enhancement due to its relationship with
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Doppler [24], [25]. Moreover, only the top 10% power cells
are used as input to the network, and therefore, a predetection
step is used, which can potentially remove target cells. This
may be critical in automotive scenarios, where the angular
sidelobes of close-range targets may be even 20 dB higher
than weakly-reflecting distant targets such as pedestrians.

IV. RADELFT DATASET

The dataset was recorded with the demonstrator vehicle
presented in [42] with an additional Texas Instrument
MMWCAS-RF-EVM [43] imaging radar mounted on the roof
at 1.5 m from the ground. The details of the radar and the
waveform used are provided in Section IV-A. The collection
was performed driving in multiple real-life scenarios in the city
of Delft with different scene characteristics, such as suburban,
university campus, and Delft old-town locations. Four different
camera frames are shown in Fig. 2 to illustrate the differences
in the environments. The output of the following sensors was
recorded: a RoboSense Ruby Plus Lidar (128 layers rotating
lidar, 10 Hz) and the imaging radar board installed on the
roof, a video camera (1936 × 1216 pixels, ∼30 Hz) mounted
behind the windshield, and the ego vehicle’s odometry (filtered
combination of real time kinematics (RTK) GPS, inertial
measurement unit (IMU), and wheel odometry, ∼100 Hz). The
sensor setup can be seen in Fig. 3. All sensors were jointly
calibrated following [44] and time synchronized. With a 10-
Hz frame rate, each scene contains around 2500 radar frames,
adding to a total of 16 975 frames.

Example code for loading and visualizing the data is
provided in a repository1 to facilitate the use of the dataset,
which can be downloaded from [19]. Moreover, the radar
data are specifically provided at different processing stages for
researchers with different backgrounds and interests, including
ADC data, radar cubes, and point clouds. The details of
the radar processing applied to the data can be found in
Section IV-A.

A. Radar Configuration and Processing

In terms of the specific details of the radar system,
this is the MIMO frequency modulated continuous wave
(FMCW) evaluation board MMWCAS-RF-EVM from Texas
Instruments, with 12 transmitters and 16 receivers [43]. The
resulting virtual array is an 86-dense uniform linear array
(ULA) in the X -direction (as shown in Fig. 3) with half-
wavelength spacing, allowing azimuth estimation without
grating lobes and a theoretical resolution of 1.33◦ looking
at boresight. However, from the point of view of the 2-D
angular estimation problem in both azimuth and elevation,
the resulting uniform rectangular array (URA) is very sparse,
with only a few minimum redundancy arrays (MRAs) in the
Z -direction (as shown in Fig. 3). Thus, the elevation estimation
is very poor in terms of both resolution and ambiguity. The
details of the array topology can be found in [43] with
graphical representations of the positions of all the elements.
Moreover, some elements are overlapped, which can be used
to address some of the problems introduced by using time-
division multiple access (TDMA) in transmission, as detailed
later in this section.

1https://github.com/RaDelft/RaDelft-Dataset

TABLE II
RADAR WAVEFORM PARAMETERS USED IN THE DATA COLLECTION

The radar waveform parameters used can be seen in
Table II, with the derived resolution and ambiguity values.
The complex baseband samples are saved in the dataset using
the same format provided by the radar manufacturer, but
MATLAB code is provided to parse it, reshape it into an
Nfast × Nslow × NVchan 3-D tensor, and process it to the radar
cubes.

The first step of the processing is to apply a Hamming
windowing and an FFT in the fast-time and slow-time
dimensions to perform range and Doppler estimations. Then,
the detrimental effects of the TDMA have to be compensated.
The first effect is related to the extension of the pulse
repetition interval (PRI) by a factor equal to the number of
transmitters. Therefore, the maximum unambiguous Doppler
and the corresponding maximum measurable velocity (without
ambiguity) vmax is reduced, as can be seen in the following
equation:

vmax =
c

4 fcPRI
(1)

where c is the speed of light and fc is the carrier frequency.
This effect is especially problematic in the automotive context,
where targets can have high relative speeds. Moreover, the
phase difference between signals received from different
transmitters will depend on both the angle of arrival of the
signal and the velocity of the targets, due to the target’s
movement between transmission times of different transmitters
operating in TDMA mode [45]. This resulting phase migration
term is shown in the following equation:

φmig =
4π

λ
v1t (2)

where λ is the wavelength, v is the relative speed of the target,
and 1t is the time difference between transmitters. This term
must be compensated before performing angle estimation to
avoid significant artifacts.

In this work, both undesirable effects of TDMA are solved
by using the overlapped virtual antennas present in the radar
system with the algorithms provided in [46]. However, it is
important to take into account that the maximum unambiguous
velocity extension only works when a single target is present in
a range–Doppler cell. Therefore, if multiple targets are folded
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Fig. 2. Different frames of different scenes of the RaDelft dataset. As it can be seen, there are city center environments, suburban, and different road
infrastructures such as large bridges.

Fig. 3. Vehicle used to collect the dataset presented in this article, equipped
with a high-resolution radar, lidar, camera, and odometry. The radar is shown
in the top-right inset, with the defined X - and Z -coordinate axes assumed in
this work.

into the same Doppler bin, or there are targets in different
angles at the same range–Doppler bin, the algorithm will not
be able to address the problem. Since this work does not
aim to solve the Doppler ambiguity problem in TDMA, the
aforementioned constraint is accepted as a limitation of the
current commercial radar system. Nevertheless, it is assumed
that making the ADC samples directly available in our dataset
can be valuable for the research community, for example,
to apply more advanced approaches for Doppler/velocity
ambiguity in TDMA in the future.

The angle estimation can be performed once the TDMA
effects have been compensated. It is important to remember
that the resulting virtual array is a very sparse URA with
some structures. While other research works deal with this type
of array, for instance by trying to fill/interpolate the missing
elements or applying compressive sensing techniques [22],
[47], the core of this work is not to improve the angular
estimation with sparse arrays. Therefore, a very simple
approach of zero-filling and FFT processing has been applied.
However, due to the sparseness of the radar antenna array
in the Z -direction (as shown in Fig. 3), grating lobes and
high sidelobes appear in elevation. To mitigate this problem,
the FoV in elevation has been restricted to ±15◦, and the
elevation value with the highest power has been selected and
saved, discarding the rest. Also, the azimuth estimation has
been restricted to ±70◦ for two reasons. First, the angular

estimation performance outside this region is rather poor, as

1θ ∼
1

cos θ
(3)

being 1θ the angular resolution and θ the estimated angle.
Second, the radiation power is almost 10 dB lower than at
boresight outside this region, making target detection very
challenging.

Subsequently, after zero padding, FFT processing, and
FoV cropping, the resulting radar cubes have dimensions
Nr × ND × Na × 2 (500 × 128 × 240 × 2). This essen-
tially means that for each range–Doppler–azimuth cell, there
are two values: the elevation value with the highest detected
power level, and the power level itself. Note that the
240 azimuth bins span the ±70◦ of the FoV after cropping,
but not uniformly, due to the nonlinear relation in (3). For
simplicity and to save storage space in the shared dataset, the
aforementioned values are saved as different cubes since the
elevation can be stored as an integer number (i.e., denoted as
elevation bin), while the power value is a float.

Finally, a detection stage is applied to the radar cubes
to generate a point cloud. This lower dimensionality
representation of the data is also provided within the shared
dataset to ease the process for researchers who want to use this
highly processed data straightforwardly without going into the
details of radar signal processing.

V. PROPOSED DATA-DRIVEN DETECTOR

To address the aforementioned shortcomings of current
detectors in automotive radar, a novel data-driven detector is
proposed to generate 3-D occupancy grids only with radar
data, using NNs and lidar data as ground truth. A visual
summary of the method can be seen in Fig. 4.

The first step of the method is to adapt the lidar point cloud
to serve as the ground truth. For each radar cube, the closest
lidar point cloud in time is selected based on the timestamps
for both radar and lidar data, assuming that a small error
due to different start times may be present. Since the lidar
system used in this work is mechanically rotating, it provides
360◦ coverage. Therefore, the first step is to crop this as to
the same FoV of the radar, i.e., ±20◦ in elevation and ±70◦

in azimuth, and a maximum range of 50 m. To illustrate
this difference in the FoV, Fig. 5(b) shows the cropped lidar
point cloud compared to the original point cloud in Fig. 5(a).
Moreover, removing all the lidar points from the road surface
is essential as the road surface is hardly visible to the radars
and could lead to noisy ground truth for the training process.
The Patchwork++ algorithm is used to this end [48]. After
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Fig. 4. Overview of the proposed data-driven detector. The steps to generate the 3-D lidar occupancy grid are shown on the top row, which will be then
used as ground truth for training the NN. The radar signal processing pipeline is shown at the bottom of the figure and is needed to generate the input data
for the network. RDC stands for range–Doppler–channel (no angle estimation), and RAED stands for range–azimuth–elevation–Doppler [18]. RoI stands the
region of interest.

Fig. 5. (a) Original point cloud as provided by the lidar sensor. (b) Lidar point cloud after cropping to mimic the radar FoV (i.e., ±70◦ in azimuth and
±20◦ in elevation). (c) Lidar point cloud after the road surface removal using PatchWork++ [48], which will be used as ground truth to train the proposed
data-driven detector.

removing the road surface points, the resulting lidar point
cloud can be seen in Fig. 5(c).

Finally, the processed lidar point cloud has to be converted
into a 3-D cube to serve as ground truth. This voxelization
process can be understood as generating a 3-D occupancy
grid, where each voxel contains “one” if at least one lidar
point is inside, and “zero” otherwise. However, it is important
to note that the radar cube grid is not uniform due to the
Fourier transform processing for angular estimation and its
relationship with the cosine of the estimated angle. This effect,
which essentially makes the cells thinner at boresight and
broader at the edge of the FoV, must be considered to generate
the same nonuniform lidar 3-D occupancy grid. It is important
to notice that all this process can be performed offline, outside
the NN training loop, saving the processed lidar point clouds
beforehand to speed up the training.

Once the ground truth has been appropriately generated
as described above, the NN can be trained. The proposed
NN is an evolution of the previous model validated in [18].
Specifically, in this case, the network is modified to use three
frames of data as input to model temporal patterns, and the
NN predicts the 3-D occupancy grid for the three frames
simultaneously. This modification has been implemented to
reduce the “flickering” usually present in the radar point
clouds, where isolated points pass the detection threshold
due to instantaneous high noise but disappear in consecutive
frames. Therefore, the proposed NN tries to enforce some

temporal consistency. A diagram of the complete network
architecture is shown in Fig. 6. As it can be seen, the
input is a T × 2 × R × A × D tensor, where in practice,
T = 3 (frames), R = 500 (range bins), A = 240 (azimuth
bins), and D = 128 (Doppler bins). As explained in
Section IV-A, these values are higher than the initial number of
fast-time samples, slow-time samples, and virtual channels due
to zero padding applied before the FFT processing. Moreover,
the number of frames T = 3 has been chosen as a tradeoff
between managing to capture temporal information and losing
useful correlation between frames since the scene is often
not static, and including too many frames will result in
inconsistencies.

In terms of architecture, the first part of the proposed
NN is the DopplerEncoder subnetwork. As the lidar cannot
measure Doppler information, the detections on the Doppler
dimension of the radar data cannot be directly utilized and
compared to the ground truth. However, there is a known
relationship between Doppler and angle in the case of
moving platforms (or moving targets). Thus, the Doppler
dimension is not simply removed from the radar data but rather
encoded so that it can still be used in the overall detection
process, as it may be beneficial for angular estimation.
Specifically, here, the DopplerEncoder subnetwork extracts
all the Doppler information in each range–azimuth cell and
encodes it into the channel dimension. This is achieved by
using two 3-D convolutional layers followed by a 3-D max
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pool layer, transforming the 2 × R × A × D input tensor
into a 64 × R × A tensor, where the 64-channel dimension
contains the encoded information of Doppler and elevation.

The second part of the proposed network is an off-the-
shelf 2-D CNN backbone, applied to estimate the final
R × A × E (500 × 240 × 44) 3-D occupancy grid. The
significant advantage of using such 2-D CNN backbones is
their compatibility with hardware accelerators [e.g., GPUs and
tensor processing units (TPUs)] and major machine learning
frameworks (e.g., Tensor-Flow and PyTorch), leading to
enhanced computational efficiency. While the current proposed
implementation employs a feature pyramidal network (FPN)
[49] with a Resnet18 backbone [50], our modular design
allows for different architectures to be used for this purpose,
enabling the system to be tailored to the specific memory and
computational requirements of the intended platform.

These two parts of the proposed network are applied to
each of the three considered frames independently, as shown
in Fig. 6, but the weights of the layers are shared,
and the output is concatenated into a T × R × A × E
(3 × 500 × 240 × 44) tensor. Finally, to take into account
the temporal relationship between the three frames, a third
module composed of six 3-D convolutional layers is included
(referred to as TemporalCoherenceNetwork in Fig. 6). It is
important to notice that even if the output is a 3-D occupancy
grid for each frame, the power information on each cell is
not lost since the indices of the detected cells from such grid
can be used to retrieve the corresponding intensity information
from the original RAED cube.

One of the key characteristics of the radar data is the scene
sparsity. Of all the voxels in the generated 3-D occupancy
grid, only around 1% contain targets. Therefore, this must
be considered when selecting the loss function for training
the NN. In this work, the Focal loss [51] is used for this
purpose, which handles class imbalances in a similar way to
the weighted cross-entropy loss and adds an extra modulating
factor to focus on the hard cases. The Focal loss [51] is defined
as

FL(pt ) = −αt (1 − pt )
γ log(pt ) (4)

with

pt =

{
p, if y = 1
1 − p, otherwise

(5)

where y ∈ {±1} is the ground-truth class (i.e., detection or
not), αt is the weighting factor to take into account data
imbalance defined as α ∈ [0, 1] for class 1 and 1−α for class
−1, and γ > 1 is the focusing factor. This loss is especially
interesting in radar data since high radar cross section (RCS)
targets can be easily detected, but low RCS targets or targets
located at a far distance are more challenging to detect, and
this can be taken into account by the γ parameter. In terms of
training–testing split, 90% of the data from five of the seven
recorded scenarios have been used to train the network using
Adam optimizer, leaving 10% for validation. The network
was trained using the DelftBlue Supercomputer [52] from TU
Delft. The remaining two recorded scenarios are used as a test
set, i.e., with data completely new, unseen for the network.

Fig. 6. Proposed network architecture for the data-driven detector composed
of three subnetworks. First, the DopplerEncoder network aims to encode the
Doppler information so that its information is retained even if not directly
comparable with ground-truth lidar data. Then, a standard FPN with a Resnet
backbone is used. Note that the three branches process separately three frames
of data but share the same weights. Finally, the three outputs are concatenated
to produce an input tensor to the temporal coherence network, which generates
the final occupancy grid for each frame.

VI. RESULTS

The trained NN can estimate the 3-D occupancy grid for
each radar cube and thus act as a detector. It should be noted
that all the results presented in this section are evaluated using
only the test set, composed of the two scenes left out from the
training process. This ensures data independence and, while
still collected in the same geographical area, the capability
of the proposed method to generalize to unseen data with
different characteristics.

Two main performance metrics are used to evaluate the
results of the proposed NN: the usual probability of detection
(Pd ) and probability of false alarm (Pfa) metrics, and the
Chamfer distance (CD). In both cases, the lidar data are used
as a reference, either in the occupancy grid format for the
Pd and Pfa computation, or in the point cloud format for the
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CD. While different definitions are given for the CD in the
literature, in this work, the following is used:

CD(S1, S2) =
1

|S1|

∑
x∈S1

min
y∈S2

||x − y||2

+
1

|S2|

∑
y∈S2

min
x∈S1

||x − y||2 (6)

where S1 and S2 are the two sets of points being compared
(e.g., the lidar points assumed as ground truth versus the points
from the 3-D occupancy grid provided by the proposed data-
driven detector), and |S| is the cardinality of the set. The closer
the two sets of points are the better, and so the lower the CD.

However, it is important to note that a caveat is needed when
analyzing the Pd and the Pfa metrics. A small misalignment
in the calibration of only a few centimeters in range or of
a small angle will cause the probability of detection to fall
drastically, while the probability of false alarms will rise,
as can be seen in the examples presented in Fig. 7. For
instance, considering the example in Fig. 7(b), even though
the Pfa of this case is numerically the same as in the case
represented in Fig. 7(a), the impact in terms of quality of
the perceived environment can be very different, especially
taking into account the small cell dimensions. While this is
not a problem in the proposed method (as the network used
as the data-driven detector can learn offsets such as those in
this example), it may affect the other methods used in this
section for benchmarking, such as different variants of CFAR
detectors. Moreover, since the radar resolutions are worse than
the lidar’s, many targets will be overestimated in size, raising
the Pfa. These false alarms are, in general, assumed to be less
relevant for assessing the quality of automotive radar since
a small overestimation of objects in the order of centimeters
(i.e., few lidar resolution cells) may not be as bad as detecting
isolated ghost targets. Nevertheless, all the false alarms are
treated equally in the assessment in this article since an extra
clustering or tracking stage may be needed to distinguish
between these unfavorable cases in terms of Pfa. An example
of this phenomenon can be seen in Fig. 7(c). On the other
hand, it can be seen how the CD can capture these spatial
relationships, yielding different values for the three different
cases. Taking all this into account, a point cloud-level metric
like the CD is considered to be a better evaluation metric for
this work.

Table III shows the performance of the proposed method
with the three aforementioned metrics averaged over the whole
test set and compared with different alternative approaches
for detection. Specifically, different rows on Table III are as
follows.

1) Proposed Method: The results of the proposed method
explained in Section V and with the overall architecture
shown in Fig. 6.

2) No Doppler and Quantile: An approach similar to
the one presented in [6], where only those power
cells with values higher than the 0.9 quantile are
kept and the rest are set to zero. Furthermore, the
Doppler information is collapsed by taking the mean
over the Doppler dimension. This is used to “sparsify”

Fig. 7. Illustration of the problem in computing the Pd , Pfa, and CD
as performance metrics. (a) Case where two ghost targets are created.
(b) Calibration misalignment shifts the detection cells, raising the Pfa as if
two ghost targets were created. (c) Problem of the overestimation of target
size. These three cases have nominally the same Pfa, but the implications
for overall scene perception are completely different. It can be seen how the
CD captures the spatial relationships and yields a better value in (b) and (c),
where the false alarms have less impact from an application point of view.

the data and speed up processing, with the risk of
cutting out weakly reflecting targets. Since there is no
Doppler data anymore, the DopplerEncoder subnetwork
is removed from the general architecture of the proposed
data-driven detector. It is important to note that the
segmentation backbone has 13.2 million parameters,
while the DopplerEncoder subnetwork is only 76.9k.
Therefore, the comparison between the full network and
the network without the DopplerEncoder is possible
without adding extra layers.

3) Quantile: The proposed method, but with the predetec-
tion fixed threshold based on the 0.9 quantile inspired
by Paek et al. [6].

4) No Time: In order to assess the impact of inputting
several frames into the network and use the temporal
evolution of the scene, this tests the proposed method
without the Temporal Coherence subnetwork in the
architecture, essentially an ablation study without
interframe temporal information.

5) OS-CFAR: A 2-D ordered-statistics (OS)-CFAR in
range–angle, followed by a 1-D OS-CFAR in Doppler.
While multiple different CFAR alternatives have been
tested (i.e., different combinations of CA and OS-CFAR
detectors), only the best implementation is reported here
for conciseness. An analysis with different variations has
been presented in [18] for completeness. Following [53],
the rank has been set to 0.75 times the number of
training cells, and no guard cells have been used.

As it can be seen in Table III, the highest Pd and the lowest
CD are achieved by the proposed method while maintaining
a similar Pfa. On the other hand, applying the quantile
cut and removing the Doppler information similar to [6]
reduce the Pd from 62.13% to 52.97% and worsen the CD
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Fig. 8. Example frame in a challenging situation for the radar system, where the vehicle is going under a large bridge. In the top figure, the camera image is
shown for reference. On the left, the point cloud generated with the proposed data-driven method is shown, and on the right, the original point cloud provided
by the lidar. The red arrows point to the bus under the bridge and the orange arrow points to the pedestrian next to it. Note that the color in the point clouds
refers to the height of the objects.

from 1.54 to 2.16 m. Looking at the results for the other
versions, it can be seen that this drop in performance is
mostly due to the removal of the Doppler information. Using
only the quantile-based threshold may be a good tradeoff
since the performance degradation is not substantial, but the
computational cost is reduced. Looking at the version without
the Temporal Coherence subnetwork, which is trained on
single frames, it can be seen how all the metrics are worse
than in the baseline. Thus, including temporal information in
the network is a good strategy to boost performance, with the
only downside of increasing slightly the training time due to
the extra layers. Finally, it can be seen that the conventional
OS-CFAR is the method that performs the worst, with a much
higher CD of 6.73 m.

In order to have a fairer comparison against the conventional
CFAR detector, a 2-D version of the proposed method has
also been evaluated by disregarding the elevation information,
as this can only be estimated rather poorly due to the
unfavorable design of the radar array. To this end, the proposed
NN has been trained without elevation information, discarding
the virtual channels in the Z -direction and, thus, treating
it as a ULA in the azimuth direction. For completeness,
the implementation with a quantile-based threshold has also
been assessed in this new analysis. The results are shown
in Table III under the “No Elevation cases” rows. For these
tests, the Pd of the OS-CFAR approach is increased to 11.5%,
but the Pfa is also raised. This is mainly due to detections
triggered in the adjacent angle bins of a target generating “ring
like” patterns due to sidelobes, a phenomenon also mentioned
in [6]. Both the proposed method and the proposed method

TABLE III
PERFORMANCE RESULTS OF THE PROPOSED METHOD FOR DATA-DRIVEN

DETECTION, DIFFERENT VARIATIONS OF THE METHOD, AND THE
BEST-PERFORMING CFAR DETECTOR IMPLEMENTED

with the quantile-based threshold are shown to outperform the
conventional OS-CFAR in the three metrics.

In addition to the quantitative results, some qualitative
results are also presented to show the performance of the
proposed method visually. In Fig. 8, a challenging frame from
the radar point of view is shown, where the vehicle is going
under a large but relatively not tall bridge. The 3-D point cloud
generated with the proposed method is shown in the left plot,
with the original lidar on the right plot. As it can be seen, the
road is clear of false alarms, and the bus (in red arrow) and
pedestrian (in orange arrow) are clearly detected. The bus and
the ceiling merge due to the poor elevation resolution of the
radar data, but they could be split and identified in Doppler.
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Fig. 9. Example of the data frame in the urban scenario with related detections. (a) Original lidar point cloud projected onto the camera as well as a bird’s eye
view. (b) Radar point cloud generated with the proposed data-driven detector. (c) Radar point cloud generated with the best-performing CFAR implemented
(i.e., 2-D OS-CFAR in range–azimuth, followed by an OS-CFAR in Doppler).

Fig. 10. Example of data frame where the elevation information is disregarded from the detection process. In the top figure, the camera image is shown
for reference. In the bottom part of the figure, the original lidar point cloud is shown (center), with the point cloud generated by the proposed data-driven
detector (left) and by the best-performing implemented CFAR (right).

Fig. 9 shows another scene where the resulting point clouds
have been projected onto the camera image to provide a sense
of the 3-D scene (top), but the bird’s eye view projection is
also shown (bottom). For simplicity, the point clouds have
been cropped to a maximum range of 30 m. Moreover, as a
visual aid in the bird’s eye view, cyclists are highlighted with
an orange hexagon, cars with a red hexagon, and a large van

with a light blue hexagon. In Fig. 9(a), the original lidar point
cloud is presented, where many details of the scene can be
appreciated. Fig. 9(b) shows the detections generated using
the proposed data-driven detector, and as it can be seen, most
of the details of the relevant targets are preserved. Objects
are slightly overestimated in size, but the overall scene is
clear. Also, the shape of the objects is preserved, especially
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in the case of cars and large vans. Finally, Fig. 9(c) shows the
output of the previously-mentioned best-performing CFAR
detector, where it can be seen how the output is much sparser
in terms of detected points, and also missing one of the
cyclists in the scene.

Finally, an example of results where the elevation
information is disregarded in the detection process is presented
in Fig. 10. Fig. 10 shows the camera image for visual reference
(top), and the comparison of the resulting point cloud from the
radar data with the proposed data-driven detector (left), the
original lidar data (center), and the point cloud from the radar
data with the best-performing implemented CFAR. Note that
cars are highlighted in red, and there are “ring-like” detections
(highlighted in green) due to the high sidelobes of the van,
which can be seen in Fig. 10 generated using the CFAR
detector. This phenomenon raises the Pfa and is an expected
behavior that has been reported in other automotive radar
datasets [6] when using CFAR detectors. As also reported in
the previous qualitative examples, the point cloud generated
by the proposed data-driven detector is denser than the CFAR-
generated one and conserves the correct location and shape of
most objects.

VII. CONCLUSION

This work introduces an innovative data-driven detector for
automotive radar and the RaDelft dataset, a newly collected
multisensor real-world dataset. The proposed radar detector
is trained exclusively from unlabeled synchronized radar
and lidar data, thus eliminating the need for costly manual
object annotations for the detection process. Two types of
performance metrics were employed to validate the method,
i.e., conventional probability of detection and probability of
false alarm, alongside the CD, a point cloud-level metric
designed to capture spatial relationships and similarities
between point clouds. The proposed method reduces by 4.2 m
(77% reduction) the CD when compared with conventional
OS-CFAR detectors, and by 0.62 m (28% reduction) when
compared with the state of the art. Also, it significantly
increases the probability of detection. Moreover, an ablation
study showed that including temporal information in the
process is important, and Doppler information is especially
crucial for our model’s good performance. Results show that
the probability of detection is increased from 50.44% to
62.13%, and the CD is reduced by 27% when using Doppler
information.

For the experimental evaluation of the proposed approach,
a comprehensive dataset encompassing over 30 min of actual
driving scenarios was collected using a vehicle equipped with
both lidar and radar sensors, resulting in 16 975 radar frames
paired with corresponding lidar ground truth. Compared with
other existing datasets, RaDelft provides raw data from a
commercial 4-D imaging radar needed for radar practitioners
for many research lines. Moreover, it contains data processed
at other levels (e.g., radar cubes and point clouds) suitable
for researchers with different backgrounds and interests. The
dataset is publicly available, with code to parse, visualize, and
process the data, as well as the code to reproduce the results
reported in this work.
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