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We show that elongating a tightly focused field in the
direction perpendicular to the optical axis is possible.
We demonstrate our approach by specially shaping the
Pancharatnam–Berry (PB) phase. Moreover, the analytical
formulae required to calculate the strength vectors and en-
ergy flux of the three-dimensional electromagnetic fields
near the focus of an aplanatic optical system are derived
using the Richards and Wolf vectorial diffraction methods.
Calculations reveal that the transverse enhancement is con-
trollable and depend on the phase index in the PB phase,
thereby giving rise to a focus with tunable length and sub-
wavelength width in the focal plane. © 2019 Optical Society
of America

https://doi.org/10.1364/OL.44.000427

The Pancharatnam–Berry (PB) phase is a well-known geomet-
ric phase associated with the polarization of light, first intro-
duced by Pancharatnam in his study of the interference of
polarized beams [1]. Berry then pointed out that such a phase
appears when the polarization of light traverses a closed loop on
the Poincaré sphere [2], where the initial and final states differ
by a phase factor equal to half the solid angle encompassed by
the loop on the sphere along which the light takes [2–4]. This
phase was soon realized to be quite general because it occurs in
various systems [5–7]. Most importantly, the PB phase enables
the manipulation of light polarization, leading to the creation
of vector optical fields with spatially inhomogeneous states of
polarization (SoPs) [8,9]. The geometric configuration of SoPs
provides an additional and powerful intrinsic degree of freedom
(DoF) to control light.

Moreover, there has been currently substantial interest in
structured optical fields, that is, the creation of customized
optical patterns to satisfy specific needs in all kinds of applica-
tions [10–16]. To mention a few examples, a needle of either a
longitudinally or transversely polarized beam has been pro-
posed assisted by amplitude, polarization, and phase modula-
tions of the input light in tight focusing systems [10,15],
wherein the electric field permits a significant enhancement

along the optical axis but suppression in the transverse direc-
tion, resulting in a tighter hot spot with long depth of focus.
Complex optical longitudinal polarization structures were dem-
onstrated [11]. The reverse flux of light energy was obtained
[16]. Last but not least, a Möbius strip in the polarization
of light was also achieved [12]. To date, however, attempts
to target transverse elongation of the focus in the focal plane
have not been undertaken. This is highly desired in practical
applications, due to the great potential for promoting imaging
speed with a layer-divided imaging scheme and manipulating
particles with different length, as well as optical microfabrica-
tion and nanofabrication.

In this Letter, we propose a method to elongate the tightly
focused field in the direction perpendicular to the optical axis
assisted by PB-phase shaping. The expressions for calculating
the electromagnetic strength vectors and energy flux near focus
are derived using the vectorial diffraction methods of Richards
and Wolf. Based on an analytical model, the transverse en-
hancement was found to depend only on the phase index of
the PB phase. As a result, a focus with controllable length
and subwavelength width in the focal plane is achieved.
Furthermore, the corresponding Poynting vector distributions
are studied in detail to provide a better understanding of the
transverse enhancement of focusing.

To give a clear understanding of the PB phases, a brief analy-
sis concerning its origin is necessary. Because PB phases are
related to variations in the SoPs, we assume there are two
polarization states in terms of an initial one E1 and a final
one E2. For simplicity and without loss of generality, E1 cor-
responds to a linear polarization with an orientation with
respect to the x axis denoted by c. Hence, it may be represented
as a two-dimensional Jones vector such that

E1 � cos cêx � sin cêy �
1ffiffiffi
2

p �exp�−ic�êl � exp�ic�êr �, (1)

where êx and êy denote unit vectors directed along the x and y
axes, respectively, of the linear polarization; similarly, êl and êr
denote unit vectors of left-handed (LH) and right-handed (RH)
circular polarization. For arbitrary light beams with a homo-
geneously linear SoP, the two components expressed in terms
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of LH and RH circular vibrations have opposite initial phases,
the value of which determines the orientation of the linear
vibration. After a polarization transformation, if the PB phases
acquired by the LH and RH circular components are, respec-
tively, εl and εr , the resultant final polarization state E2 is then
expressed as [17]

E2�
1ffiffiffi
2

p fexp�i�εl − c��êl �exp�i�εr� c��êrg

� e
�
i
εr�εl

2

���
cos

�
εr −εl
2

� c
�	

êx�
�
sin

�
εr −εl
2

� c
�	

êy



:

(2)

Unfortunately, a dynamic phase appears in Eq. (2), indicating a
phase retardation of �εr � εl �∕2 compared to that in Eq. (1).
However, if we choose εr � −εl � εe , this phase disappears.
The PB phase ε as an intrinsic optical DoF may have arbitrary
distributions in theory, and thus provides a powerful means to
manipulate light. Indeed, great success has been achieved in
enabling transformations from states E1 to E2, such as wave
plates and subwavelength gratings as well as specially designed
optical systems [8,9,18,19].

Numerous practical applications ranging from microscopy
to data storage as well as micromanipulation require tight
focusing. Different from previous results suggesting tightly
focused fields permit a significant enhancement in the direction
along the optical axis, a tunable enhancement in the direction
perpendicular to the latter is found also to be possible when
setting εe � 2πv�r sin φ∕r0�3, where v is the phase index, r
and φ denote the polar radius and azimuthal angle, respectively,
and r0 is the radius of the input field. In this case, εe is a func-
tion of both r and φ; thus, the resultant PB phase gets a space-
variant distribution. The corresponding three-dimensional
electric field near the focus is derived using Richards–Wolf vec-
torial diffraction integration [20],

Eout�ρ,ϕ, z� �
−ikf
2π

Z
2π

0

Z
α

0

ffiffiffiffiffiffiffiffiffiffi
cos θ

p
l in�θ� sin θMe

× efik�−ρ sin θ cos�φ−ϕ��z cos θ�gdφdθ, (3)

where �ρ,φ, z� are the cylindrical coordinates of the image
space; k and f denote the wave number and focal length, re-
spectively; θ is the tangential angle with respect to the z axis;
and α � arc sin�NA∕n�, with NA the numerical aperture of
the focusing objective lens and n the refractive index in the
image space, which we take as 0.95 and 1, respectively. The
function l in�θ� represents the complex amplitude distribution
of the incident beam, having the form [21]

l in�θ� � exp

�
−β2

�
sin θ

sin α

�
2
	
J1

�
2β

sin θ

sin α

�
: (4)

Here, β is the ratio of the pupil radius to the beam waist, which
we choose as 1 in our configuration; J1�x� is the first kind of
first-order Bessel function.

In Eq. (3),Me represents the electric field polarization vector
in the image space contributed by the input polarization; its
explicit form is

Me � Mex êx �Mey êy �Mez êz , (5)

Mex � sin

�
φ − 2πv

�
sin θ sin φ

sin α

�
3

− c
	
sin φ

� cos

�
2πv

�
sin θ sin φ

sin α

�
3

� c − φ
	
cos θ cos φ,

(6)

Mey � − sin

�
φ − 2πv
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sin θ sin φ

sin α

�
3

− c
	
cos φ

� cos

�
2πv

�
sin θ sin φ

sin α

�
3

� c − φ
	
cos θ sin φ,

(7)

Mez � cos

�
2πv

�
sin θ sin φ

sin α

�
3

� c − φ
	
sin θ: (8)

Next, we analyze the tightly focused electric field distributions
based on Eqs. (3)–(8). As examples, we explore the focal
behaviors of three different optical fields with �v, c� �
�0, π∕2�, �1, π∕2�, and �20, π∕2�; the corresponding input
polarization and intensity distributions are depicted in Fig. 1,
with the focusing conditions mentioned above. For �v, c� �
�0, π∕2� [Fig. 1(a)], the beam is linearly polarized with spatially
invariant SoPs. Its orientation is parallel to the y axis direction.
However, for a nonzero value of v, the beam has a spatially
varying SoP [Figs. 1(b) and 1(c)], with the orientation of
the local vibration varying along the y axis but has no change
in the direction perpendicular to it. The corresponding normal-
ized electric field distributions in the focal plane are depicted in
Fig. 2. Apparently, the y-polarized component [Figs. 2(b), 2(f ),
and 2(g)] compared to the x-polarized [Figs. 2(a), 2(e), and 2
(i)] and z-polarized components [Figs. 2(c), 2(g), and 2(k)] is
much stronger and dominates the total field for all the three
cases. Specifically, almost no field is found for the x-polarized
component [Fig. 2(a)] of the linearly polarized input beam.
However, the on-axis quasi-circular intensity distribution for
the y-polarized component [Fig. 2(b)] and twin focal spots
located along the y axis for the z-polarized component
[Fig. 2(c)] play a dominant role, resulting in an elliptically
shaped pattern for the total field [Fig. 2(d)] with the major-axis
direction being in accordance with the orientation of the input
field [Fig. 1(a)]. Most importantly, all three polarization com-
ponents [Figs. 2(e)–2(g) and 2(i)–2(k)] permit a significant
transverse enhancement along the y axis with increasing v,
resulting in a tunable length of focus (DoF) in the direction
perpendicular to the optical axis for the total field [Figs. 2(h)
and 2(l)] accompanied with the increase of side lobes.

Fig. 1. Polarization and intensity distributions of three different
input optical fields with (v, c) = (a) (0, π∕2), (b) (1, π∕2), and
(c) (20, π∕2).
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Such fascinating focal behaviors are attributed to the one-
dimensional manipulation of the input SoPs. As a result, a
transverse elongation of focus is also possible, complementing
the well-known long depth of focus. Moreover, the long foci
exhibit high uniformity as they are intensity profiles with
near-flat tops; see insets in Figs. 2(h) and 2(l).

The value of the phase index v in the specially designed PB
phase ε affects significantly the transverse enhancement of the
focus, as seen in Fig. 2. To detail and quantify the relationship
between v and the length and width of the focus, Fig. 3 shows

the full width at half-maximum (FWHM) values along both
the x and y axes versus v; the FWHW∕λ values are from left
to right (v � 0, 1,…, 20�: along the x axis, 0.510, 0.444,
0.434, 0.430, 0.428, 0.426, 0.424, 0.424, 0.424, 0.422,
0.422, 0.422, 0.422, 0.422, 0.420, 0.420, 0.420, 0.420,
0.420, 0.420, and 0.420, and along the y axis, 0.726, 1.492,
1.872, 2.150, 2.376, 2.568, 2.736, 2.886, 3.022, 3.146,
3.260, 3.366, 3.466, 3.560, 3.648, 3.734, 3.810, 3.896,
3.968, 4.036, and 4.106. Obviously, a linearly polarized beam
may be used to create an elliptical spot under tight focusing
conditions because this focal field has different FWHM values
along these two orthogonal directions (the x and y axes).
Furthermore, with increasing v, the FWHM values along the
x axis (y axis) decrease (increase); they are smaller than the dif-
fraction limit for this focusing lens λ∕�2NA� � 0.526λ and
different from the line-focusing of cylindrical lens. Therefore,
a tunable transverse enhancement of focusing controlled by
phase index v is achieved.

To provide a better understanding of the transverse
enhancement of focusing assisted by the shaping of the PB
phase, its energy flux needs to be evaluated. The corresponding
three-dimensional magnetic field near focus may be similarly
derived [20],

Hout�ρ,ϕ, z� �
−ikf

ffiffiffiffiffiffiffiffi
ε∕μ

p
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0
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p
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sin α
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3
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cosφ

� sin

�
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�
sin θ sinφ

sin α

�
3

− c
	
cos θ sinφ, (12)

Fig. 2. Electric field intensity distributions of tightly focused input
optical fields with �v, c� � �0, π∕2�, (1, π∕2), and (20, π∕2) (upper,
middle, and lower rows, respectively). From left to right, the four col-
umns show the x-, y-, and z-polarized components and the total field.
The insets for each image depict the normalized intensity profiles
along the x (green curve) and y axes (red curve), respectively. All
intensity distributions are normalized by the maximum intensity in
the focal plane for each input light mode.

Fig. 3. Full width at half-maximum (FWHM) values along the x
and y axes versus the phase index v with NA � 0.95.
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Mmz � sin

�
φ − 2πv

�
sin θ sin φ

sin α

�
3

− c
	
sin θ, (13)

where ε and μ denote, respectively, the dielectric constant and
the magnetic permeability of the image space, and Mm is the
magnetic field polarization vector in the image space. The mag-
netic fields’ distributions described by Eqs. (9)–(13) are evi-
dently quite different from those describing the electric fields,
Eqs. (3)–(8). In terms of the three-dimensional electric and
magnetic fields, the energy current is determined by the
time-averaged Poynting vector [16,20],

hSi ∝ c
8π

Re�Eout ×H�
out�: (14)

Here, the asterisk represents the operation of complex conju-
gation. We can then calculate the energy flux based on
Eq. (14).

The Poynting vectors of the transverse and longitudinal
components in the focal plane for the fields (Fig. 2) are shown
in Fig. 4. No transverse energy flow is found in Fig. 4(a). On
the contrary, the circularly symmetric hot spot plays a dominate
role in the longitudinal energy flow [see Fig. 4(b)]. However,
with nonzero v, multiple rings in the transverse energy flowing
along the y axis are very clearly observed exhibiting circular
[Fig. 4(c)] and elliptical-shaped [Fig. 4(e)] patterns for low

and high values of v, respectively. Moreover, the circular sym-
metry of the longitudinal energy flow is broken, becoming a
needle-shaped pattern for v equal to 1 [Fig. 4(d)] and permit-
ting a further elongation along the y axis with increasing v
[Fig. 4(f )].

In conclusion, we have proposed a method to enhance the
tightly focused field in the direction perpendicular to the
optical axis assisted by a specially designed PB phase. The ex-
pression for calculating the electromagnetic and Poynting
vector distributions near the focus has been derived using
the Richards and Wolf vectorial diffraction methods. On the
basis of an analytical model, the transverse enhancement was
found to depend only on the phase index v in the PB phase.
As a result, a focus with controllable length and subwavelength
width in the focal plane has been achieved. Furthermore, the
corresponding Poynting vector distributions were studied in
detail. This work not only broadens the structured light fields,
but also has potential applications that include optical micro-
fabrication and nanofabrication, micromanipulation, and high-
resolution layer-divided imaging.

Funding. National Natural Science Foundation of
China (NSFC) (11604182); Natural Science Foundation of
Shandong Province (ZR2016AB05).
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