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Relative velocity distribution of inertial particles in turbulence: A numerical study
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The distribution of relative velocities between particles provides invaluable information on the rates and
characteristics of particle collisions. We show that the theoretical model of Gustavsson and Mehlig [K. Gustavsson
and B. Mehlig, J. Turbul. 15, 34 (2014)], within its anticipated limits of validity, can predict the joint probability
density function of relative velocities and separations of identical inertial particles in isotropic turbulent flows
with remarkable accuracy. We also quantify the validity range of the model. The model matches two limits
(or two types) of relative motion between particles: one where pair diffusion dominates (i.e., large coherence
between particle motion) and one where caustics dominate (i.e., large velocity differences between particles at
small separations). By using direct numerical simulation combined with Lagrangian particle tracking, we assess
the model prediction in homogeneous and isotropic turbulence. We demonstrate that, when sufficient caustics are
present at a given separation and the particle response time is significantly smaller than the integral time scales
of the flow, the distribution exhibits the same universal power-law form dictated by the correlation dimension as
predicted by the model of Gustavsson and Mehlig. In agreement with the model, no strong dependency on the
Taylor-based Reynolds number is observed.
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I. INTRODUCTION

Turbulence is a phenomenological field of study, where
analytically based predictions are very rare. The four-fifths
law [1] is one of the few exceptions where predictions can
be made from first principles. In more complex situations,
such as suspended particles in turbulent flows, the nature
of turbulence makes it difficult to make analytically based
quantitative predictions of their dynamics, let alone the
occurrence of particle collisions. The idea about turbulence-
particle interactions is that turbulence may significantly affect
the particle dynamics and increase the collision probability.
While analytically predicting nontrivial quantities such as
the collision rate remains problematic, the collision rate of
particles suspended in a turbulent flow is of interest in many
research areas, such as rain formation in clouds [2–4], turbulent
spray combustion, residue deposition in rivers, agglomeration
of fine powders in gas flow, air filtration equipment, fast
fluidized beds, and dust grain dynamics in astrophysical
environments.

Wang et al. [5] showed that the frequency at which inertial
particles collide in turbulent flows is determined by two
different contributions. The first contribution is the radial
distribution function, which is the probability of finding
particles at contact, and quantifies the nonhomogeneity of the
particle distribution. The second contribution is the mean radial
relative velocities of the particles. In this paper we focus on
quantifying the (radial) relative velocity between particles.

The radial relative velocity between particles (also known as
the collision velocities) is of crucial importance to understand
not only the collision rate but also the collision characteristics.
Whether the collision will be elastic, nonelastic, sticky, or such
that breakup of the particles will occur depends sensitively on
the speed at which the particles collide [3]. Factors influencing
the relative velocities are the Stokes number St (ratio of particle
relaxation time τp = 2ρpr2/(9ρf ν) and the Kolmogorov time
scale of the flow τη = (ν/〈ε〉)1/2), the mean dissipation rate
〈ε〉, and the Reynolds number Re [6–16]. ν represents the

viscosity of the carrier fluid, ρp the density of the particles,
and ρf the density of the fluid.

The sensitive dependence on the Stokes number of the
velocity at which particles impact can be attributed to the
formation of caustics [17,18] (also known as the sling effect
[19,20]). This phenomenon describes the detachment of
particles from the underlying flow field, allowing them to
have large relative velocities at small separation. Experimental
evidence of the caustic effect has been found by Bewley
et al. [21]. The collision rate of particles can therefore be
decomposed into a smooth contribution due to pair diffusion
similar to the tracer limit of Saffman and Turner [6] and a
singular contribution due to caustics [16,18,22,23], similar to
the ballistic limit of Abrahamson [7].

II. PREDICTING THE RELATIVE VELOCITIES

In this paper we focus on the model of Gustavsson and
Mehlig [16] (from now on referred to as the GM model).
Gustavsson and Mehlig [16] derive an analytically based
statistical description of the distribution of relative velocities
of inertial particles by matching asymptotic forms of the
distribution. The GM model is unique in its capacity to
make analytically based, very quantitative predictions about
the distribution of relative velocities ρ(�v,R) of neighboring
identical inertial particles as a function of the separation R

between the particles using only the correlation dimension.
This distribution is also independent of the Kubo number Ku;
the Kubo number is defined as Ku = u′τη/η, where u′ is the
root mean square of the velocity field and η = (ν3/〈ε〉)1/4 the
Kolmogorov length scale.

We now briefly introduce the GM model using the original
notation. Let R = |�x| be the magnitude of the nondimen-
sional spatial separation vector �x = x2 − x1 between a parti-
cle pair and V = |�v| be the magnitude of the nondimensional
relative velocity vector �v = v2 − v1. The quantities R and V

have been made nondimensional using the relevant time and
length scales of the flow. The joint probability density function
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FIG. 1. (Color) Graphical representation of the three regions of
the GM model, after Gustavsson and Mehlig [16].

(PDF) of the relative velocities and separations of particles
suspended in randomly mixing or turbulent flow can be divided
into three regimes (see Fig. 1 for a graphical representation).
In regions 1© and 2© two different types of relative motion
can be distinguished. In region 1© pair diffusion is dominant.
Close-by particles move in a very coherent manner which
implies that V � R. Since R does not change much in this
region, the distribution is independent of V . In region 2©
caustics are dominant. Particles can detach from the flow field
which allows large velocity differences at short separations.
This implies that V � R and that the distribution becomes
independent of R. Clustering of the particles in combination
with caustics results in a power-law distribution for the relative
velocities. The exponent equals D2 − 2d, where D2 is the
phase-space correlation dimension of the particle field and
d the embedding spatial dimension (in our case 3). z∗ is
the matching length scale and represents the typical value
of the relative magnitude of velocity and separation between
particles (i.e., z∗ ≈ V/R). In region 3©, where V > Vc, the
scaling of the relative velocities loses its universal aspect and
becomes system specific. Vc is the cutoff value, above which
the distribution has been set to zero as a simple assumption.
Formally the joint PDF ρ(�v,R) is given by

ρ(�v,R) ∼ Rd−1

⎧⎨
⎩

RD2−2d for region 1©,
|�v/z∗|D2−2d for region 2©,

0 for region 3©,
(1)

where the regions 1©, 2©, and 3© are defined as follows:

region 1© where V � z∗R, R � 1, and V � z∗,

region 2© where V > z∗R, R � 1, and V � z∗,

region 3© where R > 1 or V > Vc = z∗. (2)

The GM model provides both the distribution of the relative
velocity and the distribution of the radial relative velocities,
the latter being needed to compute the collision kernel and
differs from the former only in the exponent of the power-law
in region 2© (i.e., D2 − d − 1 for the radial counterpart instead
of D2 − 2d). The distribution of radial relative velocities can

be constructed by projecting the relative velocities in Eq. (1)
onto the unit vectors of the corresponding spherical coordinate
system and integrating over all angles (see Gustavsson and
Mehlig [16] for more details). The model is expected to
hold for any Stokes number (i.e., with a finite rate of caustic
formation) if two conditions are met:

(1) Particles must sufficiently detach from the flow field
(i.e., V � R)

(2) The dynamics of the particles have to be insensitive to
the nature of the large scale forcing of the system.

Condition 1. defines a Stokes-dependent scale R∗(St) below
which the power-law due to caustics is observed. With regard
to condition 2., for very large Stokes numbers the distribution
of relative velocities can be predicted using the variable-range
projection model of Gustavsson et al. [24].

It should be noted that the GM model does not explicitly
depend on the Kubo number. In isotropic turbulence Ku ∝√

Reλ, where Reλ is the Taylor-based Reynolds number, and
therefore the GM model does not explicitly depend on the
Reynolds number either. The Taylor-based Reynolds number

is defined as Reλ = u′λ
ν

, where the Taylor scale λ = ( 15νu′2
ε

)
1/2

.
The GM model still can have an implicit Reynolds number

dependency through the correlation dimension D2 or the
matching scale z∗. Previous studies however have shown that
the effect of the Reynolds number on the correlation dimension
is rather limited [25,26].

III. NUMERICAL SETUP

Our aim in this paper is to compute the joint PDF of the
relative velocities at small separations of identical inertial
particles in turbulent flows using direct numerical simulations
(DNS) and compare our results with the predictions of the GM
model. Since the GM model does not predict a direct Kubo (or
Reynolds) number dependency, we also investigate whether
this is justifiable.

Under the assumption of small and heavy particles (i.e.,
r � η and ρp � ρf ), the equations of motion for the particles
are given by [27,28]:

dvi

dt
= u[xi ,t] − vi

τp

, (3)

dxi

dt
= vi , (4)

where xi and vi are the position and velocity vectors of particle
i and u is the velocity of the flow field, governed by the
Navier-Stokes equations. The in-house developed DNS we
use solves the Navier-Stokes equations using pseudospectral
methods. Time integration is performed using a third-order
Adams-Bashforth scheme. Both advection and diffusion are
treated explicitly, and the 3/2 rule is used to fully deal with
aliasing errors (see, e.g., Canuto et al. [29]). Time stepping
is restricted by the Courant-Friedrich-Lewy criterion using a
Courant number of 0.1.

The equations of motion of the particles (3) and (4) are
integrated using a fourth-order Runge-Kutta scheme. The
velocity of the flow field at the particle position is computed
using trilinear interpolation. For more details, see Perrin and
Jonker [30].
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TABLE I. Overview of the simulations. Each simulation is shown
together with the number of grid points N3

x , the Taylor-based
Reynolds number Reλ, the Kubo number Ku, the dimensionless
resolution parameter kmaxη, the Stokes numbers St considered, and the
number of particles Np . The particles are equally distributed among
the categories.

Run N 3
x Reλ Ku kmaxη r (μm) St Np/106

S1 1283 60 3.9 3.4 10,40,70 0.045, 0.72, 2.20 0.6
S2 2563 105 5.2 3.2 10,40,70 0.050, 0.80, 2.45 1.2
S3 5123 178 6.8 2.8 10,40,70 0.049, 0.78, 2.39 2.4

In order to construct the PDF of the relative velocities,
we use the algorithm of Allen and Tildesley [31] to find
neighboring particle pairs (see also Chen et al. [32] and Perrin
and Jonker [30]). This algorithm uses cell indexing and linked
lists to check only particle pairs which could collide within
one time step and therefore avoids the prohibitive O(N2

p)
scaling of the computational cost. Using neighboring particle
pairs we construct the joint PDF of V and R at the smallest
scales. We consider four separation distances R = 10−4, R =
10−3, R = 10−2, and R = 10−1. Results obtained from the
DNS have been made nondimensional using the Kolmogorov
length scale η and the Kolmogorov velocity scale vη =
(ν〈ε〉)1/4. The DNS allows us to construct ρDNS(V,R), from
which ρ(�v,R) can be computed using isotropy: ρ(�v,R) ∝
ρDNS(V,R)/V 2. The phase-space correlation dimension D2

has been computed from the spatial correlation dimension
d2 using d2 = min(D2,d) [16]. The correlation dimension d2

quantifies the spatial dimensionality of the particle distribution
and is computed by taking multiple snapshots of the entire
particle field and binning all the particle pairs according to
their separation distance R. Integrating this histogram yields
the correlation sum C(R), the number of particle pairs within
a separation distance R:

C(R) = 1

N2
p

Np∑
i,j=1
i =j

H(R − |xi − xj |) ∝ Rd2 , (5)

with Np being the number of particles in the domain, H(·) the
Heaviside function, and d2 the correlation dimension.

Three simulations have been performed with different
Reynolds numbers. Per simulation three particle categories
are considered (St � 1, St ≈ 1, and St > 1) to investigate
the validity of the GM model. To ensure that all scales
of turbulence are sufficiently resolved and that the particle
trajectories are properly tracked, we use a value for the
dimensionless resolution parameter kmaxη of at least 2.8 for all
simulations, where kmax is the highest resolvable wave number
(Nx/3 in our case). All dimensionless parameters are shown
in Table I.

IV. RESULTS

Figure 2 shows the distribution of the relative velocities at
different separations computed with the DNS and compared
with the GM model predictions for a Stokes number around
unity. The DNS confirms the three different regimes predicted
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FIG. 2. (Color) The relative velocity distribution for different
separations [(×) R = 10−1, (◦) R = 10−2, (�) R = 10−3, and
(♦) R = 10−4] and different Reynolds numbers [S1 (black), S2
(magenta), S3 (blue)] for the particles with St ≈ 1 for which model
assumptions 1. and 2. are met. The red lines shows the GM model
prediction. The dotted line shows the expected power-law based on
Eq. (1). See Table I for an overview of the simulations.

by the GM model. In region 1© where pair diffusion is
dominant, the plateaus in the distribution of the relative veloc-
ities scale according to the predicted ρ(�v,R)/R2 ∝ RD2−2d

for all separation distances R. In region 2© the distribution
behaves universally and collapses onto the single power-
law ρ(�v,R)/R2 ∝ |�v/z∗|D2−2d . For the highest separation
distance considered (R = 0.1) the slope of the power law is
well predicted but the distribution starts to depend on R which
indicates that the universal aspect is lost. As expected the
GM model only holds for small separations and R = 0.1 is
on the boundary of its validity. But for practical applications
such as atmospheric clouds, a separation distance R > 0.1 has
limited use anyway, since cloud droplets that are large (i.e.,
r ≈ 100μm) do not obey linear drag as assumed in Eq. (3);
in addition gravity needs to be accounted for. In region 3©, the
distribution falls off in a manner similar to that of the numerical
results of Gustavsson and Mehlig [16].

Although the GM model does not explicitly depend on
the Reynolds number, the Reynolds number can influence
the model results via both the correlation dimension D2 and
the matching scale z∗. In agreement with previous studies
[25,26], no significant dependency of the Reynolds number
on the correlation dimension is found in Fig. 2. No significant
dependency of the Reynolds number on z∗ is found as well,
although the larger the Reynolds number, the better the
power-law prediction holds near the boundary with region 3©.

Figures 3 and 4 show to what extent the GM model loses its
validity if one of the two conditions for the model validity
is not met. Figure 3 shows the joint PDF of the relative
velocities at different separations for a Stokes number of
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FIG. 3. (Color) Same as Fig. 2 but with St � 1, which implies
that model assumption 1. is violated. The red lines shows the GM
model prediction. The dotted line shows the expected power-law
based on Eq. (1). See Table I for an overview of the simulations.

St � 1. As expected, the model cannot predict the distribution
(and especially the power law) since caustics do not sufficiently
influence the joint distribution(see assumption 1. requiring
that V � R); see Voßkuhle et al. [23] for an estimate of
the amount of caustics present for different Stokes numbers.
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FIG. 4. (Color) Same as Fig. 2 but with St > 1, which implies that
model assumption 2. is violated. The dotted line shows the expected
power-law based on Eq. (1). See Table I for an overview of the
simulations.

The particles do not possess enough momentum to be able
to sufficiently detach from the flow field and large relative
velocities at small separations are very rare. In the limit of a
small Stokes number, the theory requires an extremely small
separation between particles for the power law to be present
since in the power-law region it is imperative that V � R. Our
results support this statement since the slope of the power law
seems to be best predicted for the smallest separation distance
considered (i.e., R = 10−4). It has to be noted that, in the case
that the collision radius, which is defined as the sum of the
particle radii, is larger than the required R∗, sufficiently small
separation cannot be physically obtained to observe the power
law.

Figure 4 shows the PDF of the relative velocities at different
separations for a Stokes number of St > 1. Although the slope
of the power law is fairly accurately predicted, the power law
does not collapse onto a single line as in Fig 2. For St > 1, the
particle relaxation time is of the order of the system turnover
time, violating assumption 2. that the dynamics of the particles
have to be insensitive to the nature of the large scale forcing of
the system. As a result, the universal aspect of the power law
is lost.

From our previous results we can expect that the GM
model can accurately predict the distribution of (radial) relative
velocity within the boundaries of its validity discussed above.
One could speculate that for higher Reynolds numbers the
range of validity of the model in terms of the Stokes number can
only improve. For very light particles, the larger the Reynolds
number becomes the more extreme events occur in the flow
(e.g., Yeung et al. [33]), which promotes the formation of
caustics, required by the model. For heavier particles, the
larger the Reynolds number becomes the larger the separation
between the particle response time and the integral time scale
of the system (∝Re1/2) becomes, which reduces the impact of
the large scale forcings on the particle dynamics.

Note that the results presented here were obtained in the
absence of gravity (consistent with the GM model). For some
applications, this limits the applicability of the model. Under
the effect of gravity, particles can form curtainlike manifolds,
which profoundly affect both the spatial distribution and the
relative velocity of the particles [12,34–40]). Gravity reduces
the formation of caustics [35] and the power-law prediction is
expected to fail.

V. CONCLUSION

Our key conclusion is that the joint PDF of relative
velocities and separations of particles in the absence of gravity
in a turbulent flow can be accurately predicted by the model
of Gustavsson and Mehlig [16], up to a separation distance of
one-tenth of the Kolmogorov scale (dependent on the Reynolds
number). This model matches two asymptotic limits of the
distribution: one where pair diffusion dominates (i.e., large
coherence between particle motion) and one where caustics
dominate (i.e., large velocity differences between particles
at small separations). The model is expected to hold for
any Stokes number if two conditions are met. (i) Sufficient
caustics have to be present to allow large velocity differences
at sufficiently small separation, otherwise the power-law
prediction breaks. This assumption sets a Reynolds-dependent
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scale below which the power law can be observed. (ii) A
sufficiently large scale separation has to exist between the
particle time scales and the system integral time scales to
ensure that the nature of the driving of the system does
not influence the dynamics of the particles. No significant
Reynolds number effect has been found on the joint PDF of
relative velocities, in accordance with the model of Gustavsson
and Mehlig [16], although the range of Reynolds numbers
studied here is limited. Since the model is capable of accurately
predicting the distribution of radial relative velocities at
contact, it paves the way to not only a better prediction of

the collision kernel but also to a better understanding of the
collision characteristics.
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