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Scalarizing Multi-Objective Robot Planning
Problems Using Weighted Maximization

Nils Wilde , Member, IEEE, Stephen L. Smith , Senior Member, IEEE,
and Javier Alonso-Mora , Senior Member, IEEE

Abstract—When designing a motion planner for autonomous
robots there are usually multiple objectives to be considered. How-
ever, a cost function that yields the desired trade-off between ob-
jectives is not easily obtainable. A common technique across many
applications is to use a weighted sum of relevant objective functions
and then carefully adapt the weights. However, this approach may
not find all relevant trade-offs even in simple planning problems.
Thus, we study an alternative method based on a weighted max-
imum of objectives. Such a cost function is more expressive than
the weighted sum, and we show how it can be deployed in both
continuous- and discrete-space motion planning problems. We pro-
pose a novel path planning algorithm for the proposed cost function
and establish its correctness, and present heuristic adaptations that
yield a practical runtime. In extensive simulation experiments, we
demonstrate that the proposed cost function and algorithm are able
to find a wider range of trade-offs between objectives (i.e., Pareto-
optimal solutions) for various planning problems, showcasing its
advantages in practice.

Index Terms—Optimization and optimal control, motion and
path planning, multi-objective optimization, task and motion
planning.

I. INTRODUCTION

AUTOMATED planning and decision making plays a cen-
tral role in designing intelligent robotic systems. In many

real-world settings, autonomous robots are faced with complex
scenarios that require them to balance between different objec-
tives simultaneously. For instance, autonomous vehicles need
to navigate to a goal, while ensuring safety, passenger comfort
and ideally fuel-efficiency [1], [2], [3]. Similarly, mobile robots
navigating in human-centered spaces such as offices, hospitals
or public areas need to consider task efficiency and conforming
to social norms [4], [5].

In multi-objective optimization (MOO) problems – such as
finding trajectories trading off different objectives – the optimal
solution is usually not unique, but rather there is a set of Pareto-
optimal solutions. A solution is Pareto-optimal when none of
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Fig. 1. Simple planning problem with two objectives: trajectory length and
the minimum distance to an obstacle. Shown are the ground set of trajectories
(a), the solutions when using a weighted sum objective (b), and the solutions
when using the proposed weighted maximum objective (c). In each subfigure the
left plot shows the set of trajectories and the right plot shows the corresponding
trade-offs. Colored trade-offs are Pareto-optimal, i.e., show the Pareto-front.

the individual objectives can be improved without worsening at
least one other objective. Thus, an important challenge in motion
planning remains the design of objective functions that balance
between several potentially competing objectives and allow for
computing Pareto-optimal solutions. A common approach is to
formulate a weighted sum of the objective functions [2], [4], [6],
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[7]. Often, the weights on the objectives are tuning-parameters,
requiring careful calibration. In human-robot interaction (HRI)
user preferences for robot behaviour is commonly modelled as
a weighted sum of features [4], [8], [9], [10], [11], [12]. The
linear structure allows for designing efficient algorithms for both
motion planning and learning from human feedback making this
approach very popular.

However, it can fail to describe all optimal trade-offs since it is
unable to explore non-convex regions of Pareto-fronts. This issue
persists even in simple planning problems, as illustrated in Fig. 1.
Here we compute trajectories between a fixed start and goal
position around two static obstacles. To optimize for trajectory
length and the minimal distance to an obstacle we can inflate
the obstacles and then plan paths on visibility graphs. Subplot
1a shows the ground set of feasible trajectories together with the
corresponding Pareto-front. Subplot 1b shows the trajectories
that can be computed with the weighted sum (WS) method
for different weights. We observe that the trajectories found by
the WS method are only a small subset of the Pareto-optimal
solutions from 1a: While there are numerous trajectories avail-
able that pass between the two obstacles, there are only few
that go around. It is important to notice that this is not due to
the choice or resolution of the weights. Rather, there does not
exist any tuning of weights such that the motion planner returns
a more intermediate trade-off, since parts of the Pareto-front
are non-convex [13]. This problem occurs when parts of the
Pareto-front are non-convex: the solutions of the weighted sum
method do only cover the convex hull of the Pareto-front [13].

We study an alternative form of scalar objective function,
the weighted maximum (WM) of objectives, also known as
Chebyshev scalarization [13]. This allows for finding a richer
set of trade-offs between the two objectives as shown in subplot
1c, covering all parts of the Pareto-front. Indeed, this approach
is able to find all Pareto-optimal solutions, i.e., is Pareto-
complete [13]. Despite the theoretical foundations established
in the optimization literature, more expressive scalarization
methods such as the WM have not found much attention in
robot motion planning. To demonstrate the potential of WM
optimization in robot motion planning we discuss fundamental
shortcomings of widely used WS cost functions, independent
of how weights are selected. We revisit established results from
optimization to describe theoretical differences between WS and
WM cost functions: WM cost is a provably more expressive
tool for motion planning, yet only requires the same number of
parameters. We show how WM costs can be used in continuous
and discrete space planning problems. For discrete planning,
we consider a general monotonic utility function to combine
objective values of discrete actions (e.g., edges in graphs),
allowing for complex planning.

A. Contributions

Our contributions are as follows: First, we consider
continuous-space planning problems and show how existing
optimization techniques can be used to solve planning problems
with WM cost functions. Further, we show NP-hardness of graph
based path planning with a WM cost. Second, we present a novel

optimal path planning algorithm for the WM cost and establish
its correctness. Further, we show how our algorithm can be
enhanced with a cost-to-go heuristic and discuss a budgeted
suboptimal version that runs in polynomial time. Third, in a
series of simulations, we demonstrate that the proposed WM
method finds a substantially richer set of trade-offs in various
motion planning problems, and showcase that the proposed
graph search finds optimal solutions within a practical runtime.

B. Related Work

Many robot planning problems consider multiple, potentially
competing objectives. The most prominent approach is to formu-
late a weighted sum of a given set of objective functions and then
solve the resulting scalar optimization problem. This approach
is used in trajectory planning for autonomous driving [1], [2],
[3], [14], [15], [16], [17], local planning in cluttered environ-
ments [7], [18] or social spaces [19], [20], trajectory generation
for manipulators [6], [21], and multi-robot planning [22], [23].

Researcher in HRI use weighted sums of objective functions
– usually referred to as features – to model how users evaluate
robot behaviour [8], [9], [10], [11], [12], [24], [25], [26]. In
human-in-the-loop learning frameworks users provide feedback
to a robot in form of demonstrations, choice, labels, critic, and
others, allowing the robot to learn weights for the objective func-
tions and thus adapt their behaviour to the user’s preferences.

Different approaches that address the shortcomings of WS
objectives include alternative scalar functions such as the WM
approach, or incremental algorithms that iteratively explore
the entire Pareto-front [13]. A popular approach that can ex-
plore non-convex Pareto-fronts is the Adapt Weighted Sum
Method [27], [28]. Here solutions are sampled iteratively using
equality constraints to force new samples to close gaps in the
Pareto-front. Yet, this approach is solving a slightly different
problem than we are addressing: The method iteratively creates a
set of potential solutions that cover the Pareto-front. Thus, it does
not have tuning parameters such that carefully choosing them
allows for obtaining the desirable solution. Further, the approach
does not come with a completeness guarantee and can get stuck
when the Pareto-front is discontinuous. Lastly, satisfying the
added equality constraints can be infeasible or computationally
hard in practice, especially in discrete-space planning. In our
work, we propose using a WM cost function which has tunable
weights such that any Pareto-optimal solution can be attained
for a specific weight vector. Further, we explicitly address the
challenges in discrete space planning and propose a novel graph
search for minimizing WM costs for different types of individual
objective functions.

Overall, the limitations of WS costs find less discussion in
the context of robot planning. Recently, [29] compared dif-
ferent scalar objective functions. Our work focuses on the
WM cost function only, yet provides a theoretical analysis of
its expressiveness and presents a novel algorithm for discrete
space planning. Other works directly address MOO for specific
problems. For instance, the authors of [30] studied weighted
sum and weighted minimum approach for exploring Pareto-
fronts of sampling based motion planning problems, while [31]
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addresses the problem of simultaneously optimizing for path
length and clearance in the plane, proposing a complete and
efficient algorithm. WM cost functions also found attention in
multi-objective Reinforcement Learning (RL) [32], [33]. The
works of [34] and [35] study hierarchical frameworks based
on a multi-objective Probabilistic Roadmap (MO-PRM) and
explicitly consider two objectives: path length and risk [34],
and path length and state-estimation error [35]. The MO-PRM
separates objectives in primary and secondary costs, and then
plans using a discretization of values for the secondary costs,
similar to the ε-constrained method [13]. A drawback of that
method is that it depends on the resolution of the constraint on
the secondary cost and can require solving multiple optimization
problems in order to verify Pareto-optimality. In contrast to these
works, our paper does not address a specific multi-objective
motion planning problem, but rather proposes an alternative to
weighted sums for any collection of objective functions.

II. PROBLEM STATEMENT

In this section, we revisit some preliminary concepts before
introducing our formal problem statement.

A. Preliminaries

1) Pareto-Optimality: Consider a multi-objective optimiza-
tion problem where the domain is some vector space X . We
want to find a solution x ∈ X that simultaneously minimizes
n different functions, i.e., that solves minx{f1(x), . . . , fn(x)}.
In general, the solution to a MOO problem is not a unique vector
x, but a set of Pareto-optimal solutions. We briefly review the
definitions of dominated solutions and the Pareto-front.

Definition 1 (Dominated solution): Given a MOO problem
and two solutions x,x′ ∈ X . Vector x dominates x′ when
fi(x) ≤ fi(x

′) holds for all i = 1, . . . , n, and fj(x) < fj(x
′)

holds for at least one j where 1 ≤ j ≤ n.
Definition 2 (Pareto-front): Given a MOO problem, the set

of Pareto-optimal solutions – called Pareto-front – is the subset
of all solution that are not dominated by another solution.

2) Graph Theory: Following [36], a graph is a tuple G =
(V,E)whereV are vertices andE is a set of edges. In a weighted
graph G = (V,E, d) edges are associated with some cost d :
E → R. A walk is a sequence v1, e1, v2, . . . , vk, ek, vk+1 such
that ei = (vi, vi+1) ∈ E and ei �= ej for i, j = 1, . . . , k. We
define a path P as a sequence of vertices (v1, . . . , vk+1)
with no duplicate entries for which there exists a walk
v1, e1, v2, . . . , vk, ek, vk+1 in G.

B. Problem Formulation

We consider a planning problem described by a robot’s state
and action space (X ,A), a start state xs and a set of goal states
Xg ⊂ X . Let T be the set of all feasible trajectories starting at
xs and ending at some state xg ∈ Xg . Note that the set T is
typically defined implicitly as set of constraints on the robot’s
state and actions, such as kinodynamic constraints on motion,
or spatial constraints for obstacle avoidance. We keep this set
abstract at this point, but give specific examples in Section V.

To define the desired robot behaviour the designer of a motion
planner considers a set objectives to be minimized. Let these
objectivess be denoted by f1, . . . , fn where fi : T → R≥0 for
i = 1, . . . , n. The optimal solution to the motion planning prob-
lem is some trajectory T ∗ ∈ T . Assuming that the objectives
f1, . . . , fn contain all aspects under consideration, T ∗ is a
Pareto-optimal solution to the problem

min
T∈T

{f1(T ), . . . , fn(T )} . (1)

Let T ′ ⊆ T denote the set of all Pareto-optimal solutions. Given
above definitions, we can pose our main problem.

Problem 1 (Parametric single objective planning): Given
state and action space (X ,A), initial state xs and goal states
Xg , and objectives f1, . . . , fn find an algorithm such that, for
any Pareto-optimal solution T ∗ ∈ T ′, there exists algorithm
parameters for which the algorithm returns T ∗.

Our approach to Problem 1 is writing (1) as a scalar function
where tuning weights w define the balance between objectives.
The scalar function needs to be solvable, and for any Pareto-
optimal trajectory T ∗ ∈ T there exist a choice of weights such
that T ∗ is the solution to the scalar optimization problem.

III. APPROACH

A common approach to tackle Problem 1 is solving the MOO
problem from (1) via means of linear scalarization, also referred
to as the weighted sum (WS) method or cost [13]. This yields
the following cost function

csum(T ) =

n∑

i=1

fi(T )wi = f(T ) ·w, (2)

where w ∈ [0, 1]n is a vector of tunable weights. While this
approach has been widely used and been proven to be effective,
its simplicity limits the expressiveness. In this paper, we offer an
alternative model-based approach. We propose a weighted max-
imum approach for a scalar cost functions, where the summation
is replaced by taking the maximum:

c′(T ) = max
i=1,...,n

fi(T )wi. (3)

The cost of a trajectory is now given by the objective that
attains the largest value when multiplied by its weight. That
is, a trajectory is evaluated only based on the most prominent
weighted objective value. We notice that when the solution to (3)
is unique, it is Pareto-optimal. However, if there are multiple
solutions, then one is Pareto-optimal, while all others are only
weakly Pareto-optimal [13].

In order to only attain Pareto-optimal solutions, we add
ρ
∑n

i=1 fi(T ) as a tie-break in the cost function, where ρ > 0 is
a sufficiently small constant:

cmax(T ) = max
i=1,...,n

fi(T )wi + ρ

n∑

i=1

fi(T ). (4)

We refer to this as the weighted maximum (WM), or aug-
mented Chebyshev problem [13]. Next, we characterize its ex-
pressiveness compared to the WS. Given a planning problem
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with the ground set of feasible trajectories T , let T ′ ⊆ T be
the set of all Pareto-optimal trajectories. Further, let T sum ⊆ T
be the set of trajectories that are optimal for some weight in
(2) and let T max ⊆ T be the set of trajectories that are opti-
mal for some weights in (4). In detail, we have T sum = {T ′ ∈
T | T ′ = argminT csum(T ), w ∈ [0, 1]n}, and T max = {T ′ ∈
T | T ′ = argminT cmax(T ), w ∈ [0, 1]n}. We revisit a known
result:

Lemma 1 (Pareto-optimality of scalarization): For any plan-
ning problem T sum ⊆ T max ⊆ T ′.

A proof is omitted since this is a well established result in
multi-objective optimization [13]. The lemma ensures that any
solution to the two scalarized optimization methods is always a
Pareto-optimal solution. However, a lesser known result is while
all solutions to (2) are Pareto-optimal, there can exist Pareto-
optimal solutions that are not a solution to (2) for any w. Thus,
the WS is less expressive than the WM.

Proposition 1 (Expressiveness): Given a planning problem
where trajectories T are parametrized in R

m, and auxiliary cost
functions f(T ) = [f1(T ) . . . fn(T )]. If at least one of the cost
functions fi(T ) is not a proper convex1 and continuous function
over Rm then T sum ⊂ T max, i.e., optimizing (2) is strictly less
expressive than optimizing (4).

The proof follows directly from Theorem 6.3 and Remark
6.4 in [37]: Linear scalarization is only Pareto-complete when
the costs are proper convex and continuous. Thus, when that
condition is violated we have T sum ⊂ T ′. In contrast, the WM
is Pareto-complete [13], i.e., T max = T ′ always holds.

The effect of Proposition 1 becomes apparent in Fig. 1. When
there is more than one homotopy class for navigating around
obstacles, the objective for minimizing closeness to obstacles
becomes non-convex. As a consequence, the Pareto-front is non-
convex. The WS method is then only able to find solutions lying
on the convex hull of the Pareto-front, while the WM method
finds solutions in all parts of the Pareto-front.

IV. MOTION PLANNING WITH WEIGHTED MAXIMUM COST

We now consider the problem of finding an optimal trajectory
for the proposed WM cost for given weights w. Thus, we study
how the WM cost can be used in continuous space motion plan-
ners such as Model-Predictive Control (MPC), and in discrete,
graph-based planners such as state-lattices.

A. Continuous Space Planning

We consider a discrete time, continuous space planning prob-
lem to find an optimal trajectory T , subject to kinodynamical
constraints g(T ) ≤ 0. When minimizing the proposed WM cost,
the problem may be written as

min
T

max
i

fi(T )wi + ρ

n∑

i=1

fi(T )

s.t. g(T ) ≤ 0. (5)

1A convex function f(x) is proper convex over its domainX if it never attains
−∞, and if there exists at least some x0 where f(x0) < ∞.

Following [38], this can be reformulated as follows

min
T

t+ ρ

n∑

i=1

fi(T )

s.t. max
i

wifi(T ) ≤ t for i = 1, . . . , n,

g(T ) ≤ 0. (6)

The newly introduced max constraint can be written out as n
constraints of the form wifi(T ) ≤ t for i = 1, . . . , n. We ob-
serve that this removes the maximization from the problem, such
that the objective and constraints are linear compositions of the
individual objective fi. In case constraints g(T ) are non-convex,
solving for the weighted maximum does not make the problem
fundamentally harder than optimizing for the weighted sum.
However, the same does not hold for graph-based planners as
we will show next.

B. Graph Based Planning

We now consider the WM cost for discrete space motion
planners such as graph or lattice based methods and characterize
the hardness of the problem. Let G = (V,E) be a graph where
we associate each edge e ∈ E with non-negative and bounded
trajectory costs f ′

1(e), . . . , f
′
n(e).

1) LP Formulation: We briefly consider the simple case
where the costs of a path are the sum of the edge costs fi(P ) =∑

e∈E(P ) fi(e). We recall the linear program (LP) formulation
of a shortest path problem, i.e., a path minimizing (2). Thus,
the cost of an edge e is given by f(e) ·w, and the network
flow constraints are summarized as F (x) ≤ b. The well-known
LP-formulation [39] then is

min
x

∑

(v,u)

xvu · f(evu) ·w

s.t. F (x) ≤ b. (7)

Here x is a binary vector, where xvu = 1 indicates that edge
(v, u) is contained in the path. When now considering the WM
cost, the objective is minx maxi wi

∑
(v,u) xvu · f ′

i(evu) +

ρ
∑n

i=1 fi(evu). In principle, we can apply the same re-
formulation technique as in (6) and still obtain an LP. However,
the solution will not have integer values since the constraints
are no longer totally-unimodular. Hence, the LP solution will
not solve the shortest path problem [39].

2) Formal Problem Analysis: Given that the LP-formulation
for shortest paths does not work for the WM cost, we study the
problem of finding a path that minimizes (4) in more detail. We
consider the general case where the costs of a path P are not
necessarily the sum of the edge costs in the path. Instead, the
cost for a path P with edges E(P ) is

fi(P ) = β (f ′
i(e1), f

′
i(e2), . . . ) , where e1, e2, · · · ∈ E(P ).

(8)
We refer to β as the composition function and assume that
β is monotonically increasing. This captures two widely used
concepts of defining costs over a robot’s trajectory: i) summation
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or integration over the trajectory to compute its length, time, inte-
gral square jerk, accumulated risk or similar costs, and ii) taking
the maximum value over a trajectory such as the maximum jerk
or maximum risk. Thus, we can state the problem of finding a
path of minimal maximum weighted cost.

Problem 2 (Min-max cost path (MMCP)): Given a strongly
connected graph G = (V,E) with start and goal vertices s, g in
V , edge cost functions f ′

1(e), . . . , f
′
n(e), a composition function

β, and weights w1, . . . , wn, find a path that solves

min
P

max
i

wifi(P ) + ρ

n∑

i=1

fi(P ). (9)

The problem is closely related to the multi-objective shortest
path (MOSP) problem, which is NP-hard for two or more
objectives [40]. The main difference is that MOSP considers
that β is taking the sum over different edge cost, which makes it
a special case of Problem 2. We formally establish hardness of
our problem.

Proposition 2 (Hardness of MMCP): The MMCP is NP-hard.
Proof: We consider the special case that fi(P ) =∑
e∈E(P ) fi(e). The decision version of MMCP decides if

there exists a path such that the maxi wifi(P ) ≤ α for some
constant α. We can reduce MOSP to MMCP. MOSP takes as an
input a graph G = (V,E) and some cost functions γ1, . . . , γn
assigning costs to edges. The decision version answers if there
exists a path P such that

∑
e∈E(P ) γi(e) ≤ α for all i and some

constant α. Given an instance of MOSP, we use the same graph
as an input for MMCP, choose costs fi(e) = γi(e), and set
wi = 1 for i = 1, . . . , n. The solution to MMCP then indicates
if maxi

∑
e∈E(P ) γi(e) ≤ α, which trivially also decides the

MOSP instance. �
3) Algorithm Description: We now present a complete algo-

rithm for MMCP, detailed in Algorithm 1. Our approach is a
modification to Dijkstra’s algorithm where we record all paths
to a vertex, similar to the Martin algorithm for MOSP [41]. To
that end, the elements in our open_list are tuples consisting of
a cost, a vertex, and a path (i.e., a sequence of preceding vertices)
from the start to this vertex. Similar to Dijkstra’s our algorithm
retrieves the lowest cost element from the open_list (line 3).
We then expand the neighbouring vertices u (line 7) and ensure
that the path to the neighbour is not in the open_list, is not
dominated by another path to u, and does not contain cycles
(lines 8-10). We then add the path to u with its WM cost to
the open_list (line 12-13). Algorithm 1 is able to handle any
monotonically increasing composition function β (see (8)) as
opposed to the sum of edge costs considered in MOSP. Opposed
to MOSP, we are only interested in finding one solution for a
given weight instead of the set of all Pareto-optimal paths. Thus,
Algorithm 1 terminates once the goal is reached (lines 4-5).

4) Theoretical Properties: First, we characterize the run-
time. In the worst case, Algorithm 1 explores all paths from
s to any vertex u, leading to 2|V | (the size of the power set
for all sequences of vertices) executions of the while loop. For
each subpath, we compute its cost only once in line 12, which
requires evaluating fi(e) for all its edges and all n objective
functions. The number of edges is upper bounded by |V |2.

Algorithm 1: Min-Max Cost Path.

Assuming that the evaluation of the costs fi(e) takes constant
time, the total runtime is O(2|V | · |V |2 · n). While the runtime
only grows linearly with the number of objective functions, it
can scale exponentially with the number of vertices. However,
due to the stopping criteria in line 4, the algorithm does not
enumerate all 2|V | solutions in practice. In our simulations we
show that it is able to solve instances with |V | = 2000.

Next we will establish correctness of the algorithm. We begin
by considering the subpath elimination in line 9.

Lemma 2 (Subpath elimination): Let P ′ and Pu be two sub-
paths from s to u such that P ′ dominates Pu. If the composition
function β is monotone, then Pu cannot be part of an optimal
path from s to the goal g.

Proof: If P ′ dominates Pu then fi(P
′) ≤ fi(P

u) for all i.
Now consider any possible path Q from u to the goal g. Since fi
is monotone we then have fi(P

′ ∪Q) ≤ fi(P
u ∪Q). Finally,

c(P ′ ∪Q) ≤ c(Pu ∪Q) follows directly from (4). Hence, Pu

cannot lead to a path to the goal of lower cost than P ′ and thus
may be disregarded from the search. �

The result is similar to the analysis in [40], yet extends to the
case of any monotone composition function β instead of only
sums. Based on Lemma 2, we can ensure that our algorithm finds
the optimal solution.

Proposition 3 (Correctness): For any given weight w,
Algorithm 1 returns the optimal solution P ∗ = argminP
maxi fi(P ) · wi.

Proof: The proof follows three steps: (i) Lemma 2 ensures
that we never eliminate the optimal path during the search. (ii)
Eventually, a tuple (cost, v, P ) where v = g will be pulled from
the open list and we thus find a path to the goal. (iii) the first
time such a tuple is retrieved from the open list, it must have
the minimal cost in the open list, and since it is the element of

Authorized licensed use limited to: TU Delft Library. Downloaded on February 16,2024 at 11:06:11 UTC from IEEE Xplore.  Restrictions apply. 



2508 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 3, MARCH 2024

minimal cost in the open list and the cost is monotone, there
cannot be another subpath in the open list that, when extended
until g, achieves a smaller cost. �

5) Cost-to-Go Heuristic: While Algorithm 1 is optimal, its
runtime scales exponentially with the size of the graph. The
runtime can be improved with a cost-to-go heuristic as in an A∗

or D∗ algorithms [42]. To use a heuristic, we augment the path
Pu with a virtual edge to the goal. This virtual edge allows for
including an estimate for the cost-to-go. An A∗ algorithm simply
adds a heuristic value for the cost-to-go to the current cost. In
contrast, our problem considers a maximization in the cost as
well as a potentially non-linear composition function. Thus, we
explicitly add an edge and then calculate the WM cost in line 12
for the augmented path. The objective values of the virtual edge
must be chosen such that the WM cost of the augmented path is
an underestimate of the optimal path to the goal. For instance,
if one objective is length, we can set the length of virtual edge
to the Euclidean distance while other objective values are zero.

6) Runtime Budgeting: Finally, we can modify Algorithm 1
to find potentially suboptimal solutions in polynomial runtime,
similar to anytime algorithms such as ARA* [43]. To that end, we
introduce a budget b for the number of predecessor paths leading
to every vertex that we can store. We then only add a new tuple
in line 13 when the number of tuples with a path ending at u in
the open list is below b. This prevents the open_list to grow
exponentially, yet might prevent the algorithm from finding an
optimal solution.

In summary, we have shown how the WM cost can be incor-
porated in continuous- and discrete-space planning problems.
For graph based planning we provided hardness results together
with a complete algorithm.

V. NUMERICAL RESULTS

To illustrate the advantages of the WM method, we consider
several motion planning problems with multiple objectives and
compare the attainable solutions when using either WS and WM.
Further, we investigate the runtime of Algorithm 1.

A. Comparison of WS and WM Cost Functions

For given objective functions, we compare how expressive
WM ans WS approaches are. We approximate the sets of at-
tainable solutions T sum and T max for the WS and WM cost
functions as follows: We randomly sample a large set of weights
w1, . . . ,wk and then compute the respective sets of optimal
solutions Ssum = {T sum(w1), . . . , T sum(wk)} solving (2) and
Smax = {T max(w1), . . . , T max(wk)} solving (4). Thus, Ssum and
Smax are both subsets of the Pareto-front of the MOO described
by the given objective functions, i.e., consist of Pareto-optimal
solutions.

We use three quantitative measures to compareSsum andSmax:
dispersion, coverage and number of unique solutions on the
Pareto-fronts. The dispersion captures gaps in the approximation
of the Pareto-front, and is defined as follows:

Definition 3 (Dispersion): Given solutions S = {T 1, . . . ,
T k}, the dispersion of S is the maximum distance between

TABLE I
NUMERICAL RESULTS FOR DIFFERENT PLANNING PROBLEMS

a point p on the Pareto-front and the closest f(T i) for i =
1, . . . , k.

In principle, this distance should be defined as a measure along
the Pareto-front, yet for practical purposes we use the Euclidean
distance. Note that for a useful interpretation of dispersion mea-
sure, we require objectives to be normalized. Coverage captures
the volume of the set of points that is dominated by the solutions
S [44]. In a minimization problem with normalized features we
sample over the set [0, 1]n to estimate coverage. Lastly, sampling
k different weights does often not lead to k different solutions.
Thus, given a set S = {T 1, . . . , T k}, we compute the number
of trajectories T i where the Euclidean distance between f(T i)
and f(T j) is above some threshold δ for all i, j = 1, . . . , k.
We refer to this measure as the number of unique solutions. All
experiments run with k = 200 samples and distance threshold
δ = 0.01.

1) Simple Obstacles: First, we revisit the example from
Fig. 1 and provide numerical results in Table I (labelled Ob-
stacles). We observe that WM outperforms WS on all three
metrics, and with a large margin on dispersion on and number
of solutions. This highlights the significant shortcomings of the
WS even in very simple planning problems.

2) Continuous space Motion Planning: The second exper-
iments considers a continuous space motion planner. We use
the driver experiment that is popular in numerous studies on
reward learning in HRI, for instance [10], [11], [25]. An au-
tonomous car navigates on a three lane road in the presence of a
human-driven vehicle. The problem considers four objectives:
heading, position in the lane, speed and distance to the other car.
We solve the problem numerically using a numerical solver for
constrained non-convex optimization. The min-max objective is
implemented as in (6).

Qualitative results are shown in Fig. 2. Since the numerical
solver may return suboptimal solutions, we filtered all trajecto-
ries that were dominated by another trajectory. Overall, the WM
yields a larger variety of solutions. In particular, the solutions for
the WS method are only variations of few types of trajectories,
while WM offers more nuanced solutions. On the evaluation
measures, the WM clearly outperforms the WS with respect to
dispersion and the number of unique solutions, yet by a smaller
margin than in the Obstacles experiment. For coverage WM has
only a small benefit.

3) Graph-Based Motion Planning: In the third setup we
consider a probabilistic roadmap (PRM) with 1000 vertices,
shown in Fig. 3. Similar to the first experiment, the objectives are
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Fig. 2. Results for the driver experiments. White shows the human driven car,
red trajectories show solutions for the autonomous car.

Fig. 3. Optimal paths for a graph based motion planning problem with two
objectives: Path length, and the summed distance to an obstacle. Upper: colored
trajectories are solutions found by the weighted sum (a) and weighted maximum
(b), respectively. Lower: Objective values of the trajectories of the upper plot.

path length and closeness to obstacles. We consider two prob-
lem variations for closeness: the summed closeness, labelled
as Graph-1 in Table I with an example shown in Fig. 3, and
minimum closeness, labelled as Graph-2.

In Fig. 3 we observe that the WM finds a larger variety of
paths, some falling into a homotopy class for which the WS
method does not find any path. In the Pareto-fronts WS exhibits
several large gaps, while the WM covers the Pareto-front more
densely. The gaps of the WS correspond to non-convex parts
of the Pareto-front, implying that these parts cannot be covered
by the WS for any choice of weights. The measures in Table I
show again a substantially smaller dispersion, slightly higher
coverage and higher number of solutions for WM compared to
WS in both graph problems.

In summary, in all three planning problems the proposed
method is able to find better sets of Pareto-optimal trade-offs
compared to the weighted sum method.

B. Performance of WM Planning on Graphs

In a second experiment, we investigate the performance of
Algorithm 1 when using the computation budget and the cost-
to-go heuristic. As a heuristic, we add a virtual edge where the
length equals the Euclidean distance to the goal and the closeness
is zero. We use a PRM with 2000 vertices, similar to the one in

Fig. 4. Performance of heuristic variants of Algorithm 1 with different com-
putation budgets b. Shown are the cost ratio over an optimal solution and the
computation time ratio over Dijkstra’s algorithm.

Fig. 3. In 1000 trials, we randomise start and goal locations,
as well as the weights in the cost function. Fig. 4 shows the
cost ratio compared to optimal and the computation time for
various computation budgets b. For the standard implementa-
tion without heuristic, we observe that for b = 50, all returned
solutions are almost optimal (ratio < 1.001). This comes with
an increase in computation time by a factor of 250 on average,
but still remains below 3 seconds (Hardware specification: Intel
i7-11800H @2.3 GHz, 32 GB RAM.). Using the cost-to-go
heuristic keeps average the runtime increase below a factor of 35
(or< .5 seconds). Moreover, the heuristic also allows for finding
close-to-optimal solutions with a very small budget of b = 5,
where the runtime increase is negligible. Only for b = 1 the
heuristic can misguide the search and yield suboptimal solutions.
Yet, this does not invalidate the admissibility of the chosen
heuristic: For small b the algorithm has no guarantee for finding
an optimal solution, independent of the heuristic. In conclusion,
the cost-to-go heuristic and computation budget allow for finding
paths with minimal WM cost within a practical runtime.

VI. DISCUSSION

We studied WM cost functions as an alternative to commonly
used WS costs in motion planning problems with multiple
objectives. We showed that while the WS method is widely
used, it might only represent a small subset of all optimal
trade-offs when at least one of the objectives is non-convex.
We proposed a WM approach as an alternative cost function,
which is Pareto-complete. Further, we showed how the WM
cost can be used in continuous-space planning, characterized the
hardness for graph-based planning and presented a novel path
planning algorithm. Our simulations showed that the proposed
WM cost is substantially more expressive than the WS across
different motion planning problems, and that our proposed path
planning algorithm can efficiently find close-to-optimal solu-
tions. While the WM formulation makes path planning on graphs
NP-hard, our simulation results show that it allows for finding
substantially richer sets of solutions, recovering all parts of the
Pareto-front. Further, using runtime budgeting and the cost-to-go
heuristic allows for computing close-to-optimal solutions within
a practical computation time.

Future work should consider how WM costs can used
for learning user preferences in human-in-the-loop learning
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problems. Given its advantageous expressiveness the WM
allows for designing user models that represent a wider variety of
user preferences with the same number of parameters. Another
research direction is investigating how robot complex multi-
robot routing problems can be solved for a WM cost. Further, for
discrete space planning we assumed a monotonic composition
function. Future work could include non-monotonic cost func-
tions to broaden the range of applications. Lastly, finding suitable
parameters for the WM cost remains a challenge. Thus, we
plan to adapt our earlier work [45] to find sets of representative
weights for the WM cost.
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