<]
TUDelft

Delft University of Technology

Signal Processing over Dynamic Graphs

Das, B.

DOI
10.4233/uuid:9285b1¢3-5384-4336-b90c-0bef8fec3392

Publication date
2025

Document Version
Final published version

Citation (APA)
Das, B. (2025). Signal Processing over Dynamic Graphs. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:9285b1c3-5384-4336-b90c-0bef8fec3392

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:9285b1c3-5384-4336-b90c-0bef8fec3392
https://doi.org/10.4233/uuid:9285b1c3-5384-4336-b90c-0bef8fec3392

Signal Processing
over Dynamic Graphs

Bishwadeep Das

SIGNAL PROCESSING OVER DYNAMIC GRAPHS

SIGNAL PROCESSING OVER DYNAMIC GRAPHS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates
to be defended publicly on
Monday 10 March 2025 at 17:30 o’clock

by

Bishwadeep DAS

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus,
Prof. dr. A. Hanjalic,
Dr. E. Isufi,

Independent members:

Prof. dr. A. Garcia Marques
Prof. dr. ir. G.J.T. Leus

Prof. dr. G. Mateos,

Prof. dr. C. Richard,

Prof. dr. ir. M.H.G Verhaegen,

chairperson
Delft University of Technology, promotor
Delft University of Technology, copromotor

King Juan Carlos University, Spain

Delft University of Technology

Rochester University of Technology, United States of America
University Cote d’Azur, France

Delft University of Technology

N/O

Delft
e t University of
Technology Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Cover by:

Copyright © 2025 by B. Das

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.

https://repository.tudelft.nl/

CONTENTS

Summary

Samenvatting

1. Introduction

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

Processingdataovergraphs L oo
Challenges of dynamic graph signal processing
Thesis contribution L L e
Dissertationoutline. e
How toread this dissertation
Listof publications e

2. Background

2.1.

2.2.
2.3.

2.4.

2.5.

Elements of graph signal processing
2.1.1. Graphso e
2.1.2. Graphshiftoperator
2.1.3. Graphsignal L e
2.1.4. Graphsignalvariability
2.1.5. Graphspectrum.
2.1.6. GraphFouriertransform.
Graphfilters e
Dynamicgraphs. e
2.3.1. Random graph models for dynamic expanding graphs
Tensors for dynamic topology representation
2.4.1. Dynamic graph tensor decomposition
Conclusion L e

3. Learning task-aware expanding graphs

3.1.

3.2.
3.3.
3.4.

3.5.
3.6.

Introduction e e e e e e e
3.1.1. Contributionsofthischapter
Relatedworks e e

Task-aware connectivitylearning,
3.4.1. Signalinterpolation
3.4.2. Signalsmoothness
343, CoNVEIZENCE . . . v v v v vttt et e e e
Perturbationanalysis L L
Numericalresults

10
10
10
11
11
12
13
14
16
19
22
23
24

VI CONTENTS
3.6.2. Collaborativefiltering 42
3.6.3. Blognetwork 44

3.7. Conclusion L e 45
4. Graph filter for incoming nodes 47
4.1. Introduction L e 48
4.1.1. Contributionsofthischapter 48

4.2. Problemformulation L 49
4.3. Filtering withincomingnodes 50
43.1. Compactform 50
4.3.2. Signaldenoising 52
4.3.3. Semi-supervisedlearning oL 53

4.4. Numericalresults e 55
4.4.1. Denoisingot e e e e e e e e 56
4.4.2. Semi-supervisedlearning oL, 57

45. Conclusion e 58
5. Online filtering over expanding graphs 61
51. Introduction e e 62
5.1.1. Contributionsofthischapter 63

5.2. Problemformulation o o 63
5.2.1. Filtering over expandinggraphs 64
5.2.2. Onlinefilterlearning 65

5.3. Deterministiconlinefiltering 66
5.4. Stochasticonlinefiltering 69
5.4.1. Heuristic stochastic online filtering 69
5.4.2. Adaptive stochastic online filtering 72

5.5. Numerical experimentsttt 74
5.5.1. Experimentalsetup.t 76
5.5.2. Performance comparisonttt 77
5.5.3. Analysisofonlinemethods 78

56. Conclusion e 81
6. Dynamic Graph Topology Decomposition 85
6.1. Introduction L 86
6.1.1. Contributionsofthischapter 87

6.2. Problem formulation 87
6.3. Dynamic graph decomposition 90
6.3.1. Solving the decomposition 92
6.3.2. UpdatingtheA;s it 92
6.33. UpdatingC. e 94

6.4. Algorithmanalysis 95
6.4.1. Complexityanalysis., 95
6.4.2. Convergenceanalysis 95

6.5. Numericalresults e 97

6.5.1. Experimentalsetup. 97

CONTENTS

VII

6.5.2. Method Analysis .
6.5.3. Comparison
6.6. Conclusion.

7. Concluding Remarks

7.1. Answers to research questions e e

7.2. Future research directions

7.2.1. Online topology identification on growinggraphs
7.2.2. A Bayesian filtering approach over expanding graphs
7.2.3. Dynamic topology representation

A. Appendix A
A.1. Proof of Proposition1 . .
A.2. Proofof Corollary 1
A.3. Proof of Corollary 2
A.4. Proof of Proposition2 . .
A5. Gradients
A.6. Proof of Theorem1
A.7. Proof of Proposition3 . .

B. Appendix B
B.1. Proofof Lemmal
B.2. Proof of Proposition4 . .
B.3. Proof of Proposition5 . .

C. Appendix C
C.1. Proof of Theorem 2
C.2. Proof of Corollary 3
C.3. Proof of Corollary 4
C.4. Relevant derivations . . .
C.4.1. Gradients.

D. Appendix D
D.1. Convergence proofs . . .
D.2. Proof of Proposition . . .

D.3. Gradients for ADMMupdates v v v vttt e e e e e e

D.4. Component-wise F1 scores
Acknowledgements

Curriculum Vitae

99
102
104

107
107
109
109
110
111

113
113
113
114
114
115
116
119

121
121
121
123

127
127
129
130
130
131

133
133
134
134
135

151

153

SUMMARY

Extending the concepts of classical signal processing to graphs, a wide array of methods
have come to the fore, including filtering, reconstruction, classification, and sampling.
Existing approaches in graph signal processing consider a known and static topology, i.e.,
fixed number of nodes and a fixed edge support. Two types of tasks stand out, namely,
topology inference, where the edge support along with their weights are estimated from
signals; and data processing, where existing data and the known topology are used to
perform different tasks. However, such tasks become quite challenging when the net-
work size and support changes over time. Particularly, these challenges involve adapting
to the changing topology, data distributions and dealing with unknown topological in-
formation. The latter manifests for example, when new nodes are available to attach
to the graph but their connectivity is uncertain as is the case in cold start graph-based
recommender systems.

The key contribution of this dissertation is proposing methodologies for signal pro-
cessing over dynamic networks which are aimed at the two aforementioned tasks. For
dynamic networks with incoming nodes, we process signals by introducing a parametric
stochastic attachment model. In this model, the incoming nodes connect with probab-
ility to existing nodes with certain weights. This uncertainty allows us to model input
output relations and allows us to cast them in the context of different graph signal pro-
cessing tasks. We learn the model attachment parameters in a task-aware setting, al-
lowing us to interpret topology identification in task-aware settings. Separately, we also
propose filter design strategies for processing signals both at the incoming and existing
nodes using stochastic attachment models.

Another contribution of this dissertation is to extend graph signal processing with
graph filters to the scenario where the graph keeps growing in size with streaming data.
We propose online graph filter design which updates the filter online, based on incoming
nodes. We design this both for scenarios where the incoming node connectivity is known
and unknown. In the unknown connectivity case, we study the performance difference
between knowing and not knowing the topology and how the stochastic attachment in-
fluences it. We also show that by adapting the stochastic attachment, we can learn faster
from the data stream.

Finally, we consider the task of topology decomposition and identification for dynamic
networks with fixed nodes but changing edge support. We build a tensor of partially ob-
served adjacency matrices corresponding to such a dynamic topology and express this
in terms of underlying latent graphs and their temporal signatures. Furthermore, we ac-
count for the time-varying graph signals as a prior to aid identifying these latent graphs
and missing components of the topology. These latent graphs are individually and col-
lectively expressive and provide interpretable decompositions along with outperforming
traditional structure agnostic low-rank decompositions.

SAMENVATTING

Door de concepten van klassieke signaalverwerking uit te breiden naar grafen, is een
breed scala aan methoden naar voren gekomen, waaronder filteren, reconstructie, clas-
sificatie en bemonstering. Bestaande benaderingen in graafsignaalverwerking gaan uit
van een bekende en statische topologie, d.w.z. een vast aantal knopen en een vaste on-
dersteuning. Twee soorten taken springen eruit, namelijk topologie-inferentie, waarbij
de ondersteuning samen met hun gewichten worden geschat op basis van grafsignalen;
en grafsignaalverwerking, waarbij en de bekende topologie en de signal erop worden
gebruikt om verschillende taken uit te voeren. Dergelijke taken worden echter een hele
uitdaging als de netwerkgrootte en ondersteuning in de loop van tijd verandert. Deze
uitdagingen hebben vooral te maken met het aanpassen aan de veranderende topologie,
gegevensdistributies en het omgaan met onbekende topologische informatie. Dit laatste
is bijvoorbeeld het geval wanneer er nieuwe knopen beschikbaar zijn aan de graf te kop-
pelen, maar hun connectiviteit onzeker is, zoals het geval is in cold start graafgebaseerde
aanbevelingssystemen.

De belangrijkste bijdrage van dit proefschrift is het voorstellen van methodologieén
voor signaalverwerking over dynamische netwerken die gericht zijn op de twee boven-
genoemde taken. Voor dynamische netwerken met inkomende knopen verwerken we
signalen door een parametrisch stochastisch verbindingsmodel te introduceren. In dit
model verbinden de binnenkomende knopen zich met waarschijnlijkheid met bestaan-
de knopen met bepaalde gewichten. Deze onzekerheid stelt ons in staat om de relaties
tussen output en input te modelleren en om deze te gieten in de context van verschillen-
de graafsignaalverwerkingstaken. We leren de parameters van het model in een taakbe-
wuste setting, waardoor we topologie-identificatie kunnen interpreteren in taakbewuste
settings. Los daarvan stellen we ook filterontwerpstrategieén voor om signalen te ver-
werken op zowel de inkomende als de bestaande knopen met behulp van stochastische
koppelingsmodellen.

Een andere bijdrage van dit proefschrift is het uitbreiden van graafsignaalverwerking
met grafiekfilters naar het scenario waarbij de graaf steeds groter wordt met stromende
data. We stellen een online graaffilterontwerp voor dat het filter online bijwerkt op basis
van binnenkomende knopen. We ontwerpen dit zowel voor scenario’s waarin de connec-
tiviteit van inkomende knopen bekend is als voor scenario’s waarin deze onbekend is. In
het geval van onbekende connectiviteit bestuderen we het prestatieverschil tussen het
wel en niet kennen van de topologie en hoe de stochastische koppeling dit beinvloedt.
We laten ook zien dat we door de stochastische koppeling aan te passen sneller kunnen
leren van de datastroom.

Ten slotte bekijken we de taak van topologiedecompositie en -identificatie voor dy-
namische netwerken met vaste knopen maar veranderende ondersteuning. We bouwen
een tensor van gedeeltelijk waargenomen adjacency matrices die correspondeert met

XI

XII SAMENVATTING

een dergelijke dynamische topologie en drukken deze uit in termen van onderliggen-
de latente grafen en hun temporele signaturen. Bovendien houden we rekening met de
tijdsvariérende graafsignalen als een prior om deze latente grafen en ontbrekende com-
ponenten van de topologie te helpen identificeren. Deze latente grafen zijn individueel
en collectief expressief en leveren interpreteerbare decomposities die beter presteren
dan traditionele structuur agnostische low-rank decomposities.

INTRODUCTION

1.1. PROCESSING DATA OVER GRAPHS

Networks and network-structured data are universally observed. Common examples
of networks include biological [1], social [2], transportation [3], and citation networks
[4] and the respective data they generate such as gene expressions signals, social
opinions, traffic, and emerging research topics. To represent the structure of these
networks, we rely on graphs which are composed of a set of nodes and edges that
form pair-wise connections between some of the nodes. In social networks, users
typically represent the nodes and edges denote similarities between users in the
form of virtual friendship. In biological networks, protein molecules are the nodes
and edges exist between molecules which share similar functions. [5]. Network data
is intrinsically linked to its structure, which involves the nodes. An example is the
quantified opinion of users in a social network, which can represent anything from
taste in music to opinions on social issues. Another example is the functionality of a
protein molecule in a protein network, and the rate of traffic at a crossing in a road
transportation network. Graph data are intrinsically coupled with the underlying
topology, which is an irregular domain as opposed to structured domains concerning
audio or image data. To extract meaningful information, or solve graph-related tasks
with networks and network data, it is needed to develop tools for processing data
over graphs.

Such tools have been developed and used extensively to process data over graphs
by utilising the structure, over a variety of applications [6-8]. To represent the
network data, we can define a function mapping from the node set to the set of real
number, which is also known as a graph signal. To illustrate, consider the task of
predicting the rating a user would give to a specific item in a movie recommender
system such as Netflix or IMDB. Graph signal processing-based approaches have
achieved great success in collaborative filtering either in linear form or via nonlinear
methods via graph neural networks [9]. There exists a user-user graph, which
considers users as nodes and connects similar users via edges. This user-user graph
is built on the similarities estimated from the existing ratings or from a social
network among users [10]. The graph signal here is the rating a user provides to a
particular movie item. The signal processing task is using the existing data and the

2 1. INTRODUCTION

topology of the graph to infer the rating of users that have not yet consumed a
particular item. This and the similar graph signal processing problem have received
a lot of attention and breakthroughs when applied on static graphs.

However, graphs are rarely static but dynamic as they change over time. An
important observed dynamic is one comprising changing edges over time [11]. In
the context of recommender systems, the preferences of users change, leading to
changes in pair-wise similarities between users, and, in turn, leading to a graph
with changing connections [12]. The task now becomes to predict ratings each user
would provide to items over time by accounting also for the changes in the topology.

The second significant dynamic involves changing nodes, particularly the growth
of the graph through an addition of nodes. This is studied extensively for citation,
grid, and social networks [13-15] but they all concern topological modeling aspects
from a network science perspective and overlook the processing tasks associated to
these networked-data.. In the earlier recommender system example, this happens
when a new user enters the system [16-18]. In contrast to static graphs, processing
data over expanding graphs has to take into account the evolving topology induced
by the addition or deletion of nodes and edges. Thus, we want to predict how a new
user would rate a movie without having access to any of the user’s previous ratings
or social connections [16-18].

1.2. CHALLENGES OF DYNAMIC GRAPH SIGNAL PROCESSING

Despite a multitude of works collectively addressing problems in static and dynamic
graph signal processing, there are still two main challenges that remain unsolved.

The first challenge concerns the certainty surrounding the dynamic graph. In some
cases, it is known how the graph will grow. This happens in a recommender system
when a new user has provided access to ratings and relevant side-information which
can be used to estimate similarities with the existing users. However, in many other
instances, there is uncertainty in this regard [19]. This happens when a new user
in the recommender system has no associated information, or when the similarities
between users are estimated poorly due to delays in getting the desired number
of ratings. It is therefore difficult to estimate how this user would connect to the
existing network. This poses a greater challenge where new users are always arriving
and items need to be recommended to these users without waiting for their ratings
to be available.

The second challenge concerns the statistical nature of the data over the incoming
nodes. The data is not available all-at-once, and it may not follow a fixed distribution,
making it difficult to rely on conventional batch-based approaches. In line with the
recommender system example, the new users who keep joining the network need
not have the same taste in movies as the existing users or even the users who joined
before. Moreover, the data over the existing networks may also change [20].

The third challenge concerns dynamic graphs with fixed nodes and varying edge
support. We may observe a dynamic graph but its evolution is often governed by
a few underlying factors that are difficult to estimate. Typically, these factors are
estimated from spatiotemporal graph signals [21-24]. However, given a dynamic

1.3. THESIS CONTRIBUTION 3

network, its analysis is limited to representing them as tensors followed by low-rank
tensor decompositions, without accounting for the dynamic graph signals. The focus
is mostly on downstream tasks. Low-rank decompositions are limited in their ability
to represent topologies int eh form of adjacency or Laplacian matrices, let alone
obtain the driving underlying factors.

For graphs with fixed nodes and changing edges, there exist some works discussing
processing signals over them [25, 26]. For growing graphs, stochastic attachment
models have been studied [13, 14, 27] as a way to model them. These models are
often data and/or task-agnostic and depend on the structural characteristics of the
existing graph. For example, one of these models [14] states that the new user is
likely to connect to, i.e., have similarities in taste with the existing user who has
rated more items. This may not always be true for predicting ratings for the new
user.

Second, the existing works which can handle incoming nodes assume known
attachment information, i.e., full knowledge of how they attach to the existing graph.
[28-30]. They also infer the attachment in the presence of features [31] or generate
embeddings from features. This allows these approaches to handle incoming nodes.

Dynamic graphs with fixed nodes and changing support have been studied [32-40].
The focus, however, has been on downstream tasks. For this purpose, the dynamic
topology is represented as a tensor and a low-rank tensor decomposition is utilized
for these tasks. The decompositions typically do not incorporate graphs or graph
signals and are thus not always interpretable. While the low-rank representations
make sense for tasks such as community detection, where similar nodes are expected
to have closely-spaced embeddings, they do not throw light on the nature of the
structural evolution over time. Such approaches also consider the signals or the
tensor representation to be fully available, i.e., no missing observations.

1.3. THESIS CONTRIBUTION

Given the three challenges described in the previous section, the following are the
aims of this dissertation:

Develop a theoretical framework for processing signals over dynamic graphs by
accounting for changes both in the topology and in the signal associated to it.

The specific aims of this dissertation are
1. Changing nodes (Aim-1). We introduce a general framework that can process

data over expanding graphs. Establishing the framework involves the following:

i. Inferring the connectivity for incoming nodes that is both task-aware and
data-driven.

ii. Study signal processing techniques for inference over the existing nodes
as well as single-shot incoming nodes with replacement.

iii. Study online processing techniques for inference over a stream of
incoming nodes.

4 1. INTRODUCTION

2. Changing connections (Aim-2). We develop a graph-aware representation of
the network dynamics from a partially observed topology and signals. More
precisely, we aim to uncover latent graphs driving the structural evolution
using both topological and signal information as an alternative to existing
low-rank decompositions.

Targeting these aims, this dissertation answers the following three challenging
research questions.

RQI: How do we process signals over expanding graphs when the connectivity is both
known and unknown? (Aim-1)

To process signals over expanding graphs, the first step is to choose a tool fit for
the purpose. In this dissertation, we opt for graph filters which are parameterized,
distributed, and interpretable operators that shift the signals over the topology and
combine them. Another reason for using graph filters is due to their widespread
adoption for a variety of graph signal processing applications. However, using graph
filters in the expanding setting is not straightforward. When the connectivity of
incoming nodes is unknown, this poses a natural challenge to existing graph signal
processing approaches. For instance, not knowing the topology fully due to absence
of incoming node information can severely affect the output of graph filter-based
operations. We address this challenge via stochastic attachment models, which are
random in nature but are parameterized, thus enabling us to learn them. Naturally,
how such approaches deviate from the case where the topology is fully known
becomes important to investigate, theoretically and experimentally. Introduction of
stochastic attachment models will affect the graph filter operation, notably its output.
This will involve analyzing the filter operation, namely its output in expectation w.r.t.
the parameters of the stochastic model. Since the stochastic attachment model is
parameterized, a natural extension is to learn them from data in the context of
signal processing over the expanding graph. From an experimental perspective, it is
important to answer how does this task-aware, filter driven attachment compare to
heuristic or data-driven ones. This involves comparing the performance for the class
of proposed filters to heuristic and data-driven approaches which are either task, or
topology-aware.

RQ2: How do we design dynamic algorithms for signal processing on continually
expanding graphs? (Aim-1)

The growth of graphs is a gradual process. Existing approaches suited to fixed
size graphs can process batches of data and are thus computationally expensive.
Repeating this approach every time the graph grows is not desirable. Moreover, the
data often arrives in a stream, thus batch solutions cannot be deployed. Thus, we
would like quick efficient, adaptive model that updates with the streaming data. We
do this by proposing an online filter design framework and quantify the worst-case
performance gap w.r.t. the batch-based solution. More specifically, we conduct a
static regret analysis and investigate its upper bound as a proxy for the worst case
performance difference. Another relevant aspect worth investigating is quantifying

1.4. DISSERTATION OUTLINE 5

the effect of the stochastic attachment on the online filter performance. We address
this by adapting the stochastic attachment and studying the corresponding regret.
Finally, we compare the online graph filter with batch-based solutions and other
deterministic graph signal processing tools in real-case studies. The comparison with
bath-based solutions informs us how fast the filter adapts to the data and topology
updates whereas the comparison with other graph-based tools can highlight the
effect of graph filters in general.

RQ3: Given a partially observed evolving topology and an evolving process over it, are
there a collection of latent graphs that drive both the evolution of this topology and
of the process? (Aim-2)

We often consider for granted that the network we observe governs the dynamics
in its topology and respective process. However, as is often the case with hidden
Markov models or other latent representations of dynamics or observed phenomena,
we question if there are meaningful graphs governing the topological evolution.
Existing approaches for analyzing dynamic networks rely on forming a tensor by
stacking the adjacency matrices and performing a low-rank decomposition. While
this may be suited for downstream tasks like community detection, the low rank
assumption renders it not so useful for capturing the actual structure, i.e., the graph
topology, as low rank matrices need not capture all possible types of topologies.
Such decompositions also do not exploit the nature of dynamic graph signals, which
have shown to be closely linked to the topology or multiple static graphs. The
posed research question targets representing dynamic networks in a new way. The
primary challenge here is to decompose the structural evolution in an interpretable
way, taking into account missing observations and dynamic graph signals. We do
this by assuming that the evolving topology comprises a set of underlying, hidden
latent graphs, each contributing to the observed topology. Different from low-rank
decompositions, the focus here is on uncovering the topology, along with their
relative importance when it comes to explaining the partial observations. Associated
challenges involve integrating the dynamic graph signals to recover the underlying
graphs using tools from topology identification and a methodology to solve for these
components.

1.4. DISSERTATION OUTLINE
The dissertation contains seven chapters structured as follows:

Chapter 2 : Background. This chapter provides the necessary technical background
required to follow the subsequent chapters. We introduce graph signals, the graph
spectrum, and graph filters. We discuss dynamic graphs from the lens of this
dissertation.

Chapter 3 : Learning task-aware expanding graphs. This chapter focuses on
modelling the attachment of incoming nodes when their connectivity is unknown
for different graph signal processing tasks such as interpolation using graph filters
and topology identification using graph signal smoothness. We use a parametric
stochastic attachment model to account for the unknown connections, in a way that

6 1. INTRODUCTION

is possible to learn them. We study the effects of such an attachment model on
graph filters, specifically the filter order, their ability to process data over undirected
graphs, and the effect of this perturbation over the filter outputs. Since the
attachment model is stochastic, we solve the tasks in expectation w.r.t the model
parameters. The learnt model parameters correspond to a new way of interpreting
how incoming nodes interact with the existing ones.

Chapter 4 : Graph filter for incoming nodes. This chapter focuses on designing
graph filters for signal processing tasks on both the existing as well as incoming
nodes under unknown connectivity. Differently from Chapter 3 where we focus only
on the incoming node and connectivity, we focus on the incoming and existing
nodes and designing the filter, given a task and no connectivity information for
the incoming node. To do this, we train a two-filter bank over a pair of directed
graphs, which capture the influence of the existing nodes on the incoming node and
vice-versa.

Chapter 5 : Online filtering over expanding graphs. This chapter focuses on graph
filter design over a graph which keeps growing over time. We take inspiration from
online learning to update the graph filter every time a new node arrives, the task
being inferring signals at these nodes. Motivated by the stochastic approaches in
Chapters 3 and 4, we also perform online filter updates in the stochastic case
where the connectivity of incoming nodes is unknown. To investigate the behaviour
of this approach, we derive bounds on the static regret of the online approach
for both the deterministic and stochastic online learners. We also introduce an
adaptive stochastic online learner in an attempt to reduce the dependency on a
fixed stochastic learner and study its regret.

Chapter 6 : Dynamic Graph Decomposition. This chapter focuses on representing
the topology of a dynamic network with changing edges from partially observed
edges and accompanying spatiotemporal graph signals. To make our representation
topology aware, we assume the structural evolution to be composed of latent graphs,
thus accounting for the structure. This draws a stark contrast with the more
popular low-rank tensor-based decomposition, as matrix representations of graphs
are typically not low rank. To account for graph signals, we impose a topology-data
prior in the form of graph signal smoothness, the hope being it can aid in recovering
the latent graphs, particularly when we do not observe many edges. We analyze our
approach in terms of how expressive the recovered latent graphs are and contrast
with the more typical low-rank decomposition w.r.t. their ability to predict the
presence or absence of missing edges.

Chapter 7 : Conclusion. This chapter presents the conclusions obtained from
this dissertation, notably from Chapters 3 to 6 and addresses future directions that
extend naturally from this dissertation.

1.5. HOW TO READ THIS DISSERTATION

The main scientific contribution of this dissertation is presented in the technical
Chapters 3, 4, 5, and 6. The background material can be found in Chapter 2. Each

1.6. LIST OF PUBLICATIONS 7

of these chapters corresponds to a publication, which is referenced at the beginning
of the chapter. In this book, we retain the original form of the publications, with
only minor modifications where necessary. Chapters 3, 4, and 5 can be read
sequentially, as they contain overlapping concepts. Chapter 6, however, can be read
independently.

1.6. LIST OF PUBLICATIONS

Journal Papers

1. B.Das, A.Hanjalic, E. Isufi, "Task-aware connectivity learning for incoming
nodes over growing graphs", IEEE Transactions on Signal and Information
Processing over Networks, 8, pages 894-906, 2022.

2. B.Das, E.Isufi, "Online Graph Filtering Over Expanding Graphs", IEEE
Transactions on Signal Processing, Feb. 2024

3. B.Das, A.B.Vlas, A.G.Marques, E.Isufi, "Dynamic Graph Topology Decomposi-
tion", to be submitted to IEEE Transactions on Signal Processing

Conference Papers

1. B.Das, E. Isufi, "Tensor graph decomposition for temporal networks", IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Seoul, South Korea, April 2024.

2. B.Das, E.Isufi, "Online filtering over expanding graphs", Asilomar Conference
on Signals, Systems, and Computers, Virtual, Oct. 2022 (finalist best paper
award).

3. B.Das, E. Isufi, "Graph filtering over expanding graphs", 2022 IEEE Data Science
and Learning Workshop (DSLW), May 2022.(best paper award)

4. B.Das, E. Isufi, "Learning expanding graphs for signal interpolation", IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
May 2022.

Other contributions

1. S.Rey, B.Das, E.Isufi, "Online Learning Of Expanding Graphs", IEEE Open
Journal of Signal Processing

2. B.Das, M.Navarro, S.Segarra, E.Isufi, "Bayesian Filtering on Graphs", IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Hyderabad, India, Apr. 2024

3. M.Yang, B.Das, E.Isufi, "Online Edge Flow Prediction Over Expanding Simplicial
Complexes", IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Rhodes, Greece, Jun. 2023

8 1. INTRODUCTION

1 4. B.Das, E. Isufi, "Online Vector Autoregressive Models Over Expanding Graphs",
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Jun. 2023.

2

BACKGROUND

10 2. BACKGROUND

2.1. ELEMENTS OF GRAPH SIGNAL PROCESSING

We start this chapter by defining the basic concepts and terminologies surrounding
graphs, their representations, and graph signals.[41]

2.1.1. GRAPHS

A graph ¢ = {7/, £} comprises a vertex set 7 = {vy,...,vn} of N nodes and an edge set
& ={(v;,v})} for all pairs (v, v;) that share an edge between them. The nodes can
be humans [42], sensors [43], or research articles [44], whereas the corresponding
interactions can be communication between a pair of humans, sensors exchanging
information with each other, or one research article citing another. The number of
edges is low compared to the total number of possible edges and this makes graphs
sparse'. The neighbourhood .#; of node v; comprises all nodes vj with j#i such
that (v;, v;) € & for undirected graphs”. We consider two types of edges:

Undirected edges. If (v;,v;) € &, this implies (v}, v;) € £. Graphs with only undirected
edges are called undirected graphs. An example is a social network where users are
nodes and edges exist between users that are friends.

Directed edges. These edges start from one node and are directed at another. For
such edges, if (v;,v;) €&, this does not imply (v}, v;) € &. Graphs with directed edges
are called directed graphs. A example is a citation network where articles are nodes
and edges exist when a new article cites an already existing one. The nature of the
citation process makes the edge directed.

2.1.2. GRAPH SHIFT OPERATOR

A graph shift operator (GSO) of a graph ¢ ={7,&} is a matrix Se RVN with Si,j#0
iff (v;,v;) € &. For undirected graphs, we have S; j = S;,;. The GSO embeds the graph
topology in the form of a matrix. Examples of the GSO include the adjacency and
the Laplacian matrices, as we detail next.

Adjacency matrix. The adjacency matrix of ¢ is denoted as A with A; ;>0 iff
(vi,vj) €&, and A; j =0 otherwise.
Degree matrix. The degree matrix D of ¢ is a diagonal matrix defined as

D = diag(A1) @.1)

where diag(x) is a diagonal matrix with x as its diagonal elements and 1 being the
vector of all ones. We have D; ; = Zj.\’: 1 Ai,j is the degree of node v;. For a binary A,
the degree of a node is an integer, whereas for A with arbitrary weights, it is a scalar.

For directed graphs, there exist two types of degree matrices, namely the in-degree
matrix D; and out-degree matrix D, defined respectively as

N N
D;=) Aij Do=) A 2.2)
i=1 j=1

n this thesis, we will consider graphs without self-loops, i.e., (v;,v;)¢¥.
2We can define in and out-neighborhoods for directed graphs accordingly.

2.1. ELEMENTS OF GRAPH SIGNAL PROCESSING 11

Laplacian matrix. The graph Laplacian [45] of an undirected ¥ is defined as
L=D-A. (2.3)

Any off-diagonal element L;; of L equals zero if (v;,v;) ¢ & and equals —A;; if
(vi,vj) € &. The ith diagonal element L;; is the degree of node i. By definition the
graph Laplacian is symmetric.

All the shift operators considered in this dissertation have bounded elements, i.e.,
Si,j is always bounded. Other examples of GSOs include the normalized adjacency
[46], normalized Laplacian [47, 48], and random-walk Laplacian [49, 50].

2.1.3. GRAPH SIGNAL

A graph signal is a mapping from the vertex to the space of real numbers. It is
defined as

f:7V-R (2.4)
We denote the graph signal of an N node graph as x = [xj,...,xy]' where x; is the
signal associated to node v;. Compared to typical signals in signal processing which
are defined over time, graph signals are defined over the vertices of a graph.® The
signals are inextricably linked to the topology of the graph itself and thus observing
a graph signal can tell us something about the underlying topology [51].

2.1.4. GRAPH SIGNAL VARIABILITY

Variability of graph signals measures how fast a graph signal x varies over ¢. Unlike
temporal signals, the variability here depends on the graph structure. Depending on
the GSO, we have two popular variability measures: the quadratic variation and the
total variation.

Quadratic variation with L. For the graph Laplacian, the quadratic variation (QV) of
a signal x is defined as

QVX) =x'Ix=)_ A;j(x; — xj) (2.5)
ij

which is the sum of the squared differences of graph signals across all edges
multiplied by the edge weight. The quadratic variation is high if the graph signals at
nodes which share an edge differ greatly.

Total variation with A. For the graph adjacency matrix, the total variation (TV) of a
signal x is defined as

TV = Ilx-Apx]f; (2.6)

3A temporal signal can also be seen as a graph signal defined over a cyclic or acyclic time graph [46].

12 2. BACKGROUND

Figure 2.1.: A graph ¢ with 8 nodes and graph signal x= (5,2,2,3,1,-5,3,2] . Each
node v; is associated with a scalar x;.

where A, = mA where Ap. is the eigenvalue of A with the largest magnitude.
Here TV() is the squared norm of the difference between the signal x and the
output when the normalized GSO A, acts on it. Higher variability implies that the

signal at most nodes changes more after being operated upon by A;.

2.1.5. GRAPH SPECTRUM

In addition to the vertex domain, graphs can also be analyzed in the spectral domain
[45]. The spectrum of a graph is the set of eigenvalues of its GSO obtained from the
eigendecomposition

S=VAV! 2.7

where V is an NxN matrix and A =diag(A,,...,Ay) contains the eigenvalues on the
main diagonal. The ordering of the eigenvalues of the GSO plays a key role in
interpreting the spectrum of the graph.

Graph Laplacian ordering. Since the eigenvalues of the graph Laplacian are real (by
virtue of L being symmetric), a natural question is how to arrange these eigenvalues
so as to give a them a frequency interpretation to analyze graph signals similar to
that in classical signal processing. To do so, we rely on the quadratic variation w.r.t
the graph Laplacian in (2.5). It is of interest that the solution to the optimization

2.1. ELEMENTS OF GRAPH SIGNAL PROCESSING 13

problem
mxin x Ix (2.8)
subject to [|x||> =1 (2.9)
are the eigenvectors of L and the corresponding minimum values of the total

variation are the eigenvalues. For example, for x = \/Lﬁl’ we have QV(x) =0, ie., the
eigenvector corresponding to a constant graph signal has zero variability, and thus
zero denotes the lowest frequency. Thus, if A; > A;, then A; is associated with more
frequency and variability.

Graph adjacency ordering. The eigenvalues of A can be both real and complex, and
thus its eigenvalues need a different ordering scheme. For this, we consider the
variability measure [46]

TVE) = Ix—Ayx|p (2.10)

with A, = ﬁA. We first consider real eigenvalues. For an eigen pair (1,,v;,), the
variation is

An

TV(vn)=|1—)Ilvnlll. .11)

[Amax|
For two real eigenvalues A; and A;, if A; > A;, then TV(v;) < TV(v;). Thus, smaller
eigenvalues are associated with greater variability and therefore greater frequency.
For complex eigenvalues the total variation depends on the distance between |Apax|
and A, in the complex plane. If 1; and A; are two complex eigenvalues such that A;
is located closer to |[Amax| in the complex plane than A;, we have TV(v;) < TV(vj),
i.e., A; has lower frequency than A;. Figure 2.2 illustrates the notion of frequency
ordering for the Laplacian and the adjacency matrix.

2.1.6. GRAPH FOURIER TRANSFORM
The graph Fourier transform (GFT) of signal x w.r.t. a graph 8§ =VAV~! is defined as

x=Vix (2.12)

The ith component %; is the projection of x on to the ith row of V~!. Since the
ith eigenvector denotes the variation associated with frequency A;, X; denotes the
component of x along the ith frequency. Depending on the frequency ordering of
S, we can analyse the frequency content in x. For example when S =L, we have
X :vlTx: Zf.\i 1 Xi. The eigenvector v; is a constant vector corresponding to the
lowest Laplacian eigenvalue (zero). The value X; is the lowest frequency component
of x obtained by a sum of its elements. A higher value of X; suggests that x has a
higher component along the frequency corresponding to A;.

The inverse graph Fourier transform (IGFT) expresses the signal in the vertex
domain in terms of its GFT X as

N
x=V&=) %v;. (2.13)
i=1

For a graph signal, the IGFT expresses x as a linear combination of its eigenvectors.

14 2. BACKGROUND

Low frequency High frequencym) High frequency Low frequencyR
A =0 Ay . by hye
(a) Graph Laplacian (b) Symmetric adjacency
High frequency
A

3
A2 A Low frequency
1, RN

- ‘)\muz ‘ \

|)\maa: |

R?
(c)Directed adjacency

Figure 2.2.: Frequency ordering for some shift operators. (a) Graph Laplacian,
where lower eigenvalues correspond to lower frequencies; (b) symmetric
adjacency matrix, where lower eigenvalues correspond to higher
frequencies; (c¢) directed adjacency, where eigenvalues closer to |Amax| in
the complex plane correspond to lower frequency.

2.2. GRAPH FILTERS

To understand graph filtering, we begin with the shift operation of a graph signal [7].
When the GSO acts on x, we get

y=Sx (2.14)

with output at node i

N
yi= Zsi'jxj‘z Z Si,jXj- (2.15)
j=1 jet

Thus, the output at each node is the weighted sum of the signals at its neighbors.
Successive applications of the shift operation spread the input graph signal x over
different neighbourhoods in the graph.

Graph filters are the analogue of discrete-time filters in classical signal processing.
For a graph ¢ with GSO S, a graph filter of order K is defined as

K
HES) =) i S* (2.16)
k=0
which is a polynomial in S with parameter h; scaling S*. The vector

h=[hy,..., hk]" € RK*! denotes the filter coefficients. Given a graph signal x, we
denote its filter output y as

K
y=H©O)x=) Sk (2.17)
k=0

2.2. GRAPH FILTERS 15

which is a weighted sum of the successive signal shifts S¥x. The filter output y is
the weighted combination of the different shifted versions of the graph signal x over
4. Figure 2.3 shows the pipeline for computing the filter output for an order three
graph filter.

To compute (2.17), we note that each shift operation Sx is localized and incurs
a complexity of order G(M) for a graph with M edges. We calculate in total K
shifts recursively (as S¥x = §(S¥~1x)) and then scale and add them. Thus, the total
complexity is of order G(MK).

Graph filters in the frequency domain. One distinct feature of graph filters is
that they are interpretable in the frequency domain. By substituting the GSO
eigendecomposition $¥ = VA*V~! into (2.17) we have

K
y=Y mVAFV 'x. (2.18)
k=0

Multiplying on both sides by V~!, we have

K
Viy=Y mafvix (2.19)
k=0

Following the definition of the GFT, we have the GFT of the filter output y as
y=) Atk (2.20)

The matrix H(A) = ZIk(:o hkA’C is diagonal with the ith diagonal element
h(A;) =Zlk(:0 hkﬂtf. This represents the filter frequency response at ith graph
frequency. The output GFT is thus a point-wise multiplication between the input
GFT and the filter frequency response. Note that the frequency response of the
graph filter is a polynomial h(1) = Zl/c(:o hiA* evaluated at the N eigenvalues. This
provides us a way to visualize and interpret the graph filter as a combination of this
polynomial and its spectrum. Next, we highlight how graph filters perform graph
signal de-noising and interpolation. We focus on these two applications as we will
encounter them throughout the thesis.

De-noising with graph filters. Graph signal de-noising concerns recovering the true
signal Xque given a noisy sample x [52]. Let X =Xyye +n be the observed signal
where n is the additive random noise. To recover Xyye, the filter learning problem
translates to an optimization problem of the form

K

ko2

lIx— Y heS*xll5
k=1

hgen =argmin E +r(h) (2.21)
h

where E[-] is the statistical expectation operator, r(h) is a regularizer to avoid
overfitting such as the squared I norm ||h||§. Interested readers can refer to the
works in [7, 53-55] which build on graph filters.

16 2. BACKGROUND

o
A SR

Figure 2.3.: Graph filter output for a filter of order three. The input is the signal
x, while S is the graph shift operator. The signal is successively shifted
three times giving rise to the shifted signals S¥x. These are weighted via
the filter coefficients h; and combined to give the output y= Zi:o hiS¥x.

Signal interpolation. Graph signal interpolation concerns estimating the signal at
unobserved nodes given the structure and the signals at some observed nodes [56].
Let ® be an Mx N binary sampling matrix. We observe the signal ®x, which is a
subset of the original signal x. The filter H(S)x for this task is learnt as

K
hjy =argmin E |||®x— Z hkSkx)Ilg +r(h). (2.22)
h k=1

The trained filter hj, is then evaluated at the nodes with unobserved values. The
works in [7, 57-60] also use graph filters to solve interpolation-related problems.

2.3. DYNAMIC GRAPHS

In this section, we focus on dynamic graphs, mostly concerning temporal dynamics,
which is essential to this dissertation. A dynamic graph is a sequence of graphs
%0,%1,%>, ..., 97 with the graph at time ¢ being ¥, = {¥;,&;} with node set 7; of N;
nodes and edge set &;. Let A, € RN*Nt be the adjacency matrix of %,. Considering
the scope of this dissertation, we divide dynamic graphs into two distinct categories:
dynamic non-expanding graphs and dynamic expanding graphs.

Dynamic non-expanding graphs. This category involves graphs where the nodes
remain static, i.e., N;= Ny for all ¢, but the edge set &; changes with time.
Figure 2.4 illustrates this type of dynamic graph. We can further categorize this
class of dynamic graphs into two categories: deterministic and stochastic dynamic
non-expanding graphs.

* Deterministic dynamic non-expanding graphs. Here we know precisely how the
topology changes, i.e., §;+1 is deterministic, given &;. A common example can

2.3. DYNAMIC GRAPHS 17

979y

Go={V,&} G =&} Go = {V, &} Gr ={V,&r}

Figure 2.4.: A dynamic graph with fixed node set 7 but changing edge set.

be seen in recommender systems where the graph between the existing users
changes with time along with the preferences of the users [61]. Mathematically,
we can represent Ay as a function of A; as

At+1 =At+At (223)

where A; is a known Ny x Ny matrix which can modify the edge weights. For
example, if an edge exists between nodes v; and v; at time ¢ but disappears
at time £+ 1, we have [A;]; j = —[A];,j. Likewise, if an edge is absent between
v; and v; at time ¢ but appears at time ¢+ 1, we have [A]; j = [Ar41]i -

* Stochastic dynamic non-expanding graphs. Here, the evolution of the topology
follows a stochastic model. Thus, we cannot determine exactly what the
topology at a certain time will be, but can formulate it stochastically. Common
examples include graph sequences where edges are added or deleted at each
time instant obeying some probabilities [62]. Another popular example is that
of edge-rewiring, popular in network science models [63, 64]. We represent the
adjacency matrices of such a dynamic graph via their expectations, i.e.,

ElAr+11{Ag, ..., A}l =Priq (2.24)

where P; is the Ny x Ny probability matrix and [P;+1];,; denotes the probability
with which an edge between v; and v; exists at time #+1. Knowledge of
all the P;s allows us to fully describe the dynamic graph model. Note that
the expectation in (2.24) is conditional as the dependence on the previous
topologies is determined by the nature of the dynamics.

Expanding graphs. This category involves graph sequences where the number of
nodes grows. Thus, we have 7 <7 ... ¥r with Ny < N,...,< N7. At time f, new
nodes attach to the graph, thus accounting for the growth in size. Figure 2.5
illustrates this process where at each time instant the graph grows by one node.
In this figure, we assume that an edge once formed does not get removed, i.e.,
Eyc &y ...c&r. We will also use this assumption throughout the dissertation, unless
specified otherwise. Like in the non-expanding case, we also have a deterministic
and stochastic counterpart of the expanding scenario.

* Deterministic dynamic expanding graphs. We know precisely how the incoming
node attaches to the existing graph. To describe this mathematically, let A; be

18

2. BACKGROUND

S

={Vo, &} ={, &} Go = {Vo, &} Gs ={Vs,&}

Figure 2.5.: A dynamic expanding graph starting from graph %, = {%),80}. At each

time instant one node (in magenta) attaches to the existing graph. The
new edges are also shown in magenta to highlight the dynamic.

the adjacency matrix at time ¢. Let v; be the incoming node, which leads to
A;y1. The attachment of node v; is characterized by vector a; € RNt such that
la;]; = w;,; if v, attaches to v; € 7; with edge-weight w;;, and zero otherwise.
If A;,; is undirected, it writes in terms of A; as

_ At ar
At+1 - a;r 0 . (225)
For the case where A;,; is directed, we have
_|As by
A1 = a? 0] (2.26)

where the vector b, e RV denotes edges directed from v; to the existing nodes,
while a; has edges directed from the existing nodes to v;. A specific case of
directed attachment is the adjacency matrix

A; O

A =
“1=al o

(2.27)

which has edges directed only from the existing to the incoming nodes. Here
A; represents the existing user similarity graph and a; the vector of similarities
between the new user and the existing ones. Often a, is sparse, so only a finite
number of similarities are retained. Differently from (2.25), such a directed
nature is more suited for inference tasks at the incoming nodes. Normally for
an inference task, we expect the existing nodes to influence the incoming ones
and not the other way around. This is the case of cold-starters in graph-based
collaborative filtering [10, 65]. Here, the nodes represent existing users, the
edges capture similarities among them (e.g., Pearson correlation), and a cold
starter is a new node that attaches to this user-user graph. The task is to
collaboratively infer the preference of the cold-starter from the existing users
[66]. This occurs in growing physical networks or in collaborative filtering
where side information is used to establish the connectivity [10].

Stochastic dynamic expanding graphs. Here we do not know precisely how the
incoming node attaches to the existing graph. This is often the case when very

2.3. DYNAMIC GRAPHS 19

little information is available about the new nodes, a scenario broadly defined
as the cold-start problem [17]. Like we do in the non-expanding scenario,
we rely on stochastic models governed by probabilities to obtain an expected
formulation of A;,;. We consider v; connects independently to each existing
v; € ¥; with probability p;;, forming an edge with weight w;;. Thus, the
attachment vector a; is random with each entry being a weighted Bernoulli
random variable; i.e,

i ith babili i
[ag); = Vot Wit Probablily pu (2.28)
0 with probability (1 - py,;)
for i =1,..., N;. The expected value of a; is
[E[at] =PpProwy (2.29)

where p; = [pt,l,...,p[,]\]]-r is the vector of probabilities for v, w;=
(Wi, wt,N]T the corresponding edge-weight vector, and o is the Hadamard
product. Likewise, the variance of [a;]; is var([a;];) = wfl-pt,i(l —pi) and the

covariance matrix of a; is

>, = diagw$?op; o (1-p;)) (2.30)

where a°%:=aoa. The expected adjacency matrix for undirected graphs is

[E[At] Prow;
E[A = 2.31
(A1l (prow,)T 0 (2.31)
and the directed counterpart for inference is
E[A;] 0]

E[A = . 2.32
[A+1] Prow)T 0 (2.32)

Thus, we can write the attachment vector of a new realization as a; = SV (py)owy,
where SV(p;) is a binary vector obtained by sampling p; element-wise. An
example of the above scenario can be found for the cold-start problem
in recommender systems, where the incoming user does not have enough
information to reliably estimate the similarities with the existing users.

Directed attachment for inference.

The stochastic dynamic expanding graphs are strongly characterized by the
probabilities of attachment p;. The choice of p; influences the network evolution
and determines properties of the dynamic graph. Next, we will introduce two
often-used choices of p; within the scope of this dissertation.

2.3.1. RANDOM GRAPH MODELS FOR DYNAMIC EXPANDING GRAPHS

A random graph model is a generative model which is used to derive instances
of graphs. An instance is derived by sampling edges from underlying probabilities.

20 2. BACKGROUND

Each edge is thus associated with a random variable. We discuss two important
types of random graph models.

Erdés Rényi random graphs. An instance of this model is a graph of N nodes
where each possible edge exists with probability p > 0. Each edge corresponds to an
independent and identically distributed (i.i.d.) Bernoulli random variable with mean
p and variance p(1 - p). Very low values of p lead to disconnected graphs, while a
higher p leads to less sparse graphs.

The Erddés Rényi model generates the whole graph. However, this can be adapted
to the expanding setting. One way to do this is to assume each incoming node
attaches to each node in the existing graph with the same probability. For the new
node v;, this implies that an edge is formed with probability p;; = NLI for each
existing node v;. Often m edges are sampled from the N; possible edges, each with
probability p; ;. Figure 2.6 illustrates how this attachment works with one incoming
node.

Barabdsi-Albert random graphs. The Barabdsi-Albert (BA) or scale-free model [67]
is based on the principle of preferential attachment, where new nodes do not attach
uniformly-at-random but exhibit a preference in their attachment behaviour. This
preference depends on the degrees of the existing nodes. Let the existing node v; in
an existing graph %, of N nodes have degree d;. A new node attaches to an existing
node v; with a probability p;; = ZNd_Idi' At each time step, each new node can form

m links to the existing nodes.
There exists other attachment models which can generate expanding graphs,
outside of the two mentioned above. Readers can refer to [19] for relevant examples.

Examples. To conclude this section, we focus on two examples of dynamic graphs
as discussed in Section 2.3 and tie them to tasks we are interested in.

 Identifying dominant interactions in social communication networks. We
consider an email communication network among the employees of an
organization [68]. The employees are treated as nodes and edges exist between
employees who communicate using emails. By observing the emails sent over
days, we can have a dynamic graph over time. Graph %, represents the emails
sent between users at time slot f. Figure 2.7 illustrates this concept. Another
example of a communication network is that of school children interacting
with each other over a span of time, where the interactions are recorded
through sensors [69]. These examples belong to the dynamic non-expanding
graph scenario. Sometimes, there can also be data associated with the nodes,
also known as graph signals. These can be attributes like the age and address
of employees and the age, gender and social background of the schoolkids.

e Predicting ratings for new users. Our second example involves a movie
recommender system. Consider a graph with users as nodes. Edges exist
between users who have a similar preference of movies based on their previous
ratings. The graph signal is the set of ratings provided by these users for
a particular movie. Now we have a new user and we want to predict how
this user would rate this particular movie. We incorporate this new user into

2.3. DYNAMIC GRAPHS 21

G ={, &} Go ={W, &} G ={, &}
5 1
=5 p==
/ «— — —
v1 - 9 v 1
— PT R D P=3
Ny =9 Ny =38 Ny =9

Degree-based preferential attachment Uniformly-at-random attachment

Figure 2.6.: Addition of a new node v; (magenta) to an existing graph %, with
Ny =8 nodes following two types of stochastic attachment: (Left) the
degree-based preferential attachment. The probability of formation of
edges is proportional to the degree of the existing node. The first
edge is formed with an existing node of degree five with probability
%. The other edge is formed with an existing node of degree two with
probability 12—8. The node with higher degree will have a higher tendency
to form edges with incoming nodes. In this example node v; forms two
edges; (Right) the uniformly-random attachment, where the probability
of formation of all the eight possible edges is

§ .
Employee 1
Employee 2 ; ; @ fé ;f :
Day 1 Day t Day T
Go = {V,&} G ={V,&1} Gra={V,ér1}

Figure 2.7.: A dynamic email communication networks. The nodes represent the
employees, the edges the email patterns between them, and the signal
the respective attributes. We assume the process starts from day one,
which corresponds to t=0. The tth graph ¥%; represents all the emails
sent on day t. Also highlighted are two coloured nodes representing two
employees.

the graph after making the prediction. This corresponds to a graph signal
interpolation problem, where we predict the signal at the incoming node. One
way to do this is via graph filters designed for this purpose. The scenario here
can be both the deterministic and stochastic dynamic expanding graph. In the
deterministic case, the updated topology is readily available. In the stochastic

22 2. BACKGROUND

Ratir{\ |
? | | ?
USC;/_;[| New user /V l/ New user / V I/ l\j:ew_uszrs
h <] |\ AN
o S
I | |
Movie graph
Go = Vo, &} G =, &} Gy = {W, &2}

Figure 2.8.: Product recommendation via user-user collaborative filtering in an
expanding graph setting. The blue nodes denote the existing users, while
the green nodes denote new users. The blue edges denote similarities
between existing users while the green edges denote those between the
existing and new users at a given time. The graph signal denotes the
ratings given to a particular movie by the users, both existing and new.

case, we do not know how a new node attaches, so we depend on the expected
topology [cf. (2.31)] to design filters. In this way, new users keep arriving and
the graph size grows. This creates a dynamic expanding graph. Note that the
information about the new links may not always be available. We will discuss
these cases throughout the dissertation. Irrespective of the scenario, filter
design is challenging as the graph and signal may both change with time.

T

N

Figure 2.9.: A three-dimensional tensor representation of a dynamic network. We
have N and T as the number of nodes and temporal samples, respectively.
Each slice along time denotes a graph observed at that time.

2.4. TENSORS FOR DYNAMIC TOPOLOGY REPRESENTATION

Let us recall our definition of dynamic graphs, i.e., a sequence of graphs ¥,...,%9r
with graph ¥; = {J},6;} having adjacency matrix A;. We consider the dynamic
non-expanding scenario, where each graph %; has N nodes. We represent this
dynamic graph through a three-dimensional tensor A € RN*N*T where the first two

2.4. TENSORS FOR DYNAMIC TOPOLOGY REPRESENTATION 23

dimensions are for the nodes and third dimension is along time [70]. That is, the
adjacency matrices Aj,...,Ar are stacked over the third dimension in A. Such a
representation structure can be exploited for a variety of tasks like network anomaly
detection, community detection, link prediction, and representation [32-38]. Figure
2.9 illustrates this representation for a dynamic network of N nodes over T time
instants.

2.4.1. DYNAMIC GRAPH TENSOR DECOMPOSITION

The structure of A can be utilized to represent the evolving graph structure and
provide insights about it. One way to accomplish this is by decomposing the
three dimensional tensor A. These decompositions approximate a tensor with its
low-rank components [71]. There are two relevant decompositions for this thesis:
the canonical polyadic decomposition and the block term decomposition.

Canonical polyadic decomposition. The canonical polyadic decomposition (CPD)
[71], also known as the PARAFAC, is one of the most common low-rank methods
for tensors. Given a three-dimensional tensor A € RV*N*T the R-term CPD
decomposition is

R
A=[[F,GH] =) frog-oh, (2.33)
r=1
where F=[f},...,fr], G=1[g1,...,8r], and H = [h;,..., hg] are the factor matrices of
size NxR, NxR, and TxR, respectively4. The rth decomposition term in (2.33) is
a NxNxT tensor equal to f,og,oh,, which is the outer product of three vectors.
Figure 2.10 illustrates the CPD decomposition of A. The ith element of f, can be
thought as a one-dimensional embedding of node i. The same holds for the ith
element of g,. If the adjacency matrices are directed, then the elements of f, and
gr can encode embeddings corresponding to the nature of directed edges. The tth
element of h, scales the matrix f,g| and thus controls its presence over time. In
literature, there are some works which apply CPD to the adjacency tensor A for
downstream tasks. For example, [32, 33] use it to detect communities among a set
of fixed nodes in a dynamic graph. The authors in [34] do the same for dynamic
graph summarization. The CPD has also been used for tasks like link prediction [37]
and anomaly detection [38].

A drawback of the CPD is that each low-rank factors is an outer product of
vectors. While this may be helpful for task-dependent embeddings, it limits the
type of structure each factor can represent. The outer product of two vectors has
a very specific structure, whereas the structure of observed adjacency matrices is
significantly different. It may be possible to improve upon this representation by
assuming each factor to be an outer product of matrices, thus leading us to the
Black Term Decomposition.

Block term decomposition. The Block Term Decomposition (BTD) is another
low-rank approximation for a tensor [72]. The (L,,L;,1) R-term BTD decomposition

4H and h; do not denote a filter and filter parameters but general parameters that we will use
disjointly in the upcoming chapters.

24 2. BACKGROUND

T
h h, hy
/ 2
N <N

~37 s
\\\ - g1 g2 83
Ne— 7 t - + +
— — il f; f3
A

Figure 2.10.: Canonical polyadic decomposition of the adjacency tensor A formed by
stacking the adjacency matrices. The rth low-rank factor on the right
is the outer product of three vectors: f,, g,, and h,. The first two
represent the features corresponding to each node. Vector h;, is the
temporal factor which scales the representation matrix f,g,| along time.

is

R
A~[[F,GH]]=) F,0G,oh, (2.34)

r=1

where F = [Fy,...,Fg], G=I[Gy,...,Gg], and H= [h;,...,hg] are the factor matrices.
The rth term in the decomposition is the outer product of F,, G, and h,, where
the rank of each F, and G, is L,, ultimately, justifying the terminology (L,,L,,1).
Differently from the CPD, each element of h, now scales the matrix FrGrT which can
represent more structure than the rank one matrix f,g, . Additionally the embedding
corresponding to each node in the rth low-rank factor is now a vector instead of a
scalar, meaning the BTD can capture embeddings with more information about the
nature of the node in the dynamic graph. Figure 2.11 illustrates the (L,,L,,1) BTD
for A. There are not many works that apply BTD to graph sequences. The work
in [36] applies BTD on tensors formed by multi-view graphs, i.e., each slice of the
tensor representing a different relationship between the nodes and not necessarily
a temporal evolution of the relationship. Other examples of tensor decompositions
include [73-75].

2.5. CONCLUSION

In this chapter, we defined graphs and their algebraic representations in terms of
the shift operators, namely the adjacency and Laplacian matrix. We also introduced
the graph signal and its variability following the convention of the graph signal
processing literature. Next, we discussed the spectrum of a graph through the
eigen-decomposition of its shift operator. We use this to analyze the frequency
response of filters. We introduced graph filters as a combination of successively
shifted graph signals via the filter parameters. In Chapters 3, 4, and 5, the learning
of such filters shall be the key tool used for processing graph signals over dynamic
and expanding graphs. We will focus mostly on interpolation and de-noising tasks,
but extensions to other tasks are straightforward.

2.5. CONCLUSION 25

T
h,; hy
v <N\

\\// N

Ve ~ = ‘ ;
N ,>\\ - : _— G, G2+ G3
\\/ — F, - F, F3

A

Figure 2.11.: Block Term Decomposition of the adjacency tensor A formed by stacking
the adjacency matrices. The rth low-rank factor on the right is the outer
product of matrices F, and G,, and vector h,. A row of F, represents
a vector embedding of a node in the dynamic graph. Similarly, a row
of G, represents another embedding of the same dimension for a node.
The vector h, is a temporal factor which scales the representation
matrix F,G/ along time.

In the second part of this chapter, we focused on dynamic graphs and their
representation. We defined dynamic graphs over a sequence and focused on two
types: one involving fixed nodes with varying edges, and the other involving growing
graphs with incoming nodes and an addition of edges. For both, we discuss
their deterministic and stochastic counterparts. We will focus on filter design for
deterministic and stochastic expanding graphs in Chapters 3, 4, and 5. In Chapter
6 we consider dynamic non-expanding graphs for their representation. Related to
this, we focused on two random graph models, namely the uniformly-at-random and
preferential attachment models and showed how they can be used to make a growing
graph model. We will use these two models as baselines throughout Chapters 3, 4,
and 5. In Chapter 3, we deal with growing graph models based on probabilities
of attachment but we opt to learn them instead based on different constraints and
scenarios. Next, we highlighted how dynamic graphs can be represented by tensors
by stacking their adjacency matrices. We defined two low-rank decompositions of
these tensors to find an embedding for the nodes or solve downstream tasks. We
focus particularly on a variation of the block term decomposition as we want to
highlight its main difference with the canonical polyadic decomposition. We use
them as baselines in Chapter 6, where we propose a new decomposition of dynamic
graphs along a different philosophy.

LEARNING TASK-AWARE EXPANDING
GRAPHS

In this chapter, we concern ourselves with the task of processing data over incoming
nodes where their connectivity information is unknown. Existing approaches assume
full topology information, thus enabling standard signal processing tools over graphs;
Moreover, existing approaches to model the growth of graphs are often unaware of the
data existing on the graphs and any downstream task. We aim to fill this gap by
considering a parametric stochastic attachment model that can adapt to a particular
task from the existing topology and graph signals. In particular, we assume that the
attachment behaviour and information associated with new nodes can be learned
from how previous nodes are attached to the same graph, concerning an underlying
data-processing or topological task. We learn the parameters via empirical risk
minimisation for two specific tasks, namely graph signal interpolation using graph
filters and signal smoothness.

The rest of this chapter is organised as follows: Section 3.1 introduces the problem and
highlights our contributions; Section 3.2 elaborates how different disciplines approach
the task of incoming node attachment; Section 3.3 formulates the task of inferring the
stochastic attachment behaviour as an empirical risk minimization, given a training
data-set of previously attached nodes; Section 3.4 adapts the formulated problem to
two graph signal processing related themes: interpolation and smoothness; Section
3.5 conducts a perturbation analysis of the stochastic attachment behaviour w.r.t the
model parameters; Section 3.6 contains the numerical results. Section 3.7 concludes
the chapter. All proofs are collected in Appendix A.!

LThis chapter is based on the publication: Das, B., Hanjalic, A., & Isufi, E. (2022). Task-aware
connectivity learning for incoming nodes over growing graphs. IEEE Transactions on Signal and
Information Processing over Networks, 8, 894-906.

27

28 3. LEARNING TASK-AWARE EXPANDING GRAPHS

3.1. INTRODUCTION

Graph topology identification is a crucial step preceding the analysis of relationships
of users in social networks [2], proteins in biological networks [1], and entities in
recommender systems [10], to name just a few. Typical approaches infer a topology
with a fixed number of nodes [76, 77] but graphs often grow with new nodes
attaching to the existing ones [14]. This attachment is often unknown, making the
downstream tasks more challenging. One such task is the cold start recommendation
in collaborative filtering [17]. Here, a new user enters the system but cannot
attach to the existing ones in the absence of prior information, thereby affecting
the subsequent recommendation. In another scenario, a new online political blog
becomes available and we want to know how it associates with the existing political
blogs without knowing its affiliation and its influence on the overall network [78].

We want to process data at the incoming node in situations when the true
connectivity is not known. This may be the case when side information in
collaborative filtering is unavailable or when new blogs are not associated with a
particular category. At the same time, we want to process data in the most informed
way possible. One way is to consider how the previous nodes connect and apply
that rule for the incoming node. Differently, we want to handle the attachment in
the context of a data-processing task over the network, focused at the new node.
Taking the task into consideration will lead to more relevant attachments, possibly
improving upon the performance of other attachment rules.

Existing graph identification approaches infer the full [76] or partial [77]
connectivity of a fixed graph but do not consider incoming nodes, while stochastic
approaches model the connectivity with a known attachment model [13, 14, 27, 79]
but ignore the existing data and how it ought to be processed. Some recent works
that process data over expanding graphs require the connectivity knowledge [28, 80],
which is often unavailable. Thus, information processing for incoming nodes in such
situations is challenging.

One way to overcome this challenge is to consider a data-driven stochastic model,
where the available data is leveraged to learn the mapping between the incoming
nodes and the existing graph for the task at hand. When combined with a
prediction mechanism, such a hybrid approach can overcome the limitations of
purely stochastic or data-oriented predictions.

3.1.1. CONTRIBUTIONS OF THIS CHAPTER

The main contribution of this chapter is the development of a stochastic attachment
model parameterized by the probabilities of attachment and the edge-weights for
incoming nodes given a graph signal processing (GSP) task without connectivity
information. More specific contributions are as follows:

1. We specialize the model to two tasks. The first task is graph signal interpolation,
where we predict the signal value at the incoming node. The second task is to
learn the attachment of the incoming node such that the signal is smooth over
the expanded graph. Thus, we combine preferential attachment with GSP and
topology identification for modelling the incoming node connectivity.

3.2. RELATED WORKS 29

2. We propose an empirical risk minimization problem to estimate the model
parameters and solve them using alternating projected gradient descent. We
discuss the convergence properties of this approach to a local minimum.

3. We study the learned connectivity from a perturbation viewpoint. We look
at the small perturbation analysis of the eigenvalues of the nominal graph
relative to the model realizations. We corroborate the proposed approach with
numerical results on synthetic and real data from recommender systems and
blog networks.

3.2. RELATED WORKS

Inferring node connections has been approached from different viewpoints ranging
from GSP to statistical models. Here, we cast our work w.r.t. existing frameworks.

Graph signal processing (GSP). Topology identification via GSP estimates a fixed
topology from data by leveraging different priors, such as signal smoothness [81-83],
realizations of a diffusion process [84-87], or a Gaussian process [88-90], to name a
few. These priors have also been used to estimate time-varying topologies where a
fixed topology is estimated per batch of data [91, 92]. More recently, online methods
avoid batch processing and estimate the topology on the fly from time-varying
signals [93-97]. Differently, we will learn a stochastic model for incoming nodes
rather than a fixed topology. And differently from the online methods, we consider
an expanding topology but with a fixed time-invariant signal. As in these approaches,
we will also consider the smoothness criterion, which is typically encountered in
practice because of homophily (i.e., connected nodes share similar values) [98].

Statistical methods. Connectivity of incoming nodes is commonly approached
in network science via stochastic models, such as the Erdds-Rényi (ER) and the
preferential attachment. The ER model assumes each incoming node connects
uniformly at random with any of the existing nodes [13], while preferential
attachment assumes each incoming node connects with a probability proportional
to a node’s degree [14]. More complex models include a competition factor between
nodes [27, 79]. These methods focus on the existing topology and do not account for
the data over it. Accounting for the data is paramount to solving network learning
tasks because of the implicit data-topology coupling. Therefore, we propose to
estimate the attachment model parameters, i.e., attachment probabilities and edge
weights of the incoming nodes by incorporating both the data and the task into the
learning.

Link prediction. Modelling the connectivity of incoming nodes can also be
seen as a link prediction task given some topological and nodal features [77, 99].
Link prediction techniques can be grouped into three categories: i) probabilistic
approaches that use random models to predict links using, for example, hierarchical
graphs and stochastic block models [100, 101]; ii) similarity-based approaches that
predict a link between any two nodes based on their common neighborhood features
(102, 103] or global graph features [104, 105]; and iii) classifier-based approaches
that train a machine learning model based on node features. However, most of

30 3. LEARNING TASK-AWARE EXPANDING GRAPHS

these approaches fail in the incoming node scenario because we have no topological
information about the incoming nodes and, in the absence of node features,
classifier-based approaches are also inapplicable.

Learning on expanding graphs. Lastly, recent works consider specific expanding
graph models or solve a specific task with the knowledge of the connectivity. The
works in [106, 107] focus on estimating node connectivity for ER and Bollobas-
Riordan models by observing auto-regressive signals on some nodes. Differently,
we propose a data-driven approach that is agnostic to the graph and signal model.
The works in [28, 80] solve regression tasks over expanding graphs but assume the
connectivity is known. Instead, we consider the connectivity to be unknown. All in
all, the proposed method stands at the intersection of preferential attachment and
data-driven topology estimation to learn the stochastic model parameters w.r.t. a
task-specific cost function.

3.3. PROBLEM FORMULATION

Consider an undirected graph %, = (%,8p) of N nodes in set 7 = {vo,1,..., Vo,n} and
M edges in set & S 7 x ¥. Let A be the graph adjacency matrix with A; ; >0 only
if (vo,i,v0,j) €€ and Lo = diag(Al) —A be the graph Laplacian. When an incoming
node v; connects to ¥, it forms the expanded graph ¢%; = (¥1,61) with node set
W=7 uv and edge set & =&yU (v1,vp,;) for all new connections (v1,vp;). The
attachment of node v, is characterized by vector a; € RV such that [a;]; = w; if v;
attaches to vp; with edge-weight w;, and zero otherwise. This leads to the respective
expanded adjacency and Laplacian matrices

A a _ [Lo+diag(a;) -a;
A= a] o0 L= —a a1 3.

in which the last row and column represent the connectivity of v; with the nodes in
%.?

We consider v; connects independently to each existing vg; € % with probability
pi- Thus, the attachment vector a; is random with each entry being a weighted
Bernoulli random variable; i.e,

w; with probability p;
[a1]i={ ' P v Pi (3.2)

0 with probability (1 - p;)
for i=1,...,N. The expected value of a; is E[a;] =pow where p = [p1,...,pn]",
w=[wi,...,wyn]T, and o is the Hadamard product. Likewise, the variance of [a;]; is

var([a;];) = wl?p,-(l — p;) and the covariance matrix of a; is

>, = diagw? opo (1-p)) (3.3)

2Like in the fundamental studies about growing networks [13, 14], we consider for simplicity of
exposition the attachment of a single node. However, our findings extend to multiple incoming
nodes with appropriate modifications. E.g., making vector aj in (3.1) a matrix, in which each
column corresponds to one incoming node.

3.3. PROBLEM FORMULATION 31

@

W with prob. P

’Q.

Go = {W, €0, ARM xRV} G = {VL,EI,AIERW’“V”,XIERN”}
Figure 3.1.: Stochastic attachment model of incoming node. Incoming node v,
attaches to each existing node with a certain weight and probability. In 3

this illustration it forms two edges with node vg,; and vp ; of weights w;
and w; with probability p; and p;, respectively.

o2

where a°“:=aca. The expected topology of ¢; has the adjacency matrix

pow

E[A;] = [(pow)T 0 (3.4)

Thus, we can write the attachment vector of a new realization as a; = SV(p)ow,
where SV(p) is a binary vector obtained by sampling p element-wise. Figure 3.1
illustrates this attachment for v; which forms two edges.

On the vertices of the existing graph %, we have a graph signal x¢ =[x 1, ..., X0, N7
in which entry [xol; is the value on node vy ;. Processing this signal by accounting
for its coupling with %, is key to several network data tasks. For instance, we
use such coupling to predict the rating of a specific item in nearest-neighbour
collaborative filtering [10]. In the incoming node setting, this translates to identifying
the signal value x; for node v;, e.g., the rating of a new user. Since we do
not have the connectivity of v;, we rely on stochastic models governed by the
attachment probabilities p and weights w, which are in turn unknown. We rely on
the existing users and their connections to predict ratings because we don't know
the connectivity, which stems from not knowing the existing preference of v;. The
latter works when the ratings obey some distribution over the sample space of users
and the existing graph. To identify a task-specific connectivity for the incoming
nodes, we merge data-driven solutions with statistical models.

More specifically, given a fixed graph % and a training set of incoming nodes
I ={(vn, xXn,an,bp)},y, we infer the attachment probabilities p and weights w in an
empirical risk minimization fashion. Each element in 9 comprises an incoming
node v, its signal x,, the attachment vector a,, and its binary form b,. We define
a task-specific loss fg (p,w,a,,X;) measuring the incoming nodes performance. E.g.,
in collaborative filtering with cold starters, we build a user-user graph %, with some
existing users and treat some other users as cold starters with known connectivity
and ratings in J . Estimating the task-aware connectivity translates into solving the

32 3. LEARNING TASK-AWARE EXPANDING GRAPHS

statistical optimization problem

min. E[fg(p,w,a,,X,)]| +g5 (p,by) + hg(w,a,)
L (3.5)
subject to pe[0,11N,wew

where g4 (p,b,) and hg (w,a,) are regularizers imposing a prior between p and the
binary attachment b,, and between w and training attachment a,, respectively; and
W is a convex set constraining the edge-weights, e.g., non-negative or finite. Upon
estimating the probabilities p* and weights w* from (3.5), we generate realizations
for v ¢ 9.

Problem statement. Given graph %, with signal Xy and a training set 9 of incoming
nodes, our goal is to estimate the attachment probabilities p* and weights w* of
a preferential attachment model w.r.t. a task-specific cost function fg-(-) by solving
problem (3.5).

We will particularize the cost function in (3.5) to the signal interpolation error
at the incoming node and to the graph signal smoothness [6]. Since such
problems are in general jointly non-convex in p and w, we develop an alternating
projected-gradient descent and discuss its marginal convexity and convergence
(Section 3.4). And since each connectivity realization perturbs the graph from its
nominal form, we conduct a statistical perturbation analysis [81, 82] to show the
effects of the attachment model on the nominal spectrum (Section 3.5).

3.4. TASK-AWARE CONNECTIVITY LEARNING

In this section, we consider first the task of signal reconstruction at the incoming
node through percolation via graph filtering [108]. Graph filters facilitate data
processing at each node locally through a combination of successive shift operations
and compare well with alternatives in these problems [5]. Second, we consider the
task of estimating a topology such that the signal is smooth on the expanded graph.

3.4.1. SIGNAL INTERPOLATION

Consider the graph signal x; = [xg ,01T for ¢, where zero is the unknown signal at
v1. The output y; of an order K graph filter is

K
yi=H@ADX; = Y eAlx (3.6)
k=1

where h = [hy,..., hx]T are the filter coefficients and H(A;) = Zlk(:l hkAf is the filtering
matrix. The filter order K implies that nodes up to K-hops away contribute to the
interpolated signal of v;. Also, the direct term k=0 is ignored in (3.6) because it
does not contribute to the output at v;. Given the percolated signal [y;+]y+1 at node
v; is random, the following proposition quantifies the signal reconstruction MSE as
a function of the model parameters p and w.

3.4. TASK-AWARE CONNECTIVITY LEARNING 33

Proposition 1 Given graph % = {¥, 60} with adjacency matrix A and signal xy, let
matrix Ay = [Xo,...,AX"1xy] contain the first K—1 shifted versions of xg. Let the
incoming node v, attach to %y with probability vector p and edge weight vector w,
forming graph %, with the expanded adjacency matrix Ay [cf.(3.1)]. The MSE of the
interpolated signal [y11n+1 at node vi by an order K graph filter H(A;) [cf.(3.6)] is
approximately

MSE(p,w) = (wop) 'Ath—x1)> +h"AlZ,A:h 3.7)

where h=[hy,...,hx)" are the filter coefficients and x, is the true signal at v;.

Proof. See Appendix A.1. O

Proposition 1 provides insights on the role of p and w on the signal interpolation
MSE. The first term on the rh.s. of (3.7) captures the model bias w.r.t. the
true signal x;. Essentially, the model output is the dot product between the filter
output Ayh with the expected attachment vector wop. Minimizing the bias implies
selecting a pair (p, w) that combines the signal at each v €7, to make a prediction
for x; accurately. The second term hTAlzlehz IIAXhIIi.1 measures the percolated
signal norm w.r.t. the uncertainty of the new connections, which is also the
prediction variance. Minimizing this term might give solutions such as p =1y where
incoming nodes connect to all v €%, and p =0y which prevents any connections.
So, regularizers are needed for each variable. In the MSE expression, we remark that
the Kth shift AKx, does not appear in (3.7) because of the structure of matrix A;
in (3.1). We also remark that the MSE is (3.7) is only an approximation because for
filter order K =3 the MSE expression becomes intractable due to the higher order
moments of a;. Instead, if the filter order is smaller, expression (3.7) holds also
with equality. The MSE in (3.7) holds also with equality for any order K when the
expanded graph has directed edges landing at v;.

Corollary 1 If each incoming node vy forms directed edges leaving from the nodes in
%y and landing on vy, the MSE in (3.7) holds with equality for any filter of order K.

Proof. See Appendix A.1. O
Applications with directed links on incoming nodes include collaborative filtering
[10] and a new user in a social network interacting with the existing ones.

Regularizers. The MSE plays the role of fo(-) in (3.5). Functions g4 (-) and hg ()
regularize the problem with priors on p and w, respectively. While there are several
choices for the latter, we focus on the following two.

* For the probability attachment p, we consider

T
gr®@by)=wp Y lIp-byll] (3.8)
n=1
where g €{1,2} and up, >0 is a scalar. For g=1, (3.8) enforces sparsity on the
attachment probabilities p, i.e., the incoming node will connect only with a
few of the nodes in 7. This is intuitive as graphs are sparse. However, if only
a few entries in p are nonzero, this may lead to no connections. Using g =2
may overcome this as it allows v; to connect in expectation to any other node
but with a small probability.

34 3. LEARNING TASK-AWARE EXPANDING GRAPHS

* Likewise, for the weights w we consider

|7
ha (W) =y Y, [IW—all] (3.9)

n=1

where p,, > 0. Imposing sparsity on w results in zero weights for many edges.
This implies even if the attachment probability is one, it may incur a zero edge
weight. So, we prefer a two-norm penalty.

Alternatively, another approach is to consider a joint regularizer gg (p,w) =
||w0p—an||Z. However, this might limit our control over the connectivity and the
edge weights.> We may also consider w to be a random variable drawn from a
normal distribution A (u,,X,,). In this case, we need priors for the mean p,, and
covariance matrix X,,. The proposed approach is modular to such choices and we
leave their evaluation to interested readers.

Optimization problem. With this in place, we can formulate problem (3.5) as

1T
min. C;(p,w) = MSEg (p,w) + —bull?+ pllw—a,|¥
min. C;(p 7P n;(upnp allg+ pwllw—anll7) 5.10)

subject to pe[0,11Y, we#, ge{1,2}

where MSEg (p,w) [cf. (3.7)] is the empirical MSE over the training set 9. Problem
(3.10) is non-convex in w and p, but it is marginally convex in w and not always in p
due to the variance term in (3.7). We solve (3.10) with alternating projected gradient
descent. Algorithm 1 summarizes the main steps. The gradient of C;(p,w) w.r.t. p
and w for g =2 are respectively

|T|
V,Cr(p,w) =2 Y (Wop) Avh—x,)(woAh) + T |(Ach)*% o (W) o (1 - 2p)
n=l1 (3.11)
1T ’
+20p Y (p—by),
n=1
71 T 2
VwCr(p,w) =2) ((wop) 'Ach—x,)(poAsh) +2|T |(Ah)** owopo (1 -p)
n=1
(3.12)
|T|
+20 Y (W—ay).
n=1

Instead, for g=1, we replace terms 2u,(p—b,) and 2u, (w-a,) in the above gradient
expressions with sign(p—b,) and sign(w—a;) respectively, where sign(x)=1 for x >0,
-1 for x <0, and zero otherwise. To select an appropriate y, and u,, one can
perform cross validation over a range of candidate values. The complexity of the

3Imposing joint sparsity, we have w;p; =0 for some vo,i €%. If p;=1, ie, the incoming node
connects to vg; with a high probability, w; would have to be zero, which will make the connection
meaningless.

3.4. TASK-AWARE CONNECTIVITY LEARNING 35

Algorithm 1 Alternating projected gradient descent for problems (3.10) and (3.15)

1: Input: Graph %, training set 9, graph signal X¢, adjacency matrix A, number of
iterations U, cost C € {Cy,Cs}, learning rates n,,7,.

2: Initialization: p = po, w=w" at random, u =0.
3: for u<U do
4: p gradient update: p**! = p* -1, VpCp*,wh);
5. Projection: p“t1= II (p**1);
0,11V
6: w gradient update: W**! =w¥ —n,,V,,C(p“*!,wh);
7. Projection: w*! = 71}(‘&”“);
8: end for

algorithm is of the order G(KMU + UN), where K is the filter order, M the number
of edges in the %), N the number of existing nodes, and U the number of update
steps in each of the variables. The complexity G(KMU) is due to the term Ah,
which incurs a complexity of the output of an order K FIR graph filter, equal to
O(KM). The term O(UN) is due the projection operation over N elements.

While we can use Algorithm 1 to solve the general non-convex case of problem
(3.10), the following corollary provides a sufficient condition for problem (3.10) to be
marginally convex also in p.

Corollary 2 Problem (3.10) is marginally convex in p if the regularization weight i,
satisfies

#p = wymax((Azh])® ~ [wo Achl[3. (3.13)

Proof. See Appendix A.3. O
While ensuring convexity, hence a guarantee for a minima, condition (3.13) may lead
to an optimum that is worse than the local optima of its non-convex counterpart.
This is because of the greater focus on the training attachment patterns than on the
cost. When Ay, h and wj, are known, we can evaluate the r.h.s. of equation (3.13)
and set), so that we avoid this condition. We shall corroborate this in Section 3.6.1.

3.4.2. SIGNAL SMOOTHNESS

We now learn the connectivity of the incoming nodes such that expanded graph
signal is smooth. The smoothness of the graph signal xy w.r.t. %, is QV(x) :xg Loxo,
where a lower value implies connected nodes have similar signals and vice-versa.
Upon attachment of v; with signal x;, the smoothness of the new graph signal
X) = [xg ,x1]7 w.rt. the expanded graph Laplacian L; as a function of the connectivity

vector a;j is
QV(ay) =x; (Lo + diag(a;))xo — 2x1%y a; + x7a; 1 = a] X+ QV(x)

where X =Xg0Xg—2x1Xg + xfl n. Le., the smoothness of the expanded graph signal is
linked to the connectivity of the incoming node. We use this relationship to learn a
connectivity model that ensures the expanded graph signal is smooth.

36 3. LEARNING TASK-AWARE EXPANDING GRAPHS

Let a; be the true connectivity of v; and a be the connectivity pattern obeying the
model. We are interested in the expected squared smoothness error between the
model smoothness and the true smoothness, i.e., E[QV(a) - QV(al)]Z. The following
proposition quantifies the latter.

Proposition 2 Let ¢, = (%),6¢) be a graph with Laplacian Ly and signal xy. Let
an incoming node v, with signal x, attach to %, forming graph %, = (1,6) with
attachment probability p, weight w, and covariance matrix X, [cf. (3.3)]. Let a;
be the true attachment. The expected squared smoothness error (ESSE) for signal
x] = [X0, %117 is

ESSE(p,w) =% 1% +% ' (wop)((wop) % —2a]%) +% aja; X (3.14)
where X = (xg — x115)°%.

Proof. See Appendix A.4. O

Result (3.14) shows the relationship between the attachment model, the existing
graph signal, and the signal at the incoming node w.r.t. the overall smoothness. The
first term is the quadratic norm of X w.r.t. the covariance matrix Z,. It contributes to
a lower ESSE when the variance of the attachment is low at nodes with a high signal
difference. The second term is the alignment between the expected attachment
pattern wop and the squared difference signal X; the ESSE reduces when this is
smaller than twice the alignment between the true attachment and the difference
signal. Thus, the ESSE reduces when %' (wop) is small.

Optimization problem. The ESSE plays the role of fo(-) in (3.5) as the MSE did in
problem (3.10). Differently though from (3.10), the ESSE captures the interaction
between p and the true connectivity a; in the second term in (3.14). Thus, we drop
the regularizer g4 (-) on p. Particularizing then problem (3.5) w.r.t. the smoothness
cost, we get

1T
min. Cg(p,w) = ESSEs(p,w) + w—a,||?
n s(p,w) g (p,W) + Uy nZ::lll nllg (3.15)

subject to pe [0,1]N, wew, gefl,2}

where ESSEg (p,w) is the empirical expression of (3.14) averaged over 9. The cost
Cs(p,w) in (3.15) is non-convex and also marginally non-convex in p because of the
ESSE term. We again apply the alternating projected gradient in Algorithm 1. The
gradients for g =2 are

|T|
V,Cs(p,w)= 3. (w°2 o(1-2p)oxZ +2((wop— a,l)chn)woﬁ,,), (3.16)

n
n=1

T
V,Cspw) = 3 (2wOpo (1-p) ok +2((Wop—ay) %) poky +2/L (W a,,)). (3.17)

n=1

3.5. PERTURBATION ANALYSIS 37

We considered Alg. 1 also for (3.10) to provide a unified approach for both
problems despite problem (3.10) being also marginally non-convex. But we could
also simply choose a joint stochastic gradient method. The choice of alternating
descent approach is rather standard, as seen in [109, 110] but the alternating one
allows us to characterize the convergence for both costs [cf. Appendix A.6].

3.4.3. CONVERGENCE

To comment on the convergence of the alternating projected gradient descent
approach, we assume the following.

Assumption 1 The Hessians of the costs (3.10) and (3.15) w.r.t. the variables w and p
are upper bounded by

V5 Cp,w) < LpI, V3,C(p,w) =< L, (3.18)

where L, and L,, are the upper bounds of the eigenvalues of the Hessian of the two
loss functions w.r.t. p and w, respectively. This implies that the maximum eigenvalue
of the Hessian is upper-bounded for both costs w.r.t. both variables. This can be
easily verified for (3.10) and (3.15).

Theorem 1 Given costs (3.10) and (3.15) satisfy Assumption 1 and given Algorithm 1
runs with step-sizes n, and 1. Then, it holds that:

1. If the step sizes satisfy 0 <np < %, 0<ny=< %, the cost is non-increasing over
w

the iterations, i.e., sC(p“*!,w**1) < C(p“, w").

2. If there exist a feasible local minimum (p*,w*) and the step sizes satisfy
0<np=< ﬁ, 0 <7y < 57—, Algorithm 1 reaches this local minimum (p*,w*)
with convergence rate O (1/U), where U is the number of iterations.

Proof. See Appendix A.6. O
Since the choice of the local minima is arbitrary, this shows that Algorithm 1 can
converge to any of the local minima. One way to deal with this is to run Algorithm
1 for multiple initializations and select the pair (p, w) that gives the lowest training
cost. We show in Section 3.6.1 that this may not always be needed as we have seen
consistently that different initializations lead to similar costs.

3.5. PERTURBATION ANALYSIS

During testing, we draw samples from the learned attachment probabilities p to
obtain the expanded graph realizations. Such realizations are edge sampled versions
of the nominal graph ¢%; that contains all possible edges to sample. This leads to
differences both in the vertex and spectral domain [111], which have an impact on
the task of interest. To characterize such an impact, we look at the spectral difference
between the realized and nominal graphs and link it with our cost functions.

w
w0
and Laplacian L;. lLe., realization A; is a probabilistic edge-sampled version of

Given p and w, we have a nominal graph ¢, with adjacency matrix A; =

38 3. LEARNING TASK-AWARE EXPANDING GRAPHS

A, where edge (v1,vp;) in A; is removed with probability (1-p;). To study the
difference of each realization A; from its nominal version A;, we analyze the nominal
matrices in the spectral domain via a perturbation analysis [112]. Consider their
eigendecompositions

A =VzA;V], L =V;A; V] (3.19)
where Vi =1[v;,,....vin.], Ag=diagls;,...,A5n41) and (A5;,vz;) is the ith
eigenpair. Let also [vj;]1.v be the first N elements of v ; and [v4;]; be the j-th entry
of vector vy ;. Similarly, for Ly, define V; = [vj ,..., v} ny1), AL =diag(A; ..., AL yiy)s
(vi;li:n, and [vg ;1;.

Assumption 2 There exists finite positive constants c; and cp such that
2 02112
|2V v v dun)|[o<en |[(ve Jun—[vE Ine 10| 3= ca. (3.20)

These constants depend on eigenvectors V; and V; which are deterministic as A,
and L; are in turn fixed. So, we can always evaluate c¢; and c¢,. Generating
realizations A; and L; leads to the perturbations

AA, =A;-A;, AL =L;-L;. (3.21)
We then assume the following to study the spectral effect of the perturbation.

Assumption 3 The perturbation is small in nature, i.e.,
IAAIF < [|ALlllE, (1AL llF << L]l (3.22)

where ||- || denotes the Frobenius norm.

This is a standard assumption for robustness in the graph spectral domain [111, 112].
For it to hold, p should have high values for most nodes in 7 or be sparse, which
can be set during training. Then, the spectral deviations in the ith eigenvalue A4 ;
of the nominal adjacency and A;; of the nominal Laplacian due to the sampling
perturbation are given by

Adj; =V DAV, Adp;=v] AL ;. (3.23)

Le., they are dictated to how aligned are the respective eigenvectors to the perturbed
graph. With this in place, we claim the following.

Proposition 3 Given Ay, L, and their eigendecompositions in (3.19). Let Assumption
2 hold with constants c; and c,. Let the covariance matrix of attachment be X, and
vector p be such that [pl; = 1/\/p;, if p; #0, and zero otherwise. When v, joins, the
expected squared deviation in the ith eigenvalues of A, and L, are respectively upper
bounded as

EIA’yi1<c1p 21, (3.24)

E[A%7;] < cop' Z1P. (3.25)

3.6. NUMERICAL RESULTS 39

Proof. See Appendix A.7. d

Proposition 3 shows that both bounds have the common term p'Z;p, which is
similar to the variance term in the MSE, i.e,, %hTAIZIAxh [cf. (3.7)] and the ESSE
term of X" X% [cf. (3.14)]. If Ath=/2c;p and = ,/c;p, we have equality in (3.24)
and (3.25), respectively. Since the MSE and the ESSE already contain similar terms,
minimizing these over w and p helps minimizing the expected squared eigenvalue
perturbation. So, the optimization problems (3.10) and (3.15) account implicitly
for minimizing this measure of the spectral perturbation. In the next section, we
contrast the perturbation achieved with other attachment methods.

3.6. NUMERICAL RESULTS

In this section, we evaluate our approach and compare it with related methods with
synthetic and real data. For comparison, we consider three attachment rules:

1. Uniform attachment. The node attaches uniformly, i.e., p, = +1.

1

N

2. Preferential attachment. The node v, attaches to vy ; with probability p; « d;
with d; the degree of vy;, and p, = ﬁ where d=[d,,...,dn]" is the degree
vector.

3. Training attachment only. It relies only on the attachment patterns available
during training to build p and w, i.e., we ignore the MSE and ESSE costs

in their respective cost formulations. They are given by pg = Fllzli‘lbn and
_ 1 vIJl
Wg =17 anl a.
The first two rules serve as baselines to assess how the proposed data-driven
stochastic model compares with conventional statistical models, while the latter
assesses the importance of the task-specific cost.

3.6.1. SYNTHETIC DATA

We build two synthetic graphs of N =100 nodes following the Erd6s Rényi (ER) and
the Barabasi-Albert (BA) model. We consider the tasks of signal interpolation at an
incoming node and the prediction of the ESSE for an incoming node.

Experimental setup. For each graph, we generated the existing graph signal xy by
combining the first 30 eigenvectors of its Laplacian matrix with weights from a
normal distribution. Then, we normalized the signal to be zero mean. The edge
formation probabilities for these graphs were set as p, and pg, respectively. We
select w to be the vector of all ones for both graphs. We use a filter of order one
with h; =1 to percolate the signal, which amounts to one shift operation.

The training set comprises 1000 data points divided into an 80-20 train-test split.
The regularization weights p,, p, for problems (3.10) and (3.15) were selected via
ten-fold cross validation from the set [107°,10°]. We performed U = 3000 iterations
of alternating projected descent [cf. Alg. 1]. The learning rates 7,, 1, are 1075, We

40 3. LEARNING TASK-AWARE EXPANDING GRAPHS

10 10!

1
10

—not marginally convex — not marginally convex —ER graph

—marginally convex — marginally convex BA graph
@ @ @
Q Q Q
(&)] O
=) =) =)
c e s
£ = £
[o [
F 100 [= =

10° B —
100 280 500 100 500 1000 1500 200C 100 1500 300C
Iterations Iterations Iterations

Figure 3.2.: Semilog plots of training error vs. iterations over 50 initializations each
for left: ER graph with MSE; centre: BA graph with MSE; right: ER and
BA graphs with ESSE. For the MSE, the blue line represents non-convexity
in p while the red represents otherwise. For all initializations, the
proposed algorithm converges to the same training cost.

Table 3.1.: MSE performance comparison between proposed, preferential and random
attachment over the Erdés Rényi and Barabasi-Albert graph for training
over (left two columns) both and (right two columns) one variable(s).

Graph Erdés-Rényi Barabasi-Albert
Rule Prop. Pref. Rand. Prop. Pref. Rand.
MSE 0.37 0.64 0.73 0.84 1.72 1.35

Std Dev. 0.04 0.04 0.04 0.11 0.11 0.11
Rule bothpw onlyp onlyw bothpw onlyp onlyw
MSE 0.34 0.94 0.37 0.84 6.50 0.84

Std Dev. 0.04 0.07 0.04 0.10 5.55 0.10

Table 3.2.: ESSE performance comparison between proposed, preferential and
random attachment over the Erdés Rényi and Barabasi-Albert graph for
training over (top half) both and (bottom half) one variable(s).

Graph Erdés-Rényi Barabasi-Albert

Rule Prop. Pref. Rand. Prop. Pref. Rand.

ESSE 0.43 1.83 2.20 3.20 14.00 10.63
Std Dev. 0.17 0.23 0.25 0.81 1.83 1.68

Rule both pw onlyp onlyw bothpw onlyp onlyw

ESSE 0.43 2.20 0.56 3.20 7.48. 4.86
Std Dev. 0.17 0.23 0.25 0.81 1.83 1.68

averaged the performance over 100 realizations and 50 train-test splits to get the
error for each test node.

Algorithm convergence. We solved (3.10) for each graph under two scenarios, one
where u, satisfies the convexity criterion (3.13), and one where it does not. Figure
3.2 shows the training costs as a function of the number of iterations for 50 random

3.6. NUMERICAL RESULTS 41

Table 3.3.: MSE and ESSE comparison for the proposed method over the Erdés Rényi
and Barabasi-Albert graph for g =2 and g =1.
Graph Erdds-Rényi Barabasi-Albert
q g=2 q=1 q=2 q=1
MSE 0.37 0.67 0.84 1.01
Std. dev. 0.04 0.06 0.11 0.13

ESSE 0.43 0.82 3.2 3.5
Std. dev. 0.17 031 0.81 1.5

Table 3.4.: Squared Eigenvalue perturbation.
MSE Proposed ~ Random Preferential
Erdés Rényi 32x107% 42x10% 63x107°
Barabasi-Albert 1.05x107* 4.1x10™* 6.4x107*
ESSE Proposed Random Preferential
Erdés Rényi 55x107% 4.8x107% 4.4x107%
Barabasi-Albert 6.59x107% 33x10™% 52x107*

initializations. The non-convex cost (blue) and the marginally convex cost in both
variables (red) for u, =30 (satisfying (3.13)) converge following Algorithm 1. Most
importantly, optimizing over the non-convex cost yields a lower training cost because
a higher weight u, on the regularizer Zl;lel [[p—b,|I?> results in p fitting the binary
training attachments b, than reducing the MSE. Figure 3.2 (right) shows the ESSE
training error for both graphs. We see multiple local minima and that they all lead
to the same training cost.

Mean square error. Here, we evaluate the signal interpolation performance. We
choose pup =1,u, =1 for the ER graph and pp =1,u, =0.1 for the BA graph. Table
3.1 compares the different methods on the left two columns. The proposed approach
outperforms the others in both settings in expectation and has a comparable
standard deviation.

To investigate the effect of jointly training p and w, we train for each of them
separately while keeping the other fixed to the true value used for data generation. In
Table 3.1 (bottom half), we find that training the weights, given the true p provides a
performance comparable to the proposed for the ER graph and similar to that of the
BA graph. On the other hand, training p given the true w degrades the performance
appreciably, performing worse than p, and pg4. This is because when we train on w,
we deal with a convex function and reach a global optimum, whereas training on p
leads to local minima, affecting the performance. However, these results show that
the proposed approach is able to learn both p and w to solve the task.

Expected smoothness squared error. Now, we look at the ESSE performance in
the same setting with p, =0.1 in Problem (3.15). Table 3.2 shows in the left two
columns that the data-driven attachment outperforms the random and preferential
attachment, with a lower standard deviation. Table 3.2 also shows in the right two

42 3. LEARNING TASK-AWARE EXPANDING GRAPHS

columns the ESSE for training with one parameter fixed, as done for the MSE. We
see a similar trend as before when we train only w for the ER graph.

Choice of regularizer. Table 3.3 highlights the role of g in estimating the attachment
model, through the MSE and ESSE for the two synthetic graphs. We observe that for
g =2, the MSE and ESSE are lower than for g = 1, which promotes a sparse p and w.
For a sparse p, the model restricts attachment to some nodes, and for a sparse w,
even an attachment results in zero weights, incurring a higher error in the inference.
Perturbation. We now analyse the mean squared deviation for each eigenvalue
over multiple realizations. To give a graph-wide representative metric we report the
average taken over all eigenvalues and compare with the uniform and preferential
attachment with w=1. We focus on the effect of edge perturbation only. Table
3.4 showcases that the proposed approach achieves the lowest perturbation for both
graphs while training for MSE. However, for the ESSE, the edge perturbation is
higher for the ER graph due to more links being formed. In turn, more links changes
affect more eigenvalues, thereby causing a higher perturbation.

3.6.2. COLLABORATIVE FILTERING

We consider the task of cold start rating prediction on the Movielens 100K data-set.
This amounts to rating prediction for unknown users, i.e., we start with some
existing users as nodes of a user-user graph and interpolate the rating of a new user
when joining the network. We use the graph collaborative filter in [10] to percolate
the ratings of the existing users and the learnt attachment to predict the rating at
the cold starter.

Experimental setup. We retained all users and items with more than ten interactions,
giving 943 users and 1152 items. We considered 50 existing users and build the
adjacency matrix based on the Pearson correlation between their ratings. Next, for
each item i we built the corresponding adjacency matrix by 1) retaining all outgoing
links from users who rated that item; 2) building its 35 nearest neighbour graph
following [10]. The remaining users were treated as cold starters and were divided
into train (793) and test (100). We used an order five FIR graph filter obtained by
optimally solving the rating prediction problem over the existing users and items
[10]. For the interpolation cost (3.10), we impose an ¢;-norm constraint on p
an ¢,-norm constraint on w. We applied Algorithm 1 for U = 1000 iterations with
learning rates 1,1, = 107%. We predicted the ratings for the test users and for each
item we averaged the performance over 100 connectivity realizations drawn from p.
As a baseline, we considered the mean prediction which uses the mean of the item
ratings in training to predict how cold start users will rate the item.

Item-specific learning. First, we learnt (p,w) for each item separately, which is
preferred for personalized recommendations. We focused on three categories of
items with a high, medium and a low number of training samples. For each category,
report in Table 3.5 two examples. We evaluated the performance via the Root
Median Square Error (RMedSE) between the predicted and the true ratings, which is
more robust than the mean to outliers that are inevitably present in all stochastic
approaches.

3.6. NUMERICAL RESULTS 43

Table 3.5.: Item details. Items 1 and 48 have high, 459 and 550 have medium, 57 and
877 have low training samples.
Item 1 48 459 550 57 877
Training Samples | 362 457 196 139 64 42
Test Samples 44 65 29 22 8 8

Table 3.6.: RMedSE of all approaches. In brackets we show relative performance
difference in % to the proposed.

Item Proposed Attachment Only Random Preferential Mean Prediction
1 0.494 0.537(+8.7) 0.5417(+9.7) 0.527(+6.7) 0.669(+35.4)
48 0.492 0.611(+24.2) 0.53(+7.7) 0.62(+26) 0.55(+11.8)
459 0.462 0.49(+6) 0.52(+12.5) 0.40() 1.07(+131)
550 0.512 0.678(+32.4) 0.66(+29) 0.692(+35.2) 0.643(+25.6)
57 0.049 0.057(+16.3) 0.41(+736) 0.20(+308) 0.32(+553)
877 0.049 1.04(+5) 1.07(+8) 1.05(+6) 1.01(+1.72)
All 0.799 0.802(+0.38) 0.821(+2.75) 0.820(+2.63) 0.832(+4.1)

In Table 3.6 we show the relative performance difference — worse (red) or better
(green) between the proposed approach and the alternatives. The proposed method
outperforms the alternatives convincingly for items with high training samples (1 and
48) and does well even with low training samples. When compared with the training
attachment only, it is clear that including the graph structure and ratings along with
the attachment patterns is more beneficial. The training only and the preferential
attachment strategies prioritise users who have rated the item as only those users
have links directed outwards. The performance of our approach suggests that such
attachments are not always optimal for the cold start. The poor performance of the
uniform and the preferential attachment (except item 459) shows the importance
of using a task-aware connectivity approach. The mean prediction performance is
dependent on the quality and quantity of the available ratings. For example, it is
considerably worse off for all items except for item 877, even though it has few
training samples.

Learning for all items. Second, we learnt a common (w,p) across all the 1152 items
in the data set. We select u, =1 and p, = 1073, The results are in the last column
of Table 3.6. We notice that with all the item data, even though the proposed
performs the best, the performance gap reduces, which is somewhat expected as
we are not personalizing recommendations. This suggests that to improve the cold
start performance, we should approach each item individually following the spirit of
nearest neighbour collaborative filtering. The attachment only method performs well
because the attachment rule is cognizant of a diverse set of node attachments over
many graphs and ratings. The proposed still does substantially well compared to
alternatives.

44 3. LEARNING TASK-AWARE EXPANDING GRAPHS

3.6.3. BLOG NETWORK

We consider a political blog network with blogs as nodes and their political
orientation (liberal vs. conservative) as signals [78]. We study how nodes attaching
based on the ESSE influence the structure of the existing graph. This is because the
ESSE is low when the signal varies slowly within a cluster than arbitrarily between
clusters [81, 82]

Experimental setup. We extracted a connected sub-graph from the main network
with N =600 blogs such that this graph retains the clustering. The remaining 622
nodes are split into train (400) and test (200). The existing adjacency matrix is binary,
so we set w=1, i.e., we train to minimise the ESSE only w.r.t. p. We apply Algorithm
1 for 500 iterations with learning rates 7, =10~ and 1, =107%. We consider the
clustering coefficient of a graph as a measure of how well it is clustered [19]. A large
value implies a more clustered graph. Upon learning p, we calculate the clustering
coefficient of the expanded graph formed upon its attachment. We contrast this with
the clustering coefficient with that of the true attachment.

70 70 70
[_IProposed [_Proposed [_IProposed —
60 |_Juniform-at-random 60 [_IPreferential 60 [[C_JAttachment Only
E 50 E 50 E 50
[=8 [=5 — o
£ 40 £40 £ 40
IS I IS
2 30 %30 — 2 30 T
17 0 1%
() (o} ()
=20 =20 =20
10 10 10 ’zl:}:(:
0 0 0
-1.5 -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1
Clustering coefficient deviationy 1073 Clustering coefficient deviationy 1073 Clustering coefficient deviationy 1073

Figure 3.3.: Histogram of the clustering coefficient deviation of the proposed
approach compared with the (left) uniform; centerpreferential attachment;
right training attachment only. The proposed approach causes positive
deviation for the most test nodes, while causing the fewest negative
deviations as well.

Figure 3.3 compares the histograms of the clustering coefficient difference between
the realization and the true attachment between the proposed and other approaches.
A positive deviation improves upon the clustered nature of the graph, while a
negative deviation reduces it. Ideally, we want more positive and fewer negative
deviations. In Figure 3.3 the proposed approach outperforms the random attachment,
which is likelier to make an incoming node connect to both clusters and incur
a negative deviation. In Figure 3.3, the preferential attachment incurs negative
deviation for more test nodes but also reports the highest positive deviation for a
few nodes. In Figure 3.3 the proposed approach influences positive deviation for
more test nodes in the two furthest bins and fewer negative deviations than training
attachment only. By minimizing the ESSE, new nodes attach in a way that is
likelier to retain/ improve upon the overall clustering for unknown nodes. Hence,

3.7. CONCLUSION 45

the data-driven attachment follows the true network properties if the cost function
matches with the task; here, preserve its clustering structure.

3.7. CONCLUSION

We proposed an approach to learn the random connectivity model for incoming
nodes by solving a signal processing task over the expanding graph. Incorporating
the data-processing task to determine the attachment is beneficial compared to
relying on the knowledge of previous node attachments and standard stochastic
attachments. We formulated a stochastic optimization problem w.r.t. the attachment
parameters for graph signal interpolation and signal smoothness. The problem is
solved via an alternating projected descent approach with provable convergence to
local minima. By conducting a perturbation analysis, we show that our method
implicitly controls the spectral perturbation caused by such nodes.

For undirected graphs, the higher-order statistics limit the MSE analysis to be an
approximation of the true one. This might be addressed by learning two graphs
with incoming and outgoing directed attachments. Thus said, this method lays the
foundation for approaching signal processing on expanding graphs by relying only
on its stochastic connectivity model. Throughout, we consider the addition of only
one node to an existing graph. To extend this approach to a continuously expanding
graph, one has to generate or make available a corresponding training set. Moreover,
with an increase in the dimension of the existing graph, the dimensions of p and w
will also grow, which requires a treatment outside of the scope of this chapter.

GRAPH FILTER FORINCOMING
NODES

In Chapter 3, we inferred the attachment of incoming nodes for a specific data
processing task performed through a fixed graph filter. In this chapter, we focus on
designing the filters in this setting. Most existing filter design approaches are suited
for fixed size graphs with the topology fully known. This gives rise to the following
question: How does filter design with known topological information differ from one
built without the full topological information? This is the case for incoming nodes in
the cold-start scenario. Moreover, if the incoming nodes contain data, how do they
influence the task over the rest of the graph? To come to an answer, we focus on
designing filters for one incoming node. We formulate the filter design problem and
derive solutions for the filter parameters. Different from the previous chapter, we
consider signal processing tasks, namely, graph signal de-noising and semi-supervised
learning over the incoming as well as the existing nodes.

The rest of this chapter is organised as follows: Section 4.1 introduces the problem
and highlights our contributions; Section 4.2 describes the attachment of the incoming
node forming two separate graphs, and how this leads to a two-filter bank; Section
4.3 provides the filter bank output and describes the filter design approach for two
tasks: de-noising ad semi-supervised classification; Section 4.4 evaluates the proposed
filter design strategy with numerical experiments; Section 4.5 concludes the chapter.
All proofs are collected in Appendix B.!

IThis chapter is based on the publication: Das, B., & Isufi, E. (2022, May). Graph filtering over
expanding graphs. In 2022 IEEE Data Science and Learning Workshop (DSIW) (pp. 1-8). IEEE.

47

48 4. GRAPH FILTER FOR INCOMING NODES

4.1. INTRODUCTION

Graph filters are a flexible, parametric, and localized information processing operator
for network data [6, 8] with wide applicability in signal de-noising [52, 113],
recommender systems [10, 65], semi-supervised learning [57, 114], and graph-based
dictionary representations [115]. By relying on information exchange between
neighbouring nodes, graph filters extend the convolution operation to the graph
domain [114, 116]. In turn, they can account for the network data-topology coupling
to solve the task at hand. However, graph filters are used only for graphs with a fixed
number of nodes despite the evidence that practical graphs often grow in size [13,
14, 27]. Filtering network data in this setting is challenging not only because of the
increase in graph dimension but also because we do not know how the new nodes
attach to the graph. The importance of processing data over expanding graphs and
the challenges arising when learning a filter on them have been recently recognized
in a few works. Authors in [31] focus on semi-supervised learning with incoming
nodes. First, a filter is learned to solve the task on the existing nodes, and then
the filter output is used as a feature vector to predict the label of a new incoming
data-point node. The work in [117] learns a graph filter-based neural network over a
sequence of growing graphs, which are generated from a common graphon model
[118]. However, the generated graphs are not related to each other. The works in [28,
80] perform regression tasks over graphs but rely on the attachment of the incoming
nodes.

Despite showing potential, these works rely on the exact topological connectivity
or available node features. In many cases, we only have the stochastic attachment
model for this growing graph. Hence, deploying graph filters in this setting leads to
a stochastic output, which requires a statistical approach in the filter learning phase.
To fill this gap, we propose a stochastic graph filtering framework over an expanding
graph without knowing the connectivity of the incoming nodes.

4.1.1. CONTRIBUTIONS OF THIS CHAPTER
Our contribution is threefold:

1. We propose a filtering model over expanding graphs that relies only on the
preferential attachment information. The model comprises two parallel graph
filters: one operating on a graph in which directed edges land at the incoming
node; and one operating on an expanded graph in which directed edges
depart from the incoming node. Such a procedure allows more flexibility to
control the information inflow and outflow on the expanded graph and greater
mathematical tractability compared with a filter running over a single graph.

2. We adapt the proposed approach to signal de-noising and semi-supervised
learning over expanded graphs. We characterise the filter output stochastically
and show the role played by the filter parameters and the attachment model.

3. We develop an empirical risk minimization framework to learn the filters. This
framework is inspired by multi-kernel learning and balances the information
between the two graphs via a single parameter.

4.2. PROBLEM FORMULATION 49

Numerical results with synthetic and real data from sensor and blog networks
corroborate our findings.

4.2. PROBLEM FORMULATION

Consider a graph %, = (%,80) with node set 7 = {vg1,...,Vo,n}, edge set &y, and
adjacency matrix A. An incoming node v; attaches to %, and forms two sets of
directed edges: a set {(vg,,, V1)} starting from v; and landing at the existing nodes
vo,n, whose weights are collected in vector bi1 eRY; and another set of {(vy, vo,n)}
starting from the existing nodes v, € 7% and landing at v;, whose weights are
collected in vector af € RY. We represent these connections with two directed graphs
Gl = (U1}, {60 U (vo,n, v1)}) and 9P = ({% U v1}, {60 U (v1, vo,n)}) whose adjacency
matrices)
A b}

o o .1)

A=

and A=

A 0
A o
where 0 is the all-zero vector. A conventional way to model the attachment of
incoming nodes is via stochastic models [19] in which node v; connects to v; with
probability p} and weight w} in graph ¢}, and probability p? and weight wy in
graph ¢7. Hence, b; and aj are random vectors with expected values p'=w'op'
and p°®=wCop®, and covariance matrices X' and X°, respectively. Here we define
wi= [wil,...,wi\,]-r, wl= [wi’,...,w?\,]-r and denote by o the Hadamard product.

While analyzing expanding graphs is an important topic, we are interested in
processing data defined over the nodes of these graphs. Let then x; =[x, x;] T € RV*!
be a set of signal values over nodes 7, U v; in which vector x= (x1,...,xN]1T € RN
collects the signals for the existing nodes 7 and x; is the signal at the incoming
node v;. Processing signal x; amounts to designing graph filters that can capture
its coupling w.r.t. the underlying directed graphs é@{ and ¢7. To do so, we consider
a filter bank of two convolutional filters [8, 114], one operating on graph ¢%; and
one on graph ¢P. Mathematically, with h'=[hl,...,hl]T and h® = [h],...,h%]T
representing the vector of coefficients for filters H‘1 (Ail) and HY(AY), respectively, the
filter bank output is

vi=yiytim AL Y A 4.2
=0 =0
HI (AL)

where without loss of generality we consider y; =[y',y;]"
outputs over graphs ééi and %7, respectively.

The stochastic nature of the attachment yields a random y;. It is notoriously
challenging to compute statistical moments of powers of the adjacency matrices of
increasing graphs because third or higher-order moments of the attachment pattern

of the incoming node appear® [119]. However, because of the decoupled nature

and y\ and y? are the

°This is a challenge if we consider a single graph % = (¥4,&]) whose edge set contains both the
incoming and outgoing edges at node v;.

50 4. GRAPH FILTER FOR INCOMING NODES

between the incoming and outgoing edges at node v;, the kth powers of the
adjacency matrices have the block structure

k k=1pi
AF AR-1p

AF 0
(All* =107 o and [A9]F =] (4.3)

a®TAk1l o

which facilitate the stochastic analysis as we shall elaborate in Section 4.3. Our
goal translates into estimating the filter coefficients H‘1 and h° to solve specific
learning tasks in a statistical fashion [120]. Specifically, we consider a training set
9 ={(v1,x1,t1)} comprising a set of incoming nodes v; w.r.t. a fixed existing graph
%y, an expanded graph signal x; (e.g., noisy or partial observations), and a target
output signal t; = k", u11" (e g., true signal, or class labels). Then, we learn the filter
by solving

1
L 6y (b 0O, 1))] + —— g) +
g}lﬂo [fo (1)]+ g(D+ i

j(h®) (4.4)

where E[fs(h',h°,t)] is the expected task-specific loss with the expectation taken
w.r.t. both the graph attachment vectors bil, a‘l’ and the data distribution; and g(-),
j() are filter-specific regularizers (e.g., norm two of coefficient vectors) to avoid
overfitting. The regularization weight ¥ >0 controls the trade-off between fitting
and regularization and scalar 0 < @ <1 balances the impact between the two filters
inspired by multi-kernel learning [121]. Next, we shall particularize problem (4.4)
to graph signal de-noising (Sec. 4.3.2) and graph-based semi-supervised learning
(Sec. 4.3.3). For both settings, we shall characterize the filter output stochastically,
use its first- and second-order moments in (4.4), and show the role played by the
attachment models on %i and ¥7.

4.3. FILTERING WITH INCOMING NODES

Before defining the filter bank in (4.2), we first rearrange it in a compact form,
instrumental for our analysis. This form will also show the influence of the incoming
node connectivity on the filter output.

4.3.1. COMPACT FORM

The goal of this section is to combine the filter coefficients h=[h"",h®"]T and write
(4.2) as y1 =Wih, where W, contains the coupling between the stochastic expanded
graphs and the signal. Analyzing filter H} (A}), it is possible to write its output as

yi = [x1,Alxy, ..., (A1 K% T, (4.5)

Then, leveraging the structure of the input x; = [x",x;]" and the block-structure of
[A‘]k in (4.3), we can write (4.5) as

. i L .
v= | X H = Lx+$1Lb]Hll (4.6)
X X
K K

4.3. FILTERING WITH INCOMING NODES 51

where Ly =Ly +x1Ly, Ly = [x,Ax,...,AXx] and L, =[0,b},...,AX"!bl] are N x (K+1)
matrices and xg = [x1,0,...,0]T e Rl Eq. (4.6) shows that the output y' on the
existing nodes nodes 7 is influenced by propagating their own signal x [cf. L,] and
by propagating signal x; of v; w.r.t. the incoming attachments b, [cf. L,]. Instead,
the filter output at the incoming node y! is just a scaled version of the input x; by
coefficient h(i). The latter is because edges on graph %{ leave node v; and land on
7; hence, governing the direction of the signal propagation.
Likewise, analyzing filter H°(A?), we can write its output as

V9 = [x1,A%x, ..., [A%1Xx; Th°. 4.7

Leveraging again the structure of the input and that of the matrix powers [A?r]k in
(4.3), allows writing (4.7) as

M,

T
mx

M,
oTV T
a) My +xp

(o]

yi=

(o]

h° (4.8)

where M, = [x,Ax,...,AXx] is an Nx (K+1) matrix, m, = Mla‘f +xg, M, =
[0,%,...,AK"1x] are of dimensions (K+1)x1 and N x (K+1), respectively, and
xXg = [x1,0,...,0]T e RX*1, That is, the output y° on the existing nodes % is influenced
only by propagating their own signal x. Instead, the output y¢ at node v; comprises:
(i) the match between the attachment pattern a‘l’T and the signal shifted over the
existing graph %, My; ie., a®"M,; and (i) a scaled version of its own signal x
by coefficient k. The output on the existing nodes 7 is not influenced by signal
x1 because the edges in ‘510 leave those nodes and land on v;. The latter is also
justified by the structure of matrix M,; i.e., the existing signal x is first percolated
over ¢, and then mapped onto v; through its attachment pattern a. in a matched
filtering principle [122].
Bringing together (4.6) and (4.8), leads to the desired compact form

. L, M
yi=y;+y}=Wih and W;=|7 1’1‘1%6—) (4.9)
K X

Statistical identity. Throughout the statistical analysis of the filter output y;, we will
deal with expectations of the form [E[LICMx] for some N x N square matrix C. In
the remainder of this section, we derive a handy formulation for it by using the
compact form (4.9). For this, we will need the block-trace operator as defined next.

Definition 4.3.1 (Block trace) LetZ be a block matrix comprising N x N sub-matrices
Z; . The block trace operator takes as arguments matrix Z and an N x N matrix Y to
yield a matrix U =blktr(Z,Y) with (i, j) entry U; j = tr(YZ; ;) and tr(-) being the trace
operator.

Lemma 1 Given an existing graph ¢ with a noisy graph signal X =t+n, where t is
the true signal and n a Gaussian noise A (0, a21). Consider also matrices Ly and M,
[cf. (4.6) and (4.8)], which can be expanded further as

Ly=LIg;1®%x) and M, =MIg;; ®X) (4.10)

52 4. GRAPH FILTER FOR INCOMING NODES

where L=[LA,...,AX], M= [LA,...,AX], Iy is the N x N identity matrix, and ® is the
Kronecker product. Then, for any N x N square matrix C the following identity holds:

E[L] CM,] = L] CM; + o blktr(LTCM, 1) (4.11)
where Ly = Ly|y=r, My = M| =;, and blktr(:) is the block operator in Def. 4.3.1.
Proof. See Appendix B.1. O

4.3.2. SIGNAL DENOISING

The first task we are interested in is recovering a true signal t; from
its noisy observations x; by knowing only the stochastic attachment pattern
of the incoming node. For this, we consider as cost the mean squared error
E[fs (h,t1)] ;= E[[I[Wih—t;]|3], where D = diag(ds, ..., dn+1) € {0, 1V 1N+ s a diagonal
matrix with d, =1 only if account for the MSE at node n and zero otherwise. The
following proposition quantifies the latter.

Proposition 4 Given a graph %, = (¥, 80) with adjacency matrix A and an incoming
node vy connecting to 9, with random attachment vectors b' and a® with respective
means p!, p° and covariance matrices X', X° [cf. (4.1)]. Consider a noisy signal
X) = t; +n; over the nodes %yU vy, withx, = X', x1], t; = [t7, 111, and n; ~ A (0,0%In41).
Let also y; =Wih [cf.(4.9)] be the filtered output. Then, the MSE of the filter output
MSEp(h) :[E[||W1h—t1||%)] computed on a set of nodes sampled by the diagonal
matrix D = diag(ds, ..., dn+1) € {0, [}V g

MSEp(h)=h"Ah-2h"8 +||t;]13 (4.12)
where A = [A11,A12;A21,A2] is a 2 x 2 block matrix with:

A1 =L/ DyL;+0°blktr(L'DyL, Iy) + £ L] DL, + IIE;iD NL+ (£ + 02)@; DL, w13
4.13
+blktr(@' DL, =) + diy, 1 diag(2 + 02, 0x)

where D = diag(d,,...,dn) contains the indices of the sampled nodes in§, L=11,... ,AKY,
L; = [tAt,...,AKt], L=[0,LA,..., AKX L;=(0,t,At,...,AK"'t], and Ls = Lyl .

Az =AJ, =L{DM; + 1L DM; + o”blktr(L' DM, In) + dns1 (txp® "M +trp) - (4.14)

where M = [I,...,AK], M; = [t,At,...,AKt], M, =[0,t,A¢t,...,AK71t], tx = [t;,0x], and
tray € REFIXMAL iy (t12 +02) in location (1,1) and zero elsewhere.
Azy =M DM, + 0?blktr(M " DyM, Iy) + dyy1 (blktr(M ' R°M, (0°1+tt7)) + M, p°t}
+tgp® M, + diag(£? + 0%, 0k))

(4.15)
where M= [0,1,..., AK"1], RO =3° +y°u°T, and tg = [t;,0k]. Vector 0 € REE+D g of
the form

-
0 - (Ly+ tlLul) t+ Lty

= L) (4.16)
M, t+ thtTp,l-F fitg

4.3. FILTERING WITH INCOMING NODES 53

Proof. See Appendix B.2. d

The MSE in (4.12) is governed by the interactions between the statistics of the
attachment vectors, and those of the percolated signals t and p'. Using it as the cost,
problem (4.4) becomes

min —MSED(h)+ ||H 5+ 2(1 ——||h°|]5. (4.17)

h=[hi Tho.T|T 2}/)

The scalar y>0 controls how much we want to reduce the MSE over the nodes in
D; for y — 0 the importance of minimizing the MSE increases, while for y — oo it
decreases. Instead, scalar @ €]0,1[controls the role of the filters H} (A}) and H)A9)
in (4.2). For a — 0 we prioritise more the filter over graph %i; i.e., leverage the
information on the existing nodes 7 towards the incoming node v;. And for @ — 1
we prioritise the filter over graph %7’; i.e., leverage the information on the incoming
node v; towards the existing nodes 7. Such a formulation would work for any
additive noise or attachment model as long as respective parameters are known.

Problem (4.17) is quadratic and convex only if matrix A is positive semi-definite
(PSD). However, proving the latter is challenging because of the structure of this
matrix; hence, we can find local minima via descent algorithms [123]. But since we
estimate A from the training set 9, we can check if it is PSD and for a positive
outcome we can find the closed-form solution for (4.17)

h* = (Ag +2yA) 05 (4.18)

where matrix A=[1/2alg;1,0;0,1/2(1 — a)Ig,1] € REKFD*CEFD) and subscript I
indicates that these quantities are estimated from data.

4.3.3. SEMI-SUPERVISED LEARNING

As second task, we perform inductive semi-supervised learning (SSL) [124]. As
in [31, 57, 114], we use graph filters for such a task but now operating over
the expanded graph. Specifically, we consider a binary classification problem with
sparse label target vector t; such that [t;], = +1 if node v, €U, is labelled,
or zero if unlabeled. As learning cost for problem (4.4), we consider the label
fitting MSEp (h) :[E[llyl—tlllﬁ)] :[E[(yl—tl)TD(yl—tl)] which is a typical convex
approach for graph-based SSL with satisfactory results [57]. Then, in addition to
regularizing the problem w.r.t. the ¢,—norm of the filter coefficients, we consider
also graph-regularizers via the total variation w.r.t. both graphs (5{ and ¥p; ie,
E[TV(y)] =Elly, —Alyil3] and E[TV(y9)] = E[lly? —A9y?|13], respectively. The latter
ensures that each filter output is a smooth over directed graphs, which has been
validated for graph-based SSL [31, 57, 114, 124-126]. Then, Problem (4.4) becomes

1
L MSEph * 5= H! h°|2
. [hfrTulri,T] 2y p(h) || ||2 2(1—a [Ih™[]5

v - Al]+

(4.19)

2(1 ,3) [||Y1 A1Y1||]

54 4. GRAPH FILTER FOR INCOMING NODES

where again y >0 controls the trade-off between the fitting term and the regularizer,
a €]0,1[controls the roles of the filter behavior over graphs fg{ and %{’ [cf. (4.17)],
and p€]0,1[controls now the filter output smoothness w.r.t. graphs %; and ¢7. For
B — 0, we bias filter H} (A]) to give an output y; that is smooth over graph ¢, and to
ignore the behavior of filter output yy over graph ¢7. This may be useful when the
connectivity model of v; respects the clustering structure of ¢4. The opposite trend
is observed for f— 1.

The MSE in (4.19) is of the form (4.12) and encompasses both SSL cases with clean
labels (0? =0) and noisy labels (02 > 0). In (4.19), we also have the expected signal
TV form that influences the filter behavior. The following proposition quantifies it.

Proposition 5 Given the setting of Proposition 4 and considering x, =t;, the TV of
the filter outputs 'y, andy$ over graphs 4, and 4, are respectively

E(TV(y)I=h'"¥'h' and ETV(yD)]=hTW°h° (4.20)
where
W= (L +nL,) T+l + £2blktr(L' I, =) - 2tx (W L+ 11 #' 'L, + nblktr(@, 21)
—ti(p' T AL;— 1y ' TAL i — 1y blkir (AL,) + (w' p' + 1) diag(t,0)
(4.21)

WO = M] (I'+R%)M,; - M R°M, + M] p°t], — M, R°M, + tx pi°" M, + M, R°M, + M, p°t}
+tep® M, + tiety
(4.22)

are matrices that capture the attachment patterns and label propagation on the edges
of the incoming node and T = (I-A) T (I-A).

Proof. See Appendix B.3. O

The expected TV forms depend on the attachment statistics in two ways: first,
the expected attachments u' and p° control the label percolation from and towards
the incoming node; second the in-attachment covariance X! and the out-attachment
covariance X° influence the percolated labels through L and A and M; and M,.
Using then (4.20) in (4.19), we get

min -~ MSEp(h) +h"Ash+h"Qsh (4.23)
h=[hiT hoT]T 2’)/
where A is defined in (4.18) and Q = [1/2ﬁ‘l’i,0;0, 1/2(1-B)¥°] is an (2(K+1))x(2(K+1))
matrix. As for (4.19), proving convexity for (4.23) is challenging but solvable with
descent algorithms. And if we observe empirically that the matrix in the quadratic
form of h, Ag+ A+ Q is PSD, the solution of (4.23) is given by

h* = (Ay +2y(A+ Qg7 + Q1)) 05 (4.24)

where again the subscript 9 indicates that the respective quantities are estimated
from data.

4.4. NUMERICAL RESULTS 55

4.4. NUMERICAL RESULTS

This section compares the proposed method with competing alternatives to illustrate
the trade-offs inherent to graph filtering over expanding graphs with synthetic and
real data. Our numerical tests have been focused to answer the following research
questions:

RQ.1. How does the proposed approach compare with baselines that utilize the
known attachment?

That is, we want to understand to what extent the proposed empirical learning
framework compensates for the ignorance of the true connection. To answer this
question, we compare with:

1. Single filter with known connectivity (KC;). This is the intuitive solution
where the incoming node v; connects to the nodes in 7 forming a single
graph ¢, = (Jp U v;,&), in which set &; collects both the known incoming and
outgoing edges w.r.t. v;. Then, a single filter is trained on %; as conventionally
done by the state-of-the-art. This comparison validates the proposed scheme
over the conventional strategy.

2. Filter bank with known connectivity (KC;). This is the proposed filter bank
scheme in (4.2) with the known connectivity of node v;. The rationale behind
this choice is to factorize the filter degrees of freedom since KC; employs a
single filter and to highlight better the role of the topology.

RQ.2. How much does the information of the attached node contribute to the task
performance over the existing graph?

We want to understand if the proposed approach exploits the incoming node signal
without knowing the topology to improve the task over the existing graph instead of
ignoring such information.

RQ.3. How does the proposed model compare on the incoming node w.r.t. inductive
graph filtering?

Since graph filters have inductive bias capabilities [116], they can be learned on
the exiting graph %, and then transferred to expanded graphs without retraining.
We want to understand if learning with a stochastic model is more beneficial than
transference. To answer RQ.2 and RQ.3, we compare with:

3. Inductive transference (IT). l.e., we employ a single filter to solve the task
over the existing graph and transfer it on the expanded graph under the same
attachment model.

For all experiments, the incoming node attaches to the existing nodes (Eﬁli)
uniformly at random with p'=p, = 1n/N, and have edges landing at itself (¢47) with
a preferential attachment p° = p,; =d/1"d where D is the degree vector; i.e., they are
likelier to form links with nodes having a higher degree. The covariance matrices are

56

4. GRAPH FILTER FOR INCOMING NODES

Table 4.1.: NMSE over all nodes and NMSE; of the different models for different

SNRs for the Barabasi-Albert graph.

Barabasi-Albert
SNR 5dB SNR 10dB SNR 20dB
Rule NMSE NMSE+ NMSE NMSE 4+ NMSE NMSE 4+
Prop. 8x107° 079 0.073 0.8 7x107% 0.54
KC; 7x1072 026 0069 016 4x107* 9x107*
KC; 8x1072 0.46 0.07 040 5x107* 0.03
I 7x1072 361 0069 35 7x107* 3.7

Table 4.2.: NMSE over all nodes and NMSE; of the different models for different

SNRs for the NOAA data-set.

NOAA
SNR 5dB SNR 10dB SNR 20dB
Rule NMSE NMSE+ NMSE NMSE + NMSE NMSE 4+
Prop. 0.103 0.156 0.054 0.110 9x1073 1.3x1072
KC; 0.063 0.136 0.03 0.073 6x1073 1.2x107?
KC; 0.103 0.09 0054 0.07 9x1073 1.2x107?
IT 0.076 0204 0.041 0.122 8x1073 1.4x1072

estimated from 10,000 generated samples of their respective attachment vectors. For
simplicity, we set the expanded graph weights w' =w°=w1 with w being the median
of the non-zero existing edge weights in 4. We fixed the filter orders order K=4
and considered also a filter order of four for KC; and IT. We performed a 70-30
train-test data split and selected parameters y € [1073,10], a,B€]0,1[via five-fold
cross-validation. We averaged the testing performance over 100 realizations per test
node.

4.4.1. DENOISING

Following the chapter outline, we first answer the RQs for the de-noising task over a
Barabasi-Albert (BA) graph model and the NOAA temperature data-set [127].

Experimental setup. For the BA model, we considered an existing graph of 100
nodes and 1000 incoming node realizations. For each realization, we generated a
bandlimited graph signal by randomly mixing the first ten eigenvectors with the
smallest variation of A; € R101x101 [174] For the NOAA data set, we considered
hourly temperature recordings over 109 stations across the continental U.S. in 2010.
We built a five nearest neighbors (5k-NN) graph %, of N =100 random stations as in
[128][129]. We treated the remaining nodes as incoming, each forming 5k-NN on %i
and 5k-NN on ¢7. We considered 200 hours, yielding 1800 incoming data samples.
We corrupted the true signals with Gaussian noise of SNRs € {5dB, 10dB,20dB}. We
measured the recovery performance over all existing and incoming nodes through
the normalized mean squared error NMSE = ||y; —t1||§/||t1||§ and we also measured

4.4. NUMERICAL RESULTS 57

the NMSE only at the incoming node and denote it as NMSE;.

Observations. Tables 4.1 and 4.2 reports the denoising performance on both datasets.
The proposed approach compares well with the two baselines relying on the exact
topology (KC; and KC,). As regards the performance at the incoming node NMSE;,
we see that not knowing the topology leads to a worse performance. However, we
see that in the NOAA dataset the gap is much smaller; a potential explanation for
this is may be in the nearest-neighbor nature of the graph. Regarding then the last
two research questions, we see that the proposed approach performs comparably
well w.r.t. IT on the existing graphs but outperforms it by a margin when it comes to
the performance of the incoming node (NMSE;). Such findings show the advantages
of the proposed scheme to keep a comparable performance with baselines relying
on the exact topology and to improve substantially w.r.t. methods relying only on
transference.

4.4.2. SEMI-SUPERVISED LEARNING

For SSL, we consider a synthetic sensor network graph from the GSP toolbox [130]
and the political blog network [78].

Experimental setup. For the sensor network, the existing graph %, has N =200
nodes that are clustered into two classes (+1) via spectral clustering to create the
ground-truth. The training set 9 comprises 500 realizations of incoming nodes each
making the same number of incoming and outgoing as the median degree of %.
The ground-truth label at the incoming node is assigned based on the class that has
more edges with v,. For the blog network, we considered 1222 blogs as nodes of
a graph with directed edges being the hyperlinks between blogs and labels being
their political orientation (+1 conservative vs. —1 liberal). We built a connected
existing graph %, of N =622 blogs with a balanced number of nodes per class. The
remaining 600 blogs are treated as incoming nodes.

We use only 10% of the labels in %, and aim at inferring the missing labels in this
graph by using also the information from the incoming node. These labels act also
as the graph signal [x;], = =1 for a labelled node and [x;], =0 if unlabeled. We also
considered two settings: first, all incoming nodes in the training set have labels (fully
labelled), which allows identifying if the additional label contributes to the SSL task
on %; second, only half of the incoming nodes have labels (50% labelled), which
adheres more to a real scenario where some of the incoming nodes are unlabeled.
For the IT baseline, we solve the corresponding filters using [114], while for KC; and
KC; we use the true connections. During training, standard SSL requires evaluating
the loss at the nodes with available labels. Hence, when an incoming node has
no label, we cannot account for its importance during training. Consequently, SSL
models cannot predict labels when we do not know the connectivity. Thus, we
measure only the performance of the existing nodes.

Observations. Tables 4.3 and 4.4 report the classification errors for the sensor and
blog networks, respectively. The proposed approach achieves a comparable statistical
performance with the two baselines (KC; and KC;) that rely on the exact topology.
This suggests that controlling the information in-flow and out-flow with a filter bank

58

4. GRAPH FILTER FOR INCOMING NODES

Table 4.3.: Average (+ std.) SSL error for the sensor network.

Error (%) Fully labelled 50 % labelled
Prop. 4.64 (£3.43) 4.8 (+£2.59)
KC, 5.35 (+3.36) 5.6 (£2.6)
KC, 4.62 (£3.41) 4.9 (+£2.62)

IT 6.12 (+£3.78) 5.3 (+£2.63)

Table 4.4.: Average (+ std.) SSL error for the blog network.

Error (%) Fully labelled 50 % labelled
Prop. 2.8 (£0.4) 2.56 (£0.75)
KC,; 2.82 (£0.83) 2.42 (£0.59)
KC, 2.8 (£0.4) 2.56 (£0.75)

IT 12.2 (£18) 6.58 (£0.59)

compensates effectively for the exact topology ignorance. The proposed approach
reduces the error substantially compared to IT.

We also observe the models tend to perform better when 50% of the labels are
present. We have identified two factors for this. First, some of the incoming nodes
form misleading connections with both clusters. Hence, when their label diffuses it
hampers the classification performance on the opposite cluster. Instead, when these
nodes have no label they do influence the opposite class. This trend is observed
also for KC; and KC,, which shows that these wrong connections are present in
the dataset. In the blog network, these are blogs with an unclear political position
and have linked both with liberals and conservative groups [78]. Instead, in the
sensor network, we do not see such a trend because nodes are better clustered.
Second, this two-class classification problem has labels +1 and we use the MSE
as a criterion. Hence, the term tf =1 affects the costs when the incoming node
is present [cf. Prop.4,5] and does not help discriminating irrespective of the class.
Thus, we conclude that when dealing with SSL classification in expanding graphs,
the connectivity model plays also a central role in the performance.

4.5. CONCLUSION

We studied filtering of signals over expanding graphs by relying only on their
attachment model connectivity. We used a stochastic model where incoming nodes
connect to the existing graph, forming two directed graphs. A pair of graph filters,
one for each graph, then process the expanded graph signal. To learn the filter
parameters, we performed empirical risk minimisation for graph signal de-noising
and graph semi-supervised learning. Numerical results over synthetic and real data
show the proposed approach compares well with baselines relying on exact topology
and outperforms the current solution relying on filter transference. However, the
performance is strongly dependent on a fixed attachment model, prone to model

4.5. CONCLUSION 59

mismatch. Hence, potential future works may consider a joint filter and graph
learning framework for expanding graphs.

ONLINE FILTERING OVER
EXPANDING GRAPHS

In Chapters 3 and 4, we focus on filter design with one incoming node to study
the effect of node attachment in more detail. However, expanding graphs are not
limited to one node as they often keep growing with a sequential attachment of nodes
in a streaming fashion. Thus, to process data over these nodes, the filter design
should adapt to this streaming setting. Moreover, as we saw in the previous chapters,
sometimes we do not know how each node will connect, which adds another layer
of uncertainty and complexity. To meet these challenges, we propose filter design
principles inspired by online machine learning for inference tasks at the incoming
nodes. We design filters in two scenarios, the deterministic and in the stochastic
attachment setting. Then, we estimate the gap involved in inference performance due
to the absence of connectivity information.

The rest of this chapter is structured as follows: In Section 5.2, we elaborate on
the sequentially expanding graph scenario, along with the basic formulation of
online inference with graph filters. Sections 5.3 and 5.4 contain the online learning
methods and their respective analysis in the deterministic and in the stochastic setting,
respectively. Section 5.5 contains the numerical results, while Section 5.6 concludes the
chapter. All proofs are collected in Appendix C.!

IThis chapter is based on the publication: Das, B., & Isufi, E. (2024). Online Graph Filtering Over
Expanding Graphs, IEEE Transactions on Signal Processing.

61

62 5. ONLINE FILTERING OVER EXPANDING GRAPHS

5.1. INTRODUCTION

Most of the filters in literature are designed out over graphs with a fixed number of
nodes [7] despite graphs often growing through the addition of nodes, sometimes
sequentially over time [14, 19]. An example is collaborative filtering in recommender
systems where new users continuously join an existing network, e.g., a social network
recommendation [131] or an abstract user-user collaborative filter network [10]. Such
an expanding graph setting poses a three-fold challenge: (i) The data comes in a
streaming nature, i.e., we do not have access to all the incoming nodes at once.
This requires an on-the-fly filter design as batch-based solutions are no longer an
alternative. (ii) The topology may evolve slowly or rapidly; hence, influencing the
online filter design. (iii) The data over the incoming nodes is not guaranteed to
follow a well-known distribution, thus requiring an adaptation of the filter to the
task at hand. Often times, we may not even know how the incoming nodes connect
to the existing graph. Typically, this happens in the absence of information for the
incoming node, i.e., in pure cold-start recommendation, where we know nothing
about user preferences, but we need to recommend items nevertheless [132]. The
users may consume items later on, which can be used to infer their attachment but
this can take time. Such challenges limit existing graph data processing methods
which rely on the knowledge of the topology [8]. Another example where these
challenges occur is in epidemic spreading over networks. We want to predict the
future number of active cases for a city that is not yet affected but anticipates some
cases shortly after. It may be difficult to obtain the underlying connections that
influence the disease spread; hence, using statistical models is typically an option
[13, 14]. In this scenario, filter design should account for the evolving topological
model as well as for the data over it. This is possible by building upon online
learning principles where the learning models are updated based on the incoming
data stream [133, 134].

Existing works dealing with online learning over expanding graphs can be divided
into Attachment, Feature Aware Methods, and Stochastic Methods.

Attachment and feature aware methods know the connectivity of the incoming
nodes and their features. For example, the work in [28] performs online node
regression over fixed-size graphs by using their connectivity pattern to generate
random kernel features [135]. An extension of this is the work in [136] which
considers multi-hop connectivity patterns. Works like [137], [138], and [139] track
changing attachment patterns over time but for graphs with a fixed number of node,
which can be relevant for a large-scale setting. Another instance of online processing
on expanding graphs is the work in [80] which obtains embeddings for signals over
expanding graphs. Some works such as [58] classify an incoming node by using
its features and the filter trained over the existing graph. Then, there are works
such as [30] that classify a stream of incoming nodes by using their features to
estimate the attachment. The work in [140] classifies incoming nodes using spectral
embeddings updated from the known attachment information. The kernel-based
methods in this category [28, 136] rely on pre-selecting a suitable kernel that can fit
the data which may be challenging to obtain. Additionally, the works in [141-144]
develop distributed solutions to estimate the filter parameters locally at each node.

5.2. PROBLEM FORMULATION 63

Differently, in this paper, we work with a centralized approach to estimate the filter,
as we focus more on the expanding graph scenario. All in all, these methods concern
either a graph with a fixed or a streaming number of nodes but with available
attachment or feature information that may be unavailable.

Stochastic methods deal with unknown incoming node attachment and use models
for it. For example, [145] uses heuristic stochastic attachment model to design
graph filters only for one incoming node, while [146] learns an embedding by using
a stochastic attachment to influence the propagation. In our earlier works [147],
[148], we learn the attachment behaviour for inference with a fixed filter. However,
this approach is limited to studying the effect of one node attaching with unknown
connectivity and it assumes a pre-trained filter over the existing graph. Differently,
here we consider the filter design over a stream of incoming nodes.

5.1.1. CONTRIBUTIONS OF THIS CHAPTER

The main contribution of this chapter is developing a framework for online graph
filtering over a stream of incoming nodes when the topology is both known and
unknown. Our contribution is threefold:

1. We develop an online filter design framework for inference over expanding
graphs. This is done by casting the inference problem as a time-varying loss
function over the existing topology, data, and the incoming node attachment.
Subsequently, we update the filter parameters via online learning principles.

2. We adapt the online filter design problem to two scenarios: (i) the deterministic
setting where the connectivity of each incoming node is available; (ii) the
stochastic setting where this connectivity is unavailable. For both settings,
we conduct a regret analysis to discuss the influence of the incoming node
attachment and the role of the graph filter.

3. We develop an online ensemble and adaptive stochastic update where, in
addition to the filter parameters, we also learn the combination parameters of
the different stochastic attachment rules. This concerns the stochastic setting
where a single attachment model might be insufficient. We also discuss the
regret in this setting and analyze how the ensemble affects it.

5.2. PROBLEM FORMULATION

Consider a starting graph %, = {}p, 6y} with node set % ={vo1,..., Vo,n,} of Np nodes,
edge set &, and adjacency matrix Ag € RNo*™ which can be symmetric or not,
depending on the type of graph (undirected or directed). Let vy,...,vT be a set of
T sequentially incoming nodes where at time ¢, node v; attaches to graph %;_;
forming the graph ¥, ={7;,8;} with N;= Ny+t nodes, M; edges, and adjacency
matrix A; € RV>Nt . The connectivity of v; is represented by the attachment vector
a,;=l[ay,...,an, 1" €RVN-1, where a non-zero element implies a directed edge from
veV;—1 to vy, This connectivity suits inference tasks at v;, where the existing
nodes influence the incoming ones. This is the case of cold-starters in graph-based

64 5. ONLINE FILTERING OVER EXPANDING GRAPHS

collaborative filtering [10, 65]. Here, the nodes represent existing users, the edges
capture similarities among them (e.g., Pearson correlation), and a cold starter is a
new node that attaches to this user-user graph. The task is to collaboratively infer
the preference of the cold-starter from the existing users [66].

Depending on the availability of a;, we can have a deterministic attachment
setting or a stochastic attachment setting. In a deterministic setting, the incoming
node attachment vector a; is known or it is estimated when v; appears. This occurs
in growing physical networks or in collaborative filtering where side information is
used to establish the connectivity [10]. The expanded adjacency matrix A, € RN*Nt
reads as

A= (5.1)

A ONH]
a/ 0
where A;_; is the N;_1xN,_; adjacency matrix and Oy,_, is the all-zero vector of size
(Ny—1). In a stochastic setting, a; is unknown (at least before inference), which is
the typical case in cold start collaborative filtering [148]. A new user/item enters
the system and we have neither side information nor available ratings to estimate
the connectivity. The attachment of v, is modelled via stochastic models from
network science [14]. Node v, attaches to v; € ¥;_; with probability p;; forming an
edge with weight w; ;. The probability vector p; = [p1,s,..., PN,_,,¢] € RN-1 and the
weight vector w; = [wy,..., wn, /)" € R¥-1 characterize the attachment and imply
that [a;]; = w;; with probability p;; and zero otherwise. We consider vector a;
be composed of independent, weighted Bernoulli random variables with respective
mean and covariance matrix

Ela;] =p;ow; ; X, =diagw}?op;o(1-p,)) (5.2)

where diag(x) is a diagonal matrix with x comprising the diagonal elements, and
x°? =xox is the element-wise product of a vector x with itself. The new adjacency
matrix for a realization a, is the same as in (5.1). The attachment is revealed after
the inference task; e.g., after a cold start user has consumed one or more items and
we can estimate it.

5.2.1. FILTERING OVER EXPANDING GRAPHS

Let x; € RV be the graph signal over graph %;, which writes in terms of the previous
signal x;_ € RN-1 as x; = [x;-1,x;] | with x; being the signal at the latest incoming
node v,. To infer x;, we consider the temporary graph signal %X, = [x,_1,0] where
the zero at v; indicates that its value is unknown. To process such signals we use
graph convolutional filters, which are linear and flexible tools for processing them
[7]. A filter of order K acts on X; to generate the output ¥; on graph ¥; as

K
Vi=Y hiAk%, (5.3)
k=0

where hjy is the weight given to the kth shift A]fit. Substituting the kth adjacency
matrix power

Ak On
Af=| Tib, H] (5.4)
L la] Ak 0

5.2. PROBLEM FORMULATION 65

into (5.3), we write the filter output as

v i AT X

V= | TvK k-1 (5.5)
at Z‘k:l hkAt—l Xt

where we grouped w.l.o.g. the output at the incoming node v; in the last entry. Le.,,

K
[§ily, =% =a] Y Al {x,=alA b (5.6)
k=1

Here h=[h;...,hg]"T € RK collects the coefficients of the filter and Ay, ; =
[x;,Ai—1X, ..., AN 1x,] € RV-1*K contains the higher-order shifts of x;. The coefficient
hp does not play a role in the output X;, thus the zero in the N;th position of
X; does not influence the inference task on the incoming node. In the stochastic
setting, the output is random as it depends on the attachment rule. In turn, this
needs a statistical approach to characterize both the filter and its output. We shall
detail this in Section 5.4.

Remark 1 The above discussion considers one incoming node at a time which is
common in the streaming setting. The analysis can be extended to multiple nodes
arriving at a certain time interval. Here, we consider inference tasks where the
existing nodes affect the incoming streaming ones. For tasks where the influence
is bidirectional, the adjacency matrix in (5.1) is symmetric and the analysis follows
analogously. One way to do this is to build on [145], where we discuss the case for a
single incoming node.

5.2.2. ONLINE FILTER LEARNING

Our goal is to process signal X; to make inference on the incoming nodes v; by
designing the filters in (5.3). We consider a data-driven setting where we estimate
the filter parameters from a training set 9 = {v, x;,a;};=1.7 in which each datum
comprises an incoming node vy, its signal x;, and the attachment vector a;. Given
set 9, we find the filter parameters h by solving

T
argmin)_ (&, x;;h) +r(h) (5.7)
heRK ¢=1

where f;(&¢, xs;h) :=f;(h, x;) measures the goodness of fit between the prediction
X; and the true signal x; and r(h) is a regularizer. For example, f.(-,-) can
be the least-squares error for regression problems such as signal denoising or
interpolation; or the logistic error for classification problems such as assigning
a class label to node v;. For convex and differentiable f;(-,-) and r(h), we can
find an optimal filter that solves the batch problem over 9. However such a
solution is not ideal since the incoming nodes v; are streaming and evaluating
a new batch for each v; is computationally demanding. A batch solution also
suffers in non-stationary environments where the test set distribution differs from J.
Targeting a non-stationary setting with incoming nodes, we turn to online learning
to update the filter parameters on-the-fly [134].

66

5. ONLINE FILTERING OVER EXPANDING GRAPHS

1.Predict & with h(t — 1)
Ut
2.Reveal z; update , h(t
-3 —} Vppp= =

3.Update G;

Gi-1, h(t —1) G, h(t)

Figure 5.1.: Online filter learning process at time ¢ through the addition of node v; with

signal x; and the update of the filter h(z). (Left) node v; attaches to the
previous graph %;_; forming %;; the edges in blue denote the existing edges
while those in orange denote the edges formed by the incoming node; (Centre)
Signal x; is predicted, then the true value x; is revealed, and the filter parameter
h(t) is updated from h(z—1); (Right) the next node v;y; attaches to ¥;.

We initialize the filter before the arrival of incoming nodes, h(0) by training a filter
over %, using Ap and x¢. The training follows a regularized least square problem
with ¢, norm squared loss on the filter. We call this Pre-training. In high-level terms,
the online filter update proceeds at time ¢t as follows:

1.

5.

The environment reveals the node v; and its attachment a; in the deterministic
setting.

. We use the filter at time ¢, h(¢—1) to infer the signal value X; at the incoming

node using (5.6).

. The environment reveals the loss as a function of the filter h(#—1) and the

true signal x; as
le(h, x0) =f;(h, x,) +r(h) (5.8)

which is evaluated at h(r—1).

. We update the filter parameters h(¢) based on the loss and the current estimate

h(r-1).

In the stochastic setting, the true attachment a; is revealed.

With this in place, our problem statement reads as follows:

Problem statement. Given the starting graph % = {V, 60}, adjacency matrix Ay,
graph signal x¢, and the training set 9, our goal is to predict online a sequence
of graph filters {th(t)} w.rt. loss functions I;(h,x;) to process signals at the incoming
nodes for both the deterministic and the stochastic attachments.

5.3. DETERMINISTIC ONLINE FILTERING

Targeting regression tasks®, we can take f;(h, x;) as the squared error and r(h) as the
scaled ¢,-norm penalty to define the loss

1
I (h,x,) = E(aIAx,t_lh— x1)? + i[5 (5.9)

2For classification tasks, we can consider the surrogate of the gradient of the logistic loss which is
also convex and differentiable, as seen in [149].

5.3. DETERMINISTIC ONLINE FILTERING 67

Algorithm 2 Deterministic Online Graph Filtering (D-OGF)

Input. Graph %, Ag, X0, I =1{Vs, X, A} =1:T-
Initialize: Pre-train h(0) over %, using Ay, Xo.
for t=1:T do
Obtain v; and true connection a;, update A;
Predict £, =a; Ay 1h(t-1) (cf. (5.6))
Reveal loss I;(h, x;) (cf. (5.9))
Update h(#) using (5.10)
Update x;
end for

where pu>0. For the online update, we perform projected online gradient descent
[133], which comprises one projected gradient descent step evaluated at h(z—1) as

h(n) ng(h(t—1)—nvh|t(h;xt)|h(t—l)) (5.10)

with set # bounding the filter energy &(h) = ||h||§ and g[ﬁ(-) denotes the projection

operator on /. Here, 1 >0 is the step size, and the gradient has the expression
Vile(h,x;) = (@] Ax—th—x)A] ,_ja, +2ph. (5.11)

The gradient depends on a; through the term (X; —xt)AI ,—14r. Operation AI FIRY: U
a weighted combination of only those columns of AI .1 wWhere the corresponding

entry of a; is non-zero. In turn, each column of AI, ;_, contains shifted graph signals
at each node, which get scaled by the difference between the predicted and the
true signal x;, ultimately, indicating that a larger residue leads to a larger gradient
magnitude. The online learner in (5.10) updates the filter parameters for every
incoming node.

Algorithm 2 summarizes the learning process. The computational complexity
of the online update at time ¢ is of order O(K(M;+ Mmnax)), wWhere Mmax is the
maximum number of edges formed by v; across all . Note that Mp.x < N;_1, i.e,
the maximum number of edges formed by any incoming node is smaller than the
existing number of nodes. Appendix C.4 breaks down this complexity.

Regret analysis. We analyze the deterministic online graph filtering algorithm to
understand the effect of the filter updates and how the expanding graph influences it.
Specifically, we conduct a regret analysis that quantifies the performance difference
between the online updates and the static batch solution where all the incoming
node information is available. The normalized regret w.r.t. a fixed filter h* is defined

as

1

T
?RT(h*) == l:(h(r—-1),x) - 1;(h*, x) (5.12)

1
iz

where Zthl l¢(h(t—1), x;) is the cumulative loss incurred by the online algorithm. The
regret measures how much better or worse the online algorithm performs over the

68 5. ONLINE FILTERING OVER EXPANDING GRAPHS

sequence compared to a fixed learner. An upper bound on the regret indicates the
worst-case performance and it is of theoretical interest. If this bound is sub-linear
in time, the average regret tends to zero as the sample size grows to infinity, i.e.,
Tlgrolo %RT(h*) =0 [150]. This indicates that the algorithm is learning. We assume the

following.

Assumption 4 The incoming nodes form a maximum of My,qx < N; edges for all t.

Assumption 5 The attachment vectors a;, and the stochastic model-based weight
vectors w; are upper-bounded by a scalar wy,. Le., for all t we have

[aln < wp, Wilp < wy. (5.13)

Assumption 6 The filter parameters h are upper-bounded in their energy, i.e.,
&) =|h||} < H2.

Assumption 7 For all attachment vectors a;, the residue r; = atTAx, —1h—x; is
upper-bounded. Le., there exists a finite scalar R >0 such that |r;| < R.

Assumption 4 holds for graphs in the real world. A node makes very few connections
compared to the total number of nodes, i.e., the attachment vector a; will be sparse
with a maximum of M,,,, non-zero entries. Note that our stochastic model does not
take this into account. Assumption 5 bounds all edge-weights which is commonly
observed. Assumption 6 ensures finite parameters which mean the filter output does
not diverge. This can be guaranteed by projection on to .. Assumptions 6 and 7
imply bounded filter outputs. Then, we claim the following.

Proposition 6 Consider a sequence of Lipschitz losses {l;(h,x;)} with Lipschitz
constants Ly, [cf. (5.9)] and a learning rate n [cf.(5.10)]. Let also Assumptions 4-7
hold. The normalized static regret Ry(h*) for the online algorithm generating filters
th(1)} € F relative to the optimal filter h* € F€ is upper-bounded as

1 h* 2
Loy < 1B

n,2
—24L 5.14
T anT 274 614

with Ly = RC +2uH where ||A;t_1at||2 <C.

Proof. From Lemma 3 in Appendix C.4, we have that the loss functions are Lipschitz.
Then, we are in the setting of [Thm. 2.13,[133]] from which the rest of the proof
follows.]
There are two main filter-related factors that influence the regret bound in (5.14): the
filter energy H? and the residual energy R?. A smaller H can lead to a lower bound
but it can also increase the prediction error by constraining the parameter set too
much. Moreover, a higher regularization weight p also penalizes high filter energies
||h||§. So, for the projected online learner with a high regularization weight p, a high
H can help the inference task, even if it increases the regret bound. Second, from
Assumption 7, the residue R is likely small when a filter approximates well the signal
on the incoming node. This can happen when the signal values on the incoming

5.4. STOCHASTIC ONLINE FILTERING 69

node and the existing nodes are similar or when the existing topology and signals
over it are expressive enough to represent the incoming node values. Examples of
the latter are locally smooth graph signals that can be approximated by a low order
filter K. For high values of K, all nodes have similar signals, implying that many
potential attachment patterns can generate x;. This would make that the manner of
attachment irrelevant.

5.4. STOCHASTIC ONLINE FILTERING

Often, the true attachment for the incoming nodes is initially unknown and it
is only revealed afterwards. This is the case with rating prediction for cold start
recommender systems, where users have initially little to no information, and thus,
their connections cannot be inferred. However, their connections can be inferred
after they have consumed some items. Instead of waiting for feedback, we can use
expanding graph models to infer the signal value and subsequently update the filter
online. To address this setting, we first propose an online stochastic update for
the filters via specific heuristic models. Then, we propose an adaptive stochastic
approach that learns also from an ensemble of topological expansion models.

5.4.1. HEURISTIC STOCHASTIC ONLINE FILTERING

We model the connectivity of node v; via random stochastic models. Specifically, we
use the existing topology A;_; to fix the attachment probabilities p; and weights w;
using a heuristic attachment rule. Given a; is a random vector, the environment
reveals the statistical loss

[¢(h, x;) = Elf;(h, x,)] +r(h) (5.15)

where the expectation concerns the stochastic attachment model. For f;(h, x;) being
the squared loss, we have the mean squared error expression

1
l,(h,x,) =E E(aIAx,tflh—xt)z +ulhll3
(5.16)
_l T 2 l T 2
—2((Wt°pt) Ax,t—lh X¢) +2(Ax,t—1h) Z1,‘Ax,t—1h+lJ”h”g

where X, is the attachment covariance matrix [cf. (5.2)]. The first term on
the rhs. of (5.16), s?2=3(w;op,) Ay ,—1h—x,)? is the squared bias between the
expected model output (wtOp[)TAx,t_lh and the true signal x;. The second term
%(Ax,t_lh)TZtAx,t_lh is the variance of the predicted output, and the third term
penalizes a high ¢;-norm of h.® The projected online gradient descent update of the
filter parameters h(z) is

h(n) =§(h(t_1)_77vh|t(h»xt)|h(t71)) (5.17)

3We could also consider adding a penalty parameter to the variance contribution if we want to tweak
the bias-variance trade-off in the filter update.

70 5. ONLINE FILTERING OVER EXPANDING GRAPHS

Algorithm 3 Stochastic Online Graph Filtering (S-OGF)

Input. Graph %, Ao, X0, T =T ={vs, X, s} t=1.T
Initialize. Pre-train h*(0) over %, using Ay, Xo.
for t=1:T do
Obtain v; and p;, w; following preset heuristics
Predict &; = (w;op)"Ay—1h*(z—1)
Incur loss I3(h, x;) [cf. (5.16)]
Update h’(#) using (5.17)
Reveal a;, update A; and x;
end for

with gradient
Vile(h, xp) = (W Opt)TAx,t—lh - Xt)AL_l (Wgopy) +A;t_1ZtAx,t—lh+ 2uh. (5.18)

The stochastic loss [cf. (5.16)] is differentiable and strongly convex in h. Following
Assumption 7, the bias s;, and the gradient (5.18) are also upper-bounded, making
the loss Lipschitz. Algorithm 3 summarizes learning in this setting. The complexity
of the online stochastic filter learning at time ¢ is of order O(K(M;+ N;)). Check
Appendix C.4 for further details. Note the dependency on Ny, the size of the graph
at time t. Since we do not know the true attachment at the time of making the
prediction, the stochastic attachment model assigns probabilities to each node, along
with the weights. This leads to the dependence on N; while making the prediction
[cf. (5.16)]. This does not exist in the deterministic case, as we know a;.

Regret analysis. To characterize the role of the stochastic topological model on the
filter update, we compare the cumulative loss between the online stochastic update
and the deterministic batch solution. This allows quantifying the performance gap
by not knowing the attachment pattern. The regret reads as

1 1z
—Ryr(*) == Y Bh*(t-1),x) - 19(h*, x) (5.19)
T T3

where 13(-) denotes the stochastic loss and I‘,fl(-) the deterministic loss. Similarly,

h%(t—1) and h(¢—1) denote the online filter at time -1 in the deterministic and
stochastic settings, respectively. We claim the following.

Theorem 2 At time t, let graph 4;_, have N;_; nodes and h*(t-1), h?(t-1) be the
filters learnt online in the stochastic and deterministic scenarios, respectively. Let the
nth element of probability vector p; be [p:ln. Given Assumptions 4-7, the Lipschitz
constant Ly, and learning rate n, the normalized static regret for the stochastic setting
is upper-bounded as

1 1< _
TR0 = (3 wh Y2 P + Minar) + 2Rwy Y/ Ipel 3+ My + w0}, Y207

t=1 - (5.20)
+LlIh*(t—1)—h(r—1))|)+H+QL2T
d 2 27] 2 d

5.4. STOCHASTIC ONLINE FILTERING 71

where 67= max [p;n(1-[py) and ||Ax,—1hll2<Y.
n=1:N;_1

Proof. See Appendix C.1. O

The regret bound in (5.20) depends on the stochastic expanding model and the
incoming data as follows:

* The sum of squared norms of the probability vectors corresponding to the

attachment rule, via the terms Zthlllpr% and Zle,/llp,||§+Mmax. This
makes the choice of attachment probability p; important as it influences the
online learner. For example if p, =1y, , for all ¢, the sum Zlellptllg is of
the order T2, which means the regret bound diverges. Thus, the attachment
rule should be selected such that Zthl ||pt||§ is of order @ (T) or less. However,
not all decaying attachment probabilities will reduce the bound reducing. It
is necessary to have an inverse dependence on N;, as is the case for the
uniform distribution. This is for example the case of the uniformly at random
attachment as we elaborate in Corollary 3.
w?Y?
e The term —4— YT 52 is the sum of the maximum variance for an attachment
rule 6% over time. The maximum value of 7 is 0.25, attained for an
attachment probability of 0.5. For an attachment rule which has either high
or low attachment probabilities per node, c'f% will be low, thus contributing
less to the regret bound. This means a lower regret can result from stochastic
attachment rules with a smaller uncertainty in attachment over the nodes.

* The average distance between the stochastic and deterministic filters over the
sequence %Zthl [lhs(t—1) —h% (- 1)||,. If the filter trained with a stochastic
attachment is further away from the filter updated with known attachment, the
regret is higher. This can happen when the attachment rule cannot model the
incoming node attachment and the filter prediction incurs a higher squared
error. However, we can use this term to modify the filter update. One way to
do this is to include a correction step to update the online filter after the true
connection has been revealed. We will discuss this in Remark 2.

* The term HSHLT'% + gLfi suggests similar factors which affect the deterministic
regret will also affect the stochastic regret [cf. (5.14)].

We now present how this regret bound reduces for the uniformly at random
attachment.

Corollary 3 Consider a uniformly at random attachment with [p¢l, = ﬁ As the

sequence length grows to infinity, i.e., T — oo, the regret upper bound becomes

T

1 1

?Rs,T(h*) = W%leaxYZ""RwhY(Mmax"'l) + ? Z Ld”hs(t_ 1) _hd(t_ Dll2
t=1

(5.21)

h* 2
L
T 2

72 5. ONLINE FILTERING OVER EXPANDING GRAPHS

Proof. See Appendix C.2. O
Corollary 3 shows that the regret bound in (5.20) can be improved upon with the
right choice of attachment rules. Even though the attachment rule helps, there is
a chance it fails to model the true attachment process, in which case the term
%ZthlLdllhs (t—1) —hd(t— 1|2 can diverge, ultimately, not making the learner not
useful in the steady state.

5.4.2. ADAPTIVE STOCHASTIC ONLINE FILTERING

Oftentimes, a single attachment rule cannot describe the connectivity of the
incoming nodes and an ensemble of stochastic rules is needed. This is seen
in the regret bound in Theorem 2, which depends on the distance between the
stochastic and deterministic online filters. This poses the additional challenge
of how to combine these rules for the growing graph scenario. To tailor the
combined rule to the online setting, we consider a linear combination of different
attachment models and update the parameters as we do for the filter coefficients.
Specifically, consider M attachment rules parameterized by the probability vectors
{Pm, ¢} ;y=1.s and the corresponding weight vectors {Wy, ;},,,_;.5s- Here, [pp,¢]; denotes
the probability of v, attaching to v; € ;-1 under the mth rule and [wy,,]; the
corresponding weight. Upon defining the dictionaries P;—; = [p1,s,...,PMm,¢] € RNi-1xM
and W;_1 = [wy s,...,wy] € RN-1*M e combine these models as

pt = Pt_lm and \7\7[:W[_ln (522)
where the combination parameters m and n belong to the probability simplex
FM=faerM 1,a=1, a=0y} (5.23)

with 1,s being the vector of M ones. For an existing node v;, the ith row of P;
contains the corresponding rule-based probabilities. Equation (5.22) ensures that p;
represents a composite probability vector of attachment with [p;]; = Z?ﬁ L mulpd;
representing the probability of v; attaching to v;. It also ensures that the weights in
w; lie in [0, wy]. By representing the expanding graph model via the latent vectors
m and n, we can analyze them in lieu of the growing nature of the problem. This
eases the setting as both p; and w; grow in dimensions with ¢ since learning these
values directly becomes challenging.

Online learner. The instantaneous stochastic loss becomes

1 1 -
lethym,m, x) = 2 (Wi imoPrym) Ay 1h = %) + 2 (Ag 1) T2 Ay - th+ gl il
(5.24)
where X, = diag((Wt_ln)°2 o(P;-ym)o(ly, , —P;—_1m)) is the covariance matrix of this
adaptive method. We then proceed with an online alternating gradient descent over

the filter parameters h, the composite probability parameters m, and the composite
weight parameters n as

h(r) = g(h(t = 1) =nVpl(h,m,n, x¢)lne-1) (5.25)

5.4. STOCHASTIC ONLINE FILTERING 73

Algorithm 4 Adaptive stochastic online filtering (Ada-OGF)

Input. Starting graph %, Ay, X9, I
Initialization. Pre-train h°(0), Initialize m(0) = 1),/ M, n(0) = 1;/M. Compute Py
and Wj.
for t=1:T do
Obtain vy, py=P,ym(t—-1), W, =W;_n(t—1)
Prediction:(W;_in(f—1)oP;,_ym(t — 1))TAx,t_1hs(t -1)
Reveal loss |;(h,m,n, x;)
Update h(#) following (5.25)
Update m(¢) following (5.26)
Update n(?) following (5.27)
Reveal a;, update A;, x;, P;, and W;
end for

m(t) = I1 m(z—-1) -1Vl (h,m,n, x;)Imi-1)) (5.26)
yM

n(t) = I1 (n(t—1) =Vl (h,m,n,x)lne-1)) (5.27)
FM

where Tl ,um(-) is the projection operator onto the probability simplex #* and the
gradient closed-form expressions are given in Appendix C.4. After the update, the
environment reveals the true attachment a, and we update A; and x;. We also
update P; based on the ensemble of attachment rules applied on the updated
topology and the weight dictionary as W, = [W,_;e]] € RN*M where e, € RM contains
independent positive random variables sampled uniformly between zero and the
maximum possible edge weight wj,. Algorithm 4 highlights the adaptive stochastic
online learning. The computational complexity at time ¢ for Ada-OGF is of order
O(K(My+ Ny) + N¢M). See Appendix C.4 for more details. The loss function in (5.24)
is jointly non-convex in h, n, and m. It is marginally convex in n and h but not in m
due to the nature of the covariance matrix. We can run multiple projected descent
steps for each of the variables, but proving convergence is non-trivial. However,
convergence to a local minimum of I;(-) may not even be needed as we are in
an online non-stationary setting where the arrival of another node leads to a new
loss function. Thus, it is reasonable to take one or a few projected steps for each
incoming node even without a full convergence guarantee.

Regret analysis. For the regret analysis of the stochastic adaptive online method, we
claim the following.

Corollary 4 Given the hypothesis of Theorem 2 and an adaptive stochastic online
method over M attachment rules with {P;}, the normalized static regret w.rt. the

74 5. ONLINE FILTERING OVER EXPANDING GRAPHS

deterministic batch learner is upper-bounded as

T T

1 1 1
;Rs,r(h*)s w y2? S (1P 1112+ Minax) + RwpY S P13+ Rwy Y (1 + Mipaz)
t=1 t=1

h* 2
IIh*|2 L2
2nT 2

1 L. 1 &
+wp Y=Y P+ — 3 Lallb’(t-1)—h? (- Dll2 +
TS (=}

(5.28)

n=1:
by each incoming node.

where P, = m%x [Pi—11n:ll2 and Mpyay is the maximum number of edges formed
t—1

Proof. See Appendix C.3. O

Compared to the single heuristic attachment model, the regret in (5.28) depends
on the sum of ¢, norm squared of all the M attachment rules. It also depends on P;,
which is the maximum norm of the vector of probabilities for all rules for each node.
The bound in (5.28) holds when selecting one attachment rule at each time, i.e.,
[Im(#)|| =1 for all z. However, a smaller norm of m(#), corresponding to considering
all rules leads to a lower regret bound, potentially improving the performance.
Moreover, we expect the term concerning the distance between the stochastic and
determinisitc filters to reduce due to the adaptive updates, thus, reducing the bound.
We shall empirically corroborate this in Section 5.5.

Remark 2 Prediction Correction Online Graph Filtering (PC-OGFE.) In the stochastic
algorithms the bounds (5.20) and (5.28) show that the regret is influenced by the
difference between deterministic filters (that know the attachment) and the stochastic
filters (that do not know the attachment) via the term ||h*(t—1) —h4(t- Dll2. One way
to reduce the regret is to leverage the attachments after they are revealed and correct
the learned stochastic filter coefficients via a deterministic update. This corresponds
to using the prediction correction framework [151]. The prediction step corresponds
to performing the filter update based on the predicted output in the absence of
connectivity information. The correction step performs an additional update on the
prediction step by updating the filter for a loss function with the known attachment.
The prediction and correction steps corresponds to one step of S-OGF and D-OGE
respectively. Algorithm 5 highlights this approach. The computational complexity of
this at time t is of order O(K(M;+ N+ Mnax)), as it comprises one step of S-OGF
followed by one of D-OGF.

5.5. NUMERICAL EXPERIMENTS

We corroborate the proposed methods for regression tasks on both synthetic and
real data-sets. We consider the following baselines and state-of-the-art alternatives.

1. D-OGF [Alg. 2]. This is the proposed online method for deterministic
attachment. We search the filter order K €{1,3,5,7,9} and the learning rate n
and the regularization parameter p from [1076,1].

5.5. NUMERICAL EXPERIMENTS 75

Algorithm 5 Prediction Correction Online Graph Filtering (PC-OGF)

Input. Graph %y, Ay, X0, T =9 ={vs, X, ar}=1:T
Initialize: Pre-train h°(0) over %, using Ay, Xo.
for t=1:T do

Obtain v; and p;, w; following preset heuristics

Predict &; = (w;op,) "Ay,—1h*(t—1)

Incur loss 13 (h, x;) [cf. (5.16)]

Update h’(¢) using (5.17)

Reveal a;, update A; and x;

Update h*(¢) using (5.10)
end for

2. S-OGF [Alg. 3]. This is the proposed online method using one stochastic
attachment rule. We consider a uniformly at random attachment rule for p;.
For w;, we use the same weight for each possible edge, which is the median
of the edge weights in ¥%;_;. We obtain the regularization parameter p and
step-size 7 via grid-search over [107°,1071].

3. Ada-OGF [Alg. 4]. This is the proposed adaptive stochastic online method.
We take M =5 with attachment rules based on the following node centrality
metrics: i) Degree centrality; ii) Betweenness centrality [152]; iii) Eigenvector
centrality [153]; iv) Pagerank; v) Uniform.

4. PC-OGF [Remark 2.] This is the two-step update method. For the prediction
step, we perform S-OGF with uniformly-at-random p; and w; as considered
for S-OGF above. For the correction step, we perform one step of D-OGE Both
steps share the same learning rate n e [1072,1071] and ue [1072,1071].

5. Batch. This is the filter designed by taking into account the whole node
sequence, i.e.,

T
h* =argmin }_ (a] Ay,;—1h - x)% + pllhl[3 (5.29)
heRK+1 =1

which has a closed-form least-squares expression for u>0¢ [1073,10].

6. Pre-trained. This is a fixed filter trained over the existing graph %, and used
for the expanding graphs. We train the filter over 80% of the data over %;. The
regularization parameter is chosen over [1073,10].

7. OKL Online Multi-Hop Kernel Learning [28]. We consider a Gaussian kernel
with variance o2 € {0.1,1,10}. The number of trainable parameters is the same
as that of the filters for a fair comparison.

8. OMHKL Online Multi-Hop Kernel Learning [136]. This method considers
multi-hop attachment patterns which are then fed into the random feature
framework. We take the multi-hop length as the filter order. We consider one
kernel for each hop with the same variance selected from 0%€1{0.1,1,10}. We

76 5. ONLINE FILTERING OVER EXPANDING GRAPHS

did not optimize over the combining coefficients for each multi-hop output.
This is to keep the comparisons fair, as OMHKL has more parameters. Instead,
we take the mean output, while updating the regression parameter for each
multi-hop.

The hyper-parameters are chosen via a validation set. For each parameter, we
perform a grid search over a specific range for each data-set, as indicated above for
each approach. We use the same filter order as determined for D-OGF for the other
online filters. We use the same filter order as determined for D-OGF for the other
online filters. For all data sets, we divide the sequence of incoming nodes into a
training and a test sequence. The first 80 percent of the incoming node sequence
are taken as the training nodes. The remaining 20 percent are the test nodes. The
nodes in the training sequence are used to tune the hyper-parameters, while the test
set is used to evaluate the online method for the selected hyper-parameters.

5.5.1. EXPERIMENTAL SETUP

We consider a synthetic setup based on a random expanding graph model; and two
real data setups based on recommender systems and COVID case predictions.

Synthetic. We start with a graph %, of Ny =100 nodes and an edge formation
probability of 0.2. The edge weights of Ay are sampled at random from the uniform
distribution between zero and one. Each incoming node v; forms five uniformly at
random edges with the existing graph %;_;. Each newly-formed edge weight is the
median of the edge weights in %,. The existing graph signal xy is band-limited w.r.t.
the graph Laplacian, making it low-pass over %, with a bandwidth of three [8]. We
generate the true signal x; at the incoming v; in three ways to have three different
types of data that fit the different methods.

1. Filter. The true signal x; is generated using a pre-trained filter of order five
on %. This setting is the closest to the proposed approach and is meant as
a sanity check. It also helps us to investigate the differences between the
deterministic and the stochastic attachments.

2. WMean. x; is the weighted mean of the signals at the nodes v; attaches to.
This is a neutral setting for all methods.

3. Kernel. x; is obtained from a Gaussian kernel following [28]. This prioritises
kernel-based solutions and it is considered here as a controlled setting to
compare our method in a non-prioritized setup.

We average the performance of all methods over 10 initial graphs %, and each having
T =1000 incoming nodes with 800 incoming nodes for training and 200 for testing.

Cold-start recommendation. We consider the Movielens100K data-set that comprises
100,000 ratings provided by 943 users over 1152 items [154]. We build a 31 nearest
neighbour starting graph of 500 random users and consider the remaining 443 users
as pure cold starters for the incoming sequence. We use the cosine similarity of
the rating vectors to build the adjacency matrix of this graph. We use 50 percent

5.5. NUMERICAL EXPERIMENTS 77

of the ratings of each new user v; to build a,. We evaluated all methods over 10
realizations of this setup, where, in each realization, we shuffle the order of incoming
users. All methods perform online learning over 16875 and 6155 ratings in the
training and test sets, respectively.

COVID case prediction. Here, we predict the number of COVID-19 infection cases
for an uninfected city in an existing network of currently infected cities. We consider
the data from [155] that has daily case totals for 269 cities and focus on a subset
of 302 days of this data-set as in [156]. We randomly select 50 cities and build a

five nearest neighbour-directed graph %,. The edge weight between cities v; and

. ti—t;l12
vjis A;j= exp(—|| ’202’”2), where t; and t; are the vector of COVID cases from day

one to 250 for cities v; and v}, respectively. We also use this interval to calculate
the attachment vector a; for any incoming city node. We evaluate the performance
on each of the days 255, 260, 265, 270, 275, and 280 and predict the COVID case
strength for each node city in the sequence. For each day, we carried out twenty
realizations where we shuffle at random the order in which the cities are added to
the starting graph.

We measure the performance via the root normalized mean square error NRMSE

\ %Zz;l(-’%t - xt)2

max (x1) — mtin (x¢)

NRMSE =

(5.30)

where X; and x; are the predicted and true signal at v;, respectively. This measure
gives a more realistic view of the performance since the incoming data does not
follow a specific distribution and it is susceptible to outliers [157]. Additionally, we
measure the normalized static regret (NReg) [cf. (5.12)] for the online methods wir.t.
the Batch solution.

5.5.2. PERFORMANCE COMPARISON

Table 5.1 comprises the NRMSEs and the standard deviations for all methods. We
observe the following:
Deterministic approaches. D-OGF outperforms OKL and OMHKL across all the
data-sets. The difference is more pronounced for the data generated using the Filter
and the WMean method, as they are suited for filters, whereas for the Kernel data,
the difference is smaller. For the Movielens data-set, the difference is also small. We
suspect this is because we train one filter across many graph signals (each graph
signal corresponds to a different item) over the same user graph, whereas the kernel
method ignores the graph signals. It is possible to improve the prediction accuracy
by considering item-specific graphs as showcased in [10, 148]. Next, we observe
that D-OGF performs better than pre-trained throughout the experiments. This is
because the online filters adapt to the incoming data stream, while the pre-trained
does not. The only case we can expect a similar performance is where the incoming
data is similar to the data over the existing graph.

Concerning the batch solution, we find that the deterministic online learner
outperforms Batch in all data-sets apart from the COVID data-set. This shows

78 5. ONLINE FILTERING OVER EXPANDING GRAPHS

the limitations of batch-based solutions, i.e., an over-dependence on the observed
training data, and also an inability to adapt to the sequence. For Filter and WMean
data, the training and test set distributions are similar, so the difference between
D-OGF and Batch can be attributed to the adaptive nature of D-OGE In the other
data-sets, the change in distribution is detrimental for the batch learner, particularly
in the Movielens data.

Stochastic approaches. The S-OGF and Ada-OGF approaches have a similar
performance for Filter, Kernel and Movielens data, with Ada-OGF performing better
for WMean and Covid data. This makes sense for the synthetic data as the
constructed graphs expand following a uniformly at random attachment rule, the
same rule used for S-OGF. The standard deviation is on the lower side for Ada-OGE
Since the existing signal x¢ is band-limited, the signal values obtained via a filtering/
mean operation with a uniformly at random attachment will also be similar. However,
Ada-OGF performs better for the COVID data. This is because the incoming data
in the COVID data-set is quite different from the synthetic data. It does not have
properties like smoothness and thus a uniformly at random attachment cannot help
in predicting the number of cases. In such a setting, a more adaptive approach will
help. For Movielens data, there is no difference between the two methods, possibly
due to the high number of ratings.

Deterministic vs stochastic. The deterministic methods outperform the stochastic
counterparts as expected. The gap is closer for the Kernel and Movielens data. For
Movielens this can be attributed to the subsequent filter updates that are done for
different graph signals over a fixed graph. This can cause high prediction errors. The
same holds also for the kernel method, as it is based on the same graph. Since the
filter takes the signal into account, it might be affected more.

In the Movielens, Kernel, and COVID data, the pre-trained filter does not update
itself and is thus at a disadvantage, compared to the online methods. For COVID
data, the signal over the incoming node, i.e., the number of cases can be quite
different from the signals over which the pre-trained filter is learnt, accounting for a
higher error. Among the proposed online methods, the stochastic online methods
perform poorly w.r.t pre-trained for Filter and WMean data. This is expected as the
data distribution of the incoming data is similar to that over %, for these scenarios.

The PC-OGF method performs better than the stochastic methods for all data,
showing the added value of correcting for the true attachment. It even outperforms
D-OGF for Kernel data.

5.5.3. ANALYSIS OF ONLINE METHODS

We now investigate more in detail the online methods.

Outliers. In Figs. 5.2 and 5.3 we show the violin plots of the squared errors over
the test set for the Movielens and COVID data. The deterministic methods suffer
more from higher outlier errors. This could be attributed to errors in estimating the
attachment vectors. For Movielens data, we calculate this similarity over a subset
of the items and for certain splits of the items this may lead to estimation errors
for the similarity and thus also for the attachment vector. One reason why the
stochastic methods are not prone to outliers could be the term in the loss functions

5.5. NUMERICAL EXPERIMENTS 79

10 *

+

IRRRNIE:
SRNRNE

DOGF SOGF AdaOGF OKL OMHKL DOGF SOGF AJaOGF OKL OMHKL

Figure 5.3.: (Left) Box plot of the squared errors across all data points over the six
days. (Right) Box plot on the right zoomed in to highlight differences
between all methods.

[cf. (5.16), (5.24)] that penalizes the prediction variance, ultimately, acting as a
robust regularizer. Notably, for the Movielens data the errors in the stochastic online
learners are fixed at certain levels. This is because the data-set has only five fixed
values as ratings and because both S-OGF and Ada-OGF predict fixed values [cf. first
term in (5.16)]. For the Covid data, we calculated the number of outliers in the
squared error. The outlier counts are D-OGF = 144, S-OGF =123, Ada-OGF =119,
OKL =94, OMHKL =98. This could also be due to the way the starting graph and
the links of the incoming nodes are constructed. The figure on the right zooms
in on the plot in the range between zero and 0.4. The D-OGF has lower NRMSE,
implying the presence of many samples with low squared error. The patterns for the
other methods are similar.

Filter order, p, w. Next, we investigate the role of the filter order as well as the
impact of training both the attachment probabilities p; and weights w;. Thus, we
also want to compare with an alternative adaptive approach where we update only
p while keeping w fixed to the true edge weights. We call this Ada2-OGF. We
generate Filter data, WMean data, and Kernel data with a variance of 10. The filter
orders evaluated are K €{1,3,5,7,9}. Figure 5.4 shows the variation of RNMSE of
the filter approaches with filter order K. We see that Ada2-OGF performs worse
than Ada-OGF apart from the Filter data. This suggests that updating both p and

80 5. ONLINE FILTERING OVER EXPANDING GRAPHS

0.35 4
0.3
T T T M\L ©-D-0GF
1 i i bl T 35 —+-S-0GF
03 .
0.25 —_— Ada-OGF

-©-D-OGF —_—

0.2 —S-0GF 0.25 3 iAdaz-osF
w Ada-OGF | 4 Wos ~ &-Batch
Zo1s g:dazh-oeF 02 z ~o_
E atcl H o Z 2 "’\4}——%,,,,‘

01 0.15 -©-D-OGF

—+S-0GF 15
. Ada-OGF
005 ——op 5 5 3 0 -5 Ada2-0GF —E—t—n +
b o -0-Batch T\S\M
0.05 05 %)

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
Filter order K Filter order K Filter order K
Figure 5.4.: RNMSE for different values of filter order K for (left) Filter, (centre)
WMean, and (right) Kernel data, respectively.

w is beneficial than just updating p. For the filter data, we see that all the three
stochastic approaches perform the same. This is because we same stochastic rule,
i.e., uniformly at random attachment for data generation. S-OGF uses the same,
while Ada-OGF learns it.
Learning rate. Figure 5.6 shows the normalized cumulative regret at each time of
D-OGF w.r.t. the batch learner for different values of the learning rate n for each
synthetic-dataset. Increasing n leads to a lower regret, but after one point, the regret
increases. For the Kernel data, for example, we see that the regret increases sharply
between learning rate 7 =3 and 1 =5. This shows that 1 indeed influences the
online learner and its optimal value is in principle neither too high or too low. A
higher value than the optimal misleads the online learner by focusing too much on
the current sample. This can lead to high prediction errors for some samples, as
seen in the spikes in the plots. A lower value learns about the incoming data-stream
at a slower rate.
Regret. Figure 5.5 plots the normalized cumulative regret at each time for S-OGF
and Ada-OGF w.r.t. the batch solution for the Filter (left), WMean (center) and Kernel
(right) data, respectively. In all three cases, the average cumulative regret converges,
implying that the cumulative error or the gap with the batch solution does not
diverge. This shows that the stochastic learners, despite not having access to the
connectivity at the time of making a prediction, can learn from more incoming
nodes. Second, Ada-OGF showcases a lower regret than S-OGF, showing that it can
learn faster from the incoming nodes by trying to predict the attachment behaviour.
This is in agreement with the regret bounds in Theorem 2, Corollaries 3 and 4.
Finally, we investigate the normalized regret over the whole sequence for the
online methods in Table 5.2. Since we evaluate this over the training set, we
have positive values, which implies the batch solution has a lower cumulative error.
However, having a positive regret during training can also lead to a lower NRMSE
than the batch solution over the test set, as is the case for D-OGF [cf. Table
I]. This is because the batch filter is fixed and cannot perform as well as in
the training set if the distribution of data in the test set is different. The lower
regret for D-OGF compared to the stochastic approaches stems from the fact that
the connectivity is known and because the Batch solution also has a similar loss
function. The normalized regret for PC-OGF is lesser than that of the stochastic

5.6. CONCLUSION 81

—S-OGF
10 — Ada-OGF

o
o =
= 5

o
o
&

Normalized cumulative regret
N o N A& O ®

Normalized cumulative regret

Normalized cumulative regret

o

200 400 600 800 0 o 100 150 200 250 300 350 100 200 300
Incoming Nodes Incoming Nodes Incoming Nodes

Figure 5.5.: Evolution of the normalized cumulative regret for S-OGF and Ada-OGF
for the synthetic (left) Filter, (center) WMean and (right) Kernel data for
T =800, T and 400 incoming nodes, respectively.

—p=10"
—n=10"
n=10"
—n=10"
—n=1
—n=3
——

o
e
[N

Normalized cumulative regret
Normalized cumulative regret
o o
Normalized cumulative regret

Incoming Nodes B coninghodes " Incoming Nodes
Figure 5.6.: Normalized cumulative regret evolution for different values of learning
rate 7 for (left) Filter, (centre) WMean, and (right) Kernel data, respectively.
The reference average error for the batch solution over the training set
are 3x107°,6.8x107%, and 1.1 x 1072, respectively.

approaches, showing that incorporating the attachment can counter the effect of the
gap between the stochastic and deterministic filter.

5.6. CONCLUSION

We proposed online filtering over graphs that grow sequentially over time. We
adapted the formulation to the deterministic scenario where the connection of the
incoming nodes is known and to a stochastic scenario where this connection is
known up to a random model. We performed a simple projected online gradient
descent for the online filter update and provided performance bounds in terms of
the static regret. In the stochastic setting, the regret is a function of the rule-specific
probabilities along with their variance. Numerical results for inference tasks over
synthetic and real data show that graph filters trained online learning perform
collectively better than kernel methods which do not utilize the data, pre-trained
filters, and even a batch filter.

For future work, we will consider the scenario where the signal also varies over the
existing graph, i.e., it has a spatio-temporal nature. It is also possible to consider
the scenario of joint topology and filter learning over the expanding graphs, where

82 5. ONLINE FILTERING OVER EXPANDING GRAPHS

we estimate the true attachment of the incoming node instead of a stochastic model
along with the filter used for making the inference. Finally, to account for the
robustness of the online methods, one can also perform a weighted update, where
the loss at a particular time is a weighted sum of the previous samples. The
complexity of the stochastic approaches grow with the size of the graph. To tackle
this, distributed filter updates can be a viable approach.

83

5.6. CONCLUSION

c0'0 ¢co 10°0 LC0 60°0 70 10 ce0 10°0 LT°0 TIHINO
c0'0 Gco 10°0 L2°0 700 erall} 00 €¢0 10°0 LT°0 IO
60 Gg'¢ c0°0 780 8¢°0 €60 €00 60°0 €0°0 80°0 pauren-aid
€00 LT°0 10 L9 620 €1 700 60°0 200°0 70°0 ojegq
€00°0 920 10°0 L20 700 €20 c0°0 ¢c¢0 200 81'0 (sIno) 490-Dd
2L00°0 9¢°0 L00°0 8¢°0 <00 8¢°0 700 jerall] c0°0 81'0 (smo) IH50-epvy
c0'0 1€°0 L00°0 8¢°0 L0°0 8¢°0 90°0 920 200 81°0 (sIno) 490-S
c0°0 12°0 10°0 9¢°0 700 Gc0 G00°0 c00 €00°0 c0°0 (sIno) 4950-a
A9PpS ASWMN A9pS ASINN A9PS ASIWMN A9pS ASIUN A9PS ASIAMN
dIr0D >00TSUS[AIACI [ouIa) UBINM BN PO
BIR(€Y BIR(ONOYIUAS

's19s-eJep [[e 10} sayoeoidde [[e Jo UONEBIASD pIepuels pue FSINUN 98e1aay '1°G 9[qeL

5. ONLINE FILTERING OVER EXPANDING GRAPHS

Table 5.2.: Normalized regret for the online methods for synthetic data.

Method Filter WMean Kernel
D-OGF 1.6x107% 0.03 0.01
S-OGF 22x107% 084 0.08
Ada-OGF 4.1x107% 0.82 0.11
PC-OGF 19x107% 027 0.02

DYNAMIC GRAPH TOPOLOGY
DECOMPOSITION

In Chapters 3, 4, and 5, we focused on signal processing on expanding graphs. There is
a focus on processing data while adapting to the change in topology with or without
uncertainty, instead of a focusing on the structural evolution itself. In the current
chapter, we focus on this aspect for dynamic graphs with changing support. Existing
approaches analyse dynamic graphs through low-rank tensor decomposition, without
a focus on interpretability or the structural component of the evolution. Moreover,
there are often missing observations, i.e., we do not know if edges exist or not due to
outages, faulty sensors, or privacy requirements. Targeting these challenge, we propose
a novel two-way decomposition of the adjacency tensor to represent a dynamic graph
topology where we express the structural evolution as a linear combination of latent
graphs whose adjacency matrices that capture the overall evolution. Additionally, we
also incorporate graph signal information into this decomposition via a smoothness
prior. We estimate the adjacency matrices along with their temporal scaling signatures
via alternating minimization in the presence of spatio-temporal data. We show
that our approach converges to a stationary point. Numerical results show that the
proposed approach recovers individually and collectively expressive latent graphs that
outperform the typical tensor decomposition and signal-based topology identification
for reconstructing the missing network.

The rest of the chapter is organized as follows. In Section 6.2, we introduce the
dynamic network decomposition model. In Section 6.3, we formulate our problem
and propose an alternating optimization algorithm to solve for the dynamic network
decomposition under the desired constraints. In Section 6.4, we analyze the proposed
algorithm w.r.t. its convergence. In Section 6.5, we perform experiments to highlight
different aspects of the proposed decomposition and compare its performance with
alternatives. Section 6.6 concludes the chapter. All proofs are collected in Appendix D'.

IThis chapter is based on the submission: Das, B., & Buciulea, A. & Marques, A. G., & Isufi. E.,
Dynamic Graph Topology Decomposition, IEEE Transactions on Signal Processing and the following
publication: Das, B., & Isufi. E., Tensor Graph Decomposition for Temporal Networks, IEEE ICASSP
2024

85

86 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

6.1. INTRODUCTION

Dynamic or temporal networks witness a structural evolution in the form of changing
edges between nodes [11, 62, 63, 158]. Analyzing their evolution is important for
recovering hidden patterns. Often dynamic networks co-occur alongside dynamic
graph signals, which represent the evolution of signals over the nodes. Since graph
signals form an association between nodes and data, dynamic graph signals can
convey important information about the change in topology. Learning graphs from
dynamic graph signals has been approached from several viewpoints wherein the
topology is usually inferred through a batch or online learning problem trying to
minimize loss functions with graph-based priors [91, 92, 138, 139, 159-163]. One
can also infer multiple graphs from dynamic graph signals. In [21], the authors
learn muti-view graphs which vary around a single consensus graph. The work in
[22] learn multiple graphs from streaming node signals that differ from each other
in terms of their sets of central nodes via eigen-centrality. The work in [23] learn
a set of graphs from observed spatio-temporal variations using spatial independent
component analysis [164]. The notion of having a set of known or unknown
underlying graphs has been used to perform signal processing tasks in [24, 161,
165-167]. These approaches infer multiple graph solely from signals under various
assumptions and settings. A drawback of topology identification from graph signals
(static or dynamic) is the choice of the prior, which may not be known in advance.

Another choice for representing the structure of dynamic networks is by using
tensors [70]. This is typically done by stacking their topological matrix representation
along the temporal dimension to obtain a three-dimensional tensor. Exploiting the
low-rank structure of their matrix and tensor representations has been shown to
be useful for different applications, like community detection. One advantage of
such a representation is that it allows using low-rank tensor decomposition [71-73]
for compressing and representing the dynamic network, which aids in downstream
tasks.

Tensor decompositions of dynamic networks have been used for different
applications. For example, the works in [32, 33, 36] use low-rank tensor
decomposition for community detection. The work in [34] applies tensor
decomposition for graph summarization. An example of link prediction can be seen
in [37] but the tensor here represents a changing heterogenous user-item graph.
Another example involves anomaly detection [38]. The works in [39, 40, 168] build
tensors from MRI data and use low-rank decomposition for tracking the states of
dynamic networks. However these approaches face the following limitations:

* Role of the Graph. They treat the adjacency tensor from a purely tensor
perspective ignoring the graph structure in it, ultimately, finding low rank
decompositions that do not carry any particular graph-related information. This
is partially because the focus lies on down-stream tasks more than capturing
the topological component. However, considering the graph structure in the
decomposition is important because the embeddings of the decomposition
should be associated with the graph in some form. This is normally enforced
via priors. There exist works which incorporate graph structure as a regularizer
to decompose data tensors [169], but these do not apply to tensors comprising

6.2. PROBLEM FORMULATION 87

the structure of dynamic graphs.

° Use of signals. They do not account for the graph signals in these
decompositions. This data is either directly used as a tensor or incorporated in
building it. Incorporating graph signals to uncover underlying topologies has
been the basis for several topology identification approaches [76, 170, 171] and
can help recover more accurate topological representations as well as identify
more meaningful latent graphs that influence both the topological and signal
evolution.

 Availability of observations. They consider a fully available topology, i.e., do
not account for hidden observations, apart from the work on link prediction
[37] which uses a direct decomposition on a heterogenous graph tensor.

6.1.1. CONTRIBUTIONS OF THIS CHAPTER

Taking inspiration from the multi-graph viewpoint of dynamic graphs along with their
relation with graph signals, we propose a topology-and-signal-aware decomposition
of partially observed dynamic networks. Our decomposition has at its core a set of
latent graphs, whose linear combination expresses the observed structural evolution.
We use the dynamic graph signals to aid the recovery of these latent graphs,
especially when we do not observe the dynamic topology fully. This decomposition
thus results in finding these latent graphs and their temporal signatures, responsible
for scaling them.

We provide a general framework that allows representing a partially observed
dynamic network via latent graphs and signatures which can be adapted to
incorporate different underlying relationships. This framework is characterised by
the following features:

1. It leads to interpretable latent graph decompositions.

2. It can accommodate spatiotemporal nodal signals as a prior to further aid the
represent of dynamic networks, especially when the number of observations is
limited.

3. It allows for an alternating optimization algorithm to recover the modal
graphs and their corresponding time signatures with convergence guarantees
to stationary points.

4. Shows good performance in practice with respect to reconstructing the missing
network, compared to low-rank tensor decompositions and alternatives which
are not topology-aware.

6.2. PROBLEM FORMULATION

Consider a dynamic undirected graph ¥; = (¥,&;) with a fixed node set 7 ={1,..., N}
and the time-varying edge set &; that captures the evolving structure over T temporal
samples. We represent the graph evolution through a three-dimensional adjacency

88 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

@ | : |
- %

\\\//

N/\\\/\/
g =T %QjLV%jL

A A,

Q

Figure 6.1.: Decomposition of the temporal topology evolution in terms of the
component adjacency tensors. (left) an evolving topology over N nodes
for T time instants stacked into a three-dimensional tensor. (right) two
modes A; and A, and their corresponding temporal signatures ¢; and c;
whose linear combinations approximate A.

tensor A€ RV*N*T where the t-th frontal slice A€ RV*N is the Nx N adjacency
matrix representing the topology at time . We have the (i, j)th entry [A.. 1;; >0 if
there exists an edge between nodes i and j at time ¢ and [A,.];; =0 otherwise.

Often we do not observe the whole topology at a given time instant. This
is common in evolving social networks where some users may not reveal their
connections over some time due to privacy reasons [172]. This can also occur
due to communication outages in sensor networks when they operate in harsh
environments [173]. We model these missing observations via a three-dimensional
binary tensor mask M e {0, }V*NXT where M. lij= [M:,:t]jvi =1 if we observe the
presence or absence of an edge between nodes i and j at time f. As a consequence,
we only observe a part of the structural evolution, which writes as MoA where o
denotes the element-wise Hadamard product.

Given the observed tensor, the typical low-rank decomposition like CPD [71] will
express it as a sum of outer products of vectors, with the first two outer products
forming a rank one matrix. Rank one matrices do not capture the topology of
graphs successfully. Differently, block term decompositions [72] can offer structurally
richer decompositions, but their low rank can still be a limiting factor as adjacency
matrices are not typically low rank, as is observed from priors used to estimate them
[76].

To impose a richer graph structure to the decompositions, we model the true
topology at each time instant in A as a weighted sum of R« T latent deterministic
topologies in the form of adjacency matrices, each of size Nx N. The latent
graphs denote static connections which may not be present at each time instant in
the observed dynamic topology but can account for important hidden connections
between the nodes which may not always be apparent. In addition, there may be
more than one latent graph. Some edges can exist together as they imply a certain
type of interaction in time. Thus, they can be assigned to one graph and different
graphs can together express the topology evolution. Some latent graphs may or may
not exist together, due to physical reasons. This is observed in switching dynamical
models. The latent graphs, thus, collectively can account for the structural evolution
of the observed topology.

6.2. PROBLEM FORMULATION 89

More specifically, let the rth adjacency matrix be A, € RNV and consider the
vector ¢, € RT with [c,]; denoting the scalar weight of A, at time ¢. With this in
place, we model the observed topology as

R
) Aroc, +E|,

r=1

MoA=Mo (6.1)

where the approximate adjacency tensor A=Y ® A,oc, eRVNT js the sum of outer

products ¢ between the adjacency matrices {A,} and their corresponding temporal
signature vectors {c,}. The tensor E represents noisy edge perturbations independent
of the dynamics imposed by the latent graph adjacency matrices {A;}s. The
adjacency matrix at time ¢ A, . , is

R
Z r1eAr +Ey, 6.2)

i.e., a linear combination of the R latent adjacency matrices, each scaled by the
corresponding elements in c,. Figure 6.1 shows the adjacency tensor A, along
with the corresponding model approximation in terms of two latent adjacency
matrices A; and A and their temporal signatures c¢; and c;. Similar to the
low-rank decompositions, the adjacency matrices can also unravel important hidden
connectivity factors, as well as be used for subsequent downstream tasks such as
temporal link prediction, graph reconstruction, or anomaly detection [37, 38]. The
elements of ¢, are temporal functions whose nature can also dictate the nature of
the evolution.

Besides the topology, we often have access to time-varying signals at each node.

To formalize the latter, let X € RV*M*T be the signal tensor associated with the
dynamic topology in A. The signal matrix X ., € RV*M at time t relates to the
observed topology in A, . , i.e,, an M- dimensional feature vector associated with each
node. Under the assumptlon that the evolution of signals is closely linked to the
underlying topology [91, 138, 139, 159], we can use the signals in X to recover the
latent adjacency matrices and their temporal signatures, especially when we have
missing observations in the true evolving topology in A. For notational convenience,
we sometimes denote L_&w, M:,:t, and)_L.,:r as A;, M;, and X;, respectively.
Problem formulation. Given the evolving topology A, the associated spatio-temporal
signals X, the observation mask M, we want to recover the adjacency matrices of
R latent graphs along with their temporal signatures {A;,c;} by solving the general
optimization problem

R
mir}\irélize fA,C) =1AMA,C+) gA)+h(C)+ jX,A)+k(A)
’ r=1

subject to A, € #4, A=[Ay,...,Ag],
Ce S, C=lcy,...,cRrl.

(6.3)

The function I(-) is the fitting term, measuring how well the latent adjacency
matrices A,s and their temporal signatures c,s approximate the observed part of A,

90 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

functions g(-) and h(-) impose structural priors on the latent adjacency matrices A;s
and the temporal signatures in C, respectively. The function j(X,A) accounts for
the relationship between the signal tensor X and the latent adjacency matrices. The
function k(A) is a prior on the relationship between the different A,s, i.e., if we want
the different latent adjacency matrices to be similar or dissimilar. The sets ¥4 and
Sc impose strict constraints on the respective variables.

This formulation has a high number of degrees of freedom, with N? for each
latent graph and T for each latent graph. This leads to a total of N?R+ TR degrees
of freedom. To make the problem tractable, we need to use structural constraints
as priors which we will detail in Section 6.3. Moreover, when the number of
observations in MoA is smaller than N?R+ TR, the constraint becomes even more
relevant in the context of this under-determined problem.

6.3. DYNAMIC GRAPH DECOMPOSITION

Problem (6.3) is generic and can be tailored to different settings. In this section, we
first make the problem more specific which involves specifying the fitting error loss
function, the constraints for the latent adjacency matrices in A and their temporal
signatures in C. We also need to specify functions that promote desired relationships
between the latent adjacency matrices A and ones that promote the relationship
between the signals X, adjacency matrices A and temporal signatures in C.

Fiting error. We consider for the fitting function /(A,M,A,C) = IIMO(A—ZleA,ocr)IIZF
to measure how well the latent graphs can predict the presence and absence of the
observed edges.

Constraint sets. We consider the constraint set %4 = {S € RV*N : § = 0y, tr(S) =
0,S=S"}, the set of non-negative, symmetric N x N matrices with zero trace. We
want to estimate the adjacency matrices of the latent graphs which are non-negative
and do not contain self-loops.

For the temporal signatures, we consider S ={S¢€ RT*R.§ > 07z}, the set of
non-negative T x R matrices. Positive weights in both A, and C aid in interpretation,
especially when it comes to comparing between different c,s. They also further
restrict the degrees of freedom making Problem (6.3) more tractable.

Sparsity of latent graphs. We consider the latent graphs to be sparse. We impose
sparsity on each adjacency matrix via g(A;) =[lA/|l;. For A, € %4, this means
gAy) = ILArl N, where 1y is the column vector of N ones.

Signal smoothness. We incorporate the graph signals as a prior via the graph signal
smoothness principle [83, 91]. Signal smoothness implies that nodes connected by
edges have similar values and this has been commonly used as a prior for identifying
topology or inference over graphs [76]. To be more specific, we assume the signals at
time t, X; to be smooth over the approximated topology at the same time, given by
Zle CiA%. A graph signal is smooth if nodes that share edges have similar signal
values. Consider the matrix Z, € RV*N with its (i, j)th element Z;; = [|[X;];,: — [Xi1.115

2Notice that here we do not impose a spatiotemporal smoothness. Our model however can also
accommodate that by changing the cost function j(-).

6.3. DYNAMIC GRAPH DECOMPOSITION 91

measuring the squared /; norm between the signals [X;];. and [X;];. at nodes i and
j at time . The smoothness of the graph signal X; over the recovered model-driven
topology is QVX;) = %tr(éz,:ytZt) [91]. The signal-incorporating prior j(X,A) is the
sum of the signal smoothness function for each time instant and it is calculated as

LI T R t A, Z
JXA) =) SUAZ) = Y Z r(w@-z), (6.4)
=1 t=1r=1

This will promote new links being created from the signals in X that are smooth in
the original temporal network when portions of A are not observed due to the mask.

Non-overlapping support. We desire that the support for the different latent graphs
do not overlap so that each component contributes to the structural evolution and
provides different insights. One way to promote this non-overlapping support is to
penalise the A;s that share many edges among each other. This can be achieved by
imposing a regularizer on the latent adjacency matrices the function

R R
kA=Y Y w@/Ap (6.5)
i=1j=1,j#i

which calculates the total pair-wise alignment of the support of the adjacency
matrices. The lowest possible value of k(A) is zero when no edge is shared between
any two of the adjacency matrices.

Avoiding non-trivial solutions. The formulation in (6.3) can generate trivial solutions
for some of the variables. More specifically, suppose we have a mask M which hides
all information across an edge for all ¢, i.e, [M,.];;=I[M, ;=0 forall z. This
leads to a trivial solution for the corresponding variables because of the dependence
only on the functions j(X,A) and k(A). One way to tackle this is to constrain each
node in the approximation A:,:,t to have a positive degree ¢ > 0. This is expressed
through the constraint

R
(). CirA/) 1N = (1p. (6.6)

r=1

We extend this constraint for all time instants as
AICT @ 1n] = {1nxT, 6.7)

where A =[Ay,...,A;]. This implies that each node in the reconstructed topology at
time t has a degree of at least (.

Smooth temporal signatures. We consider each temporal signature ¢, to change
slowly over time. This helps against overfitting to the observed topology MoA,
especially when fewer observations are present. A gradual change in the temporal
factor would lead to smaller changes in the latent adjacency matrices. A gradual
change in the temporal signature also helps in predicting the presence of an edge
if it is not observed over an interval of time, given the true structural evolution is

92 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

slow. We use the squared Frobenius norm for the matrix formed by the temporal
difference of the elements of each c,, i.e,

R T
h(C) =[IDCl% =YY (Cir — Cro1,1)? (6.8)

r=1t=2

where D is the Tx (T'—1) temporal difference matrix. Additionally, we consider an

extra cost function for C, namely the squared Frobenius norm. These functions aid

in the convergence analysis of the optimization as we shall elaborate in Section 6.4.
With all these in place, the optimization problem (6.3) can now be written as

I R tr(AZ)
ml&ll}l’gze f(AC)——||Mo(A ZAroc,)IIF+)/Zl A,1+5ZZC” L +uliDCI

r=1 r=1 t=1r=

+ﬁz Z tr(A] Aj) + —||C||F

i=1j=1,j#i
subject to A = [vec(A}),...,vec(AR)], A, € 4 =1{8S:8=0nxn,t1(S)=0,8S= ST},

Ce S =18:8207.z}, [Ay,...,A/][CT ®1x] = 1Ny,
(6.9)

where [y,8, 8,1, p]" denote the hyper-parameters.

Remark 3 Problem (6.9) is a specific problem derived from the more general Problem
(6.3). The constraints on the A,s and C can be modified to favour different scenarios.
For example, a switching dynamic network can be replicated by putting an ¢, norm
penalty on each column of C, i.e., each A, is active over time windows.

6.3.1. SOLVING THE DECOMPOSITION

The Problem (6.9) is jointly non-convex in the {A;}s and C. However, it is separately
convex in each variable when the other are fixed. This makes it easier to solve for
one variable at a time via an alternating approach, i.e., we solve a sequence of
convex problems in these variables until convergence. We do this by formulating
R +1 optimization problems, where each of the first R solve for the latent adjacency
matrices A,, whereas the last solves for the temporal signatures in C. We solve
each of them via the alternating direction method of multipliers. Thus, we perform
alternating minimization between R + 1 variables.

6.3.2. UPDATING THE A;S

We solve for the latent adjacency matrices A;s, keeping their temporal signatures C
fixed by alternating between the different A,s. Consider the N? x 1 vector m, formed
by vectorizing the mask at time ¢ M;, i.e.,, m; = vec(M;). Consider also the N2xT
matrix My that collects the m;s along its columns, i.e.,

Mp = [my,my,...,my] € RV *T. 6.10)

6.3. DYNAMIC GRAPH DECOMPOSITION 93

The loss function f(-) w.r.t. the rth adjacency matrix A, writes as

1 T T R
r@an)=SIAlE Y C21Tm,+u(A][Y Co1Tm, Y CirAl)
t=1 =

t=1 r=1,r#r
T R
—tr(A vec (YA, ,Cir1Tmy)) +8tr(A,E,) +2fvec(Ar)| Y vec(Ap)+ Yyl A Ly
t=1 k=1,k#r

(6.11)

where Z, = %[Zl,...,ZT](cr ®Iy). Note the term Zthl C?rlet that scales the
Frobenius norm squared of A,. It is the sum across time of the product between the
corresponding squared temporal coefficient C;, and the number of ones in the mask
1"m; which is also the number of observations available in A at that time. Note also
that the influence of the mask for updating the rth adjacency matrix is influenced by
the corresponding temporal signature c,. The corresponding optimization problem
thus reads as

minli‘mize f@A)
subject to A, ®, + T, = 0nxT, (6.12)
A€ F2=1{S:S=0nxpn,tr(S) =0,S=S"},
where the inequality constraint is the same as in (6.6) but written in
terms of A,. Additionally, we have defined the variables ®, :CI®1N and

Uy =25 rpr Af(C;l—,— ®1xn) —{1yx7. We solve Problem (6.12) via the Alternating Direction
Method of Multipliers (ADMM) [174]. The formulation is

minimize f(A,)
ArP (6.13)
subject to: Ay € ¥4, A, @, +T' =P, P=0pnxT,

where the auxiliary variable P which is introduced as another inequality constraint,
to cast the problem in the ADMM format. Then the augmented Lagrangian in (6.13)
reads as

A
LA, P, A;) = f(A) +tr(A;(Ar®@r + T —P)) + EHAr(I)r +I - PII%, (6.14)
where A > 0. The updates in the primal variables A, at iteration k+1 are given as
AF*! = 11 (AF - AV, LAT)), (6.15)
LA

which is a gradient step followed by a projection onto the set #4. The expression
for the gradient Va, L(A;) is detailed in (D.1) in Appendix D.3. For P, we note that
the Lagrangian is convex w.r.t itself and we can readily obtain a closed-form solution,
followed by a projection onto the non-negative orthant. The remaining updates for
the primal variable P and the dual variables A, are thus

1
phtl = [11\’;T+A’;+1<1>,+r,1+ (6.16)

94 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

AF = AT+ AAFT @, T, PR T (6.17)

where [-]; is the element-wise operator which clips all negative values to zero. The
two steps are repeated until a stopping criterion is met. This whole procedure is
repeated alternatively for each latent adjacency matrix A,.

6.3.3. UPDATING C

In this step, we update C when all the latent A, are fixed. As we did with the
adjacency matrices, we first write down the loss function w.r.t C. To do so, we define

Avec = Ivec(A,), vec(A), .., vec(A,,)] RV *T. (6.18)

Ao = [Vec(A;), vec(Ay), ..., vec(Ag)] € RV R, 6.19)

The loss in C then writes as
1 _
F(© = 51IMo > (Avec = AoCT) 17 +5tr(CTZrAo) + §||DC||% + §||C||%, (6.20)

where tr(CTZTAO) is the signal smoothness prior (6.4) re-written to show the
- 2,
dependence on C, and Zy € R”*N" is a matrix with row k being the vectorized

form of the matrix ZZ’ ie, [Zr].k =vec(ZZ)T. The inequality constraint involving

both A and C in Problem (6.9) translates into CY' —{l7.y = Oy where
Y =[Ay,...,Ar]l(Ig ® 1§). Thus, the optimization problem involving C is
minicmize fo
subject to: CY —{17xn = 07xn, (6.21)
Ce S =1{8:S=07.p}.
To deal with the inequality constraint, we formulate another ADMM problem as
miniénize f©
subject to: Ce ¢, CY' —{17xn=0Q, (6.22)
C=07xn.

Then, the augmented Lagrangian becomes

A
L(C,Q M) =f(© +tr(ACY ~{1rxy = Q)+ Z-ICY " = {1rsn — QI (6.23)
To update C, we take a gradient step followed by a projection onto %, i.e.,
C**1 = 11 (CF - AveLch). (6.24)
S

The derivative of the augmented Lagrangian w.r.t. C is detailed in Equation (D.4) in
Appendix D.3. The other two updates are also similar to those made for each A, and
are respectively

Qk+! = [%AkT+(Ck+1Y)T—(1TN)]+; (6.25)

c

6.4. ALGORITHM ANALYSIS 95

AR = AR A YT = {1y -QF T (6.26)

Algorithm 6 summarizes the dynamic graph decomposition.

6.4. ALGORITHM ANALYSIS

6.4.1. COMPLEXITY ANALYSIS.

In this section, we analyse the proposed DGTD algorithm first in terms of its
computational complexity and then the convergence behaviour of the alternating
approach.

Parameter complexity. The parameters to be estimated are (251 +2T) NR+(R+2N)T:
where (i) (251 +2T) NR are the parameters of the R matrices A, which are symmetric
with zero diagonals and the additional variables P and A, and (ii) (R+2N)T
parameters of the R temporal signatures C and the additional variables Q and A.

Computational complexity. Let there be K alternating iterations between A and C.
The computational complexity is of order @((N>R+ N?TR+ R?N? + T>?R+ NTR)K)
which can be broken down as follows. The computations for estimating A, are
governed by the gradient Va, L(A;) in (6.15) and the updates of the auxiliary variables
P in (6.16) and A, in (6.17). We update the R matrices A;, P, and A, for K steps
leading to a total computational cost of @((N®+ N?T)R). Computing C has a cost
of order G((R*T? + T?R)) and each update of the auxiliary variables Q and A has a
complexity of order O(NTR). The matrices C, Q, and A are updated for K steps
leading to a total cost of ORT*K+T?K+ NTK)R.

Remark 4 In the updates for A, and C [ef. Equations (6.15) and (6.24)], we can also
obtain a closed-form solution for each, prior to projection. However, this closed-form
solution comprises an inverse that is computationally heavy with a complexity of
order O(N3) for each A, and for each iteration in the ADMM, and ©(R3T®) for each C
update, given we need to vectorize to obtain the optimal value. Moreover, projections
on to Fy and ¢ after obtaining the closed-form solution can lead to undesirable
projections, especially if the solution lies entirely outside the feasible set. For example,
if a column in C has only negative elements in the optimal solution (and thus, zero
after projection), it can strongly affect the corresponding A, update, thereby affecting
the convergence of Algorithm 6. A gradient step prior to projection is computationally
less intense, offers more gradual change due to the convex nature of the functions,
and works well in practice.

6.4.2. CONVERGENCE ANALYSIS

In this section, we comment on the convergence of the proposed ADMM-based
approach in Algorithm 6 to a stationary point w.r.t the A,s and C. We have one
alternating optimization procedure involving R+1 updates for the R A,s and one
involving C.

Assumption 8 For all r, Zthl C?rle, >0, i.e., the sum of the product of the squared
temporal signature coefficient with the number of available observations across time
is greater than zero.

96 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

Algorithm 6 Dynamic Graph Topology Decomposition (DGD)

1: Input: Tensor A€ RNV*NxT, Xe RN*M*T. p Y, B W, 0.
2: Output: Latent graph adjacency matrices {Ar}le,
temporal signatures C
3: Initialization: Initialize {A,}le,
(0,1]
For k=1:K
Block Alternating updates over A, and C
A Update:
For r=1:R
Initialize P, A using zero-mean
unit variance Gaussian random variables
Repeat until convergence (ADMM for A;)
Update A, using (6.15)
Update P using (6.16)
Update A using (6.17)
end For
C Update:
Initialize Q, A using zero-mean
unit-variance Gaussian random variables
Repeat until convergence (ADMM for C)
Update C using (6.24)
Update Q using (6.25)
Update A using (6.26)
end For
end For

C as element-wise uniformly at-random over

This condition holds as long as the temporal signature of the rth latent graph ¢, # 07
across time and we have at least one available observation at each time instant. In
practice, we make several observations at each time step, i.e., 1'm; >0 is easy to
satisfy. A non-zero temporal signature c, indicates that the corresponding latent
adjacency matrix A, is of importance when it comes to expressing the structural
evolution.

Convergence. Since our decomposition approach is a block-wise minimization, we
will consider the block-coordinate minimizer as shown in [175, 176]. Let y be the
set comprising all the latent variables {Aj,...,Ag,C}. The variables {A1,...,A;,C} are a
block coordinate minimizer of f(-) if for each r, we have

f@y,...,As,...,Ag,C) < f(Ay,...,As,...,AR,C)

_ _ (6.27)
for all A, € # and {Ay,...,A;,...,AR,Cl €y

f(Al)---rAry---)ARvC) Sf(Aly---)ARrC)

_ o (6.28)
for all Ce S and {Ay,...,Ag,Cley

6.5. NUMERICAL RESULTS 97

Proposition 7 Given the true dynamic topology tensor A, the associated spatio-
temporal graph signals X, the observation mask tensor M, and Assumption 8, the
sequence {AX,...,AX,C*} generated by the dynamic graph decomposition (DGD) in
Algorithm 6 converges to a stationary point, which is also known as the block
coordinate minimizer of Problem (6.9).

Proof. Check Appendix D.2. g

6.5. NUMERICAL RESULTS

In this section, we thoroughly corroborate the proposed approach with the
experimental results on a synthetic controlled setting and real dataset. We start with
a description of the data sets, evaluation metrics, and experimental details. Next, we
analyze the properties of the proposed DGD method through a series of experiments.
Finally, we compare it with alternative methods, focusing on the reconstruction error
for the temporal network over a range of partial observations.

6.5.1. EXPERIMENTAL SETUP

We consider a synthetic experiment on stochastic block model graphs and three real
datasets. The details of these datasets are summarized in Table 6.1.

1. Synthetic dynamic network (SwDyn). We create a dynamic network where we
transition from a stochastic block model (SBM) graph with two communities
to one with four communities. The observed adjacency matrix at time ¢ is a
linear combination of the two SBM graphs. Thus, we have R =2 latent graphs.
We consider the temporal signature c¢; of A; as a vector with values from one
to zero reducing linearly over the fifty time instances. As a result, ¢; = 159 —¢;
has values from zero to one, contributing to the emergence of A;. For each
time step ¢, the signal feature matrix X; is computed from the Laplacian matrix
of A ., similar to [81]. We generate a total of M =1000 smooth graph signals
associated with each one of the temporal graphs.

2. Sea surface temperature (SeaSurf). We consider surface temperature
measurements across points on the Pacific Ocean [156]. It consists of 1728
temporal measurements spread over 600 months at N =100 points on the
ocean. The temporal horizon was divided into T =8 equally-sized windows.
Since there is no ground-truth graph, we estimate one for each time window.
This estimation is based on half of the available temporal measurements (those
corresponding to odd time instants, 7 ={1,3,5,...}), selecting the top 4N edges
where the associated signal is smooth. The remaining half of the temporal
measurements (those from even time instants, T =1{2,4,6,...}) are used as input
for the numerical experiments, resulting in M =108 nodal measurements for
each temporal graph.

3. US temperature (USTemp). We use the NOAA data set from [127], which
consists of 8730 temporal graph signals indicating the temperature variation

98 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

across N =109 stations. We divide the time into T = 15 equally-sized windows.
Since a ground-truth graph is not available, we generate one for each window
following similar steps to the SeaSurf data set. Specifically, we estimate the
graph using half of the temporal measurements (those corresponding to odd
time instants, 7 =1,3,5,...), selecting the top 5N edges where the associated
signal is smooth. The remaining half of the temporal measurements (those
corresponding to even time instants, T =2,4,6,...) are used as input for the
numerical experiments, resulting in M =291 nodal measurements for each
temporal graph.

4. Contact. This dataset was collected during the ACM Hypertext 2009 conference,
where nodes represent N =113 attendees, and edges connect them based on
face-to-face proximity’. The dynamic network captures interactions between
attendees over two and a half days, resulting in a total of 20,800 interactions.
The signal at each time interaction is the sum of all prior interactions up to
that point normalized by the maximum number of interactions observed until
that time. After constructing the network signals, we divide them into T =50
time windows, yielding M =416 signals for each temporal graph. Since there is
no ground-truth graph, we construct one for each time window by considering
all interactions up to that point and selecting the top 3N edges corresponding
to the nodes with the most interactions.

Table 6.1.: Properties of all data sets. The columns represent the following: Number
of nodes (NN), average number of edges (Av. E.) per graph in the temporal
network, number of nodal samples (M), number of temporal graphs (T),
temporal variation measured as the normalized squared Frobenius norm
(T-Var.) between consecutive adjacency matrices along with the standard
deviation (Std), and the normalized total variation for each node obtained
from the signals (QV).

Data Set N Av. E. M T T-Var.(Std) QV
SwDyn 40 130 1000 50 0.17(0.08) 0.08
SeaSurf 100 400 108 8 0.12(0.02) 2.59
USTemp 109 545 291 15 0.47(0.09) 13.32
Contact 113 157 416 50 0.12(0.21) 2.94

Evaluation. We evaluate the performance wr.t estimating the hidden dynamic
network over the unobserved part of the true topology A. Consider M, € {0, 1}NV*N*T
as the mask corresponding to the unobserved edges and non-edges. For our
experiments, M, 1;j:=1-M; ;. We consider a mask M which masks both existing
and non-existing edges with uniform probability across the tensor A. We are
interested in two types of error metrics:

Shttp://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/

6.5. NUMERICAL RESULTS 99

USTemp

F1 score

Objective function

——SwDyn = USTemp|
')\,__& 0.8 —o-SeaSurf -4-Contact
0 10 20 30 10° 10!
Iterations Time (s)

Figure 6.2.: Convergence of the proposed approach for different data sets with R =10
and 90% of the temporal network as observed in terms of (a) the
normalized objective function as the number of iterations increases and
(b) the obtained F1 score together with the elapsed time for convergence.

1. The relative error (RE) given as

_ M, o B-AIE

RE >
IIM,,,, oAl

(6.29)

2. The F1 score measures the ability to predict the unobserved topology in A. It

is evaluated as
B 2PrRe

" Pr+Re
where Pr (precision) indicates the percentage of estimated edges that are
edges of the unobserved dynamic network and Re (recall) is the percentage of
existing edges that were correctly estimated.

F1 (6.30)

6.5.2. METHOD ANALYSIS

In this section we investigate the performance of the proposed DGD method in
terms of convergence, the role of the latent factors and its ability to recover the
dynamic topology.

Convergence. We assess the convergence of the proposed approach by fixing the
number of latent graphs R =10 and using 90% of the temporal network topology in A
for all data sets. Figure 6.2.a illustrates the convergence behavior, while Figure 6.2.b
shows the F1 score as a function of elapsed time. Our approach converges within
approximately 20 iterations across all data sets, except for USTemp. Figure 6.2.b
further indicates that achieving convergence in the objective function correlates with
effective recovery of the ground-truth temporal network structure. The convergence
is slower in larger networks.

Effect of rank and observed topology. Next, we analyse the proposed approach
across two distinct setups:

Role of R. Figure 6.3.a illustrates the variation in RE wrt. the number of
latent graphs R. We utilize 100% of the graph signals and consider 90% of the
temporal network observed. Increasing the number of latent graphs improves the
approximation of the temporal network across all data-sets. For the SwDyn data set,
a substantial improvement is observed when increasing R from 1 to 2, after which
the error stabilizes. This suggests that two latent graphs are sufficient to capture the

100 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

dynamics of the temporal network, and further increases in R do not significantly
reduce the estimation error. This makes sense because the generated topology has
two latent SBM graphs. It should be noted, however, that identifying the optimal R
remains a non-trivial task. For a fixed R, the relative errors for different data-sets
can be attributed to their characteristics. For USTemp data, it is a combination of
the variation in the true topology A and the higher QV, both varying considerably
over the T =15 time stamps.

Role of observed data. Figure 6.3.b presents the RE as a function of the
percentage of the observed temporal network for various data sets, using R =10
and 100% of the graph signals. This shows that reconstructing the original tensor
from a limited portion of the observed network is more challenging, resulting in
higher RE. Consistent with previous findings, the estimated temporal network is
significantly affected by both the proportion of the observed topology and the
inherent characteristics of each network, such as temporal variations in signal

smoothness and structure. This is evident from the higher estimation errors observed
for TT1RTamn and Cantart data cate

7 0
0.4 =-SwDyn 10
8 -#—SeaSurf 5
par b
5} USTemp| H
= -2-Contact |
b} b
) +~
g 01l g =¢SwDyn
= .= —#—SeaSurf
+ +~
Lrtﬁ F mw 10 USTemp
-A-Contact
2 4 6 8 10 20 40 60 80 100
R Percentage of observed data

Figure 6.3.: Numerical evaluation of the proposed approach: (left) Relative error
RE w.r.t. the number of modes R; (right) RE w.r.t the percentage of the
observed temporal tensor A.

Recovered components. Next, we analyze the latent adjacency matrices A, and their
corresponding temporal signatures c, for the USTemp and Contact data sets for
R =3. Figure 6.6 illustrates the temporal signatures c;,cz, and c3 for the USTemp
and Constact datasets. For USTemp, each signature is larger than the others over
certain time intervals and changes smoothly over the 15 time samples. We see a
similar trend for the Contact data with slightly more fluctuations in time. Figures 6.4
and 6.5 illustrate the three corresponding latent graphs. Each figure comprises two
rows: the first row displays the support for each latent adjacency matrix, while the
second row shows the corresponding graph representation. The latent graphs are
individually and collectively significant both in terms of representing the true A as
well as reconstructing missing observations in M, oA. We also see that each latent
graph (and therefore its adjacency matrix) differs from the rest. They might share
some edges but there are plenty of different edges as well. For USTemp, the first
and third latent graphs have a similar structure which can be due to some sort of

6.5. NUMERICAL RESULTS 101

Mode 1 support Mode 2 support Mode 3 support

Figure 6.4.: Visualization of the components obtained from the proposed approach
on USTemp data set for R =3: (top row) the recovered adjacency modes;
(bottom row)) shows the associated graph visualizations.

Mode 1 support Mode 2 support Mode 3 support

Mode 1 graph Mode 3 graph

Figure 6.5.: Visualization of the components obtained from the proposed approach
on Contact data for R=3: (top row) the recovered adjacency modes;
(bottom row)) shows the associated graph visualizations.

periodicity in the measurements.

Support recovery potential of recovered components. Next, we assess the
contribution of individual estimated latent graphs towards the reconstruction of
the temporal network. Specifically, we evaluate how accurately each latent graph
captures the network’s unobserved structure via the relative reconstruction error

102 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

1
1 0.8
—c
! 0.6 —C]
0.5|—¢3 1 0.4 cs
0.2
~N
0 - . ols=l—
0 5 10 15 0 10 20 30 40 50
T T

Figure 6.6.: Temporal signatures associated with each one of the modes for (left)
USTemp datalcf. 6.4] and (right) Contact data [cf. 6.5].

RE. Figure 6.8 shows the RE across the different data sets. For each data set, we
consider R =3 and examine the reconstruction quality for each latent graph with
A;, Ay, Azas well as the reconstruction achieved by combining all latent adjacency
matrices. Individual graphs alone do not adequately capture the temporal network’s
structure, as evidenced by higher RE scores for each latent graph by itself. However,
combining the graphs significantly improves the RE scores for all data sets. This
demonstrates that while each latent graph contributes to explaining a portion of the
temporal network A and no single latent graph is redundant. One reason for this can
be seen from the corresponding temporal signatures in Figure 5. Since each latent
graph has a temporal signature which has high values over a slice of the temporal
window, this graph would have lower error in recovering missing observations over
this time period. And since the different temporal signatures peak at different times,
the corresponding graphs recover different parts of M, oA with high accuracy. This
can also be explained in part by the hyper-parameter § which penalises shared edges
across the latent graphs. Higher values of § can also cause edges to be separated
across different A;s. Even if they have similar temporal signatures, they would still
be able to reconstruct different aspects of A. Overall, this experiment highlights the
importance of considering all latent graphs collectively to achieve a comprehensive
reconstruction of the temporal network. The corresponding plots for F1 are shown
in Appendix D.4.

6.5.3. COMPARISON

We assess the effectiveness of our approach in reconstructing the unobserved
temporal network by considering various scenarios where parts of the network are
unobserved. Specifically, we compare with the following approaches:

1. Unconstrained solution (UNC). This is the unconstrained solution to Problem
(6.9) where we drop both the graph and temporal smoothness constraints on
the latent adjacency matrices Ap and the temporal signatures C, respectively.

6.5. NUMERICAL RESULTS 103

The solution is obtained by minimizing
minimize [|Avec -AC'I% (6.31)
0>

where Ayec and Ag are defined in (6.18) and (6.19), respectively.

2. CPD. This is the canonical polyadic decomposition [71] which approximates A
via a sum of three-dimensional vector outer products. We do not impose any
graph constraints on the CPD, so the components may not be interpretable
like ours.

3. BTD. The block term decomposition (BTD) approximates A as a sum of outer
product of matrices [72]. Thus, we expect the BTD to represent more structure
than the rank one terms in the CPD. We consider the {L,L,1} type BTD where
each block term comprises the outer product of two matrices of rank L and a
vector of size T. We use the code in *.

4. No signal dynamic graph decomposition (NSDGD). This is the proposed
approach without incorporating the graph signals, i.e, § =0. This allows us to
see the effect of including graph signals into the design.

5. Smooth graph learning (SGL). For this baseline, we use the tensor graph
signals in X directly to estimate the topology. We estimate the topology at each
t from the corresponding X; following [81].

6. SICA. This approach presented in [164] approximate the tensor A using a
spatial independent component analysis. Thus, it outputs latent graphs
which are independent in a statistical sense, without relying on graph-based
constraints.

For a fair comparison between the different approaches, we ensure that CPD, BTD,
NSDGD, and SICA have a similar number of parameters as the proposed approach.
This results in a higher number of terms in the CPD and BTD approaches, which
may further complicate the ability to interpret the decomposition.

Figure 6.8 presents the RE of each approach when varying the percentage of
observed topology in the temporal network. The results indicate that UNC tends to
overfit to the observed part of the network and fails to reconstruct the unobserved
portions of the temporal network. DGD performs better than the low-rank tensor
decomposition-based approaches (CPD and BTD) for all data sets for all percentages
of observed topology. The gap in performance varies, from a high (USTemp) to low
(SwDyn). This corroborates our hypothesis that low-rank tensor decompositions are
not very informative or representative of the structural evolution. BTD yields slightly
better RE scores than CPD.

Regarding the results associated with the SICA approach, we observe a slightly
improved performance in terms of error compared to low-rank tensor decomposition
methods. A notable outcome, as evidenced by the results, is that the SICA approach

4http://dimitri.nion.free.fr/Codes/Tensor_Decompositions.html

http://dimitri.nion.free.fr/Codes/Tensor_Decompositions.html

104 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

yields higher errors compared to NSDGD and DGS when the percentage of available
data is large, while the opposite trend is observed with a smaller percentage of
available data. This effect stems from the assumption in the SICA approach of
estimating independent components, which may be overly restrictive for capturing
the structure of the network when a substantial amount of information is available,
but becomes beneficial when data availability is limited.

The DGD and NSDGD demonstrate superior performance compared to other
methods. These approaches employ a more sophisticated temporal network structure,
by incorporating the latent adjacency matrices and temporal signatures. Notably,
DGD achieves the best performance, primarily due to its utilization of additional
node signals. This additional information enhances the reconstruction accuracy,
particularly in scenarios where a significant portion of the temporal network is
unobserved. The gap between DGD and NSDGD narrows as we observe more of
the structural evolution, showcasing the need to use the signals as a prior with
limited observations. However, we note that SGL outperforms all approaches for
SwDyn data when we observe 10 to 40 percent of A, i.e, just using the signals with
signal smoothness prior recovers more about the structural evolution. This makes
sense as we generate smooth signals from the topology. This also suggests that
a low percentage of observations goes against recovering the hidden observations
when combined with signals. For the other data sets, SGL struggles to recover the
structural evolution.

In summary, the proposed approach shows advantages over existing methods by
leveraging additional node signals information and employing it to improve the
reconstruction error of temporal network in scenarios with a large percentage of
unobserved part of the temporal network.

6.6. CONCLUSION

We propose a novel way to represent and interpret dynamic networks. We do this
by modelling the structural evolution as composed of weighted combinations of
latent graphs along with temporal signatures which scale them across time. We also
utilize the presence of spatio-temporal signals as a smoothness prior and estimate
the latent graphs along with their temporal signatures via alternating minimization.
We show that the solution converges to a block coordinate minimizer. The
recovered components can represent important underlying groups of connections.
We show empirically that each individual graph contributes towards representing
the dynamics, as shown by their ability to recover the missing network. Numerical
results demonstrate a superior performance in terms of recovering missing parts
of the network compared to topology-agnostic low-rank tensor decompositions and
methods based on graph signal smoothness. Future works include an online
extension of the decomposition, where we do not have access to the entire sequence
of topologies at once, and thus, predict and update the components over time.
Another possibility is to apply the decomposition to expanding graphs, with nodes
joining the existing graph over time.

6.6. CONCLUSION 105

1 — 1 ‘ | ‘
~ =
S 0a) : g N('/\ x
g . 508
5 \ 5 N
= 0671 =
Q 5} 0.6
- +~ 0.
g 0.4 A g —-2=A
§= A, -5 —#=As
= 0 £ 04
(50254 Ay & Aj
0 -A-Total 02 -A-Total
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of observed data Percentage of observed data
N — : : : 1 : : :
§ : A § 0.8 N/\ 7
E}‘ 0.8l Wi, E . \(A
o S| T
[} 5} 0.6
) - 0
g A, g A
506 —=A, .= A,
2 £ 04
& As =] As
-A-Total | -A-Total
0.4 0.2
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of observed data Percentage of observed data

Figure 6.7.: Reconstruction potential of R =3 individual modes (blue, orange and
yellow) for each data set compared to that of the their model-based
combination (purple). Here we show RE for (left) SwSyn, (centre-left)
SeaSurf, (centre-right) USTemp, and (right) Contact data.

106 6. DYNAMIC GRAPH TOPOLOGY DECOMPOSITION

— 1 3 —
=) 2 08
<) <) C
o] = 0.6
2 8
g 0.5} X g 0.4
2 |#=UNC -8-SGL™~ -2 |»UNC -&-SGL
LTUJJ --CPD -A-DGD éﬁ 0.2 =% CPD -A-DGD

o BTD -£4-SDGD BTD -A-SDGD

20 40 60 80 20 40 60 80
Percentage of observed data Percentage of observed data

1
8 g 1M
= g2
<] <]
= e
et 8
< < 05 »
-g g -UNC -=2-SGL™
LE -+CPD -A-DG ﬁ - CPD -A4-DGD

o4+ BTD -4-SDGD - BTD -4-SDGD
20 40 60 80 20 40 60 80
Percentage of observed data Percentage of observed data

Figure 6.8.: Relative error (RE) for different approaches as a function of the
percentage of observed adjacency tensor A for (left) SwDyn, (centre-left)
SeaSurf, (centre-right) USTemp, and (right) Contact data sets, respectively.

CONCLUDING REMARKS

In Chapter 1, we set out two aims for this dissertation. The first was to propose, design
and analyse tools for processing signals over dynamic graphs, especially when we have
new nodes in an expanding graph scenario with unknown connectivity information. The
second was to propose representation of changing edge supports in dynamic graphs
in a way which allows for their interpretation and recovery, opposed to traditional ap-
proaches.

7.1. ANSWERS TO RESEARCH QUESTIONS

RQI1: How do we process signals over expanding graphs, assuming both known and un-
known connectivity?

We answer this question in two ways: In Chapter 3, we focus on the effects of stochastic
attachment in the face of unknown connectivity; in Chapter 4 we focus exclusively on
filter design.

In Chapter 3, we show that it is possible to learn parametric stochastic attachment
models which describe the behaviour of incoming nodes, conditioned on an underlying
signal processing task on the nodes. We learn this based on how nodes attached to the
existing graph previously with replacement. Moreover, the spectral perturbation caused
by the attachment of these nodes is shown to be implicitly controlled by the proposed
attachment rule. In Chapter 4, we showed that a graph filter bank pair allows us to model
edges away from and to the incoming nodes. We propose a general filter learning model
and designed graph filters for graph signal de-noising and graph semi-supervised learn-
ing. Numerical results show that the proposed approach compares well with baselines
relying on the exact topology and outperforms the current solution relying on filter trans-
ference.

In terms of filling the gap of not knowing the topology via randomness, stochastic at-
tachment models, as they exist in network-science uses heuristic attachment rules to
grow the size of the graph. This keeps the probabilities of attachment fixed once the ex-
isting graph is known. We propose a parametric stochastic attachment rule, i.e., it has a
different probability for each node. It also allows for a different weight for each possible
edge. Being learnable parameters, they can be trained to learn relationships between ex-
isting attachment patterns and node level mappings. The learnt attachment behaviour

107

108 7. CONCLUDING REMARKS

may not be the true attachment, as is learnt by traditional topology inference, but it has
relevance as far as the underlying task is concerned.

The stochastic attachment has implications for graph filters. If the stochastic attach-
ment rule results in an undirected graph, solving for the attachment or filter parameters
in expectation is non-trivial as it relies up to the Kthe order statistics of the stochasticity,
which is difficult to obtain without imposing strong assumptions. This can be avoided by
assuming edges directed either only at the incoming node, or only at the existing nodes.
This allows us to not only obtain exactly the expected output, but indirectly solve optim-
ization problems involving the same. Compared to heuristic or data-driven attachments,
this new approach to attachment, being data, graph and task aware, typically performs
better than purely graph based (stochastic attachment based off network-science) or in-
ductive data-driven transfer-based approaches where a graph is trained on the existing
graph and used for the incoming node, only if the connectivity is known.

RQ2: How do we design dynamic algorithms for signal processing on continually expand-
ing graphs?

In Chapter 5, we propose a methodology to perform online graph filtering over graphs
which grow sequentially over time. We use a simple online projected gradient descent to
update the filter as the size of the graph grows. To account for incoming nodes without
known connections, we propose a stochastic variant based on stochastic attachment
models which we also adapt to further influence inference tasks.

We show that even without knowing the attachment when making a prediction, the
stochastic learner can eventually learn from the data and topological evolution, while
the adaptive stochastic learner can learn potentially faster.

There is, however, typically a gap between online filters and deterministic batch solu-
tions. When the incoming node connectivity is not known, we see that this gap can be
expressed in terms of the gap between the deterministic and stochastic online filters and
the gap between the deterministic online and batch solutions. While the latter tends to
zero as the size of the graph grows, the former typically does not. This leads to a static
constant regret as the graph grows to infinity, indicating there is a price to pay by not
knowing the attachment in an online setting. However, this addresses the worst-case
performance upper bound.

The stochastic attachment rule certainly influences the worst-case difference in per-
formance. If the energy of the probability vectors decreases such that their sum is sub-
linear over time, it results in a theoretical lower bound in performance gap. However,
when one adapts the attachment rule to the growing topology and data, it is possible to
learn faster from the data stream, based on our experiments. This also leads to a lower
steady state regret.

We also showcased the superiority of graph filters as a tool for online graph signal pro-
cessing, compared to state-of-the-art approaches. Online graph filters can perform bet-
ter than batch filters due to their ability to adapt to the incoming node stream. However,
when the data distribution does not change, batch solutions will fare better. Online ap-
proaches tend to fare much better than deploying a pre-trained filter over the node se-
quence. Compared to kernel-driven solutions, filters perform better while being more
interpretable. The online filtering performance can outperform even these determin-

7.2. FUTURE RESEARCH DIRECTIONS 109

istic approaches in the stochastic scenario, if the attachment rule is selected or inferred
appropriately.

RQ3: Given a partially observed evolving topology and a partially observed evolving pro-
cess over it, are there a collection of latent graphs that drive both the evolution of this
topology and of the process?

We tried to answer this question by expressing the topology evolution as a composition
of adjacency matrices of the underlying latent graphs along with their time signatures,
which control the importance of the latent graphs. We consider the dynamic topology
is only partially observed via masking. We also use dynamic graph signals to aid the
recovery of these modes and signatures by assuming the signals are smooth over the
reconstructed dynamic topology. Through alternating optimization, we show that the
recovered latent adjacency matrices and temporal signatures correspond to stationary
points.

The latent graphs along with their time signatures are individually and collectively ex-
pressive when it comes to documenting the dynamic topology as well as reconstructing
missed connections. We see that the latent graphs can play a dominant role in different
time intervals over time, showing that certain sets of connections are more dominant
depending on their signatures. We also see that in the presence of highly masked obser-
vations, graph signals at these nodes can aid the recovery of missing observations. Com-
pared to the traditional low rank-based decompositions and representations of dynamic
networks, we show that our approach can predict missing links (both presence and ab-
sence) with higher accuracy, thus validating our proposed representation through latent
graphs as an alternative. It allows us to look at dynamic networks in a different way.

7.2. FUTURE RESEARCH DIRECTIONS

There exist several open questions arising from the findings of this thesis. In the follow-
ing subsections, we outline them, with descriptions of the methodology, research ques-
tions, and how to potentially approach them.

7.2.1. ONLINE TOPOLOGY IDENTIFICATION ON GROWING GRAPHS

In Chapter 5, we focused on learning the filter h online as the graph grew. The attach-
ment vector a; was either known, or we used a probabilistic attachment rule to infer the
signal at the incoming nodes. Instead, we can estimate the expanding topology, given
spatio-temporal data over the existing and incoming nodes. Inferring the pair-wise to-
pology from spatio-temporal data has received considerable attention for both batch [11,
81-83, 91, 177] and online settings [85, 93, 97, 178]. However, it has not been investigated
for expanding graphs.

To be more specific, consider a sequence of T spatio-temporal signals {x;}. For topo-
logy identification, we assume the graph signal x, € RV*! at time ¢ corresponds to an
unknown graph ¥; of N; nodes with shift operator S;. To solve for S;, we consider a loss
function I(S,x;). Examples include stationarity [170, 179] or a Gaussian Markov Random
Field (GMRF) assumption [180] on x;. However, as we observe a sequence of x;s, we can
update the topology S; online, as we do in this dissertation. An example would be to

110 7. CONCLUDING REMARKS

use projected gradient descent type updates, as all S;s obey topological constraints. The
goal is now to estimate not only the connections of the new nodes from the new data but
also to update the existing connections in an attempt to learn the true updated topology.
The theoretical analysis of such an online learner is also important. Different from
Chapter 5, we need a dynamic regret analysis with the dynamic regret defined as

1 T
Rs(T) = T > LS(0),x,) — 1S}, %) (7.1
t=1

where S} is the optimal topology of size N; x N; at time ¢. There are bounds for dynamic
regret that can be extended to this setting [181]. It is important to study when and where
these bounds hold. For example, how fast can the optimal topology change so that the
online learner has asymptotically zero regret, i.e., do we get closer to estimating the true
topology as the underlying graph keeps growing? Another issue is the growing dimen-
sionality of the optimization variable. It is important to study what type of loss functions
1;(S4,x4), i.e., ones based on stationarity, smoothness, or GMRE can handle this change
of dimension'.

7.2.2. A BAYESIAN FILTERING APPROACH OVER EXPANDING GRAPHS

Most graph filter design focuses on point estimates [7], like the ones considered in this
dissertation. Point estimates do not provide estimates on the uncertainty of predictions
whereas Bayesian approaches are useful in this regard [183]. A Bayesian graph filter, for
example, would provide uncertainty estimates of predictions at nodes, or graph signals
as a whole. It might also promote transferable learning of graph filters from graphs of
smaller size to graphs of larger size.

Consider a graph ¢ along with a set of input-output graph signal pairs 2 = {x,,,y}.
Consider an observation model between y, and x,, such as

Y. =H(@S)x+n (7.2)

where H(S) is the graph filter and n is the additive observation noise. A Bayesian ap-
proach necessitates a prior over h. For an appropriate prior, we obtain the posterior fil-
ter h, and its density p(hy). This allows us to interpret the uncertainty surrounding the
filter, for example, how sure the filter is about accommodating information from each
resolution, along with how the filter weights across orders relate to each other. For ex-
ample, when the observation likelihood and prior are both Gaussian, the posterior hy,
is also Gaussian. Thus, the frequency response, h;,(A) is also a multi-variate Gaussian.
This means the frequency response at each eigenvalue is also Gaussian, providing spec-
tral interpretation.

There are several ways Bayesian Filtering can be applied to expanding graphs. We
outline two.

SEQUENTIALLY EXPANDING GRAPHS

Consider a sequence of expanding graphs %, ..., % with input signals x, ..., X and out-
put signals yo, ..., yr respectively. Let p;—; (h,) be the posterior of the filter at time (£ —1).

1Some related preliminary results can be found in [182]

7.2. FUTURE RESEARCH DIRECTIONS 111

At time t, when we observe ¢, and the pair {x;,y;}, we update the posterior as in done in
Kalman filtering. Thus, we keep updating our belief of h as the graph grows in size. We
can also evaluate the performance of the filter depending on the nature of the observed
inputs/ outputs and the task at hand. One example could be observing x; along with the
graph, predicting y; and then updating the belief. This can be an alternative to updating
the point estimate online, like we have in Chapter 5. The uncertainty can also help in the
learning. For example, we can assign importance weights to the online updates based
on the uncertainty, which might allow us to incur lesser cumulative error and improve
the regret bounds in expectation.

GRAPH TRANSFER LEARNING

Let us have a graph ¢ with the input-output graph signal pairs as defined in 2 in the
Bayesian setting and let the posterior be h, ~ A (u,,Zp) be the Gaussian posterior.
We can assume the frequency response h(1) to be a Gaussian Process [184] with prior
N (), Z(A, 1)) where

K K K . .
) =Y AR fposle, ZAAN =Y Y A1) (7.3)
k=0 i=0j=0

which is a polynomial kernel between the eigenvalues. If this assumption were to hold,
we could in principle sample frequency responses for a different set of As, i.e., for dif-
ferent graphs. This allows us to transfer the Bayesian filter we learn to graphs of larger
sizes and check their performance relative to point estimate filters. This opens up new
questions of analysis in the frequency domain.

For example, if we use the Gaussian Process to sample the frequency response for a lar-
ger graph, would the filter be stable relative to perturbations on the larger graph? Math-

ematically this means the following. For any pair (A;), 1) on the larger graph and a given

C, does (1) ~h(A,)| < ! always hold, or does it hold with probability? This would

require analysing the integral Lipschitz property of such Bayesian filters [185]. Another
research question concerns performance guarantees. For example, can we approximate
the true filter response at the larger graph, and what implications does it have for differ-
ent GSP tasks?

7.2.3. DYNAMIC TOPOLOGY REPRESENTATION

In Chapter 6, we represent the dynamic topology, but we assume the entire dynamic
topology to be available all at once. There are several relevant extensions, of which we
outline a few.

TIME-VARYING REPRESENTATION

Suppose we do not observe the entire A all at once. This implies a dynamic scenario,
where we sequentially observe dynamic topologies (masked or unmasked) of size N x
N x T, i.e., each over a fixed time interval T. This requires updating the modes A,s and
their signatures C dynamically. Let {A,;} and C; be the representations up to the tth

112 7. CONCLUDING REMARKS

time-step. LetA,,;, and M, , be the observed dynamic topology tensor and observation
mask at time ¢. We can update the variables by solving

. 1 R 2 R T L R tr(A,Z;)
{Ar+1},Cree1 =argmin - =M, 0 (A, = Y Ayoc)llz+y Y 1pA146) Y Crp——
@arc 2 =1 =1 =1r=1 2

2

R R R
+ulIDCIZ+BY. Y trATA) + 2ICIZ +1 Y 11A, = Ap 2 +71IC - I 2
i=1j=1 r=1

subject to A = [vec(A;),...,vec(AR)], A, =0, tr(A;) =0, A, =ArT, C=07xg,

AL,..., A/ [CT ®1N] = {1nxT
(7.4)

where we desire the new representations to be similar to the previous ones by adding the
costn Zle [|A; —Ar ;| |§ +1||C—C¢| |§ with 17 > 0 assigning the weight. Alternative costs are
also possible, depending on what we want to remain similar. Regret bounds for such
approaches can also be derived.

UNIQUENESS OF REPRESENTATIONS

The proposed dynamic graph decomposition can be interpreted as a non-negative mat-
rix factorization (NMF) [186]. The non-negative nature makes it easier to interpret the
values in the components. Another advantage of NMF is that it allows for analysing the
uniqueness of the decomposition. A unique decomposition implies that the recovered
components are unique up to scaling and permutation. For the decomposition pro-
posed in Chapter 6, this means that the modes will be unique up to scaling and permuta-
tion, and we do not get fundamentally different modes each time we run the algorithm.

However, the uniqueness of NMF has broadly been studied for exact decomposition,
i.e., where the factorization holds with equality, ie., A = ZleArocr [187-189]. Since
we solve a constrained problem, we will not have an exact NME So, there is the need
to look at uniqueness for non-exact matrix factorization [190]. The criteria proposed
in these works can be interpreted in terms of what they mean for the observations re-
covered modes, signatures, and if they can be used as part of the problem formulation
itself. For example, we use non-overlapping edges to make each mode expressive, but
does it impact the uniqueness of the decomposition?

APPENDIX A

A.1. PROOF OF PROPOSITION 1

The output of an order K filter atnode vy is [cf. (3.6)] [y1]n+1 =a] X&_| htAkxo. The MSE
atthe incoming node is E[([y;]n+1— x1)?]. Expanding the MSE for K = 3 leads to terms of
the form E[a] a;a; xo] which involve the third order statistics of a;. Computing the latter
is notoriously challenging. We approximate the MSE up to second order statistics. Then,
by substituting A; [cf. (3.1)] into the filtering expression we get

K
Vilns+1 =a; Y. hA¥ 'xg=a]Ach (A1)
k=1

where A, = [Xy,...,AX 1xg]and h = [k, ..., hk] . The MSE is approximately
MSE(p,w) = E[(a] Ach — x7)?]. (A.2)
Adding and subtracting (wo p) " A h within the expectation, we get
MSE (p,w) = E[(a] Ath— (wop)TAh+ (wop) A h— x)%] (A.3)
which by expanding becomes
MSE(p,w) ~ E[(a; Axh— (wop)"A;h)*] + E[(wop) Ach - x1)]
+2E((a] Axh— (wop) TAh) (wop)TAch— x7)]. .

In the first term, we expand the square, take A h common and take the expectation in-
side to get (Ayh)"21A h = (Ath) "E[(a; —wop)(a; —wop)]JAh. The second term is
deterministic, thus, we can drop the expectation. The third term instead is zero because
Ela;] = wop. Combining these results we get (3.7). U

A.2. PROOF OF COROLLARY 1

When node v; only forms directed edges landing on itself, the expanded adjacency mat-
rix A; and its /th power become

0

A= a, o0

k
A 0] (A.5)

dAf = :
and A alAF1

113

114 A. APPENDIX A

Thus, the output of an order K graph filter is

K
yilvii=a] y A" 'xo=aAh (A.6)
k=1
which is identical to (A.1). Then, the proof follows similarly as for Proposition 1. O

A.3. PROOF OF COROLLARY 2

To find the convexity condition, we analyze when the Hessian of the function in (3.11) is
positive semi-definite. The gradient of (3.10) w.r.t. p is shown in (3.11). The Hessian w.r.t.

pis

V5Ci(p,w) =2(woAh)(woAh) " —2diag((woA h)*™) +2u,Iy. A7)
The first term (woA,h)(woAh)T is a rank-one matrix with one non-zero eigenvalue
2|lwoA,h||? and N -1 zero eigenvalues. The second matrix is a diagonal matrix with
eigenvalues {-2(w; [Axh]l)z,...,—Z(wN[Axh])%}, The third matrix is also diagonal but
with each eigenvalue 2u,,. The Hessian is the sum of a rank one matrix and two diagonal
matrices. Its eigenvalues are the sum of the eigenvalues of these matrices [191]. By the

semi-definite convexity condition [123], each of these eigenvalues now must be greater
than or equal to zero. The condition

pp = max(w; [Ach])* - [[wo Achll; (A.8)

is sufficient in this case. Since all w; < wy, from the constraint set [cf. (3.10)], we get
(3.13) by substituting them with the upper-bound.]

A.4. PROOF OF PROPOSITION 2
The ESSE cost is
ESSE(p,w) = E[(QV(a) - QV(a))?]. (A.9)

Substituting for QV(-) in (A.9), we get
ESSE(p,w) = E[(a'x+QV(x) —a; ' x-QV(®)?] = E[&' (a—aj)(a—a;) ' ®)] (A.10)
where X = xgz —2X1Xg — xf 1. Taking the expectation operator inside, (A.10) becomes
ESSE(p,w) =% " ([E[aaT] — (wo p)alT —a(wop) + alalT)f((A.11)
where we utilized E[a] = wop. The term E[aa '] is related to the covariance matrix of a; as

3, =E[aa'] - (wop)(wop)' = diag(w*?opo(1—p)) [cf.(2.30)]. Thus, by direct substitution
we get (3.14). O

A.5. GRADIENTS 115

A.5. GRADIENTS

MSE gradients. Using the chain rule for p and w, the partial derivatives of the first term
of the MSE (3.7) for node v,, with true attachment a,, and signal x; is

Vi (wop)TAyh—x1)? =2((wop) "Ach—x1)(poAyh) (A.12)

Vp(wop) 'Ach—x1)% =2((wop) "Ach— x;)(woA,h). (A.13)
The second term of the MSE (3.7) is ¥ | [Ach)?w?p;(1- p;). Taking the derivatives, we
get
Viw@Axh) TZ1Ah=2(Ah)*% o (W)opo (1-p)

T _ 02 02 _ (A14)
Vy(Axh) Z1Ach = (Axh)* o (W)™ o (1 -2p).

Thus, adding the previous two terms, the gradients for the MSE for v, becomes

VuwMSE(p,w) = 2((w0p)TAxh— x1)(peAsh) + 2(Axh)°2 o(w)opo(l-p) (A.15)

V,MSE(p,w) = 2((wop) ' Ach—x;)(WoAh) + (Ach)*% o (w)% o (1 - 2p). (A.16)

Subsequently, the gradient for the regularizer yp||p—by| 12 is 2up(p—by) and for pyy |lw—
a,||?is 2u,, (w—ay,). Putting back the latter with (A.14)-(A.16), we can get (3.11) and (3.12)
with simple arithmetic. O
ESSE gradients. Here we derive the gradient for the ESSE in terms of p and w. Like with
the MSE, consider the case for v, with signal x; and true connection a,,. We consider the
vector X,,. The first term of the ESSE in (3.14) writes as Zﬁ 1 fclz wlgpi (1 - p;). Its gradient
w.rt. w;is 2%;w;p;(1 - p;) and wr.t. p; itis %; wl.z(l —2p;). This allows us to write the
vector derivatives

VX, diag(wop)k, = 2wopo (1 —p) oX}? (A.17)

Vpx,, diag((wop)k, = w2 o (1 - 2p) o%;2. (A.18)

The second term %, (wo p)(wop) "%, can be written as (wop) '%,)? and its derivatives
via the chain rule are

Vi, wop)(wop) %, = 2(wop) "%, (poky) (A.19)

V%) (wop)(wop) &, = 2(wop) &, (Woky). (A.20)

Similarly the third term —2)2; (wop)a, TX, can be written as —2(a;f(n) Zi.\i 1 Xiw;p; and
thus, its derivatives are

Vuw(=2%, (Wop)a,%,) = —2(a,X,) (poXk,) (A.21)
V,(—2%] (Wop)a, Tk,) = —2(a) &) (Wox,,). (A.22)
The final term %, a,a, %, vanishes. Combining the above and for all the samples in J,

the ESSE gradients write as (3.16), (3.17). O

116 A. APPENDIX A

A.6. PROOF OF THEOREM 1

For the proof, we will need the following lemma.

Lemma 2 Consider a cost function C(s) in some variables € RV satisfying Assumption 1.
Let variable s be constrained to the convex set & = [s;, sp]N. Let also s* and s“*! be the
uth and the (u+ 1) th iterations of a projected gradient descent approach on s for cost C(-)
and let§“*1 be the output of the gradient update step

st =" — v, C(s") (A.23)

withn > 0. Then, for the projected vector update s“™ = g(§”+1), the following holds:

lIs“*1 —s¥|| < 2n[IVsCs™)]l. (A.24)

u+1 u+1 u+1_§u+1”,

Proof. Consider vectors s¥, s* 1 and§ as points in RY and ||s“*! —s¥||, ||s
and ||§%*1—s¥|| denote the Euclidean distance, i.e, two-norm between them. The triangle

inequality gives

u+1 u+1 ~u+1

lIs“*1 —s"|| < ls I+ 118" —8“H1]I. (A.25)

u+1

Since s“*! is the Euclidean projection of 8“1, we have ||s**! —§*"!|| < ||s* —§%*!|| and

inequahty (A.25) becomes

15"+ — || < 2Is* — §“*]| = 21l V5C(s)l-

Note that the lemma holds for s being p or w given the other is fixed, 7 being n,, or i,
and .# being [0, 11V or [wy, wh]N, respectively. O
Non-increasing cost. Let C(p“*!,w%) be the cost function evaluated at p**! and w* [cf.
step 5, Alg. 1]. Taking the Taylor expansion at this point, we get

1
C(pu+1,wu) — C(pu’wu) + V;C(pu) (pu+1 _pu) + E(pu+1 -p)TVZ C(p w)(pu+1 _pu)‘
(A.26)

Under Assumption 1 the Hessian is upper bounded as V%C(p,w) =< Lpl, thus, we have

ctp”“,w“)sC(p“,w”)+v;C(p”)(p”“—p”)+%llp”“—p”llz- (A.2D)
We then substitute V,,C(p“,w") = -7, Lp“tl —p*) for the gradient step to write (A.27) as
Cp*!,w<C(p¥, wu)_n_(pu+l u)T(pu+1_pu)+%“pu+l_pu||2‘ (A.28)
Next, we use the cosine rule identity
utl _

1
B -p") (" -p") = Z(Ip"! —pI +1Ip" - IF—lip* T —pI) (A29)

A.6. PROOF OF THEOREM 1 117

in the second term of (A.28) to get

1 1 1
C(LH'I U)<C(p w) ||I~ju+l_pu||2__||pu+1_pu||2+_||pu+1_pu+l||2
21np 21p 21np

L
+7p||pu+l_pu||2‘

(A.30)

The second term on the r.h.s. of (A.30) is lesser than or equal to zero, so we drop it. Since

p“*!is the Euclidean projection of p“*! onto the constraint set, we have ||p*™ —p“*!||? <

|[p“*1 —p“||2. Then, we write (A.30) as
L, 1
C(p”“,w”)sC(p”,W”)+(?p—W)Ilp“+l—pullz+ Lptt p (A3

Using Lemma 2, we substitute ||[p“*! — p¥||? < 417§7||V,,C(p”,w”)||2 in (A.31) and obtain
Cp™,w") = Cp",w") +al|V,Cp", w")? (A.32)

L . .
where a = ((5 —)4np) = anLp Z”. For a < 0, the cost reduces in p, i.e.,
C(p’“l,w“) < C(p“ ,w”), thus, the step size must satisfy 0 <7, < %. Hence, the cost is
non-increasing with each update in p and w* fixed.

For the w update, we follow the same approach but we perform the Taylor expansion
around the point (p**!,w"). Following similar derivations, it can be shown that

Cp™,wh = Cp“*,w") + BV, Cip“*t w2 (A.33)

where = (7‘” - 2n_w)4nw + le) and C(p“*!,wh*l) < C(p**1,wY) if the step size satisfies
0<nus m. Then, combining the two inequalities we have

Cp"*!,w') < C(p*,w") (A.34)
which shows that the alternating projected gradient descent step has a non-increasing
cost. 0
Local minima. Let least one local minima (p*,w*) exists in .. Substituting (A.32) in
(A.33) gives

Cp™*,w") = Cp™, w") +allV,Cp", w™)|I* + BIIV,, Cp™*, wh) 2. (A.35)

We denote V,C(p¥,w") and Vo Cp“tl,wh) as V,C(p*) and V,,C(w") to further ease
the notation. We denote by C(p*,w”*) the cost at the local minima. Due to the non-
increasing cost, after m iterations, we have a condition where the algorithm will be near
the feasible local optima. Using then the first order Taylor expansion at this point

Cip*,w") = C(p*,w") -V, C(p") (p* —p") -V, Cw") (w* —w") (A.36)

118 A. APPENDIX A

and substituting it in (A.35), we get
Cp™™,w™) = Cp*, w*) =V, Cp") (p ~ p*) +allV, C(p")|*+V,, Cw") (W' ~w™)
+BIIV W Cow™)II%.

(A.37)
We then substitute the cosine rule
1
V,Cp")(p" -p)——||v Cop"IP +T”p p*||2—%Hp”—p*—npvpcm“)n2
(A.38)
and its equivalent form in win (A.37) to get
]
Cp" W) =Cp* wh) = (L+ @IV, CRIP+ (B2 + BV, Cw)
1
+ﬁ(llp -p 1P -11p" —p*I1%) (A.39)
1
+— (W =W |[F = [—wH?).

2N w

Now, if (+a) <0 and (+ B) < 0, we can ignore the first two terms in the rh s. of
(A.39). Substltutlng for a and B in these conditions, we get 1, < m andn, < m. To
prove convergence to the local minima (p*,w*) we utilize the inequality ||p“*! —p*[|* <
[[p“+t!t —p*1|?, i.e., the gradient update is closer to the optima than the projection update,
which holds under the assumption of the local minima being feasible. By using this in-

equality for both variables, we get

Cp*“,wh - Cp*,w)<—(I|p —p*II>=lp“* —p*11%)

1 (A.40)
+ — (W —w* [P = [[w T —w*).
2Nw
Summing from m = 0 to M, we get a telescoping sum and can write
S 1 1 1 0) 1)
(€™ ™ = Clp™w™)) = 5B = p* = p" = 1)
" ? (A.41)
+—— (WO —w* P =W —w 2.
20w

We divide both sides of (A.41) by (M + 1) and use the inequality
Cp“*t,w'h < A=y M C(p“*!,w**!) which holds because C(p“*!,w"*!) islesser than
or equal to all the terms from m =0,... M and get

1
C u+l u+1 C < 0_ * 2 _ u+l _ k2
p)-C(p*,w") < 2(M+1)np(”p pTlI°—llp P9
(A.42)
+ ———— (WO = wW* | = [[w* - w*).
2IM+1)ny
As iteration index M — oo, C(p**!,w**1) — C(p*,w*). Thus, convergence to a local min-
ima is possible with rate of convergence G (1/U). O

A.7. PROOF OF PROPOSITION 3 119

A.7. PROOF OF PROPOSITION 3

The perturbation between the realization adjacency matrix A; and its nominal A}, AA| =
A1 _Kl is

B 0 wo (SV(p) - 1)
A= | o sVip) - 1)T 0] . (A.43)
Invoking Assumption 3, we substitute AA; and v ; in (3.23) to get
T 0 wo(SV(p) -D]|_
AY1=Vai lwo (SVip) - 1) 0 Vai (A49)

Then, denoting by [v ;11:n the vector containing the first N elements of v4 ;, (A.44) can
be written as

Ayi = @IV N1V i) Two (SV(p) - 1). (A45)

Now, we apply the Cauchy-Schwartz inequality on (A.45) and square both sides to get
Ay; <4||vi e va duen]] [we SV - D% (A.46)
By taking the expectation, we get
ElA?y;] < E[4][vs na1 v v]| [wo (SV(p) - D] (A47)

which writes as

E[A%Y;] < ¢iEl| [wo (SV(p) - D[], (A.48)
The expectation operates on the sum Zf.v 1 wf(SV(pi) —1)2. Given w; is fixed, and utiliz-
ing E[SV(p;)?] = pi, and E[SV(p;)] = p;, the result of the expectation is Zfil wl?(l - pi),
which writes as pTzlp, where X is the covariance matrix of a;, and [pl; = 1//p;, if
pi #0, and zero otherwise. The same steps hold for the perturbed nominal Laplacian L;
and its ith eigenvector vy ; to prove (3.25). O

APPENDIX B

B.1. PROOF OF LEMMA 1
Substituting Ly = LIgx+; ®X) and M, = M(Ix; ®X) into [E[LICMX], we get

E[L] CM,] = E[(Ig+; ®%) LT CM(Ig4; ®)]. (B.1)
Substituting further L = [I,A,...,AX], M= [LA,...,AX], the (i, j)th block of LT CM, is
[LTCM]; j=A"'CA/™ for {i, j} = 1,...,{K+1,K+1}. (B.2)

Incorporating the Kronecker products involving x, we further write the (i, j)th entry of
(B.1) as))
E[L;CM,];; =Ex'A""'CA/'x] (B.3)

since the expectation acts element-wise. Since the expectation argument is a scalar, we
bring in the trace operator and leverage its cyclic property tr(xyZ) = tr(Zxy) to write

Ex'A7'CA/~1x] = E[trxex ' A7 A/ 1)) (B.4)

where the only random variable in (B.4) is x. Substituting then E[xx"] = tt” + o?Iy in
(B.4), we get

E[L]CM,]; ; = tr(tt' A" CA/™Y) + o%tr(A’ 1 CA/ ™). (B.5)

The first term in the r.h.s. of (B.5) is [L] CM;]; ; = t' A’ ?CA/ 't with L, = Ly| =, and M, =
M, |.-,. Instead for the second term otr(A’"'CA/~1), we leverage (B.2) and Def. 4.3.1
and note that it is the (i, j)th element of blktr(LT CM, 021). Thus, the (i, Jj)th element of
E[L] CM,] is the sum of the (i, j)th element of these two matrices, proving the Lemma.[J

B.2. PROOF OF PROPOSITION 4
Expanding the MSE definition we get

El|[Wih—t;]|5,1=h"E(W] D;W;Jh+2h" E[W Dy t;] + ¢t/ D1 t;. (B.6)

121

122 B. APPENDIX B

The first term contains the matrix A := [E[WlTle]. Substituting W, [cf. (4.9)], we the
expectation argument becomes

L. M,

t; XK D 0

M)][0 dya]|xp @)
tIDtx + dN+1X[(X£ tIDMx + dN+1XKl'/fl;r
M]DL, + dy.+1f,xy MIDM, +dy,mm]

W] DW; =

(B.7)

which is related to the four blocks appearing in A and where D = diag(d,, ..., dn).
A11. The first block matrix in (B.7) is A1; := [E[/I\,IDIAJX + dN+1xKx£].
Substituting L = Ly + x; Ly, we get

E[L; DL, = E[(Ly + x1Lp) ' D(Ly + x1Lp)] (B.8)
which is further composed of the following four terms:
o [E[LIDLX] = LIDLt + a2blktr(LT DL, 1), which follows directly from Lemma 1.

* ElxL;DL,] = n L] DL given the noise and the attachments are independent of
each other.

o [E[xlngLx] = tlE;iDLt under the same independence considerations.
. [E[xffZbe]. Under the independence between x; and b!, and by using Lemma 1
on EZDI_J;,, we get
E[x2L, DL, = (£2 + 0% (L DL, + blktr(L' DL, = B.9
[x7L, DLyl = (£ +) (L, DLy + blktr(,2Y) (B.9)
where we also used the identity E[bibi"] = plpiT + =1,

In the expression of A;; we also have the term E[dy.1xxx}] = dy41diag(#? + 02,0),
which holds because xx = [x1,0x]. Combining these, we get expression (4.13) for Ay;.

A1>. The second block matrix in (B.7) is A1z := [E[fIDMx + dN+1XKffl;cr]. Substituting L
and ﬁll— = a‘fTMx +x}, we get

Arp = E[(Ly +x1Lp) ' DMy + diy 41X (@ My + ;)] (B.10)
which is in turn composed of the following terms:
e E[LIDM,] :=L/ DM, + oblktr(L" DM, 1) which yields from Lemma 1.
. [E[xII_JZDMx] = tll_,;iDMt under the independence consideration.
. [E[dNHxKa‘l’TMx] = dpyy1tgu® M, again under independence tg = [#1,0x].

* dyE[xgxg]. Here, note that xx = [x1,0x] and xg = [x1,0x]. Hence, E[xgx;]
equals [E[x%li = 1% + 02 in position (1,1) and zero elsewhere. Defining then matrix
trp € REFUMH L with (#2 + 62) in location (1,1) and zero elsewhere, we can write
AN ExXgxg] = dnsrtin.

B.3. PROOF OF PROPOSITION 5 123

Combining then these derivations, we get expression (4.14) for Aj».

Ay;. The third block matrix in (B.7) is Ay := E[M] DLy + dy1/,xL]. It is easy to see that
Aoy = Asz; hence, (4.14).

A2. The fourth block matrix in (B.7) is Ay := [E[MIDMx + dNHﬁlxﬁlI]. For the first term

on the r.h.s. of the latter we have

E[M)DM,] = M, DM, + o?blktr(M ' DM, Iy) (B.11)

which yields from Lemma 1. Regarding the second term on the R.H.S, we substitute m,
and write it out as

o~ —T —T
Eldn+1mym)] = dye E[(M, a +xx) (M, a +xx) " B.12)
=dn:1 (Mla‘l’a‘lﬁﬁx + Mla‘l’x} +xKa‘1’TMx +XKX})].

We proceed in the same way and elaborate on each terms within the expectation on
the r.h.s. of (B.12); respectively:

. [E[Mla‘l’a‘lﬁﬁx] = blktr(M ' R°M, (tt” +021y)) which holds from Lemma 1 and where
RC = >° +”0”0T'

—T —T
E[M, a0x;] =M, p°tg.

o E[xgad M,] = txpu® M.

o Elxgxg] = diag(#? + 02,0x)).

Combining all these terms and (B.11) yields expression (4.15) for Ayy.
Next, we focus on the second expectation on the r.h.s. of (B.6): @ := IE[WIDltl]. Substi-
tuting once again W [cf. (4.9)], we can write the expectation argument as

i)-

Upon substituting L, and m, and applying the expectation, expression (4.16) for 8 fol-
lows, completing the proof. g

TT

Lx XK
T A~

M, m,

D 0
0 dn+

/L\;Dt+ hdnXL

MIDt+ hdysimy |’ (B.13)

W/ Dty =

B.3. PROOF OF PROPOSITION 5
Graph ¢!. The expected TV is

E[TVy)] =Ely) A-A)Td-ADy!] (B.14)
which by substituting the adjacency matrix Ai1 [cf. (4.1)] becomes

r -I1-A) "D}

yilT

yill (B.15)

124 B. APPENDIX B

with T' = (I-A) " (I-A). Substituting further y} [cf. (4.6)] with x; = t; we can write (B.15)
as

ElS2(y))] = hiT[E[tjrtt —tgbl" 1-A)L, ~ L] 01-A)Tbity + (b bl + Dtgt) [hl. (B.16)

We now proceed by applying the expectation to each term on the r.h.s. of (B.16). For the
first term, we substitute L; = (L; + fL;;) with L = L|,_;; and get

E[L; TL] = E[(L; + tL;) "T(L, + 5 L,0)). (B.17)
This is in turn composed of the following four terms:
e E[L/TL]] =L/ I'L;. which is unaffected by expectation.
o [E[tlL[TFfbi] = tlLIFf”i where we use E[b] = pi.
=T
e E[nLilL] = nL,iIL,.

« E[2LyTLy] = 2(L,TL,, +blkur(L' IL) where we use Lemma 1 and E(bbiT) =
zi + ﬂi iT'

The second term in (B.16) E[tgb!" (I- A)L,] is composed of
* E[tgbi"L,]: Substituting L; = (L; + ©L;;) we have
Eltgbi L] = txEbI L]+ 4 EbLIL,). (B.18)

The term bi"L; has expectation p!"L;. Note however, that we also have bi'L;, =
[0 biTAbil ... biTAKTIb}]. By using Lemma 1, we have E[b}'Ly] = p' "L +
blktr(L, Z"). Combining, we get

Eltib} L] = tx () L + 0 (' L + blkir(L, ZY)). (B.19)
o E[thilTAi,] = tK[E[bilTALt] + tl[E[bilTAfb], which by following similar arguments
yields

Eltib} AL] = ti(u'T AL, + 1y (u'T AL ; + blkir(AT, Z)). (B.20)

Combining (B.19) and (B.20), we get
Eltxbl (- A)L) = tee(uTL; + 11 (L + blker(C, 1) - tK(yiTALt +op AL, .
+blktr(AL, zi))). B2

The third term is the transpose of the second one, i.e.,

E(L] (1-A) "bit}] = Eltgbl A-A)L,] . (B.22)

B.3. PROOF OF PROPOSITION 5 125

The final term is

N
E[(b}" b} + Dtgty] = Z] +1)diag(#,0) (B.23)

where we used thE = diag(tlz, 0x). Given that [E[[bil]%l] = w%pn, we can write this as
E[(b} b} + Dtgty] = (W' p' +1)diag(?, 0). (B.24)

Combining these together we get expression (4.21) for ¥'.

Graph ¢?. By substituting A [cf. (4.1)] and y¢ = [M;h®,m/h°] T iny?T 01-A9) T I-AD)y?
the expected TV is

M;,h°

0pAO0T _pO
[E[TV(Y?)]:[E[[hOTM;r hOTfflt] F+A1A1 Al] I/fl—rho
t

A
A 1

] . (B.25)

e~ vl
Utilizing m,; = M, A° + tg, we get

EITV(y)) = hOTE[M/ (T + APAS)M, — M/ AS (A5 ™M, + t) — (M A° + t)AS M,
+ (M, A + t) (M, A® + 1) T B
Equation (B.26) comprises the following four terms:
E[M/ (T +AA9T)M;] = M/ (T + R°)M since A{ is random here and R® = E[A]ALT].
o E[M]AS(ASTM, +)] = E[M; ASA9 "M,] + E[M; A0t] = M/ R°M; + M/ p°t;.

. . . LT
e The third term is the transpose of the above, hence it has the expectation M; R°M,+
tKI.lOTMt.

o EI(M; A°+t) (M, A°+t)T] = (M, A°A°T M| +E[M, A°t]] +E[txA°T M,] +E[tx (] =
M:Roﬁt + MIT pOtIT< +tgp® M, + thE by operating term-wise.

Combining these together, we get expression (4.22) for ¥°, completing the proof. g

APPENDIX C

C.1. PROOF OF THEOREM 2
The regret relative to the optimal filter h* is

T
Rsr(h*) = Y B(h*(£-1),x) - 19(h*, x)). (C.1)
=1
By adding and subtracting the terms Zthl If(hs(t— 1),x)and T |4 h(r-1), X;) we ob-

=1"t
tain

T T
Ryr(m*) =Y 15h*(t-1),x) =19 (h*(£ - 1), x) + Y 19 (h*(¢ = 1), x) = 1¥ (W (£ - 1), x,)
t=1 t=1

T
+ Y 1t -1),x) - 19 (h*, x)

t=1

(C.2)

where I? (h®(t—1), x;) is the deterministic loss at time ¢ evaluated with the filter updated
in the stochastic scenario. The regret in (C.2) comprises three sums over the T-length
sequence, each of which contributes to the overall regret.
The first term in (C.2), Zthl Eh¥(r-1),x,) - I‘ti(hs(t — 1), x;) measures the difference in
the stochastic and the deterministic loss for the filter updated online in the stochastic
setting. We substitute

I5(0°(= 1), x0) = (Wr op) ¥ = x0)* +¥7 Zeye + il (£ = DI (C3)
wherey; =Ay ;—1h*(¢—1) and

17 (2 1), x,) = (@] §: - x)” + plI* (1= DII3 C4

to get the difference at time ¢ as

Sth(t-1), x) -1t = 1), x1) = (Wropy) §i—x0)% — @] 1 — x)2 +¥, /¥ (C5)

127

128 C. APPENDIX C

After some simplification, we get
(0% = 1), x)=I{ (0° (1= 1), x) = (Wr o pr—ay) T§)* +2(We opr —a) (] §r — x0) o)
+¥; 24§
The r.h.s. of equation (C.6) has three terms. For the first term we have
(Wropr—ap) §1)? < |lwgop, —ar3l1F:115 < wi (1pll3 + Minax) Y? (C.7)

where the first inequality follows from the Cauchy-Schwartz inequality and the second
inequality from Lemmas 4 and Lemma 5 in Appendix C.4.
For the second term we have

2wropr—ay) V(@] yr —x) < 2llwrop, —a;llalIyellzlla) ¥ — Xl

(C.8)
< ZRwhY\/ ||pt||§ + Mpmax

where the first inequality follows from the Cauchy-Schwartz inequality and the second
inequality from Assumption 7, Lemmas 5 and 4. For the third term, we have

Ni-1
VIZye= Y AWASPda(- [peln) < whoi Y2 (C.9)
n=1

where the inequality follows the definition of 2 and Lemma 5. Adding (C.7)-(C.9) we
can upper-bound (C.6) as

T

Y B (=1, x) =19 (05 (£ = 1), x) < w2 Y2(Ipe 113+ Mmax) +2Rwp Y \/ 1113+ Minax
t=1

2 -2vs2
+w,a;Y".

(C.10)

The second term in (C.2), ZT ld (h¥(t-1),x,) — I‘Z(hd(t —1), x;) measures the sum of
the differences in the determlnlstlc loss between the deterministic and stochastic online
filter. Since I? (+,+) is Lipschitz with constant L; from Lemma 3, we can write

14 (hS(£-1), x)—19 (% (t-1), x)| < Lglh* (£=1)~h¥ (1-1)]I; (C.11)

which implies I, (h*(£—1), x;) —1;(h%(t—1), x;) < Lg||h* (£ —1) =h%(£—1)|],. Summing over
t, we have

T T
Y em (-1, x) - 19 (t-1),x) <Ly Y IIh° (-1 —h? (- D]l (C.12)

t=1 t=1

The third term in (C.2), ¥, 19(h? (¢ - 1), x,) - 19(h*, x,) corresponds to the static regret
in the deterministic case and has the upper bound
L d dnx [h* |13
Y (i (r=1),x) - 1f(h*, x)) <

t=1

+JLAT (C.13)

C.2. PROOF OF COROLLARY 3 129

as shown in Proposition 1.
By summing equations (C.10), (C.12), and (C.13), we obtain

T
Ryr(0*) < Y wi Y2(IIpell3 + Mimax) + 2Rwp, Y \/[1pel13+ Mgy + w565 Y?

t=1

*112 (C.14)
+Lallhe (- 1) ~h? (- 1)l) + ™1l 7,20
d 2 o SLaT
Finally, dividing both sides by T and using Lemma 5, we complete the proof. O

C.2. PROOF OF COROLLARY 3

We substitute p; = +—1p,_,, in each term of the stochastic regret bound. For the first

Nt 1
term we have
L2 2 22w 1 2 2
Y wi Y2(lIpells + Mimax) S wiY*) —— + Wy Mmax Y°T. (C.15)
=1 =1 N1
Substituting N; = Ny + £ — 1, we have
Lo 2 2 v 2 2
Z w,Y (Ipell5 + Miax) < wyY) ————+ Wy Mpax Y°T. (C.16)
t=1 =1 N() + t - 1
Next, we bound the summation Y. [_ == as '
L 1
Y ———<inl_ T (C.17)
=1 N() +1t— t+ Ny —
which gives us
L 1
——— <log(T + Ny — 1) —log(Ny). C.18
;N0+t_1 g(T + No— 1) —log(Np) (C.18)

Substituting (C.18) in (C.16), we have

T
Y wiY2(UIpell3 + Miax) < w;, Y2 (log(T+No— 1) —log(No)) + Wy Mpax Y2T. (C.19)
t=1

On dividing by T and taking its limit to infinite, we have

Tll_I};o T2 Z wi Y2(IIpll3 + Mimax) < Wi Mpax Y? (C.20)

where the first term vanishes as T grows faster than log(T).

lForafunctionf (1)>0, WehaveZT 1f t)dt<1nt 1f(l‘)dl‘

130 C. APPENDIX C

For the second term we have

T T

1
Y 2RwpY\/IIpel3+Mpax < 2RwpY)y 5(||pt||§+Mmax+1)
t=1 =1

T
< Rwp Y (O_1Ipell3 + T(Mpmax + 1)
t=1

(C.21)

where we use the fact that the geometric mean is lesser than or equal to the arithmetic
mean. Utilizing the fact that hm n T Z _11Ipel |2 is equal to zero (as shown above in (C.20)),

we have

1
Thm Z 2Rwp Y \/lIpell3+ Mpmax<RwpY (Mypax+1). (C.22)
*>OO

For the third term wi y? &7;, we have

T T
Z Gy lE=swiY Y —@- (C.23)

= 1Nt 1 N =1 N1

which holds for the uniformly at random attachment rule. Given Tlim XL ﬁ =0,
—00 -

the third term vanishes in the limit. Adding (C.20) and (C.22), along with the other terms
from the stochastic regret bound, we have the required bound for Corollary 3. O

C.3. PROOF OF COROLLARY 4

To prove this corollary, we start with the result of Proposition 2. For the first term, we
have [|p;|[5 = [[P;-ym(z —1)||3, which is upper bounded as [[m(z—1)|[3||P;—;||7. The max-
imum value of ||m(r — 1)||§ isone form(z—1) € H#.

For the second term, we use the Arithmetic Mean-Geometric Mean inequality as in
Corollary 3 and use again ||p;| |§ <||Ps-1] I%. Similarly, for the third term we have

6%:;1311:%, Peln(1—[peln) _HII%X (Pr-ym(z - D]p(1 - [Prmym(f —1)]5)

(C.24)
< max [Pym(t—1)], < Pllm(zr-1)|l2 < Py.
n=1:N;_1
Substituting 62 in the regret for the stochastic setting, we complete the proof. O

C.4. RELEVANT DERIVATIONS

Lemma 3 Under Assumption 1 and 6, the loss function I;(h, x;) is Lipschitz inh. That is,
the ¢, norm of the gradient of the loss at time t is upper-bounded as

IVile(h,x)ll2 < Lg (C.25)

where Ly = (RC +2uH)

C.4. RELEVANT DERIVATIONS 131

Proof. We apply the Cauchy-Schawrtz inequality on the r.h.s. of (5.11) and get
IVl th, x)ll2<la; Ay, ;-1 h— xrlllA _1a¢ll2+2plihllz = RC+2pH. (C.26)

where we use Assumption 1. O

Lemma4 Attimet, given the probability of attachment p;, the weightw;, and the attach-
menta;. Let Ny be the number of existing nodes. We have

||Wt°pt_at||2 wh(||pt||2+Mmax) (C.27)

Proof. We can write the squared norm as
Ni1
llweopr—acllz= Y (Wilalpis—2wilalpelalacd,+ads. (C.28)
n=1

The second term in this summation is always negative, so we can write

Ni1
Iweopr—als< Y wililp.s +[a,?. (C.29)
n=1

Note that ZN 1 [at < Muax wi using Assumptions 1 and 5; thus, we have
llwiop; —ayll3 < willpll3 + Mpaxwh, (C.30)
O
Lemma5 The term ||Ay —1hll2 is bounded in its €, norm forallt, i.e., ||Ay—1hll2 < Y.

Proof. From the expression of ¥, in (5.5), we have

¥l <l Z heAR x;112 + Ila) Z heA %11
(C.31)

<|| Z R AR %112 + a2l Z neAR x|,
k=0 k=1

The first term on the r.h.s. is bounded for a bounded h and At 1- So is the second term,
following Assumptions 1 and 5. Thus both the output y; and yK =1 hiA 1 lx, are bounded.
We denote the bound for || Zk:l hkAt_1 X¢llpasY. O

C.4.1. GRADIENTS

Here we provide the expressions for the gradients w.r.t h, m, and n for the adaptive
stochastic online learner.

vhli(h; m,n, x;) = (W;_1no Pt—lm)TAx,t—lh - xt)A—lx—,t_l (wy opt) +A;ryt_1itAxyt_1h+2[Jh.
(C.32)

132 C. APPENDIX C

The gradient w.r.t. m is

Vil (h,m,n, x;) = PIT_I (W;_1noA, ;_1h)(W,_jnoP,_ym) A, ,_1h-x,)

+PT (Arr 2o (Wioim)) —2P] | (Pr_ymo (As, 1 h)™ o (W,_ym)™). (C.33)
Finally, the gradient w.r.t n is

Vul,(h,m,n,x,) =W/ (P,_ymoA, ,; 1h)(W,_noP,_ym) A, th—x,). (C.34)

O

Computational complexity. Here we provide the computational complexity of the on-
line learners. All methods rely on computing Ay ;1 = [it,At,lit,...,Af_‘llit] at time t.
We construct Ay ;—; with a complexity of order &(M;_;K) formed by shifting X, K—1
times over ¢;_;. At time ¢ — 1, we need not calculate Ay ; = [X;41,ArXs41,- ..,Af‘liﬁl]
from scratch. From the structure of A; [cf. (5.1)], we only need to calculate the diffu-
sions over the incoming edges K — 1 times, which amounts to an additional complexity
of 0 (MmaxK). The computational complexity of each online method is detailed next.

D-OGE The complexity of update (5.10) is governed by the gradient, which depends on
the output at time X; = atTAx,[_lh. It has a complexity of G (Mmax K + M;-1 K), where the
complexity for Ay ;—1h is M;_; K and that for the diffusion over the newly formed edges
is O (Mmax K).

S-OGE The only difference between S-OGF and D-OGF is that we use the expected
attachment vector (w;op;) to calculate the output, which means the complexity incurred
depends on N;_; for all ¢.

Ada-OGE The Ada-OGE being a stochastic approach has already a complexity in the
order of O (K (M + Ny)). However, it has an extra complexity of @ (N;(M)) due to both the
m and n update.

APPENDIX D

D.1. CONVERGENCE PROOFS
Strong Convexity of f(-) in A,. The derivative of f(A,) w.r.t A, writes as

R
Va, f(A)= Ar(z Ci1Tmy)+| chl m; Y CihAy]
=1 t=1 r=1,r#r

T R
“[YA . ,C1Tm+0E] +28 Y Ap+yll’.
= k=1k#r

For strong convexity we need the Hessian Vir f > 0. First we write

dVa, f (Z C%.1"m,))dAo.

Doing vectorization on both sides gives us
vec(dVay, f) = (Z C2 let) vec(dA),

ZCZ 1'm,)Ly,

. 2 2 . . .
with VIZ\, f e RN"*N"_ From Assumption 8, we have strong convexity in A,.

Strong Convexity of f(-) in C. For C we have
Ve f(C)=F(-A . Ag+CAgA)+5(ZrAg)+uD ' D +pC.
The Hessian w.r.t C can similarly be derived as

dVcf = FdC(AjAg) + (DD + pF)dC
vec(dVcf) = (Ag Ag ® F)vec(dC) + 1z ® (D' D + pI7)vec(dC)
Vif=(AgAg®F+1zx®D D+ plgr)

133

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

134 D. APPENDIX D

where VZf € RT®*TR " The matrix (AjAg ® F+ Iz ® D'D + plgr) is composed of thee
components. First, AOT Ay ®Fis a positive semi-definite matrix as both the matrices Ag Ay
and F (which is a diagonal matrix with positive diagonal elements) are positive semi-
definite. By the same argument, Iz ® D" D is positive semi-definite. Since p > 0, we have
Ag Ay ® Fis a positive semi-definite matrix as both the matrices AOTAO as positive definite,
which means V% f = pIgrT, establishing strong convexity in C.]

D.2. PROOF OF PROPOSITION

We prove the convergence of our alternating approach to a stationary point. We denote
A_, asthesetofall A;swith i #r.

Convergence over A;s. To show that we converge to a block coordindate minimizer for
this problem, we must satisfy the requirements mentioned in Theorem 2.3, Lemma 2.2,
and Assumptions 1 and 2 in [176]. These are as follows.

* f(Ay,...,Ag,C) is block-multiconvex, i.e., it is convex in each A, and C, with the
other block elements being fixed. This can be seen from Appendix D.1. In fact, we
have strong convexity for each block element.

* Block multiconvexity, i.e., the set which corresponds to the constraint of each block
element should be convex, given the others are fixed. We have Zle A, —(1nyxT =
O~ 7 which is block multi-convex, i.e., for fixed A_, and C, the set satisfying A, @, +
I', = 0is convexinA,. The same holds for C with the constraint set for A[CT ®1] =
{1nxT being convex in C for fixed A,s.

e The minimum of f() w.r.t A, exists and is finite. This is verified because for all A,
which lies in the feasible set, the loss function f() is greater than or equal to zero.
Similarly, the minimum of f() w.r.t C is also finite, following the same reasoning,
i.e., element-wise positivity.

* The set map w.r.t each A, changes continuously [cf. [176]]. The constraint A, ®, +
I'» = 0 which changes for every update is continuous in each A,. The constraint set
A[CT ® 15] = {1« changes in a continuous manner for each update in C, given
the changes in A,. This is easily verified, given our alternating update scheme.

Therefore, the proposed alternating approach converges to a block coordinate minim-
izer in the latent adjacency matrices A, s and their temporal signatures in C. (]

D.3. GRADIENTS FOR ADMM UPDATES
The following is the gradient expression used in (6.15):

T T R
Va, LA =AY C21"m)+[Y. Cy1'm, Y CirAf]
=1 =1 F=1,7#r

~i

I T R T (D.6)
—[)_A . ,Cytr(diagM)] +6Z, +26 Y Ap+yll
=1 k=1,k#r

+nA; +A]®] + 1A, @, +T, -P)®, .

D.4. COMPONENT-WISE F'1 SCORES 135

The gradient of the augmented Lagrangian w.r.t. C as used in (6.24) is

VcL(C) =F(-Al, A+ CATA) +5(Z7A) + uD 'DC+pC+ATY + A (CY T —{17n-Q)Y,
(D.7)

where F = diag(f) = diag(lL2 M), i.e., the diagonal elements of F measure the number of
active observations at that time.

D.4. COMPONENT-WISE F'1 SCORES

The following are the F1 scores corresponding to the RE scores as shown in Figure 6.7 in
Section 6.5:

1
—-2=A

0.81=%As

0.87

A
) 3 <]
8 0.6 -&-To / 5 06"
O / O
w0 wn
— 0.4 — 04r
= F
0.2 0.2}
0 ‘ : : ‘ 0 ‘ : : ‘
0 20 40 60 8 100 0O 20 40 60 8 100
Percentage of observed data Percentage of observed data

]]
— —
3 3
O O
72} wn
i i
*
0.2 4%
0O 20 40 60 8 100 0O 20 40 60 8 100
Percentage of observed data Percentage of observed data

Figure D.1.: F1 of each of the R = 3 individual modes (blue, orange and yellow) for each
data set compared to that of their model-based combination (purple).

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

BIBLIOGRAPHY

S.-H. Yook, Z. N. Oltvai and A.-L. Barabdsi. ‘Functional and topological character-
ization of protein interaction networks’. In: Proteomics 4.4 (2004), pp. 928-942.

C. C. Aggarwal. ‘An introduction to social network data analytics’. In: Social net-
work data analytics. Springer, 2011, pp. 1-15.

K. Nagel. ‘Traffic networks’. In: Handbook of graphs and networks: From the gen-
ome to the internet (2002), pp. 248-272.

S. A. Greenberg. ‘How citation distortions create unfounded authority: analysis
of a citation network’. In: Bmj 339 (2009).

A. Ortega, P. Frossard, J. Kovaevi,]. M. Moura and P. Vandergheynst. ‘Graph signal
processing: Overview, challenges, and applications’. In: Proceedings of the IEEE
106.5 (2018), pp. 808-828.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P. Vandergheynst. ‘The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains’. In: IEEE Signal Process. Mag.
30.3 (2013), pp. 83-98.

E. Isufi, E Gama, D. I. Shuman and S. Segarra. ‘Graph filters for signal processing
and machine learning on graphs’. In: IEEE Trans. Signal Process. (2024).

A. Ortega, P. Frossard, J. Kovaevi, J. M. E Moura and P. Vandergheynst. ‘Graph
Signal Processing: Overview, Challenges, and Applications’. In: Proc. IEEE 106.5
(May 2018), pp. 808-828.

X. He, K. Deng, X. Wang, Y. Li, Y. Zhang and M. Wang. ‘Lightgcn: Simplifying and
powering graph convolution network for recommendation’. In: Proceedings of the

43rd International ACM SIGIR conference on research and development in Inform-
ation Retrieval. 2020, pp. 639-648.

W. Huang, A. G. Marques and A. R. Ribeiro. ‘Rating Prediction via Graph Signal
Processing’. In: IEEE Trans. Signal Process. 66.19 (Oct. 2018), pp. 5066-5081.

P Holme and J. Saraméki. ‘“Temporal networks’. In: Phy. Rep. 519.3 (2012), pp. 97—
125.

X. Li, M. Zhang, S. Wu, Z. Liu, L. Wang and S. Y. Philip. ‘Dynamic graph collabor-
ative filtering’. In: IEEE Intl. Conf. Dat. Min. IEEE. 2020, pp. 322-331.

P Erdos. ‘On the evolution of random graphs’. In: Bullet. Inst. Inter. Stat. 38 (1961),
pp. 343-347.

A. L. Barabdasi and R. Albert. ‘Emergence of Scaling in Random Networks’. en. In:
Science 286.5439 (Oct. 1999). Publisher: American Association for the Advance-
ment of Science. (Visited on 10/11/2020).

137

138

BIBLIOGRAPHY

(15]
(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

M. Newman. Networks. Oxford university press, 2018.

X. N. Lam, T. Vu, T. D. Le and A. D. Duong. ‘Addressing cold-start problem in
recommendation systems’. In: Proceedings of the 2nd international conference on
Ubiquitous information management and communication. 2008, pp. 208-211.

A. 1. Schein, A. Popescul, L. H. Ungar and D. M. Pennock. ‘Methods and met-
rics for cold-start recommendations’. In: Proceedings of the 25th annual inter-
national ACM SIGIR conference on Research and development in information re-
trieval. SIGIR ’02. New York, NY, USA, Aug. 2002, pp. 253-260.

S. Liu, L. Ounis, C. Macdonald and Z. Meng. ‘A Heterogeneous Graph Neural
Model for Cold-start Recommendation’. In: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
SIGIR '20. New York, NY, USA: Association for Computing Machinery, July 2020,
Pp- 2029-2032. (Visited on 08/10/2020).

A.-L. Barabasi et al. Network science. Cambridge university press, 2016.

P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa and G. Leus. ‘Adaptive graph signal
processing: Algorithms and optimal sampling strategies’. In: IEEE Trans. Signal
Process. 66.13 (2018), pp. 3584-3598.

A.Karaaslanli and S. Aviyente. ‘Multiview Graph Learning with Consensus Graph’.
In: arXiv preprint arXiv:2401.13769 (2024).

Y. He and H.-T. Wai. ‘Online inference for mixture model of streaming graph sig-
nals with sparse excitation’. In: IEEE Trans. Signal Process. 70 (2022), pp. 6419-
6433.

B. Park, D. S. Kim and H. J. Park. ‘Graph independent component analysis reveals
repertoires of intrinsic network components in the human brain’. In: PloS one9.1
(2014), 82873.

M. Pedersen, A. Zalesky, A. Omidvarnia and G. D. Jackson. ‘Multilayer network
switching rate predicts brain performance’. In: Proc. Nat. Aca. Sci. 115.52 (2018),
pp. 13376-13381.

E Gama, E. Isufi, A. Ribeiro and G. Leus. ‘Controllability of bandlimited graph
processes over random time varying graphs’. In: IEEE Trans. Signal Process. 67.24
(2019), pp. 6440-6454.

E. Isufi, A. Loukas, A. Simonetto and G. Leus. ‘Filtering random graph processes
over random time-varying graphs’. In: IEEE Trans. Signal Process. 65.16 (2017),
pp. 4406-4421.

G. Bianconi and A.-L. Barabdsi. ‘Competition and multiscaling in evolving net-
works'. en. In: EPL 54.4 (May 2001), p. 436. (Visited on 10/11/2020).

Y. Shen, G. Leus and G. B. Giannakis. ‘Online Graph-Adaptive Learning With
Scalability and Privacy’. In: IEEE Trans. Signal Process. 67.9 (May 2019), pp. 2471-
2483.

Z. Yang, W. Cohen and R. Salakhudinov. ‘Revisiting semi-supervised learn-
ing with graph embeddings’. In: International conference on machine learning.
PMLR. 2016, pp. 40-48.

BIBLIOGRAPHY 139

(30]

(31]

(32]

[33]

[34]

(35]

(36]

(37]

[38]

[39]

(40]

(41]

(42]

[43]

E Dornaika, R. Dahbi, A. Bosaghzadeh and Y. Ruichek. ‘Efficient dynamic graph
construction for inductive semi-supervised learning’. In: Neural Networks 94
(2017), pp. 192-203.

S. Chen, E Cerda, P. Rizzo,]. Bielak, J. H. Garrett and J. Kovaevi. ‘Semi-Supervised
Multiresolution Classification Using Adaptive Graph Filtering With Application
to Indirect Bridge Structural Health Monitoring’. In: IEEE Trans. Signal Process.
62.11 (June 2014). Conference Name: IEEE Transactions on Signal Processing,
pp. 2879-2893.

L. Gauvin, A. Panisson and C. Cattuto. ‘Detecting the community structure and
activity patterns of temporal networks: a non-negative tensor factorization ap-
proach’. In: PloS one9.1 (2014), e86028.

A. Gorovits, E. Gujral, E. E. Papalexakis and P. Bogdanov. ‘Larc: Learning activity-
regularized overlapping communities across time’. In: Intl. Conf. Knowledge Dis-
covery Data Mining. 2018, pp. 1465-1474.

S.Fernandes, H. Fanaee-T and J. Gama. ‘Dynamic graph summarization: a tensor
decomposition approach’. In: Springer Dat. Min. Know. Discovery 32 (2018),
pp- 1397-1420.

Q. Wang. ‘Large-scale Dynamic Network Representation via Tensor Ring Decom-
position’. In: arXiv preprint arXiv:2304.08798 (2023).

E. Gujral, R. Pasricha and E. Papalexakis. ‘Beyond rank-1: Discovering rich com-
munity structure in multi-aspect graphs’. In: Proc. Web Conf. 2020. 2020, pp. 452—
462.

D. M. Dunlavy, T. G. Kolda and E. Acar. ‘Temporal link prediction using matrix
and tensor factorizations’. In: ACM Trans. Know. Disc. Data 5.2 (2011), pp. 1-27.

A. Sapienza, A. Panisson, J. T. K. Wu, L. Gauvin and C. Cattuto. ‘Anomaly detec-
tion in temporal graph data: An iterative tensor decomposition and masking ap-
proachy’. In: Intl. Work. Adv. Anal. Learn. Temp. Data. 2015.

A. G. Mahyari, D. M. Zoltowski, E. M. Bernat and S. Aviyente. ‘A tensor
decomposition-based approach for detecting dynamic network states from EEG’.
In: IEEE Trans. Biom. Engg. 64.1 (2016), pp. 225-237.

A. Ozdemir, E. M. Bernat and S. Aviyente. ‘Recursive tensor subspace tracking
for dynamic brain network analysis’. In: IEEE Trans. Signal Inf. Process. Netw. 3.4
(2017), pp. 669-682.

L. De Lathauwer. ‘Decompositions of a higher-order tensor in block termsPart I:
Lemmas for partitioned matrices’. In: SIAM Journal on Matrix Analysis and Ap-
plications 30.3 (2008), pp. 1022-1032.

J. C. Mitchell. ‘Social networks’. In: Annual review of anthropology 3.1 (1974),
pp- 279-299.

M. Tubaishat and S. Madria. ‘Sensor networks: an overview’. In: IEEE potentials
22.2 (2003), pp. 20-23.

140

BIBLIOGRAPHY

(44]

(45]
[46]

(47]

(48]

(49]

(50]

(51]

[52]

(53]

[54]

[35]

(56]

[57]

(58]

D. Zhao and A. Strotmann. Analysis and visualization of citation networks. Mor-
gan & Claypool Publishers, 2015.

E R. Chung. Spectral graph theory. Vol. 92. American Mathematical Soc., 1997.

A. Sandryhaila and J. M. E Moura. ‘Discrete signal processing on graphs: Fre-
quency analysis’. In: IEEE Trans. Signal Process. 62.12 (2014), pp. 3042-3054.

B. Xie, M. Wang and D. Tao. ‘Toward the optimization of normalized graph Lapla-
cian'. In: IEEE Trans. Neural Netw. 22.4 (2011), pp. 660-666.

E Bauer. ‘Normalized graph Laplacians for directed graphs’. In: Linear Algebra
and its Applications 436.11 (2012), pp. 4193-4222.

J. Lyklema, C. Evertsz and L. Pietronero. ‘The Laplacian random walk’. In: Europh.
Let. 2.2 (1986), p. 77.

X. Liu, G. Cheung, X. Wu and D. Zhao. ‘Random walk graph Laplacian-based
smoothness prior for soft decoding of JPEG images’. In: IEEE Trans. Imag. Proc.
26.2 (2016), pp. 509-524.

G. Mateos, S. Segarra, A. G. Marques and A. Ribeiro. ‘Connecting the dots: Identi-
fying network structure via graph signal processing’. In: IEEE Signal Process. Mag.
36.3 (2019), pp. 16-43.

S. Chen, A. Sandryhaila, J. M. Moura and J. Kovacevic. ‘Signal denoising on graphs
via graph filtering’. In: Global Conf. Signal and Info. Process. (GlobalSIP). IEEE.
2014, pp. 872-876.

Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang and N. Shah. ‘A unified view on graph
neural networks as graph signal denoising’. In: Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge Management. 2021, pp. 1202—
1211.

S. Chen, Y. C. Eldar and L. Zhao. ‘Graph unrolling networks: Interpretable neural
networks for graph signal denoising’. In: IEEE Trans. Signal Process. 69 (2021),
pp. 3699-3713.

M. Onuki, S. Ono, M. Yamagishi and Y. Tanaka. ‘Graph signal denoising via trilat-
eral filter on graph spectral domain’. In: IEEE Trans. Signal Inf. Process. Netw. 2.2
(2016), pp. 137-148.

S. K. Narang, A. Gadde and A. Ortega. ‘Signal processing techniques for interpol-
ation in graph structured data’. In: 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing. IEEE. 2013, pp. 5445-5449.

D. Berberidis, A. N. Nikolakopoulos and G. B. Giannakis. ‘Adaptive diffusions
for scalable learning over graphs’. In: IEEE Trans. Signal Process. 67.5 (2018),
pp. 1307-1321.

S. Chen, E Cerda, P. Rizzo, J. Bielak, J. H. Garrett and J. Kovaevi. ‘Semi-supervised
multiresolution classification using adaptive graph filtering with application to
indirect bridge structural health monitoring’. In: IEEE Trans. Signal Process. 62.11
(2014), pp. 2879-2893.

BIBLIOGRAPHY 141

(59]

(60]

(61]

(62]

(63]

(64]

[65]

(66]

[67]

[68]

(69]

[70]

[71]

[72]

[73]

S. Segarra, A. G. Marques, G. Leus and A. Ribeiro. ‘Interpolation of graph signals
using shift-invariant graph filters’. In: European Signal Process. Conf. (EUSIPCO,).
IEEE. 2015, pp. 210-214.

Q. Li, X.-M. Wu, H. Liu, X. Zhang and Z. Guan. ‘Label efficient semi-supervised
learning via graph filtering’. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition. 2019, pp. 9582-9591.

L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang and J. Sun. ‘Temporal re-
commendation on graphs via long-and short-term preference fusion’. In: Pro-
ceedings of the 16th ACM SIGKDD international conference on Knowledge discov-
ery and data mining. 2010, pp. 723-732.

X. Zhang, C. Moore and M. E. J. Newman. ‘Random graph models for dynamic
networks’. In: Eur. Phy. Journ. B90 (2017), pp. 1-14.

J. Lindquist, J. Ma, P. Van den Driessche and E H. Willeboordse. ‘Network evolu-
tion by different rewiring schemes’. In: Phy. D: Nonl. Phen. 238.4 (2009), pp. 370—
378.

Y. B. Xie, T. Zhou and B. H. Wang. ‘Scale-free networks without growth’. In: Phy. A:
Stat. Mech. Appl. 387.7 (2008), pp. 1683-1688.

E. Isufi, M. Pocchiari and A. Hanjalic. ‘Accuracy-diversity trade-off in recom-
mender systems via graph convolutions’. In: Inf. Proc. Manag. 58.2 (2021),
p. 102459.

A. 1. Schein, A. Popescul, L. H. Ungar and D. M. Pennock. ‘Methods and met-
rics for cold-start recommendations’. In: Proc. ACM SIGIR Conf. Res. Dev. Inf. Ret.
2002, pp. 253-260.

A.-L. Barabési and R. Albert. ‘Emergence of scaling in random networks’. In: sci-
ence 286.5439 (1999), pp. 509-512.

R. A. Rossi and N. K. Ahmed. ‘The Network Data Repository with Interactive
Graph Analytics and Visualization’. In: (2015).

J. Fournet and A. Barrat. ‘Contact patterns among high school students’. In: PloS
one9.9 (2014), e107878.

A. Cichocki, N. Lee, 1. Oseledets, A. H. Phan, Q. Zhao, D. P. Mandic et al. ‘Tensor
networks for dimensionality reduction and large-scale optimization: Part 1 low-
rank tensor decompositions’. In: Found. Tren. Mach. Learn. 9.4-5 (2016), pp. 249-
429.

T. G. Kolda and B. W. Bader. ‘Tensor decompositions and applications’. In: SIAM
rev. 51.3 (2009), pp. 455-500.

L. De Lathauwer and D. Nion. ‘Decompositions of a higher-order tensor in block
termsPart III: Alternating least squares algorithms’. In: SIAM Jour. Matr. Anal.
Appl. 30.3 (2008), pp. 1067-1083.

L. De Lathauwer, B. De Moor and J. Vandewalle. ‘A multilinear singular value de-
composition’. In: SIAM Jour. Matr. Anal. Appl. 21.4 (2000), pp. 1253-1278.

142

BIBLIOGRAPHY

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

L. V. Oseledets. ‘Tensor-train decomposition’. In: SIAM Journal on Scientific Com-
puting 33.5 (2011), pp. 2295-2317.

Q. Zhao, G. Zhou, S. Xie, L. Zhang and A. Cichocki. ‘Tensor ring decomposition’.
In: arXiv preprint arXiv:1606.05535 (2016).

G. Mateos, S. Segarra, A. G. Marques and A. Ribeiro. ‘Connecting the Dots: Identi-
fying Network Structure via Graph Signal Processing’. In: IEEE Signal Process.
Mag. 36.3 (May 2019), pp. 16-43.

V. Martinez, E Berzal and J.-C. Cubero. ‘A survey of link prediction in complex
networks’. In: ACM computing surveys (CSUR) 49.4 (2016), pp. 1-33.

L. A. Adamic and N. Glance. ‘The political blogosphere and the 2004 US election:
divided they blog’. In: Proceedings of the 3rd international workshop on Link dis-
covery. 2005, pp. 36-43.

V. N. Zadorozhnyi and E. B. Yudin. ‘Growing network: Models following nonlin-
ear preferential attachment rule’. en. In: Physica A: Statistical Mechanics and its
Applications 428 (June 2015), pp. 111-132. (Visited on 10/11/2020).

A. Venkitaraman, S. Chatterjee and B. Wahlberg. ‘Recursive Prediction of Graph
Signals With Incoming Nodes’'. In: IEEE Intl. Conf. Acoustics, Speech and Signal
Process. (ICASSP). May 2020, pp. 5565-5569.

V. Kalofolias. ‘How to learn a graph from smooth signals’. In: Art. Intel. Stat. PMLR.
2016, pp. 920-929.

X. Dong, D. Thanou, M. Rabbat and P. Frossard. ‘Learning graphs from data: A sig-
nal representation perspective’. In: IEEE Signal Process. Mag. 36.3 (2019), pp. 44—
63.

X. Dong, D. Thanou, P. Frossard and P. Vandergheynst. ‘Learning Laplacian mat-
rix in smooth graph signal representations’. In: IEEE Trans. Signal Process. 64.23
(2016), pp. 6160-6173.

S. Segarra, A. G. Marques, G. Mateos and A. Ribeiro. ‘Network topology infer-
ence from spectral templates’. In: IEEE Trans. Signal Inf. Process. Netw. 3.3 (2017),
pp. 467-483.

R. Shafipour, S. Segarra, A. Marques and G. Mateos. ‘Identifying the topology of
undirected networks from diffused non-stationary graph signals’. In: IEEE Open
Journal of Signal Processing (2020).

D. Thanou, X. Dong, D. Kressner and P. Frossard. ‘Learning heat diffusion graphs’.
In: IEEE Trans. Signal Inf. Process. Netw. 3.3 (2017), pp. 484-499.

M. Coutino, E. Isufi, T. Maehara and G. Leus. ‘State-space network topology iden-
tification from partial observations’. In: IEEE Trans. Signal Inf. Process. Netw. 6
(2020), pp. 211-225.

H. E. Egilmez, E. Pavez and A. Ortega. ‘Graph learning from data under Laplacian
and structural constraints’. In: IEEE Journal of Selected Topics in Signal Processing
11.6 (2017), pp. 825-841.

BIBLIOGRAPHY 143

(89]

(90]

(91]

(92]

(93]

(94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

P. Ravikumar, M. J. Wainwright, G. Raskutti, B. Yu et al. ‘High-dimensional cov-
ariance estimation by minimizing 1-penalized log-determinant divergence’. In:
Electronic Journal of Statistics 5 (2011), pp. 935-980.

N. Meinshausen, P. Bithlmann et al. ‘High-dimensional graphs and variable selec-
tion with the lasso’. In: The annals of statistics 34.3 (2006), pp. 1436-1462.

V. Kalofolias, A. Loukas, D. Thanou and P. Frossard. ‘Learning time varying
graphs’. In: IEEE Intl. Conf. Acoustics, Speech and Signal Process. (ICASSP). leee.
2017, pp. 2826-2830

D. Hallac, Y. Park, S. Boyd and J. Leskovec. ‘Network inference via the time-
varying graphical lasso’. In: Intl. Conf. Knowledge Discovery Data Mining. 2017,
pp. 205-213.

S. Vlaski, H. P. Mareti, R. Nassif, P. Frossard and A. H. Sayed. ‘Online graph learn-
ing from sequential data’. In: IEEE Data Science Workshop (DSW). 2018, pp. 190-
194.

M. Moscu, R. Borsoi and C. Richard. ‘Online Graph Topology Inference with Ker-
nels For Brain Connectivity Estimation’. In: IEEE Intl. Conf. Acoustics, Speech and
Signal Process. (ICASSP). 2020, pp. 1200-1204.

R. Shafipour and G. Mateos. ‘Online proximal gradient for learning graphs from
streaming signals’. In: European Signal Process. Conf. (EUSIPCO). 2021, pp. 865—
869.

B. Zaman, L. M. L. Ramos, D. Romero and B. Beferull-Lozano. ‘Online topology
identification from vector autoregressive time series’. In: IEEE Trans. Signal Pro-
cess. 69 (2020), pp. 210-225.

A. Natali, M. Coutino, E. Isufi and G. Leus. ‘Online time-varying topology iden-
tification via prediction-correction algorithms’. In: IEEE Intl. Conf. Acoustics,
Speech and Signal Process. (ICASSP). 2021, pp. 5400-5404.

M. McPherson, L. Smith-Lovin and J. M. Cook. ‘Birds of a feather: Homophily in
social networks’. In: Annual review of sociology 27.1 (2001), pp. 415-444.

L. Li and T. Zhou. ‘Link prediction in complex networks: A survey’. In: Physica A:
statistical mechanics and its applications 390.6 (2011), pp. 1150-1170.

A. Clauset, C. Moore and M. E. Newman. ‘Hierarchical structure and the predic-
tion of missing links in networks’. In: Nature 453.7191 (2008), pp. 98-101.

R. Guimera and M. Sales-Pardo. ‘Missing and spurious interactions and the re-
construction of complex networks’. In: Proceedings of the National Academy of
Sciences 106.52 (2009), pp. 22073-22078.

E Tan, Y. Xia and B. Zhu. ‘Link prediction in complex networks: a mutual inform-
ation perspective’. In: 9.9 (2014).

T. Zhou, L. Lii and Y.-C. Zhang. ‘Predicting missing links via local information’. In:
The European Physical Journal B71.4 (2009), pp. 623-630.

W. Liu and L. Lii. ‘Link prediction based on local random walk’. In: Europh. Let.
89.5 (2010), p. 58007.

144

BIBLIOGRAPHY

[105]

[106]

[107]

(108]

(109]

(110]

(111]

(112]

[113]

(114]

[115]

(116]

(117]

(118]

(119]

[120]

(121]

E. A. Leicht, P Holme and M. E. Newman. ‘Vertex similarity in networks’. In: Phys-
ical Review E 73.2 (2006), p. 026120.

V. Matta, A. Santos and A. H. Sayed. ‘Graph learning with partial observations:
Role of degree concentration’. In: IEEE International Symposium on Information
Theory (ISIT). 2019, pp. 1312-1316.

M. Cirillo, V. Matta and A. H. Sayed. ‘Learning Bollobés-Riordan Graphs Under
Partial Observability’. In: IEEE Intl. Conf. Acoustics, Speech and Signal Process.
(ICASSP). 2021.

A. Sandryhaila and J. M. E Moura. ‘Discrete signal processing on graphs’. In: IEEE
Trans. Signal Process. 61.7 (2013), pp. 1644-1656.

Y. Chen and M. J. Wainwright. ‘Fast low-rank estimation by projected gradi-
ent descent: General statistical and algorithmic guarantees’. In: arXiv preprint
arXiv:1509.03025 (2015).

H. Gupta, K. H. Jin, H. Q. Nguyen, M. T. McCann and M. Unser. ‘CNN-based pro-
jected gradient descent for consistent CT image reconstruction’. In: IEEE Trans.
Medical Imag. 37.6 (2018), pp. 1440-1453.

E. Ceci and S. Barbarossa. ‘Graph Signal Processing in the Presence of Topology
Uncertainties’. In: IEEE Trans. Signal Process. 68 (2020), pp. 1558-1573.

E. Ceciand S. Barbarossa. ‘Small perturbation analysis of network topologies’. In:
IEEE Intl. Conf. Acoustics, Speech and Signal Process. (ICASSP). 2018.

E Hua, C. Richard, J. Chen, H. Wang, P. Borgnat and P. Gongalves. ‘Learning com-
bination of graph filters for graph signal modeling’. In: IEEE Signal Processing
Letters 26.12 (2019), pp. 1912-1916.

A. Sandryhaila and J. M. E Moura. ‘Discrete Signal Processing on Graphs’. In: IEEE
Trans. Signal Process. 61.7 (Apr. 2013). Conference Name: IEEE Transactions on
Signal Processing, pp. 1644-1656.

D. Thanou, D. Shuman and P. Frossard. ‘Learning parametric dictionaries for sig-
nals on graphs’. In: IEEE Trans. Signal Process. 62.15 (2014), pp. 3849-3862.

E Gama, E. Isufi, G. Leus and A. Ribeiro. ‘Graphs, convolutions, and neural net-
works: From graph filters to graph neural networks’. In: IEEE Signal Process. Mag.
37.6 (2020), pp. 128-138.

J. Cervino, L. Ruiz and A. Ribeiro. ‘Increase and Conquer: Training Graph Neural
Networks on Growing Graphs’. In: arXiv preprint arXiv:2106.03693 (2021).

L. Lovész. Large networks and graph limits. Vol. 60. American Mathematical Soc.,
2012.

B. Dai, S. Ding and G. Wahba. ‘Multivariate bernoulli distribution’. In: Bernoulli
19.4 (2013), pp. 1465-1483.

V. N. Vapnik. ‘An overview of statistical learning theory’. In: IEEE Trans. Neural
Netw. 10.5 (1999), pp. 988-999.

A. Rakotomamonjy, E Bach, S. Canu and Y. Grandvalet. ‘SimpleMKL'. In: Journal
of Machine Learning Research 9 (2008), pp. 2491-2521.

BIBLIOGRAPHY 145

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

G. Turin. ‘An introduction to matched filters’. In: IEEE Trans. Info. Theory 6.3
(1960), pp. 311-329.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

X. Zhu, J. Lafferty and R. Rosenfeld. ‘Semi-supervised learning with graphs’. In:
(2005).

A.J. Smola and R. Kondor. ‘Kernels and regularization on graphs’. In: Learning
theory and kernel machines. Springer, 2003, pp. 144-158.

D. Zhou and B. Scholkopf. ‘A regularization framework for learning from graph
data’. In: ICML 2004 Workshop on Statistical Relational Learning and Its Connec-
tions to Other Fields (SRL 2004). 2004, pp. 132-137.

A. Arguez, 1. Durre, S. Applequist, R. S. Vose, M. E Squires, X. Yin, R. R. Heim and
T. W. Owen. ‘NOAA’s 1981-2010 US climate normals: an overview’. In: Bul. Amer.
Meteor. Soc. 93.11 (2012), pp. 1687-1697.

J. Mei and J. M. E Moura. ‘Signal processing on graphs: Causal modeling of un-
structured data’. In: IEEE Trans. Signal Process. 65.8 (2016), pp. 2077-2092.

E. Isufi, A. Loukas, N. Perraudin and G. Leus. ‘Forecasting time series with varma
recursions on graphs’. In: IEEE Trans. Signal Process. 67.18 (2019), pp. 4870-4885.

N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst and
D. K. Hammond. ‘GSPBOX: A toolbox for signal processing on graphs’. In: (2014).

Z. Wang, Y. Tan and M. Zhang. ‘Graph-based recommendation on social net-
works’. In: 2010 12th International Asia-Pacific Web Conference. IEEE. 2010,
pp. 116-122.

N. Silva, D. Carvalho, A. C. Pereira, E Mourdo and L. Rocha. ‘The pure cold-start
problem: A deep study about how to conquer first-time users in recommenda-
tions domains’. In: Information Systems 80 (2019), pp. 1-12.

E Orabona. ‘A modern introduction to online learning’. In: arXiv preprint
arXiv:1912.13213 (2019).

E. Hazan et al. ‘Introduction to online convex optimization’. In: Found. Trend.
Opt. 2.3-4 (2016), pp. 157-325.

A. Rahimi and B. Recht. ‘Random features for large-scale kernel machines’. In:
Adv Neu. Inf. Proc. Sys. 20 (2007).

Z.Zong and Y. Shen. ‘Online Multi-Hop Information Based Kernel Learning Over
Graphs'. In: IEEE Intl. Conf. Acoustics, Speech and Signal Process. (ICASSP). IEEE.
2021, pp. 2980-2984.

R. Money, J. Krishnan and B. Beferull-Lozano. ‘Online non-linear topology iden-
tification from graph-connected time series’. In: 2021 IEEE Data Science and
Learning Workshop (DSLW). IEEE. 2021, pp. 1-6.

R. Money, J. Krishnan and B. Beferull-Lozano. ‘Sparse online learning with ker-
nels using random features for estimating nonlinear dynamic graphs’. In: IEEE
Trans. Signal Process. (2023).

146

BIBLIOGRAPHY

[139]

[140]

[141]

[142]

[143]

[144]

(145]

(146]

(147]

(148]

(149]

(150]

[151]

[152]

[153]

(154]

R. Shafipour and G. Mateos. ‘Online topology inference from streaming sta-
tionary graph signals with partial connectivity information’. In: Algorithms 13.9
(2020), p. 228.

L.Jian, J.Li and H. Liu. ‘Toward online node classification on streaming networks’.
In: Data Mining and Knowledge Discovery 32.1 (2018), pp. 231-257.

R. Nassif, C. Richard, J. Chen and A. H. Sayed. ‘A graph diffusion LMS strategy for
adaptive graph signal processing’. In: Conf. Signals, Syst., Computers (Asilomar).
IEEE. 2017, pp. 1973-1976.

E Hua, R. Nassif, C. Richard, H. Wang and A. H. Sayed. ‘Online distributed learn-
ing over graphs with multitask graph-filter models’. In: IEEE Trans. Signal Inf. Pro-
cess. Netw. 6 (2020), pp. 63-77.

R. Nassif, C. Richard, J. Chen and A. H. Sayed. ‘Distributed diffusion adapta-
tion over graph signals’. In: IEEE Intl. Conf. Acoustics, Speech and Signal Process.
(ICASSP). IEEE. 2018, pp. 4129-4133.

V. R. Elias, V. C. Gogineni, W. A. Martins and S. Werner. ‘Adaptive graph filters in
reproducing kernel Hilbert spaces: Design and performance analysis’. In: I[EEE
Trans. Signal Inf. Process. Netw. 7 (2020), pp. 62-74.

B. Das and E. Isufi. ‘Graph Filtering over Expanding Graphs’. In: IEEE Data Sci-
ence Learning Workshop Processing (DSLW). May 2022.

X. Liu, P. C. Hsieh, N. Duffield, R. Chen, M. Xie and X. Wen. ‘Streaming network
embedding through local actions’. In: arXiv preprint arXiv:1811.05932 (2018).

B. Das and E. Isufi. ‘Learning expanding graphs for signal interpolation’. In: IEEE
Intl. Conf. Acoustics, Speech and Signal Process. (ICASSP). IEEE. 2022, pp. 5917-
5921.

B. Das, A. Hanjalic and E. Isufi. ‘Task-aware connectivity learning for incoming
nodes over growing graphs’. In: IEEE Trans. Signal Inf. Process. Netw. 8 (2022),
pp. 894-906.

S. Vlaski, S. Kar, A. H. Sayed and J. M. Moura. ‘Networked Signal and Information
Processing: Learning by multiagent systems’. In: IEEE Signal Process. Mag. 40.5
(2023), pp. 92-105.

S. Shalev-Shwartz et al. ‘Online learning and online convex optimization’. In:
Foundations and Trendsé in Machine Learning 4.2 (2012), pp. 107-194.

A. Simonetto and E. DallAnese. ‘Prediction-correction algorithms for time-
varying constrained optimization'. In: IEEE Trans. Signal Process. 65.20 (2017),
pp. 5481-5494.

M. E. Newman. ‘A measure of betweenness centrality based on random walks’.
In: Social networks 27.1 (2005), pp. 39-54.

B. Ruhnau. ‘Eigenvector-centralitya node-centrality?’ In: Social networks 22.4
(2000), pp. 357-365.

E M. Harper and J. A. Konstan. ‘The movielens datasets: History and context’. In:
Acm Trans. Inter. Int. Sys. 5.4 (2015), pp. 1-19.

BIBLIOGRAPHY 147

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

E. Dong, H. Du and L. Gardner. ‘An interactive web-based dashboard to track
COVID-19 in real time’. In: The Lancet infectious diseases 20.5 (2020), pp. 533—
534.

J. H. Giraldo, A. Mahmood, B. Garcia-Garcia, D. Thanou and T. Bouwmans. ‘Re-
construction of Time-Varying Graph Signals via Sobolev Smoothness’. In: IEEE
Trans. Signal Inf. Process. Netw. 8 (2022), pp. 201-214.

M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A. Janovsky,
V. A. Kamaev et al. ‘A survey of forecast error measures’. In: World applied sciences
journal 24.24 (2013), pp. 171-176.

A. Casteigts, P. Flocchini, W. Quattrociocchi and N. Santoro. ‘Time-varying graphs
and dynamic networks’. In: Intl. Journ. Par.,, Emerg. Distr. Sys. 27.5 (2012), pp. 387-
408.

A. Natali, E. Isufi, M. Coutino and G. Leus. ‘Learning time-varying graphs from
online data’. In: IEEE Open J. Sig. Process. 3 (2022), pp. 212-228.

Y. Shen, B. Baingana and G. B. Giannakis. ‘Tensor decompositions for identifying
directed graph topologies and tracking dynamic networks’. In: IEEE Trans. Signal
Process. 65.14 (2017), pp. 3675-3687.

B. Baingana and G. B. Giannakis. ‘Tracking switched dynamic network topologies
from information cascades’. In: IEEE Trans. Signal Process. 65.4 (2016), pp. 985—
997.

A. Buciulea, M. Navarro, S. Rey, S. Segarra and A. G. Marques. ‘Online Network
Inference from Graph-Stationary Signals with Hidden Nodes’. In: arXiv preprint
arXiv:2409.08760 (2024).

A. Javaheri, A. Amini, E Marvasti and D. P. Palomar. ‘Joint Signal Recov-
ery and Graph Learning from Incomplete Time-Series’. In: arXiv preprint
arXiv:2312.16940 (2023).

A. Hyvérinen and E. Oja. ‘Independent component analysis: algorithms and ap-
plications’. In: Elsevier Neu. Networks 13.4-5 (2000), pp. 411-430.

Q. Ly, V. N. Ioannidis and G. B. Giannakis. ‘Graph-adaptive semi-supervised
tracking of dynamic processes over switching network modes’. In: IEEE Trans.
Signal Process. 68 (2020), pp. 2586-2597.

Y. Liu, S. Magliacane, M. Kofinas and E. Gavves. ‘Graph switching dynamical sys-
tems’. In: Intl. Conf. Machine Learn. (ICML). PMLR. 2023, pp. 21867-21883.

E. N. Davison, K. J. Schlesinger, D. S. Bassett, M. E. Lynall, M. B. Miller, S. T.
Grafton and J. M. Carlson. ‘Brain network adaptability across task states’. In: PLoS
comp. bio. 11.1 (2015), e1004029.

A. G. Mahyari and S. Aviyente. ‘Identification of dynamic functional brain net-
work states through tensor decomposition’. In: IEEE Intl. Conf. Acoustics, Speech
and Signal Process. (ICASSP). IEEE. 2014, pp. 2099-2103.

Y. Qiu, G. Zhou, Y. Wang, Y. Zhang and S. Xie. ‘A generalized graph regularized
non-negative tucker decomposition framework for tensor data representation’.
In: IEEE Tran. Cyb. 52.1 (2020), pp. 594-607.

148

BIBLIOGRAPHY

(170]

(171]

[172]

(173]

(174]

(175]

(176]

(177]

(178]

(179]

(180]

(181]

(182]

(183]

[184]

A. Buciulea, S. Rey and A. G. Marques. ‘Learning graphs from smooth and graph-
stationary signals with hidden variables’. In: IEEE Trans. Signal Inf. Process. Netw.
8 (2022), pp. 273-287.

M. Navarro, S. Rey, A. Buciulea, A. G. Marques and S. Segarra. ‘Joint network topo-
logy inference in the presence of hidden nodes’. In: IEEE Transactions on Signal
Processing (2024).

D. J. Houghton and A. N. Joinson. ‘Privacy, social network sites, and social rela-
tions’. In: Hum. Serv. Netw. Soc. Routledge, 2014, pp. 77-97.

V. C. Gungor, B. Lu and G. P. Hancke. ‘Opportunities and challenges of wireless
sensor networks in smart grid’. In: IEEE transactions on industrial electronics
57.10 (2010), pp. 3557-3564.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al. ‘Distributed optimization
and statistical learning via the alternating direction method of multipliers’. In:
Found. Tren. Mach. Learn. 3.1 (2011), pp. 1-122.

A. Buciulea, J. Ying, A. G. Marques and D. P. Palomar. ‘Polynomial Graphical
Lasso: Learning Edges from Gaussian Graph-Stationary Signals’. In: arXiv pre-
print arXiv:2404.02621 (2024).

Y. Xu and W. Yin. ‘A block coordinate descent method for regularized multiconvex
optimization with applications to nonnegative tensor factorization and comple-
tion'. In: SIAM Jour. Imag. Sci. 6.3 (2013), pp. 1758-1789.

S. P. Chepuri, S. Liu, G. Leus and A. O. Hero. ‘Learning sparse graphs under
smoothness prior’. In: IEEE Intl. Conf. Acoustics, Speech and Signal Process.
(ICASSP). IEEE. 2017, pp. 6508-6512.

R. Shafipour, A. Hashemi, G. Mateos and H. Vikalo. ‘Online topology inference
from streaming stationary graph signals’. In: 2019 IEEE Data Science Workshop
(DSW). IEEE. 2019, pp. 140-144.

S. Segarra, Y. Wang, C. Uhler and A. G. Marques. ‘Joint inference of networks from
stationary graph signals’. In: Conf. Signals, Syst., Computers (Asilomar). IEEE.
2017, pp. 975-979.

J. Friedman, T. Hastie and R. Tibshirani. ‘Sparse inverse covariance estimation
with the graphical lasso’. In: Biostatistics 9.3 (2008), pp. 432-441.

A. Mokhtari, S. Shahrampour, A. Jadbabaie and A. Ribeiro. ‘Online optimiza-
tion in dynamic environments: Improved regret rates for strongly convex prob-
lems’. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE. 2016,
pp. 7195-7201.

S. Rey, B. Das and E. Isufi. ‘Online Learning Of Expanding Graphs’. In: arXiv pre-
print arXiv:2409.08660 (2024).

S. Theodoridis. Machine learning: a Bayesian and optimization perspective. Aca-
demic press, 2015.

C. Williams and C. Rasmussen. ‘Gaussian processes for regression’. In: Adv Neu.
Inf. Proc. Sys. 8 (1995).

BIBLIOGRAPHY 149

[185]

[186]

[187]

[188]

[189]

[190]

[191]

E Gama, J. Bruna and A. Ribeiro. ‘Stability properties of graph neural networks’.
In: IEEE Trans. Signal Process. 68 (2020), pp. 5680-5695.

Y.-X. Wang and Y.-J. Zhang. ‘Nonnegative matrix factorization: A comprehensive
review’. In: [EEE Tran. Know. Dat. Eng. 25.6 (2012), pp. 1336-1353.

K. Huang, N. D. Sidiropoulos and A. Swami. ‘Non-negative matrix factorization re-
visited: Uniqueness and algorithm for symmetric decomposition’. In: IEEE Trans.
Signal Process. 62.1 (2013), pp. 211-224.

H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen and S. H. Jensen.
‘Theorems on positive data: On the uniqueness of NMF’. In: Comp. Intel. Neuros.
2008.1 (2008), p. 764206.

N. Gillis. ‘Sparse and unique nonnegative matrix factorization through data pre-
processing’. In: J. Mach. Learn. Res. 13.1 (2012), pp. 3349-3386.

C. Bhattacharya, N. Goyal, R. Kannan and J. Pani. ‘Non-negative matrix factor-
ization under heavy noise’. In: Intl. Conf. Machine Learn. (ICML). PMLR. 2016,
pp. 1426-1434.

S. Boyd and L. Vandenberghe. Introduction to applied linear algebra: vectors,
matrices, and least squares. Cambridge university press, 2018.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Elvin. You were always very prompt with your
feedback. I have learnt a lot about writing from you. The hundreds of comments and
suggestions have certainly influenced how I write and review, in general. I see the value
in it more over time. I have learned things from you which I hope will help me further.
I appreciate your push for collaborating with others, which is something I should have
led by myself more actively. Also thank you for your patience as I feel I have been very
lazy and stubborn at times with wrapping up existing work. Thank you for keeping the
standards high, which is something I hope to uphold in the times ahead.

I would like to thank Alan for the feedback he provided especially on the higher-level
picture. It is important to have such a vision in mind, and it is another aspect I have
learned to appreciate over the years.

I would also like to really thank Geert, Michel, Antonio, Gonzalo, and Cédric (in no
particular order) for agreeing to be a part of the committee.

For someone who spent a sizeable part of this journey without the presence of col-
leagues, getting to know and bond with those in MMC towards the end has had a pro-
found impact. Thank you (again in no particular order) Mohammad, Andrea, Maosheng,
Tianqi, Dimme, Jorge, Wenyi, Marijn, Vimal, Chengen. It was a blessing to have you guys
as colleagues. I value it immensely. It was also a pleasure to have met and worked with
Andrei, Madeline, and Samuel.

Outside of the university environment, I am thankful to have maintained and/or
forged some of my more long-standing friendships. I would like to mention Udhayv,
Rajesh, Yash, Tamaghna, Akash, and Aranyak. Four or more continuous years in any
persons life can throw up a few things here and there, and it is comforting to know that
there are souls you can rely on. Also thankful to my parents who they brought me up
in a very open environment, never enforced their world views on me, and always let me
choose what I wanted to do. This has allowed me to remain independent in some way.

Also thankful to some of the math teachers I have had through school. I dont think
without them I would have eventually ended up in this field.

I would also like to acknowledge the many Youtube channels and content creators
from whom I have learned a lot and were often a constant presence in the background. I
am nothing without you guys.

151

26-09-1992

EDUCATION
1998-2009

2009-2011
2012-2016

2017-2019

2020-2024

CURRICULUM VITAE

Bishwadeep DAS

Born in Kolkata, India.

South Point High School
Birla High School

Bachelors in Electronics & Communication Engineering
Motilal Nehru National Institute of Technology Prayagraj

Masters in Electrical Engineering
Technische Universiteit Delft

PhD.
Technische Universiteit Delft
Thesis: Signal processing over dynamic graphs

Promotor: Prof. dr. A. Hanjalic
Copromotor: Dr. E. Isufi

153

	Contents
	Summary
	Samenvatting
	Introduction
	Processing data over graphs
	Challenges of dynamic graph signal processing
	Thesis contribution
	Dissertation outline
	How to read this dissertation
	List of publications

	Background
	Elements of graph signal processing
	Graphs
	Graph shift operator
	Graph signal
	Graph signal variability
	Graph spectrum
	Graph Fourier transform

	Graph filters
	Dynamic graphs
	Random graph models for dynamic expanding graphs

	Tensors for dynamic topology representation
	Dynamic graph tensor decomposition

	Conclusion

	Learning task-aware expanding graphs
	Introduction
	Contributions of this chapter

	Related works
	Problem formulation
	Task-aware connectivity learning
	Signal interpolation
	Signal smoothness
	Convergence

	Perturbation analysis
	Numerical results
	Synthetic data
	Collaborative filtering
	Blog network

	Conclusion

	Graph filter for incoming nodes
	Introduction
	Contributions of this chapter

	Problem formulation
	Filtering with incoming nodes
	Compact form
	Signal denoising
	Semi-supervised learning

	Numerical results
	Denoising
	Semi-supervised learning

	Conclusion

	Online filtering over expanding graphs
	Introduction
	Contributions of this chapter

	Problem formulation
	Filtering over expanding graphs
	Online filter learning

	Deterministic online filtering
	Stochastic online filtering
	Heuristic stochastic online filtering
	Adaptive stochastic online filtering

	Numerical experiments
	Experimental setup
	Performance comparison
	Analysis of online methods

	Conclusion

	Dynamic Graph Topology Decomposition
	Introduction
	Contributions of this chapter

	Problem formulation
	Dynamic graph decomposition
	Solving the decomposition
	Updating the Ars
	Updating C

	Algorithm analysis
	Complexity analysis.
	Convergence analysis

	Numerical results
	Experimental setup
	Method Analysis
	Comparison

	Conclusion

	Concluding Remarks
	Answers to research questions
	Future research directions
	Online topology identification on growing graphs
	A Bayesian filtering approach over expanding graphs
	Dynamic topology representation

	Appendix A
	Proof of Proposition 1
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Proposition 2
	Gradients
	Proof of Theorem 1
	Proof of Proposition 3

	Appendix B
	Proof of Lemma 1
	Proof of Proposition 4
	Proof of Proposition 5

	Appendix C
	Proof of Theorem 2
	Proof of Corollary 3
	Proof of Corollary 4
	Relevant derivations
	Gradients

	Appendix D
	Convergence proofs
	Proof of Proposition
	Gradients for ADMM updates
	Component-wise fF1 scores

	Acknowledgements
	Curriculum Vitæ

