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In this thesis the results of my final masters project are presented. This includes an extensive
mathematical definition of the multiplex itself and B-splines defined on tessellations of these
polytopes. The ability of these splines to fit scattered data is investigated in a verification
process. Finally a system identification algorithm is defined and validated on DelFly flight
test data.
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summary and introduction. The report includes all phases of the research. Finally the third
part contains a draft mathematical paper describing the definition of continuity conditions
between multiplices. This is seen as the mathematical innovation of this work. The goal is to
submit this paper to the Journal of Approximation Theory within a few months, as soon as
the connection to existing literature is made more clear. All parts of the report can be read
independent of each other and may use different notation.
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fellow students in room SIM 0.08, aka the Lower House, for providing the essential distractions
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Quadrotor System Identification using the

Multivariate Multiplex B-Spline

T. Visser, ∗ C. C. de Visser † and E. van Kampen ‡

Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

A novel method for aircraft system identification is presented that is based on a new
multivariate spline type; the multivariate multiplex B-spline. The multivariate multiplex
B-spline is a generalization of the recently introduced tensor-simplex B-spline. Multivari-
ate multiplex splines obtain similar or better approximation accuracy using less parameters
(B-coefficients) than standard multivariate simplex B-splines which are currently used for
aircraft system identification. The multiplex spline allows the user to incorporate a-priori
knowledge of the modelled system in the definition of the model structure. In particular,
while the standard simplex B-splines use a multi-dimensional triangulation in which all
dimensions are coupled, the multiplex spline enables the user to decouple specific model
dimensions based on expert knowledge of the system. The new method is used to ap-
proximate a 4-dimensional nonlinear quadrotor inflow dataset. The results show that the
multiplex B-spline obtains a relative root mean square error of 0.672% using 1440 B-
coefficients. This compares favorably to results obtained with the standard 4-dimensional
simplex B-spline on the same dataset, which resulted in an relative root mean square error
of 1.608% using 1540 B-coefficients.

Nomenclature

B Matrix form of basis polynomials of a spline
Bd
κ Vector of basis polynomials of a simplex spline

b Vector of barycentric coordinates in a simplex

Bdλ Vector of basis polynomials of a multiplex spline
c Vector of B-coefficients
d Polynomial degree
H Smoothness matrix
Kemf Constant related to back EMF in engine
` Number of layers in a multiplex spline
M Tessellation consisting of multiplices
m Continuity order or dimension smaller than n
N Number of simplices or multiplices in a tessellation
n Dimension, number of variables
P Engine power, W
p Simplex polynomial
Ra Motor armament resistance, Ω
r Total continuity order
T Thrust, N
T Triangulation consisting of simplices
U Input voltage, V
v Vertex of a simplex
v Velocity, m/s

∗Master Student, Control and Simulation Department, t.visser-1@student.tudelft.nl.
†Assistant Professor, Control and Simulation Department, c.c.devisser@tudelft.nl, AIAA Member.
‡Assistant Professor, Control and Simulation Department, e.vankampen@tudelft.nl, AIAA Member.
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w Vertex of a multiplex layer
X Input matrix
y Output vector
α Angle of attack, deg
β Vector of barycentric coordinates in a multiplex
Γ Multiplex
γ Multi-index used in simplex continuity conditions
∆ Simplex
ε Multi-index used in multiplex continuity conditions
η Total motor and rotor efficiency
κ Simplex spline multi-index
λ Multiplex spline multi-index
µ Multi-index containing dimensions of multiplex layers
ν Multi-index of dimensions of a multiplex
π Multiplex polynomial
ω Rotor rotational rate, rpm

Subscript
h Induced in hover
i Induced
z Vertical
∞ Freestream

I. Introduction

Due to the increased popularity of model-based control techniques such as nonlinear dynamic inversion,
the need for accurate non-linear models has grown. In many industrial applications data tables are used,
whereas the research community has embraced neural networks as a function approximator. Recently the
multivariate simplex B-spline was presented as an alternative.1–3 The main benefit of this technique over
neural networks is the fact that it is linear in the parameters. This allows for the use of efficient least squares
solvers.

The major downside of the simplex spline is its triangulation. Although it provides the user with a lot
of flexibility in spanning the domain of interest, it is unclear how this flexibility can be exploited. Most
triangulation optimization algorithms are developed for two-dimensional domains.4 In higher-dimensional
domains these algorithms cannot be used. Current practice is to split up the domain in rectangular shapes
first. These boxes are then split up using a standard triangulation.1 Another option that is currently being
investigated is the simultaneous optimization of the triangulation and the parameters.5 Although a global
optimum can be found with both the parameters and the triangulation as arguments, its high computational
complexity currently forbids the use of this technique on large triangulations.

On top of the excess flexibility in defining a triangulation, the shape of the high-dimensional simplex also
gives reason for concern. As the dimension increases, the content of the simplex moves towards the vertices,
away from the center. In practical terms, it becomes increasingly hard to fill the entire simplex with data.

In this paper a new spline is proposed that can immediately be defined on orthotopes (or boxes), without
triangulating them. This has significant benefits over standard simplex B-spline methods in terms of the
distribution of data over a domain element. The flexibility in defining the triangulation is reduced, but
the technique employed by De Visser can still be used,1 with the difference that it is no longer required to
triangulate the orthotopes.

The definition of the orthotope spline is based in the tensor-product simplex spline, which was recently
introduced by Govindarajan et al. to solve the Hamilton-Jacobi-Bellman equation, central in reinforcement
learning and optimal control.6,7 In this framework the B-coefficients of a multivariate simplex spline are
defined using a univariate spline function of a different variable. This framework was used by Govindarajan
et al. to estimate autopilot safety margins,7 and by Sun et al. in an aircraft system identification framework.8

The multivariate multiplex spline used in the current research is a direct generalization of the tensor-
product simplex spline. It allows for the use of multiple multivariate layers. Each layer represents a multi-
variate simplex spline that describes the coefficients in the previous layer. Fitting data on non-rectangular
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domains is facilitated by studying the combination of a single simplex from each layer: a multiplex.
The goal of this paper is to present and test an algorithm for aircraft system identification based on

this multivariate multiplex spline. As a test case, the thrust and torque of a quadrotor MAV are modeled,
taking engine dynamics and nonuniform inflow into account. The advantage of the multiplex spline over the
standard simplex B-spline is demonstrated; a similar or better approximation accuracy is obtained with a
lower total number of parameters (B-coefficients) than the standard simplex B-splines.

Because this is the first introduction of the multiplex spline in an engineering application, a short in-
troduction is presented here as section II. A more extensive discussion, as well as many of the proofs of
presented theory, can be found in Ref. 9. In section III the main contribution of this article is presented.
An algorithm is proposed for the use of the multiplex spline in system identification. The application of the
algorithm to a quadrotor modeling task is described in section IV. Finally in section V the performance of
the algorithm is discussed and conclusions are drawn regarding its applicability.

II. The multiplex spline framework

The origin of the multiplex spline lies in the tensor-product simplex spline of Govindarajan.6 That is,
B-coefficients of one spline are represented by a spline in other variables. The multiplex spline results when
this process is repeated and B-coefficients are reordered. The process and the effect on the defining elements
of a simplex spline are discussed in this section.

To properly introduce the multiplex spline, first a short explanation of the simplex spline framework is
presented. A more elaborate discussion of the bivariate case is given by Lai and Schumaker.10

A. The multivariate simplex spline

A multivariate simplex spline is a piecewise polynomial defined on a geometric basis of simplices. Continuity
of arbitrary order can be defined between simplices if they share an edge. The polynomials on individual
simplices are weighted sums of Bernstein basis polynomials defined in barycentric coordinates. The most
important facets of such a spline are discussed in this subsection.

1. Simplices, barycentric coordinates and triangulations

An n-simplex is defined as the convex hull of n + 1 non-degenerate vertices V = {v0, ...,vn},vi ∈ Rn. Any
point in Rn can be uniquely defined using a vector of n+ 1 barycentric coordinates b := (b0, ..., bn) ∈ Rn+1

relative to this set of vertices, such that
n∑
i=0

bi = 1. For a general point x ∈ Rn we have

x =

n∑
i=0

bivi (1)

If bi ≥ 0,∀i ∈ [0, n], then x lies in the simplex described by V.
Multiple n-simplices ∆ can be combined to form a triangulation T of a domain. We define a triangulation

as the collective of simplices, such that

T =

N⋃
i=1

∆i, ∆i ∩∆j ∈ {∅, ∆̄},∀i 6= j (2)

with N the total number of simplices and ∆̄ an m-simplex, 0 ≤ m < n. That is, in a triangulation simplices
do not overlap but may share complete edges of dimension lower than n.

2. B-form polynomial

Polynomials are defined on a simplex by taking the weighted sum of Bernstein basis polynomials, defined in
barycentric coordinates. The B-form of such a polynomial is11

p(b) =
∑
|κ|=d

cκB
d
κ(b), Bdκ(b) :=

d!

κ!
bκ (3)
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where cκ are B-coefficients, discussed in the next subsubsection, and κ = (κ0, ..., κn) ∈ Nn is a multi-index
with |κ| :=

∑
i κi its one-norm. Also, κ! :=

∏
i κi! and bκ :=

∏
i b
κi
i . Every possible permutation of κ results

in a separate Bernstein basis polynomial. The complete set forms a basis for the space of all polynomials of
degree d in n variables.

To define a complete set of basis polynomials on each simplex in a triangulation, the vector form of the
basis polynomials is defined as

Bd
κ(b(x)) :=

Bdκ(b∆i(x)) if x ∈ ∆i

0 otherwise
(4)

where b∆i(x) signifies that x is described in barycentric coordinates with respect to the vertices of simplex
∆i. The vector form is thus a collection of the basis polynomials in one simplex, padded with zeros for all
other simplices.

3. B-coefficients and the B-net

v0 v1, ṽ1

v2, ṽ2 ṽ0

c111

c012

c021

c̃111

Figure 1: Two 2-simplices sharing an edge,
and their B-net (small black circles). In gray
an example first order continuity condition
is given. Note how one coefficient in the
right simplex is related to three coefficients
in the left simplex.

One important feature of the simplex spline is that the B-
coefficients cκ, introduced in Eq. (3) as the weights of the
basis polynomials, have a spatial location in the simplex. They
coincide with control points, such that cκ lies at xκ ∈ Rn

xκ =
1

d

n∑
i=0

κivi (5)

The collective of these locations is called the B-net. It plays
a central role in the definition of continuity conditions. An
example B-net is shown in figure 1.

Much like the basis polynomials, the B-coefficients are col-
lected in a vector. We write c∆i = (c∆i

κ )|κ|=d, where the coeffi-
cients are ordered according to the multi-index in lexicographi-
cal order, and c = (c∆1 , ..., c∆N ). The superscript ∆i indicates
that the coefficients lie in that simplex.

4. Continuity conditions

Two polynomials p and p̃ defined on n-simplices ∆ and ∆̃ that
share an n − 1-edge can be joined with arbitrary continuity order r < d. This is done by imposing the
following constraints1,10

c̃(m,κ1,...κn) =
∑
|γ|=m

c(0,κ1,...κn)+γB
m
γ (b∆(ṽ0)), ∀m ∈ [0, r] (6)

where γ is again a multi-index of the same size as κ and the sum between κ and γ is element-wise. It is
assumed that v0 and ṽ0 are the out-of-edge vertices. An example of a first order (that is m = 1) continuity
condition is given for the bivariate case in figure 1.

Because the conditions in Eq. (6) are linear in cκ, they can be collected in a smoothness matrix H, such
that we obtain12

Hc = 0 (7)

H is a very sparse matrix, because each row describes a single constraint between two simplices. That is, in

each row a maximum of 1 + (d+n−1)!
(d−1)!n! elements are nonzero.

4 of 13

American Institute of Aeronautics and Astronautics



w11 w10

w12

w20

w21

w′20

w′21

w11 w10

w12

w20

w21
w′11 w′10

w′12

(2,1)-multiplex (1,2)-multiplex

Figure 2: The construction of the (2,1)-multiplex in different order. In the left figure, a 2-simplex {w10,w11,w12}
is combined with a 1-simplex {w20,w21}, indicating that the 1-simplex is appended to any point on the 2-
simplex. On the right a 2-simplex is appended to any point on the 1-simplex. Both approaches result in the
same prism: the dotted (2,1)-multiplex with layers {w10,w11,w12} and {w20,w21}.

5. Fitting scattered data

The above can be combined into a single equality constrained least squares problem.

min ||y − B(b(X))c||
subject to: Hc = 0

(8)

In the above, || • || is the 2-norm, X is a matrix containing the input data, and B is the matrix of basis
polynomials. The output vector is given as y.

The solution of Eq. (8) can be found using Lagrangian multipliers. This is discussed in detail by De
Visser et al.12 Because the basis polynomial matrix B is block diagonal and H is sparse, distributed solvers
can be employed.

B. The multivariate multiplex spline

The multiplex spline is a generalization of the tensor-product simplex spline presented by Govindarajan et
al.6 In the latter framework the B-coefficients cκ are represented by a univariate simplex spline. In the
current discussion cκ is instead described using a multivariate spline. On top of that, the coefficients in this
second layer can again be described using a spline. The result is a spline defined on nested triangulations. In
the multiplex spline framework one simplex from each triangulation is considered at a time. The combination
of these simplices is called a multiplex.

1. Multiplices, barycentric coordinates and tessellations

A ν-multiplex Γ, with ν a multi-index with ` entries and |ν| = n, is an n-dimensional polytope that is
constructed by, starting from the ν1-simplex, iteratively combining the (ν1, ..., νj)-multiplex with a νj+1-
simplex. Combining layers in this case means to append the νj+1-simplex to every point in the (ν1, ..., νj)-

multiplex (see figure 2). The νj+1-simplex is called the (j + 1)
th

layer of the multiplex. In order for the
multiplex to be n-dimensional, each νi-dimensional layer should introduce νi new variables. In our current
discussion this means that the layers are mutually perpendicular. Note that the order in which layers are
combined does not affect the end result, as illustrated in figure 2.

Any point in the multiplex can be uniquely described using barycentric coordinates bi in each layer. By
collecting the vectors bi we obtain β = (b1, ..., b`) ∈ Rn+`, where bi = (bi0, ..., biνi) ∈ Rνi+1 with constraints∑
j bij = 1,∀i ∈ [1, `]. Instead of solving Eq. (1) for bi in each layer, a direct solution can be found by

considering the vertices of layers. For this we select a copy of each layer such that they share a vertex w0.
That is, we select vertex sets Wi = {w0,wi1, ...,wiνi}, as indicated in figure 2 for i ∈ {1, 2}. Then we have
for any point x ∈ Rn in the multiplex
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x = (1− `)w0 +
∑̀
i=1

νi∑
j=0

βijwij (9)

where wi0 := w0,∀i ∈ [1, `]. Equation (9) is a direct result of adding the origin location w0 to the locations
of the projections of x in the layers with respect to the same origin point w0.

A tessellation of multiplices is easily constructed from triangulations in each layer of the spline. For
example, a tessellation of (2,1)-multiplices can be constructed by making a triangulation of 2-simplices
and one of 1-simplices, then constructing the multiplices from any combination of simplices from both
triangulations. The resulting tessellation M consisting of multiplices Γi is defined as

M =

N⋃
i=1

Γi, Γi ∩ Γj ∈ {∅, Γ̄},∀i 6= j (10)

where N is the number of multiplices. The multiplex Γ̄ is a (ν − µ)-multiplex, where µ is a multi-index like
ν with 0 ≤ |µ| < n and ν − µ > 0.

2. B-form polynomial

w11 w0

w12

w21

Figure 3: A (2,1)-mulitplex and its B-net
for a multiplex spline of degree (3,2). The
B-net is formed by three parallel copies of
the simplex spline B-net (see figure 1).

If cκ in Eq. (3) is replaced by a polynomial in the B-form,
a tensor-product between the basis polynomials results. The
multi-indices κ from the layers are renamed and combined to
form one multi-index λ = (λ1, ..., λ`), where λi = (λi0, ..., λiνi)
the multi-index in the ith layer with |λi| = di. The degree is
defined per layer, leading to a degree vector d = (d1, ..., d`).
Applying these changes to Eq. (3) we obtain

π(β) =
∑
|λi|=di,
∀i∈[1,`]

cλBdλ(β), Bdλ(β) :=
∏̀
i=1

Bdiλi
(bi) =

∏
i di!

λ!
βλ

(11)
Again, the barycentric coordinate vector β = (b1, ..., b`) is a
collection of barycentric coordinates in the layers. The result-
ing basis polynomials have a degree of

∏
i di, but not all basis

polynomials of this degree are present.
In the vector form this procedure results in a tensor-product

per multiplex. The vector form of Bd
λ can be obtained by taking

the tensor-product of the subsets Bdi
λi

and then reordering, but obtaining them directly is preferable.

Bd
λ(β(x)) :=

Bdλ(βΓi(x)) if x ∈ Γi

0 otherwise
(12)

Note the similarity with Eq. (4).

3. B-coefficients and the B-net

The B-coefficients cλ are generated by collecting the multi-indices in the layers. Their location is again
determined by the control points xλ ∈ Rn

xλ = (1− `)w0 +
∑̀
i=1

1

di

νi∑
j=0

λijwij (13)

Note the similarity between Eq. (9) and Eq. (13). The B-net of the (2,1)-multiplex is given in figure 3.
The coefficients can again be collected in a vector c = (cΓ1 , ..., cΓN ) with cΓi = (cΓi

λ )|λi|=di,∀i∈[1,`]. The
coefficients are in lexicographical order based on the multi-index λ.
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w̃11

(a) Shared edge

w11 w0, w̃0

w12, w̃12

w21, w̃21

w̃11

(b) Continuity conditions

Figure 4: The shared edge and related continuity conditions between (2,1)-multiplices Γ = {wij} and Γ̃ = {w̃ij},
i ∈ {1, 2}. Since the out-of-edge vertex lies in the two-dimensional layer, the shared edge is a (1,1)-multiplex
(shaded). Much like the B-net (in figure 3), the continuity conditions are formed by making parallel copies of
2-simplex continuity for each B-coefficient of the second layer. Note that for clarity much of the B-net is left
out and each example first order continuity condition is given a different color.

4. Continuity conditions

Continuity between two polynomials π and π̃ on ν-multiplices Γ and Γ̃ is defined per layer.9 The conditions
in Eq. (6) are applied to the triangulations in each layer first. Then they are copied for each parallel copy
of the B-net. In the end the conditions for rth order continuity can be written as

c̃(m,λ1,...λn) =
∑
|ε|=m

c(0,λ1,...λn)+εBmε (βΓ(w̃10)), ∀m ∈ [0, r] (14)

where it is assumed that w̃10 is the out-of-edge vertex. That is, the out-of-edge vertex lies in the first
layer. Note that ε = (ε1, ..., ε`) contains many zeros by default, because any adjustment to λ that violates
|λi + εi| = di results in a zero B-coefficient. In other words, the degree cannot be changed in other layers
than the one containing the out-of-edge vertex. In the case that the out-of-edge vertex lies in the first layer,
we therefore have εi = (0, ..., 0),∀i ∈ [2, `].

The conditions are linear in the B-coefficients, and can therefore again be written as

Hc = 0 (15)

The matrix H contains the same conditions as the one in Eq. (6). Each condition (or row) is duplicated
multiple times, such that the conditions hold in each parallel copy of the B-net in a layer. This is illustrated
in figure 4b.

5. Fitting scattered data

If Eq. (12) and (15) are compared to Eq. (4) and (7) respectively, the conclusion can be drawn that the
multiplex spline fitting problem is the same as that of the simplex spline. That means that Eq. (8) can be
reused if b, B, and c are replaced with β, B, and c.

C. Comparison

The simplex and multiplex spline can be compared on the basis of their defining elements. First the geometric
implications of using a multiplex are discussed, followed by the polynomial consequences of choosing layers.

1. The n-simplex versus the ν-multiplex

A major downside of the use of simplices is the distribution of the content (or high-dimensional volume).
As the dimension n increases, the content of the n-simplex moves towards the vertices, yielding a very thin
polytope. This can be illustrated by plotting the ratio of the content of the n-simplex and its inscribed
n-sphere. The same can be done for the n-cube, which is the (1,...,1)-multiplex. Both are plotted in figure
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Figure 5: The ratio of the content of the n-simplex and the n-cube to their inscribed circle as a function of
dimension n. The n-cube retains more of its content near the center as dimension increases, meaning it is less
difficult to fill an n-cube with data.

5. As the ratio decreases, content is moving towards the vertices, meaning the polytope becomes more
stretched. In practical terms, it becomes increasingly hard to properly fill each polytope with data. The
simplex is the polytope that suffers most from this effect. Using multiplices will thus always improve the
content distribution.

A second advantage of the multiplex spline is that a high-dimensional tessellation can be defined by
multiple low-dimensional triangulations. If groups can be made of less than four variables, all triangulations
can be plotted for visual inspection and optimal triangulation algorithms can be employed.

2. The use of layers

From the polynomial point of view, the multiplex spline presents the opportunity to choose the form of
coupling between variables. When two variables lie in the same layer, they become part of a complete
multivariate polynomial, resulting in nonlinear (dth degree) cross-coupling between the variables. Separating
variables results in a multilinear, tensor product coupling. In a simplex spline all variables will always be
coupled.

In many cases different variables require different polynomial degrees for appropriate modeling. In the
multiplex spline it is possible to make a subdivision of the variables in layers based on this required degree.
This may prevent overfitting or divergence near the edges of the domain of variables for which few data are
available.

III. System identification algorithm

The great promise of the multiplex spline lies in the fact that variables can be decoupled within a single
spline model. In practice this means that we have a lot more freedom to incorporate our knowledge of the
system in the model structure. In this section an approach to choosing the structure is presented as an
algorithm.

In short, the algorithm contains the following steps.

1. Group variables and project the data set;

2. Triangulate each projection;

3. Combine triangulations into a tessellation;

4. Fit a multiplex spline;

5. Iterate on step 1 or 2.
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Figure 6: Schematic overview of the steps in the system identification algorithm. The data (transparent gray)
are projected onto the chosen axes. The domain in y is bounded with normal lines on the axis for clarity. Next
the triangulations are defined and combined. The black circles indicate vertices of simplices. Finally a spline
model (fading gray) is fitted.

The complete process is illustrated in figure 6. The individual steps are discussed in more detail in dedicated
subsections.

A. Group variables

Groups of variables define layers in the multiplex spline. If an analytic model is available, the coupling
between variables should form the basis for this grouping. Variables that require similar degrees and are
strongly coupled should together form a layer. If no analytic model is available, the shape of the data set can
play a leading role. The goal would then be to make sure that the projections can be triangulated efficiently
in the next step.

B. Design triangulations

A triangulation is made in each layer based on the shape of the projection of the data set and the desired
degree. With the dimension of the layers the complexity of making triangulations can be scaled. One
could even decide to use only one- and two-dimensional layers to allow for the use of simple triangulation
optimization algorithms.

C. Generate a tessellation

Combining the triangulations in each layer into a single tessellation is mostly a formal procedure. In many
applications it is preferable to consider separate triangulations, e.g. converting input data to barycentric
coordinates. If a multiplex contains less data points than B-coefficients, it should be removed from the
tessellation.

D. Fit a spline model

The knowledge of the system is used to choose an appropriate degree and continuity order. This is combined
with the tessellation to form a spline. The B-coefficients can be found using the method described in Ref.
12.

E. Iterate

Based on the results obtained in the previous step it is decided if and how the model can be improved. If
locally there is a lack of approximation power, simplices can be added in the layers that contain the relevant
variables. If there are signs of unmodeled dynamics one can choose to either raise the degree in certain layers
or move variables from one layer to the other.

IV. Quadrotor modeling

To proof the applicability of the multiplex spline, it was used to model the thrust of a quadrotor as a
function of free-stream velocity, angle of attack, rotor rotational rate, and input voltage to the engine. The
analytic model presented in subsection A was used to generate a data set.
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Figure 7: Two-dimensional cuts of the simplex spline model of the quadrotor. The well-known dependence of
the thrust on angle of attack and freestream velocity is clearly visible.

A. Analytic model

The analytic model used to generate a data set is mostly based on helicopter theory that has been applied
to quadrotors before.13,14 The core of the model is the ideal thrust

T =
ηP

v∞ sinα+ vi
(16)

P signifies the electric engine power input, which is converted to aerodynamic power using a single efficiency
η. For the electric power we use13

P =
U −Kemfω

Ra
U (17)

The induced velocity vi is given by the well-known equation

vi =
v2
h√

(v∞ cosα)2 + (v∞ sinα+ vi)2
(18)

where vh is the induced velocity in hover that is required to support one quarter of the assumed weight of
the quadrotor. In the range of vertical velocity −2vh ≤ vz < 0, where vz = v∞ sinα, it is assumed that the
rotor is in the vortex ring state. Its induced velocity is then approximated by15

vi = vh

(
k0 + k1

vz
vh

+ k2

(
vz
vh

)2

+ k3

(
vz
vh

)3

+ k4

(
vz
vh

)4
)

(19)

with k0 = 1, k1 = −1.125, k2 = −1.372, k3 = −1.718, and k4 = −0.655.
The data set is generated using a set of 5000 random inputs within the operating range of the motor.

Pseudo-random noise bounded to 1% of the maximum thrust is added to the simulated output.

B. Simplex spline model

To fit the data set generated using the analytic model of the previous subsection, a simplex spline is employed
first. The construction of the model is inspired by De Visser’s approach.1

The first step in the system identification process is deciding on the model structure. By filling in Eq.
(17), (18), and (19) into Eq. (16) we find a system of equations with four variables: v∞, α, ω, and u.
The spline model will thus be four-dimensional. Because Eq. (18) is a quartic equation, a fourth degree
polynomial is required. To limit the freedom of the separate polynomials, first order continuity constraints
are imposed. To preserve the simplicity of the model, a standard type-I triangulation of the rectangular
domain is used. This results in a total of 22 simplices. The model structure is summarized in table 1.
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Figure 8: Two-dimensional cuts of the multiplex spline model. The well-known relation of thrust, freestream
velocity and angle of attack is clearly visible, as well as the quadratic nature of the engine dynamics.

The second step is to use the model structure in the defining equations of subsection A to arrive at the
convex problem of Eq. (8). The most time-consuming part of this process is defining the smoothness matrix.

Finally the problem can be solved using the iterative solver described before. A total of 1540 B-coefficients
are estimated using the data set of 5000 points.

Several cuts of the spline are shown in figure 7. When a value for rotor rpm and input voltage is chosen,
the well-known dependence of thrust on velocity and angle of attack is clearly visible. In the other cuts the
quadratic relation between the thrust and the input voltage and rotor rpm can be observed. Especially at
higher input voltages the parabolic shape is adhered to. Close inspection however shows that in some cases
small non-quadratic variations can be observed.

C. Multiplex spline model

The multiplex spline model is constructed along the lines of section III. An attempt is made to arrive at a
model with a comparable number of B-coefficients as in the simplex spline model.

The model should again include the four variables v∞, α, ω, and u, so it will be four-dimensional. From
Eq. (17) and Eq. (18) it is clear that although the induced velocity requires a polynomial model of degree
4, this is not the case for the power. In fact, a quadratic model should suffice to perfectly model the power
as a function of rotor rpm and input voltage. In the multiplex spline framework this difference in degrees
can be adhered to by choosing appropriate layers.

In the first layer the freestream velocity v∞ and the angle of attack α are combined. From early iteration
of the algorithm it was found that in angle of attack extra approximation power was required. Therefore a
triangulation of four simplices was chosen in this layer, generated by splitting the range of angle of attack in
half before making a minimal type-I triangulation. In the end this procedure also results in a similar amount
of B-coefficients as in the simplex spline model. First order continuity is used to limit the spline freedom, as
before.

In the second layer the remaining two variables ω and u are taken together to model the engine dynamics.
The simple model allows for a quadratic spline on a minimal triangulation of two simplices. First order
continuity is again imposed, even though this is rather high for a quadratic spline. In practice this means
that the two piecewise polynomials will almost form a single parabola. The resulting structure of the
multiplex spline is compared with the simplex spline structure in table 1.

In combining the triangulations in a tessellation, no extra operations are required. A rectangular data set
is used, meaning no multiplices will be (too) empty. The tessellation thus consists of 8 multiplices, together
containing 1440 B-coefficients.

The resulting spline model is shown in figure 8. The relation between thrust, freestream velocity and
angle of attack is again properly modeled. The main difference is the fact that the engine dynamics are now
quadratic by definition. This removes the unwanted higher degree effects in this part of the model without
affecting the approximation power in the other layer.
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Table 1: Comparison between the simplex and multiplex spline structure used
to model the quadrotor thrust as a function of air inflow and engine dynamics.
The term ’inflow layer’ refers to the layer of variables v∞ and α.

Model design parameters Model characteristics

n d r N B-coefficients Constraints

Simplex spline 4 4 1 22 1540 1760

Multiplex spline 4 6* 1 8 1440 1548

Inflow layer 2 4 1 4 60 27

Engine layer 2 2 1 2 24 15

* No complete basis (see section II).

Table 2: The relative root mean square error (RRMS), mean square error (MSE, normalized with maximum
thrust), and maximum error (ME, in percent of maximum thrust) for both the modeling data set (with noise)
and the verification data set. The differences between the two data sets show that no significant overfitting
to noise takes place. The overall performance of the multiplex spline model is better than that of the simplex
spline model.

Modeling Verification

RRMS, % MSE, 10−5 ME, % RRMS, % MSE, 10−5 ME, %

Simplex spline 2.397 5.012 4.494 1.608 2.153 3.487

Multiplex spline 1.934 3.269 1.998 0.672 0.376 1.879

D. Model quality assessment and comparison

The comparison between the simplex and multiplex spline models focuses on efficiency. The central question
is what approximation power is achieved at what cost.

It was noted before that both models were designed to use similar amounts of B-coefficients. In the end,
the simplex spline uses 1540 B-coefficients, whereas the multiplex spline contains 1440. These are constrained
using a total of 1760 and 1548 continuity conditions respectively, of which 403 and 405 are redundant. The
simplex spline thus requires more continuity constraints per B-coefficient, resulting in a larger smoothness
matrix.

The smoothness matrix is not just smaller in the multiplex spline framework, but also less demanding
to compute. Whereas the complete smoothness matrix for the simplex spline must be generated based on
relations between simplices, the matrix is constructed of copies of smaller matrices in the multiplex case.
This leads to a significant reduction in computation time.

To measure the quality of the fit, the relative root mean square error (RRMS, RMS of the error divided
by RMS of the data), the mean square error (MSE), and maximum error (ME) are used. The results are
presented in table 2. Note that due to the nature of the model, it is possible to generate a verification data
set that does not contain noise. The RRMS and MSE values are given for both data sets. In the first place
these figures show that no significant overfitting of the noise in the modeling data takes place, since the
errors are smaller for the crisp verification data set. Most important is that in every metric the multiplex
spline model performs better than the simplex spline.

The differences between the two splines become clear when looking at the error metrics. The relative
root mean square error shows that both splines have a small error relative to the system dynamics and noise.
The multiplex spline however is almost three times as accurate in predicting system outcome as the simplex
spline. The mean square error for the simplex spline is more than a factor 8 higher, indicating that this spline
is less capable of modeling the complete dynamics in the way the multiplex spline does. The same can be
observed from the difference in maximum error and when comparing figure 7a and 8a. One explanation for
this may be that the continuity constraints in the simplex spline are not in line with the system dynamics.
That is, they relate B-coefficients that lie at control points that differ in all variables, whereas the constraints
in the multiplex spline lie in the chosen layers.
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V. Conclusion

In this paper a new multivariate spline was introduced and an algorithm for system identification using
this spline was proposed. The thrust of a quadrotor was modeled to show the applicability of the spline and
the algorithm.

The major benefit of the multiplex spline over the simplex spline is the fact that it allows for including
knowledge of the system in the model. Any subdivision of the variables in layers can be made, depending
on the expected type of coupling between them. Due to the nature of the data set used in this paper, the
choice for layers was rather straightforward. If no analytic model of the system is present, many iterations
of the proposed algorithm are required.

In modeling the quadrotor thrust, the multiplex is able to take full advantage of the decoupling between
engine dynamics and aerodynamics. This results in a better fit to the data set than in the case of the simplex
spline. Although the differences are small in this specific case, it is expected that especially the option of
choosing multiple degrees will introduce significant improvements in the overall model fit. One part of
the model can be given high approximation power by using a high degree while simultaneously preventing
overfitting in other layers.

An extra benefit of the multiplex spline is the reduced computation time for the smoothness matrix.
Because continuity constraints are defined in layers and then copied, the total amount of operations is
significantly smaller than in the case of the simplex spline. The current research implies that in many cases
the multiplex spline will also require less continuity conditions in general, resulting in faster computations
overall.
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Acronyms

DoF Degrees of Freedom
MAV Micro Aerial Vehicle
ME Maximum Error
MSE Mean Square Error
NDI Nonlinear Dynamic Inversion
RMSE Root Mean Square Error
RRMS Relative Root Mean Square

System Identification with Multivariate Multiplex Splines T. Visser



22 Acronyms

T. Visser System Identification with Multivariate Multiplex Splines



List of Symbols

Greek Symbols

α Angle of attack

β, β (Vector of) barycentric coordinates in a multiplex

Γ Multiplex

γ Layer

Γ̄ Multiplex shared edge

∆ Simplex

δ Layer set

∆̄ Simplex shared edge

δf DelFly right wing angle

δ̇f DelFly right wing angular rate

ζ Flap phase angle

θ Body pitch angle

κ, κ (Set of) multi-index permutations for a simplex basis polynomial

λ, λ (Set of) multi-index permutations for a multiplex basis polynomial

µ Multi-index describing a deviation from the dimensions in ν

ν Multi-index of dimensions in the multiplex

ξ, ξ (Vector of) weights for the biased multiplex

π Multiplex polynomial

ρ Air density

ρ Multi-index describing a deviation from λ

System Identification with Multivariate Multiplex Splines T. Visser



24 List of Symbols

σ Multi-index describing a deviation from κ

τ Engine loading (torque)

χi Special case of φ with all zero entries except for the ith element.

φ Vector of indices of the vertices taken from layer sets

ω Rotor rpm

Roman Symbols

A Rotor disc area

b, b (Vector of) barycentric coordinates in a simplex

B Matrix of Bernstein basis polynomials on a simplex

Bn Set of barycentric coordinates in n dimensions

B
d
ν Vector of Bernstein basis polynomials of degree d on a ν-multiplex

Bd
n Vector of Bernstein basis polynomials of degree d on an n-simplex

Bd
λ Multiplex Bernstein basis polynomial of degree d with multi-index λ

Bd
κ Simplex Bernstein basis polynomial of degree d with multi-index κ

C, c (Set of) B-coefficients of a multiplex spline

Cr Space of rth order continuous functions

C, c (Set of) B-coefficients of a simplex spline

CT Thrust coefficient

d Degree of basis polynomials, or multi-index of degrees

e Degree of the equivalent simplex spline

H Smoothness matrix

I Engine input current

ℓ Number of layers in a multiplex

M Tessellation consisting of multiplices

m Deviation from the dimension n; dimension of the equivalent simplex spline

N Number of elements in a tessellation or triangulation

n Total dimension

Nn Set of natural numbers up to n

P Power

p Simplex polynomial

q Body pitch rate

q Control point

R Rotor radius
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List of Symbols 25

r Continuity order

Rn Set of n-dimensional real vectors

sdν Multiplex spline of degrees d and dimensions ν

Sd
n Space of polynomials of degree d and dimension n

sdn Simplex spline of degree d and dimension n

T Rotor thrust

T Triangulation consisting of simplices

U , u (Set of) vertices of a multiplex in the top-down definition

U Engine input voltage

u Body x-velocity

w Body z-velocity (positive down)

V, v (Set of) vertices of a simplex

v∞ Freestream velocity

vh Induced velocity in hover

vi Induced velocity

vz Vertical velocity component, v∞ sinα

W, w (Set of) vertices of a multiplex in the bottom-up definition

X Matrix of input data

y Vector of output data

Zn
+ Set of positive integers up to n

Zn Set of non-negative integers up to n
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Summary

In recent years the introduction of model-based control techniques has lead to an increased
need for accurate, smooth, non-linear models. Rather than using data tables, many research
groups employ neural networks for such purposes. Recently a multivariate simplex spline-
based approach to system identification was introduced. Although these simplex splines
show great promise, it is still unclear how a high-dimensional triangulation consisting of
simplices can be shaped to incorporate knowledge of the system. In general high-dimensional
triangulations consist of standard triangulations of stacked hypercubes.

In this work a tensor-product spline is developed and made ready for scattered data fitting. It
is based on previous efforts to combine multiple simplex splines to simplify computing partial
derivatives. The goal of this work is to expand the theory of these tensor-product splines
such that system identification can be performed and to develop and validate an algorithm
for such applications.

To allow for covering non-rectangular domains the generalization starts at the geometric basis.
Instead of defining a spline for each B-coefficient the concept of a multiplex is introduced.
This polytope is formed by combining simplices that lie in mutually orthogonal spaces. It is
found that this multiplex is also a slice of a higher-dimensional simplex. Both the simplex
and the hypercube are special cases of the multiplex.

The definition of basis polynomials in the multiplex spline framework can be derived from the
literature. Basis polynomials are formed by taking the tensor-product of Bernstein polynomi-
als in barycentric coordinates. Together they form a basis for the tensor-product polynomial
space. The basis polynomials preserve the non-negativity and partition of unity properties.
It is found that the set of basis polynomials in the multiplex spline is also a scaled subset of
that of a higher-dimensional simplex spline.

The B-net can be considered to be a Cartesian product of individual B-nets or as a slice of the
B-net of a simplex spline. This insight, combined with the discoveries with respect to basis
polynomials and the multiplex itself, leads to the concept of the equivalent simplex spline.
This is a simplex spline of such degree and dimension that the corresponding multiplex spline
is a slice of it in all its facets: geometric basis, basis polynomials and B-net.
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The equivalence between simplex spline and multiplex spline allows for a very lean proof of
continuity between multiplices. Because of the equivalence between the B-nets, continuity
conditions in the equivalent simplex spline can be used directly in the multiplex spline frame-
work. It is found that an arbitrary continuity order can be imposed over a complete shared
(n− 1)-edge, irrespective of the shape of the out-of-edge layers, as long as the multiplices are
both n-dimensional.

The multiplex spline was tested on a set of test functions to get a view on its characteristics
and behavior. On the one hand this behavior is strongly influenced by the content distribution
in the multiplex. Content of this polytope is more concentrated in the center of the polytope
than in the simplex, which makes it easier to fill a multiplex with data points. The ability
to choose different degrees for variables in different layers proved to be beneficial when a
function is more complex to approximate in some variables than in others. The total degree
however rises quickly and may cause large excursions along the diagonal of the domain.

Based on the characteristics of the spline a system identification algorithm is constructed.
The algorithm requires a choice of global layers, in which groups of variables are combined.
The layers are triangulated and then combined to form a tessellation. In each layer a different
degree and continuity order can be chosen, according to the need. The algorithm was verified
on an analytic model of a quadrotor, where the multiplex showed superior performance over
the simplex spline.

The validation of the algorithm was performed on DelFly flight test data. This data was
first analyzed to find that it contains many voids and is poorly distributed over the state
space. Several regions can be identified in which the data is closely packed in all states. In
most cases these regions can be linked to flapping stages during maneuvers. As a result of
the poor distribution of the data, the performance of the multiplex spline is poor. It does
however perform better than the simplex spline in terms of the mean error and the amount
of coefficients required. This confirms the validity of the multiplex spline and the system
identification algorithm.

Because of the novelty of the spline in engineering applications, many recommendations can
be given for future research. With respect to fundamental research, it is interesting to investi-
gate whether each multiplex can be triangulated and under what conditions a circumscribed
triangulation can be defined. To improve the performance of the spline, differential constraints
can be introduced to reduce the degree along the diagonal and mixed grid partitions can de-
veloped. Finally recommendation regarding the global modeling of the DelFly are given, as
well as the suggestion to use the multiplex spline in nonlinear dynamic inversion control.
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Chapter 1

Introduction

With the increased use of model-based control techniques and the increased complexity of the
systems to be controlled, the need for nonlinear function approximators has grown. Although
industry still prefers data tables, many research groups have switched to neural networks.
The benefit of the latter lies both in the fact that they require less computer memory and
are smooth by nature. A major downside however is the fact that basis functions are global,
complicating local updates and the use of efficient solution techniques.

Recently the multivariate simplex spline was added to the system identification field [16, 17].
This technique has local basis functions and is linear in the parameters. Therefore many
efficient solution techniques can be employed, also for making local updates. As basis functions
are defined on simplices, the choice of a triangulation plays a major role in the definition
process. There is however no consensus yet on how to define such a triangulation for system
identification purposes. In two or three dimensions shape criteria have been formulated for
simplices [3, 37, 38], but in more than three dimensions the best solution is generally to use
a standard split of the hypercube [16].

To circumvent the problem of high-dimensional triangulation, a new spline is introduced in
this thesis. The multivariate multiplex spline allows for combining multiple lower-dimensional
triangulations to span a high-dimensional state space. This approach was first introduced by
Govindarajan et al. and used in a system identification application by Sun et al. [22, 23, 40].
The novelty of this thesis lies in a redefinition of the combination of triangulations. Instead of
describing B-coefficients with multivariate simplex splines, multiplices are formed by combin-
ing one simplex from each triangulation. This results in a tessellation of the high-dimensional
space consisting of polytopes that can be deleted or added at will. A generalization effort
shows that both tensor-product Bernstein polynomials and the simplex spline are special cases
of the multiplex spline.

The goal of this thesis is to introduce the mathematical basis of the multiplex spline and
to verify and validate a system identification method using these splines. The verification is
performed both on test functions and on an analytic model of a quadrotor. The quadrotor is
used here because it is largely understood and many analytic models are available. Validation
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of the proposed system identification algorithm is done on a DelFly data set. The DelFly is
a flapping wing Micro Aerial Vehicle (MAV) developed at the Delft University of Technology
with has a span of 27.4cm and weight of 18 grams. In the process the data set is analyzed in
the state-space, resulting in recommendations regarding future system identification efforts
and flight tests.

The remainder of this report is structured as follows. First the research goals and questions
are formulated in chapter 2. An extensive overview of the literature used for defining the
spline, setting up the analytic quadrotor model and the analysis of the DelFly data can be
found in chapter 3. To support the reader with limited knowledge of splines this chapter
includes a concise discussion of the simplex spline and tensor-product Bernstein polynomials
in section 3-1. The multiplex spline itself is introduced in great detail in chapter 4. In chapter
5 the multiplex spline is verified as a system identification tool by testing its performance on
several test functions and data distributions. The system identification algorithm for the
multiplex spline is validated using DelFly flight test data in chapter 6. This chapter also
includes an analysis of the data set itself in the state-space in section 6-1-2. In chapter 7 the
conclusions and recommendations regarding the research described in this report are given.
Finally in chapter 8 several possible future research topics are presented. They range from
fundamental mathematical topics to engineering applications.
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Problem statement

In this chapter the goals and research questions for the current research are presented and
discussed. They were formulated by combining the research proposal and an initial literature
study. Because of the nature of the research there is a clear division in two parts. On the
one hand a fundamental mathematical discussion should lead to a description of the newly
developed spline. On the other hand the spline should be made ready for and applied in a
system identification task.

Although there are clearly two sides to the research, it is useful to formulate a single goal for
the entire research. The goal that encompasses the entire research is

to present a solution to the multivariate spline structure definition problem by developing
and validating a new multivariate spline and related system identification algorithm that

allow for the use of multiple coupled multivariate spline spaces.

In this goal the two parts of the research are clearly identifiable.

The remainder of this chapter is split in multiple sections to clearly distinguish between
the two parts of the research. First in section 2-1 the goals and research questions of the
investigation into multivariate multiplex spline theory are discussed. Then in section 2-2 the
goals are set for the application to system identification.

2-1 Multivariate multiplex spline theory

The first goal of this research is the development of the multivariate multiplex spline’s math-
ematical basis. The spline needs to be properly defined before it can be used in a system
identification procedure. Therefore the first subgoal is

to facilitate the use of the multivariate multiplex spline as a function approximator by
deriving its defining elements, characteristics and limitations.
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In practice this goal will lead to an investigation of the basis polynomials and continuity
conditions in the multiplex spline, as well as more fundamental research into the shape of the
multiplex. This is reflected in research question 2.

Another important aspect of the first subgoal is the dependence on the application. Because
the aim is to introduce a new system identification tool, a limited set of properties and
characteristics needs to be derived. The above considerations lead to the following list of
research questions.

1. What defining elements and characteristics of a spline are required for approx-

imating scattered data?

Fitting scattered data does not require a complete definition of the properties of a function
approximator. A list of required definitions is used to provide the right focus. This list
can be constructed through a literature study.

2. What is the effect of taking the tensor product of multivariate simplex B-

splines on the spline’s defining elements and characteristics?

Based on the list of characteristics resulting from the previous question, the actual deriva-
tion of the multiplex spline properties should be performed. Note that the formulation
of this question already points towards a solution procedure. The observation that the
multiplex spline consists of tensor products of simplex splines should provide insight in its
properties. The defining elements will follow from analysis, whereas properties such as the
approximation power will be estimated using test functions.

From the answers to the above questions it should become clear what the limitations are to
the use of the multiplex spline. This knowledge is essential in the second part of the research,
in which the spline is applied in a system identification procedure.

2-2 Application to system identification

The second part of this research focuses on the application of the multiplex spline to system
identification problems. The goal therefore is

to facilitate the use of the multiplex spline for system identification problems by formulating
and validating an algorithm for choosing the multiplex spline structure.

For testing purposes the thrust and torque of a quadrotor will be modeled. The validation
process is performed on DelFly flight test data. This change in platform is made because the
DelFly is not yet completely understood. Few analytic models exist, which makes it hard
to generate a data set and analyze the results. The quadrotor on the other hand has been
modeled often, and is more closely related to the well-studied helicopter field. Many analytic
models are available and the outcome of these models is largely known. This facilitates the
verification process.

Clearly the goal is twofold. An algorithm for system identification should be formulated
first. This requires knowledge of high dimensional data, quality triangulations and many
other related topics. Below the relevant research questions related to the construction of the
algorithm are listed.
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3. Can a set of rules be formulated for choosing layers based on an analytic model

structure?

It is expected that when variables are clearly not coupled, they should be distributed over
different layers. This hypothesis is tested both on test function designed specifically for
this goal, and during the verification process on the quadrotor analytic model.

4. What methods exist for representing high-dimensional data?

This is an important question when constructing the tessellation. If a high-dimensional
data set is available it is not trivial to visually inspect it, and consequently to construct
a triangulation in a layer. A superficial literature study will be performed to inspire
techniques of visualizing the flight test data of the DelFly.

5. What quality criteria exist for low-dimensional triangulations in data approx-

imation applications?

If triangulations are to be constructed in the layers, it is valuable to use quality measures
in the process. Because layers can be chosen at will, it is interesting to look at quality
measures for low-dimensional triangulation. These measures can be found in the literature.

Note that the above questions mostly cover the structure of the model. It is expected that
the methods for coefficient estimations follow directly from simplex spline theory.

The second part of the goal focuses on testing the algorithm. The research questions below
are formulated such that they can be applied to any desired application.

6. Can the algorithm be automated?

This is especially interesting if the system under investigation is not well known, as is the
case for the DelFly. Automation allows for generating a large set of models, which provides
insight into the required variables and approximation power.

7. How does the performance of the multiplex spline in the system identification

problem depend on the layer structure?

To answer this question a list of criteria for assessing the approximation performance is
required. The simplex spline is used as the benchmark because it is so similar in structure.
This allows for a straight forward comparison of efficiency instead of power. That is, the
approximation power can be assessed with respect to the number of coefficients and the
size of the problem. In general a large set of layer structures is tested on multiple test
functions to come to a complete overview.

Apart from the research questions that aim directly at reaching the research goal, it is im-
portant to get a view of the systems modeled. This is essential for applying the algorithm. In
summary this amounts to identifying the relevant phenomena, variables and analytic models
for the system under consideration. This holds for both the quadrotor and the DelFly.

8. What phenomena significantly affect the aerodynamic forces on the system?

Both dynamic and aerodynamic phenomena should be considered. For the quadrotor it is
useful to select a dominant set of phenomena by taking into account that it is light and
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small. For example, blade flapping is expected to be small under normal flight conditions
compared to most other effects. For the DelFly the information regarding aerodynamic
effects is scarce as it is a very new and not yet completely understood platform.

9. What variables should at least be included in a model for these aerodynamic

forces?

From the list of phenomena it should be clear what variables are relevant for the modeling
task.

10. In what domain are the phenomena active or dominant?

The domains of interest are important in constructing a tessellation. In domains where
highly nonlinear effects are dominant, a more dense tessellation can be employed to locally
boost the approximation power.

The questions 8, 9 and 10 can all be answered using a literature study for the quadrotor.
Regarding the DelFly, these questions can only be partially found in the literature. Many
dynamic and aerodynamic effects are still unknown, but those that are available are also
discussed in the literature review. Any further investigation is performed in data analysis.
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Literature review

In chapter 2 it was noted that some of the research questions could be answered with a
review of the literature only. On top of that it was indicated that an orientational review was
performed to arrive at many of the research questions. The results of both these reviews are
collected in this chapter.

In section 3-1 the research into multivariate splines is considered. A general introduction is
provided in which many different types of splines are presented. Then the focus shifts towards
the simplex spline and types of tensor-product splines. In the discussion of the simplex spline
several triangulation quality criteria are also discussed. In section 3-2 the available literature
on analytic quadrotor modeling is reviewed. Recent efforts of modeling the DelFly flapping
wing MAV are discussed in section 3-3. On top of that, a subsection is devoted to describing
some existing methods for interpreting high-dimensional data sets.

3-1 Multivariate spline theory

In the most general sense, a spline is a piecewise polynomial function in which continuity
between the pieces can be defined. It presents an alternative to high-degree polynomials that
suffer from Runge’s phenomenon near the edges. By using multiple low-degree polynomials
the approximation power can increased without increasing the polynomial degree.

Univariate splines have been a well-defined mathematical concept for many years. The gen-
eralization to the multivariate case however knows many forms. The polyhedral spline of
Neamtu is considered the true multivariate generalization [34], but is impractical for most
engineering applications. This is because it requires the definition of an (n+ d)-dimensional
tessellation, with n the dimension and d the degree of the spline. Even though multiple sim-
plifications have been introduced [14, 33], no algorithms exist for the construction of these
tessellations based on scattered data.

More practical multivariate splines are the simplex spline and several types of splines con-
structed as tensor-products of univariate splines. They are discussed in more detail, starting
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with the simplex spline in subsection 3-1-1. The defining elements discussed in that subsec-
tion were taken from the work of De Visser, so they are assumed to be required for system
identification [16]. In subsection 3-1-2 the concept of the tensor-product spline is introduced
and the most relevant types are discussed.

3-1-1 The multivariate simplex spline

The multivariate simplex spline, a collection of triangular B-patches, was first introduced by
de Casteljau to be used in the design of car parts [20]. An important contribution was given
by De Boor, who introduced the B-form [13]. Only recently was the simplex spline used for
system identification purposes by De Visser [16] and in nonlinear control by Tol et al. [42].
Below the most important results of these developments are summarized. Many can be found
in the work of Lai and Schumaker [30], in which the bivariate simplex spline is considered.

The simplex spline is discussed from the bottom up. That is, the geometric basis and coor-
dinate system are discussed first. Then the basis polynomials are described, followed by the
corresponding B-coefficients and their spatial location. On the basis of this so called B-net,
continuity conditions can be defined. Finally the scattered data approximation problem is
formulated and a solution method is proposed.

Simplices and barycentric coordinates

The multivariate simplex spline consists of Bernstein polynomials defined on triangular
patches, or more generally simplices. In n dimensions an n-simplex is defined as the con-
vex hull of n+1 non-degenerate points. In two dimensions this results in a triangle, which is
the most studied case of the simplex.

The advantage of using simplices over other polytopes lies in the fact that any point x ∈ Rn

can be described uniquely with respect to the vertices V = {v0, ..., vn} of a simplex. Such a
description takes the form of a linear combination.

x =

n
∑

i=0

bivi (3-1)

In the above equation the vector of weights b = (b0, ..., bn) ∈ Rn+1 are called the barycentric
coordinates. These coordinates always sum to one.

Barycentric coordinates also present a way of determining if a point lies inside a given simplex.
If all elements of b relative to the vertices of a simplex ∆ are non-negative, the point lies inside
or on the boundary of ∆ [16].

Triangulation and quality criteria

By combining multiple simplices of the same dimension, a triangulation can be constructed.
When collecting all barycentric coordinates with respect to a triangulation, only the simplex
in which the point lies is considered. The other elements of the total coordinate vector are
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set to zero. This also leads to a global coordinate vector which consists of the appropriate
local coordinate vector, padded with n+ 1 zeros for each other simplex.

In the current discussion a triangulation consisting of n-simplices is considered valid if none
of the simplices overlap, or in other words share n-dimensional content, and simplices share
complete m-edges, where 0 ≤ m < n, or are completely disjoint. These conditions can also
be described mathematically for a triangulation consisting of N simplices ∆i as [16]

T =
N
⋃

i=1

∆i, ∆i ∩∆j ∈ {∅, ∆̄},∀i 6= j (3-2)

In this description ∆̄ is an m-simplex with 0 ≤ m < n. In two dimensions the first condition
means that no part of the domain with nonzero area can lie inside two simplices at the same
time. The second condition indicates that simplices either share a complete side (1-simplex),
a vertex (0-simplex) or nothing at all.

The two conditions for a valid triangulation leave a lot of freedom in triangulating a domain.
The number of simplices can be chosen freely, as well as their shape. These two parameters
however have a great influence on the quality of the resulting spline model. Therefore a set of
quality requirements should be formulated to allow for consistent construction of appropriate
triangulations.

In the literature many different quality requirements can be found, mostly for two-dimensional
triangulation. In finite element applications the number of simplices should be limited to
bound the computation power and time [3, 37]. On the other hand the mesh should be
sufficiently fine to allow for the appropriate approximation power.

For the shape of the individual simplices, the following list of criteria can be found.

• The minimum in-plane angle between sides should not be too small [3, 38];

• The largest in-plane angle between sides should not be obtuse [3];

• The aspect ratio of a simplex (ratio of longest edge to shortest altitude for triangles)
should be bounded [37];

• The center of the circumscribed circle should lie inside the simplex [3, 16, 38];

• The ratio of the radius of the circumscribed circle to the shortest simplex ridge should
be small [16, 38];

• The simplex should contain at least as many data points as there are B-coefficients in
a simplex [16].

Note that the second and fourth criteria are different formulations of the same condition [3].

In system identification tasks the last criterion, concerning available data, is most important.
Without meeting this criterion it is not possible to find a best estimate for the spline param-
eters. On the other hand, so called slither simplices (with small or obtuse angles) may cause
numerical problems [16].
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It is also possible to define criteria for an entire triangulation. The most notable criterion
is the one presented by De Visser et al., stating that the best triangulation is the one that
results in the smallest overall approximation error [19]. To change the location of vertices of a
triangulation they use interval analysis, resulting in long computation times. This possibility
is therefore not considered in this work.

B-form polynomial

Polynomials can be defined on a simplex in many ways. In the current discussion the B-form
introduced by De Boor is used [13]. In this form the polynomial is a weighted sum of Bernstein
basis polynomials defined in barycentric coordinates.

p(b) =
∑

|κ|=d

cκB
d
κ(b), Bd

κ(b) :=
d!

κ!
bκ (3-3)

The weights cκ are called B-coefficients and are discussed in the next part. The multi-index
κ = (κ0, ..., κn), κi ∈ Zd is the driving force behind the definition of the Bernstein polynomials.
Every permutation of this multi-index for which |κ| = d leads to a Bernstein basis polynomial.
Together the complete set of polynomials forms a basis for all polynomials of degree d in n
variables, Sd

n.

Like the barycentric coordinates, the basis polynomials can be collected in a global vector.
This is done in the same way as before, by padding the local vector of basis polynomials with
sufficient zeros for each simplex. That is

Bd
n(b(x)) :=

{

Bd
κ(b

∆i(x)) if x ∈ ∆i

0 otherwise
(3-4)

In the above equation b∆i(x) indicates that the local coordinates with respect to simplex ∆i

are used.

The advantage of Bernstein polynomials is that they form a stable local basis. That is, they
form a basis for all polynomials of a particular degree and do so within finite bounds set by
the B-coefficients [30]. A major contributor to this stability is the partition of unity property.
This means that the sum of the complete set of basis polynomials of a given degree is always
one over the entire simplex. On top of that the basis polynomials are non-negative over their
basis.

B-coefficients and the B-net

The weights cκ in equation (3-3) are called B-coefficients. Contrary to many other definitions
of polynomials, these coefficients have a spatial location in the simplex in which they are
defined. These locations are the control points qκ ∈ Rn defined as

qκ =
1

d

n
∑

i=0

κivi (3-5)
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Note how the location is completely defined by the corresponding multi-index κ. More im-
portantly, the location of a B-coefficient cκ coincides with that of the maximum of the corre-
sponding Bernstein basis polynomial Bd

κ.

The collective of all B-coefficients that lie in a simplex and correspond to a certain polynomial
degree, is called the B-net. An example for two neighboring simplices is given in Figure 3-1.
This concept will proof to be a useful tool in defining continuity between simplices.

The B-coefficients are generally collected in a global vector C with equal length as the basis
polynomial vector. This allows for replacing the sum in equation (3-3) with an inner product
of the vectors C and Bd

n.

Continuity conditions

Continuity conditions can be defined between simplices that share a complete (n − 1)-
dimensional edge. In many cases only geometric continuity is considered. This is a type
of continuity popular in structural design, because it relates directly to the visual continuity
between two elements. To be more precise, first order geometric continuity (G1) is defined
as the situation in which two patches have a continuously varying tangent plane along the
shared boundary [20]. This form of continuity is less restrictive than normal continuity (Cr),
in which the derivatives up to an including order r on either side of the shared edge are
set equal [30]. Because continuity is used in system identification applications to ensure a
sufficiently smooth function, geometric continuity is not investigated any further.

To define continuity between two polynomials p and p̃ on simplices ∆ and ∆̃, the derivatives
should be equal on either side of the shared edge in n linearly independent directions. The
first n−1 directions can be covered by setting all B-coefficients cκ in ∆ that lie on the shared
edge equal to their counterparts in ∆̃. By doing this, the polynomial on the shared edge is
equal on both sides, leading to full continuity in that edge [30].

The last independent direction is best chosen from one vertex of the shared edge to the out-
of-edge vertex ṽooe. By doing this, the following continuity conditions result for Cr joins of
simplex polynomials [30].

c̃(m,κ1,...κn) =
∑

|σ|=m

c(0,κ1,...κn)+σB
m
σ (b∆(ṽooe)), ∀m ∈ [0, r] (3-6)

Note that here it is assumed that in both ∆ and ∆̃ the first vertex is the out-of-edge vertex.
If the naming of vertices is different, the m and 0 entries in κ shift along. In the conditions
σ is again a multi-index with the same number of entries as κ.

Equation (3-6) clearly indicates that continuity conditions are defined almost purely in terms
of B-coefficients. In fact, one can visualize the continuity conditions in the B-net. In Figure
3-1 an example first order continuity condition is drawn for a bivariate cubic B-net. The
condition forms a miniature version of the simplex, also in more dimensions.

Because of the linearity in the parameters of the continuity conditions, they can be collected
in a smoothness matrix H such that HC = 0 [17]. The resulting matrix is very sparse, with

in each row a maximum of 1+ (d+n−1)!
(d−1)!n! nonzero elements, which is the amount of coefficients

used in a single condition given in equaton (3-6).
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Figure 3-1: A first order continuity condition in a bivariate cubic simplex spline. Note that
the condition forms a miniature of the simplex in the B-net of ∆, whereas in ∆̃ only a single
B-coefficient is affected.

The approximation problem

The problem of finding an optimal approximation of the data is a constrained least squares
problem.

min ||y − B(b(X))C||

subject to: HC = 0
(3-7)

In this expression X is a matrix containing the input data and y is the output vector. This
problem was solved by Awanou et al. [2] and made fit for the use of standard parameter
estimation techniques by De Visser et al. [17]. They rewrite the problem to a Karush-Kuhn-
Tucker system as

[

B⊤B H⊤

H 0

] [

C

ψ

]

=

[

B⊤y

0

]

(3-8)

where ψ are the Lagrangian multipliers. De Visser et al. go on to prove that this system
is solvable if in each simplex there are at least as many data points available as there are
coefficients to estimate.

Solving the system involves taking the pseudo inverse of the left matrix in equation (3-8).
This is rather time consuming if many data points and simplices are considered. Iterative
solvers can however be employed to speed up the process [16]. Because of the sparsity of both
H and B it is also possible to use distributed solution methods. Boyd et al. provide a review
of such methods [7].

The model that results can be tested in many ways for consistency and performance. An
extensive discussion is provided by De Visser [16]. Most notable are the maximum error to
find outliers, the parameter covariance to detect overfitting and the root mean square error
to assess overall approximation performance.
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3-1-2 Tensor-product splines

In the tensor-product framework the general idea is to create a surface by displacing a uni-
variate curve while changing its shape [20]. Even though this concept seems simple enough, at
least two different forms of tensor-product spline can be distinguished. The most important
difference between the types lies in the use of knots.

The standard tensor-product spline is defined using knots. Every piecewise polynomial has
a nonzero value over a predefined domain bounded by the amount of interior knots. By
making the polynomials overlap over the stretch of certain amounts of knots, continuity can
be introduced into the spline. This spline however is inherently unable to fit scattered data
[1].

A more suitable approach for function approximation is the tensor-product Bézier patch.
This patch comes in two forms, depending on the type of coefficient. In most computer-aided
design applications the coefficients are control points with a spatial location in R3 that can be
freely chosen. However, in function approximation and scattered data fitting applications the
coefficients are best considered single variables, in which case we may speak of tensor-product
Bernstein polynomials [21]. The location of the coefficients is then dictated by the form of
the corresponding polynomials, just like in the case of the simplex spline.

In the remainder of this section some of the important properties of these tensor-product
Bernstein polynomials are discussed. This is combined with recent efforts by Govindarajan
et al., who generalized such splines to a more flexible form [22].

Orthotopes and coordinate systems

When univariate polynomials are combined they together form orthotopes, or rectangles
in two dimensions. Because tensor-product Bernstein polynomials are most often used in
computer-aided design applications, the bivariate case is discussed the most in the literature.

An orthotope in general is most easily defined using an iterative definition, inspired by the
definition of a parallelotope of Kendall [28]. Starting from a point as the 0-orthotope, the (n+
1)-orthotope is the polytope traced out by moving the n-orthotope in a direction perpendicular
to all its edges. So, by moving the point we obtain a line, by moving the line we obtain a
rectangle, than a box, and so forth.

Describing a point in a rectangle is best done by defining the locations of its perpendicular
projections onto the sides. This is often done using barycentric coordinates in the separate
directions [20, 21]. The resulting description is not as lean as the one for points in a simplex,
as it requires more variables and constraints. For an n-orthotope 2n coordinates are required
and n equality constraints, all from the definition of barycentric coordinates.

Instead of combining univariate polynomials, one can also combine multivariate polynomials.
Govindarajan et al. observe that this results in polytopes other than simplices [22]. Lai takes
a similar approach, but does not investigate general, n-dimensional cases [31]. His discussion is
therefore limited to bases with a maximum of one multivariate polynomial. The implications
of the more general approach are a major topic of this report, and more specifically chapter
4.
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Tessellation and quality criteria

The triangulation discussed in section 3-1-1 is a specific form of tessellation. In general
a tessellation is any collection of polytopes that do not overlap and together cover some
domain. That is, the definition in expression (3-2) can be reused, but now ∆i can be any
n-dimensional polytope. ∆̄ then signifies any lower-dimensional edge.

To constrain the current discussion a set of properties of tessellations is derived from
Grünbaum [24]. All tessellations are assumed to be packings, meaning they show no overlaps.
Although gaps are generally allowed, for now we only discuss covering tessellations. In most
cases we will consider monohedral tessellations, meaning all elements (or prototiles) are of the
same shape, with the relaxation that not all elements are of the same size and proportions.
The only exceptions to this rule are section 4-4 on continuity between unequal polytopes and
the recommendation for future research in section 8-2.

Contrary to triangulation, few quality criteria exist for tessellations of rectangles. This is not
only due to the difference in popularity, but also due to the inherent characteristics of the
rectangle. After all, the angles need not be constrained, nor does its inscribed circle. The
only reasonable criterion would be that it contains enough data points to define a polynomial
of desired degree.

One benefit of using other domain elements than the simplex, is that the simplex has a very
unfavorable content distribution. As the dimension increases, the content of the polytope
tends towards the vertices, away from the center. This fact can be verified mathematically by
comparing the content of the polytope and its inscribed circle [41]. With the help of standard
works of Coxeter and Kendall, these calculations can be made for both the n-cube and the
n-simplex [12, 28]. The results are presented in subsection 5-1-1.

Basis polynomials

The basis polynomials for the tensor-product spline follow directly from the tensor-product
of Bernstein basis polynomials [20]. In the bivariate case we find

π(x) =
∑

λ0+λ1=d1

∑

λ2+λ3=d2

cλB
d1
(λ0λ1)

(x1)B
d2
(λ2λ3)

(x2) (3-9)

with the Bernstein polynomials

Bd1
(λ0λ1)

=
d1!

λ0!λ1!
βλ0

0 βλ1

1 (3-10)

By multiplying the Bernstein polynomials we arrive at a set of tensor-product basis polyno-
mials. It can be shown that this basis preserves the partition of unity property [20] and many
other stability related properties [21] and forms a basis for the tensor-product polynomial
space [39].

There is no theoretical restriction to using multivariate instead of univariate Bernstein poly-
nomials in equation (3-9). For example, Strøm derives the representation of such polynomial
models with respect to a polynomial basis of total degree in a very general manor [39]. In
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engineering applications however such an approach was first taken by Govindarajan et al.
[22].

Coefficients and the control net

The coefficients of the bivariate tensor-product spline are often chosen to be vectors in R3.
This results in a lot of design freedom, but is undesirable in scattered data approximation
tasks [21]. Therefore we use the same scalar coefficients as in the simplex spline.

That the coefficients are defined as scalars does not mean that they have no spatial location,
but rather that this position is fixed. Much in the same way as the simplex spline, the locations
are purely defined by the corresponding multi-index λ [21]. Together the coefficients form a
control net, that may be defined as a product of two univariate control point sets.

Continuity

Continuity can be defined between two neighboring tensor-product patches. In the majority
of the literature only geometric continuity is considered.

Farin however gives the following condition for continuity between two bivariate tensor-
product patches [20]: two patches are Cr across their boundary if and only if the vertices of
the control net can be interpreted as polygons of Cr Bézier curves. In other words, if the
coefficients around the boundary define continuous piecewise polynomials, then the join of
surfaces is also smooth. This implies that one can reuse univariate continuity conditions and
apply them perpendicular to the shared edge.

In his PhD dissertation, Lai takes it a step further and derives continuity conditions between
both two- and three-dimensional tensor-product polynomials [31]. Also the continuity between
different shapes, such as rectangle to triangle and tetrahedron to prism are considered. His
approach however is to set the derivatives on both sides of the shared edge equal. This
method is therefore hard to generalize to higher dimensions. On top of that the view on these
conditions is distorted in the sense that their generalization is unclear.

The approximation problem

Scattered data can be fitted with tensor-product Bernstein polynomials in much the same
way as with simplex splines. Pereyra and Scherer describe a method based on Singular
Value Decomposition [35]. They also propose iterative and distributive methods to decrease
calculation time. The main disadvantage of their work is that they do not include continuity
conditions in their approximation scheme. By comparing the simplex spline framework and
the tensor-product Bernstein polynomials however, there are clear indications that problem
(3-7) can also be formulated for the latter.

Indeed this approach was taken by Sun et al. [40]. They used the method of Govindarajan et
al. directly to estimate a model for the F-16 fighter aircraft. A disadvantage of this approach
is the fact that only rectangular domains can be spanned.
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3-2 Quadrotor analytic modeling

Verification of the ability of the multiplex spline to fit scattered data will be performed using,
among others, a quadrotor data set. Rotor inflow will be modeled as a function of total
velocity, angle of attack and engine state (power and rpm). In this section an overview
is provided of the available analytic models for quadrotors. The focus lies on modeling
phenomena that affect the thrust directly. Most of the quadrotor models are derived from
helicopter aerodynamics, implying this field can also be investigated [4, 26].

In the models for thrust there is a clear subdivision in two types. The first type, discussed
in subsection 3-2-1, is what we may call the dynamic model: a model in which rotor rpm is
the main variable and all aerodynamic effects are collected in a thrust coefficient CT [4]. The
other type, discussed in subsection 3-2-2, is an aerodynamic model in which an attempt is
made to model all aerodynamic effects [26]. Finally the well-known electric motor model is
presented in subsection 3-2-3 and blade flapping is briefly mentioned in subsection 3-2-4.

3-2-1 Dynamics thrust models

In the first extensive discussion of quadrotor modeling and control, Bouabdallah proposes a
flight dynamics model for the thrust as it is also found in helicopter theory. This expression
for thrust is used often for modeling purposes [4, 26, 36].

T = CTρA(ωR)
2 (3-11)

The air density ρ, rotor disc area A and the tip speed ωR are used as variables such that CT is
relatively constant in nominal flight. There exist analytic equations for this thrust coefficient
in which shape parameters of the rotor take a central role [4].

One way of modeling quadrotor thrust would be to assume the model structure of equation
(3-11). By estimation of the rotor rpm and direct measurement of the other parameters, a
numeric model can be made of the thrust coefficient [16].

3-2-2 Aerodynamic thrust model

An analytic model that is deemed more interesting in the current research is the model for
ideal thrust [26].

T =
P

v∞ sinα+ vi
(3-12)

This is the thrust that would be generated if the entire supplied power would be converted to
aerodynamic force. The freestream velocity v∞, angle of attack α and power P are the true
variables in this equation. The induced velocity vi can instead be described as a function of
the same variables and itself [26].

vi =
v2h

√

(v∞ cosα)2 + (v∞ sinα+ vi)2
(3-13)

T. Visser System Identification with Multivariate Multiplex Splines



3-2 Quadrotor analytic modeling 45

Equation (3-13) is only valid in a limited vertical speed regime. When the quadrotor is
descending with at most two times the hover induced speed vh the rotor may enter a vortex
ring state. This is an uncertain aerodynamic state in which air is recycled through the rotor.
Although the vortex ring shows a periodic nature, it can be approximated using an empirical
polynomial model from helicopter theory [26, 32].

vi
vh

= k0 + k1
vz
vh

+ k2

(

vz
vh

)2

+ k3

(

vz
vh

)3

+ k4

(

vz
vh

)4

(3-14)

The values of the coefficients are k0 = 1, k1 = −1.125, k2 = −1.372, k3 = −1.718, k4 = −0.665.
At higher descent rates the rotor enters a windmill brake state, in which equation (3-13) is
again valid. In that state the rotor is driven mainly by the incoming air, but still produces
lift.

The set of equations presented above shows that the thrust is an appropriate candidate for the
validation of a system identification procedure. After all, equation (3-13) cannot be solved
analytically and there are many cross-couplings between variables. The effects are rather
well-known and sufficient dynamics can be included in a data set by only studying nominal
flight.

More extensive rotor inflow models are available in helicopter literature. An overview is
presented by Chen [11]. The use of these sophisticated models is not anticipated, because an
attempt is made to keep the analytic simple. This will simplify the verification process for
which the model is used.

3-2-3 Electric motor model

For the small DC motors installed on quadrotors only simple motor models are relevant. The
standard is a second order differential system, which is often simplified to a first order system
by assuming that inductance is low [4, 5, 6].

ω̇ = −kωω − τ + kUU (3-15)

The coefficients kω and kU related to rotor rpm and input voltage can be found in the thesis
of Bouabdallah [4]. The motor load is indicated with τ and has a direct linear relation to the
current I.

It is also possible to ignore all dynamic effects, which results in a static model [26]. It can be
attained by setting ω̇ = 0 in equation (3-15)

3-2-4 Blade flapping

The importance of blade flapping in quadrotor micro air vehicles depends on the maneuvers
performed. In aggressive maneuvers blade flapping may have significant effect on the thrust
produced [27]. In nominal flight however, this aerodynamic phenomenon is often neglected
[4]. All flapping models for quadrotors are taken from helicopter literature.
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3-3 DelFly numeric modeling

The validation of the system identification method is done using a set of flight test data
of the DelFly. This process serves not only as a test for the multiplex spline, but also to
investigate whether global system identification is possible based on the currently available
data sets. This process thus requires knowledge of the system, as well as methods of analyzing
high-dimensional data. Both these subjects are investigated in this section.

The state of the art of the research into the DelFly is presented in subsection 3-3-1. In
subsection 3-3-2 a short overview is provided of the research into analyzing high-dimensional
data.

3-3-1 DelFly modeling

In the validation process the flight test data of the DelFly II obtained by Caetano et al. is
used [10]. The flight tests they performed are discussed in some detail in subsection 6-1-1.
In this subsection the focus lies on the numeric models that were developed thus far. These
models can be split in two groups. The first can best be described as linear flight dynamics
models, whereas the latter are purely aerodynamic.

The flight dynamics models are a result of the same data set that is used in this thesis. From
the initial data analysis it was already found that eigenmodes can be identified that resemble
those of fixed-wing aircraft [10]. These modes were further investigated to find that the
DelFly at least has a longitudinal, phugoid-like mode and a lateral mode [9]. In the process
the states were reconstructed using standard system identification techniques. Finally a full,
linear flight dynamics model was constructed and validated [8]. It is especially useful to note
the model structure that was adopted. A simple model, using only the pitch angle and rate,
the flap frequency and the elevator input to model the Z-force, reached a similar performance
as a complete model in static tests. This shows that decoupling of the longitudinal behavior
of the DelFly is valid under some circumstances.

Whereas flight dynamics models tend to use the flap average performance, aerodynamic mod-
els focus specifically on modeling the vortex states due to flapping. It was found that these
vortices affect the overall performance significantly [15]. Especially the so called clap-and-
peel mechanism is studied in detail. When the wing closes, the actual foil making up the
wing is trailing behind. These parts of the wing only clap together when the leading edge
is already open again. Thereby a chord location can be identified at which the wings touch,
that runs down to the trailing edge as the leading edges move apart again. In other words,
the wings clap and peel at the same time. This effects was found to positively affect thrust
generation. New wing designs were incorporated by De Croon et al. to find a 5% increase in
power-efficiency.

The results from the literature show that both the flap cycle and the maneuvers have signifi-
cant effects on the forces on the DelFly. In flight dynamics models the effects of the flap cycle
are often neglected, because they can be averaged over the relatively long specific time of the
eigenmodes. Because the distribution of different variables over different layers is the great
innovation presented by the multiplex spline, it is deemed interesting to generate a model
that combines both maneuvers and the flapping cycle.
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3-3-2 Interpreting high-dimensional data

To allow for system identification of the DelFly the analysis of the data is crucial in two ways.
First of all a state vector should be deduced from the data. This amounts to assessing the
relevance of different states in terms of predicting system outcome. On the other hand a
high-dimensional tessellation will be constructed based on the projection of the data set onto
lower-dimensional planes. Both these aspects are kept in mind when investigating the broad
research field of big data.

It was discussed before that choosing layers may well be done based on an analytic model of
the system under consideration. In some cases however such a model may not be available or
sufficient and the data set itself should be used to make subsets of variables. From the review
of dimensionality reduction and variable selection by Guyon and Elisseeff, two methods can
be deduced [25]. The first is to use variable ranking methods to deduce the effect different
individual variables have on the output. A ranking parameter they propose is the coefficient
of determination. With such a ranking it may be possible to deduce what polynomial degree
is required or how fine the triangulation should be to prevent overfitting.

On top of ranking individual variables, one can also perform variable subset selection by
using wrappers or filters. The difference between the two is that wrappers use an induction
algorithm (from state to output), whereas filters require only a data set [29]. This implies that
the use of filters for layer selection is preferred. On the other hand, the brute force approach
of fitting a spline using all possible subdivisions could be called a wrapper approach.

When the layers are chosen, a triangulation should be defined in each of them. This process
can be simplified when insight is provided into the position of data points in the entire state
space. In high-dimensional data sets it is impossible to plot all variables, and thus a method
of dimensionality reduction can be helpful. These methods however generally construct a
new, smaller set of variables (often referred to as features) to represent the most important
directions [25]. Examples of such methods are principal component analysis and singular
value decomposition. In system identification it is more important to keep known states in,
such that the models can be interpreted more easily. In the case of the DelFly it may be
useful to combine the flap states to come to a single flap phase.
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Chapter 4

Multiplex spline theory

In this chapter the theoretical framework of the multiplex spline is presented. It will become
clear that the multiplex spline bridges the gap between triangular and tensor-product Bern-
stein polynomials by presenting a generalization that describes both. On top of that, the
generalization is extended into n dimensions. The chapter is written in such a form that it
can be read separately from the rest of this report.

Before the remainder of this chapter is outlined, the notation for several important sets is
introduced. The first is Zn, which signifies the non-negative integers up to n. Similarly, the
positive integers up to n are indicated with Zn

+, such that Zn = {0,Zn
+}. For the set of

n-dimensional barycentric coordinates we use the notation Bn = {b ∈ Rn+1|
∑

bi = 1}.

For the definition of the multiplex and Bernstein basis polynomials a multi-index is used. In
general a bold symbol is used for the complete set of valid permutations, whereas a normal
symbol signifies a single permutation.

This chapter is subdivided into four sections. The first introduces the geometric basis: the
multiplex. Multiple definitions are provided, as well as algorithms for construction and a
discussion of the shared edge in tesselations. In section 4-2 the basis polynomials defined
on a multiplex are discussed. This discussion leads to a description of the B-net in section
4-3. Finally in section 4-4 the different parts are combined to come to continuity conditions
between multiplices, both equal and unequal in layer structure.

4-1 The multiplex

In this section the multiplex is described. Central is the introduction of two different def-
initions of this polytope, the bottom-up definition in subsection 4-1-1 and the top-down
definition 4-1-2. The equivalence of these two definitions is shown in subsection 4-1-3. This
property plays an essential role in the remainder of this chapter.
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4-1-1 Bottom-up definition

The multiplex spline is a direct generalization of the tensor-product simplex spline introduced
by Govindarajan et al. [22]. In this framework two layers of splines are used. In the first
a multivariate simplex spline is used to describe the state space. The second layer contains
a univariate simplex spline to describe the evolution of the B-coefficients of the first layer in
time.

Although Govindarajan et al. indicated that this nesting of splines has a geometric effect,
they do not provide a general description. In this section these geometric consequences are
investigated, even for the more general case of including more than two layers of splines, and
allowing all layers to be of arbitrary dimension. To properly do this, we define a layer to be
a simplex instead of a complete spline.

Definition 1 (Layer). Consider an n-dimensional polytope Γ in Rn and a separate m-
dimensional space R such that Rn ×R = Rn+m. A layer is an m-simplex ∆ in R positioned
such that Γ and ∆ share exactly one vertex.

Note that the type of a layer is completely defined by its dimension. This means that if Γ
consists entirely of layers, its shape can be defined using the dimensions of the separate layers.
In fact, in that case Γ is the ν-multiplex, where ν = (ν1, ..., νℓ), with ℓ the number of layers,
is a multi-index of which each element indicates the dimension of a layer.

The definition of the ν-multiplex is much like an algorithm for construction. This algorithm
is inspired by the definition of a parallelotope as presented by Kendall [28]. The starting
point for the definition is the 0-multiplex, a point in zero dimensions.

Definition 2 (Bottom-up multiplex). Consider a ν-multiplex Γ of ℓ layers, with |ν| = n, and
a new m-dimensional layer ∆. Now consider the motion of the vertex w0 of ∆ such that it
traces out Γ. The (ν,m)-multiplex is the polytope traced out by ∆ as it moves along with w0

in his motion while staying parallel to the original orientation of ∆.

Before considering a set of examples, the notation of vertices in the layers is introduced.
Since a vertex belongs to a certain layer, this should be reflected in the name of the vertex.
Therefore we define vertices wij , where i ∈ Zℓ

+ is the index of the layer and j ∈ Zνi is the
index within the layer. Some of the vertices of the multiplex will thus have multiple names,
whereas others will not be labeled according to this definition.

The practical use of the above definition is best illustrated using a couple of examples. First
the definition itself is clarified by showing two ways of constructing the (2,1)-multiplex. Ex-
ample 2 focuses on the complete set of polytopes that can be constructed using definition
2.

Example 1 ((2,1)-Multiplex construction). In this example we investigate the construction
of the ν-multiplex, where ν = (2, 1). According to definition 2 this means we start with a 2-
simplex with vertices {w10, w11, w12}, then add the second, one-dimensional layer {w20, w21}.
According to definition 2 the second layer should move along with w20 as it traces out the
entire first layer. This is illustrated in Figure 4-1a as a random motion of the vertex w20.
The resulting multiplex is outlined using dotted lines.
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Figure 4-1: The construction of a (2,1)-multiplex according to definition 2. The order of the
layers can be changed without affecting the shape of the multiplex. The orientation of the
polytopes can be changed freely, and is only considered when defining continuity conditions.

A second, more intuitive way of constructing the same multiplex is by changing the order of
the layers. This is shown in Figure 4-1b. The motion of the vertex w10 along the 1-simplex
results in the same prism-shape.

By combining different layers, many different polytopes can be generated. This is illustrated
using the following example.

Example 2 (Bottom-up multiplex). As pointed out before, the 0-multiplex is a point. Let’s
look at our options to arrive at higher dimensions with this multiplex as a starting point.
Note that the multiplices discussed are shown in Figure 4-2.

We start with the one-dimensional multiplex. There is only one way to arrive at a one-
dimensional polytope, namely by using a single one-dimensional layer. The result is the
1-multiplex, which is equivalent to the 1-simplex: a line segment.

In two dimensions things become more interesting. There are two ways to arrive at two-
dimensional polytopes using definition 2. The first is by using a single two-dimensional layer.
This results in the (2,0)-multiplex: the 2-simplex. The 0 is added in the notation to keep
the number of layers equal to the number of dimensions. The true significance of this 0
will become clear in the next subsection. The second way of arriving at a two-dimensional
polytope is by combining two one-dimensional layers. This results in the (1,1)-multiplex: a
parallelogram. In Figure 4-2 a square (or 2-cube) is drawn, which is a special case of the
parallelogram.

In three dimensions one again has the option to use a single full-dimensional layer, which
results in the 3-simplex. On the other end of the spectrum, three one-dimensional layers
can be used to construct a (3-)cube. The third option is to use a two-dimensional and a
one-dimensional layer. This results in the (2,1,0)-multiplex: a prism with parallel triangular
sides.

If we look at even more dimensions, the number of different options continues to increase.
Independent of the dimension we can always construct the n-simplex by using a single layer,
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Dimension

0 1 2 3

n-s
imp

lex

n-cube

0-multiplex 1-multiplex

(1,1)-multiplex

(2,0)-multiplex

(3,0,0)-multiplex

(2,1,0)-multiplex

(1,1,1)-multiplex

Figure 4-2: All multiplices for 0 up to 3 dimensions. Along the top, the n-simplices are lined
up. They are formed using a single layer in definition 2. On the other end of the spectrum lie the
n-cubes, that are formed using n iterations of definition 2 using only one-dimensional layers.

and the n-cube (or more generally the n-parallelotope) by using n one-dimensional layers.
The exact amount of multiplices in n dimensions is given by the integer partition function
P (n), for which only generating functions and recursive formula’s exist.

At this point it is useful to discuss why the multiplex is preferred over more general polytopes.
First note that in an n-simplex one can uniquely describe a point as the weighted sum of the
vertices of the simplex. The weights are called barycentric coordinates, denoted as b ∈ Bn.

Now note that a point in a ν-multiplex (with |ν| = n) can be uniquely described by its
projection onto each layer. After all, each layer lies in a different set of dimensions, such
that together they span a region in Rn. Because each layer is a simplex by definition 1, the
projection of a point on a layer can be described using barycentric coordinates in that layer.
For the multiplex this results in a vector of barycentric coordinates β = (β1, ...,βℓ), with
subvectors βi ∈ Bνi ,∀i ∈ Zl

+ and ℓ the number of layers. Each element of this vector is
indicated as βij and refers to vertex wij , that is the j

th vertex in the ith layer.
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4-1-2 Top-down definition

To arrive at the second definition of the multiplex, we closely investigate the barycentric
coordinates in the multiplex. As pointed out at the end of the previous subsection, any point
in the multiplex can be defined using a vector of barycentric coordinates β, with subsets
βi ∈ Bνi , i ∈ Zℓ

+. This results in a total of n + ℓ barycentric coordinates. Apart from
a unique description of a point in the multiplex, this vector also describes a point in the
(n+ ℓ− 1)-simplex.

Adjusting the multiplex barycentric coordinates β to simplex coordinates b amounts to a
simple scaling operation. In the end we should have b ∈ Bn+ℓ−1 which can be achieved by
setting b = 1

ℓβ. This results in an extra set of constraints on b, namely bi ∈
1
ℓB

νi ,∀i ∈ Zℓ
+.

In these constraints bi corresponds to the subset βi in the multiplex coordinates.

In words this means that the layers can still be identified in the coordinates in the (n+ ℓ−1)-
simplex. Now however these subsets corresponds to groups of vertices named layer sets.

Definition 3 (Layer set). Consider a simplex with vertices V. The simplex is said to be

subdivided in ℓ layer sets δi defined by sets of vertices Vi if Vi ⊂ V,∀i ∈ Zℓ
+ and V =

ℓ
⋃

i=1
Vi

but Vi ∩ Vj = ∅,∀i 6= j ∈ Zℓ
+.

It is clear that the polytope described by b is convex, so defining it amounts to finding the
extreme points. In order to comply with the conditions on b it is clear that in each subset
bi at least one element should be nonzero. If in each subset only one element is nonzero we
arrive at the extreme points. Their locations in the simplex can be easily described by using
the following concept.

Definition 4 (Simplex link). Consider an (n + ℓ − 1)-simplex with vertices V subdivided in
layer sets with vertices Vi = {vi0, ..., viνi}, i ∈ Zℓ

+. A simplex link is an ℓ-simplex with vertices
Wφ = {v1φ1

, ..., vℓφℓ
} with φ a vector with φi ∈ Zνi, such that Vi ∩Wφ = {viφi

},∀i ∈ Zℓ
+.

In practical terms a simplex link is thus an ℓ-simplex spanned by a set of vertices obtained
by taking one arbitrary vertex from each layer set. When comparing simplex links, it is often
useful to say in what layer set they overlap. If two simplex links use the same vertex from
a layer set, they are set to agree in that layer set. On the other hand, if they use different
vertices from a layer set, they are said to disagree there.

By setting all but one element of each subset bi zero, we arrive at the barycenter of a simplex
link. This fact leads to a concise definition of the multiplex.

Definition 5 (Top-down multiplex). Consider an (n+ ℓ− 1)-simplex ∆ subdivided in ℓ layer
sets δi defined by νi + 1 vertices. The ν-multiplex, with ν = (ν1, ..., νℓ) a multi-index, is the
convex hull of the barycenters of all possible simplex links in ∆ based on the subdivision in
layer sets δi.

A barycenter of a simplex link can be defined using the vector φ. Therefore the following
notation is used for these points.
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(a) (1,1)-multiplex
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Figure 4-3: Two 3-simplices {v10, v11, v20, v21} and {v10, v11, v12, v20} with inscribed multiplices.
On the left the subdivision in layer sets is such that a (1,1)-multiplex is defined. On the right one
vertex is moved from the second to the first layer set, which results in the (2,0)-multiplex. Both
multiplices are colored transparent gray.

uφ =
1

ℓ

ℓ
∑

i=1

viφi
(4-1)

To clarify the process of constructing the multiplex using the top-down definition, let’s look
at an example.

Example 3 (Top-down multiplex). In this example we construct the two two-dimensional
multiplices presented in example 2 from the 3-simplex. The result is displayed in Figure 4-3.

We start from the 3-simplex defined by the set of vertices V = {v10, v11, v20, v21} as displayed
in Figure 4-3a. To construct the (1,1)-multiplex, we choose two layer sets δ1 and δ2 with
vertices V1 = {v10, v11} and V2 = {v20, v21}. The four (ℓ− 1)-dimensional simplex links that
can be constructed between δ1 and δ2 are the line segments described by {v10, v20}, {v10, v21},
{v11, v20} and {v11, v21}. The barycenters of these simplex links are indicated as u00 up to
u11, using expression (4-1). Together these four points span the (1,1)-multiplex.

To construct the (2,0)-multiplex using the top-down definition we can reuse the 3-simplex
of the previous example. The vertices are renamed for clarity. Now we choose one two-
dimensional layer set and one zero-dimensional one: {v10, v11, v12} and {v20} as shown in
Figure 4-3b. This choice only results in three simplex links, being every combination of a
vertex from the first layer set with v20. This results in one new barycenter, on the line
{v12, v20}, indicated with u20. Again we see that the barycenters span the multiplex. In this
case we find the (2,0)-multiplex as the convex hull of {u00, u10, u20}.

Note that this example shows why it can be useful to add zero-dimensional layer sets. Al-
though a triangle can also be obtained by defining one layer set in a 2-simplex, now the (1,1)-
and the (2,0)-multiplex are both inscribed in a 3-simplex. This will prove to be important
when defining continuity between multiplices of different types in section 4-4.
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4-1-3 Multiplex definition equivalence

In the previous subsections two definitions for the multiplex were presented. Both have their
own use in the remainder of this chapter, so it is essential to show that the two definitions
are equivalent. This is done in this subsection. The proof is rather long and is therefore split
up into several parts and lemmas.

We start this subsection with a general lemma that will be used extensively. It was pointed
out before that the multiplex layers and the simplex layer sets are related in many ways. The
most important relation is the following.

Lemma 1 (Parallelism layers and layer sets). Let ∆ be an (n+ ℓ− 1)-simplex with layer sets
δi, i ∈ Zℓ

+. Consider the ν-multiplex Γ inscribed in ∆ with |ν| = n. A polytope γ ⊆ Γ that
is formed according to definition 5 using all simplex links that disagree in one and the same
layer set δi, forms a parallel copy of that layer set.

Proof. Assume that a layer set δi is defined by vertices Vi = {vi0, ..., viνi}. Without loss of
generality we can consider the simplex links that disagree in this layer set, and in the other
layer sets use vk0,∀k 6= i. That is, in equation (4-1) we use only φ = χi where χi

i = j and all
other elements are zero.

uχi =
1

ℓ



vij +
∑

k 6=i

vk0



 , i, k ∈ Zℓ
+,∀j ∈ Zνi

Since the sum in the above expression is independent of χi
i, it is equal for all simplex links

that disagree only in the ith layer. Collecting all uχi with χi
i = j and χi

k = 0,∀k 6= i we find
the same set of vertices Vi, yet scaled with 1

ℓ and translated along the vector 1
ℓ

∑

k 6=i vk0.

An example of this parallelism can be found in Figure 4-3a. In the multiplex {u10, u11} is for
example parallel to the layer set {v20, v21}.

The second building block that is required for the proof is a description of a point in the
multiplex, according to the bottom-up definition. As pointed out earlier, the idea is to
describe the projection of a point onto each layer using barycentric coordinates in each layer.
These descriptions can be combined to find the following.

Lemma 2 (Point in bottom-up multiplex). Consider a ν-multiplex Γ consisting of ℓ layers
γ1 up to γℓ. If each layer is defined using a set of vertices Wi = {wi0, ..., wiνi}, a general point
x ∈ Γ can be defined as

x = (1− ℓ)w0 +

ℓ
∑

i=1

νi
∑

j=0

βijwij (4-2)

where βij are the barycentric coordinates in the ith layer and w0 the origin point such that
wi0 = w0,∀i ∈ Zpℓ.
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56 Multiplex spline theory

Proof. Using the vertices of the ith layer the projection of x onto this layer can be defined as

xi =

νi
∑

j=0

βijwij

Now we choose an origin point w0 that all layers share. We can define any point by adding
to this origin point the vectors from w0 to the projections xi.

x = w0 +

ℓ
∑

i=1

(xi − w0)

By combining the above two expressions and collecting terms for w0 we arrive at equation
(4-2).

Note that equation (4-2) provides us with a description of the extreme points of the multiplex.
They are found when in each layer xi corresponds to a vertex in that layer. This results in
the expression

uφ = (1− ℓ)w0 +

ℓ
∑

i=1

wiφi
(4-3)

The above lemmas provide the tools to show that a multiplex defined using definition 2 has
an equivalent multiplex according to definition 5.

Lemma 3 (Bottom-up to top-down equivalence). Consider a ν-multiplex Γ with ℓ layers γ1
up to γℓ and |ν| = n. A set of n + ℓ − 1 vertices V can be defined such that they form an
(n+ ℓ− 1)-simplex ∆ with layer sets vi such that the inscribed multiplex in ∆ is equal to Γ.

Proof. We can invert lemma 1 to read that layer sets in ∆ should be scaled (with ℓ) parallel
copies of the layers of Γ. This can be achieved by choosing vertices vij in the ith layer set of
∆ as follows.

vij = ℓ

[

wij

gij

]

+ (1− ℓ)

[

w0

0ℓ−1

]

where gij ∈ Rℓ−1 completes the vector such that vij ∈ Rn+ℓ−1. Note that 0n indicates a
vector of n zeros.

Filling in the above choice for vij in definition (4-1) of uφ with j = φi we find

uφ =
1

ℓ

ℓ
∑

i=1

viφi

= (1− ℓ)

[

w0

0ℓ−1

]

+
ℓ
∑

i=1

[

wiφi

giφi

]
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which is immediately equivalent to equation (4-3) if
∑

giφi
= 0ℓ−1. This introduces (n +

1)(ℓ − 1) constraints on (n + ℓ)(ℓ − 1) degrees of freedom, which always has infinitely many
solutions if we count the zero dimensional layers (that is ℓ = n).

One way of constructing a circumscribed simplex is as follows. First we set giφi
= ei,∀φi,∀i ∈

Zℓ−1
+ , with ei the i

th unit vector. Then in the final ℓth layer we set gℓφℓ
= −1. This effectively

amounts to pushing each layer into its own extra dimension, then pushing the last one in the
other direction in all extra dimensions.

The final step towards full equivalence of the multiplex definitions is proving that the multiplex
inscribed in a simplex can also be described using a set of layers.

Lemma 4 (Top-down to bottom-up equivalence). Let ∆ be an (n+ℓ−1)-simplex with vertices
V and ℓ layer sets δi defined. In the inscribed ν-multiplex Γ, where |ν| = n, ℓ layers can be
identified such that they define the same multiplex when used in definition 2.

Proof. First it is noted that every uφ is a vertex of one copy of each layer set. That is, we
can choose any uφ as origin point.

From lemma 1 we have that the multiplex consists of parallel copies of layer sets. We choose
one copy of each layer set as our candidate layers. To simplify the notation we choose those
copies of which uω, with ω = (0, ..., 0) is a vertex. The other vertices of the candidate layers
are then defined by equation (4-1) where φ = χi, with χi

i the only nonzero element.

Now consider the top-down definition of points in the multiplex

x =

ℓ
∑

i=1

νi
∑

j=0

bijvij (4-4)

with constraints bi ∈
1
ℓB

νi . The above can be rewritten by expanding vij as

vij =

ℓ
∑

k=1

(vkχi
k
− vk0) + vi0

where χi
i = j and all other elements of χi are zero, as prescribed by the definition of our

candidate layers. Filling this into equation (4-4) and taking out a factor ℓ we find

x =

ℓ
∑

i=1

νi
∑

j=0

ℓbij

(

1

ℓ

ℓ
∑

k=1

(vkχi
k
− vk0) +

1

ℓ
vi0

)

Combining the above with equation (4-1) this reduces to

x =
ℓ
∑

i=1

νi
∑

j=0

ℓbij

(

uχi − uω +
1

ℓ
vi0

)
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58 Multiplex spline theory

Because uω is independent of i, and using the definition of the barycentric coordinates, we
can rewrite this to

x =

ℓ
∑

i=1

νi
∑

j=0

ℓbijuχi −





ℓ
∑

i=1

νi
∑

j=0

ℓbij



uω +

ℓ
∑

i=1

vi0





νi
∑

j=0

bij





=

ℓ
∑

i=1

νi
∑

j=0

ℓbijuχi − ℓuω + uω

Finally, by collecting the terms related to uω, setting βij = ℓbij and choosing uω = w0 and
uχi |χi

i=j = wij we find equation (4-2). That is, by choosing uω as the origin point and the
connected copies of layer sets as layers, we can describe all points in Γ using the bottom-up
definition.

Now we finally arrive at the goal of this section.

Theorem 1 (Multiplex equivalence). The bottom-up definition 2 and the top-down definition
5 of the multiplex are equivalent.

Proof. From lemma 3 and lemma 4 we have that any multiplex defined using one of the
definitions can also be defined using the other.

4-2 Basis polynomials

In this section the Bernstein basis polynomials of the multiplex spline are defined. It will
become clear that the set of polynomials can be either defined using a tensor-product of lower
dimensional basis polynomials or as a subset of a higher dimensional simplex spline. The
spatial location of the polynomials with respect to the multiplex is discussed in more detail
in section 4-3.

The remainder of this section is structured as follows. In subsection 4-2-1 the tensor product
definition of the basis polynomials is presented. Then in subsection 4-2-2 it is shown that
these basis polynomials can also be found in a higher dimensional, higher degree simplex
spline. Finally the most important properties of the polynomials are collected in subsection
4-2-3.

4-2-1 Tensor-product basis polynomials

The first definition of the Bernstein basis polynomials follows directly from the definition
of the tensor-product simplex spline. Govindarajan introduced this spline as a multivariate
simplex spline of which the B-coefficients are described using a univariate simplex spline [22].
Generalizing this concept to multiple multivariate layers we again arrive at a tensor-product
definition.
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4-2 Basis polynomials 59

Definition 6 (Tensor-product basis polynomials). Consider a ν-multiplex as defined in defi-
nition 2 or 5 and write the set of basis polynomials in the ith layer of dimension νi and degree
di as

Bdi
νi =

{

Bdi
λi

}

|λi|=di

:=

{

di!

λi!
β
λi

i

}

|λi|=di

(4-5)

where λi = (λi0, ..., λiνi) is a multi-index used in the multinomial definitions. The set of
multiplex Bernstein basis polynomials B

d
ν is defined as

B
d
ν =

{

Bd
λ

}

|λi|=di,∀i∈Zℓ
+

:= Bd1
ν1 ⊗ ...⊗Bdℓ

νℓ

(4-6)

with d = (d1, ..., dℓ) a multi-index containing the degrees and λ = (λ1, ..., λℓ) the collection of
multi-indices in the layers.

Taking a single element from the set Bd
ν we find

Bd
λ :=

ℓ
∏

i=1

Bdi
λi

=
d!

λ!
βλ (4-7)

In the case of a simplex spline Bdi
νi contains all possible permutations of the multi-index λi

such that |λi| = di. In the multiplex spline these conditions on λi should still hold, yielding
a set of basis polynomials where not all permutations of λ : |λ| = |d| are included. More
precisely

λ := λ1 × ...× λℓ (4-8)

Or in words, the set of multi-index permutations occurring in λ is defined as the Cartesian
product of the sets λi in the layers.

Example 4 (Tensor-product basis polynomials). In this example we consider the (1,1)-
multiplex spline (or tensor-product Bézier patch). We choose polynomial degrees of 3 and 2 in
the first and second layer respectively (that is, d = (3, 2)). Since both splines are univariate,
we find all permutations of the multi-indices to be

λ1 = {(3, 0), (2, 1), (1, 2), (0, 3)}

λ2 = {(2, 0), (1, 1), (0, 2)}
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Figure 4-4: Two example basis polynomials of the (1,1)-multiplex spline with degree d = (3, 2).
Note the two different color scales used.

The Cartesian product in (4-8) implies that any combination of two entries from λ1 and λ2

occurs in λ. One entry may for example be λ = ((2, 1), (0, 2)) = (2, 1, 0, 2), if the second and
third entry of the two sets are combined. This leads to the basis polynomial

B
(3,2)
(2,1,0,2)(β) := B3

(2,1)(β1)B
2
(0,2)(β2)

=
3!

2!1!
β210β

1
11

2!

0!2!
β020β

2
21 = 3β210β11β

2
21

Together with the above example, another basis polynomials of the same degrees is plotted
in Figure 4-4.

4-2-2 A subset of simplex spline basis polynomials

In subsection 4-1-2 it was shown that the barycentric coordinates β in the multiplex also
describe locations in a higher-dimensional simplex. A similar equivalence can be found in the
basis polynomials.

This equivalence is best made clear using the multi-index λ. It was noted before that it
consists of several parts that stem from the different layers in the multiplex. This means
that, like with the barycentric coordinates, there are n + ℓ entries, where a multivariate
simplex spline needs only n + 1. On top of that, if the separate constraints on the subsets
of λ are taken together, we find |λ| = |d|. This implies that λ ⊆ κ with κ the multi-index
permutations of an (n + ℓ− 1)-simplex spline of degree |d|. Taking together the equivalence
in barycentric coordinates and in multi-index, the concept of polynomial equivalence can be
derived.

Proposition 1 (Polynomial equivalence). Let ∆ be an (n+ℓ−1)-simplex and Γ a ν-multiplex

inscribed in ∆. Consider the sets of Bernstein basis polynomials B
d
ν defined on Γ and B

|d|
n+ℓ−1

defined on ∆. B
d
ν forms a scaled subset of B

|d|
n+ℓ−1, or
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B
d
ν(β) ⊆

(

ℓ|d|
d!

|d|!

)

B
|d|
n+ℓ−1(b) (4-9)

where the scaling factor is only determined by the degree d and the number of layers ℓ.

Proof. We take one general element Bd
λ(β) ∈ B

d
ν and the element B

|d|
λ (b) ∈ B

|d|
n+ℓ−1. Dividing

the two and filling in the barycentric coordinate scaling b = 1
ℓβ, we obtain

Bd
λ(β)

B
|d|
λ (b)

=
d!
λ!β

λ

|d|!
λ!

(

1
ℓβ
)λ

= ℓ|d|
d!

|d|!

Since the above holds for any λ ∈ λ and λ ⊆ κ, we arrive at equation (4-9).

The equivalence of the multiplex and simplex basis polynomials leads to a second definition
of the basis polynomials.

Definition 7 (Subset basis polynomials). Consider an (n + ℓ− 1)-simplex spline with basis

polynomials B
|d|
n+l−1 and a ν-multiplex Γ according to definition 5. The multiplex Bernstein

basis polynomials B
d
ν defined on Γ form the scaled subset

B
d
ν :=

{

Bd
λ(β) =

(

ℓ|d|
d!

|d|!

)

B
|d|
λ (b) ∈

(

ℓ|d|
d!

|d|!

)

B
|d|
n+l−1 : |λi| = di,∀i ∈ Zℓ

+

}

(4-10)

of the set of simplex basis polynomials B
|d|
n+l−1.

Definition 7 is a direct result of rephrasing proposition 1.

4-2-3 Properties of basis polynomials

In this subsection both definitions of the basis polynomials in the multiplex spline are used to
find their most important properties. Based on the collection of propositions in this subsection
it can be shown that the basis polynomials form a stable local basis [30].

In many proofs of stability of a polynomial basis, the partition of unity property and non-
negativity of the basis play a central role.

Proposition 2 (Partition of unity). The set of basis polynomials B
d
ν, with ν and d the

dimensions and degrees of the layers respectively, has the partition of unity property and all
elements are non-negative.

Proof. From among others Lai and Schumaker we have that the Bernstein basis polynomials
of a simplex spline are non-negative and have the partition of unity property [30]. Because the
basis polynomials of the multiplex spline are a tensor-product of simplex spline polynomials
(equation (4-6)), we have for the sum of the basis polynomials
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∑

λ∈λ

ℓ
∏

i=1

Bdi
λi

=

ℓ
∏

i=1

∑

λ∈λ

Bdi
λi

= 1

Note that the order of summation and multiplication can be inverted as the product does not
depend on λ.

Also, if we fill in Bdi
λi

≥ 0 in equation (4-6), we find that the same holds for Bd
λ. Therefore

both the partition of unity and the non-negativity properties are preserved.

A remaining question is what the Bernstein polynomials form a basis of. This can be deduced
from the definition of the basis polynomials in equation 4-6.

Proposition 3 (Basis for polynomial space). The set of basis polynomials B
d
ν of degree d

and layer dimensions ν forms a basis for the Cartesian product of the layer polynomial spaces
Sd
ν = Sd1

ν1 × ...× Sdℓ
νℓ
.

Proof. From among others Lai and Schumaker we have that the simplex spline basis polyno-
mials Bdi

νi form a basis for the polynomial space Sdi
νi [30]. The tensor-product of the bases, as

described in definition 6, trivially results in a basis for the Cartesian product of the individual
spaces.

The implications of proposition 3 are not investigated further for the time being. It is accepted
that since the Bernstein polynomials form a basis in each individual layer, the approximation
power will be satisfactory. On top of that, it is expected that the approximation power in
different layers will not affect each other.

A final note is placed here to couple the basis polynomials to the B-net, discussed in the
next section. In the simplex spline framework the B-coefficients lie at control points, that
align with the locations of maxima of basis polynomials. Therefore it is of interest to find the
locations of these maxima.

Proposition 4 (Maximum value). The maximum of a basis polynomial Bd
λ(β) =

ℓ
∏

i=1
Bdi

λi
(βi)

with multi-index λ = (λ1, ..., λℓ) and degrees d = (d1, ..., dℓ) lies at the location where the
vector β = (β1, ...,βℓ) results in a maximum in each basis polynomial Bdi

λi
(βi).

Proof. From definition 1 of a layer it is clear that barycentric coordinates in each layer are
independent from each other. Therefore all maxima of the basis polynomials in definition 6
can be achieved independently, resulting in the highest possible function value for Bd

λ(β).

4-3 B-net

The final element of the multiplex spline that should be discussed is the B-net. This is the
collection of B-coefficients and their location in the multiplex. The next section, dealing with
continuity, strongly relies on this section. The B-coefficients are treated as a set rather than
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as a vector, with the notation cλ ∈ C for the multiplex spline coefficients and cκ ∈ C for the
simplex spline.

First the B-net is described as a combination of B-nets of the separate layers. The relation to
the domain points and the maxima of the basis polynomials is covered. In subsection 4-3-2
the B-net is instead described as a subset of a higher dimensional simplex spline.

4-3-1 Bottom-up B-net

In the simplex spline the B-coefficients lie at so called domain points. Each B-coefficient
corresponds to a basis polynomial, and thus to a single multi-index κ = (κ0, ..., κn). Given
this multi-index, a domain point q is defined by Lai and Schumaker as [30]

qκ :=
1

e

n
∑

t=0

κtvt (4-11)

where vt represents a vertex of the simplex, n is the dimension of the spline and e is the
degree of the simplex spline.

From definition (4-8) of the permutations of λ = (λ1, ..., λℓ), λi = (λi0, ..., λiνi) we find that
the domain points in the multiplex spline lie at locations described by the Cartesian product
of all domain points in equation (4-11). That is, any combination of domain points from each
layer will be a domain point, or

qλ := (1− ℓ)w0 +

ℓ
∑

i=1

1

di

νi
∑

j=0

λijwij (4-12)

with w0 := wi0,∀i ∈ Zℓ
+ the origin point. Note that the equation for domain points resembles

equation (4-2).

In subsection 4-2-3 it was found that the maximum of a basis polynomial lies at the place
where all elements in the defining product (4-6) have a maximum. This combination is
equivalent to the one defining the domain points. That is, the B-coefficients again lie at the
maximum of the corresponding basis polynomial.

4-3-2 Top-down B-net

Like the basis polynomials, the B-coefficients directly relate to a multi-index. Therefore the
reasoning of subsection 4-2-2 also implies that the B-coefficients of the multiplex spline form
a subset of the B-coefficients of a higher dimensional simplex spline. To be more precise,
the multiplex spline inherits only those coefficients corresponding to permutations of the
multi-index κ for which κ ∈ λ.

The location of the B-coefficients C in the higher dimensional B-net C can be found by filling
in the relevant permutations κ in equation (4-11), with e = |d|. To describe these locations
we introduce the biased multiplex.
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Definition 8 (Biased multiplex). Consider an (n+ ℓ−1)-simplex ∆ with ℓ layer sets defined
consisting of νi + 1 vertices. The biased ν-multiplex Γξ, with ξ a vector of ℓ weights such
that ξ ∈ Bℓ, is the convex hull of the points

uφ =
ℓ
∑

i=1

ξiviφi
(4-13)

on the simplex links of ∆, where φ is a vector that indicates what vertex is taken from each
layer.

The name of the biased multiplex can be easily explained. The shape is equal to the multiplex
defined in definition 5, but it is shifted towards one or more of the layer sets.

Using the biased multiplex, the B-net C of the multiplex can be described as a subset of C
as follows.

Proposition 5 (Multiplex B-net). Consider an (n + ℓ− 1)-simplex ∆ with ℓ layer sets and
an inscribed biased ν-multiplex Γξ with ξ = ( d1|d| , ...,

dℓ
|d|). The B-net C used in the multiplex

spline is found at domain points in ∆ that lie in Γξ.

Proof. We replace κ in equation (4-11) with λ = (λ1, ..., λℓ) and the degree by the total degree
|d| to find

q =
1

|d|

ℓ
∑

i=1

νi
∑

j=0

λijvij

where vij is a renaming of the vertices vt, rather than a change of basis. By taking 1
|d| into the

innermost sum we find sets of barycentric coordinates βi = (λi0

|d| , ...,
λiνi

|d| ). Since |λi| = di we

find that βi ∈
di
|d|B

νi in all layers and for any valid λ. This is equivalent to lying in the convex

hull of extreme points for which βi = (0, ...0, di
|d| , 0, ..., 0) in each layer, which immediately

reduces to equation (4-13) with weights ξi =
di
|d| .

To illustrate the relation between the biased multiplex and the B-net, an example is provided
for the (1,1)-multiplex.

Example 5 (B-net and the biased multiplex). In Figure 4-5a the B-net of a 3-simplex
{v10, v11, v20, v21} is displayed as a set of black circles. The set of B-coefficients corresponding
to the multi-index κ = (κ1, κ2) with |κ1| = 1 and |κ2| = 4 is highlighted by a hatched plane.
This hatched plane is the biased multiplex Γξ with ξ = (15 ,

4
5 ). By making different subdivi-

sions of the degree over the layers, the biased multiplices of Figure 4-5b are found. Defining
a multiplex spline on the shaded multiplex amounts to projecting the B-coefficients on one of
the biased multiplices onto the multiplex.
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(a) d = (1, 4)
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Figure 4-5: The B-net of the 3-simplex {v10, v11, v20, v21} as black circles. The inscribed (1,1)-
multiplex is shaded transparent gray. The biased multiplex is shown for the indicated multiplex
polynomial degrees d. The names of the B-coefficients are only provided for a small group of
coefficients for clarity.

4-4 Continuity

In this section many of the results from the previous sections are combined to arrive at
continuity conditions for a general multiplex spline. It will be discussed how these conditions
can be taken from simplex spline theory.

To properly introduce the continuity conditions the first subsection aims to combine all top-
down definitions of the previous sections. This results in the equivalent simplex spline, of
which the multiplex spline is a lower-dimensional slice. The shape of the shared edge between
two multiplices is studied in subsection 4-4-2. The knowledge of the shared edge and the
equivalent simplex spline are combined in subsection 4-4-3 to define continuity conditions
between equal type multiplices. Finally in subsection 4-4-4 continuity conditions between
two different type, yet equal-dimensional multiplices are formulated.

4-4-1 The equivalent simplex spline

In the previous sections it was found that for every defining element of the multiplex spline, a
higher-dimensional simplex equivalent exists. The multiplex is a cut of a higher-dimensional
simplex, the basis polynomials form a scaled subset of a simplex polynomial and the B-net is
a slice of the same higher-dimensional B-net. These concepts are now combined to define the
equivalent simplex spline.

Definition 9 (Equivalent simplex spline). Let sdν be a multiplex spline of degree d and dimen-
sion ν, defined on the ν-multiplex Γ, with a B-net C, basis polynomials Bd

ν and the correspond-
ing set of multi-index permutations λ. The equivalent simplex spline sem of sdν is the simplex
spline with degree e = |d|, defined on the m-simplex ∆ with m = n + ℓ − 1, where n = |ν|
and ℓ is the number of layers in Γ, with a B-net C, basis polynomials Be

m and multi-index
permutations κ such that
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• Γ is inscribed in ∆;

• cκ = 0 for κ ∈ κ if κ /∈ λ;

• cκ = ℓe d!e!cλ for κ ∈ κ if κ = λ ∈ λ.

By setting the B-coefficients zero if they do not lie in the multiplex B-net, all corresponding
basis polynomials are eliminated. The other basis polynomials are scaled via the B-coefficients,
such that function values are equal at the slice of ∆ where Γ lies.

From the results of the previous sections it is clear that properties of the equivalent simplex
spline can often be translated directly to the multiplex spline. The most notable example is
continuity, which is the topic of the remainder of this section.

4-4-2 Shared edge between multiplices

Before discussing continuity conditions, it is important to define the edge shared by multi-
plices. In the case of the simplex spline, a shared edge between two n-simplices is an (n−m)-
simplex (with m ≤ n) [16]. This result is combined with the concept of the equivalent simplex
spline in this subsection to arrive at the shared edge between multiplices.

In the remainder of this section it is assumed that the multiplices can be oriented such that
they share a complete edge.

Theorem 2 (Shared edge). Consider the ν-multiplices Γ and Γ̃, |ν| = n. A shared edge Γ̄
between Γ and Γ̃ is a (ν − µ)-multiplex, with µ ≥ 0 a multi-index with as many entries as ν,
as long as ν − µ ≥ 0.

Proof. We start with the case |µ| = 1. Consider the (n + ℓ − 1)-simplices ∆ defined around
Γ and ∆̃ around Γ̃. Assume ∆ and ∆̃ share an (n+ ℓ− 2)-edge ∆̄.

If the out-of edge vertex vooe lies in the ith layer set such that νi > 0, then the same layer
sets can be defined in ∆̄ as in ∆ and ∆̃. Reusing the simplex links that do not include vooe in
definition 5 results in an inscribed (ν − µ)-multiplex Γ̄ in ∆̄ with µi = 1. Because the same
simplex links are also used for the construction of both Γ and Γ̃, all three multiplices Γ̄, Γ
and Γ̃ share the extreme points defined by these simplex links. Therefore Γ̄ ⊂ Γ, Γ̄ ⊂ Γ̃ and
thus Γ̄ ⊂ (Γ ∩ Γ̃).

To show that Γ̄ = Γ ∩ Γ̃ we observe that all points x ∈ Γ, yet x /∈ Γ̄, require vooe for their
definition. Because ∆ and ∆̃ do not overlap, we find that x /∈ Γ̃.

For the more general case where |µ| > 1 the above proof can still be used. In this case we
iterate on the description of multiplices Γ̄ of ever-decreasing dimension as an edge of Γ, until
the appropriate dimension is achieved.

From the above discussion we find that an (n−1)-edge of a ν-multiplex is a (ν−µ)-multiplex,
with |µ| = 1 and µ ≥ 0. That is, the two multiplices only differ in a single layer in terms of
their layer dimensions. It is useful to give the layer in which they differ a name.
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Definition 10 (Out-of-edge layer). Consider a ν-multiplex Γ, |ν| = n, and a multiplex Γ̃ that
share a (ν − µ)-multiplex Γ̄, with |µ| = 1 and µ ≥ 0. The out-of-edge layer of Γ is the layer
in which Γ̄ has a different dimension.

As µ described in the above definition has only one non-zero value, we may also say that the
out-of-edge layer is the ith layer of Γ such that µi = 1. Also, if all layers of Γ are defined
such that they lie on the shared edge, only the out-of-edge layer will stick out. The vertex
that is not on the shared edge is the out-of-edge vertex of Γ. Note that this implies that the
out-of-edge vertex of a multiplex lies in its out-of-edge layer.

A remaining question is what happens when the out-of-edge vertex lies in a zero-dimensional
layer set (that is, the layer set is eliminated). This corresponds to the condition ν − µ � 0.

Proposition 6 (No shared edge). Consider the simplices ∆ and ∆̃ sharing an edge ∆̄ and
the inscribed multiplices Γ and Γ̃. If a layer set of ∆ is entirely out-of-edge for ∆̄, Γ and Γ̃
do not share an edge.

Proof. Assume that in the process of eliminating vertices from ∆ we arrive at an intermediate
simplex ∆I of which one layer set is zero-dimensional. Now if the vertex v making up the
zero-dimensional layer set is taken to be the next out-of-edge vertex, we arrive at ∆̄I as the
shared edge between ∆I and ∆̃I . Considering the inscribed multiplices ΓI in ∆I and Γ̄I in ∆̄I ,
we find using definition 5 and lemma 1 that ΓI is a scaled, parallel copy of Γ̄I translated in
the direction of v. Since this direction is not spanned by Γ̄I we have ΓI ∩ Γ̄I = ∅. Combining
this with the proof of theorem 2 we find that ΓI and Γ̃I do not share an edge.

The importance of this result is that the shared edge between multiplices lies in the shared
edge between the circumscribed simplices. This implies that continuity conditions can be
taken from the equivalent simplex spline directly. This is the cornerstone of the remainder of
this section.

4-4-3 Continuity conditions between equal multiplices

In this subsection continuity conditions are formulated for connections between two equal
ν-multiplices Γ and Γ̃. Equal in this case means that they have the same dimensionality in
all layers, or ν is the same in both multiplices.

The first way of arriving at continuity conditions is to set the derivatives of the polynomials
on both multiplices equal on both sides of the shared edge. Using this approach, we expect to
require at least continuity in n linearly independent directions for omnidirectional continuity.
An example could be in-layer continuity.

Definition 11 (In-layer continuity). Consider two ν-multiplices with layers γ1 up to γℓ and
γ̃1 up to γ̃ℓ sharing all layers but γi and γ̃i. In-layer continuity is simplex continuity between
γi and γ̃i imposed on all slices of the B-net parallel to γi.

Although in-layer continuity obviously guarantees continuity in directions parallel to a layer,
it is not immediate that polynomials are also continuous in other directions. For this we turn
to the equivalent simplex spline.
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In a simplex spline, continuity is guaranteed if the coefficients on the shared edge are equal
in both simplices ∆ and ∆̃ and the derivatives are equal in the direction of the out-of-edge
vertex [30]. In general we can choose any direction from a vertex on the shared edge to the
out-of-edge vertex. Assuming the out-of-edge vertex is named first in both simplices, the kth

order continuity conditions simplify to

c̃(k,κ1,...,κm) =
∑

|σ|=k

c(0,κ1,...,κm)+σB
k
σ(ṽooe) (4-14)

with σ a multi-index and ṽooe the out-of-edge vertex of ∆̃. Note that ṽooe should be defined
using barycentric coordinates in ∆.

In-layer continuity can be directly related to continuity in the equivalent simplex spline.

Theorem 3 (Continuity equivalence). Let sdν be a (ν)-multiplex spline of degrees d and sem
its equivalent simplex spline as in definition 9 with dimension m = n + ℓ − 1, n = |ν| and
degree e = |d|. Continuity between two ν-multiplices Γ and Γ̃ that share a (ν − µ)-edge Γ̄,
where |µ| = 1, is equivalent to continuity in sem between two m-simplices ∆ and ∆̃ that share
an (m− 1)-edge ∆̄ such that Γ ⊆ ∆, Γ̃ ⊆ ∆̃ and Γ̄ ⊆ ∆̄.

Proof. The directional derivative of sdν can be easily derived from the derivative of sem, com-
bined with equation (4-10). From the discussion of theorem 2.28 in [30] we have that the
general directional derivative of sem is a linear combination of derivatives in m independent
directions. For sdν only the directions that lie in the multiplex remain. That is, a total of
n = |ν| directional derivatives is required.

In sem the first m− 1 directions are obtained by setting the B-coefficients that lie in ∆̄ equal.
Because only a slice of the B-net is non-zero, many of these constraints are superfluous. By
eliminating those constraints only n− 1 constraint directions remain.

The final direction in both cases is the direction out of the shared edge, towards ṽooe. This
results in equation (4-14) for both cases.

The above theorem shows that we can use equation (4-14) for multiplex continuity. An
interesting special case of these conditions occurs when the out-of-edge layers of Γ and Γ̃ are
cospatial. With cospatial it is meant that the two νi-dimensional layers can be defined using
the same basis for Rνi . Cospatial lines are collinear, cospatial triangles are coplanar, and so
forth.

Proposition 7 (Continuity in cospatial layers). Let ∆ and ∆̃ be two m-simplices in the
equivalent simplex spline sem of a multiplex spline sdν, sharing an (m− 1)-edge. Consider the
case where the out-of-edge vertex lies in the ith layer set in both simplices. Then equation
(4-14) simplifies to in-layer continuity in the ith layer if those layers are cospatial.

Proof. Using n + 1 barycentric coordinates with respect to an n-simplex, any point can be
described in Rn as long as the coordinates are allowed to be negative. This means that if two
layers of different multiplices are cospatial, any point in the layer of the first multiplex can
be defined using only barycentric coordinates in the same layer of the other multiplex.
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Returning to the continuity conditions in equation (4-14) we observe that we need a barycen-
tric description of ṽooe in Γ. The above implies that this can be done using only barycentric
coordinates in the ith layer of Γ. The other barycentric coordinates are zero. If σ has non-zero
entries out of the ith layer set, the basis polynomial reduces to zero. Eliminating these zero
terms results in

c̃λ =
∑

|ρ|=k

c(λ1,...,λi−1,λi+ρ,λi+1,...,λℓ)B
k
ρ (ṽooe) (4-15)

which is a simplex spline continuity condition in the ith layer. Note that we use simplex
basis polynomials, which is equivalent to the multiplex basis polynomial with degree zero
in all other layers, if we eliminate all inherently zero elements of b(ṽooe). Also, scaling of
the B-coefficients due to the conversion from equivalent simplex spline to multiplex spline is
canceled.

To clarify the concepts discussed in this subsection, an example is presented. We use the
(1,1)-multiplex to be able to make illustrations within three dimensions.

Example 6 (Continuity between (1,1)-multiplices). The top down definition of continuity
conditions is illustrated in Figure 4-6. In Figure 4-6a two 3-simplices ∆ and ∆̃ and their
B-net for polynomial degree 4 are shown. The (1,1)-multiplices Γ and Γ̃ that can be inscribed
in both these simplices by using the layer sets {v10, v11} and {v20, v21} are the same as those
in Figure 4-3a.

Let’s assume that we are interested in a multiplex polynomial of degree (1,3). This corresponds
to the top biased multiplex in Figure 4-6, Γ(1/4,3/4) in ∆ and Γ̃(1/4,3/4) in ∆̃. In Figure 4-6b
a first order continuity condition between ∆ and ∆̃ is drawn. The coefficients that do not lie
in the biased multiplex of interest however are set to zero, and do therefore not contribute.
What remains is a collinear condition involving three coefficients. If another condition is
chosen of which the coefficient in ∆̃ does not lie on the biased multiplex Γ̃(1/4,3/4), a condition
remains that sets the weighted sum of B-coefficients in Γ to zero. This is odd, since such a
continuity condition is independent of the function values in Γ̃.

Only if the second layer sets {v20, v21} and {ṽ20, ṽ21} are collinear (as is the case in this
example), this problem does not occur. From proposition 7 we find that such a condition
would be zero in its totality and thus would not pose a constraint.

Figure 4-6c shows a second order continuity condition. Again only the top row of coefficients
actually takes part in the condition for the inscribed multiplices, due to proposition 7.

4-4-4 Continuity conditions between different multiplices

Continuity conditions can only be defined between two domain elements if they share an
(n − 1)-dimensional edge. However, it is not necessary that both multiplices have an equal
shape. To be more precise, theorem 2 can be expanded to state that for a ν-multiplex Γ and
a ν̃-multiplex Γ̃ to share an (n − 1)-edge, we require |ν| = |ν̃| = n and ν − µ = ν̃ − µ̃. Here
the multi-indices µ and µ̃ are again defined by the conditions µ, µ̃ ≥ 0 and |µ|, |µ̃| = 1. In
this subsection continuity conditions that arise in such situations are derived and described.
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ṽ10, v10

ṽ11, v11

ṽ20 ṽ21, v21 v20

(a) No conditions

ṽ10, v10

ṽ11, v11

ṽ20 ṽ21, v21 v20

(b) First order condition

ṽ10, v10

ṽ11, v11

ṽ20 ṽ21, v21 v20

(c) Second order condition

Figure 4-6: Continuity between two 3-simplices ∆ (right) and ∆̃ with polynomial degree 4. The
biased multiplices are hatched in both simplices. Continuity conditions in the simplex spline take
the form of a single B-coefficient in one simplex (where the dashed lines intersect) and a miniature
n-simplex in the other. In the (1,1)-multiplex spline with degree d = (1, 3) only the black B-
coefficients are nonzero, yielding collinear continuity conditions as described by proposition 7.
The B-coefficients affected by the continuity condition are black with a gray center.
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Instead of setting the derivative on both ends of the shared edge equal [31], we choose to take
a more general approach through the circumscribed simplex. To illustrate the procedure, we
start with an example for continuity between a rectangle and a triangle.

Example 7 (First order rectangle-triangle continuity). We start by identifying both shapes
as multiplices. The rectangle is a (1, 1)-multiplex Γ, as it can be constructed by combining
two one-dimensional simplices (line segments). The vertices of the layers are depicted by
w10 up to w21 in Figure 4-7a. The triangle on the other hand is the 2-simplex. However, a
zero-dimensional layer can be added without changing the shape, which makes the triangle
a (2, 0)-multiplex Γ̃. This implies that we can keep on adding zero-dimensional layers, but
in general we never require ℓ > n. The vertices of Γ̃ are indicated by w̃ij . Note that w̃20 is
added for completeness, but its location is arbitrary.

Second, we verify whether Γ and Γ̃ share an edge. Indeed, if we choose µ = (0, 1) and
µ̃ = (1, 0), then ν − µ = ν̃ − µ̃ = (1, 0). That is, Γ and Γ̃ share a 1-simplex, a line segment.
For the rectangle Γ this corresponds to the entire first layer, for the triangle this is only one
edge of the first layer.

The circumscribed simplices are of dimension n+ ℓ− 1. For the rectangle this clearly results
in a 3-simplex. By adding the zero-dimensional layer, the same holds for the triangle. The
multiplices Γ and Γ̃ and their circumscribed simplices ∆ and ∆̃ are depicted in Figure 4-7a.
The B-net for a bi-quadratic rectangle and a cubic triangle are shown in relation to the total
degree simplex B-net in Figure 4-7b.

To have a k-continuous join between the two multiplices, we require that the kth order deriva-
tives of the polynomials on the shared edge are equal. Lai shows that in the simplex spline
this is equivalent to setting the kth de Casteljau iterations of B-coefficients at a distance k
from the shared edge, equal in both simplices [30]. These iterations are performed using
directional coordinates describing a vector not parallel to the shared edge.

The first order continuity conditions can be greatly simplified by choosing these directional
coordinates a from v21 to v20. We then obtain a = (a10, a11, a20, a21) = (0, 0, 1,−1) and
ã = (b̃10, b̃11, b̃12, 0). Contrary to standard simplex continuity (shown in Figure 4-7b and
derived by Lai [30]), the term a21 is not brought to the side of the triangle. Therefore only
the terms of the de Casteljau iteration in Γ̃ in which λ20 is not changed, are non-zero. This
effectively means that the B-coefficients that are affected by the continuity condition, lie in a
plane parallel to Γ̃. The resulting conditions is shown in Figure 4-7c.

For the zeroth order continuity conditions to also hold, the cubic polynomial on the shared
edge should be reduced to a quadratic one. On top of that, the zeroth order conditions on
quadratic coefficients should be converted to hold for the cubic coefficients.

The process described in example 7 above can be generalized to any number of dimensions,
number of layers, degrees and continuity orders. The resulting procedure is presented in the
remainder of this subsection. First the geometric considerations are described. Second the
continuity conditions in the circumscribed simplex are considered, as well as the way in which
they simplify. Finally the reduction of all continuity conditions to a single degree polynomial
is discussed briefly.

As implied by theorem 2, the shared edge Γ̄ of Γ and Γ̃ is a multiplex with circumscribed
simplex ∆̄. This in turn implies that we can always define circumscribed simplices ∆ and ∆̃
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(a) Multiplex definition

a
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v11, ṽ11
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ṽ12

(b) First order simplex condition
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v10, ṽ10

v11, ṽ11

v20 v21, ṽ20
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(c) First order multiplex condition

Figure 4-7: Continuity conditions between different type multiplices can be found using the top-
down approach. In Figure 4-7a the geometric definition of multiplices and circumscribed simplices
is presented. In Figure 4-7b an example first order continuity condition in the equivalent simplex
spline is shown. The gray coefficients are set to zero, whereas the ones with a gray core are
affected by the continuity condition. By choosing a as indicated, the conditions simplify to the
ones in Figure 4-7c. Note that we use a higher degree in the triangular patch. In this case the
rectangular patch is biquadratic and the triangular one is cubic.
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such that they share the edge ∆̄. The remaining out-of-edge vertices should be defined such,
that Γ and Γ̃ are cospatial. From lemma 1 it can be deduced that the out-of-edge layer sets
need to be parallel.

Before continuing with the derivation of continuity conditions, we introduce some notation
regarding the polynomial expressions. In general terms, all but two layers will be completely
shared. We give those equal indices in both multiplices. The two remaining (out-of-edge)
layers are aligned with the layers with which they share all but one vertex. Without loss of
generality we can choose w10 and w̃ℓνℓ as the out-of-edge vertices. This means that in our
search for continuity conditions we generally require (κ10, ..., κℓνℓ) = (κ̃ℓν̃ℓ , κ̃10, ..., κ̃ℓ,ν̃ℓ−1).
Note that a distinction is made here between κ and κ̃.

Continuity conditions of order k between simplices, as defined in equation (4-14), are derived
by setting the derivatives equal on both sides of the shared edge. If we do this in the equivalent
simplex splines defined in definition 9, we find for continuity order k

e!

(e− k)!

∑

|κ|=e−k

c
(k)
(0,κ11,...,κℓνℓ

)(a)B
e−k
(0,κ11,...,κℓνℓ

) =

e!

(e− k)!

∑

|κ̃|=e−k

c̃
(k)
(κ̃10,...,κ̃ℓ,ν̃ℓ−1,0)

(ã)Be−k
(κ̃10,...,κ̃ℓ,ν̃ℓ−1,0)

(4-16)

As the basis polynomials are equal on the shared edge, these conditions quickly simplify to
equation (4-16) [30].

c
(k)
(0,κ11,...,κℓνℓ

)(a) = c̃
(k)
(κ̃10,...,κ̃ℓ,νℓ−1,0)

(ã), |κ| = e− k (4-17)

That is, the de Casteljau iterations must be equal on both sides of the shared edge.

The directional coordinates a and ã describe a vector that is not parallel to the shared edge.
Because the out-of-edge layer sets must be parallel (as stated before), it is possible to choose
a vector that is parallel to both these layer sets. One obvious choice is the vector between the
out-of-edge vertex and any other vertex of the lowest-dimensional of the two out-of-edge layer
sets. This vector will definitely also lie in the other out-of-edge layer set. In other words, the
coordinates a and ã will have zero elements corresponding to vertices from all other layer
sets. This leads to the significant simplification that the de Casteljau iterations of equation
(4-17) reduce to iterations in the out-of-edge layer sets. Combining this with the scaling of
the B-coefficients in definition 9 and by removing all zero terms from a and ã, we find the
following continuity conditions.

d!
(

c
(k)
(0,λ11,...,λ1ν1

)(a)
)

(λ2,...,λℓ)
= d̃!

(

c̃(λ̃1,...,λ̃ℓ−1)

)(k)

(λ̃ℓ0,...,λ̃ℓ,νℓ−1,0)
(ã) (4-18)

Note that all collected terms of λ and λ̃ are not affected by this de Casteljau iteration, and
that the (summing) conditions from equation (4-16) still hold.

Equation (4-18) provides a very clear and insightful description of continuity conditions be-
tween different multiplices. After all, the conditions take the form of miniature copies of the
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out-of-edge layers. But these sets of B-coefficients may not always align with each other on
both ends of the shared edge. This can be explained as follows. Before performing the de
Casteljau iteration in (4-18), we find both in the first and the last layer a difference in degree.
For example, we may observe that as (λ11, ..., λ1ν1) = λ̃1 and λ10 = k, we have |λ1| = |λ̃1|+k.
In layer ℓ we find the similar condition |λℓ|+ k = |λ̃ℓ|, which indicates a shift in degree of k
from layer 1 to layer ℓ. This shift in degree is equal to the continuity order k and will thus
be different for each order. To collect all conditions in the B-net of one single set of degrees
d and d̃, we may either perform degree raising or lowering on the conditions. If we choose
to lower the degree of the conditions (so that d = d̃), extra requirements must be satisfied
on the degree to guarantee total approximation power [31]. If a degree raising of lower order
conditions is performed, no such constraints are anticipated, as the number of B-coefficients
is increased. The procedure is as follows. First the degree raising function of Lai is used to
find expressions for the high degree coefficients [30].

cλ =
1

di + 1

∑

|ρ|=1

λijc(λ1,...,λi−1,λi−ρ,λi+1,...,λℓ), ρj = 1

The resulting conditions are collected in a matrix, of which the left inverse is taken. Be-
cause of this inverting operation, the continuity conditions are scattered over a large range of
coefficients and loose their clear structure.

On top of these conversions, extra conditions are required to ensure that the degree is suffi-
ciently low at or near the shared edge. To be more precise, the degree must be constrained
such that the effective degree of the polynomials described by ck,λ11,...,λℓνℓ

is d̃ + k. This is
done by converting the barycentric coordinates to Cartesian coordinates, assuming βij = xij
and β10 = 1 − x11 − ... − xℓνℓ. After filling this into the basis polynomials, the high-degree
elements are grouped according to degree distribution over the variables, and the sum per
group is set to zero.

The described procedure has been successfully tested for two-dimensional tessellations with
first order continuity conditions. As a matter of fact, the front page of this document presents
a first order continuous two-dimensional mixed multiplex spline. On the rectangles bi-cubic
polynomials are defined, on the triangles quartic ones.

The top-down approach for finding continuity conditions can also be used to connect two
equal multiplices of which the out-of-edge layers are not cospatial. In that case the simplex
spline continuity conditions actively require all coefficients, which prevents the proposed sim-
plification. However, by using degree raising or lowering on the proper coefficients, continuity
conditions can be obtained [31]. Because this situation has not been studied in detail, it is
not discussed further here.
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Chapter 5

System identification

In chapter 4 the mathematical basis was laid for the multivariate multiplex spline. The re-
maining question in this thesis is whether it can be applied for system identification purposes.
To answer this question, a study was undertaken into the behavior of the multiplex spline on
different test functions and data distributions. The results of this study were then used to
formulate and verify a system identification algorithm.

In section 5-1 some characteristics of the multiplex spline are discussed as results of its def-
inition. Examples include the directionality of polynomial degree and the linearity in the
parameters. This culminates in a short discussion of possible techniques of finding optimal
B-coefficients based on a scattered data set. Next in section 5-2 a set of test functions and
data distributions is used to clarify the behavior of the multiplex spline. The efforts of defin-
ing multiplex splines results in an algorithm for system identification, presented in section
5-3. Finally in section 5-4 a quadrotor model is set up to generate a representative data set
to fit a multiplex spline to. As stated in section 2-2 the quadrotor is used here because of the
availability of reliable and well-understood analytic models. A multiplex and simplex spline
are generated and compared in the same section.

5-1 Multiplex spline characteristics

The description of the multiplex spline in chapter 4 focused purely on the mathematical
basis, whereas the remainder of this report describes the application. To bridge this gap,
in this section some of the most important characteristics and behaviors of the multiplex
spline are discussed. This discussion will provide essential explanations for effects that will
be encountered in the remainder of this and the next chapter.

To structure the discussion, a subdivision in subsections is used. Subsection 5-1-1 is meant to
provide some insights in the geometric effects of using multiplices instead of simplices. Next,
in subsection 5-1-2 the effects on polynomial degree and continuity order are considered.
Finally in subsection 5-1-3 the available optimization techniques are discussed.
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Figure 5-1: With increasing dimension it becomes increasingly hard to properly fill a polytope with
data points. The advantage in this respect of an n-cube over an n-simplex is the concentration
of content near the center. This can be deduced from the ratio of content of the polytopes and
their respective inscribed circles. As content moves away from the center it becomes harder to
properly fill all corners with data, resulting in reduced numerical performance.

5-1-1 Geometric characteristics

In this subsection the simplex and multiplex are compared based on their content distribution.
This is an important measure for the ease with which a domain element can be uniformly
filled with data. On top of that, two strategies for defining a tessellation of multiplices are
presented.

In the literature study (subsection 3-1-2) the content distribution in simplices was mentioned.
A potential benefit of the multiplex as a domain element is that it may have a better dis-
tribution of content. One way of establishing this mathematically is by comparing the ratio
of the content of a polytope to the content of its inscribed sphere. This inscribed sphere, or
insphere, is the n-sphere that touches all (n− 1)-edges of a polytope. The method is inspired
by Tarantola, who uses the following example to illustrate the emptiness of high dimensional
space [41]. Consider an n-cube and its inscribed n-sphere. As the dimension n increases it
becomes increasingly hard to hit the inscribed sphere when throwing a dart into the cube.
More precisely, more and more content of the cube tends away from the core. This is easily
found from the decreasing ratio between the content of the cube and its inscribed sphere.
Here this example is extended by including the regular n-simplex and its inscribed sphere,
for which Coxeter and Kendall were consulted [12, 28]. The content ratios of both polytopes
are given here as Figure 5-1. It is clear from this figure that in the cube the content is con-
centrated around the center more than in the simplex. In practice this means that it is easier
to fill a cube with data points evenly. Since local lack of data causes unwanted freedom for
the polynomials, the cube seems to be the preferred geometric basis from this perspective. It
is expected that the ratios for the other multiplices will lie between the ones of the cube and
the simplex. In fact, a trend can be expected in which more and lower-dimensional layers
provide a better content ratio for a given dimension than fewer, high-dimensional layers.
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To form a tessellation, several multiplices need to be combined to span a domain. In its purest
form, tessellating a domain amounts to placing multiplices across the domain in such a way
that they always share complete edges and together they encompass the entire domain. These
rules for tessellations have been discussed in more detail in subsection 3-1-1. This direct form
of tessellation allows for the use of different types of multiplices in a single tessellation, but
is hard to perform for high dimensional domains. At this point there is no known algorithm
but visual inspection to construct a tessellation in this way.

A more practical approach to tessellating high dimensional domains is the combination of
layer triangulations. This procedure consists of four steps. First the variables are subdivided
over a set of low-dimensional layers. Using one- and two-dimensional layers is prefered, as
it simplifies the second step, in which the layers are triangulated. The triangulations in
the layers are combined in the third step to form a valid full-dimensional tessellation. This
amounts to constructing a multiplex from every possible combination of simplices from each
layer. Finally in the fourth step, multiplices are removed if they contain too little data points
to estimate the coefficients.

This approach is especially useful when data sets are higher dimensional. To construct two
4-cubes that share a cubic edge may be a challenge if it has to be done with the naked eye.
With this approach one simply constructs four one-dimensional layers, of which one contains
two simplices and the others one. The combination can be done fully automatically, and the
result is a valid tessellation. This is therefore the preferred method in the current research,
and forms a major part of the system identification algorithm presented in section 5-3.

5-1-2 Spline degree and continuity order

Because the polynomials of a multiplex spline are the result of a tensor product of polynomials,
we may choose different degrees and continuity orders in different layers. This implies that
continuity has a more directional nature in the multiplex spline. On top of that, the total
degree of these polynomials may quickly rise, introducing the risk of Runge’s phenomenon.
Both these effects are described in this subsection.

In studying the continuity order, it is useful to first consider a small example. Two rectangles
that share a complete edge may be joined with arbitrary continuity order. From the top-down
approach of defining continuity conditions described in subsection 4-4-3 we can conclude that
continuity is omnidirectional across the shared edge, and equal to that chosen in the out of
edge layer. This example can be generalized to state that the continuity order is dictated by
the order in the out-of-edge layer for the shared edge of interest. On top of that, this order
holds for any direction, as long as a point on the shared edge is considered. On an intersection
of multiple shared edges the lowest continuity order dictates the overall order.

It was observed earlier, in subsection 4-2-2, that the basis polynomials can be seen as higher
dimensional, total degree polynomials. This total degree increases quickly and may cause
unwanted effects, such as Runge’s phenomenon. This is especially important along the diag-
onals of a multiplex, at the extremes of the domain. Along a diagonal multiple barycentric
coordinates from different layers are equal, resulting in pure total degree polynomials. For
example, in a cube (or (1,1,1)-multiplex) with in each layer a cubic polynomial, the degree
along the diagonal is 9. This high degree may lead to overfitting or even the occurrence of
Runge’s phenomenon. This problem is intensified by the fact that a diagonal runs between
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vertices, implying that, especially in higher dimensional multiplices, very little data may be
available at the ends of a diagonal. On the other hand, the height of the total degree also
assures high approximation power, even when degrees are chosen low in all layers.

5-1-3 Scattered data fitting

The final step in generating spline models is finding an estimate for the B-coefficients. The
structure of the optimization problem of finding this estimate leads to a set of estimators that
can be used. Here the problem itself is discussed first, followed by a reference to a number of
available estimators.

First of all it is useful to write the polynomial model in matrix form. The polynomials
are formed by a sum of products of coefficients C and basis polynomials B. To allow for
matrix multiplication of the basis polynomials with the complete set of B-coefficients, the
latter is structured as a column vector and the basis polynomials are collected in a matrix B,
with a row per data point. If there are multiple domain elements, the row vectors of basis
polynomials B are padded with zeros to exclude influences from other domain elements.

B
d
λ(β(x)) :=

{

Bd
λ(β

Γi(x)) if x ∈ Γi

0 otherwise
(5-1)

The notation βΓi(x) signifies the barycentric coordinates of a point x with respect to the
multiplex Γi.

The smoothness conditions can be collected in a similar fashion in the smoothness matrix H,
such that we require HC = 0. The state values are collected in a matrix X such that each row
represents a data point, and the measured output is collected in a column vector y. Then
the constrained least squares problem can be formulated.

min ||y − B(β(X))C||

subject to: HC = 0
(5-2)

This problem is exactly equal to that which is solved for simplex spline estimation (see
equation 3-7 in subsection 3-1-1). Therefore the same estimators can be used.

To solve problem (5-2) a generalized least squares approach has been proposed [17, 16]. This
technique uses Lagrange multipliers to guarantee constraints are complied with. For larger
problems the computational load can be reduced by using a recursive least squares estimator
[16]. In the current research this estimator was found to converge very fast in most cases.

Preliminary results of other research have shown the possibility of using distributed solvers
for finding the B-coefficients of simplex splines. In such solvers the triangulation is split up in
several parts for which the optimization problem is solved individually. In general these parts
will be combined afterwards by applying recursive corrections based on continuity conditions
between the parts. Because of the similarity between the simplex and multiplex spline, these
methods can directly be applied to the latter spline as well.
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5-2 Verification on test functions

Before starting the actual system identification phase of the DelFly, a verification process is
undertaken. The goal of this process is twofold. On the one hand the code should be tested
for mistakes. An example of such a test is fitting a lower degree polynomial with a spline. In
theory the spline should be able to produce a perfect fit. Several of these tests were performed,
which ultimately lead to the conclusion that the code for generating arbitrary degree splines
with arbitrary continuity order in any number of dimensions was working properly. The only
constraint that was found is that layers should preferably be less than 4-dimensional. This
is due to an error in the Delaunay triangulation code of Matlab, which is unable to properly
align triangulated 4-cubes.

On the other hand the performance of the multiplex spline should be tested in a controlled
environment. It is especially interesting to compare this performance with existing methods,
the most obvious being the simplex spline. For this purpose several different test functions
have been developed. In subsection 5-2-1 a four dimensional function is defined with which
different layer structures can be compared. In subsection 5-2-2 the aim is to investigate the
behavior of the multiplex spline when data is not uniformly distributed. In all cases a ordinary
least squares estimation technique was used to estimate the B-coefficients.

5-2-1 Functions with uniform data distribution

To compare the approximation power of the multiplex spline with that of the simplex spline,
the four-dimensional test function (5-3) was constructed to generate uniformly, randomly
distributed data.

y = x23 sin(1.4πx4)F(2x1 − 1, 2x2 − 1), ∀i : xi ∈ [0, 1] (5-3)

In the test function, F(x, y) is the Franke function. No noise was added to the data sets. The
function was specifically designed to create directional complexity. That is, the non-linear
character differs per variable or group of variables. This allows for investigating the effects
of different layer structures on the overall performance of the multiplex spline. In all tests a
data set of 5000 uniformly distributed points was used for fitting the spline and a separate
set of 1000 points was used for verification.

A large variety of simplex and multiplex splines was used to fit the generated data set. They
are compared in Figure 5-2 based on the number of B-coefficients, the number of degrees
of freedom (DoF) and the root mean square error on the verification data set (RMSE). By
plotting the DoF against the RMSE a measure is found for the approximation power on the
test function. The plot of number of B-coefficients versus the RMSE provides a measure
of efficiency in terms of memory required on a computer. The splines used for these plots
are given in Table 5-1. Each spline was tested (fitted and verified) on 10 different randomly
generated data sets, after which the average RMSE value was stored. In all cases the standard
deviation of the RMSE value was in the range [2, 3] × 10−3.

The first observation based on this set of splines is that there are a lot of options in con-
structing a model. Apart from splitting up the variables in any desirable way, the degrees
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and continuity orders can be chosen independently in the resulting layers. Note that as a
result, the presented plots are far from complete. For example, the (3,1)-multiplex spline
is not considered at all in the current discussion. On top of that, the distribution of the
variables over the layers is kept constant for each layer structure. In total there are 15 ways
of distributing the variables over the layers (1 for the 4-simplex, 4 for the (3,1)-multiplex, 3
for the (2,2)-multiplex, 6 for the (2,1,1)-multiplex and 1 for the 4-cube); only four of those
are considered here. Finally there is of course the possibility to split the domain of any
variable (only considering generic type-I triangulations) and the choice of degrees and con-
tinuity orders. The presented data for the simplex spline can however be considered rather
complete. Because simplices are strongly intertwined, the DoF is hard to increase by simply
adding simplices. Note that due to a bug in the Matlab code for Delaunay triangulations,
a triangulation of more than 22 simplices may not be perfectly aligned, leaving some shared
faces free of continuity constraints.

The layers were chosen based on the knowledge of the test function. Because x1 and x2
together define a Franke function, it is reasonable to keep them together. The quadratic
function in x3 on the other hand justifies isolating this variable from the others. Comparing
the performance of the (2,1,1)- and the (2,2)-multiplex splines does give some indications that
this effect indeed plays a role. The results are however not conclusive in this respect. On
the other hand there is a clear improvement when the degree in x3 is lowered from 3 to 2
(compare for example spline M1.1 and M1.2).

Some of the performance curves in Figure 5-2a have a clear parabolic nature. If the DoF is
too low, not all nonlinear effects can be modeled. On the other hand, when the DoF is too
high, overfitting occurs. This is especially visible in the 4-cube spline. The 4-cube splines that
deviate most from the parabolic trend, M3.2, M3.7 and M3.10, all have cubic polynomials to
model the quadratic effect of x3. The other outlier, M3.5, probably has a too high degree
in the first two layers. This result underlines the benefit of choosing the proper degree in
each layer. The simplex spline also shows a parabolic shape, but it has higher RMSE values
than the cube spline over the entire range. For the other multiplex splines the parabolic
shape is harder to identify. Splines M1.2 up to M1.5 lie slightly above the optimal curve
because of the cubic polynomial in the second layer, which explains part of the deviation
from a standard approximation performance curve. Splines M1.6, M1.8, M1.9 and M1.12 use
a quartic equation to model the sine in x4, which also seems sub-optimal.

In the efficiency plot of Figure 5-2b another benefit of the multiplex spline becomes evident. It
presents the user with a very large amount of small spline models with adequate performance.
Compare for example spline S1 and S2 with M1.1 to M1.5 and M3.1 up to M3.5. The multiplex
splines present many more options, most of which have significantly different performance,
whereas the simplex spline of cubic nature is much more limited. Lowering the degree of the
simplex spline may be an option, but it is questionable whether it would result in desirable
RMSE values. Note that there are several multiplex splines with fewer than 500 B-coefficients
that perform better than the smallest simplex splines.

The final observation is one of geometric nature. By comparing Figures 5-2a and 5-2b a
correlation can be deduced between the number of B-coefficients and the DoF depending on
the layer distribution. The simplex splines all have limited DoF, but at the same time use a
large number of B-coefficients. For the cube spline, the opposite is true. As a general rule
the DoF per B-coefficient increases when more low dimensional layers are used. That is, the
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simplex and (2,2)-multiplex spline use many B-coefficients, but get few degrees of freedom
in return. The (2,1,1)-multiplex shows a uniform spread over both plots and the cube spline
requires few coefficients for large DoF. This effect can be illustrated by closely examining the
continuity conditions. Imagine having a cube, a prism (or (2,1)-multiplex) and a tetrahedron,
all 3 centimeters high. Now if they are all set in a centimeter of water, the tetrahedron will,
of the three, have the largest portion of its volume underwater. The same holds for continuity
conditions. If the three polyhedrons contain a cubic polynomial (that is, their sides are split
in three equally long parts) and one edge is connected to another polyhedron of the same type,
the first order continuity conditions will constrain all coefficients on, and one centimeter above
the shared edge. This leaves the fewest free coefficients in the tetrahedron, and the most in
the cube.

5-2-2 Non-uniform data distribution

There is one major elements lacking from the discussion in the previous subsection: the
distribution of data over the domain. It was assumed that the data was spread uniformly, but
this is in reality hardly ever the case. Therefore it is interesting to test the effects of different
data distributions on the performance of simplex and multiplex splines. In this subsection
such an investigation is performed in two separate parts. First the performance of cubic two-
dimensional multiplex splines is derived for several shapes of data sets. Then a single isolated
domain element is studied in which the data lies in the inscribed circle. This is done only for
the simplex and the hypercube, to limit the scope.

Data set shapes

To test the performance in interpolation and extrapolation of the splines, a group of data
sets is generated with different shapes. Data is distributed randomly over the shape in all
cases. The function that is approximated simply consists of a sine in one direction and an
exponential function in the other.

y = sin(2πx1) + ex2 x1, x2 ∈ [0, 1] (5-4)

Note that the sine is more challenging to approximate than the exponential. The function is
only two-dimensional to simplify the definition of the data sets.

The function is approximated over the indicated domain. This is done by a multiplex spline
consisting of a single (1,1)-multiplex and a simplex spline on a pair of simplices described by
the vertices {[0, 0], [1, 0], [0, 1]} and {[0, 1], [1, 0], [1, 1]}. If the continuity order in the simplex
spline is kept at 0, both splines have equal amounts of degrees of freedom for equal polynomial
degrees.

To test the effects of different data distributions, the following group of data set shapes is
used.

U: A uniform, square shape covering the whole domain, as a benchmark;
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Table 5-1: Performance of several simplex and multiplex splines on the test function (5-3) with
a uniform data distribution. The ’Tessellation’ column indicates the amount of simplices in each
layer. The product of this vector is the total amount of multiplices. The number of degrees of
freedom (DoF) is the difference between the number of coefficients and the rank of the smoothness
matrix. The root mean square error (RMSE) is calculated based on a separate 1000 point data
set. Note that the RMSE-values are absolute and function values lie in the domain [-1,1.4].

ID Dimension Degree Continuity Tessellation B-coeff. DoF RMSE

S1 4 3 1 22 770 61 0.067
S2 4 3 1 44 1540 122 0.053
S3 4 4 1 22 1540 183 0.040
S4 4 3 0 22 770 246 0.040
S5 4 5 1 22 2772 451 0.026
S6 4 3 0 44 1540 492 0.032
S7 4 3 0 88 3080 984 0.027

M1.1 (2,1,1) (3,2,3) (1,1,1) (2,1,1) 240 156 0.033
M1.2 (2,1,1) (3,3,3) (1,1,1) (2,1,1) 320 208 0.035
M1.3 (2,1,1) (3,3,4) (1,1,1) (2,1,1) 400 260 0.031
M1.4 (2,1,1) (3,3,3) (1,1,1) (2,1,2) 640 312 0.033
M1.5 (2,1,1) (3,3,4) (1,1,1) (2,2,1) 800 390 0.033
M1.6 (2,1,1) (3,2,4) (1,1,1) (2,2,2) 1200 416 0.031
M1.7 (2,1,1) (3,2,3) (1,1,1) (4,2,2) 1920 456 0.028
M1.8 (2,1,1) (4,2,4) (1,1,1) (2,2,2) 1800 672 0.029
M1.9 (2,1,1) (5,2,4) (1,1,1) (2,2,2) 2520 992 0.027
M1.10 (2,1,1) (5,2,3) (1,1,1) (8,1,1) 2016 996 0.021
M1.11 (2,1,1) (5,2,3) (1,1,1) (4,2,2) 4032 1224 0.025
M1.12 (2,1,1) (5,2,4) (1,1,1) (2,2,3) 3780 1364 0.041

M2.1 (2,2) (3,3) (1,1) (2,2) 400 169 0.041
M2.2 (2,2) (3,3) (1,1) (8,2) 1600 351 0.035
M2.3 (2,2) (4,3) (1,1) (2,4) 1200 399 0.029
M2.4 (2,2) (4,3) (1,1) (4,4) 2400 627 0.027
M2.5 (2,2) (4,3) (1,1) (8,2) 2400 663 0.036
M2.6 (2,2) (5,3) (1,1) (4,4) 3360 969 0.025
M2.7 (2,2) (4,3) (1,1) (8,4) 3300 990 0.017

M3.1 (1,1,1,1) (3,3,2,3) (1,1,1,1) (1,1,1,1) 192 192 0.033
M3.2 (1,1,1,1) (3,3,3,3) (1,1,1,1) (1,1,1,1) 256 256 0.034
M3.3 (1,1,1,1) (3,3,2,3) (1,1,1,1) (2,1,1,1) 384 288 0.029
M3.4 (1,1,1,1) (3,3,2,3) (1,1,1,1) (2,2,1,1) 768 432 0.023
M3.5 (1,1,1,1) (5,5,2,3) (1,1,1,1) (2,1,1,1) 864 720 0.024
M3.6 (1,1,1,1) (4,4,2,3) (1,1,1,1) (2,2,1,1) 1200 768 0.020
M3.7 (1,1,1,1) (5,5,3,3) (1,1,1,1) (2,1,1,1) 1152 960 0.029
M3.8 (1,1,1,1) (5,5,2,3) (1,1,1,1) (2,1,1,2) 1728 1080 0.023
M3.9 (1,1,1,1) (5,5,2,3) (1,1,1,1) (2,2,1,1) 1728 1200 0.026
M3.10 (1,1,1,1) (5,5,3,3) (1,1,1,1) (2,2,1,1) 2304 1600 0.041
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Figure 5-2: Plots showing the approximation power and efficiency for the splines presented in
Table 5-1, as well as a quadratic trend line for each layer structure. The splines on 4-cubes
clearly show the familiar performance curve with an optimum at spline M3.6. At lower DoF the
approximation power is insufficient, at higher DoF overfitting occurs. Note that the RMSE-values
are absolute and function values lie in the domain [-1,1.4].
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D: A diamond, or a rectangle rotated over 45 degrees, positioned such that the vertices lie
halfway on the sides of the domain;

C: A circle, touching the sides of the domain;

R: A ring with equal outer radius as the circle and inner radius equal to half the outer
radius;

T: A lower triangular shape, filling the region spanned by vertices [0,0], [0,1] and [1,1];

NX: Not X, with X any of the above (except for U).

Note that shape T is oriented along another diagonal of the domain than the triangulation.
This shape will thus fill the domain elements halfway, irrespective of the type of spline used.
All data sets will consists of approximately 1000 data points to make sure there are no
differences due to nonuniform distributions over the chosen shape.

The first observation that can be made in Table 5-2 is that the test function does not favor
one of the splines. This can be deduced from the comparison of MU and SU. They show
similar performance over the entire domain, which implies that differences between simplex
and multiplex spline are purely caused by the definition of those splines.

Secondly, all splines but SU and MU show a significantly better performance inside the data
set shape than outside. This can be read from Figure 5-3 by considering the angle from the
x-axis at which the data points are located. The ratio between the RMSE-values is farthest
from unity in the multiplex splines for all shapes except T and the inverse shapes NX. The
inverse shapes show inconclusive results in this respect. The difference in performance ratio
between the two types of splines is twofold. On the one hand the performance of the multiplex
spline inside the shape is often better. This was observed before and is confirmed by the data
in Figure 5-3. On the other hand the performance of the multiplex spline is worse than that
of the simplex spline in the rest of the domain. The cause of these two effects is probably
the same: the effective degree of the multiplex spline is higher. This increases approximation
power, but also the risk of running into Runge’s phenomenon. This latter effect is also clear
from the maximum error (ME) in table 5-2.

Now it is interesting to focus on the difference between the normal shapes and their inverse
counterparts. In the case of T and NT, the two data sets are equivalent, which shows in the
RMSE values. For the other shapes however, there are significant differences visible in Figure
5-3. For both D and R the splines on the inverse shape perform significantly better outside
the shape. This implies that it is essential to have data available near the edges. Inside the
inverse shape the performance is generally worse, which implies that the approximation power
is concentrated near the center of the domain. The cause for the large difference between D
and C is uncertain. It may lie in the fact that the diamond cuts parallel to lines in the B-net,
but this was not investigated further.

Finally it should be noted that NR consists of two parts. Therefore it is interesting to check the
performance on these two parts when the data set R is used for estimating the B-coefficients.
In that case we find for SR 0.0157 ± 0.0011 and 0.0360 ± 0.0064 inside and outside the ring
respectively. This confirms the idea that spline models are only valid inside the convex hull of
the data set [16]. In MR this effect is even stronger, as we find RMSE-values of 0.0100±0.0006
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and 0.0671 ± 0.0111 respectively. That is, the performance inside the convex hull is better,
whereas outside the convex hull it is worse. It is very likely that this is again caused by the
difference in total degree.

Isolated domain elements

From the discussions above and in subsection 5-2-1 two major differences between the multi-
plex and simplex spline are found to cause differences in performance. The first is the shape
of the domain elements, and especially the distribution of content over these shapes. The
second is the total degree, which is higher in the multiplex spline. To find out what effect
is dominant under what circumstances, the following test is set up. A comparison is made
between the n-simplex and the n-cube spline by performing an unconstrained optimization
based on a data set defined inside the inscribed sphere of a single isolated domain element.
For this purpose a test function is defined as a sine of the radius.

f(r) = sin
(

1.4π
r

R

)

(5-5)

No noise was added. In the test function the R signifies the radius of the inscribed sphere and
r the distance from the incenter. Because regular polytopes are used, the incenter coincides
with the barycenter. In all cases a cubic spline is used to approximate the sine. The amount
of data points for fitting and verification depends on the dimension n and is set to 5× 10n

The performance of the splines for the dimensions 2 up to 5 are given in Table 5-3. As the
dimension increases the number of B-coefficients goes up, which results in higher approxima-
tion power in both splines. The performance inside the insphere is generally up to standards
(considering the maximum function value of one), but outside there is no approximation at
all.

The dominance of the two effects mentioned before can be derived from a comparison between
the simplex and multiplex splines’ performance outside the insphere. From the start the
multiplex spline seems to perform better in this region of the domain. This implies that at
first the difference in geometric basis is dominant in the extrapolation performance. This is
rather surprising, because the difference in content ratio are not too grave at low dimensions,
as depicted in Figure 5-1. It may however be that the distance from the barycenter to the
vertices is more relevant in this respect. The difference in this distance may be a lot greater.
In five dimensions the multiplex spline performance suddenly deteriorates and errors become
very large. This is typical for the Runge phenomenon, which could have been expected for a
polynomial degree of 15 along the diagonal. That is, we may expect that at high dimensions
the negative effect of total degree will overrule the positive effect of the geometric basis of
the multiplex spline. The breaking point will however depend on the degrees and dimensions
chosen in the layers.

5-3 System identification algorithm

From section 5-2 a set of directives and constraints for multiplex spline construction can
be deduced. In short, variables with different degrees of nonlinearity should be in separate
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Figure 5-3: The performance of the cubic 2-simplex spline and bicubic (1,1)-multiplex spline on
different shapes of data sets. Note that the shape of the marker corresponds to the shape of the
data set. A marker with a cross (×) signifies the inverse data set (N).

Table 5-2: The performance in terms of the root mean square error of several simplex and
multiplex splines on non-uniformly distributed data. A single multiplex is considered and the
continuity order in the simplex spline is always 0. Because the dimensions are equal for all splines,
as well as the degree (cubic), they are not provided in the table. In the RMSE values a subdivision
is made regarding data inside and outside the data shape used for fitting. ME stands for (absolute)
maximum error. Each table entry consists of the mean ± the standard deviation measured over
10 tests with different random data sets.

ID Data set RMSE (in), 10−2 RMSE (out), 10−2 ME

SU U 0.443±0.015 - 0.223±0.018
SD D 0.154±0.017 3.63±0.748 0.607±0.155
SC C 0.295±0.016 3.40±0.482 0.619±0.074
SR R 0.160±0.011 2.22±0.177 0.699±0.068
ST T 0.122±0.014 233±37.0 6.58±0.589
SND ND 0.368±0.021 1.53±0.088 0.223±0.005
SNC NC 0.211±0.019 4.70±0.504 0.436±0.021
SNR NR 0.384±0.021 0.775±0.065 0.149±0.007
SNT NT 0.118±0.023 252±44.8 6.46±0.382

MU U 0.443±0.016 - 0.230±0.020
MD D 0.114±0.017 93.5±13.8 4.42±0.483
MC C 0.217±0.008 14.0±1.67 1.25±0.103
MR R 0.087±0.006 2.89±0.267 0.865±0.079
MT T 0.224±0.023 103±18.7×102 50.2±5.73
MND ND 0.391±0.022 1.13±0.073 0.185±0.007
MNC NC 0.211±0.020 4.18±0.321 0.385±0.009
MNR NR 0.379±0.023 0.780±0.067 0.152±0.010
MNT NT 0.216±0.025 118±18.3×102 51.2±3.13
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Table 5-3: Performance characteristics of the single domain elements. All polynomials are cubic.
The RMSE is split in a part inside and a part outside the inscribed sphere. Note that the RMSE
inside the insphere is scaled, whereas the RMSE outside of the insphere is not. The RMSE-values
are absolute and consist of a mean and standard deviation over 10 runs with different random
data sets. Function values range from -1 to 1.

ID Dimension RMSE (in), 10−2 RMSE (out)

S2 2 2.71±0.84 10.6±1.75
S3 3 1.04±0.15 27.9±2.32
S4 4 0.787±0.056 52.2±1.75
S5 5 0.729±0.042 84.7±2.72

M2 (1,1) 3.01±0.60 1.37±0.149
M3 (1,1,1) 1.10±0.06 3.06±0.23
M4 (1,1,1,1) 0.782±0.017 12.3±7.24
M5 (1,1,1,1,1) 0.688±0.012 595±178

layers and the total degree should not become too high. Also, a multiplex with many low-
dimensional layers is easier to uniformly fill with data. With these rules in mind, a variable
driven system identification algorithm can be constructed. In this algorithm a tessellation is
defined by triangulations is separate layers. Another type of system identification algorithm
can be found in the recommendations in chapter 8, because it has not been defined in detail
yet.

The algorithm for constructing a multiplex spline is presented schematically in Figure 5-4.
The individual steps, including some that are not specifically presented in the figure, are
described in detail below.

Layer selection

This first step is conjoined with data projection in Figure 5-4, but treated separately here.
The process of selecting the layers is not trivial when little knowledge is available about the
system under consideration. For the DelFly, studied in chapter 6, this is definitely the case.
When layers cannot be chosen based on expert knowledge, a proper data analysis may provide
useful insights into variable dependencies. As a last resort the user can decide to generate a
large set of splines and derive the desired dependencies based on that. Both these strategies
were employed in the system identification of the DelFly.

During this step it is important to keep an eye on the total dimension and the number of layers.
When the number of layers increases, so does the total degree. This may cause unwanted
effects, as discussed in section 5-2. The total dimension of the tessellation has direct effects
on the spread of the data. If the data becomes too scattered, it becomes harder to include
data points in each multiplex.

Two-dimensional layers are generally considered favorable by the author, because they are
very intuitive and can easily be constructed by hand and inspected with the naked eye.
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Data projection

The step of data projection is an automated process, but essential as a link between choosing
layers and triangulating them. One should always keep in mind that a lot of information is
lost when high-dimensional data is projected onto lower-dimensional spaces. This is especially
a problem when one-dimensional layers are used. The complete knowledge of the shape of
the data set is lost in the process.

In this step it is useful to incorporate some methods proposed in subsection 3-3-2. One may
include color coding to show the local data density, or the variance in the variables that are
not plotted. In this work only the first method is used.

Triangulation

The third step in the process of this variable driven system identification is triangulating the
layers. Any method of triangulating a domain can be applied. Optimization algorithms can
be employed, as well as standard triangulations of polytopes encompassing the domain. If
layers are one up to three-dimensional, triangulations can also be generated by hand.

The number of simplices in each layer should be kept low. In the combination process all
possible combinations of simplices from the different layers will be used, resulting in as many
multiplices as the product of the number of simplices in each layer. This number may rise
quickly when several layers are used with dense triangulations.

Combination into tessellation

Just like data projection, the combination of triangulations is an automated step. Every
combination of simplices from each layer will result in a multiplex. The multiplices are tested
on data content and the empty ones are removed.

Spline definition and fitting

Finally a spline can be defined on the tessellation. As the degree and continuity order are
chosen per layer, this step can also be performed before combining the triangulations. The
same holds for the construction of the smoothness matrix. The fitting process is described
in subsection 5-1-3. The B-coefficients are estimated using a part of the available data, the
other part is used for model quality assessment.

5-4 Quadrotor modeling

To verify the system identification algorithm using the multiplex spline it is applied to a data
set of quadrotor thrust generated using an analytic model. This platform is chosen because
it is well-understood and analytic models are widely available.
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Figure 5-4: A schematic overview of the variable driven system identification algorithm. The
data is indicated as a transparent box in the first figure. After projecting the data onto the
layers, triangulations are made and combined. Finally a polynomial degree and continuity order
are chosen and a spline model is fitted.

5-4-1 Analytic model

The analytic model used to generate a data set is mostly based on helicopter theory that has
been applied to quadrotors before [26, 43]. The core of the model is the ideal thrust

T =
ηP

v∞ sinα+ vi
(5-6)

P signifies the electric engine power input, which is converted to aerodynamic power using a
single efficiency η = 0.7. For the electric power we use [26]

P =
U −Kemfω

Ra
U (5-7)

In this model Kemf = 0.005 is a constant related to the back EMF, namely the product of
the number of windings, the area of the coil and strength of the magnetic field. The value
was estimated by assuming logical values for these metrics. The resistance of the armament
Ra is assumed to be 0.1Ω.

The induced velocity vi is given by the well-known equation

vi =
v2h

√

(v∞ cosα)2 + (v∞ sinα+ vi)2
(5-8)

where vh is the induced velocity in hover that is required to support one quarter of the
assumed weight of the quadrotor. In the range of vertical velocity −2vh ≤ vz < 0, where
vz = v∞ sinα, it is assumed that the rotor is in the vortex ring state. Its induced velocity is
then approximated by [32]

vi = vh

(

k0 + k1
vz
vh

+ k2

(

vz
vh

)2

+ k3

(

vz
vh

)3

+ k4

(

vz
vh

)4
)

(5-9)

with k0 = 1, k1 = −1.125, k2 = −1.372, k3 = −1.718, and k4 = −0.655.

The data set is generated using a set of 5000 random inputs within the operating range of
the motor. Pseudo-random noise bounded to 1% of the maximum thrust is added to the
simulated output.
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5-4-2 Spline model set-up

From equations (5-6) up to (5-9) it can be found that the state consists of v∞, α, ω and
U . The spline models will thus be four-dimensional. Also, there is a clear subdivision of the
model into two parts. The first is the engine part in equation (5-7), which is a quadratic
function of input voltage U and rotational rate ω. The second part in equations (5-8) and
(5-9) consists of quartic equations describing rotor inflow.

The design of the simplex spline is rather limited. With the aim of keeping both models
simple, it is wise to choose a minimum triangulation of the four-dimensional domain. This
type-I triangulation already comprises 22 simplices. The degree that is required is dictated
by the highest degree of the analytic model. In this case that is four, meaning the entire
spline will be quartic. Even though most of the analytic model is second order smooth in
all directions, a continuity order of 1 is chosen to more easily compare the results with the
multiplex spline. The resulting simplex spline has 1540 B-coefficients, of which 183 are free.
Clearly there is a large amount of constraints, which may limit the approximation power.

The design of the multiplex spline presents a lot more flexibility and choices. Because of
the experience gathered in the previous subsection, it seems reasonable to collect variables
of similar nonlinearity in layers. In this case this means that the engine model and the
inflow model can be separated. By combining v∞ and α in the first layer and ω and U in
the second, the analytic model can be approximated perfectly. In the first layer a quartic
polynomial is required, whereas in the second layer a quadratic polynomial will suffice. First
order continuity is imposed in both layers. From early iterations it was found that extra
approximation power was required in angle of attack, so the domain of that variable was split
in two before generating a minimal type-I triangulation in both layers. The tessellation thus
consists of 8 (2,2)-multiplices, together containing 1440 B-coefficients of which 297 are free.

5-4-3 Spline model comparison

The goal of this exercise was to construct a valid, efficient model based on a simple analytic
model. The validity can as before be tested using standard statistical measures. The efficiency
however is harder to quantify. The number of B-coefficients, the number of constraints and the
general ease of use are relevant as well as the overall performance. Therefore the performance
of the models is discussed first.

To measure the quality of the fit, the relative root mean square error (RRMS, RMS of the
error divided by RMS of the data), the mean square error (MSE), and maximum error (ME)
are used. The results are presented in table 5-4. Note that due to the nature of the model, it is
possible to generate a verification data set that does not contain noise. The RRMS and MSE
values are given for both data sets. In the first place these figures show that no significant
overfitting to the noise in the modeling data takes place, since the errors are smaller for the
crisp verification data set. Most important is that in every metric the multiplex spline model
performs better than the simplex spline.

The differences between the two splines become clear when looking at the error metrics. The
relative root mean square error shows that both splines have a small error relative to the
system dynamics and noise. The multiplex spline however is almost three times as accurate
in predicting system outcome as the simplex spline. The mean square error for the simplex
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Table 5-4: The relative root mean square error (RRMS), mean square error (MSE, normalized
with maximum thrust), and maximum error (ME, in percent of maximum thrust) for both the
modeling data set (with noise) and the verification data set. The differences between the two
data sets show that no significant overfitting to noise takes place. The overall performance of the
multiplex spline model is better than that of the simplex spline model.

Modeling Verification
RRMS, % MSE, 10−5 ME, % RRMS, % MSE, 10−5 ME, %

Simplex spline 2.397 5.012 4.494 1.608 2.153 3.487
Multiplex spline 1.934 3.269 1.998 0.672 0.376 1.879

spline is more than a factor 8 higher, indicating that this spline is less capable of modeling
the complete dynamics in the way the multiplex spline does. The same can be observed
from the difference in maximum error. One explanation for this may be that the continuity
constraints in the simplex spline are not in line with the system dynamics. That is, they relate
B-coefficients that lie at control points that differ in all variables, whereas the constraints in
the multiplex spline lie in the chosen layers.

It is also interesting to point out the differences between the slices of the models displayed
in Figure 5-5. Especially in the inflow layer it is clear that some errors are introduced in the
simplex spline. The contours of the familiar inflow model are clear in Figure 5-5c, but are a lot
less smooth in Figure 5-5a. Also in the engine dynamics slices, there are some non-quadratic
effects visible in the upper left corner of Figure 5-5b. The multiplex spline does not suffer
from such effects, as the polynomial in the engine dynamics layer is per definition quadratic.

Apart from having a smaller approximation error, the multiplex spline also uses less B-
coefficients, less continuity constraints and less domain elements. This saves both computation
time and computer memory. Combining these metrics with the difference in approximation
power, it is clear that the multiplex spline is more efficient.

The algorithm is also easy to automate. After all, because of the low dimensions of the layers,
it is easy to construct a tessellation. This may even be done by hand in each layer, if the
data is not uniformly distributed over a rectangular domain. This is a lot more difficult for
the simplex spline, for which generally a standard triangulation of the hypercube is used.
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(a) Simplex spline inflow model
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(b) Simplex spline engine model
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(c) Multiplex spline inflow model
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(d) Multiplex spline engine model

Figure 5-5: Slices of the simplex and multiplex splines showing the inflow and engine dynamics
separately. Note the deviations from the normal pattern of thrust depending on velocity and angle
of attack in the simplex spline. Also in the engine model the simplex spline deviates slightly from
the ideal quadratic nature.
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Chapter 6

Validation on DelFly data

The goal of this chapter is twofold. First and foremost, the system identification algorithm of
section 5-3 will be validated. This is done by applying it to model the Z- and X-force working
on the DelFly over a range of states, especially during a maneuver. As splines were never
used before to model this flapping wing MAV, this research can also be seen as a preliminary
study into the feasibility of global modeling of the DelFly using splines. Therefore an extensive
discussion of the available data sets is provided.

For the research described in this chapter an existing data set was used. This data set is
analyzed in section 6-1-2. The focus is on determining whether the data set is fit for global
system identification. In section 6-2-2 the spline models that were made based on the provided
data are presented and compared to existing methods. This is done to validate the system
identification algorithm of section 5-3.

6-1 DelFly flight data

In this section the source and treatment of the DelFly data is discussed. The data set was
taken from previous research projects. Therefore subsection 6-1-1 on data acquisition is kept
short here. The interested reader is referred to the work of Caetano et al. for more details
[8, 9, 10]. Subsection 6-1-2 on data analysis is more elaborate. The goal is to find the relevant
states and the feasibility of modeling the DelFly dynamics using the data set.

6-1-1 Data acquisition

The data used in the validation phase of this research was obtained in the Micro Air Vehicles
Integration and Application Institute (µAVIARI) of the US Air Force Research Laboratory.
This institute has a test chamber in which a system of cameras can track a set of markers at
a frequency of 200Hz and with very high precision [9]. This chamber is shown in Figure 6-1b.

The DelFly II itself is a flapping wing micro air vehicle with a span of 274 mm. It has a
conventional tail section with a rudder and elevator. The DelFly is shown in Figure 6-1a
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(a) DelFly with markers [9] (b) µAVIARI test chamber [10]

Figure 6-1: The data set of the DelFly was obtained in a test chamber. The markers on the
body and wings of the DelFly are tracked by the cameras in the chamber. From these position
measurements, both the velocities and the attitude were derived.

with the tracking markers attached. The flight envelope consists of two major flight regimes.
The first is a slow flight close to hover, in which the body of the DelFly is oriented close to
vertical. The second is a fast forward flight in which the body is close to horizontal. In the
current discussion only the first regime is considered. For favorable hover characteristics the
center of gravity was put aft, at 83% of the chord.

Several different maneuvers are described in the work of Caetano et al. [9]. These include
step, doublet and triplet inputs on the elevator. These maneuvers are especially useful in
linear system identification. The data set used in this research especially contains nominal
slow forward flight and step inputs on the elevator. This maneuver causes the DelFly to pitch
up, stall, fall in an almost vertical orientation and then recover.

All states are derived from the positions of the markers attached to the DelFly body. The
velocities and rates are calculated using a three point difference method.

A number of tests contained significant turns and other lateral effects during maneuvers. To
be able to isolate longitudinal effects, these sets were removed entirely. The remaining data
set contains a large amount of nominal forward flight. In order to prevent overfitting to this
data, many of these data points were removed. This was done by isolating the maneuvers
based on visual inspection of the flight path.

A set of measurement errors was found in which a Z-force was available but the acceleration
in z-direction was zero. These data points were removed before further processing.

6-1-2 Data analysis

As pointed out in the previous subsection, the data set was originally intended for linear
system identification. In this study however the data is investigated mainly based on states
and inputs. The main goal in this analysis was to determine whether the set is suitable
for spline approximation. That is, is the data well distributed over the state space? This
investigation was limited to the body velocities u and w, pitch angle θ and rate q, and flap
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Figure 6-2: The body reference frame with respect to the inertial frame and the DelFly body
[9]. Note that zb points in the direction of flight in the low speed regime.

angle δf and rate δ̇f . As outputs both the Z- and X-force were studied. Note that the
velocities and forces are defined in the body frame as defined in Figure 6-2. In this subsection
the set is plotted for multiple combinations of states to investigate the shape of the data set in
detail. On the other hand, w is plotted against the output Z-force to investigate the presence
of dynamic effects. The X-force is not treated in detail here, because of the great overlap
with the discussion of Z-force. A representative group of states and outputs is plotted against
time for a typical maneuver in Figure 6-3.

Shape of the data set

From an aerodynamic point of view it seems reasonable to construct three layers. In the
first the velocities are combined, in the second the pitch angle and rate and in the third the
flap related states. To investigate whether this yields desirable data distributions for making
triangulations, and to find outliers, the data set is projected onto these candidate layers, as
depicted in Figure 6-4.

The first layer considered here is the velocity layer. This is the combination of horizontal and
vertical velocity in the body axes, u and w. The projection of the data set onto this layer
is shown in Figure 6-4a. The data is strongly clustered around moderate velocity values.
Because the slow forward flight of the DelFly is studied, it comes as no surprise that in
general w is larger than u. The outliers in the range u > 1m/s stem from a single flight test,
and are removed before generating spline models.

The second layer candidate is the pitch layer. This combines the pitch angle and rate, as
plotted in Figure 6-4b. A subdivision in four regions is sketched in this plot. The regions
relate to regions of other states. For example, the low pitch region P1 can be related to high
velocities w. These relations are discussed in more detail in the next part on dynamic effects.
Purely considering the pitch angle and rate, a few notes can be made regarding the shape of
the data set. The core of the data set has a rectangular shape with a small gap between P2
and P3. The outliers can be clearly identified as single trajectories and are filtered out before

System Identification with Multivariate Multiplex Splines T. Visser



96 Validation on DelFly data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

2.5

2.6

2.7
A
lt
it
u
d
e,

m

(a) Altitude

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

0.5

u
,
m
/s

(b) Horizontal body velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0
0.5
1

w
,
m
/s

(c) Vertical body velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

1

1.5

2

θ
,
ra
d

(d) Pitch angle

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
−4
−2
0
2

q,
ra
d
/s

(e) Pitch rate

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
−0.5

0

Z
-f
or
ce
,
N

(f) Vertical body force

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
−0.2

0
0.2
0.4

Time, s

X
-f
or
ce
,
N

(g) Horizontal body force

Figure 6-3: Time domain plots of the investigated states and output during a typical maneuver.
Note that the start and end point of the (dramatized) path through Figure 6-5 are also shown.
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spline fitting. Such trajectories are still visible in the left half of region P1. Overall the data
seems to be properly spread over these two variables.

The last layer is that of the flapping dynamics, plotted in Figure 6-4c. A rough subdivision
in different flap stages is also provided. From region F1 to F6 the stages can be described
as wings open (F1), wings closing (F2 and F3), wings closed (F4) and wings opening (F5
and F6). The three remaining regions that are indicated can be directly coupled to parts of
the maneuvers flown. To be more precise, when the DelFly is falling during the maneuver,
the opening of the wings goes purely through regions F7 up to F9. During these phases
the DelFly does not visit regions F5 and F6. It was found that this is caused by missing
data. During this phase of the maneuvers the camera system is unable to track the markers
continuously during the opening of the wings. As the wings are opening the system tracks
the markers once every two samples. Because the flap rate is calculated using the sample
frequency and not the actual time between samples, the rate is higher for these data points
in Figure 6-4c. However, this effect is not purely numeric, as the same angles are measured
every time. This implies that the wing oscillates with a frequency between six and eight times
as high as the flap frequency during wing opening. Only when the wing foil is deflected in a
certain direction, it is tracked.

Because of the circular shape of the flap dynamics the layer can be reduced to a single variable.
This is done by choosing a center at the mean of the data points (close to the point (0.6,0))
and describing the position of the data points purely by the phase angle ζ with respect to
this origin. For the regions F1 up to F6 the difference between the inner and outer radius of
the data ring can be considered insignificant. As pointed out above, the regions F7 up to F9
are separated from the regions F5 and F6 in due to numeric effects. These two arguments
together validate neglecting the distance from the center of the circle.

Inclusion of dynamic effects

In fixed wing aircraft as well as rotorcraft, the aerodynamic forces generally depend heavily
on the angle of attack. As we are studying the body axes components of the velocity, such
relations can be expected to be found when instead considering the velocity w. Therefore in
Figure 6-5 the projection of the data set onto the w,Z-plane is plotted. The indicated regions
are discussed below. A description of a maneuver is related to the green path in the same
figure.

Region Z1 in Figure 6-5 can be seen as the core of the data set. The data density is very high,
leaving less than half of the data points for the other regions. This region can be subdivided in
more parts, but those are strongly intertwined. Note that the vertical velocity has a nominal
value, corresponding to slow forward flight. In general the data points with positive Z-force
can be coupled to a high right wing angle (F1 in Figure 6-4c) and the negative force to a low
wing angle (F4). The pitch angle is in the medium to high range, whereas pitch rates are
relatively small (mainly P2). When velocity decreases within Z1, the pitch angle moves up
into P3 and later even the upper half of P4. In terms of flapping the data points lie purely
in the ring, regions F1 up to F6.

Region Z2 differs slightly from region Z1 and can be hard to identify. It is chosen based on
the width of the set, which decreases for higher vertical velocities. These data points with
higher vertical body velocity are clearly separated from Z1 in the pitch layer. There these
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Figure 6-4: Combined scatter and density plots of projections of the data set onto three different
planes of the state space. In the plots several regions are sketched that can be directly related
to other regions in other states. Note that many data points were removed from the dense parts
of the data set after calculating the density, to facilitate plotting. (Figure continues on the next
page.)
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Figure 6-4: (Continued) Combined scatter and density plots of projections of the data set onto
three different planes of the state space. In the plots several regions are sketched that can be
directly related to other regions in other states. Note that many data points were removed from
the dense parts of the data set after calculating the density, to facilitate plotting.
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Figure 6-5: A combined scatter and density plot of the data set, projected on the w,Z-plane.
Darker colors indicate higher density, regions of interest are closed off by blue lines and numbered.
The green path indicates the consecutive states during a maneuver, starting from the circle and
ending at the cross (as also indicated in Figure 6-3). The small and large cycle in Z7 and Z8 are
indicated using vectors. Note that many data point were removed from the dense areas, especially
area 6, to circumvent memory issues in plotting.
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points lie purely in P1, with high pitch rates, yet small pitch angles. This region can therefore
be related to the recovery phase that continues after the end of the path in Figure 6-5. This
is also visible in the evolution of w after the end of the path, plotted in Figure 6-3c.

Apart from the core of the data set, there are six regions in which Z changes more or less
linearly with w. All these regions can be coupled to flap stages and the start and end
of maneuvers. Region Z3 for example corresponds to a high wing angle that is increasing
towards the maximum wing angle (F6, F1 and F9). At the same time these data points
correspond to low angles of attack. The flight path reveals that these points all stem from
the start of maneuvers and the recovery phase. This is also visible in q, where slightly higher
values are observed, lying in the upper halves of regions P2 and P3. Region Z4 deviates from
Z3 in that the wing is at its maximum position (F1) and the angle of attack is slightly higher.

Regions Z5 and Z6 are in many respects the mirror image of Z3 and Z4. Not only the Z-force
is of different sign, but the wing angle is also at its minimum (F4), and going up (F4 and
F5) in region Z5. The pitch rate is slightly below the nominal level. On the other hand the
angle of attack is again low and in the flight path the data points occur at the start and end
of maneuvers.

Finally there are two regions of negative w and consequently negative angle of attack. Close
inspection shows that they can be seen as continuations of the linear regions in positive w.
In the flight path these data points cover the entire part in which the DelFly is falling after
the initiation of the maneuver and before recovery. This is also visible in the high pitch
angle combined with low pitch rate in region P4. In region Z7 the wing angle decreases from
medium values in F2, through F3 to the lower bound in F4, then increases to the medium
values in F7. Region Z8 deviates in the sense that the high wing angles are dominant. The
process of increasing the wing angle to F1 goes through the regions F8 and F9. The other
way around it is found that all data points in F7 lie on a straight line through the parts of Z7
and Z5 with moderate values for w. A similar observation can be made for the data points
in F8 and F9. The points in the latter lie on a straight line through Z8 and Z3. The points
in region F8 differ slightly by laying on a straight line through Z8 and the start of Z4.

In conclusion the maneuvers can be described as a sequence of regions, displayed as a green
path in Figure 6-5. The plotted path is slightly more extreme than the actual paths en-
countered. Also, several cycles in Z7 and Z8 were combined for clarity. In nominal flight the
DelFly is in region Z1, at the green circle. Due to the elevator input the DelFly moves towards
region Z6, and starts falling as the wings are closed. The aircraft then tilts backwards and
goes through one or two small flap cycles in the rightmost part of Z7 and Z8. Then when
the wings open again, the DelFly instead goes through two large flap cycles in Z7 and Z8.
Finally it recovers by going through another small cycle in the negative w domain and then
continuing through several flap cycles into Z1. The recovery phase continues in this manner
through Z2 and then back to Z1, as can be seen in the time evolution of w in Figure 6-3c.

Because the DelFly data set is used to validate the system identification process, it is impor-
tant to include enough dynamic effects. Because the regions Z3 up to Z8 show the largest
spread in Z-force and they are strongly coupled to the wing positions, a subflap model will be
constructed. This model will thus combine both flight dynamics and flapping aerodynamics,
in contrast to the models discussed in the literature review (subsection 3-3-1).

The recognizability of flight phases in the data sets is not just a positive thing. After all, a
spline requires a uniform distribution of data over the state space. For the multiplex spline
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this is even more true than for the simplex spline (see subsection 5-2-2). Regions such as
Z7 and Z8 in Figure 6-5 that also correspond to the fixed flap angle regions F7 up to F9,
are detached from the total data set in multiple dimensions. This puts upper bounds on the
degrees of the spline that should prevent overfitting effects in the voids.

6-2 Multiplex spline models of the DelFly

Now that the data is analyzed, all required knowledge is available for constructing the spline
models. Both longitudinal forces, the Z- and X-force, are modeled as a function of (parts of)
the state (u,w, θ, q, ζ). This will be done along the lines of the system identification algorithm
presented in section 5-3. The construction and structure of the models is covered in subsection
6-2-1. Some reference is made to the previous section when data analysis is considered. The
performance of the resulting spline models is assessed in subsection 6-2-2.

6-2-1 Model structure

The steps of the system identification process were undertaken to arrive at the models pre-
sented in Tables 6-1 and 6-2 for the Z- and X-force respectively. Although the algorithm
is linear, the models are a result of an extensive iterative process. In the end only eight
multiplex splines for each force are discussed in this section. These are four models that use
the complete state and the four best performing splines with less states. All models however
include the flap phase ζ and at least two other states. The process that lead to the model
structures is discussed below.

The first step in the system identification algorithm is to define layers. It was found in sections
5-2 and 5-4 that this choice of layers may have a significant effect on the model performance.
It is especially important to separate independent states. Therefore the flap phase is isolated
in a one-dimensional layer in all cases. In the splines MZ1 up to MZ4 and MX1 up to MX4,
that include the entire state vector, the velocities (u,w) are never mixed with pitch states
(θ, q). When smaller state vectors were considered it was found that models that do mix
these states hardly ever perform as good as the other splines. Only MZ7 has such a mix in
its first layer (w, q). Note that all layers are chosen one- or two-dimensional. This is done
to prevent problems with the alignment of triangulated cubes due to errors in the Matlab
Delaunay code.

When the data is projected onto the layers, a triangulation can be defined in each layer. A
standard type-I triangulation of the rectangle is used in two-dimensional layers to facilitate
the automation of the process. Note that the resulting triangulations satisfy the quality
criteria mentioned in section 3-1 of the literature review. The iterations on this step lead to
the conclusion that extra approximation power is required in the states w, θ and ζ. Therefore
their domain is split in half before triangulating the resulting rectangles. Note that one-
dimensional layers are not split in multiple parts if they contain u or q.

In parallel with the triangulation of layers, the degree and continuity order of the polynomials
are defined. Due to the poor distribution of the data over the state space, overfitting to
local data clusters is a major concern. Therefore the polynomials were chosen linear in all
layers, except the layer containing the flap phase. This state was modeled using a quadratic

System Identification with Multivariate Multiplex Splines T. Visser



102 Validation on DelFly data

polynomial because visual inspection of the data implied a quadratic relation between ζ and
the forces. All continuity orders were set to zero. Several tests were performed with higher
degree polynomials, but their performance in terms of RMSE was a lot worse than that of
the models in Tables 6-1 and 6-2.

To compare the performance of the multiplex spline models with existing methods, a linear and
a quadratic simplex spline were made to model both forces using all states. The triangulation
used in these models was a standard type-I triangulation of a single orthotope encompassing
the entire domain. This was done to prevent the issue of alignment between triangulated
orthotopes mentioned before. On top of that, the number of B-coefficients of the simplex
spline was kept in the same range as the multiplex spline by not splitting the domain in
multiple orthotopes before triangulating. A linear, a quadratic and a quintic polynomial
model were also constructed for each force. In both cases the quintic polynomial provides the
optimal performance of polynomial models on the studied data sets.

6-2-2 Model performance analysis

In this subsection the performance of the spline models of both Z- andX-force is assessed. All
splines are fitted to a randomly selected set containing 80% of the data points. The remaining
data points are used to calculate the performance measures discussed in this subsection. In
selecting a verification data set it is important that the data points are well spread over the
entire domain and contain enough dynamic effects. Because it is hard to do this for a system
of which the dynamic effects are largely unknown, a bulk approach was taken. That is, each
spline was generated 10 times using different random splits of the data set. The performance
measures presented in Tables 6-1 and 6-2 are made up of the mean and standard deviation
of the calculated metrics for all iterations.

The models of Z-force were investigated first, and are therefore treated in most detail here.
The X-force models serve to show that the results can be repeated under similar conditions.

The performance assessment is three-fold. First of all the splines are subjected to a visual
inspection. For five-dimensional models this means that slices of the domain are taken such
that the behavior in two states at a time can be investigated. Secondly the statistical perfor-
mance measures RMSE and RRMS are calculated. The first indicates the ability to estimate
physical outcome, whereas with the second this ability is compared with the simplest model
available: the mean of the data. Finally the behavior of B-coefficients is investigated to show
the behavior of the splines near the edges of the domain.

Visual inspection

We start the validation process by visual inspection. The goal of this inspection is to check
whether the splines are actually following any visible trend in the data. Three slices of the
(2,2,1)-multiplex spline modeling the Z-force MZ1 are shown in Figure 6-6. The first two
slices in Figures 6-6a and 6-6b correspond to the layers (u,w) and (θ, q). In the last figure a
slice through the variables θ and ζ is plotted to show the distribution of data over the different
states. The data points in Figure 6-6 lie within a small radius from the location of the slice.

In the plots of Figure 6-6 it is clear that the data is often concentrated along lines through
the high-dimensional space. This means that it is possible that the linear spline elements
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interpolate over large distances, ignoring local effects. In Figure 6-6c, two regions are visible
at θ-values of 1.3 and 1.8 radians in which data is available. The linear spline in the direction
of θ will mainly focus on interpolating across the gap in the data, which prevents it from
modeling local effects.

On the other hand it is possible that closely packed data with little dynamic information is
approximated using a large number of polynomials. For example, in Figure 6-6b two groups of
closely packed data can again be identified. The larger region is a rather linear group of data
points, whereas the small group does not directly present any evolution in this plane. In the
interpolation effort the spline has the freedom to construct two linear planes to approximate
this second small group, which results in overfitting effects. The spline predicts Z-values of
1N at the edges based on data that is interpolated at -0.2N. This is also visible in the velocity
plane in Figure 6-6a.

Performance assessment using error metrics

To provide a global measure for the approximation performance of the splines, the RMSE
and RRMS are calculated. The outcome of these calculations is presented in Table 6-1 for
the Z-force models. The RMSE-values are absolute, and should thus be compared with the
actual range of the output variables. In the data set used, the Z-force lies in the range [-
1.4,1.5]N, but the nominal value lies between -0.2 and 0.2N. Compared to this nominal value,
the RMSE-values of 0.14 indicate poor approximation performance.

Therefore it is deemed more informative to check the RRMS-value. This value is calculated
by dividing the RMSE of the model by the standard deviation of the data itself. It thus
compares the approximation power of the model with that of the mean. From the RRMS-
values in Table 6-1 it is clear that the multiplex splines all perform better than the mean,
and thus model some dynamic effects.

On the other hand the RRMS-values of more than 75% are probably not sufficient for most
applications. Comparing the multiplex spline performance to that of the other, validated
methods, it is clear that this poor performance is not due to the multiplex spline itself. It is
most likely that the data set in its current form is not fit for global system identification using
splines. This may either be because of the inclusion of few dynamic effects or the poor spread
of data points over the state space. As only multiple realizations of the same maneuver were
studied, both are viable causes of modeling difficulties.

A remaining question is whether the multiplex spline and the related system identification
algorithm can be validated based on the achieved approximation performance. To answer this
question the multiplex splines are compared to the simplex splines and the polynomial models
for Z-force. As in section 5-2 the first observation is that the multiplex spline presents many
different options for model structure. The ability to isolate states with a different requirement
for polynomial degree seems to improve the RMSE, as can be derived from the comparison of
for example MZ1 and the simplex splines. The performance is improved by making the model
linear in one group of states, and quadratic in another (ζ in this case). Another improvement
lies in the amount of B-coefficients and the resulting amount of degrees of freedom. As seen
before in section 5-2 the simplex spline requires many more coefficients and is less efficient in
converting them to degrees of freedom. The small DoF is most likely to be the cause of the
poor performance of SZ1.
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Table 6-1: The performance of the spline models for Z-force is measured using both the RMSE
and the RRMS. For both metrics the mean and standard deviation over 10 runs are given. The
difference between the runs was the distribution of data points over the fitting and verification
sets. Note that RMSE values are absolute, and should be compared to the range Z ∈ [−1.4, 1.5]N
and nominal values between -0.2 and 0.2N.

ID Layers Degrees Coefficients DoF RMSE RRMS

MZ1 (u,w), (θ, q), ζ (1,1,2) 702 140 0.1437 ± 0.0045 0.7790 ± 0.0095
MZ2 (u,w), θ, q, ζ (1,1,1,2) 540 142 0.1413 ± 0.0040 0.7658 ± 0.0131
MZ3 u,w, (θ, q), ζ (1,1,1,2) 576 144 0.1429 ± 0.0042 0.7746 ± 0.0113
MZ4 u,w, θ, q, ζ (1,1,1,1,2) 384 144 0.1419 ± 0.0035 0.7694 ± 0.0139

MZ5 w, θ, q, ζ (1,1,1,2) 192 72 0.1470 ± 0.0052 0.7964 ± 0.0131
MZ6 w, (θ, q), ζ (1,1,2) 288 72 0.1483 ± 0.0033 0.7992 ± 0.0143
MZ7 (w, q), ζ (1,2) 72 24 0.1568 ± 0.0035 0.8392 ± 0.0088
MZ8 (u,w), ζ (1,2) 72 24 0.1571 ± 0.0039 0.8308 ± 0.0056

SZ1 (u,w, θ, q, ζ) 1 564 28 0.1666 ± 0.0058 0.8858 ± 0.0078
SZ2 (u,w, θ, q, ζ) 2 1554 192 0.1481 ± 0.0045 0.7901 ± 0.0173

PZ1 (u,w, θ, q, ζ) 1 6 6 0.1836 ± 0.0053 0.9792 ± 0.0028
PZ2 (u,w, θ, q, ζ) 2 21 21 0.1624 ± 0.0037 0.8566 ± 0.0067
PZ3 (u,w, θ, q, ζ) 5 252 252 0.1402 ± 0.0042 0.7491 ± 0.0200

Table 6-2: The performance of the spline models for X-force. Note that RMSE values are
absolute, and should be compared to the range X ∈ [−0.65, 0.90]N and nominal values between
0 and 0.4N.

ID Layers Degrees Coefficients DoF RMSE RRMS

MX1 (u,w), (θ, q), ζ (1,1,2) 702 140 0.0673 ± 0.0014 0.6727 ± 0.0138
MX2 (u,w), θ, q, ζ (1,1,1,2) 540 142 0.0663 ± 0.0023 0.6632 ± 0.0208
MX3 u,w, (θ, q), ζ (1,1,1,2) 576 144 0.0645 ± 0.0023 0.6450 ± 0.0216
MX4 u,w, θ, q, ζ (1,1,1,1,2) 384 144 0.0641 ± 0.0021 0.6415 ± 0.0207

MX5 u,w, ζ (1,1,2) 48 24 0.0658 ± 0.0024 0.6627 ± 0.0233
MX6 (u,w), ζ (1,2) 72 24 0.0701 ± 0.0019 0.6903 ± 0.0172
MX7 w, θ, q, ζ (1,1,1,2) 192 72 0.0719 ± 0.0024 0.7218 ± 0.0127
MX8 w, (θ, q), ζ (1,1,2) 288 72 0.0733 ± 0.0024 0.7308 ± 0.0120

SX1 (u,w, θ, q, ζ) 1 564 28 0.0938 ± 0.0019 0.9374 ± 0.0063
SX2 (u,w, θ, q, ζ) 2 1554 192 0.0783 ± 0.0013 0.7984 ± 0.0096

PX1 (u,w, θ, q, ζ) 1 6 6 0.0968 ± 0.0016 0.9716 ± 0.0038
PX2 (u,w, θ, q, ζ) 2 21 21 0.0945 ± 0.0018 0.9343 ± 0.0073
PX3 (u,w, θ, q, ζ) 5 252 252 0.0705 ± 0.0035 0.6989 ± 0.0304
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Also when compared to the polynomial models the multiplex spline performs well. The linear
and quadratic polynomials PZ1 and PZ2 are unable to match the RMSE and RRMS-values
of MZ1 up to MZ4. The quintic polynomial PZ3 was added to the list because it represents
the optimal performance of the polynomial models. Note that it performs slightly, though
hardly significantly better than MZ2 and MZ4. This is an interesting result that cannot be
explained at this point. In general it was found that degrees higher than two only deteriorated
performance for the spline models. It is however important to realize that in the multiplex
splines MZ1 up to MZ4 the total degrees are four, five, five and six respectively. This may
explain the similarity in the performance of the multiplex splines and the quintic polynomial
model.

The performance of the models for X-force in Table 6-2 confirm these results. Note that
overall the performance of the splines is better than those modeling Z-force, both in RMSE
and RRMS. The difference is smallest in RRMS, as the X-force varies less than the Z-force.
The spread of performance over the different types of models is also larger. The splines MX1
up to MX5 are clearly the best models. This time the quintic polynomial PX3 is unable to
reach the same RRMS-values, and the simplex and multiplex splines are even further apart.

All in all, the error metrics show that the multiplex spline is able to match or improve the
performance of existing modeling techniques on the given data set. Because the results can be
achieved for both Z- andX-force, the spline and system identification algorithm are validated.
It is however advised that the algorithm is tested on a more suitable data set, preferably with
differences in complexity between states.

Finally a note should be made regarding the relevance of states for modeling the two longi-
tudinal forces on the DelFly. All multiplex splines MZ5 up to MZ8 and MX5 up to MX8 use
the vertical velocity. As these splines were the ones with the best performance, it may be
concluded that w is essential in modeling both Z- and X-force. The pitch related states are
especially important for modeling the Z-force, whereas in X-force the horizontal velocity u
seems more relevant. Note for example that the smallest multiplex spline of all, MX5, is able
to achieve similar performance as MX1 up to MX4 with only 24 degrees of freedom.

Behavior of B-coefficients

In Figure 6-7 a number of boxplots is presented that indicate the spread of B-coefficients of
MZ1 and MZ4 over the state space domain. In each plot the coefficients in the wing flap layer
are used. In the pitch layer the coefficients are fixed to one of the coefficients at the edge of
the domain. That is, each boxplot shows the spread of the coefficients at one vertex of the
domain of pitch and the indicated location in flap, over the velocity domain. This is done for
all coefficients in the flap layer.

In these plots the excursions at domain edges can be clearly identified. The spread in coef-
ficients of MZ1 is largest at the domain vertices, as expected. The coefficients of MZ4 are
more extreme than those of MZ1, and especially show excursion in the center of the flap layer
simplices. This may be caused by the fact that circular constraints were installed, meaning
both ends of each simplex were bound to each other. At least it is clear that the geometric
and polynomial effects described in section 5-2 also play a role in these very simple models.
As the data set is mostly concentrated in the center of the multiplices, the multiplex with less,
yet higher-dimensional layers will behave better outside the convex hull of the data points.
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Figure 6-6: Several slices of the (2,2,1)-multiplex spline MZ1 used to approximate the DelFly Z-
force. The cuts that were used were u = −0.063m/s, w = 0.49m/s, θ = 1.36rad, q = 0.16rad/s
and ζ = 0rad. These values were chosen to give a representative view of the locally available
data, and because they lie close to the core of the data set.
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Figure 6-7: Boxplots of the B-coefficients of the (2,2,1)- and the (1,1,1,1,1)-multiplex splines
MZ1 and MZ4. Each boxplot corresponds to a vertex on the edge of the pitch angle and rate
domain, and to the indicated coefficient in the flap layer. The spread is thus purely in the velocity
layer. The first multiplex corresponds to ζ ∈ [0, π].

Similar results were found when only the pitch layer is varied, although the effects turned out
more extreme than in the plots of Figure 6-7. This may indicate that the spread of the data
in that layer is even worse.
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Chapter 7

Conclusions and recommendations

As the research described in this thesis is broad, it is useful to split the conclusions in parts
according to their occurrence in the chapters of this report. First the conclusion regarding the
definition of the multiplex spline are presented. They are all derived from chapter 4. In section
7-2 the conclusion regarding the resulting multiplex spline characteristics are given. The focus
lies on the differences between the multiplex and simplex spline, as discussed extensively in
chapter 5. Finally in section 7-3 the conclusions regarding the validation process of the system
identification algorithm are collected. As the analysis of the flight test data of the DelFly was
a major part of chapter 6, it is also discussed here. Conclusions are linked to the research
questions in chapter 2 for clarity.

7-1 Multiplex spline definition

The development of the multiplex spline theory mostly answers research question 2 regarding
the effects of nesting multivariate splines. The goal of this development is to allow for fitting
scattered data. In the literature review question 1 concerning the requirements for such
an application was answered. In this section this set of characteristics is coupled to the
characteristics of the multiplex spline derived in chapter 4.

In section 4-1 the multiplex is defined. It is also shown in what way points in the multiplex
can be uniquely described using barycentric coordinates. This is a vital prerequisite for the
use of the spline in any application. One of the major results of the preliminary research is
theorem 1, the equivalence of the multiplex to a subset of a higher-dimensional simplex. This
implies that the barycentric coordinates in the multiplex can be derived directly from those
in such a simplex. This was found to be a very useful property when deriving many of the
multiplex spline properties.

For the basis polynomials it is shown in section 4-2 that they result from a tensor-product
between multiple Bernstein polynomials of less variables. From this it immediately follows
that the basis polynomials preserve their partition of unity and non-negativity properties.
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These are important indicators that the set of polynomials forms a stable local basis. The
polynomial space spanned by this basis is the typical tensor-product space.

Contrary to the rectangular Bézier patch, the multiplex spline has a fixed B-net. Although the
coefficients can be thought of as having a spatial location, this location is not variable. The
fact that the values of these coefficients are the only variables facilitates the use of efficient
least squares approximation techniques.

In many applications of function approximators, a certain degree of smoothness is desirable.
In section 4-4 it is shown that an arbitrary continuity order can be defined between multiplices
of equal layer structure. It is even shown that such conditions can be defined between any
two multiplices of equal dimension.

All the above culminates in the conclusion that the multiplex spline possesses all required
characteristics for system identification applications. In fact, the methods of data fitting
presented in the literature review for simplex splines can be used directly on this new spline,
yielding a wide range of efficient solution methods.

7-2 Multiplex spline characteristics and behavior

The use of the multiplex spline for function approximation was discussed in chapter 5. This
discussion started with an overview of some important characteristics of the multiplex spline,
followed by a set of tests in which those characteristics were investigated. Results of both
these parts are described here to (partially) answer research questions 2, 3 and 7.

The two most important characteristics that are relevant for function approximation tasks are
the geometric basis and the directionality of polynomial degree. The multiplex differs from
the simplex in its content distribution. In the first a larger part of the content is concentrated
in the inscribed sphere. This effectively means that all angles of the multiplex are more obtuse
that those of the simplex, which simplifies the process of filling it with data points.

On top of that the polynomial degree can be chosen independently in each layer. This causes
a directionality in approximation power. On the other hand the total degree (defined as the
sum of all degrees) of the multiplex spline can rise quickly. This is not directly visible in the
layers, but along the diagonal we do find total-degree behavior. When the total degree is too
high, big excursions are to be expected near the edges of the domain due to overfitting to data
in other parts of the domain. This can be counteracted by applying differential constraints
at the boundaries, as discussed in more detail in section 8-2.

The test functions were constructed so that single effects could be isolated. By making a high
dimensional test function with different levels of non-linearity in different variables, the effect
of choosing layer structures was investigated. This lead to the conclusion that choosing layers
based on the knowledge of the system is beneficial for overall performance. It was also made
clear that the multiplex spline presents the user with a lot of options, including some that
are smaller, yet better performing than the simplex splines.

To test the concept of total degree along the diagonal, a simple two-dimensional function was
used. The data set was given a certain shape that either included or excluded the vertices of
the domain. The performance of the multiplex spline is better than that of the simplex spline
in most cases, but only within the convex hull of the data set. Outside the convex hull the
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performance is worse than that of the simplex spline, and a lot worse than inside the convex
hull. Both results can be explained by the difference in total degree. Inside the convex hull
of the data the spline is required to provide a good fit. A higher degree will lead to more
freedom in doing so, resulting in better overall performance. Away from the data, near the
edges, the freedom becomes a curse as it is exploited for a better fit to the data elsewhere in
the domain. This leads to large excursions that do not bear any physical meaning.

The effect of the total degree and of the contents distribution were compared by fitting splines
to data in the inscribed sphere of a single domain element. The performance of cubic splines
on a simplex and a cube inside the inscribed sphere are similar. Outside this insphere however
the multiplex spline performs better for low-dimensional splines. In that regime the benefit
of the multiplex shape is greater than the drawback of high total degree. At some point
however the polynomial degree simply becomes too high and overrules the geometric benefits.
At what dimension this cross-over can be expected is likely to depend on the test function.

Finally the multiplex spline is tested against the simplex spline on a data set generated using
an analytic model of a quadrotor. In this case, where the expected model outcome is known,
it is especially clear what the benefits are of having a different degree in different layers. The
familiar relation between velocity, angle of attack and thrust is clearly visible in both splines,
but the simplex spline shows a serious distortion in the low and high angle of attack range.
The same holds up to a lesser extent in the engine dynamics. This test also shows that the
proposed system identification algorithm works properly.

All in all the multiplex spline’s characteristics allow for better approximation power and more
flexibility than the simplex spline. This is especially useful when the level of non-linearity in
different variables is known to be different. The increased approximation power comes at the
price of a high total degree. This is truly the dilemma for the user. He should keep layers
low-dimensional to retain oversight and make easy-to-fill polytopes, yet use few layers to keep
the total degree down. At the same time he may use more layers if he keeps the degree in the
layers low.

7-3 Validation of system identification algorithm

The process of validation of the system identification using multiplex splines was partially
dominated by analyzing the DelFly data set. The conclusions regarding the dynamic effects
and variables found in this analysis partially fulfill research questions 8, 9 and 10. The larger
part of this section focuses on the spline model performance. This refers to questions 6 and 7

Throughout the process of system identification it was found that the data set is poorly
distributed over the state space. In almost all states that were studied, groups of data points
can be identified that are also clustered in other states. This implies that these regions are
not mixed well. Only in terms of velocities these regions were less clear. The data set can
thus be seen as a checkerboard, in which data lies only on the black squares. This makes it
hard to fit a spline on a global scale.

In the plots of slices of the splines an even more severe problem is observed. In the pitch
the data is mostly concentrated along lines through the two-dimensional space, whereas in
the velocity layer it is even concentrated around a single point. Because these locations vary
depending on the value of the other variables, the tessellation cannot be easily made smaller
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within the proposed system identification algorithm. Some solutions to these problems are
proposed in section 8-3 of the recommendations.

The system identification algorithm was employed again to produce the models of the DelFly
Z- and X-force. It was found that the steps of choosing and triangulating layers blend in well
with the process of data analysis. The projections of data sets onto lower-dimensional planes
was very helpful in choosing layers. This is especially the case when little is known about
the dynamics of the system to be modeled. The step of projecting the data onto the layers
forces the user to become aware of the shape of his data set. The complete algorithm was
again easily automated to produce several splines with different layer structure, tessellation
or polynomial properties.

On the other hand it was found to be hard to predict, purely based on the projections of the
data, how dense the triangulations in the layers should be. In many slices of the resulting
splines multiplices were found that were rather empty. This is partially caused by the data
set, but also by the inability to vary the number of simplices in one layer over the range of
another layer. This problem can be tackled by using more advanced tessellation techniques.
An example of such a technique is provided in the section 8-2.

In terms of constructing a global model of the DelFly based on the current data set and
system identification algorithm, it seems that the optimal performance has been reached.
From the large amount of models that was generated, the presented models were the best in
terms of RMSE, RRMS and the behavior of B-coefficients. Some tessellations for a (2,2,1)-
multiplex spline were made by hand to test this hypothesis. This exercise did not result in
any improvement in terms of any of the performance metrics.

Although the RMSE of multiplex spline models is close to the nominal Z-force value, the
RRMS shows that the splines at least perform better than the mean. Also, the multiplex
splines perform significantly better than the (validated) simplex splines and polynomial mod-
els of similar degree. Not only the errors are smaller, the number of coefficients is also
drastically lower. This trend is confirmed by the models for X-force. The combination of
these facts leads to the conclusion that the system identification algorithm using multiplex
splines is validated. It is however advised that a more thorough research is set-up in which
a more suitable data set is used, to make sure the encountered performance is not the upper
bound.
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Chapter 8

Future research

In this thesis the multiplex spline was introduced for the first time to the engineering domain.
It is therefore not surprising that many recommendations can be given for future research.
Instead of providing an overview of many of these research topics, only a few are selected and
discussed in some detail.

Ideas for future research stem from all aspects of the research presented in this report. There-
fore a subdivision is made in three categories. In each category two research topics are
presented, of varying size. First in section 8-1 the recommendations regarding the further
development of the mathematical theory behind the multiplex spline are given. They are
rather fundamental in nature, meaning there is no direct application of them in current engi-
neering problems. Those theoretical topics that may have a direct application are presented
in section 8-2. They are called tools for performance enhancement, as it is expected that they
can improve the function approximation performance in the near future. Finally in section
8-3 the possible applications of the multiplex spline are discussed. This includes a set of
recommendations regarding DelFly research.

8-1 Fundamental topics

As pointed out in the introduction to this chapter, there are many research topics still open
in this field. In this section the focus lies on the geometric properties of the multiplex and
the circumscribed simplex. First the possibility of triangulating the multiplex is discussed.
Then the concept of the circumscribed triangulation is introduced.

As triangulations are used in many engineering applications, the existence of triangulations
of polytopes has been an active research topic for a long time. One important result is that
a hypercube can always be triangulated. In most cases however it is not trivial to find out
whether such an operation is possible for a certain polytope. It is therefore interesting to
investigate whether the tight constraints on the multiplex definition allow for a guarantee of
existence of a triangulation.
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One starting point for such a research can already be given: each hypercube can be uniformly
tessellated. That is, each hypercube can be subdivided in a finite number of equal multiplices.
This can be illustrated as follows. A hypercube is a (1,...,1)-multiplex. If this polytope is
to be tessellated, we can always choose to use the (2,0,1,...,1)-multiplex. That is, one two-
dimensional side of the hypercube is triangulated in some way, and the remaining layers are
copied from the hypercube itself.

This process is actually closely related to the triangulation of layers described in the system
identification algorithm. In the case of the hypercube, each layer would be a cubic domain.
By triangulating the layers and combining the triangulations, a valid uniform tessellation of
the hypercube is constructed. The question of triangulating a multiplex can now be reduced
to the problem of triangulating a well-defined part of the hypercube.

Another interesting topic arises when defining a higher dimensional triangulation around a
tessellation. In section 4-1 it was discussed that any multiplex is a slice of a higher dimensional
simplex. In section 4-4 this fact was used to derive continuity conditions in the multiplex
spline from the equivalent simplex spline. It was implied that it is always possible to construct
two neighboring simplices around neighboring multiplices, as they share a complete (n− 1)-
edge. In many cases of larger tessellations it was found that it is not always possible to
construct a circumscribed triangulation.

A circumscribed triangulation would be a valid triangulation that contains the same shared
edges as the tessellation. It is expected that any tessellation constructed using the system
identification algorithm described in section 5-3 does have an equivalent triangulation. That
is because the layer sets can be defined by simply translating the triangulations of the layers
into the higher-dimensional space in an appropriate way. Any combination from these layer
sets would result in a valid circumscribed simplex, and it would be neighboring all the right
simplices. As soon as the layer structure is abandoned, this property seems to vanish. One
example of this is a rhombic tessellation of three elements, of which the shared edges form
a capital Y. What the exact requirements for the existence of a circumscribed triangulation
are, is however still uncertain.

8-2 Tools for performance enhancement

Apart from the purely fundamental research into the multiplex spline, some mathematical
extras may be added to artificially enhance the approximation performance. Two of these
tools are discussed here. The first is the option to introduce differential constraints, both
along the borders of the domain and inside a multiplex. The second is a proposal to move
away from the layered structure towards a nonuniform tessellation, or mixed grid partition.

Differential constraints have already been applied to simplex splines at the boundaries of
the domain [18]. This prevents the B-coefficients at the edges of the domain elements from
growing out of the logical physical bounds. This is a problem that was encountered often in
the verification and validation processes described in this report. It is therefore proposed to
apply these constraints to the multiplex spline as well.

Apart from fixating the domain edges, it is possible to apply similar constraints inside the
multiplices. This idea was sparked by the fact that the total polynomial degree can be very
high along the diagonal of the multiplex. If the diagonal can be constrained to a lower
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(a) Triangulation (b) Tessellation 1 (c) Tessellation 2

Figure 8-1: Triangulation and tessellations that may be used to approximate the shape of a
circular data set. The octagon can be filled using both simplices and multiplices, in a pure
triangulation or a mixed tessellation.

polynomial degree, this may reduce the large excursion near the edges of the domain. One
approach to this may be to assume the diagonal to be a one-dimensional polynomial. The
basis polynomials of this polynomial can be found by setting certain variables equal (which
is the definition of a diagonal). Then standard differential constraints can be applied to this
polynomial.

It is however unclear what the effect of this may be. First of all, there is not really an isolated
univariate polynomial on the diagonal, so the actual reduction of excursions is uncertain.
There may not even be B-coefficients on the diagonal, if the degrees are chosen to be different
in different layers. On top of that the approximation power is likely to be affected negatively.
An in depth study would have to show how severe these effects on the approximation are,
and what it means for the polynomial basis.

When knowledge of the system is completely lacking, a different approach to system iden-
tification may be taken. In these data driven techniques a tessellation is defined purely to
encompass the data set. This also allows for using mixed tessellations (the use of different
type multiplices), as the layers are no longer necessarily global.

One situation in which this may yield good results, is a two dimensional circular data set.
Say we would be satisfied with an approximation by an octagon. For a triangulation of such
a polytope we could choose to make it rotationally symmetric. With the multiplex spline this
is not possible, but by using a mixed tessellations the same approximation of the circle can
be attained. This is illustrated in Figure 8-1.

The front page of this report is also an example of a mixed tessellation. Both the tessellation
and the data set were made by hand to illustrate the flexibility and power of such an approach.
The starting point was the blue rectangle in the top left corner, in which the B-coefficients
were constrained to zero. The same was done with the interior coefficients in the DelFly
silhouette below the title block. The title block itself contains data points with function value
2, whereas the remainder of the domain is filled with function value 1. Finally the color map
was, for artistic reasons, set to range from TU Delft blue to white and then to black. Note
that around the DelFly the tessellation is a lot more dense to allow for attenuation of the
zero value inside the wings. This attenuation is visible in blue and gray ripples around the
DelFly and on the top of the page. In the construction of this front page it was found that
the triangular patches are especially useful for attenuation of trends, as they have a higher
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degree. Function values propagate further into the tessellation along the sides of a rectangular
patch.

In the two-dimensional case these tessellations seem rather trivial. However, in more dimen-
sions and on more complicated data set shapes, it becomes increasingly hard to properly align
simplices in a triangulation. It is well possible that this is easier when mixed tessellations
are used, especially along the lines of the tessellation in Figure 8-1c. This scheme can be
extended to any number of dimensions by, in each change of multiplex, removing one one-
dimensional layer and adding a dimension to the highest dimensional layer. For example, the
gaps of a cube with boxes on each side (or (1,1,1)-multiplices) would be filled with prisms (or
(2,1)-multiplices) and the remaining corners are filled with tetrahedra (3-simplices).

With tessellation 2 there are however still (1,1)-multiplices along the edges, which was shown
to be undesirable in subsection 5-2-2. A more detailed research is required to find a general
approach to mixed tessellations that truly combines the best of both worlds.

8-3 Possible applications

Function approximators have a wide range of applications. To limit the scope of this section,
the two most relevant applications are presented. Because a large part of this thesis was
dedicated to the DelFly, this system is discussed here as well. The structure of the multiplex
spline however also presents a very interesting opportunity in the domain of non-linear control.

In section 6-2-2 it was already stated that the performance of the spline models is sufficient
for validation of the system identification algorithm, but far from satisfactory in all other
respects. In section 7-3 it was suggested that this is mainly caused by the shape and nature
of the flight data used. The data is not spread uniformly over the state space, but rather
concentrated in lower-dimensional regions in a checkerboard orientation.

One recommendation would thus be to improve this data set. This can and should be done in
multiple ways. First of all the number of different maneuvers should be increased, preferably
without adding extra states. That is, it is best to separate longitudinal and lateral maneuvers
as much as possible. At the same time a wider range of nominal flight regimes is required
to expand the core of the data set. At this point it seems that the range of velocities in the
core of the data set is very limited, which is the result of using a single trim condition. The
larger core can connect the data from different maneuvers and provide a solid basis of slow
dynamics for the spline to fit.

To attain a more uniform spread of data over the state space, it should be kept in mind that
ideally the data set contains points for all possible combinations of state values. To get close
to this ideal it is advised to combine accelerating and decelerating flight with descending and
climbing maneuvers. The combinations of such maneuvers quickly results in a good spread
over velocities and attitude angles.

These extra data points may already be available up to some extent. More data sets were
made in the µAVARI facility in different flight regimes. It may however be that these regimes
are too far apart in the state space. For example, combining a low speed and a high speed data
set simply introduces two separate clouds of data, between which the spline should bridge the
gap. The different trim conditions are achieved by changing the center of gravity location.
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This change should either be modeled analytically outside of the spline model, or it should
be incorporated in the multiplex spline itself.

Apart from system identification, an interesting application lies in nonlinear control. In
section 5-1 it was indicated that one of the strengths of the multiplex spline is the directional
degree. This is especially useful in Nonlinear Dynamic Inversion (NDI). This control technique
requires a model of the system that is affine in the input. A research effort by Tol et al. showed
that to use simplex splines for NDI, some form of linearization or nonlinear optimization
is required to find the control input when this requirement cannot be met [42]. Using the
multiplex spline however, a division can be made between the states and the inputs by placing
them in different layers. In such a model the state can be modeled in any desired nonlinear
fashion, whereas at the same time the input layer is linear. Even when multiple simplices are
used in the input layer, algorithms for NDI are expected to be greatly simplified.
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Tensor-Product Bernstein Polynomials
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Abstract

If two equal dimensional geometric bases of Bernstein polynomials share
a complete edge, Cr continuity can be defined across that edge. In this
paper a new way of deriving such continuity conditions for general tensor-
product Bernstein polynomials is presented. By defining a circumscribed
simplex, higher-dimensional simplex continuity conditions can be used in a
simplified form. It is found that for Cr continuity with r > 0, degree changing
operations are required when the geometric bases are unequal in form.

Keywords: Bernstein polynomials, Tensor-product polynomials, Simplex
B-splines, Cr Continuity

1. Introduction

Let π(x) ∈ Πd
n,x ∈ Rn be a tensor-product Bernstein polynomial de-

fined as the product of linear combinations of multivariate Bernstein basis
polynomials.

π(x) =
∏̀
i=1

∑
|κi|=di

cκiB
di
κi

(xi) (1)

In this definition κi = (κi0, ..., κiνi) ∈ Nνi is a multi-index with |κi| its 1-norm
and νi ∈ N the dimension of the polynomial. That is, xi ∈ Rνi , ∀i ∈ Z`+ are
subsets of the vector x, here referred to as layers of the domain. To simplify
the notation we introduce multi-indices for the dimension ν = (ν1, ..., ν`) ∈ N`
such that |ν| = n and for the degree d = (d1, ..., d`) ∈ N`, with an entry for
each layer.

Preprint submitted to Journal of Approximation Theory November 13, 2014



After combining the coefficients cκi in (1) to a total coefficient cλ =∏
κi⊂λ

cκi , the order of summation and multiplication can be inverted to obtain

π(x) =
∑
|λ|ν=d

cλ
∏̀
i=1

Bdi
κi

(xi) :=
∑
|λ|ν=d

cλBdλ(x) (2)

where we introduce the total multi-index λ = (κ1, ..., κ`) and the notation
|λ|ν = (|κ1|, ..., |κ`|). Note that the tensor-product basis polynomial Bdλ is
defined as the product of Bernstein basis polynomials Bdi

κi
.

The Bernstein basis polynomials are defined as in [1].

Bdi
κi

(x) :=
di!

κi!

νi∏
j=0

b
κij
ij (3)

Note that κi! :=
νi∏
j=0

κij!. When all permutations of κi are considered, the

Bernstein polynomials form a stable local basis for Πdi
νi

[1]. The product in
(2) implies a definition of the tensor-product basis polynomials.

Bdλ(x) :=
∏̀
i=1

di!

κi!

νi∏
j=0

b
κij
ij :=

d!

λ!
βλ (4)

Many of the Bernstein polynomial’s properties are preserved over the tensor-
product [2], among which the partition of unity property and non-negativity.

The basis polynomials in (3) are defined using barycentric coordinates
bi = ( bi0 ... biνi ) ∈ Rνi+1, with |bi| = 1. These coordinates are defined
with respect to the vertices of a νi-simplex in the ith layer. The total set of
barycentric coordinates β ∈ Rn+` is the collection of all barycentric descrip-
tions in the layers.

The goal of this paper is to present a novel procedure to arrive at con-
tinuity conditions between two tensor-product polynomials. The procedure
strongly relies on a discussion of the geometric implications of the tensor-
product in (2). Therefore the problem is first discussed extensively in the
next section. In section 3 the concept of a circumscribed simplex is discussed
on which the method is based. The actual definition of continuity condi-
tions is done in section 4, followed by an example for continuity between a
rectangular and triangular B-patch in section 5.
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2. Problem statement

The total set of barycentric coordinates β = ( b1 ... b` ) defines points
in Rn by defining the projections onto the layers. This implies that the
interior of the simplices in these layers define an n-dimensional polytope.
As the shape of this polytope is defined by multiple simplices of different
degrees, we propose to call it the ν-multiplex.

Definition 1 (Multiplex and layers). Consider a set of ` simplices ∆i of
dimensions ν = (ν1, ..., ν`) with vertices Wi defined in space Mi, i ∈ N`+
such that M1 × ... × M` = Rn, with n = |ν|. The ν-multiplex Γ is the
convex hull of the vertices W =W1 × ...×W` of the layers ∆i.

Note that in order to define a point in a ν-multiplex Γ we require the complete
set β of n+ l barycentric coordinates. Because the coordinates in each layer
add up to 1, we find |β| = `.

As an example, the (2,1)-multiplex is shown in figure 1. The vertices are
indicated with wij, with i ∈ N`+ and j ∈ Nνi0 depending on i. Note that an
origin vertex w0 that is shared by all layers can be chosen freely.

Now consider the ν-multiplex Γ and the ν̃-multiplex Γ̃ with |ν| = |ν̃| = n.

Proposition 1 (Shared edge). A complete (n − 1)-edge shared by Γ and Γ̃
is a µ-multiplex Γ̄ where |µ| = n − 1 and ∃η, η̃ ∈ N` : |η|, |η̃| = 1 such that
ν − η = ν̃ − η̃ = µ ≥ 0.

Proof. The correction η signifies the elimination of a vertex from a layer ∆i

of Γ. As ∆i is a νi-simplex, the same layer of Γ̄ will be a (νi − 1)-simplex.
According to definition 1 Γ̄ is then a µ-multiplex, where µ = (ν1, ..., νi−1, νi−
1, νi+1, ..., ν`) = ν− η. The same discussion holds for Γ̃, with the elimination
of a vertex from layer ∆j using η̃. If in both cases the correction results in
finding Γ̄, then Γ and Γ̃ can share this edge.

If µ � 0 some layers have become negative-dimensional, which is considered
impossible in the current discussion.

If the geometric bases on which two polynomials are defined, share a
complete (n − 1)-edge, continuity can be defined by setting the derivatives
equal on both sides of the shared edge. Finding general continuity conditions
for the case described by proposition 1, is the goal of this paper.
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Figure 1: A (2,1)-multiplex or prism can be constructed by either adding a 1-simplex (line
segment) to a 2-simplex (triangle), or the other way around. The order does not change
the polytope.

3. The circumscribed simplex

Because each layer is a simplex, we have
∑̀
i=0

(νi + 1) = n + ` barycentric

coordinates. These coordinates therefore describe a convex region in the
(n + ` − 1)-simplex Θ, if they are scaled so that b = 1

`
β. In this new set

of coordinates the subsets belonging to layers can still be identified. In this
case they are set to refer to layer sets of vertices of Θ.

The extreme points of the region in Θ are found at combinations of ex-
treme points in the layers. This can be formalized as follows.

Definition 2 (Simplex links). Consider an (n+`−1)-simplex Θ with vertices
V subdivided in layer sets with vertices Vi = {vi0, ..., viνi}, i ∈ Z`+. A simplex

link is an `-simplex with vertices Ṽφ = {v1φ1 , ..., v`φ`} with φ a vector with
φi ∈ Nνi0 , such that Vi ∩ Ṽφ = {viφi},∀i ∈ N`+.

In other words, a simplex link is an `-simplex spanned by a combination of
one vertex from each layer set. The extreme points of the region described
by β are the barycenters of these simplex links.

It can be shown that the region spanned by the extreme points in any
simplex is a multiplex. For now it is only relevant that a simplex Θ can be
constructed such that the region is equal to a predefined multiplex Γ.
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Theorem 1 (Circumscribed simplex). Consider a ν-multiplex Γ. There exist
an infinite number of circumscribed simplices Θ such that Γ is the convex
hull of the barycenters of simplex links spanned between predefined layer sets
of Θ.

Proof. A simplex Θ can be constructed by taking copies of the layers as layer
sets and translating them into the higher dimensional space. For each layer
∆i of Γ with vertices Wi = {wi0, ..., wiνi} we define a layer set with vertices
Vi = {vi0, ..., viνi}, such that

vij =

{
( `(wij − w0) + w0 ei ) ∀i ∈ N`−1+ ,∀j ∈ Nνi0
( `(wij − w0) + w0 −1`−1 ) i = `, ∀j ∈ Nν`0

(5)

with ei ∈ R`−1 the ith unit vector and 1`−1 a vector of `− 1 ones.
Now finding the barycenter of simplex links is equivalent to adding ver-

tices of layers, which results in the extreme points of Γ. The appendices
ei and −1`−1 can be scaled to any number, implying an infinite amount of
solutions.

To derive continuity conditions between the multiplices from the simplices
Θ and Θ̃, we require that those simplices also share a complete (n− 1)-edge.
This is always possible by defining the layers of Γ and Γ̃ using the shared
vertices, thus making sure that the circumscribed simplex Θ̄ of the shared
edge Γ̄ is shared by Γ and Γ̃.

The equivalence between the multiplex spline and the slice of the simplex
spline goes beyond the geometric basis. The tensor-product basis polynomi-
als in (4) form a scaled subset of polynomials like (3) of total degree |d| and
dimension n + ` − 1. Correcting the multinomial coefficients and filling in
the new barycentric coordinates, we find

Bdλ(β) = `|d|
d!

|d|!
B
|d|
λ (bsset) (6)

In a similar way the B-net in the multiplex is a slice of the total degree
simplex spline B-net. The control points in Θ at which the B-coefficients of
the multiplex spline lie, are defined by λ as

q =
1

|d|
∑̀
i=1

νi∑
j=0

λijvij (7)
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The constraints on the multi-index λ stemming from the degree in the layers,
place the B-net on a slice of the simplex B-net parallel to the multiplex
itself. The projection of these coefficients onto the multiplex is covered by
the scaling of (6).

4. Continuity conditions

Because the multiplex spline is a slice of a higher dimensional simplex
spline of total degree, the continuity conditions for the first can be taken
from the latter. These simplex conditions are found by setting the derivatives
equal on the shared edge. The conditions can be simplifed to a equivalence
of de Casteljau iterations by observing the basis polynomials are equal on
both ends [1].

c
(k)
(0,κ11,...,κ`ν` )

(a) = c̃
(k)
(κ̃10,...,κ̃`,ν`−1,0)

(ã), |κ| = |κ̃| = |d| − k (8)

Note that it is assumed that the out-of-edge vertices are v10 and ṽ`νi . The
directional coordinate a belongs to a vector that is not parallel to the shared
edge. Geometrically, the conditions in (8) form small copies of the simplex
in the B-net.

The choice of a presents an opportunity to greatly simplify the conditions.
To have cospatial multiplices, the out-of-edge layers should also be cospatial.
Therefore we can choose a such that it lies in both out-of-edge layers. For
example, we may choose to use a vector from one shared vertex to the out-of-
edge vertex of the multiplex with the lowest-dimensional out-of-edge layer.

In doing this, the elements of a are zero in all layers but the out-of-edge
layer ∆0. The same holds for ã in the elements corresponding to ∆̃`. If we
fill this into (8) and add the scaling of the derivatives to match the multiplex
spline definition, we find

d!
(
c
(k)
(0,λ11,...,λ1ν1 )

(a)
)
(λ2,...,λ`)

=d̃!
(
c̃(λ̃1,...,λ̃`−1)

)(k)
(λ̃`0,...,λ̃`,ν`−1,0)

(ã),

|λ1| = d1 − k,|λ̃`| = d̃` − k
(9)

These continuity conditions now form miniature copies of the out-of-edge
layers in the B-nets.

Conditions in (9) refer to B-nets of different degree polynomials in Γ and
Γ̃ if the out-of-edge layers are not equal-dimensional. The shift in degree
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(a) Simplex continuity

a

v10, ṽ10

v11, ṽ11

v20 v21, ṽ20

ṽ12

(b) Multiplex continuity

Figure 2: First order continuity conditions between a rectangle and a triangle derived
from simplex continuity. The conditions take the form of the out-of-edge layer in both
multiplices.

is equal to the continuity order, since |λ1| − |λ̃1| = k. The conditions from
different orders can be combined onto a single B-net by changing the degree
and applying degree changing constraints to the B-net.

One approach is to lower the degree of the conditions. This approach
however does require a minimum degree to preserve approximation power
[3]. The other option is to raise the degree in the highest-dimensional out-
of-edge layer. In this way the approximation power is not in danger, as
degrees of freedom are added. It does however require the inclusion of extra
conditions to make sure that polynomials that are used in conditions are all
of equal degree.

5. Example

As an example, the result for first order continuity between a triangu-
lar (2,0)-multiplex Γ and rectangular (1,1)-multiplex Γ̃ is given. The two
multiplices and their circumscribed simplices are depicted in figure 2.

First of all we verify whether Γ and Γ̃ share an edge. Indeed, if we choose
η = (0, 1) and η̃ = (1, 0), then ν − η = ν̃ − η̃ = (1, 0). That is, Γ and Γ̃ share
a 1-simplex Γ̄, a line segment. For the rectangle Γ this corresponds to the
entire first layer, for the triangle this is only one edge of the first layer.
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The circumscribed simplices are of dimension n + ` − 1 = 3. The mul-
tiplices Γ and Γ̃ and their circumscribed simplices Θ and Θ̃ are depicted in
figure 2. The B-net for a bi-quadratic rectangle and a cubic triangle are also
shown with respect to the B-net of the total degree simplex spline.

The first order continuity conditions can be greatly simplified by choos-
ing the directional coordinates a from v21 to v20. We then obtain a =
(a10, a11, a20, a21) = (0, 0, 1,−1) and ã = (b̃10, b̃11, b̃12, 0). Contrary to stan-
dard simplex continuity (shown in figure 2a), the term a21 is not brought to
the side of the triangle. Therefore only the coefficients that lie in the B-net
of Γ̃ are included in the de Casteljau iteration, as can be seen in figure 2b.

For the zeroth order continuity conditions to also hold, the cubic polyno-
mial on the shared edge should be reduced to a quadratic one. On top of that,
the zeroth order conditions on quadratic coefficients should be converted to
hold for the cubic coefficients.
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