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Abstract

The performance of gun and rocket propellants, which consist of energetic
materials, is largely determined by their geometry and composition. Con-
ventional production methods limit the performance by putting constraints
on both. With additive manufacturing, or 3D-printing, there are signifi-
cantly fewer geometry constraints and together with the ability to combine
multiple materials into a continuous gradient new performance optimization
opportunities are created. In the current 3D-printing world it is possible to
print single-material or discrete gradient multi-material objects by trans-
lating a CAD model to printer instructions. This translation is done with
slicer software that slices a 3D-model and outputs printer instructions in a
G-Code file. This thesis looks at how an object with a continuous gradient
can be printed. A modified version of the popular Cura slicing software
is presented that can apply an approximation of a continuous gradient to
an input model. The printer paths are simulated with the slicer software
and ultimately printed using TNO’s multi-material 3D-printer. While the
print results show that energetic materials behave in such a different way
than normal plastics that 3D-printing them it is not an easy task, printing
a 3D-model with a multi-material continuous gradient is certainly viable.
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Chapter 1

Introduction

In recent years 3D-printing has become an increasingly hot topic. Vari-
ous companies have emerged that produce software and hardware with in-
creasing precision and advanced options to print 3D-models for industrial
and consumer purposes. Besides printing plastic, the material most con-
sumer printers use, printers exist that print other conventional materials
ranging from metals to glass and epoxy resins. More exotic options that
print concrete structures [12], bone tissue [10], organs [13], and electronics
[] are also being researched. Other than the various materials that can
be printed, different print techniques also exist. The most commonly used
technique is extrusion-based printing, which usually involves melting plas-
tic and pushing it through a nozzle and then building the 3D-object layer
upon layer. While different variations exist of extrusion-based printing, in
the 3D-printing world they are unified under the name Fused Deposition
Modeling or FDM. Other techniques are SLA (stereolithograpy), which uses
UV-light to cure material in a photopolymer vat, sheet lamination, powder
bed printing and material jetting.

At TNO a new 3D-printer has been developed that is capable of combin-
ing two materials in virtually any ratio. This printer uses the FDM printing
technique combined with UV-curing and was built to print Energetic Ma-
terials instead of conventional plastics. But instead of filament extrusion it
uses RAM-based extrusion, which involves a piston pushing paste through
a syringe that is connected to the nozzle. Energetic Materials or EM are
substances in any state (liquid, solid, gaseous or a combination of these)
that store a high amount of chemical energy. This energy can be released
in a very short time when initiated by mechanical, thermal or shock stim-
uli. Typical applications of EM consist, but are not limited to, products
like propellants, explosives and pyrotechnics. When producing EM such as
propellants and explosives, the production methods are limited in terms of
geometry and composition, which have a large impact on the performance of
these products. With 3D-printing these limitations during production are



significantly reduced by the freedom in geometry that 3D-printing offers.
However, the ability to combine multiple materials and thus the ability to
create functional gradients in the printed object is what allows the biggest
performance optimization opportunity.

Printing with multiple materials and creating gradients introduces sig-
nificant complexity for the software that generates instructions for the 3D-
printer. The software that generates printer instructions from a 3D-model is
called slicer software. It essentially slices a 3D-model into multiple layers and
generates a printer path for each layer. But instead of just slicing a uniform
volume, multiple materials now have to be taken into account. Other than
multiple materials, new parameters such as the intensity of the UV-light and
when to change the mixture ratio have to be considered when optimizing
printer paths. This thesis investigates the 3D-printing of energetic materials
with these new added challenges.

1.1 Problem Statement

Can multi-material objects with continuous gradients be modeled and 3D-
printed while taking into account UV-curing?

The main goal of this thesis is to develop a process for modeling and print-
ing of multi-material objects with continuous gradients. Conventional slic-
ing software accepts simple 3D-CAD models that contain only information
about the geometry of the object. With a gradient in the object, somewhere
in the process the composition has to be added either numerically or analyt-
ically. This could be done in the CAD model, during slicing or after the final
step when the printer instructions have been generated. The quality of the
gradient in the printed object is of higher priority than print speed and the
print paths should be optimized accordingly. Besides these challenges the
interfaces between potential steps in the process have to be robust and the
expertise required by the end user should be minimized. To our knowledge
only software that can apply a color gradient to an input model’s surface
exists. A solution will have to be designed to apply a continuous functional
material gradient to a simple input object.

1.2 Thesis Outline

The next chapter describes the related work for this thesis by discussing sev-
eral papers and software currently on the market. Chapter [3|explains general
information about 3D-printing required for the rest of the thesis. Followed
by Chapter [4 which presents the design solution to print multi-material



objects with a continuous gradient. Chapter [5| describes the implementa-
tion of the design and Chapter [f] presents the experimental results obtained.
Finally Chapter [7] shows the conclusions and future work.






Chapter 2

Related Work

This chapter describes the related work for this thesis. Several relevant sub-
jects for 3D-printing are looked into such as model representation in Section
path optimization in Section and finally multi-material printing in
Section 2.3

2.1 Model Representation

Since this assignment requires a way to describe a multi-material object;
literature was researched on 3D-model representation and CAD modeling.
Several existing systems and file formats exist that can describe multi-
material models. The most used format for 3D models in industry is STL,
which contains simple geometry information about the object and is natively
supported by almost all CAD software. The downside is however that it is
not able to describe material properties of the object, which is why other
file formats have been designed. One alternative is described later in this
section.

Hsieh et al. developed a system that is based on the FDM method [IJ.
Their Multi-CAD system can design models and do multi-material slicing
of these models. When models have been sliced the print paths can be
simulated. This study focuses on the entire process, which includes a file
format they created that contains information about geometry, build mate-
rials and fabrication process information. While their system is outdated,
paper was published in 2002, the format to store the model geometry and
build materials could be useful for this thesis.

A more modern format to represent 3D models used in 3D printing has
been proposed by Hiller et al. in 2009 [5]. They describe a new file for-
mat that could handle the requirements that arose with new technological
developments in 3D printing, such as multiple and graded materials. The
Additive Manufacturing File format or AMF can describe material prop-
erties and geometry in a resolution-independent way. The geometry can



be described in regions using triangle meshes, functions or voxel bitmaps.
Each region can have material properties that can be described by single
or multiple materials. When multiple materials are used a function can be
defined enabling a smooth gradient. An example of a model described with
a continuous gradient can be seen in Figure This could be a very useful
format in this thesis.

Figure 2.1: A 3D-model with continuous gradient described by AMF.

2.2 Path Optimization

Qui et al. studied a void-eliminating toolpath for extrusion-based multi-
material layered manufacturing [2]. They describe three forms of void cre-
ating issues:

e SVV: Sub-perimeter vector-direction void, which is a void in the print-
ing direction and is predictable. It happens when two print paths
intersect and one of them is blocked, leaving a void in the extended
direction of that path.

e SRV: Sub-perimeter road-turn void. Happens when the print head
makes a turn and leaves a small void. Is also predictable

o IV: Irregular void. Is because of irregular behaviors of machine or
material flow. It is unpredictable and cannot be accounted for with
slicing software.

The voids created by the printer are shown in Figure The authors use
adaptive roadwidth and path extension as solutions for these voids, which
are significantly reduced with the proposed solutions. They still, however,
only make use of a single material per layer, only allowing gradients in the
vertical of the printer. For gradients in the horizontal direction the opti-
mization of the gradient also has to be taken into account and the described



Figure 2.2: Vizualization of toolpath voids.

solutions may no longer be optimal. This paper only considers one standard
infill pattern, which is not concentric, meaning the generated model will be
asymmetric. A more symmetric concentric infill pattern is likely more useful
to create radial gradients.

Jin et al. developed an algorithm to address common issues faced with
additive manufacturing: low deposition quality and poor surface finish of
printed parts [7]. They propose a path-planning technique that focuses on
an optimization scheme for contour parallel-based path generation. It opti-
mizes the spacing between adjacent paths and sharp corners, which is where
most quality issues stem from. Figure shows the parallel contour paths
generated by the infill method to be optimized.

Figure 2.3: Contour parallel-based path generation.

Each contour is generated by applying an offset to points in the outer
contour and is terminated when no new contours can be generated. It can
be observed that some sharp corners appear along the offset contours that
affect quality of the printed part. To counter the sharp corners they apply a
smoothing function. However, after applying the smoothing function some
paths suffer from non-uniform path spacing. To make the path spacing more



uniform a local optimization algorithm is applied that takes circular samples
along a center line of the object and shifts paths closer or further apart to
create a more uniform path width distribution. Both these optimizations
are used and applied to a layer of a 3D model to improve the quality of the
deposition paths. Figure [2.4] shows the original paths and the optimization
result that clearly has improved deposition path quality.

Deposition path . Fill Underfill

N\

J 3 .

(a) Original deposition path (b) Estimated deposition result I (C) Actual deposition result [

R

\ ; .
=

(d) Optimized deposition path (e) Estimated deposition resultl 1 (f) Actual deposition resultl [

Figure 2.4: Optimization of deposition paths.

2.3 Multi-Material Printing

Vidimce et al. developed OpenFab [I1]. OpenFab is a programmable pipeline
for multi-material fabrication. It is inspired by modern GPU pipelines and
aims to easily design, slice and print multi-material objects. Their pipeline
evaluates geometric models procedurally including material properties. It
makes use of shader-like fablets. Shaders are used in computer graphics to
procedurally define appearance of an object. Similarly a fablet is a descrip-
tion of an object in OpenFL, a C-like programming language, that describes
both volume and surface together as methods of the fablet object. Fablets
are streamed to the 3D printer, thus producing output with little delay. It



seems an ideal solution for printing objects with functional gradients. How-
ever, because of the streaming implementation for specific hardware it is not
very applicable to this thesis. It claims to be open source, but the source
still has not been released since the paper came out 5 years ago.

Sitthi-Amorn et al. developed MultiFab, which is a multi-material 3D-
printing platform that also includes a machine vision system [9]. This sys-
tem enables self-calibration of printheads, 3D scanning and a closed-feedback
loop to correct the printer in case of imperfections. Their software architec-
ture is specific to their printer hardware, it requires a voxel (volume pixel)
based 3D model as input where each voxel of the model contains a material
ID as seen in Figure Since each voxel contains a single material 1D,
no true gradients can be applied, but rather a discrete approximation by
varying the density of voxels with a certain material ID can be used. Each
voxel is printed by a droplet from the nozzle with a certain size dependent
on the printer resolution, which is variable. Commands are generated for the
positioning system, printhead modules, UV-curing module and a printhead
cleaning sequence. The commands generated by the software are sent over
Ethernet and USB to the microcontrollers that control the printer.

Figure 2.5: A model described by voxels

Lefebvre et al. discussed improving software for multi-filament 3D prints
in a paper titled Clean Color [6]. When multiple extruders, a device that
pushes material through an ozzle, are used like with TNOs printer; an issue
called oozing reduces print quality. Oozing is the bleeding of material from
one of the extruders when it should not be extruding. This causes small
imperfections in the print result, which is especially noticable when printing
with colors. While colors are not important when printing energetic materi-
als the potentially small model size means these small imperfections matter
significantly more than with conventional sizes. Three complementary tech-
niques are introduced that should improve print quality: choosing a better
azimuth angle for the printed part, a disposable rampart close to the print



for nozzle wiping, and improved path planning which avoids already printed
parts.

Wang et al. designed a method to fabricate functionally graded materials
using inkjet color printing [§]. Inkjet printing mixes two starting compo-
nents in a reservoir before printing; however, it is only capable of handling
gradients with simple profiles. If the composition of the gradient becomes
too complex or too steep it is difficult to change the composition of the
reservoir dramatically to match the gradient change. Their system uses two
reservoirs and the printer deposits drops of a mix of materials with a diam-
eter varying from 5 to 50 pm. In Figure the results of their prints can be
seen. The gradients were designed by Adobe Photoshop and printed with
a simple HP inkjet printer. Their study proves inkjet printing can be used
to print a functionally graded material by stacking thin sheets of material.
Major drawbacks are that inkjet printing is slow and requires your materials
to be non-solid.

5 mm

(a)
Figure 2.6: Gradients printed with inkjet printing.

Kokkinis et al. developed a system to 3D-print objects with Bioinspired
Mechanical Gradients [3]. Their system prints resins and uses direct ink
writing with a custom static mixer that homogenizes the resins before ex-
trusion through a needle. They cure the prints with UV-lights after an entire
layer has been printed. Their goal is to print an object where its elasticity
is determined by material ratios defined over the objects geometry. A com-
bination of both resins results in a higher elasticity. Figure [2.7] shows their
final print result with the gradient indicated.

The inner and outer structure were combined as two seperate CAD files
created with GrabCAD software. Slic3r, see Section [2.4.3] was used to
convert the input models to printer instructions. The printer instructions
were modified after they were generated to allow for the use of their custom
static mixer and to implement the gradient changes. They placed a glass
circular disc as stress concentrator in the middle of the gradient region and
printed circular lines of a distinct material composition around the disc to

10



0.1 MPa

Figure 2.7: Object printed with inner and outer structure with a graded
interface between them.

create the desired gradients. The material ratio was changed from line to
line in the circular rings. In Figure [2.8] a layer of the print can be seen with
the glass disc in the middle and the surrounding circular rings with different
material ratios.

10 mm

Figure 2.8: Print showing the circular rings with different material ratios.

2.4 Slicer Software

Currently various slicer software is available on the market that is both
closed and open source. Below the most popular and most common slicer
software is briefly discussed. Slicing software slices a geometric model into
layers containing paths, these paths consist of printer instructions which can
be various commands such as an extrusion move, travel move and retraction
move. Slicing software is discussed in more detail in Section in the
implementation chapter. A visualization of the general printing process can
be seen in Figure [2.9

2.4.1 Ultimaker Cura

Cura is the slicing software developed by Ultimaker, which is a company that
also builds 3D printers. It is open source and currently has been downloaded

11
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Figure 2.9: The general slicing and printing process.

over half a million times according to Ultimaker. It is continuously being
developed by a large group and a new version is released every few months.
The software has over 300 options to customize the printing process, making
it also one of the most advanced slicers on the market. Documentation is
also widely available. The slicing engine is written in C++ and the user
interface is written in Python.

2.4.2 Simplify3D

Simplify3D is a commercial slicer available on the market, but is therefore
closed source. It is the software used by TNO in the current implementation,
which uses a simple post-processor to modify the output of Simplify3D.
According to online reviews it generates high-quality prints ﬂ but these
are not official reviews or published tests. Earlier tests with this software
show viable results, however since the customization is constrained to only
changing the settings or the post-processor the usage of this software is
limited. A comprehensive manual is available online together with online
support by the developers.

2.4.3 Slic3r

Slic3r is among the oldest slicer software available, it is however only devel-
oped part time by a team of volunteer developers. This can be seen in the
features available, it is less customizable than both Cura and Simplify3D.
The print quality seems comparable to Cura, but this is not verified by of-
ficial research. Extensive documentation is available online, together with
source description. The slice engine is written in C++ and the user interface
is written in Perl.

"https://m.all3dp.com/simplify3d-review-best-slicer-3d-printing/

12



2.4.4 Repetier

Repetier is host software to directly connect to a printer that is compatible
with other slicing engines. It has its own graphical user interface written in
C++ and uses slicer engines of other available software like Cura or Slic3r.
It offers less customization than the other slicers and is convenient when
the printer is controlled from embedded devices such as an Arduino or a
Raspberry Pi.

13
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Chapter 3

Background

This chapter provides some background information regarding 3D-printing
and specifics about the 3D-printer used at TNO. Section describes the
3D-printer hardware and its different configurations. In Section [3.3] the pro-
gramming language used with 3D-printers is briefly described. And finally
Section {4.1] describes the requirements for the design of the software.

3.1 Printer Hardware

The 3D-printer used at TNO was designed in-house by the Additive Man-
ufacturing department since no commercially off-the-shelf FDM (Fused De-
position Modeling) printers that use UV curing are available on the market.
An overview of the printer can be seen in Figure 3.1

Figure 3.1: The FDM-UV printer

15



The printer can use different nozzles with variable diameters and com-
monly uses a path diameter of 1 mm. Most 3D printers currently on the
market use heating to melt the plastic before it is pushed through the nozzle
and use fans to cool the nozzle. The printer at TNO is also capable of heating
the material but is currently not used to avoid having additional parameters
to optimize. It has no fans to cool the nozzle. The printer uses PLCs (Pro-
grammable Logic Controller) from Beckhoff, which is a german company
that implements automation systems. The Beckhoff PLC was chosen for its
high reliability required in industrial standards and ease of configurability.
The printer is extrusion-based and can use up to two extruders. In Figure
[3.2] a cross section of an extruder can be seen.

«——— Stepper motor

<—f+——— Plunger

<—— Syringe

< | ——— Paste

<~ UV-light
UV-shield

<= Nozzle

Figure 3.2: Extruder cross section.

The stepper motor drives the plunger into the syringe and pushes out the
paste through the nozzle. The position of the plunger, or extruder axis, is
relative since a stepper motor is used. A linear position sensor, not shown
in the picture, is used to track the position of the plunger and defines the
extruder axis. The UV-light shield prevents the material from curing inside
the nozzle to prevent blocking.

3.1.1 Printer Configurations

Since various types of objects have to be printed the printer has three possi-
ble configurations. An overview of the configurations is shown in Figure 3.3

The single nozzle configuration shown in Figure is used when print-
ing with just one material. The double-straight configuration shown in Fig-

16



(a) Single nozzle. (b) Double straight. (¢) Y-configuration

Figure 3.3: Different printer configurations.

ure is used when printing with two materials. But only one material
at a time, which creates a discrete gradient in the output print. The third
configuration is the Y-configuration, which enables the use of the Y-nozzle
and the co-extrusion nozzle. These two nozzles can mix materials together
and as such can be used to print models with a continuous gradient.

3.2 Terminology

In the 3D-printing world quite a lot of jargon is used. To give some more
insight into various terms used in this thesis a list was made to provide
explanations.

Extrusion move Moving of the nozzle while extruding material; creating
a print path.

Travel move Moving of the nozzle without extruding material.

Line or Print path Created by an extrusion move. A line or print path
is defined by two points in where between material is deposited by an
extrusion move.

Retraction The plunger is moved upwards to relieve some of the pressure
in the syringe to prevent material dripping from the nozzle during
travel moves.

Oozing Unwanted dripping of material from the nozzle; can be compen-
sated for by retraction.

Prime Priming literally means ”to make something ready for use or action”.
Priming an extruder means printing paths that are not part of a model
to create pressure in the nozzle such that when the actual model is
printed the extruder is ready for use.

Build plate The plateau used to print on. TNQO’s printer uses a steel plate
that can be removed.

17



Build plate adhesion Several concentric rings can be printed attached to
a model to increase the surface of the model that touches the build
plate. This is to reduce the chance of a nozzle knocking over the print.

Skirt or Brim Concentric rings used to prime extruders and increase build
plate adhesion. Skirt rings do not touch the actual model and only
serve to prime extruders. Brim is attached to the model and increases
print surface for better build plate adhesion.

Z-hop Lifting of the nozzle when retracting. When a travel move has to
be made usually retraction is used to prevent oozing. Z-hop serves
as an extra safety measure that lifts the nozzle to prevent accidental
collision of the nozzle with print paths.

18



3.3 G-Code

As previously described slicer software slices a geometric model into layers
containing printer instructions. These printer instructions are part of a nu-
merical control programming language, which is named G-Code. It describes
movement and actions of machine tools, such as a nozzle, a mill or a cutting
tool. Several G-Code dialects exist with the most common one being Marlin.
The 3D printer used at TNO uses a quite uncommon dialect called Beck-
hoff named after the company that produces the PLCs controlling the 3D
printer. The PLCs support customized G-Code commands specific for this
3D printer meaning there is no universal standard for all commands in the
Beckhoff dialect. A snippet of Beckhoff G-Code can be seen in Figure [3.4

-3.834 71 Q1=1.14299 F138
-2.543 71 Q1=1.14647 F138
.282 Y-2.286 71 F18@

273 Y-1.924 71 (Q1=1.14721 FlEq
LA76 Y-8.566 Z1 Q1=1.15869 F18@
A9 Y-8.27 71 Q1=1.15145 F188

Y
Y
Y

Figure 3.4: G-Code snippet

The snippet contains extrusion moves (G1) and travel moves (GO) to-
gether with a speed indicated by F. Table [3.1] shows a detailed description
of the symbols in the commands seen in Figure In Beckhoff G-Code
dialect, a movement command should always contain a speed and at least
one coordinate or auxiliary axis (plunger position). An extrusion move con-
taining a G1 moves the nozzle from the current position to the specified
position while moving the plunger to the position specified by the Q-axis.
This creates a straight line of printed material. A GO command moves the
nozzle to the specified position at maximum speed.

’ Command ‘ Description ‘
GO Rapid Traverse
Gl Straight line interpolation
X, Y, Z Position coordinates
Q Position of plunger in mm
F Speed in mm/s

Table 3.1: G-Code command overview
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Chapter 4
Design

This chapter presents the design of the software to print a multi-material
model with a continuous gradient. In Section the requirements of the
design are presented. Section gives some general info about the purpose
of the design. Section proposes a solution to apply continuous gradients
to an input model. Section briefly explains the behaviour of the UV-
lights followed by Section which discusses support for multiple-material
nozzles. Section summarizes the design.

4.1 Requirements

TNO poses several requirements for the software, which can be derived from
the problem statement. Summarized they are:

e Use TNO’s printer hardware
e Design robust interfaces between various steps of the process
e Minimize the level of expertise required by the end user

e Use open-source software whenever possible

4.2 General

As defined by the requirements, TNQO’s printer hardware had to be used.
The 3D printer uses a G-Code dialect called Beckhoff that is not natively
supported by most slicer software and will have to be implemented. After
supporting the new G-Code dialect more specific software adjustments have
to be made such as support for different nozzles, UV-light support and
ultimately the printing of continuous gradients. Combined these changes
serve the purpose of printing a continuous gradient multi-material object
where gradient quality is of the highest importance. The gradient defines

21



the ratio of materials over the geometry of the object. An example of a 3D
model, a star-grain rocket propellant, which could be used as input for the
slicer, is shown in Figure The gradient applied to the models is always
radial in the horizontal plane. In Figure a cross section of the model
with an ideal continuous gradient applied is shown.

(b) Cross section with ideal contin-
(a) Example of a 3D input model. uous gradient.

Figure 4.1: Two star grain models.

The purpose of a gradient is to influence the burn profile of the propellant
grains. By using two materials where one material burns faster than the
other material; the gradient is able to define the burn speed as a function of
the geometry of the propellant grain. The burn profile essentially burns in
rings from the outside of the model to the inside. The outside of the model
is defined as the outside shell touching the air. Some models have holes in
the middle to accelerate the burn rate of the entire print or to only let the
print burn from the inner ring to the outer ring. Since the 3D-printer has
only limited precision the gradient will have to be discretized. In Figure
a cross section is shown with a discretized gradient and the direction of the
burn profile is indicated with arrows. This gives a realistic indication of the
desired print result for the star-grain rocket propellant with a continuous
gradient.
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Figure 4.2: A star-grain rocket propellant with gradient.

4.3 Continuous Gradients

Printing a multi-material object with a continuous functional gradient re-
quires an implementation of the material change at some point in the overall
process from 3D-model to the actual printing. This gives three options as

to when to implement the material changes:

1. In the initial 3D-model

2. During the slicing process

3. After the G-Code has been generated

Table highlights the advantages and disadvantages of implementing

the functional gradient in each step.

‘ Process Step ‘ Gradient Quality ‘ Ease of Use ‘ Software Complexity ‘
- Requires CAD expertise . .
Initial 3D-model q,‘ . *F Process model material properties

Slicer easy to use
Slicing Process High Requires input file of gradient
In G-Code Low Simple evaluation of gradient Simple implementation

Table 4.1: Advatage and disadvantages of applying the functional gradient

in each step of the process.

Defining the functional gradient in the initial 3D-model gives the designer
of the 3D-model the best tools in defining the functional gradient together
with the 3D-model using CAD software. The file STL format of 3D-models
most commonly used does ,however, not support material properties. The
proposed Additive Manufacturing Format, AMF, in Section [2.1] could be a
solution [5]. A downside of defining the gradient in the initial 3D-model is
that the printer has only limited precision and the model will be discretized
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during the slicing process. This makes a very precise definition of the func-
tional gradient in the model obsolete and could result in small discrepancies
of the gradient in the actual print. The user should also have knowledge
about specialized CAD software supporting material properties instead of
just geometric model design.

In the second approach the gradient is applied during the discretization
step of the slicer. Therefore the actual precision of the functional gradient
is defined by the path diameter of the print paths. Defining the functional
gradient in this step means it will be defined with the precision the printer
is capable of. The discrepancies described in the previous step will be min-
imized and there is a high probability of the best gradient quality. Imple-
menting the functional gradient during this step also gives a high degree of
control over the implementation. The user can configure the entire process
in the slicer software with a simple input model. The downside of defining
the functional gradient during slicing is that some format for the gradient
together with a method to pass the definition of the gradient to the slicing
engine will have to be designed. This means the user is now responsible for
creating a functional gradient that matches the format required by the slicer
instead of a generic gradient that could be defined in the initial 3D-model.

In the third approach the gradient is applied after the G-Code has been
generated. Here a functional gradient could be easily evaluated by using
coordinates of the commands for the printer as input in an analytic function
that outputs the material ratio. This also provides a clear way for the user
to define the gradient. The material ratio between two points cannot be
changed. Meaning if points are spaced far apart and a change in material
ratio is required the path should be split in multiple points. Evaluating
the gradient here also requires building a post-processor besides modifiying
the slicer software. The slicer software will have to be modified to include
indicators for the post-processor where to insert gradients. Using a post-
processor gives less control over implementing the gradient than during the
slicing process and requires the user to also have knowledge about the post-
processor instead of just slicing software.

4.3.1 Chosen Implementation Step

In the problem statement it became clear that gradient quality is the most
important metric and that user expertise should also be considered. For
a commercial product using a gradient definition in the initial 3D-model
is likely the best choice; it offers a solution where the user can create a
3D-model with material properties and let the software take care of the
rest. With careful optimization the gradient quality is also likely to be
comparable to defining the gradient during the slicing process. However,
since implementing the functional gradient during the slicing process has the
highest chance of producing the best gradient quality it is the best option
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for this research. Even if it impacts user expertise somewhat negatively it
allows for the highest degree of control over the gradient implementation. A
format of the functional gradient definition will be designed together with a
way to pass this definition to the slicing engine.

4.3.2 Gradient Specification

A format to specify the gradient and to pass it to the slicing engine is
required. The functional gradient describing the material ratio in the 3D-
model is rarely a linear gradient so simple linear interpolation between two
values is not a viable option. The format should allow a material ratio to
be defined or calculated for each ring in a print as shown by the star-grain
in Figure In Table several options are listed together with their
advantages and disadvantages.

‘ Gradient format ‘ Advantages ‘ Disadvantages

Difficult to generate complex curves

Analytic Easy evaluati f gradie . . .
nalytic asy evaluation of gradient Difficult to parse function(s) in software

Convient to specify complex functions

Interpolation between points I . .
Interpolation is simple to implement in software

Requires the user to build a table

Direct gradient specification

Individual ring specification 2 .
& SF Easy to implement in software

Requires pre-computation of number if rings

Table 4.2: Advantages and disadvantages of gradient specification options.

While an analytic specification of the functional gradient allows for unlim-
ited precision; such precision is not needed as described in Section The
difficulty of specifiying complex functions and the implementation to parse
these function in software makes analytic gradient specification not a very
attractive option. Using point interpolation specified by a table is a convie-
nient way to specify and evaluate complex gradient functions. Implementing
interpolation is simply done in the slicing engine. The only downside to this
method is that it requires the user to build a table with function coordinates
that should be passed to the slicing engine. Specifying the material ratio for
each individual ring gives the user an option to directly specify the gradient
without any calculation steps in between. This greatly simplifies the evalu-
ation of the gradient in the software as values can be directly read from user
input. It does however require a pre-computation of the number of rings
needing a different material ratio. This number is not known until late in
the slicing process. The slicing process will have to be paused at some point
and has to prompt the user for the requested values of each ring.

Both the analytic and individual ring gradient specification options intro-
duce unnecesarry difficulties for the user and the software implementation.
Leaving interpolation between points as the best option in specifying the
functional gradient. The user will have to create a table in a file that will
be passed to the slicing engine.
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4.3.3 Path Planning

An important part of printing a multi-material object with a continuous
functional gradient is path planning. In 3D-printed objects printed by con-
sumers the infill pattern is usually not very relevant except for the strength
of the print. Rarely are printed objects completely filled to create a solid
and some space is left inside to save material. Various infill patterns exist in
most slicer software. Figure shows some of the most common patterns.

Figure 4.3: Common infill patterns used in slicer software.

y

When printing energetic materials, however, the infill pattern becomes
quite important. Not because of the strength of the printed object, but
because of the desired burn profile, which was described in Section In
Figure[4.4]an example of a star-grain rocket propellant with a single material
is shown is shown where the rings burn from the inner ring to the outer ring.

Figure 4.4: A star-grain propellant.

The concentric infill pattern shown in Figure [£.3] shows great similarities
between the desired infill pattern shown in the star-grain in Figure [£.4] The
difference, which is not visible here, is that the conventional concentric infill
pattern adds concentric rings emerging from the entire shell. Meaning the
infill pattern meets itself in the middle of the object. For grains that burn
both from the inner and outer ring, such as in gun powder grains, this
is desirable. In Figure it is clearly visualized how the concentric infill
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pattern works. However, for grains such as the rocket propellant in Figure
a different inner structure is required.

Figure 4.5: Concentric infill emerging from shell.

In Figure the final result of the concentric infill is shown. Here the
differences between the star-grain propellant shown in Figure |4.4] are clearly
visible.

Figure 4.6: Final result of concentric infill pattern.

A new infill pattern will be designed to generate the required infill pattern
in the star-grain propellant in Figure The simplest solution to do this is
to only add concentric lines emerging from the inner ring of the shell. This
way the pattern of the cavity present in the middle of the model will emerge
from the inner ring until it intersects with the outer ring of the model. This
will result in the desired infill pattern shown in the star-grain propellant.
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4.4 UV-lights

In order to cure energetic materials a UV-light is used that is mounted on the
extruder near the print head. The UV-lights can be controlled with several
G-Code commands defined in the PLCs that control the 3D-printer. It
takes only a few seconds for the UV-lights to harden the energetic materials.
During long travel moves the UV-light cures the material currently in the
nozzle, even with the UV-shield, and causes it to become blocked. When
this happens the print process will have to be restarted to clean the nozzle.
A simple solution to prevent this from happening is turning off the UV-
lights when an extruder is not extruding material. The user will be given
the option to configure whether the UV-lights are turned off during travel
moves. Certain print path types such as paths designed to increase build
plate adhesion are not part of the model and the user should be able to
specify if the UV-lights are to be used during these paths.

4.5 Multiple-Material Nozzles

When mixing materials two different multiple-material nozzles are available:
the Y-Nozzle, Figure and the Coaxial-Nozzle, Figure A cross
section of the paths produced by the nozzles is shown at the bottom of
the figures. The mixture or coaxial ratio can be controlled by the speed
of the plungers when extruding. The Y-Nozzle is expected to suffer some
complications by joining the channels, while the Coaxial-Nozzle channels are
joined at the very end making complications less likely. The problems that
could be introduced by the Y-Nozzle are:

e The shared mixing compartment introduces delay in command and
execution

e When one plunger retracts it also affects pressure in the other channel

e Material from one channel could be pushed into the other channel

To some extent these effects could be compensated for in the software,
but not completely. The first and most important issue is the shared mixing
compartment delay. This could be compensated for by shifting the material
switch command by a certain volume. In Figure the delay is visualized.

A second problem that is introduced is a transition region of one material
to an other material. The transition region is defined by the region where
the material ratio changes from the previous ratio to the current desired
ratio. This can only be solved by dumping the transition region somewhere
on the side of the printbed. In Figure the transition region is shown.

When using TNO’s Y-Nozzle the most common path diameter of 1 mm is
quite small compared to the volume of the mixing compartment: around 250
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(a) Y-Nozzle. (b) Coaxial Nozzle.

Figure 4.7: Multiple material nozzles with cross section of its produced path.

Material switch command Material change

Volume delay \

Figure 4.8: Volume delay caused by mixing compartment.

Print Path

mm?. A path length of at least 318 mm is needed to empty the mixing com-
partment assuming a constant path diameter of 1 mm. Paths are described
in a layer, which consists of a list of points together with a material id for
each path. Considering the small size of some of the printed objects a single
layer could have less volume than the mixing compartment. Meaning the
new location of the material switch, after compensation for the delay, is not
in the same layer it started in and will require modifications of layers that
are already in the process of being translated to G-Code. This introduces
the need for a buffer that is used to shift material switches between layers.
The calculation of the new material switch point has to be done after a layer
plan has been generated as the volume is not known before a layer plan has
been created. Layers have to be kept in the buffer long enough until it is
certain it no longer has to be modified.

In the first layer, layer zero, the first extruder shift is shifted into the skirt
or brim paths. These are concentric paths around the model to improve build
plate adhesion and to prime the extrusion process. If these paths do not
have a volume at least equal to the required shift volume the slicing process
is terminated as it will result in incorrect prints. If a layer is empty nothing
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Figure 4.9: The transition region.

is done. Layers below the current layer are flushed since they will not receive
new material switches anymore. This is guaranteed as the volume between
two material switches will remain constant. Keeping layers in the buffer has
a drawback of longer overall G-Code production time. Since print quality is
more important than G-Code production speed this is not an issue.

4.6 Conclusion

Application of the functional gradient will be done during the slicing process.
A table built by the user is used to specify the gradient and together with a
new infill pattern the desired results can be produced: a 3D-printed multi-
material model with a continuous functional gradient. In Figure [£.10]a star-
grain rocket propellant with a gradient can be seen. Each ring emerging from
the center has a distinct materal ratio. This is similar to the Bioinspired
Mechanical Gradients used by Kokkinis et al. [3].

Figure 4.10: Star-grain rocket propellant with gradient.
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Figure shows a gun propellant with gradient. Both figures assume
the Y-Nozzle is used. When printing with the Coaxial-Nozzle the gradient
is less visible from the outside.

Figure 4.11: A gun propellant with gradient.
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Chapter 5

Implementation

This chapter describes the implementation of the design presented in the
previous chapter. Section compares currently available slicers on various
requirements, which is followed by Section[5.2that describes the architecture
of the selected slicer: Cura. Section [5.3] describes how Cura is modified
to print continuous gradients. The implementation of support for different
nozzles is described in Section The required syntax changes for Beckhoff
G-Code dialect and UV-light support are shown in Section and Section

respectively.

5.1 Software Selection

To select the right software as a base for this thesis, a requirements table
has been made to compare available choices.

‘ Name ‘ Open Source ‘ Engine Language ‘ GUI Language ‘ Speed ‘ Print Quality ‘ Customization Degree

Cura Yes C++ Fast Good Very High
Simplify3D No N/A N/A Very Fast Good
Slic3r Yes C++ Perl Slow Good
Repetier Yes N/A CH+ N/A N/A Low

Table 5.1: Specs of slicer software candidates

The most popular available slicers are rated according to different criteria:
whether it is open source, language of engine and GUI (Graphical User Inter-
face), slicing speed, expected print quality and the current options available
to customize the print.

Since Simplify3D is not open source, the use of this software for this thesis
is very limited. The post processor built by TNO could be further extended
but this would introduce unneccesary constraints.

Repetier is essentially host software that can use the slicing engine of
other available slicers. It is fully written in C++, which is more convenient
for programming than other GUI languages. However, since the native GUI
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of a slicing engine supports all of the available options of the engine instead
of the generic options that Repetier offers; the native GUI with its engine
is preferred. Repetier can be convenient when the printer is controlled from
embedded devices such as an Arduino or a Raspberry Pi; with TNO’s printer
this is not the case.

The remaining two candidates are Cura and Slic3r, the biggest open
source slicers currently available. While they are comparable in options
for print customization; Cura is more actively developed by a larger com-
munity, which means more frequent software updates. This could, however,
introduce more conflicts during development if the software must be kept up
to date. The biggest difference is probably the language of the GUI, in which
Cura has the advantage. Python is a more modern language than Perl, but
this is also a personal preference. Both have had their source inspected,
were ran from source and were tested for debugging to see if any problems
arose regarding long term development. Since Cura has the ability to just
build an executable, which was significantly faster than Slic3r build times,
this gave a slight advantage. Debugging with Cura also was significantly
easier by having a built-in option to connect a custom engine to the GUI
with debugging enabled. Inspection of the source revealed nothing worth
mentioning. When comparing slicing speed Cura is supposedly faster; while
slicing speed is of less importance than print quality it is still favorable.

Overall Cura has preference as the base slicing software for this thesis:
it is open source, actively developed, written in preferred languages, highly
customizable, has good support for development, and faster slicing times.

5.2 Cura Architecture

This section describes the software architecture of Cura, the slicer software
used as base for this thesis. For a detailed class description see Section

5.2.1 Program Structure

Cura has a front end (the GUI), and a back end (the engine). When run-
ning Cura the GUI allows the user to configure options for the printer, the
extruders and the slicing process. Models can be loaded into the workspace
and can be moved around, scaled, and rotated. When the slice button is
pressed all settings are converted to a string that also contains the file loca-
tion of the model to be sliced. This string is sent to the engine where it is
parsed. It is also possible to just use the slicing engine via a terminal, but
building a settings string by hand is of course tiring work. All the settings
are stored in the settings container system in the slicing engine, which will
be discussed in Section When the slicing process has finished, the
engine sends the slicing data back to the front end where it is visualized.
Figure [5.1] shows the general architecture.
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Figure 5.1: General overview of Cura

5.2.2 Settings

Before the actual slicing the settings string from the command line argument
is parsed in the engine, also when using the GUI. Settings are stored in
an unordered map with key value pairs and can be retrieved with various
methods. All settings in the front end are defined in a JSON file, which is
also read by the slicing engine to define variable types. When an unregistered
setting is passed to the engine, meaning it is not defined in the JSON file
that the engine reads, a warning is issued but the setting is still stored. A
definition of the material-diameter variable is shown below.

"material_diameter":

{
"label": "Diameter",
"description": "Adjusts,thegdiameter of the filament used.",
"unit": "mm",
"type": "float",
"default_value": 2.85,
"minimum_value": "0.0001",
"minimum_value_warning": "0.4",
"maximum_value_warning": "3.5",
"enabled": "machine_gcode_flavor,!=,\"UltiGCode\"",
"settable_per_mesh": false,
"settable_per_extruder": true

}

The ”type” field is used to identify variable types and the ”unit” field is
used for conversion when the variable is requested in a different unit than
defined. The other fields are used by the front end. When new custom
settings have to be added they can simply be appended to the JSON file.
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5.3 Continuous Gradients

As discussed in Section the gradients will be applied during the slicing
process. To find a suitable moment in the slicing process a simplified version
is briefly described in steps below. For a more detailed description see

Section R.11

1. Loading of 3D-models The 3D input models are loaded and converted
to a collection of points (vertices) in 3D space.

2. Slicing The 3D-model is intersected with horizontal planes to create
layer outlines: the inner and outer walls, specified as polygon objects.

3. Infill The areas between the outline polygons are filled with a desired
infill pattern.

4. G-Code generation All layers are converted to G-Code in the correct
order (bottom to top).

Polygon objects are collections of points and can be modified using a
clipper library. Since all paths in a layer will require a material ratio to
define a gradient the best option is to apply the gradient during the infill step
where all paths in a layer are created: step 3. Cura generates configurations
for different path types (such as walls, infill, support etc.) before the start of
step 3. These configurations are kept constant in a storage object and cannot
be modified after they have been generated to avoid accidental changes
during the remaining steps. Each path contains a reference to the storage
object to define the path’s configuration. Configurations contain important
attributes of paths such as line width and print speed of the path. In Figure
[5.2] the hierarchy of a layer is visualized.

Only two paths are shown in the figure. A layer can, however, contain an
unlimited number of paths. Simply adding a material ratio to the existing
path configurations when the configurations are normally generated is not
an option. This would mean the configurations are kept constant while they
do require changes later during the process when the ratios are known. Mod-
ifying the storage object with configurations to non-constant would require
significant changes to the entire engine. Besides, each layer could require a
different configuration if gradients in the vertical plane are used. The logical
solution is adding a storage to each layer where configurations are defined
that could be used instead of the standard storage object. In this way it
can be modified when needed without having to make significant changes
to the engine. It was chosen to create an entire configuration in a layer for
a path with a specific ratio instead of just storing the ratio and using the
conventional configuration storage object for the remaining attributes. This
is done to allow future tweaks to other attributes besides material ratio as
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Figure 5.2: Hierarchy of a layer consisting of points. An arrow indicates
”contains”.

defined by the gradient. A negligible downside is more memory usage, but
this is hardly a constraint.

Currently only the Concentric and Concentric Grain infill patterns can be
used when printing gradients. While other infill patterns are not likely to
be used a more generic implementation could be possible. By first creating
all polygons including material ratios and sorting them in the desired order;
then adding them to a layer plan would add support for any infill pattern.

5.3.1 Path Planning

A new infill pattern, Concentric Grain, was implemented to support a pat-
tern that expands the shape of the cavity in the middle of the object until
the walls are reached. Infill patterns are built with polygon objects. To ma-
nipulate polygons Cura uses a library, ClipperLib, that can perform various
operations to create new polygons. It supports offsets and various boolean
operations that together create the characteristic infill patterns shown in
Figure Figure shows the four boolean operations used in ClipperLib
and Figure [5.4) shows how a new polygon is generated with an offset.

Intersection Union Difference XOR

f A A
PN A

Figure 5.3: Boolean operations provided by ClipperLib library.
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Figure 5.4: Creating a new polygon by applying an offset to the center
cavity. Arrows indicate offset value.

To create the new desired infill pattern the offset value, which is dependent
on the line width, is looped until it intersects with the outer wall. When a
new polygon intersects with the outer wall the boolean intersection operator
is used to cut the polygon at the edge and creates lines instead of polygons.
In Figure[5.5|an example is shown where a polygon that was generated by an
offset is cut to generate individual lines. The infill generator is terminated
when a new offset polygon has zero points.

Figure 5.5: Lines generated by boolean intersection indicated in red.

Normally all polygons generated by infill are added to a layer through an
optimizer in a single object. The optimizer tries to decrease the travel moves
needed by using a traveling salesman computation to achieve the lowest print
time. When printing a gradient, however, ideally all paths on a layer with
the same material ratio are printed subsequently to reduce the amount of
material ratio changes. A single infill object is still generated, but the object
is split in different polygons based on material ratio. These polygons are
then added separately to a layer to allow printing them in the desired order
and to reduce the amount of material ratio changes while printing. While
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creating an infill object the infill generator counts the number of rings, which
is used to create the gradient configuration in a later step.

Cura by default attempts to merge infill lines, not polygons, when points
are close together to reduce unecessary point density. However, the algo-
rithm often produces erratic results and for an unknown reason is not applied
to polygons regardless of their point density. An option to disable infill line
merge has been added that shows improved print quality when the merging
has been turned off. Since polygons with equal point density apparently do
not require merging of lines it is not expected that disabling the infill line
merger will not negatively impact print quality. Figure shows the imple-
mented Concentric Grain infill pattern together with the impact of disabling
the infill line merger.

(a) Infill line merge enabled. (b) Infill line merge disabled.

Figure 5.6: The concentric grain infill pattern

5.3.2 Gradient Specification

To pass the gradient to the slicing engine a function to read a text file
with sample coordinates (consisting of x, y pairs) was implemented. It uses
a straightforward algorithm that parses all coordinates until an end-of-file
is reached and places all coordinates in an ordered map. It then applies
piecewise linear interpolation to generate a gradient curve. All coordinate
pairs have to be normalized; meaning the key and value pairs are doubles
ranging from 0 to 1. With 0 being the ratio of the inner wall and 1 being
the ratio of the outer wall. In the infill generator the normalized key of
each ring is calculated based on the total ring count, which also includes the
walls. This way the gradient can be mapped to the rings by iterating over
the map until a key greater than the key of a specific ring is found. Linear
interpolation is then used between the current and previous key value pairs
to obtain the material ratio of the ring. Figure shows the result of
piecewise linear interpolation of a square root function with five samples
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used as gradient specification. Figure shows the interface of Cura after
a model has been sliced with the specified square root gradient applied.

Gradient
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Figure 5.7: Piecewise linear interpolation between points in ordered map.
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Figure 5.8: Interface of Cura with the piecewise linear gradient shown in

Figure applied.

5.4 Multiple Material Nozzles
To implement the shifting of material switches discussed in Section [4.5] a

buffer is needed to buffer layers. Cura has a built-in buffer that is used to
allow temperature command insertions in earlier layers to heat up extruders
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in advance for use in later layers. It can also be used for the material
switch shift without interfering with temperature insertions even though
temperature commands are are not implemented on the TNO printer. Figure
shows a flow diagram of the behaviour of the buffer.
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Flush all
layers after
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Figure 5.9: Flowchart of layer buffer.

If the skirt or brim paths in layer zero do not have enough volume the
slicing process is terminated and a log error is given. The material switch
shift calculation starts in layer zero and iterates over all layers from bottom
to top. When starting the calculation in a layer it iterates over all points
in a layer and subtracts the volume between points from the desired shift
volume until it reaches zero. If the volume has not reached zero in a layer
the subtraction continues in the layers below.
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5.5 Beckhoff Implementation

To support the Beckhoff G-Code dialect used by TNOs printer the output
syntax of the produced G-Code will have to be modified. In Listings[5.2] and
[b.1] a comparison of Beckhoff dialect with the most common dialect Marlin

is shown.

Listing 5.1: Marlin dialect.

;LAYER_COUNT :4
;s LAYER:0

G1 F300 Z2

G92 EO

T1

M107

GO F600 X5.071
;s TYPE : SKIRT

G1 F300 Z1

Gl F360 X6.905 Y-18.21 E0.00489
Gl X7.611 Y-17.927 E0.00682

Gl X9.361 Y-17.079 E0.01176

Y-18.803 Z2

Listing 5.

2: Beckhoff dialect.

(LAYER_COUNT :4)
(LAYER:0)

G1 F300 z2

M31 @714

D02

G1 X5.071 Y-18.
(TYPE: SKIRT)

Gl F300 z1

Gl X6.905 Y-18.
Gl X7.611 Y-17.
Gl X9.361 Y-17.

803 Z2 F600

21 Z1 Q2=0.00489 F360
927 Z1 Q2=0.00682 F360
079 Z1 Q2=0.01176 F360

An overview of the most important differences is shown in Table
Some commands are custom defined for this 3D printer and not part of the
standard Beckhoff dialect.

’ Command Marlin ‘ Beckhoff ‘
Comment style ; 0
Absolute coordinates M82 G90
Relative coordinates M83 GI1
Extruder reset G92 EX M3X Q714
Tool select TXX DXX
Fan speed M107 N/A
Temperature M104 TX SXXX N/A
Extruder symbol E Q=
Travel move GO G1/GO
Move speed F F

Table 5.2: Syntax comparison.

Multiple differences can be spotted in the two dialects: comment style,
different symbols and syntax of move commands. Besides different symbols
an extrusion or travel move in Beckhoff always requires a speed value at the
end of the command. While in Marlin it can be provided once following the
initial command after which it will be used until specified otherwise.

5.6 UV-lights Implementation

In Table an overview of the commands can be seen. When the printer
is used in the double straight configuration, meaning parallel extruders, one
UV-light is used for each extruder. The lock intensity commands will set
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the intensity of the corresponding UV-light specified in the R value. The
intensity can be changed at anytime during the print process.

Command Extruder A | Extruder B
Turn on UV-light M3 M8
Turn off UV-light M5 M10

Intensity value R2=XXX R3=XXX
Lock intensity M4 M9

Table 5.3: UV-light G-Code commands.
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Chapter 6

Experimental Results

This chapter describes the experiments performed with the modified version
of Cura. First a brief description is given of the experimental setup in
Section[6.1] Followed by two sections that discuss several experiments using
play-doh (Section and Section . And finally Section discusses the
printing of energetic materials. It is recommended to read the terminology
in Section before reading this chapter.

6.1 Experimental Setup

The printer is located in a bunker for safety reasons, which has to be closed
when printing energetic materials. This complicates closely observing the
behaviour when printing, which is why two cameras are setup next to the
printer that also record the experiments. Figure [6.1] shows the printer and
the screens to observe the printer when the bunker door is closed.

(a) The printer located in the bunker. (b) The screen with the camera views
that observe the printer room.

Figure 6.1: Experimental setup when printing.
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6.2 Discrete Gradient

The first experiments were done to test the printer behaviour with the new
software. Instead of energetic materials play-doh was used to be able to ob-
serve the printer without having to close the bunker door. The dual-straight
printer configuration was used for these experiments. Two concentric cylin-
ders with different materials were printed. Figure shows the cylinders
in the Cura interface. In the final result the red cylinder should completely
encase the yellow cylinder, however, in this model the top lid was removed
to show both cylinders. These cylinders should eventually be printed with
energetic materials where the red cylinder consists of slow burning material
and the yellow cylinder consists of fast burning material.

Figure 6.2: 3D-model in Cura of two concentric cylinders consisting of dif-
ferent materials.

These cylinders were printed with the settings shown in Table [6.1]

‘ Line Width ‘ Layer Height ‘ Print Speed ‘ Infill Pattern ‘

| 1mm | 1 mm | 6mm/s | Concentric |

Table 6.1: Print settings of first experiment.

Figure[6.3] below shows the print result of the two cylinders. It can be seen
that it is quite messy because of over-extrustion, which is when an extruder
extrudes too much material at a certain region. These regions are indicated
in the figure; the number indicates the origin, which are explained in a
numbered list. Cura alternates the start extruder in each layer to minimize
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the number of material switches, which is why in some layers the infill seeps
through the walls.

Over-Extrusion (1)

Over-Extrusion (2)

Over-Extrusion (2)

Over-Extrusion (2)

Figure 6.3: Print result of the two concentric cylinders.

Over-extrusion happens with both extruders and both materials. It was
observed that over-extrusion happens at two points during printing:

1. At the end of a print path

2. Stacked paths in infill and walls

The first problem, which is called oozing in 3D-printing jargon, happens
because the built-up pressure inside the extruder cannot be changed instan-
taneously and decreases gradually at the end of a print path. This causes
some of the material to be pushed out; creating an unwanted blob of ma-
terial. Cura, and all other slicer software, has a solution for this problem
called Coasting. It replaces the end of a print path with a small travel move
to use oozing to print the last part of a print path. Figure[6.4] shows a print
path with coasting. To find the optimal coasting value (specified in mm) it
should be gradually increased until the blobs no longer occur at the end of
print paths, but not too far to cause under-extrusion.

The second problem is specific to Cura. Cura has problems with an uneven
number of lines in both the walls and the standard Concentric infill pattern
(see Figure [4.5). The walls are always generated in pairs, which results in
a minimum of 2 lines for the inner ring and 2 lines for the outer ring. The
red cylinder in Figure that forms the walls has a wall thickness of 1 mm.
Cura will, however, try to fit two lines in the 1 mm of space available causing
over-extrusion. Cura has an option Compensate Wall Overlaps that tries
to reduce the amount of extrusion when printing a wall if a wall is already
in place, but does not completely remove them. However, combined with
an experimental feature Minimum Wall Flow, which removes all wall lines
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Travel Move

Print Path

Figure 6.4: Coasting replaces end of a path with a travel move (in blue).

below a certain flow (percentage that is multiplied with extrusion values
thus creating thinner lines) amount, the stacked wall problem is solved. To
solve the stacking of lines during infill, the new Concentric Grain pattern
is used. The pattern does not generate infill lines in pairs and thus is able
to create an infill pattern with an uneven number of lines. Because the
wall overlap compensation options in Cura already solve the wall stacking
problem it was chosen to keep the current wall generation algorithm. A new
print was made using the revised settings listed in Table A minimum
wall flow of 100% removes all walls that are not extruded at full volume.
That means when a wall is already in place and a second wall is placed at
the same location; the second wall has its flow reduced significantly and is
removed as the flow is not at least the minimum 100%.

’ Line Width ‘ Layer Height ‘ Print Speed ‘ Infill Pattern ‘ Minimum Wall Flow ‘ Coasting ‘

1 mm ‘ 1 mm ‘ 6 mm/s ‘ Concentric Grain ‘ 100% ‘ 1.5 mm

il

Table 6.2: Print settings of second experiment.

Figure[6.5]shows the result of the second experiment with the new settings.

Wall drag
Wall drag

Wall drag 1
mm

Figure 6.5: Second print with revised settings in Table
The new settings have greatly reduced the over-extrusion problem. How-

ever, a new issue arises where the walls are dragged next to the model as can
be seen in Figure When an extruder switch occurs, which is sometimes
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at the end of a wall line, the extruder drags a part of the wall with it. To
compensate for this effect Cura has an option called Outer Wall Wipe, which
adds a small travel move along the wall after the end of the wall. Figure
shows how outer wall wipe works. The arrows indicate the added travel
move after a wall has been printed. Too long wall wipes introduce the risk of
over-extrusion, however, if the coasting volume is correctly configured this
is not an issue.

Wall wipe

Wall start/end —— >

Figure 6.6: Adding a travel move with outer wall wipe.

A new print was made using the settings in Table [6.2] including the outer
wall wipe option set to 2 mm, which resulted in the print shown in Figure
0. (al

(a) Coasting compensation en- (b) Coasting compensation dis-
abled. abled.

Figure 6.7: Two prints with wall wipe.

The outer wall wipe option solved the wall dragging problem completely
and produced an acceptable print result. However, by closer inspection it
was observed that the line thickness increased quite a bit at various points
in the print. After code inspection it became clear Cura tries to extrude
slightly more material after a coasting move to compensate for the material
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oozed during coasting. This causes over-extrusion after each coasting move
in the print; creating much thicker lines than the expected 1 mm thickness.
Figure [6.7D] shows the print result with the coasting compensation option
disabled. The print in Figure was stopped earlier than the print in
Figure [6.7D] which is why the yellow lines stick out of the print in the left
figure.

6.3 Continuous Gradient

In this section the experiments to print a continuous gradient are discussed.
The printer is used in the Y-configuration with the coaxial nozzle (see Figure
4.7b)) and play-doh as print material. A star-grain is used as input model
(See Figure with a continuous gradient applied. Figure shows the
input model after it has been sliced in the Cura interface.

0.10 Ratio 0.90

Figure 6.8: Sliced star-grain model with an applied gradient.

The Concentric Grain infill pattern was used to produce the desired star-
grain infill. The inner wall material ratio is 0.10 and is expanded linearly
with each ring until the outer wall, which has a ratio of 0.90. The settings
used in the print are shown in Table Apparently the coaxial nozzle suf-
fers more from oozing, which is why the coasting value is increased compared
to previous prints. Besides increasing coasting the nozzle tip was lifted by
0.2 mm to prevent the sticking of play-doh to the nozzle, which the coaxial
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nozzle tip suffers from to a greater extent than the previously used nozzle
tips. This slight height increase does introduce a brief delay when starting a
print path, which results in bigger voids. The end of a print path is expected
to have slightly bigger blobs because of the increased nozzle tip height. The
print result is shown in Figure [6.9

’ Line Width \ Layer Height \ Print Speed \ Retraction Distance \ Coasting ‘
°

’ 1 mm ‘ 1 mm ‘ 6 mm/s ‘ 1.5 mm ‘ 3 mm

Table 6.3: Settings used in first continuous gradient test.

Increased blobs

Void

Nozzle drag

Figure 6.9: Star-grain with applied gradient; printed with the coaxial nozzle.

The voids caused by the delay at the beginning of a print path and the
increased blob size at the end of a print path are indicated. Unfortunately
some material stuck to the nozzle during printing and dragged some paths
with it, which is also indicated in the figure. The nozzle tip size should be
decreased to prevent the dragging of paths caused by material sticking to
the tip. Reduced nozzle tip size would also mean the height of the tip can
be lowered to prevent increased voids and blobs. Since the print was made
with the coaxial nozzle the gradient is less visible from the outside; a cross
section was made to inspect the material ratio. Figure shows the cross
section of the print with a clearly visible gradient.

In the cross section a gradient can be clearly seen where the ratio of the
core (white) and the mantle (black) of the coaxial paths gradually change
from the inner ring to the outer ring. The print was cut after the material
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Figure 6.10: Visible gradient in cross section of print.

had dried for 24 hours, which decreased path width by water evaporation and
flattening of the lines caused by sagging of the material. If this experiment
can be performed with energetic materials the produced star-grain print can
be stacked to create solid rocket fuel where the gradient produces a burn
profile with either increasing of decreasing thrust, which depends on the
material properties. The next section discusses the printing of energetic
materials.

6.4 Printing Energetic Materials

After the play-doh experiments to characterize the printer behaviour new
experiments were performed with a single energetic material. The first en-
ergetic material consisted of: 70% RDX (explosive powder used in C4), 10%
energetic plasticizer (decreases viscosity) and 20% acrylate (the UV-curable
material). The mixture is a shear thinning material, which means it behaves
in a non-Newtonian way and its viscosity decreases under stress. This could
result in unpredictable behaviour when printing. No UV-lights were used
during this experiment. The model seen in Figure [6.2| was used as input.
The first print result can be seen in Figure [6.11

Figure 6.11: Concentric cylinders with skirt surrounding the print.
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The rings around the center cylinder form the skirt that is used to prime
the extruders. It can be seen that it is quite liquid compared to the play-doh
material used in the previous experiments. The printer settings will have to
be tuned accordingly to print with these different material properties.

To tune the settings a test setup was implemented that can be seen in
Figure [6.12] The test setup overrides the slicing process and prints lines
with increasing travel moves between them (indicated in blue), which can
be used to determine the retraction or coasting settings. The travel move
size can be freely configured from the interface; during these experiments
the travel move distance starts at 1 mm and increases by 2mm with each line
up to 19 mm. By disabling retraction the travel moves will act as coasting
distance and the coasting settings can be determined. The four lines at the
bottom are used to prime the extruder.

Travel Move

Figure 6.12: Test setup used to determine settings for new materials.

During the following experiments several parameters were investigated:

Retraction distance The retraction distance determines the total pres-
sure relief in the nozzle during retraction. With values too low oozing
is expected. Retraction distance probably has little impact on the blob
size at the end of a print path, which is expected to be determined by
retraction speed and coasting distance.

Retraction speed A higher retraction speed results in faster relief of pres-
sure in the nozzle when the plunger retracts. A faster retraction speed
probably results in smaller blobs at the end of a print path.

Coasting volume A higher coasting volume is expected to reduce the blob
size at the end of a print path. It has no impact on the blobs at the
beginning of print paths.

UV-curing Curing could have impact on the line width. If unwanted blobs
are cured this could cause collisions with the nozzle.
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6.4.1 Retraction Distance

In the first few tests the effect of retraction distance was tested. The print

settings used can be seen in Table Figure shows three prints with
increasing retraction distance to determine its impact on blobs.

{ Line Width { Layer Height { Print Speed { Retraction Speed { Coasting ‘
| 1mm 1 mm | 6mm/s | 1 mm/s [ 1mm® |

Table 6.4: Settings used in retraction distance test.

(¢) 2 mm retraction

|

1
|
B
&

1

(b) 1 mm retraction

(a) 0.5 mm retraction

Figure 6.13: Prints with increasing retraction distance.
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The impact of the retraction distance is minimal in the prints. While
blobs at the start of a print path are slightly reduced by increasing the
retraction distance to 1 mm; increasing it further yields no visible results
except for longer retraction times. The inconsistent line thickness seen at
random points in the prints could be the result of the plunger exerting force
on the material and causing a temporary decrease in viscosity.

6.4.2 Retraction Speed

In a second experiment the effect of the retraction speed was researched
to see wheter this has any influence on blobs and varying line thickness.
Table [6.5] shows the settings used, and Figure [6.14] shows the results of the
experiment.

‘ Line Width ‘ Layer Height ‘ Print Speed ‘ Retraction Distance ‘ Coasting ‘
il

| lmm | 1 mm | 6mm/s | 1 mm | 1mm

Table 6.5: Settings used in retraction speed test.

While little difference can be spotted in the experiments, increasing the
retraction speed to 2 mm/s does seem to decrease the blob size at the end
of a print path. Inconsistent line thickness is still present in all three prints
and even a consistent difference in line thickness can be seen before and after
travel moves in Figure An increased retraction speed will result in
faster pressure drop when retracting at the end of a print path. This could,
however, cause a higher decrease in viscosity and produce thicker lines when
printing the next line.
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(b) 1 mm/s retraction speed. (¢) 2 mm/s retraction speed.

(a) 0.5 mm/s retraction speed.

Figure 6.14: Prints with increasing retraction speed.

6.4.3 Coasting

To determine the coasting settings, retraction was disabled and the test
print was executed. This way the travel moves indicated in blue in Figure
6.12] act as coasting distance. In theory a single line followed by a long
travel move should be enough to determine the coasting volume, however,
the previous experiments showed random variation in line thickness, which
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is why it was chosen to print multiple lines. The extra line at the top of the
figure is followed by a long travel move. Figure [6.15 shows the result of the
coasting test print.

| Line Width | Layer Height | Print Speed |

| 1mm | 1 mm | 6mm/s |

Table 6.6: Settings used in coasting test.

Figure 6.15: Test print to determine coasting settings.
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Apparently the material has such low viscosity that, in every case ex-
cept the upper line, each travel move is filled by oozing. Line thickness
does usually decrease during each travel move and increases with a delay
after extrusion has started again. Random variation in line thickness is also
still present in several lines. It is difficult to determine a suitable coasting
distance after this experiment as no clear boundary is seen on any of the
lines. For an unknown reason the extra line at the top starts thinning and
producing interrupted blobs much sooner than any of the previous lines.

While the goal of the experiment was to determine the coasting settings,
it resulted in little relevant results. Using a different test setup in the future
where multiple lines with the same coasting value are printed would probably
be a more robust way to determine coasting settings. Figure shows a
different setup. Repeating this setup while gradually increasing coasting
distance is a more reliable way of determining the correct settings.

Coasting Distance

||

| ]

Travel Move

Figure 6.16: Multiple lines with same coasting distance, in case of random
line thickness variation.

6.4.4 UV-Curing

The behaviour of the material with UV-curing was researched in an exper-
iment where the cylinders in Figure [6.2| were scaled to three times their
original size. The scaling reduces the relative size of the blobs compared to
the total print to see wheter an acceptable result could be printed of this
size. Table shows the settings used and Figure shows the print
results.

‘ Line Width ‘ Layer Height ‘ Print Speed ‘ Retraction Distance ‘ Retraction Speed ‘ Coasting ‘ UV Intensity ‘

Imm | 1 mm | 6mm/s | 1 mm ‘ 1 mm/s | 2mm® ] 30%

Table 6.7: Settings used in UV experiment.

The location of the blobs is indicated in both subfigures with a red circle.
The blobs are the same height or higher than the nozzle tip because the
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(a) Print without using UV- (b) Print with UV-lights at
lights. 30% intensity.

Figure 6.17: Prints with and without UV-curing.

printhead is lifted by a Z-hop at the end of a line. If the nozzle tip collides
with cured material it can cause small pieces to break and scatter across the
print as seen in Figure Curing also significantly reduces line width,
which decreases the density of the print and reveals the build plate below.
Such significant shrinking has not been observed in earlier tests. Demixing
of the material in the syringe is likely causing a higher ratio of acrylates
when it exits the nozzle, which could cause more shrinkage when curing.
Figure [6.18] shows a comparison of the material before it is inserted in the
syringe and after it has been used in a print.

(a) Material before insertion (b) Material deposited by the
into syringe. printer.

Figure 6.18: Comparison of print material before and after printing.

A clear difference can be seen, which is caused by the demixing of the ma-
terial in the syringe. This results in blobs and significant shrinkage making
it very difficult to produce a proper print with this material. A new mixture
of materials will have to be designed that suffers less from demixing in the
syringes.
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6.5 Conclusion

The performed experiments show that printer settings can compensate for
undesired behaviour of the material to some extent, however, a proper ma-
terial is crucial to produce a sufficient quality print result. Printing with
energetic materials resulted in unexpected behaviour, which is probably due
to the sheer thinning material properties. Prints showed random variation
in line thickness, numerous blobs, and demixing in the syringe. When the
energetic material was cured with UV-light it showed significant shrinkage
of line thickness, which is a result of the demixing in the syringe. The ex-
periments performed with play-doh revealed that, after tuning the printer
settings to the material, it is possible to print a multi-material 3D-model
with a continuous gradient.
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Chapter 7

Conclusions and Future
Work

7.1 Conclusion

The goal of this thesis was to research the 3D-printing of energetic materials
using TNO’s printer hardware that is able to print a mix of two materials.
The ability to combine multiple materials into a continuous gradient allows
for new performance optimizations of gun and rocket propellants.

A design that can apply a gradient to an input CAD model was presented,
which is a modified version of the Cura slicer software. It can slice a CAD
model to create printer instructions and ultimately produce a multi-material
object with a continuous gradient. The gradient is applied during the slic-
ing process and requires a gradient specification in a text file with function
coordinates. These function coordinates are mapped to the 3D-model using
piecewise linear interpolation. To support the printing of rocket propellants
that burn from the inner to the outer ring the Concentric Grain infill pat-
tern was designed, which enables printing of the characteristic star-grain
propellant.

The design was first tested by printing with play-doh, which allowed print-
ing with close observation without having to close the bunker door for safety.
These experiments showed that the design is able to produce discrete and
continuous prints with proper tuning of the slicing settings.

Printing with energetic materials proved to be more challenging. The
mixture used as print material behaves in such a different way than play-doh
that the settings could not be properly tuned to create a proper print result.
Random variation in line thickness was observed in several experiments as
well as blobs at the beginning and ends of print paths. Moreover UV-curing
showed that the material shrinks significantly after it has been cured, which
is the result of demixing of the mixture in the syringe. The demixing causes
a higher ratio of acrylates, which is the UV-curable material, to be deposited
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by the printer. These acrylates shrink after curing and result in thinner print
paths.

In conclusion, printing a multi-material object with a continuous gradient
is certainly possible with the proper materials.

7.2 Future Work

A more user friendly approach could be built in future work. Instead of
specifying a gradient in a text file the gradient could be added in a 3D-CAD
model with CAD design software. This gives the user better design tools
to produce a desired print. The slicing software will have to be modified to
accept the new 3D-CAD model format with material properties. The CAD
design software could be further extended with with an option to specify
a desired burn profile such that it automatically calculates and applies a
gradient on a 3D-model.

Little work has been done in this thesis on path optimization besides cre-
ating a new infill pattern. Various path optimization techniques exist as
shown in Section which could be applied on the current design to im-
prove print quality. Void reduction optimizations could be especially helpful
as voids were still present in the star-grain print in Figure

Currently no quality metric exists to measure the gradient quality. Some
sort of way to determine wheter a print result is sufficient could be designed.
The quality of a print is mostly determined by voids between layers and
print paths. Figure [7.1] shows the voids that are created during printing
that influence the gradient quality.

- ~ Y| Fused Deposition Modeling

| | /< B void

_ _/\_,_ AN
¥ i i | Inter-Fiber Bonding Region
— d ";;.::’ — . O :a’nl:: where layers didn’t
p /Z ully adhere

Figure 7.1: Voids created by the nature of Fused Deposition Modeling print-
ers.
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Chapter 8

Appendix A

8.1 Slicing Process

The slicing process can be generally described in multiple steps:

1. Loading all geometric models into a MeshGroup object
2. Generate outline of MeshGroup object as polygons
3. Process outline information and generate inset perimeter polygons

4. Process slice data and produce LayerPlan object for each layer in
parallel

5. Convert LayerPlan objects in ordered non-parallel way to G-Code
6. Finalize the G-Code

7. Report statistics and G-Code to front end

Each step in the slicing process is discussed in this section, highlighting
the most important parts.

1. Loading models Loading models into a MeshGroup object is fairly
straightforward, for each model in the workspace a file stream is opened
which parses the file. When parsing an STL file, which is the input
model extension, it can be either in binary or ASCII format. Both
formats define faces with vertices, for each face the vertices are parsed
and stored into Point3 objects after which these points are stored in
a MeshFace object. All faces together in an array form a Mesh ob-
ject which together form the final MeshGroup object. A MeshGroup
object is then used as input into the general slicing process.
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2. Generating Outline The first slicing step is intersecting a mesh group
object with layer planes, creating 2D outlines of the mesh group for
each layer height. This creates lists of polygons without any order
or structure. When slicing the layer plane can intersect in several
ways with a triangle face, projection and linear interpolation is used
to create a straight line through a triangle face that represents the
intersection. The next step is grouping all polygons into parts, where
each part represents an isolated area in the 2D plane. This ensures
each part is printed entirely before moving to an other part in the
same 2D plane.

3. Process outline and inset After the outline has been generated and
ordered the inset polygons are generated. When the model has been
sliced the layers are further processed, generating wall inset areas and
areas to be filled with support and infill patterns. Wall insets are extra
concentric wall lines if a wall thickness of one line is not enough. The
actual infill and support patterns are generated in a later stage.

4. LayerPlan production The LayerPlan production is done with multi-
threading. Before a layer plan object is created several settings are re-
trieved from the settings storage and some variables are determined for
the layer plan constructor. After the layer plan has been constructed
it is further processed, if it is not a pre model layer (raft, skin) all re-
maining features are added: the infill areas are filled with the desired
infill patterns, the skin areas are filled and if enabled gaps between
features can be filled. To fill an area, polygons are generated that fit
info the infill area. The generated polygons can be added to a layer
plan with various methods, converting these polygons to extrusion and
travel moves and adding them to the extruder plans.

5. LayerPlan consumption Before layer plans are converted to G-Code,
they are added to the layer plan buffer that connects them. If the
buffer limit is exceeded the front layer plan is consumed and added to
the G-Code output stream. Consuming a layer plan is simply iterating
over all extruder plans and using GcodeExport methods to add all print
moves to the output stream.

6. Finalizing G-Code When all layer plans have been added to the G-
Code, the end code is written. The end code is a string that can be
defined in the interface for custom G-Code commands that are printer
specific. Besides the end code, various printer settings such as absolute
extrusion mode, print acceleration and maximum feed rate are reset
to their default values.

7. Report to frond end After finalizing the G-Code the output stream is
flushed and sent to the front end together with statistics such as slice
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time, estimated print time and estimated amount of filament required
for the print. The paths can then be viewed in the print preview
window of Cura, showing all planned paths.

8.2 Class descriptions

This section describes the most important classes in the Cura slicer.

MeshGroup class which contains all geometric models from the GUI, can
have multiple Mesh objects which contain faces and vertices. Also
stores an array of ExtruderTrain objects which contain extruder spe-
cific settings for each used extruder. This class is used as the input in
the FffProcessor class.

Slicer class which does the slicing, it outputs coordinates of plane inter-
sections with the geometric model that are used in the next step.

FffProcessor short for Fused Filament Fabrication Processor, class hold all
general objects used in the slicing process. It is responsible for the fi-
nalizing of the gcode, reporting statistics to the front end, time estima-
tion of the slicing progress, parsing the settings string and contains the
important subclasses FffPolygonGenerator and FffGcodeWriter.

FffPolygonGenerator class that is responsible for the generation of the
polygons. Polygons are represented as objects with a list of points.
The FffPolygonGenerator class takes the unordered input of the
slicer object and creates polygons that represent outlines: the bound-
aries between the inside and the outside of the object.

FffGcodeWriter class that is responsible for the actual G-Code genera-
tion, also generates support and infill patterns in designated areas.
All polygons that were generated by the FffPolygonGenerator class
are converted into G-Code by using the GcodeExport class. It also
contains the consumer producer system of LayerPlan objects and the
LayerPlanBuffer which handles all produced layer plans.

LayerPlan class that contains all extrusion and travel moves for each layer.
Polygons and lines can be added to a layer plan with various meth-
ods, adding them to the path planning. It contains several important
variables used in generating the G-Code:

e extruder _plans: vector of ExtruderPlan objects, an extruder
plan object contains an extruder number that indicates which
extruder will be used for this path. Besides the extruder number
it also contains a vector of GCodePath objects, these G-Code
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paths contain the actual points together with a configuration for
this point collection.

e z: integer which contains the height of this layer in the z plane,
unit is in micron (micrometer).

e layer_thickness: integer that contains the thickness of the cur-
rent layer in micron.

e layer nr: integer that acts as identifier, zero is first layer and
negative layer numbers are pre model layers (raft, skin etc).

GcodepathConfig class that holds several properties of a G-Code path, such
as the type (wall, infill, skin etc.), line width, flow and the extrusion
volume amount per mm line traversed. When new paths have to be
added to a layer plan, the path configuration is compared to the last
path. If it is equal the points of the new path are simply added to
the last G-Code path. If the configuration is different, a new G-Code
path object is created with the new configuration and added to the
extruder plan.

GcodeExport class that handles the extrusion moves, travel moves, retrac-
tions and other printer actions from a layer plan and outputs them
in the correct G-Code format, which is G-Code flavour dependent. It
writes all G-Code to a std: :ostream object as a buffer, which can be
flushed and sent to the front end.

LayerPlanBuffer class that buffers all produced layer plans. Since layer
plans are produced in parallel they are not ordered during production,
hence the need for a buffer. The producer consumer system guarantees
that layer plans are consumed in an ordered non parallel way, when
a layer plan is consumed it is pushed into the end of the buffer. If at
least two layer plans are present in the buffer, a travel move is added
between the last and second last layer plan in the buffer to connect
them. A variable buffer limit can be set, if it is exceeded the front
layer plan is popped and it’s extruder plans are converted to G-Code
with GcodeExport.
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