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Samenvatting

Induced Dimension Reduction algoritmes voor het oplossen van

niet-symmetrisch ijle matrices

Reinaldo Antonio Astudillo Rengifo

In veel wetenschappelijke en technische toepassingen leidt het discretise-
ren van partiële di�erentiaalvergelijkingen tot verscheidene matrixproblemen.
Deze scriptie gaat over de ontwikkeling van nieuwe algoritmes voor het oplossen
van zulke problemen. Speciale aandacht gaat uit naar problemen met asym-
metrische ijle matrices. De nieuwe algoritmes zijn gebaseerd op de Induced
Dimension Reduction methodes [IDR(s)].

IDR(s) is een Krylovruimte methode die in 2008 werd geïntroduceerd om
systemen van lineaire vergelijkingen op te lossen. IDR(s) heeft veel aandacht
gekregen vanwege zijn stabiliteit en snelle convergentie. Het is daarom logisch
om te onderzoeken of IDR(s) uit te breiden is naar andere matrixproblemen,
en zo ja, hoe deze uitbreidingen zich verhouden tot gevestigde methodes.

De voornaamste matrixproblemen in deze scriptie zijn: het standaard ei-
genwaardeprobleem, het kwadratische eigenwaardeprobleem, het oplossen van
systemen van lineaire vergelijkingen, het oplossen van reeksen van systemen
van lineaire vergelijkingen en lineaire matrixvergelijkingen. De focus ligt op
voorbeelden die voortkomen uit het discretiseren van partiële di�erentiaalver-
gelijkingen.

Eerst analyseren wij de recurrente betrekkingen van IDR(s) en leiden we
een Hessenberg decompositie af. Dit stelt ons in staat om een deelverzame-
ling van eigenwaarden en eigenvectoren te benaderen. We laten zien hoe het
conditiegetal van de basis van de Krylovruimte, gegenereerd door IDR(s), ge-
relateerd is aan het verschil tussen de Ritz waarden van ons voorgestelde algo-
ritme en de Ritz waarden afkomstig van de Arnoldi methode. We passen ook
Sorensens impliciete herstarttechniek toe op ons voorgestelde algoritme. In
de numerieke voorbeelden laat IDR(s) voor eigenwaarden competitief gedrag

xi
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zien vergeleken met de bekende Implicitly Restarted Arnoldi methode (IRAM).
Verder passen we de voorgestelde IDR(s) eigensolver toe op het kwadratische
eigenwaardeprobleem.

Met gebruik van de Hessenberg relatie verkregen met IDR(s) laten we zien
hoe Ritz waarden en de bijbehorende Ritz vectoren verkregen kunnen worden
tijdens het toepassen van IDR(s) voor het oplossen van systemen van lineaire
vergelijkingen. Deze methodologie passen we toe op twee verschillende proble-
men: het oplossen van systemen van lineaire vergelijkingen en het oplossen van
reeksen van systemen van lineaire vergelijkingen. Eerst maken we een IDR(s)
die Ritz waarden berekent, deze worden gebruikt als inputparameters om het
oplossen van systemen van lineaire vergelijken te versnellen. Ten tweede ge-
bruiken we Ritz vectoren om systemen van lineaire vergelijkingen met IDR(s)
op te lossen. De kerngedachte wordt gevormd door het berekenen van een paar
Ritz vectoren tijdens het oplossen van het eerste systeem van lineaire vergelij-
kingen, en deze te gebruiken om de convergentie te verbeteren van de volgende
systemen van lineaire vergelijkingen.

We gebruiken IDR(s) ook voor het oplossen van lineaire matrixvergelijkin-
gen. Door gebruik te maken van een generalisatie van de IDR stelling, passen
we IDR(s) toe op lineaire matrixvergelijkingen zoals: de Lyapunov vergelij-
king, de Sylvester vergelijking, bloksystemen van lineaire vergelijkingen, en de
multi-shift Helmholtz vergelijking. We ontwerpen ook een nieuwe preconditio-
ner voor de matrixvergelijking verkregen uit de multi-shift Helmholtz vergelij-
king. Deze voorgestelde preconditioner gebruikt de incomplete LU-factorisatie
van de verschoven Laplaciaanse matrix, in plaats van de exacte LU-factorisatie,
waardoor hij geschikt is voor problemen van grote omvang. We combineren
deze incomplete LU-factorisatie met een andere operator die de eigenwaarden
roteert van de operator die bij de matrixvergelijking hoort. Deze preconditio-
ner versnelt de convergentie van de iteratieve methode terwijl hij het gebruik
van een groter bereik van verschuivingen mogelijk maakt.

We kunnen de impact van het onderzoek dat uitgevoerd is tijdens dit pro-
ject als volgt samenvatten. Het ontwikkelen van nieuwe, op IDR(s) gebaseerde
methodes met korte recurrenties, voor het oplossen van matrixproblemen, zou
een numeriek alternatief kunnen vormen voor methodes gebaseerd op Lanc-
zos en Arnoldi methodes, vanwege de numerieke stabiliteit en het CPU- en
geheugengebruik. Aan de theoretische kant kan het onderzoek naar spectrale
informatie verkregen met de IDR(s) methode voor systemen van lineaire verge-
lijkingen helpen om zijn convergentie-eigenschappen te begrijpen. Daarnaast is
de ontwikkeling van IDR(s) voor matrixvergelijkingen een eerste stap richting
de ontwikkeling van geavanceerdere algoritmes die gebruik kunnen maken van
de lagerangsbenaderingen van de oplossingen. In het geval van het oplossen
van de multi-shift Helmholtz vergelijking, maakt de voorgestelde aanpak voor
matrixvergelijkingen het gebruik van �exibelere preconditioners mogelijk, zoals
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incomplete factorisaties en het gebruikt van de�atie- en augmentatietechnie-
ken.





Summary

Induced Dimension Reduction algorithms for solving

non-symmetric sparse matrix problems

Reinaldo Antonio Astudillo Rengifo

In several applications in science and engineering, di�erent types of ma-
trix problems emerge from the discretization of partial di�erential equations.
This thesis is devoted to the development of new algorithms to solve this
kind of problems. In particular, when the matrices involved are sparse and
non-symmetric. The new algorithms are based on the Induced Dimension Re-
duction method [IDR(s)].

IDR(s) is a Krylov subspace method originally proposed in 2008 to solve
systems of linear equations. IDR(s) has received considerable attention due to
its stable and fast convergence. It is, therefore, natural to ask if it is possible
to extend IDR(s) to solve other matrix problems, and if so, to compare those
extensions with other well-established methods. This work aims to answer
these questions.

The main matrix problems considered in this dissertation are: the standard
eigenvalue problem, the quadratic eigenvalue problem, the solution of systems
of linear equations, the solution of sequences of systems of linear equations,
and linear matrix equations. We focus on examples that arise from the dis-
cretization of partial di�erential equations.

First, we analyze the IDR(s) recurrence formulas, and derive a Hessenberg
decomposition. This allows us to create an IDR-based algorithm for approxi-
mating a subset of eigenvalues and eigenvectors of a given matrix. We illustrate
how the condition number of the Krylov subspace basis generated by IDR(s) is
related to the di�erence between the Ritz values from our proposed algorithm
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and the Ritz values generated by the Arnoldi method. We also apply Sorensen's
implicit restarting technique to our proposed algorithm. In the numerical ex-
amples, IDR(s) for eigenvalues shows a competitive behavior in comparison
to the well-known Implicitly Restarted Arnoldi method (IRAM). Additionally,
we apply the proposed IDR(s) eigensolver to the quadratic eigenvalue problem.

Making further use of the Hessenberg relation obtained from IDR(s), we
show how to obtain the Ritz values and their corresponding Ritz vectors during
the application of IDR(s) for the solution of systems of linear equations. We
apply this methodology to two di�erent problems: the solution of systems of
linear equations and solving sequences of systems of linear equations. First,
we create an IDR-solver that computes the Ritz values, and then uses them
as input parameters to speed-up the solution of systems of linear equations.
Second, we use the Ritz vectors to solve sequences of systems of linear equa-
tions with IDR(s). The main idea is to compute few Ritz vectors during the
solution of the �rst system of linear equations, and use them to accelerate the
convergence of the rest of the systems of linear equations.

We also use IDR(s) to solve linear matrix equations. Using a generaliza-
tion of the IDR Theorem, we apply IDR(s) for solving linear matrix equations,
such as, the Lyapunov equation, Sylvester equation, block systems of linear
equations, and multi-shift Helmholtz equation. Finally, we design a new pre-
conditioner for the matrix equation obtained from the multi-shift Helmholtz
problem. This proposed preconditioner uses the incomplete LU factorization
of the shifted Laplacian matrix rather than the exact LU factorization of this
matrix, which makes it suitable for solving large-scale problems. We combine
the use of the incomplete LU factorization with another operator that rotates
the eigenvalues of the operator associated with the matrix equation. This pre-
conditioner accelerates the convergence of the iterative method while enabling
the use of a larger range of shifts.

We can summarize the impact of the research conducted in this project
as follows. The development of new short-recurrence methods to solve ma-
trix problems based on IDR(s) might represent an intermediate computational
alternative to Lanczos-based methods and Arnoldi-based methods, from the
point of view of numerical stability, and CPU and memory consumption. On
the theoretical side, the study of the spectral information obtained from the
IDR(s) method for solving systems of linear equations might help understand-
ing its convergence properties. Additionally, the development of IDR(s) for
matrix equations is a �rst step towards the development of more advanced
algorithms that can exploit low-rank representations of the solutions. In the
case of the solution of the multi-shift Helmholtz equation, the proposed matrix
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equation approach allows the use of more �exible preconditioners, such as, in-
complete factorizations, and the use of de�ation and augmentation techniques.





Notation

Throughout this document, we adopt the following notation,

Description Meaning Example

Symbol C Set of complex numbers C

Symbol R Set of real numbers R

Symbol N Set of natural numbers N

Symbol N+ Set of positive natural numbers N+

Capital letters Matrices A, B, C, . . .

Capital letter T as superindex Transpose operator AT , BT , xT , . . .

Capital letter H as superindex Conjugate transpose operator AH , BH , . . .

Capital I with or without
subindex n

Identity matrix of order n. The
subindex is dropped when the
dimension is clear from the con-
text

I or In

Bolded lower letters Columns vectors x, y, z, . . .

Bolded number 0 Zero vector 0

Greek lower letters Complex or real scalars α, β, γ, . . .

Bolded lower letters with
subindex

Vectors in a sequence or
columns of a matrix (repre-
sented with same letter in capi-
tal)

xi, yi, ai, . . .

Function max The largest of two numbers max(a, b)

Function min The smallest of two numbers min(a, b)

Symbol ⊗ Kronecker product A⊗B

Function trace The trace of a matrix trace(A) =
∑n
i=1 aii

xix
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Bolded lower e with subindex i ith canonical vector e1, e2, . . .

Calligraphic capital letters Vectors (sub)spaces G,S, . . .
Calligraphic capital A (Chapter 5) General linear

operator
A

Calligraphic capital P (Chapter 5) General linear
operator preconditioner

P

Calligraphic capital I (Chapter 5) Identity as linear
operator

I

Lower letters Functions f, g, h, . . .

Lower letter i Imaginary unit i2 = −1 5 + 9i

Symbol < Real part of a complex num-
ber

<(z)

Symbol = Imaginary part of a complex
number

=(z)

Symbol 〈·, ?〉 Euclidean inner product 〈x,y〉 = yHx
Symbol 〈·, ?〉F Frobenius inner product 〈A,B〉F = trace(BHA)
Symbol ‖·‖ Euclidean norm ‖x‖
Symbol ‖·‖F Frobenius norm ‖A‖F
Symbol du

dx
When u is a real-valued
function, this represents the
derivative of u with respect to
x

du
dx

Symbol ∂u
∂x

When u is a multi-variate
function, this represents the
partial derivative of u with
respect to x

∂u
∂xi

Symbol ∇u When u is a multi-variate
function, this represents a vec-
tor with all partial derivatives

∇u = [ ∂u
∂x1

, ∂u
∂x2

, ∂u
∂x3

]T

Symbol 4u When u is a multi-variate
function, this represents the
Laplacian operator applied to
u.

4u = ∂2u
∂x21

+ ∂2u
∂x22

+ ∂2u
∂x23

Function vec It represents a vector created
from a matrix by stacking its
columns

vec(A)



CHAPTER 1

Introduction and preliminaries

The core of this work is the development of algorithms to solve matrix prob-
lems. In particular, the algorithms developed here are based on the Induced
Dimension Reduction method (IDR(s)) [95]. IDR(s) is an iterative Krylov
method to solve systems of linear equations. IDR(s) has proved to be a com-
petitive option to solve system of linear equations with respect other well-
established iterative Krylov methods. For this reason, we investigate how to
adapt this method to solve other types of matrix problems such as eigenval-
ues/eigenvector approximation, quadratic eigenvalues problem, sequences of
systems of linear equations or matrix equations.

The discretization of partial di�erential equations to solve models of dif-
ferent phenomena in sciences and engineering, is the most common source of
matrix problems. One main characteristic of the matrices resulting of this
discretization process (via �nite elements or �nite di�erences among other
techniques) is the sparsity. Sparse matrices are matrices of which most of their
elements are zeros. This allows the creation of e�cient computer data struc-
tures to store and handle this kind of matrices with large dimension. However,
these large dimensions make unfeasible the application of matrix decomposi-
tions such as SVD, or LU , or algorithms as Gaussian elimination or Francis
QR [38, 39]. For this reason, it is important to investigate other options to
solves this kind of problems, such as iterative Krylov methods.

Another important characteristic of the matrix problems investigated in
this dissertations is the non-symmetry. For solving system of linear equations
where the coe�cient matrix is symmetric and positive de�nite (SPD), pre-
conditioned Conjugate Gradient (CG) [46] is the most well-established option.

1



2 Introduction and preliminaries Chapter 1

Lanczos algorithm [55], [22] is the most common option for approximating the
eigenvalues and eigenvectors of symmetric matrices. Nevertheless, it is di�cult
to choose a clear winner among Krylov method when the coe�cient matrix is
non-symmetric [65].

The remainder of this chapter is organized as follows. In the next sec-
tion, we present in detail the class of matrix problems that we deal with in
this dissertation, their importance, their corresponding assumptions, and some
motivating examples. Section 1.2 provides a summary of the structure of this
document. In sections 1.3, 1.4, and 1.5, we present a brief review of the most
well-known Krylov subspace methods for solving system of linear equations,
approximate eigenvalues and eigenvectors, and solving matrix equations re-
spectively.

1.1 Linear matrix problems

As we mention in the introduction, we consider di�erent types of matrix prob-
lems. The common characteristics of these problems is that the matrices in-
volved are sparse and non-symmetric.

IDR(s) was designed speci�cally for the solution of system of linear equa-
tions

Ax = b, (1.1)

which is one of most ubiquitous problems in science and engineering. In (1.1),
A is n×n complex or real matrix called the coe�cient matrix, the vector b or
right-hand size vector is a given vector of dimension n, and x is the unknown
vector. This kind of problem arises naturally after the discretization of partial
di�erential equations. In this research, we only consider the case when (1.1)
has a unique solution.

A variation of the problem (1.1) is that of a sequence of systems of linear
equations

Aixi = bi for i = 1, . . . ,m. (1.2)

In this document, we only consider the case where the coe�cient matrix is
constant and non-singular. Then problem (1.2) can be rewritten as

Axi = bi for i = 1, . . . ,m,

and each system of equations has a unique solution. The right-hand size vectors
may not be all available simultaneously. This type of problems emerge from the
discretization of linear time-dependent di�erential equations and the solution
of systems of non-linear equations using modi�ed Newton-type methods with
constant Jacobian matrix



Section 1.2 Dissertation outline and abstracts 3

We also consider the eigenvalue problem. Given a matrix A �nd a subset
of pairs (λ, x) such that λ is a complex scalar and x is a non-null vector in Cn
and

Ax = λx; (1.3)

the vectors x are called eigenvectors of A, while the scalars λ are referred as
eigenvalues. This problem typically arises solution of �rst-order di�erential
equations, stability analysis, and partial di�erential equations. One strategy
to obtain approximations to the eigenpairs of the large and sparse matrix A is
to create a Hessenberg decomposition as

AQm = QmHm + qeTm, (1.4)

where Qm ∈ Cn×m, Hm is a m × m upper Hessenberg matrix, and q ∈ Cn
with m < n. Part of the eigenvalues of the matrix Hm are approximations
to a subset of eigenvalues of A, and the corresponding approximation to the
eigenvectors of A are obtained as a linear combination of the columns of the
matrix Qm.

We also consider the numerical solution of linear matrix equations

k∑
j=1

AjXBj = C. (1.5)

The matrices Aj ∈ Cn×n, Bj ∈ Cm×m, and C ∈ Cn×m are given matrices. The
matrix X is the unknown n×m matrix. The general matrix equation (1.5) is
equivalent to the following system of linear equations k∑

j=1

BT
k ⊗Ak

 vec(X) = vec(C), (1.6)

where vec(Y ) is the operation of creating a vector of order n×m by stacking
the columns of the matrix Y , and the operator ⊗ is referring to the Kronecker
product (see [54]).

Several applications of the control theory lead to the solution of the par-
ticular cases of (1.5), such as, the Lyapunov equation

AX +XAT = B, (1.7)

or the Sylvester equation

AX +XB = C. (1.8)



4 Introduction and preliminaries Chapter 1

1.2 Dissertation outline and abstracts

This document is structured as follows,

• Chapter 2: The Induced Dimension Reduction method In this
chapter, we review the Induced Dimension Reduction method. We present
a summary of the development and evolution of the IDR(s). We em-
phasize in the description of the numerical properties of IDR(s) and its
implementation. Also to provide to the reader an idea about the com-
putational behavior of the IDR(s), we solve di�erent system of linear
equations that arise from the discretization of a simple model of the
convection-di�usion equation. We present a comparison with other well-
known iterative methods to solve systems of linear equations as GMRES,
BiCG and BiCGStab.

• Chapter 3: Induced Dimension Reduction method for solving

eigenvalue problem In chapter 3, we adapt IDR to solve the problem
of approximating the eigenvalues and eigenvectors of sparse and non-
symmetric matrices. From the IDR(s) calculation, we create a standard
Hessenberg decompositions of the form (1.4), that allows us to approxi-
mate a subset of eigenpairs of the matrix A. In order to obtain the eigen-
values of the interest for our application, we apply the implicit restarting
technique [97].

Additionally, we apply our proposed IDR(s) algorithm to solve the quad-
ratic eigenvalue problem

(λ2M + λD +K)x = 0. (1.9)

• Chapter 4: Accelerating the Induced Dimension Reduction method

using spectral information As a follow-up of the approximation of
eigenvalues and eigenvector with IDR(s), we incorporate this informa-
tion to accelerate the convergence of IDR(s) for solving a linear systems.
Ritz-IDR(s) [87] was the �rst variant of IDR(s) that uses few approxi-
mations of the eigenvalues to accelerate its convergence. Nevertheless, it
requires a previous call to an eigensolver routines as the Arnoldi method
[4]. We create a self-contained variant of Ritz-IDR(s) that does not
use an external routine for the eigenvalue approximation. We name it
self-contained Ritz-IDR(s) or SC-Ritz-IDR(s). The approximated eigen-
vectors are used in the context of solving a sequence of systems of linear
equations where the coe�cient matrix is constant. During the solution
of the �rst linear system in the sequence, we compute approximations
of a subset of eigenvectors of the coe�cient matrix. Then, we use these
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eigenvectors to enrich the Krylov subspace used by IDR(s) in the solution
of the subsequent linear systems.

• Chapter 5: IDR(s) for solving linear matrix equations IDR(s)
is based on the IDR(s) Theorem (see Theorem 2.1 in [95]). IDR(s)
Theorem de�nes a sequence of nested and shrinking subspaces in Cn
where the residuals of the approximations are created. This sequence
of nested and shrinking can also be de�ned in any �nite dimensional
subspace and not only in Cn. Taking advantages of this fact, we propose
an IDR(s) for solving matrix equations (equivalent to a block version of
IDR(s)).

In chapter 6, we give the general conclusions of this dissertation and future
lines of research. For sake of completeness, the rest of this chapter is devoted
to present an overview of the mainstream Krylov iterative method to solve
non symmetric systems of linear equation and to approximate eigenvalues and
eigenvectors.

1.3 Solving systems of linear equations

In this section, we review some of the most well-known Krylov iterative meth-
ods to solve systems of linear equations. In particular, we examine the Bi-
Conjugate Gradient method (BiCG) [37], the Generalized Minimal Residual
method (GMRES) [81], and the Bi-Conjugate Gradient stabilized method [101].
These methods are used for comparison purpose throughout this document.
For a more comprehensive description of this topic, we refer the reader to [79].

When the coe�cient matrix A is large and sparse, direct methods to solve
system of linear equations become too expensive from the computational point
of view. Examples of direct method as the classical Gaussian elimination or
LU factorization have a computational complexity of O(n3). On the other
hand, iterative methods to solve system of linear equations create a sequence
of vectors {xk}∞k=1, that under certain conditions, converges to the solution
of (1.1). Iterative methods are suitable for large-scale settings.

In this dissertation, we deal with the iterative projection method onto m-
dimensional subspace K̂ and orthogonal to the m-dimensional subspace L.
These iterative methods �nd the approximate solution xm in the a�ne sub-
space x0 + K̂ imposing the Petrov-Galerkin condition, i.e., rm = b − Axm
orthogonal to L. The subspace K̂ is called search space, while L is called re-
striction space. In particular, we are interested in iterative Krylov methods,
which are projection methods whose search subspace is the Krylov subspace.

De�nition 1. Let A ∈ Cn×n, and let v ∈ Cn be a non-zero vector. The mth
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Krylov subspace associated with A and v, denoted by Km(A, v), is de�ned as

Km(A, v) = span{v, Av, A2v, . . . , Am−1v}. (1.10)

Where span{v1,v2, . . . ,vk} is set of all linear combinations of the vectors
{v1,v2, . . . ,vk}.

1.3.1 Biconjugate gradients method

BiCG was proposed by R. Fletcher in 1976 [37]. This is a projection method
whose searching subspace is

Km(A,v1) = span{v1, Av1, . . . , A
m−1v1}.

and the residual vector is orthogonal to the subspace

Km(AH ,w1) = span{w1, A
Hw1, . . . , (AH)m−1w1},

where v1 = r0/‖r0‖ and w1 is a non-zero vector such that 〈v1,w1〉 = 1.
The basis for the subspaces Km(A,v1) and Km(AH ,w1) are created using

the Lanczos bi-orthogonalization method [55]. Despite the fact that the BiCG
algorithm has low computational cost in terms of memory, inner products and
vectors operations, it requires two matrix-vector multiplications per iteration
(a matrix-vector multiplication using A and another using AH). BiCG �nds
the exact solution in n iteration using exact arithmetic (2n matrix-vector prod-
ucts). Algorithm 1 presents an implementation of the BiCG method.

Algorithm 1 BiCG

1: Input: A ∈ Cn×n, b ∈ Cn, tol ∈ (0, 1), x0 ∈ Cn.
2: r0 = b−Ax0. Choose r̂0 such that 〈r0, r̂0〉 6= 0
3: for j = 0 to convergence do
4: αj = 〈rj , r̂j〉/〈Apj , p̂j〉
5: xj+1 = xj + αjpj
6: rj+1 = rj − αjApj
7: r̂j+1 = r̂j − αjAH p̂j
8: βj = 〈rj+1, r̂j+1〉/〈rj , r̂j〉
9: pj+1 = rj+1 + βjpj
10: p̂j+1 = r̂j+1 + βjp̂j
11: end for

12: Return xj+1

1.3.2 Generalized minimal residual method

The Generalized Minimal Residual method (GMRES) was introduced by Saad
and Schultz in [81]. GMRES �nds the approximation xm at iteration m in the
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subspace Km(A,v1), and imposes the residual to be orthogonal to AKm(A,v1)
with v1 = r0/‖r0‖. GMRES can be formulate as

xm = x0 + Vmym (1.11)

with

(AVm)Hrm = 0

or equivalently

ym = min
y
‖b−A(x0 + Vmy)‖, (1.12)

where Vm is a matrix whose columns form a basis for Km(A,v1).
Equations (1.11) and (1.12) ensure the optimal residual norm condition,

i.e., GMRES obtains an approximation xm that generates the minimum resid-
ual norm possible in the subspace Km(A, r0), as a consequence, GMRES �nds
the exact solution of the linear system in n iterations (n matrix-vector) prod-
ucts in exact arithmetic.

In order to build the matrix Vm and solve e�ciently (1.12), GMRES is com-
monly implemented using the Arnoldi method [4]. However, the computational
cost and memory requirement of the Arnoldi method grow asm increases. This
makes GMRES prohibitive for large problems. A option to overcome this issue
is to restrict the maximum value of m, and restart the process with approxi-
mation xm as the new starting vector. This variant is known as the restarted
GMRES or GMRES(m).

Algorithm 2 GMRES(m)

1: Input: A ∈ Cn×n, b ∈ Cn, tol ∈ (0, 1), m ∈ N+, x0 ∈ Cn.
2: r0 = b−Ax0, β = ‖r0‖, and v1 = r0/β
3: for j = 1 to m do

4: w = Avj
5: for i = 1 to j do

6: Hi,j = 〈w,vi〉
7: w = w −Hi,jvi
8: end for

9: Hj+1,j = ‖w‖, and vj+1 = w/Hj+1,j

10: end for

11: De�ne Vm = [v1, v2, . . . ,vm]
12: Compute ym = argminy‖βe1 − H̄mym‖ . H̄m ∈ Cm+1×m

13: xm = x0 + Vmym
14: if convergence test fails then
15: x0 = xm goto 2.
16: end if

17: Return xm
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1.3.3 Biconjugate gradient stabilized method

This method was proposed by H. van der Vorst in 1992 [101]. BiCGStab is a
variant of the Conjugate Gradient Square (CGS)† proposed by Sonneveld [93].
CGS replaces the matrix-vector product with AH present in each iteration of
the BiCG via squaring the residual polynomial. However, CGS might su�er
from irregular convergence, due to this squaring operation which makes CGS
sensitive to round-o� errors [101].

The main idea behind BiCGStab is to multiply the CGS residual polyno-
mial by a degree one polynomials to counterbalance the irregular behavior of
CGS. BiCGStab is one of the most widely used short-recurrences methods,
it uses two matrix-vector products per iteration and low memory consump-
tion. Nevertheless, when the eigenvalues of the matrix A have imaginary parts
that are large relative to the real parts, BiCGStab may su�er of stagnation
(see [88]). Algorithm 3 shows an implementation of the BiCGStab method.

Algorithm 3 BiCGStab

1: Input: A ∈ Cn×n, b ∈ Cn, tol ∈ (0, 1), x0 ∈ Cn.
2: r0 = b−Ax0. Choose r̂0 ∈ Cn, s.t. 〈r0, r̂0〉 6= 0
3: p0 = r0

4: for j = 0 to convergence do
5: αj = 〈rj , r̂0〉/〈Apj , r̂0〉
6: sj = rj − αjApj
7: ωj = 〈sj , Asj〉/〈Asj , Asj〉
8: xj+1 = xj + αjpj + ωjsj
9: rj+1 = sj − αjAsj
10: βj =

〈rj+1 ,̂r0〉
〈rj ,̂r0〉

αj

ωj

11: pj+1 = rj+1 + βj(pj − ωjApj)
12: end for

13: Return xj+1

1.3.4 Long and short-recurrences methods and optimal resid-
ual

The Conjugate Gradient method, applied to a SPD matrix A, has three opti-
mal properties. First, CG creates an approximation xm in the space Km(A, r0)
using exactly m matrix-vector products. Second, the residual rm is minimal
in A-norm among all the possible approximations in Km(A, r0). Third, CG
method is a short-recurrences method, a short-recurrences method only uses a
�xed number of vectors independent from the number of iterations. In partic-
ular, CG uses three-term vector recurrences.

†Historical note: BiCGStab was �rst named as CGStab [44].
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These three optimal conditions of CG are not present simultaneously in
the Krylov methods for solving non-symmetric systems of linear equations.
Full GMRES creates an approximation such that the optimal residual vector
is minimal in Euclidean norm for all the possible approximation in the Krylov
space Km(A, r0). However, full GMRES is a long-recurrences method, i.e.,
the number of vectors used by the method depend directly on the number of
iterations (or number of matrix-vector products). For this reason, the compu-
tational cost of GMRES grows with each iteration. On the other hand, BiCG
and BiCGStab use short-recurrences. These methods sacri�ce the optimality
condition of minimizing the norm of the residuals per iteration for the sake of
limiting the CPU and memory consumption.

1.4 Solving the eigenvalue problem

In this section, we turn our attention to describe a Krylov method to approx-
imate eigenvalues and eigenvectors of sparse matrices. Given a matrix A and
non-zero initial vector v, the Arnoldi method [4], after m steps, creates a ma-
trix with m orthogonal columns Vm, a upper Hessenberg Hm, and a vector
f , such that, V H

m f = 0. The matrices A, Vm, Hm, and the vector f hold the
so-called Hessenberg decomposition

AVm = VmHm + feTm. (1.13)

Also, the columns of Vm form a basis for the Krylov subspace Km(A,v), and
it can be proved that

V H
m AVm = Hm.

Hessenberg decompositions, such as (1.13), play an important role in the ap-
proximation of eigenvalues and eigenvectors of large and sparse matrices. First,
let the pairs {(λi, ŷ)}mi=0 be the set of eigenvalues and the corresponding eigen-
vectors of the matrix Hm. Then, a subset of eigenpairs of the matrix A can
be approximated by the pairs {(λi, yi = Vmŷ)}mi=1. The scalars λi are called
Ritz-values of the matrix A and the vectors yi are the associated Ritz-vectors.

The interest in Arnoldi as eigensolver method is to a large extent owing
the work of Y. Saad during the decade of 1980 [80]. A large part of this work
was focus in how to improve the accuracy of the Ritz-values and Ritz-vectors,
or how to approximate a speci�c subset of eigenvalues of the matrix A. Also,
it is important to limit the use of computational resources by the Arnoldi
method when m grows. For this reason, di�erent restarting techniques where
applied to the Arnoldi method (see for example [74], [76], [77]). In 1992,
D. C. Sorensen presented the implicitly restarted technique for the Arnoldi
method. This is an iterative scheme that �xed the dimension m and restarts
the Arnoldi algorithm by applying the Francis QR method to the matrix Hm.
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In Chapter 2, we combine this implicit restarting technique to our proposed
IDR(s) algorithm for eigenvalues. Algorithm 4 presents an implementation of
Arnoldi using the Gram-Schmidt process.

Algorithm 4 Arnoldi method

1: Input: A ∈ Cn×n, x 6= 0 ∈ Cn, m ∈ N+.
2: v1 = x/‖x‖
3: for j = 1 to m do

4: w = Avj
5: for i = 1 to j do

6: Hi,j = 〈w,vi〉
7: w = w −Hi,jvi
8: end for

9: Hj+1,j = ‖w‖, and vj+1 = w/Hj+1,j

10: end for

11: De�ne Vm = [v1, v2, . . . ,vm]

1.5 Solving matrix linear equations

The Krylov methods have been adapted also to solve linear matrix equations
of the form (1.5). There are two di�erent kinds of Krylov methods to solve the
matrix linear equations. First, the projection methods, that in general project
the problem into a smaller Krylov subspace, Km(A,x) taking into account the
low-rank of the solution (see for example [78] for the particular case of the
Lyapunov equation). To accelerate the solution of matrix linear equation, the
state-of-the-art projection methods �nd a solution in the so-called extended
Krylov subspace

Km(A,x)⊕Km(A−1,x),

where the symbol ⊕ represents the sum of subspaces (see for example [27]).
The second approach consists of considering the unknown solution matrix as
a (long) vector of unknowns and solving a systems of linear equations, where
the coe�cient matrix is formed from the sum of Kronecker products (see for
example [48]).

1.6 Context of this research

The Induced Dimension Reduction method (IDR(s)), since its publication in
2008, has been adapted to di�erent kind of matrix problems for several re-
searchers. In this section, we reference some of the works involving the Induced
Dimension Reduction method.

IDR(s) is a family of algorithms to solve systems of linear equations. There
exist several ways to translate the IDR(s) Theorem (see Theorem 2.1 in [95])
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into practical algorithms. This fact is going to be explained in more detail
in the next chapter. Di�erent variants of IDR(s) for solving systems of linear
equations have been proposed to improved its convergence, numerical stabil-
ity and even to adapt it for high performance architectures. Examples of
these works are, the IDR(s) with biorthogonal residuals by M. B. van Gijzen
and P. Sonneveld [103]; minimum residual IDR(s) variants by M. B. van Gi-
jzen, G. L. G. Sleijpen and J.-P. M. Zemke [102], L. Du, T. Sogabe, and
S.-L. Zhang [29], J.-P. M. Zemke [108]; IDR with partial orthogonalization J.-
P. M. Zemke [108], IDR(s) has been adapted for exploiting high performance
computing architectures by T. P. Collignon and M. B. van Gijzen [23] and also
by H. Anzt et al. in [3].

As contributions to the theory of IDR(s), G. L. G. Sleijpen, P. Sonneveld,
and M. B. van Gijzen prove that IDR(1) and BiCGStab are mathematically
equivalent. Also, they exploited this relation to created IDRstab based on
BiCGStab(`) [88]. V. Simoncini and D. B. Szyld proved that this method can
also be viewed as a projection method with Petrov-Galerkin conditions [87].

The �rst adaptation of IDR(s) to approximate eigenvalues was proposed
by M. H. Gutknecht and J.-P. M. Zemke [45]. In this work, the authors use
the IDR(s) method to construct a generalized Hessenberg decomposition

AWmUm = WmHm + veTm, (1.14)

whereWm ∈ Cn×m is a basis for a Krylov subspace (not explicitly built). Um is
an upper triangular m×m matrix, Hm ∈ Cm×m is a upper Hessenberg matrix,
and f is a vector in Cn. A portion of the eigenvalues of A are approximated
by the eigenvalues obtained from the solution of the generalized eigenvalue
problem

Hmyi = λiUmyi,

also known as the eigenvalue pencil (Hm, Um). Due to the fact that Wm is not
explicitly created the eigenvectors are not approximated.

Additional variants of IDR(s) have been adapted to other related prob-
lems as, solving multi-shift linear systems (see for example M. B. van Gi-
jzen, G. L. G. Sleijpen, and J.-P. M. Zemke [102], L. Du, T. Sogabe, and
S.-L. Zhang [30], and M. Baumann and M. B. van Gijzen [13]), solving block
linear systems (L. Du, T. Sogabe, B. Yu, Y. Yamamoto, and S.-L. Zhang, [28]),
or sequences of system of linear equations (M. P. Neuenhofen [66]).





CHAPTER 2

The Induced Dimension Reduction method

In the previous chapter, we gave a general introduction to the most well-known
Krylov subspace methods to solve systems of linear equations and eigenvalue
problems. In this chapter, we present a review of the development and the-
ory of the Induced Dimension Reduction method (IDR(s)), which is the core
algorithm in this dissertation.

IDR(s) was introduced as a method to solve systems of linear equations
in [95] as a generalization of the IDR method �rst presented in [105]. IDR
methods are based on a relatively unusual approach of forcing the residual to
be in a sequence of nested and shrinking subspaces, instead of the classical
approach of �nding the approximation in a subspace of bigger dimension at
each iteration.

We present here a detailed introduction to the Induced Reduction Dimen-
sion method. In section 2.1, we review the early version of IDR. Then Sec-
tion 2.2 presents how this early IDR evolves to its generalization the IDR(s)
method. We also describe the biortho IDR(s) [103], which is a numerically
stable variant of the IDR(s). In Section 2.4, we also present a compari-
son of the computational behavior of IDR(s) with respect to other short-
recurrences Krylov methods, speci�cally the Bi-Conjugate Gradient Method
(BiCG), restarted Generalized Minimal Residual (GMRES(m)), and Bi-Conjugate
Gradient Stabilized method (BiCGStab).

13
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2.1 The early Induced Dimension Reduction method

The initial version of IDR was presented in a Symposium held by the In-
ternational Union of Theoretical and Applied Mechanics at the University of
Paderborn in Germany in 1979. In the proceedings of this Symposium, IDR
was introduced in the paper titled �Numerical experiments with a multiple
grid and a preconditioned Lanczos type method� by P. Wesseling and P. Son-
neveld [105]. In this paper, the authorship of the IDR method was explicitly
attributed to P. Sonneveld.

P. Sonneveld was trying to generalized the secant method to n dimensions.
In his e�orts, he proposed the following three terms recurrences equations to
solve system of linear equations

γi =
〈ri−1,p〉

〈ri−1 − ri−2,p〉
(2.1)

vi = ri−1 − γi(ri−1 − ri−2), (2.2)

ri = (I − ωjA)vi, (2.3)

xi = xi−1 + ωivi + γi(xi−1 − xi−2) (2.4)

for i = 2, 3, . . . , and x0 given, and p ∈ Cn a vector such that 〈r0,p〉 6= 0. The
�rst approximation and its residual is obtained as following

x1 = x0 + ω1r0, (2.5)

and
r1 = r0 − ω1Ar0. (2.6)

The scalars ωi are selected every even step as the minimizer of ‖ri‖. The
IDR method showed a competitive computational behavior with respect of the
mainstream non-symmetric linear solvers at the end of the decade of the 1970s
(see for example Figure 2.1).

It was shown that the residuals produced by (2.1)�(2.6) belong to the se-
quence of subspaces Gj de�ned as

Gj ≡ (I − ωjA)(Gj−1 ∩ S), for j = 1, 2, . . . . (2.7)

Where S ≡ {x : 〈x,p〉 = 0} or the space orthogonal to the vector p. The
sequence of subspaces Gj has two important properties. First, the subspaces
are nested, this is Gj−1 ⊂ Gj . Second, Gj ≡ {0} for some j. This implies a �nite
termination behavior (in exact arithmetic) after 2n matrix-vector products.

Despite to be almost unnoticed for long time, IDR has a major impact
on the development of other well-known Krylov subspace methods as CGS,
BiCGStab, and of course its own generalization IDR(s). In the next section,
we present a review of IDR(s), which is the core method for the development
of the research presented in this document.
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Figure 2.1: Comparison of the converge of Gauss-Seidel and IDR [105] for solving
the system of linear equation of order 400 where the coefficient matrix is the Toeplitz
tridiagonal matrix A = tridiag(-1, 3, 1.9).

Algorithm 5 Induced Dimension Reduction method
1: procedure IDR(A, b, tol, x0)
2: Input: A ∈ Cn×n, b ∈ Cn, tol ∈ (0, 1), x0 ∈ Cn.
3: Select p ∈ Cn
4: r0 = b−Ax0, ∆g0 = ∆y0 = 0 ∈ Cn
5: γ0 = 0.0
6: for i = 1, . . . , convergence do
7: si = ri−1 + γi−1∆gi−1

8: ti = Asi
9: if i is even then
10: ωi = 〈si,ti〉

〈ti,ti〉
11: else

12: ωi = ωi−1

13: end if

14: ∆xi = γi−1∆yi−1 − ωisi
15: ∆ri = γi−1∆gi−1 − ωiti
16: xi = xi−1 + ∆xi
17: ri = ri−1 + ∆ri
18: if i is even then
19: ∆yi = ∆yi−1

20: ∆gi = ∆gi−1

21: else

22: ∆yi = ∆xi
23: ∆gi = ∆ri
24: end if

25: γi = 〈ri,p〉
〈∆gi,p〉

26: end for

27: Return xi.
28: end procedure
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2.2 The modern IDR(s) method

P. Sonneveld and M. B. van Gijzen revisited the original IDR method [105].
They present the Induced Dimension Reduction method (IDR(s)) in [95] as a
generalization of IDR†. This is a framework to solve systems of linear equations
and is based on the IDR(s) Theorem,

Theorem 1. [IDR(s) Theorem] Let A be any matrix in Cn×n, let v0 be any
nonzero vector in Cn, and let G0 be the full Krylov subspace Kn(A,v0). Let S
be any (proper) subspace of Cn such that S and G0 do not share a nontrivial
invariant subspace of A, and de�ne the sequence Gj, j = 1, 2, . . . as

Gj ≡ (I − ωjA)(Gj−1 ∩ S)

where ωj's are nonzero scalars. Then

1. Gj+1 ⊂ Gj, for j ≥ 0 and

2. dimension(Gj+1) < dimension(Gj) unless Gj = {0}.

Proof. See [95].

In a similar way as its predecessor IDR, IDR(s) forces each residual to be
in the Gj spaces, which are shrinking and nested subspaces, while in parallel
it obtains the approximate solution to the system of equations. One of the
important ideas introduced in [95] is the selection of the shadow space S as
the null space of a hyperplane P = [p1, p1, . . . ,ps]n×s instead of the null
space of a single vector p1 as in the original IDR. This change provides more
reduction in the residual of the problem, for example, IDR(s) requires n+n/s
matrix-vector multiplications to obtain the solution of the system of linear
equations in exact arithmetic, in contrast to the 2n matrix-vector products
required by IDR under the same conditions.

In order to describe the recurrence formulas of IDR(s), let us �rst consider
the general Krylov subspace recurrences, these are

xk+1 = xk + αkvk −
l̂∑

i=1

γi∆xk−i (2.8)

and the residual

rk+1 = rk − αkAvk −
l̂∑

i=1

γi∆rk−i, (2.9)

†Historical note: In 2006, Dr. J.-P. M. Zemke from Hamburg-Harburg University of
Technology emailed to P. Sonneveld asking what had happened with the old IDR method.
This question revives the interest of P. Sonneveld in IDR.
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where ∆uk is the forward di�erence operator de�ned as ∆uk = uk+1 − uk,
and the vector vk is a computable vector in the Krylov subspace Kk(A, r0) \
Kk−1(A, r0). The integer l̂ represents the depth of the recursions. When
l̂ = n, (2.8) and (2.9) are called long-recurrences. As an example of a method
that uses long-recurrences we have GMRES, and the main drawback of this
type of method is that the computational requirements grow with k. A short-
recurrence method uses a small �xed value for l̂. Examples of this kind of
methods are BiCG, BiCGStab, and CGS among others.

IDR(s) is also a short-recurrence method. It uses recursions of s+1 vectors
(typical choices are s < 20), this is l̂ = s

xk+1 = xk + αkvk −
s∑
i=1

γi∆xk−i (2.10)

and the residual

rk+1 = rk − αkAvk −
s∑
i=1

γi∆rk−i. (2.11)

Selecting the vector vk as

vk = rk −
s∑
i=1

γi∆rk−i, (2.12)

we can rewrite (2.11) as

rk+1 = (I − αkA)vk. (2.13)

In order to �nd the scalars in (2.10) and (2.11), we impose the condition
that rk+1 ∈ Gj+1. As one can see in (2.13), we have that αk = ωj+1, and we
have to impose that vk ∈ Gj ∩ S. This leads to the solution of the following
s× s system of linear equations

([p1, p1, . . . ,ps])
H [∆rk−s, . . . ,∆rk−1]c = ([p1, p1, . . . ,ps])

Hrk, (2.14)

where c = [γ1, γ2, . . . , γs]. Using these calculations, IDR(s) obtains rk+1 in
the subspace Gj+1, then using the fact that Gj+1 ⊂ Gj , IDR(s) repeats this cal-
culations to obtain at least s+1 residual vectors in Gj+1. Then, IDR(s) is ready
to create new residual vector in Gj+2 with their respective approximations.

The parameter α ≡ ωj+1 can be chosen freely for the �rst residual vector
in a Gj+1 space, however, the same value should be used for the computation
of the other residual vectors in Gj+1. There are di�erent options to select
the value ωj+1, for example, the value that minimizes the norm of rk+1, the
�maintaining the convergence� strategy proposed in [90] and used in IDR(s)
in [103], or the inverse of the Ritz-values as is proposed in [87]. A prototype
implementation of the IDR(s) is shown in Algorithm 6.
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Algorithm 6 IDR(s) algorithm

1: procedure IDR(A, b, s, x0)
2: Input: A ∈ Cn×n, b ∈ Cn, s ∈ N+, x0 ∈ Cn.
3: P a random matrix in Cn×s.
4: r0 = b−Ax0

5: for j = 0, . . . , s− 1 do . s minimum norm steps to get s extra vectors in G0

6: v = Arj ; ω =
〈rj ,v〉
〈v,v〉

7: ∆xj = ωrj ; ∆rj = −ωv
8: rj+1 = rj + ∆rj ; xj+1 = xj + ∆xj
9: end for

10: ∆Rj+1 = [∆rj , . . . , ∆r0]; ∆Xn+1 = [∆xj , . . . , ∆x0]
11: j = s
12: while not convergence do . Building the Gj spaces
13: for k = 0 to s do . Loop inside the Gj spaces
14: Solve c from PH∆Rnc = PHrn
15: v = rj −∆Rjc
16: if k = then

17: t = Av
18: ω = 〈v,t〉

〈t,t〉
19: ∆rj = −∆Rjc− ωt
20: ∆xj = −∆Xjc + ωv
21: else

22: ∆xj = −∆Xjc + ωv
23: ∆rj = −A∆xj
24: end if

25: rj+1 = rj + ∆rj
26: xj+1 = xj + ∆xj
27: j = j + 1
28: ∆Rj = [∆rj−1, . . . , ∆rj−s]
29: ∆Xj = [∆xj−1, . . . , ∆xj−s]
30: end for

31: end while

32: Return xj .
33: end procedure

2.3 Generalization of the IDR(s) recurrences

Residual vectors of IDR(s) are uniquely de�ned every (s+ 1)th step (matrix-
vector multiplications), nevertheless there is some freedom during the creation
of the intermediate residuals (see section 5.1 of [95]). In exact arithmetic, the
selection of the intermediate residuals does not a�ect the residuals obtained
at every s+ 1 matrix-vector multiplications. However, this is not the case for
numerical computations. The selection of the intermediate residuals a�ects the
residuals at every (s+1)th step and also the stability and e�ciency of IDR(s).

Before, we describe biortho IDR(s), which is the IDR(s) variant used in
this dissertation, we present a general framework to obtain di�erent variants
of IDR(s). In (2.10) and (2.11), it is not necessary to use the set of vectors
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∆xi and ∆ri. These equations can be generalized as

xk+1 = xk + ωj+1vk +

s∑
i=1

γiuk−i

and the residual in Gj+1 as

rk+1 = rk − ωj+1Avk −
s∑
i=1

γigk−i.

where

ui = Agi, with gi ∈ Gj for i = k − s, . . . , k − 1. (2.15)

The vectors ui and gi are called the direction vectors. It is possible to exploit
the fact that other residuals and the vectors gi have been already created in
the same subspace Gj+1 and any linear combination of these vectors is also in
Gj+1. Let us assume that m residual vectors have been created in Gj+1 with
their respective direction vectors and approximations. We can generalize the
IDR(s) formulas as

vk+m = rk+m −
s∑
i=1

γigk−m−i, (2.16)

where the scalars {γi}si=1, akin to (2.14), are obtained from the solution of the
system of linear equations

([p1, p1, . . . ,ps])
H [gk+m−1, . . . ,gk+m−s]c = ([p1, p1, . . . ,ps])

Hrk+m. (2.17)

The direction vectors are computed �rst as

ûk+m =

s∑
i=1

γiuk−m−i + ωj+1vk+m, (2.18)

and
ĝk+m = Auk+m,

then using the fact that gk+i are in Gj+1 for i = 1, . . . ,m− 1, we can update
any vector gk+m as following

gk+m = ĝk+m −
m−1∑
i=1

αigk+m, then gk+m ∈ Gj+1, (2.19)

and to maintain the relation (2.15), the vector uk+i should be updated as

uk+m = ûk+m −
m−1∑
i=1

αiuk+i. (2.20)
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Also the formulas for the approximation and the residual vector are gener-
alized as

rk+m+1 = rk+m −
m∑
i=1

βigk+i, (2.21)

and

xk+m+1 = xk+m +

m∑
i=1

βiuk+i (2.22)

The di�erent implementations for the IDR(s) method are based on the di�erent
ways to create the intermediate residuals selecting the parameters αi and βi
(see for example [29], [103], [102], and [108]).

2.3.1 IDR(s) with biorthogonal residuals

In this section, we describe the IDR(s) with biorthogonal residuals or biortho-
IDR(s). In this variant, the freedom in (2.19) and (2.21) is �lled with the
following conditions,

〈gk+m,pi〉 = 0 for i = 1, 2, . . . ,m− 1, (2.23)

and
〈rk+m+1,pi〉 = 0 for i = 1, 2, . . . ,m. (2.24)

The imposition of the conditions (2.23) and (2.24) leads to important changes
with respect the original IDR(s) variant presented in [95]. Firstly, the initial
residual vector in Gj+1 can be written as

rk+1 = (I − ωj+1A)rk, (2.25)

with its approximation
xk+1 = xk − ωj+1rk. (2.26)

There are other simpli�cations for the creation of the subsequent residuals
rj+m in the subspace Gj+1. For example, the coe�cient matrix of system of
linear equations (2.17) becomes a lower triangular matrix, and its right-hand
size vector has zeros in its �rstm entries. For this reason, (2.16) can be written
as

vk+m = rk+m −
s∑
i=k

γigk−m−i, (2.27)

and the direction vectors are expressed as (2.18)�(2.20), selecting the param-
eters αi such that (2.23) holds. Lastly, we can obtain rk+m+1 and with its
corresponding approximation xk+m+1 as

rk+m+1 = rk+m − βmgk+m, (2.28)
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Algorithm 7 IDR(s) with biorthogonal residuals algorithm

1: procedure IDR(A, b, s, x0)
2: Input: A ∈ Cn×n, b ∈ Cn, s ∈ N+, x0 ∈ Cn.
3: P a random matrix in Cn×s.
4: x = x0, r = b−Ax
5: G = 0 ∈ Cn×s, U = 0 ∈ Cn×s.
6: M = Is ∈ Cs×s.
7: ω = 1.0
8: while not convergence do . Loop over Gj spaces
9: f = PHr
10: for k = 1 to s do . Compute s independent vectors gk in Gj space
11: Solve c from Mc = f , (γ1, . . . , γs)

H = c . Note that M = PHG
12: v = r−

∑s
i=k γigi

13: v = B−1v . Preconditioning operation
14: uk = ωv +

∑s
i=k γigi

15: gk = Auk
16: for i = 1 to k − 1 do . Make gk orthogonal to P
17: αi = 〈gk,pi〉/µi,i
18: gk = gk − αigi
19: uk = uk − αiui
20: end for

21: Mi,k = 〈gk,pi〉 for i = k, . . . , s . Update M
22: βk = fk/Mk,k . Make the residual orthogonal to pi for i = 1, . . . , k
23: r = r− βkgk
24: x = x + βkuk
25: if k + 1 ≤ s then
26: fi = 0 for i = 1, . . . , k
27: fi = fi − βkMi,k for i = k + 1, . . . , s
28: end if

29: Overwrite kth columns of G and U by gk and uk respectively.
30: end for . Entering Gj+1

31: v = B−1r . Preconditioning operation
32: t = Av
33: ω is selected using the converge maintenance strategy [103].
34: r = r− ωt
35: x = x + ωv
36: end while

37: Return x.
38: end procedure

and

xk+m+1 = xk+m + βmuk+m. (2.29)

The parameter βm is selected such that 〈rk+m+1,pm〉 = 0, with this selection
of the scalars αi and βi both conditions (2.23) and (2.24) hold. Algorithm 7
shows an implementation of biortho-IDR(s).
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Figure 2.2: Illustration of the finite termination property of IDR(s). The system of
linear equations of size 60× 60 is obtained from the discretization of (2.30). One can
see the drastic reduction in the norms at every 60 + 60/s matrix vector products

2.3.2 Three properties of the IDR(s) method

In this section, we remark three important properties of IDR(s) method,

1. Under the assumptions of Theorem 1, IDR(s) �nds the exact solution
of the linear system of equations Ax = b after n + n/s matrix-vector
products using exact arithmetic (see Corollary 3.2 in [95]). To illustrate
this phenomenon, let us consider the example 6.1 in [95]. The system
of linear equations arises from the discretization of the 1D convection-
di�usion equation

− d2u

dx2
+ w

du

dx
= 0 for x ∈ (0, 1), (2.30)

with the Dirichlet boundary conditions u(0) = u(1) = 1, using central
�nite di�erences with mesh size h = 1

61 , and the convection parameter
w = 61. Figure 2.2 shows the evolution of residual norm as function of
the number of the matrix-vector products. In this �gure, one can see the
drastic reduction of the residual norms, at the points where the �nite
termination of the IDR(s) should occur for the speci�c parameter s.

2. In [89], the authors showed that IDR(s) with biorthogonal residual with
s = 1 is mathematically equivalent to the BiCGStab method.

3. For di�cult problems, IDR(s) outperforms BiCGStab for s > 1, an ex-
ample of this is the convection-di�usion equation in the convection domi-
nated case. In section 2.4, we present several numerical tests to exemplify
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this behavior. Also in section 2.4.3, we present an analysis of the resid-
uals of IDR(s) and BiCGStab in terms of the polynomials of the matrix
A.

2.3.3 Polynomial residual formulas

An important property of the residual formulas in IDR(s) to be used in the
next chapter this dissertation is that any residual vector rk in Gj can be written
as

rk = Ωj(A)Ψ(A)k−jr0, (2.31)

where

Ωj(t) =

j∏
i=0

(1− ωit), ωi 6= 0, i = 1, . . . , j, (2.32)

Ω0(t) = 1, and Ψm(t) is a multi-Lanczos-type polynomial [106] of order m,
that uses s+ 2 terms recurrences such that Ψ0 = 1 (see section 5 in [95]).

2.3.4 IDR(s) as a Petrov-Galerkin method

V. Simoncini and D. B. Szyld showed that IDR(s) can also be viewed as a
Petrov-Galerkin method in [87]. Particularly IDR(s) �nds the approximation
xk+1 in the right or search subspace x0+Kk+1(A, r0), by imposing the condition
that rk+1 is orthogonal to the subspace Wj , de�ned as

Wj = Ωj(A
H)−1Kj(AH , P ), (2.33)

where Ωj(A) is the polynomial de�ned in (2.32), and Kj(AH , P ) is the block
Krylov subspace of order j, associated with the matrix A and the block P .
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2.4 Numerical experiments

In this section, we consider the following simple convection-di�usion-reaction
model problem

− ε4u+ vT∇u+ ρu = f, in Ω = [0, 1]d (2.34)

with d = 2 or d = 3, and Dirichlet boundary conditions u = 0 on ∂Ω. In (2.34),
u represents the concentration of solute, v ∈ Rd is the velocity of the medium
or convection vector, ε > 0 represents the di�usion coe�cient, ρ the reaction
coe�cient, and f represents the source-term function.

We compare the computational behavior of the Induced Dimension Reduc-
tion method (IDR(s)), with other short-recurrences Krylov methods, speci�-
cally the Bi-Conjugate Gradient Method (BiCG), GMRES(m), and Bi-Conjugate
Gradient Stabilized method (BiCGStab) for solving systems of linear equations
derived from the discretization of (2.34). It is well known that the convergence
rate of the Krylov methods is strongly in�uenced by the numerical properties
of the coe�cient matrix A, which depend on the physical parameters of (2.34).
For example, in the convection-dominated case, i.e., ‖v‖ � ε, the coe�cient
matrix A has almost purely imaginary eigenvalues and this can slow down the
convergence of Krylov methods.

All the experiments presented in this section are the discretization of (2.34)
with homogeneous Dirichlet boundary conditions over the unit cube, The right-
hand-side function f is de�ned by the solution u(x, y, z) = x(1−x)y(1−y)z(1−
z). We use as stopping criterion that

‖b−Axk‖
‖b‖ < 10−8.

The discretization of (2.34) using central �nite di�erences may produce
non-physical oscillations in the numerical solution of convection or reaction-
dominated problems. This problem can be solved by discretizing the convection
term using upwind schemes. However, we use central �nite di�erences rather
than upwind discretization in this set of problems, to illustrate the e�ect of
unfavorable numerical conditions for the Krylov subspace solvers.

The experiments presented in this chapter are based on the article:

R. Astudillo and M. B. van Gijzen. The Induced Dimension Reduction method applied
to convection-di�usion-reaction problems. In Numerical Mathematics and Advanced Ap-

plications ENUMATH 2015, B. Karasözen, M. Manguo§lu, M. Tezer-Sezgin, S. Göktepe,
and Ö. U§ur, editors, Cham, ZG, Switzerland, 2016, pages 295�303. Springer .

https://doi.org/10.1007/978-3-319-39929-4_29
https://doi.org/10.1007/978-3-319-39929-4_29
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Figure 2.3: Experiment 2.1. (a) Number of matrix-vector products required to
converge as a function of the parameter ρ for a diffusion-dominated problem. (b)
Comparison of the residual norms. The physical parameters are ε = 1.0, v =
(1.0, 1.0, 1.0)T /

√
3, and ρ = 0.0.

Experiment 2.1. In this example, we consider the parameters ε = 1.0 and v =
(1.0, 1.0, 1.0)T /

√
3. We want to illustrate the e�ect of non-negative reaction

parameter over the Krylov solver, then, we select ρ ∈ {0, 50, . . . , 300}. Figure
2.3 (a) shows the number of matrix-vector multiplication required for each
Krylov method as a function of the reaction parameter ρ. In these problems,
the increment of the reaction parameter produces a reduction in the number
of matrix-vector products required for each Krylov method. All the methods
perform very e�ciently for these examples. Figure 2.3 (b) shows the evolution
of the residual norm for ρ = 0.0. The execution times are: IDR(4) 0.62s,
BiCGStab 0.64s, BiCG 0.92s, and GMRES 2.83s.

Experiment 2.2. In order to illustrate the e�ect of the magnitude of the con-
vection velocity, we consider ε = 1.0, ρ = −50.0, and v = β(1.0, 1.0, 1.0)T /

√
3

with β ∈ {100.0, 200.0, . . . , 800.0}. As the parameter β grows we obtain a
more convection-dominated problem. Figure 2.4 (a) shows how many matrix-
vector products are required for each Krylov method as function of the con-
vection speed. The problem is more convection-dominated as ‖v‖ grows. It is
interesting to remark the linear growth of the number of matrix-vector prod-
uct for BiCGStab. Figure 2.4 (b) shows the evolution of the residual norm
for β = 800.0. The execution times are IDR(4) 1.24s, BiCGStab 5.64s, BiCG
1.01s, and GMRES 3.26s.

Experiment 2.3. Here we use the same set of problems presented in experi-
ment 1, but selecting negative reaction parameters, we consider
ρ ∈ {−300, −250, . . . , −50}. In Figure 2.5 (a), one can see how negative
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Figure 2.4: Experiment 2.2. (a) Number of matrix-vector products required to con-
verge as a function of the convection speed. (b) Comparison of the residual norms.
The physical parameters are ε = 1.0, v = 800.0× (1.0, 1.0, 1.0)T /

√
3, and ρ = −50.0.

reaction parameters generate a considerable increment of the matrix-vector
multiplications needed for solving the corresponding linear system. BiCGStab
performs poorly for large negative reaction parameter. Figure 2.5 (b) shows
the evolution of the residual norm for ε = 1 and ρ = 300.0. The execution
times are: IDR(4) 4.02s, BiCGStab 15.38s, BiCG 3.52 s, and GMRES 28.57s.

2.4.1 IDR(s) and BiCG

Despite being a method that is not drastically a�ected by the increment of the
reaction parameter or the convection speed, BiCG is not the faster method
in terms matrix-vector products required. BiCG requires two matrix-vector
multiplications to produce one new approximation. IDR(4) in most of the ex-
periments requires less matrix-vector multiplication to get the desired residual
tolerance. Only in the highly convection-dominated examples presented in Ex-
periment 2.2, BiCG presents a similar behavior as IDR(4). A discussion of the
phenomena is presented in section 2.4.3.

2.4.2 IDR(s), GMRES, and restarted GMRES

In the numerical experiments presented in the previous section, full GMRES is
the methods that uses less matrix-vector products to obtain the desired residual
reduction. This result is expected because the optimal residual condition of
GMRES. Nevertheless, the computational requirements of full GMRES grow
in every iteration. Restarting GMRES or GMRES(m) is an option to overcome
this issue. The idea of GMRES(m) is to limit to a maximum of m matrix-
vector products, and then restart the process using the last approximation as
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Figure 2.5: Experiment 2.3. (a) Number of matrix-vector products required to con-
verge as a function of the parameter ρ. (b) Comparison of the residual norms. The
physical parameters are ε = 1, v = (1.0, 1.0, 1.0)T /

√
3, and ρ = −300.0.

initial vector. The optimal residual property is lost in this restarted scheme.
In terms of memory consumption, GMRES(m) is equivalent to IDR(s)

when m = 3(s + 1). In order to compare the behavior of GMRES(m) and
IDR(4), we consider the discretization of (2.34) with parameters: ε = 1,
v = (1.0, 1.0, 1.0)T /

√
3 and ρ = 40.0, and we take as restarted parameter

m = 15, 16, . . . , 170. Figure 2.6 shows the number of matrix-vector multipli-
cation required for GMRES(m) for di�erent values of m. GMRES(160) and
IDR(4) solve this system using the same number of matrix-vector products
(262), however, GMRES(160) consumes approximately ten times more mem-
ory than IDR(4). Moreover, CPU time for GMRES(160) is 4.60s while IDR(4)
runs in only 0.79s.

2.4.3 IDR(s) and BiCGStab

One can see in the experiments that BiCGStab performs poorly for convection-
dominated problems. This can be explained throughout the study of the resid-
ual formulas for BiCGStab. BiCGStab uses two matrix-vector products per
iteration, and the residual vector in BiCGStab can be written as

r
(B)
k = Ωk(A)φk(A)r0,

where φk(t) is residual associated with BiCG and Ωk(t) is also known as the
Minimal Residual (MR) polynomial de�ned in (2.32).

The parameter ωk are selected such that ‖r(B)
k ‖ is minimized. However,

for inde�nite matrices or real matrices that have non-real eigenvalues with an
imaginary part that is large relative to the real part, the parameter ωk is close



28 The Induced Dimension Reduction method Chapter 2

20 40 60 80 100 120 140 160

262

1000

3000

6000

IDR(4)

m

M
at
ri
x
-v
ec
to
r
p
ro
d
u
ct
s GMRES(m)

Figure 2.6: (GMRES(m) and IDR(s) comparison) Number of matrix-vector products
required for GMRES(m) as a function of the parameter m.

0 50 100 150 200 250 300 350
10−7

10−4

10−1

102

k

‖Ω
k
(A

)b
‖ 2

(a)

Moderate convection dominated

Highly convection dominated

0 50 100 150 200 250 300 350

10−5

10−4

k

ω
k

(b)

Moderate convection dominated

Highly convection dominated

Figure 2.7: (a) Behavior of the norm of the MR-polynomial Ωk(A). (b) Values of the
parameter ωk.

to zero (see [90]), and the MR-polynomial su�ers from slow convergence or
numerical instability. To illustrate this we show the behavior of the polynomial
Ωk(A) applied to two di�erent matrices from the second set of experiments.
We consider β = 100.0 and β = 800.0 labeled in Figure 2.7 as moderate
convection-dominated and highly convection-dominated respectively.

The convergence of IDR(s) is also a�ected by the convection speed for a
similar reason as was explained for BiCGStab. According to (2.31), the IDR(s)
residual vector rk in the subspace Gj can be written as

r
(I)
k = Ωj(A)ψk−j(A)r0,

where ψk−j(t) is a multi-Lanczos polynomial. For IDR(s) the degree of the
polynomial Ωk(t) increases by one every s+ 1 matrix-vector products, while in
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BiCGStab the degree of the MR polynomial grows by one every two matrix-
vector products (one iteration). For this reason, IDR(s) controls the negative
e�ects of the MR-polynomial when A has complex spectrum or is an inde�nite
matrix.

The bad convergence for convection-dominated problems of BiCGStab has
been observed by several authors, and it has given rise to BiCGStab(`) [88].
This method uses polynomial factors of degree `, instead of MR-polynomial.
A similar strategy has been implemented in IDR(s) which led to the method
IDRstab [92]. For the comparison of the convergence of BiCGStab(`) and
IDRstab with IDR(s) we refer the reader to [92].

2.5 Discussion and remarks

In the �rst part of this chapter, we have presented a historical review of its
evolution, the most important of its variants, its numerical properties, and
implementations.

Throughout the numerical experiments, we have shown that IDR(s) is a
competitive option to solve system of linear equations arising in the discretiza-
tion of the convection-di�usion-reaction equation.

GMRES, BiCG, and IDR(s) exhibit a stable behavior in the most nu-
merically di�cult examples conducted in this work. Despite performing more
matrix-vector products to obtain convergence, IDR(s) consumes less CPU time
than GMRES. We show that for di�usion-dominated problems with a positive
reaction term the convergence of the BiCGStab and IDR(s) are very similar,
and for this kind of problems it is often preferable to simply choose s = 1.
However, for the more di�cult to solve convection-dominated problems, or
problems with a negative reaction term, IDR(s), with s > 1 greatly outper-
forms BiCGStab.





CHAPTER 3

Induced Dimension Reduction method for solving eigenvalue
problems

This chapter presents a new algorithm to compute eigenpairs of large non-
symmetric matrices. Using the Induced Dimension Reduction method (IDR(s)),
we obtain a Hessenberg decomposition, from which we approximate the eigen-
values and eigenvectors of a matrix. This decomposition has two main advan-
tages. First, IDR(s) is a short-recurrence method, which is attractive for large
scale computations. Second, the IDR(s) polynomial used to create this Hessen-
berg decomposition is also used as a �lter to discard the unwanted eigenvalues.
Additionally, we incorporate the implicit restarting technique proposed by D.
C. Sorensen [97], to approximate speci�c portions of the spectrum and improve
the convergence.
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3.1 Introduction

A variety of applications involve the solution of the eigenvalue problem. This
problem consists in �nding a subset of pairs (λ, x) of a matrix A ∈ Cn×n, such
that

Ax = λx,

where λ ∈ C is called eigenvalue, and the nonzero vector x ∈ Cn is its corre-
sponding eigenvector. When the matrix A is large and non-symmetric, solving
the eigenvalue problem becomes computationally challenging.

Methods to approximate a subset of eigenpairs of large non-symmetric ma-
trices are usually based on the construction of a standard Hessenberg decom-
position associated with the matrix A, i. e.,

AUm = UmBm + um+1e
T
m, (3.1)

where Um ∈ Cn×m, Bm is a Hessenberg matrix of order m, um+1 ∈ Cn, and
em is the mth canonical vector, with m being typically much smaller than
n. Under certain conditions, the eigenvalues of the matrix Bm approximate a
subset of eigenvalues of the matrix A.

IDR(s) as a method to compute eigenvalues was �rst studied by M. H.
Gutknecht and J.-P. M. Zemke in [45]. In this chapter, we describe another
way to obtain the eigenvalues using an underlying Hessenberg decomposition
of the form (3.1) from IDR(s). We combine this Hessenberg decomposition
with the implicit restarting technique introduced by D. C. Sorensen [97] for
Arnoldi to approximate the eigenpairs of interest. Additionally, we suggest a
parameter selection for our proposed method which de�nes a �lter polynomial
for the spectrum.

This chapter is structured as follows. In section 2, we present an overview
of the Hessenberg decompositions, which are the basis for large scale eigen-
values/eigenvectors approximation. Section 3 explains how to compute a Hes-
senberg decomposition based on the IDR method. Two techniques to re�ne
the information obtained from the IDR-Hessenberg factorization are discussed
in section 4. In Section 5, we present numerical experiments to illustrate the
behavior of the method proposed.

3.2 Background on Hessenberg decompositions

In (3.1), the columns of the matrix Um represent a basis for the Krylov subspace

Km(A,x) = {x, Ax, A2x, . . . , Am−1x}. (3.2)

The upper Hessenberg matrix Bm is the projection and restriction of the matrix
A on Km(A,x). Projections onto Krylov subspaces are the basis for several
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methods to solve system of linear equations and eigenpairs approximation (see
for example [79, 80]). To compute eigenvalues of large, non-symmetric, and
sparse matrices, the most common options among the Krylov methods are
the Bi-Lanczos [55] and the Arnoldi method [4]. Each of them creates a
di�erent Hessenberg decomposition associated with the matrix A. The Bi-
Lanczos method uses a short-recurrence formulas to create two Hessenberg
tridiagonal decompositions of the form

AVm = VmTm + feTm

and
AHWm = WmT

H
m + seTm,

where em is the mth canonical vector, f and s ∈ Cn, Tm ∈ Cm×m is a tridi-
agonal matrix, the matrix Vm ∈ Cn×m is a basis for Km(A,v1), Wm ∈ Cn×m
is a basis for Km(AH ,w1) and the matrices Vm and Wm are bi-orthogonal
(WH

m Vm = Im). However, despite being an e�cient short-recurrence method,
Bi-Lanczos is numerically unstable (see [69] for a discussion).

Arnoldi method, on the other hand, builds a Hessenberg decomposition

AVm = VmHm + feTm,

where f ∈ Cn and Vm is a matrix with orthogonal columns and represents a
basis for Km(A,v1). This method is widely used to approximate a subset of the
eigenpairs of A; nevertheless, its computational and memory cost increases per
iteration. An option to overcome this issue is to restart the process (see [74]).
Other Hessenberg decompositions to approximate eigenpairs based on Newton
and Chebyshev polynomials can be found in [50, 51, 9, 71].

In the original implementations of IDR(s), the authors do not create ex-
plicitly any Hessenberg decomposition [95, 103]. M. H. Gutknecht and J.-P. M.
Zemke in [45] deduce a generalized Hessenberg decomposition from the IDR(s)
method of the form

AWmUm = WmĤm + weTm,

from which only the eigenvalues values of A are approximated by the solution
of the generalized eigenvalue

Ĥmyi = λiUmyi.

Here the matrices Um and Ĥm are in Cm×m, with Um upper triangular and,
Hm is a Hessenberg matrix. The matrix Wm is not explicitly built.

In the next section, we present an IDR(s)-based Hessenberg decomposition
which generates, in exact arithmetic, the same eigenvalues as the generalized
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Hessenberg decomposition presented in [45]. It is worth remarking two ad-
vantages of the IDR(s) Hessenberg decomposition proposed here. First, we
explicitly build the matrix Wm, and we can approximate the eigenvectors.
Second, the IDR(s) decomposition is of the form (3.1) and this is particularly
suitable to apply the implicitly restarted technique of D. C. Sorensen [97].

3.3 A Hessenberg decomposition based on the IDR(s)
method

This section proposes a method to build a standard Hessenberg decompositions
using the IDR(s) method. First, we review the generalized Hessenberg decom-
position presented in [45], then, we present an equivalent standard Hessenberg
decomposition. A vector wi+1 in Gj , according to [95], can be written as

wi+1 = (A− µjI)

(
wi −

s∑
`=1

c`wi−`

)
, (3.3)

where the s + 1 vectors wi−s, wi−s−1, . . . , wi belong to Gj−1, µj ∈ C with
i

s+1 = j, and the constants c` are obtained from the solution of the s × s
system of linear equations

(PH [wi−s, wi−s+1, . . . , wi−1])c = PHwi.

Using (3.3), we have

Awi = wi+1 + µj+1wi − µj+1

s∑
`=1

c`wi−` +

s∑
`=1

c`Awi−`, (3.4)

or equivalently

Awi −
s∑
`=1

c`Awi−` = wi+1 + µj+1wi − µj+1

s∑
`=1

c`wi−`.

From the latter equation, the authors in [45] propose a generalized Hessen-
berg decomposition

AWmUm = WmHm + weTm,

where Um is an upper triangular matrix and Ĥm is an upper Hessenberg matrix;
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their columns are de�ned as

ui =



0
...
0

−

c1
...
cs


1
0
0
...
0



, and ĥi =



0
...
0

−µj+1

c1
...
cs


µj+1

1
0
...
0


The matrix pencil (Ĥm, Um) is called the Sonneveld pencil. The eigenval-

ues of this pencil are divided into two sets: {µk}tk=1 with t = m−1
s+1 , and the

approximations to the eigenvalues of A or Ritz values {θk}mk=t. We create an
IDR(s)-based standard Hessenberg decomposition of the form (3.1). Setting
Wk = [w1, w2, . . . ,wk], and assuming that Awi−` can be written as a linear
combination of the vectors w1, w2, wi−`, wi−`+1, for i = 1, 2, . . . , i − 1, we
obtain

Awi−` = Wi−`+1hi−`. (3.5)

Combining (3.4) and (3.5), we obtain

Awi = Wi+1hi

where

hi =





0
...
0


−µj+1

c1
...
cs


µj+1

1


+

s∑
`=1

c`hi−`


for i = s+ 1, . . . .m. (3.6)

Applying (3.6) for i = 1, 2, . . . ,m, we obtain a standard Hessenberg decom-
position that we call the IDR factorization

AWm = Wm+1H̄m (3.7)

= WmHm + wm+1e
T
m. (3.8)
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The matrix Wm is a non-orthogonal basis for the Krylov subspace and the
Hessenberg matrix Hm has exactly the same eigenvalues as the matrix Sonn-
eveld matrix pencil (see Figure 3.1 for a comparison of Ritz values obtained
from the IDR factorization, the Sonneveld pencil, and the Arnoldi method).
This result is summarized in the following theorem.

Theorem 2. Matrix Hm, whose columns are de�ned in (3.6), can be written
as

Hm = ĤmU
−1
m

where the matrices (Ĥm, Um) de�ne the Sonneveld pencil proposed in [45].

Proof. (Induction over the columns of Hm). For 1 ≤ i ≤ s + 1, let us assume
a starting standard Hessenberg decomposition for the Sonneveld pencil. As
an inductive step let us assume that Hm×i = Ĥm×iU

−1
i , or if we represent

the columns of the inverse Um as [u−1]i, we can write the previous expression
as hk = Ĥm×k[u

−1]k for 1 ≤ k ≤ i. For k = i + 1, taking into account the
structure of the matrix Um, we obtain that the (i+ 1)th column is

Ĥm×i+1[u−1]i+1 = Ĥm×i+1

(
s∑
`=1

c`[u
−1]i−` + ei+1

)

Using the induction hypothesis, we obtain

Ĥm×i+1[u−1]i+1 =
s∑
`=1

c`hi−` + ĥi+1,

and this is exactly equal to the proposed formula of the (i + 1)th column of
Hm in (3.6).

If we assume that k vectors have been created in Gj , then any linear com-
bination of these is also a vector in Gj . Therefore, we can rewrite this equation
as

wi+1 = (A− µjI)

(
wi −

s∑
`=1

c`wi−`

)
+

k−1∑
`=0

βi−`wi−` (3.9)

The selection of the parameters β's yields di�erent versions of IDR(s). For
example, choosing the parameter β` to impose biorthogonality between the set
of vectors {wi−`}k−1

`=0 and {P`}k`=1 [103], or to make the vector wi+1 orthogonal
to the previous vectors in the subspace [102].

Algorithm 8 outlines the process to create an IDR factorization of size m
in which β`s are selected to orthogonalize the vector in Gj .
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Figure 3.1: Eigenvalues of matrix e05r0500, and Ritz values generated by Arnoldi,
IDR(s = 4) Sonneveld pencil, and our proposed IDR(s = 4).

Algorithm 8 IDR(s) Process applied to a matrix A
1: Given s ∈ N+, P ∈ Cn×s, W ∈ Cn×s+1 and H ∈ Cs+1×s, such that AWs = Ws+1H̄s
2: for i = s+ 1, . . . ,m do

3: if i is multiple of s+ 1 then

4: Choose the parameter µj for the subspace Gj
5: k = 0
6: end if

7: Solve the s× s system of linear equations

(PH [wi−s, wi−s+1, . . . , wi−1])c = PHwi

8: v = wi −
∑s
`=1 c`wi−` . v ∈ Gj−1 ∩ P⊥

9: wi+1 = (A− µjI)v . New vector in Gj
10: Create the i+1th column of H according to (3.6).
11: βi−` = 〈wi+1,wi−`〉 and hi−`,i = hi−`,i + βi−` for ` = 0, 2, . . . , k − 1
12: wi+1 = wi+1 −

∑k−1
`=0 βi−`wi−`

13: βi = ‖wi+1‖ and hi+1,i = βi
14: wi+1 = wi+1/βi
15: Wi+1 = [w1, w2, . . . , wi, wi+1] . Update the IDR factorization
16: k = k + 1
17: end for

The matrix Hm, created by Algorithm 8, is called the Sonneveld matrix
in [45]. At this stage, it is worth commenting on the main di�erences between
the work presented in this chapter and the work in [45]. First, we create a
standard Hessenberg decomposition rather than the Generalized Hessenberg
decomposition proposed in [45]. The standard Hessenberg decomposition is
suitable to apply the implicit restarting technique. Another di�erence is that
by means of our proposed IDR factorization, the eigenvectors of the matrix A
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can be approximated without extra calculations. The authors in [45] remove
the µj values from the spectrum of the Sonneveld pencil (Ĥm, Um); this pro-
cess is called puri�cation and it creates a smaller pencil that only contains the
approximations of the eigenvalues of A. The disadvantage of the puri�cation
process is that the Krylov basis has to be recalculated to approximate eigen-
vectors. The numerical stability di�erence between our proposed method and
the Sonneveld pencil has been recently addressed in [107] by J.-P. M. Zemke.

3.3.1 Operation count and memory consumption

The Arnoldi method, in the mth iteration, requires one matrix-vector multi-
plication and m(m+1)

2 + 1 inner products. For IDR(s), the number of inner
products does not depend on the iteration number m. In Algorithm 8, ev-
ery s+ 1 iterations, performs 3s2+5s

2 + 1, inner products, s+ 1 matrix-vectors
products, and it also requires the solution of s+ 1 systems of linear equations
of order s. All of this indicates that the computational work of IDR(s) does
not grow in every iteration, in contrast to the Arnoldi method. In terms of
computational work, IDR(s) is an intermediate option between Bi-Lanczos and
Arnoldi method.

IDR(s) and Arnoldi have similar memory requirements. In the mth iter-
ation, IDR has to store the Hessenberg matrix H̄m of size (m + 1) ×m, the
matrixWm+1 of size n×(m+1), and additionally the matrix P of size n×s. In
some application, however, where only the eigenvalues are required, the IDR(s)
could be adapted to low memory requirements. IDR(s) would not need to save
all the columns of the matrix Wm; it would only required the last s+ 1 vectors
of Wm+1, the matrix H̄m, and the matrix P .

3.3.2 Approximation of the eigenpairs and stopping criterion

To obtain an approximation of the eigenpairs of the matrix A, we �rst compute
an eigenpair of the small matrix Hm, i. e.

Hmy
(i) = θiy

(i) with ‖y(i)‖ = 1.

Then, setting our eigenpair approximation as (θi, x
(i) = Wmy

(i)), and using
the relation (3.7), we have that

Axi − θixi = AWmy
i − θiWmy

i = wm+1e
T
my

i.

From the previous equation and setting [y(i)]m as the mth component of the
vector y(i), we can obtain the following bound

‖Ax(i) − θix(i)‖ ≤ ‖wm+1‖|[y(i)]m|, (3.10)
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or, if we normalize the vector wm

‖Ax(i) − θix(i)‖ ≤ hm+1,m|[y(i)]m|. (3.11)

However, it is not suitable to use (hm+1,m[y(i)]m) ≤ ε as stopping criterion,
because Wm is not a matrix with orthogonal columns, and consequently, the
norm of this matrix produces scaling e�ects over (3.10). For this reason, we
consider

‖Ax(i) − θix(i)‖
‖Wm‖

≤ ε,

Then we need that
hm+1,m|[y(i)]m|‖Wm‖ ≤ ε.

In this way, we avoid the scaling e�ect of the matrixWm to the residual bound.
Furthermore, it is not necessary to compute the norm ofWm in every iteration.
An observation made in [102] is that if the matrix Wm has m blocks of size
s+ 1 orthogonal vectors then

‖Wm‖ ≤
√
m.

We stop the process when

hm+1,m|[y(i)]m|
√
m ≤ ε. (3.12)

3.3.3 Relation between the Arnoldi and other Hessenberg de-
compositions

In this section, we review the relation between di�erent Hessenberg decompo-
sitions. In particular, we are interested in the di�erence between a Hessenberg
decomposition obtained by Arnoldi and an IDR(s)-Hessenberg decomposition.
Let us assume that after m steps of the Arnoldi method applied to the matrix
A ∈ Cn×n, with an initial vector x ∈ Cn and without breakdown, we obtain
the following Hessenberg decomposition

AVm = VmHm + feTm = Vm+1H̄m. (3.13)

On the other hand, let us consider another Hessenberg decomposition associ-
ated with the matrix A and the same initial vector x

AXm = XmGm + geTm = Xm+1Ḡm, (3.14)

where the columns of the matrix Xm+1 do not form an orthogonal set. One
can relate (3.13) and (3.14) using the reduced QR factorization of the matrix
Xm+1

Xm+1 = Qm+1Rm+1, (3.15)
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and obtain
AQm = Qm+1Rm+1H̄mR

−1
m . (3.16)

Comparing (3.13) and (3.16), we obtain by uniqueness of the Arnoldi Hes-
senberg decomposition (see Theorem 2.4 in [97]), that Qm+1 = Vm+1, and

H̄m = Rm+1ḠmR
−1
m . (3.17)

The latter equation can be rewritten as

Hm = RmGmR
−1
m +

gm+1,m

rm,m
reTm, (3.18)

where r = [ri,m+1]mi=1. Other formulas related to (3.18) can be found in [36]
and [71]. A direct consequence of this equation is that the Ritz values obtained
from an Arnoldi Hessenberg decomposition, and the Ritz values obtained from
a factorization that generates a non-orthogonal Krylov basis, are not the same.
The condition number of the Krylov basis generated Xm, which is at the same
the condition number of Rm, gives an indication how far the eigenvalues of Gm
are from the approximated eigenvalues resulting from the Arnoldi process. To
exemplify this, we consider the following matrix, in Matlab notation

A = sprandn(100, 100, 0.2). (3.19)

In Figure 3.2, we plot the Ritz values obtained by H̄15 generated by Arnoldi,
and the Ritz values obtained by Ḡ15 = R−1

16 H̄15R15. We select randomly three
groups of 10000 matrices R each, with di�erent condition numbers. One can
observe that the Ritz values tend to be more clustered around Arnoldi's Ritz
values, when the condition numbers of the matrices R decrease.

Now, let us turn to the case of IDR(s), we consider again the matrix (3.19),
and we obtain di�erent IDR(s)-Hessenberg decompositions

AW70 = W70H70 + weT70,

for s = 1, 2, 3 . . . , 35. The upper part of Figure 3.3 shows the evolution
of the condition number of the matrix W70 generated by IDR(s), when the
value s increases. One can observe how the condition number ofW70 decreases
while parameter s increases. Despite the high condition numbers of the ma-
trices W70, IDR(s) generates, in this experiment, a good approximation of the

largest magnitude Ritz value λ(A)
1 generated by Arnoldi (see lower Figure 3.3).

This analysis suggests that the Ritz values of largest magnitude, generated by
IDR(s), are closer to some of the Ritz values generated by Arnoldi when we
select large values of s. In [94], P. Sonneveld drew a similar conclusion for
IDR(s) in the context of solving systems of linear equations; using stochastic
analysis, he related the behavior of the Arnoldi-based method GMRES [81]
and IDR(s) when s tends to in�nity.



Section 3.4 Re�ning the spectral information 41

Figure 3.2: For the matrix (3.19), we plot the Ritz values of H̄10 generated by
Arnoldi (yellow dots) and the Ritz values of matrices G10 (blue dots), where
Ḡ10 = R−1

11 H̄10R10, Matrices R are generated randomly in three groups. In each
group, the matrices R have a fixed condition number.

.

3.4 Re�ning the spectral information

In some applications it is important to �nd eigenvalues and their correspond-
ing eigenvectors in a speci�c region of the complex plane. For example, the
eigenvalues with largest real part for stability analysis, or the nearest eigen-
values to a given point for vibration analysis. For this reason, we implement
two techniques to re�ne the spectral information obtained from the Hessenberg
relation described in the previous section.

3.4.1 A polynomial �lter based on the selection of the param-
eters µj

The explicit restart is one of the �rst ideas to restart a Hessenberg decom-
position [74]. This is based on initiating the process with an improved initial
vector. The new initial vector can be a linear combination of the approximated
wanted eigenvectors, or a vector of the form

v+
1 = pk(A)v1, (3.20)
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Figure 3.3: Upper: condition number of the matrix W70 generated by IDR(s) as
function of s. Lower: difference between the largest magnitude Ritz values generated
by Arnoldi (λ(A)

1 ) and IDR(s) (λ(I)1 ) as function of the value s.

where pk is a polynomial which ampli�es the components of v1 toward the
desired eigenvectors and reducing those in the remaining eigenvectors (see [76]).
The polynomial pk is called a �lter polynomial. An example of the form of pk
might be

pk(t) = (t− ω1)(t− ω2) . . . (t− ωk). (3.21)

Di�erent options to select the parameter {ωi}ki=1 have been studied in [76], [97],
and [62].

For IDR(s), the authors prove in [95] that every vector in the subspaces Gj
satis�es

wk = Ψm−j(A)Ωj(A)w1, where Ωj(t) = (t−µ1)(t−µ2) . . . (t−µj), (3.22)

and Ψm−j(A) is a polynomial of degreem−j and its coe�cients are fully deter-
mined by the IDR(s) procedure. The vectors {wi}mi=1 also form the Krylov sub-
space basis in (3.7). There is an analogy between (3.20) and (3.21), and (3.22).
We exploit this fact by applying the polynomial Ωj as a polynomial �lter. This
idea is similar to the one presented by Saad in [76]. We select the parameters
µi in (3.22) to minimize the in�nity norm of Ωj in the area where the unwanted
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eigenvalues are localized. This is achieved by choosing µi as the Chebyshev
nodes on the interval [l, u], where l and u are the foci of the ellipse that en-
closes the unwanted portion spectrum of the matrix Hm (see Figure 3.4). The
polynomial �lter Ωj(A) is not �xed. The degree of the polynomial Ωj(A) grows
when the IDR process creates vectors in a new subspace Gj . We stress that
the IDR polynomial �lter is implicitly applied to the vector wk: it does not
require any additional computation; it is achieved by a special choice of the
parameters µj .

Figure 3.4: Select µj to minimize the norm of the IDR polynomial (3.22) in the
ellipse which encloses the unwanted eigenvalues.

3.4.2 Implicitly restarting

The most successful variant to approximate subsets of eigenvalues and their
corresponding eigenvectors of large and sparse matrices is the Implicitly Restarted
Arnoldi Method (IRAM) proposed by D. C. Sorensen in 1992. This method is
also the basis for the software package ARPACK [58]. The idea is to truncate
the Hessenberg decomposition by removing the uninteresting part of the spec-
trum using QR steps. After this truncation, the Hessenberg decomposition is
expanded to improve the Ritz values and Ritz vectors in the direction of the
wanted portion of the spectrum.
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The main idea of the implicit restart is to apply orthogonal transformations
to the Hessenberg decomposition to reorder the Ritz values. To illustrate this,
let us consider a Hessenberg decomposition of size m+ 1

AZm+1 = Zm+1Hm+1 + zm+2e
T
m+1, (3.23)

and suppose that λ is an unwanted Ritz value (it is also called exact shift).
Consider the orthogonal matrix Q and the upper triangular matrix R, such
that

Hm+1 − λI = QR.

If we multiply (3.23) by Q on the right, and de�ne Ĥm+1 = QTHm+1Q, and
Ẑm+1 = Zm+1Q, we obtain

AẐm+1 = Ẑm+1Ĥm+1 + zm+2e
T
m+1Q.

Now, if we discard the vectors ẑm+2, and truncate the matrix Ẑm+1 to m
columns, we obtain a new Hessenberg decomposition of size m

AẐm = ẐmĤm + ẑm+1e
T
mQ.

which does not contain the unwanted Ritz value λ.
The implicitly restarted Arnoldi has been analyzed in di�erent works for

example: [57], [62], and [56]. Another variant of implicit restarting using the
Schur factorization was proposed by Stewart in [98], and a new implementation
was recently proposed by Bujanovi¢ and Drma£ in [21].

In the context of an IDR factorization, we implement the implicit restarting
technique taking advantage of the input parameter of Algorithm 8. After the
creation of an IDR factorization of sizem, we discard the unwanted Ritz values
using the implicit restarting technique, and then we truncate it to obtain a new
Hessenberg factorization of size s which is the input parameter of the iterative
process. The value of s should be greater or equal than the number of wanted
eigenpairs. Algorithm 9 outlines the IDR(s) with implicit restarting.

Algorithm 9 Implicit restarting of an IDR factorization
1: Given an initial Hessenberg relation of size s. The value of s should be greater or equal

to the number of wanted eigenvalues and m > s.
2: Expand the initial factorization using Algorithm 8, to obtain the IDR factorization of

size m:
AWs = WsHs + ws+1e

T
s → AWm = WmHm + wm+1e

T
m

3: Reorder the IDR factorization, using as a shift λ ∈ {µ1, . . . , µj} ∪
{the unwanted eigenvalues}.

4: Truncate the IDR factorization to obtain the new Hessenberg relation of size s in which
the unwanted Ritz values where eliminated.

5: Test for convergence. If no convergence go to 2 with the new Hessenberg relation else
return
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3.5 Numerical experiments

In this section, we present six numerical experiments to illustrate the compu-
tational performance of the IDR(s) for eigenvalues computations. First, we
compare the basic IDR (Algorithm 8) with the basic Arnoldi. In the other
experiments, we compare the implicitly restarted version of IDR and Arnoldi.
All the experiments were executed using Matlab 8.0 (R2012b) on a computer
with an I7 Intel processor 2.4GHz, 4GB of RAM memory.

In the case of the parameter selection for IDR(s) with implicit restart, we
select s as the number of wanted eigenvalues, and the parameter m is selected
as 2× s. P ∈ Rn×s is a random matrix with orthogonal columns. The initial
guess is selected randomly and we use this vector as initial guess in both IDR
and IRAM. In the �rst iteration the initial Hessenberg factorization for IDR(s)
of size s is computed using the Arnoldi method. The selection of the parameter
µj is discussed in Section 4.1. We adapt the formula (3.12) for IDR(s) with
implicit restart for multiple eigenpairs in the following way

hm+1,m max
1≤i≤s

|[y(i)]m|
√
m ≤ ε.

where ε = 10−10‖A‖F .
From the second to the sixth experiment, we compare the CPU time of

IDR(s) with implicit restart implemented in Matlab and two implementations
of IRAM: the �rst one is a Matlab interpreted code and the second one is the
built-in command eigs. The command eigs is an interface for the ARPACK's
FORTRAN-native-code. Therefore, in most of the experiments the command
eigs produces the shortest CPU time, when this is compared with other native
Matlab codes.

Experiment 3.1. We consider a random sparse matrix of dimension 1000.
This matrix is generated in Matlab using the following command†

A = sprandn(1000,1000,0.1);

We compare the basic versions of IDR(s = 10) and Arnoldi to �nd the eigen-
value of A with largest module λ = −10.0581 + 0.27421i. The parameters µj
and P for IDR are selected randomly. Figure 3.5 shows the evolution of the
absolute error for each algorithm.

We stop the algorithms when the absolute error is smaller than 10−10.
The Arnoldi method takes 244 matrix-vector multiplications to obtain the
desired reduction in the absolute error, while IDR(s = 10) uses 324 matrix-
vector multiplications. The execution time for Arnoldi is 0.184 seconds and
for IDR(s = 10) is 0.09 seconds.

†Using the default values for the random number generator with the command
rng('default').
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Figure 3.5: Experiment 3.1. Evolution of the absolute error between λ = −10.0581 +
0.27421i and its approximations λ̂ obtained from Arnoldi and IDR(s = 10).

Method Restarts Time (sec.) Residual bound Max. di�. from eigs

IRAM(k = 15,p = 32) 141 1.19 5.86× 10−09 6.70× 10−14

IDR(s = 15,m = 32) 91 0.80 3.70× 10−09 2.41× 10−08

IDR(s = 15,m = 48) 34 0.77 2.49× 10−09 1.83× 10−08

Time eigs command: 0.72 sec.

Table 3.1: Experiment 3.2. Comparison between IRAM and IDR target: the 15 right
most eigenvalues

Experiment 3.2. As the second example, we consider the Toeplitz tridiagonal
matrix

A = gallery('tridiag',n,-1,2,-1)

of order 1000. Table 3.1 shows the comparison between IRAM and the im-
plicitly restarted IDR to compute the 15 largest algebraic eigenvalues of this
matrix. Figure 3.6 shows the absolute error of the methods computing the
largest eigenvalue of this matrix λ = 2 + 2 cos( π

1001) in 85 implicit restarting
cycles.

Experiment 3.3. We consider the real non-symmetric matrix CK656 from the
collection Non-Hermitian Eigenvalue Problem [8]. In this example we compute
the 24 eigenvalues with largest module [8]. Table 3.2 shows the comparison of
IRAM and the implicitly restarted IDR.
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Figure 3.6: Experiment 3.2. Evolution of the absolute error between λ = 2 +
2 cos( π

1001 ) and its approximations λ̂ obtained from IRAM and the Implicitly restarted
IDR(s = 15).

Method Restarts Time (sec.) Residual bound Max. di�. from eigs

IRAM(k = 24,p = 50) 19 0.31 4.83× 10−10 5.21× 10−15

IDR(s = 24,m = 50) 20 0.35 1.69× 10−13 1.62× 10−12

IDR(s = 24,m = 75) 8 0.34 1.31× 10−09 2.29× 10−09

IDR(s = 24,m = 100) 6 0.58 1.13× 10−09 9.55× 10−13

Time eigs command: 0.17

Table 3.2: Experiment 3.3. Comparison between IRAM and IDR asked for the 24
leftmost eigenvalues

Experiment 3.4. In the fourth experiment, we compute 12 of the largest
magnitude eigenvalues of the matrix AF23560 from the Non-Hermitian Eigen-
value Problem Collection (NEP) [8]. AF23560 is a real non-symmetric matrix
of order 23560. Table 3.3 presents the comparison between IRAM and the
implicitly restarted IDR with di�erent parameter selection.

Experiment 3.5. We consider the real non-symmetric matrix HOR131 of di-
mension 434×434. We aim to compute the 8 eigenvalues with largest real part.
Table 3.4 shows the results obtained from IRAM and di�erent parameters of
the implicitly restarted IDR.

Experiment 3.6. In the sixth experiment, we consider the matrix that arises
from the �nite di�erence discretization of the 2D Schrödinger equation. This
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Method Restarts Time (sec.) Residual bound Max. di�. from eigs

IRAM(k = 12,p = 26) 6 0.64 2.78× 10−08 4.74× 10−14

IDR(s = 12,m = 26) 7 0.47 7.23× 10−08 1.72× 10−10

IDR(s = 12,m = 39) 3 0.44 2.23× 10−07 9.74× 10−09

IDR(s = 12,m = 53) 2 0.54 7.66× 10−07 2.48× 10−09

Time eigs command: 0.26

Table 3.3: Experiment 3.4. Comparison between IRAM and IDR asked for the 12
eigenvalues of largest magnitude

Method Restarts Time (sec.) Residual bound Max. di�. from eigs

IRAM(k = 8,p = 18) 6 0.03 2.19× 10−13 4.54× 10−15

IDR(s = 8,m = 18) 13 0.06 4.46× 10−11 8.05× 10−10

IDR(s = 8,m = 27) 7 0.19 1.38× 10−10 2.65× 10−10

IDR(s = 8,m = 36) 3 0.04 8.23× 10−13 1.70× 10−09

Time eigs command: 0.02

Table 3.4: Experiment 3.5. Comparison between IRAM and IDR asked for the 8
eigenvalues of largest real

equation models the energy levels of the con�ned hydrogen atom, and is given
by

−4u(x, y)− 2u(x, y)

‖(x, y)‖ = λu(x, y) (x, y) ∈ (−16, 16)× (−16, 16) ,

with homogeneous Dirichlet boundary conditions. We use a nonuniform mesh
re�ned near the origin and obtain a matrix of size 44100 × 44100. We are
interested to approximate the 16 leftmost eigenvalues. We apply IRAM and
the Implicitly Restarted IDR to the matrix (A − σI)−1, where σ = −2.1.
Table 3.5 shows the comparison between these two methods.

Method Restarts Time (sec.) Residual bound Max. di�. from eigs

IRAM(k = 16,p = 34) 10 11.19 2.69× 10−11 2.06× 10−11

IDR(s = 16,m = 34) 12 11.88 9.73× 10−11 6.01× 10−08

IDR(s = 16,m = 50) 6 12.6 2.25× 10−11 1.72× 10−09

Time eigs command: 2.92

Table 3.5: Experiment 3.6. Comparison between IRAM and IDR asked for the 16
leftmost eigenvalues
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3.6 IDR(s) to solve the Quadratic Eigenvalue Prob-
lem

In this section, we are interested in applying the Induced Dimension Reduction
method to solve the Quadratic Eigenvalue Problem (QEP). The QEP is de�ned
as �nding a subset of pairs (λ, x), where λ ∈ C and x ∈ CN , such that

(λ2M + λD +K)x = 0, (3.24)

where M , D, and K are (sparse) matrices of order n often referred as mass,
damping, and sti�ness matrices, respectively. The QEP appears in di�erent
areas as vibration analysis, dynamical systems, or stability of �ows in �uid
mechanics (see [99] and their references therein). One of the most common
options to solve the quadratic eigenvalue problem (3.24) is to linearized it to
an standard eigenvalue problem. First, problem (3.24) can be written as a
generalized eigenvalue problem, i.e.,

Cy = λGy, (3.25)

where

C =

[
−D −K
I 0

]
, and G =

[
M 0
0 I

]
.

Second, if the matrix M is not singular, (3.25) can be rewritten as standard
eigenvalue problem

Ay = λy, (3.26)

with

A =

[
−M−1D −M−1K

I 0

]
. (3.27)

It is easy to check that the eigenvectors of A and the eigenvectors of (3.24)
are related by

yi =

[
λixi
xi

]
.

Then, one can apply any eigensolver software for the standard eigenvalue (3.26)
and obtain approximate solutions of the quadratic eigenvalue problem (3.24).
This approach has two main disadvantages. First, it solves a standard eigen-
value problem of double the dimension of the original quadratic eigenvalue
problem. Second, some properties of the matrices M , D, and K are lost dur-
ing the linearization; for example, matrices M , D and K can be symmetric
positive de�nite (SPD) matrices but the matrix A does not keep the SPD
property.

To overcome the disadvantages of using the linearization (3.26), the authors
in [10] propose a method called Second Order Arnoldi (SOAR), which is a
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modi�cation of the Arnoldi method [4]. By exploiting the block structure
of the matrix A, the SOAR method uses approximately half of the memory
of the classical Arnoldi method applied to problem (3.26). Also and more
importantly, this method preserves essential structures and properties of the
matrices involved.

The Arnoldi method has as main drawback its demanding computational
requirements. For this reason, we study the Induced Dimension Reduction
Method for eigenvalue problem, presented in the previous sections, to solve
the Quadratic Eigenvalue Problem as an alternative to the Arnoldi method.

3.6.1 Second order IDR(s)

One can exploit the block structure of the 2n× 2n matrix A in (3.27) for the
creation a standard Hessenberg relation. Let us consider (3.7), with the matrix
Wm rewritten in two block matrices of size n×m as

Wm =

[
W

(U)
m

W
(L)
m

]
,

Then (3.7) can be written as

−M−1DW (U)
m −M−1KW (L)

m = W (U)
m Hm + w

(U)
m+1e

T
m (3.28)

W (U)
m = W (L)

m Hm + w
(L)
m+1e

T
m. (3.29)

From (3.29), and assuming that the �rst column vector (w1) of the matrixWm

has the following pattern

w1 =

[
u
0

]
, with u 6= 0 ∈ Rn,

we have (using the Matlab subindex notation)

W (U)
m = W

(L)
m+1H̄m = W

(L)
m+1(:, 2 : m+ 1)H̄m(2 : m+ 1, 1 : m). (3.30)

The equation (3.28) can be rewritten as

−M−1DW (U)
m −M−1KW (U)

m Tm = W (U)
m Hm + w

(U)
m+1e

T
m, (3.31)

where

Tm =

[
0 H̄m(2 : m, 1 : m− 1)−1

0 0

]
. (3.32)

Equations (3.31) and (3.32) suggest a formula to compute the column vectors

of the matrix W
(L)
m as a linear combination of the column vector of W (U)

m .
Algorithm 10 shows a possible implementation of these ideas. This method
needs only half of the memory
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Algorithm 10 SOIDR(s) for solving the QEP.
1: Given s ∈ N+, P ∈ Cn×s, M, D, and K.
2: Run SOAR to obtain W ∈ Cn×s+1 and H ∈ Cs+1×s, s.t.

A

[
W (U)

W (L)

]
s

=

[
W (U)

W (L)

]
s+1

H̄s.

3: Ts = H̄s(2 : s, 1 : s− 1)−1

4: for i = s+ 1, . . . ,m do

5: if i is multiple of s+ 1 then

6: Choose the parameter µj for the subspace Gj .
7: end if

8: Solve (PH [w
(U)
i−s, w

(U)
i−s+1, . . . , w

(U)
i−1])c = PHw

(U)
i .

9: v = w
(U)
i −

∑s
`=1 β`w

(U)
i−`.

10: Compute the latest column of W (L)
i as v(L) using (3.30) and (3.9).

11: w
(U)
i+1 = −M−1(Dv +Kv(L))− µjv.

12: Create the ith column of H according to (3.6).
13: Update Ti using (3.32).
14: W

(U)
i+1 = [w

(U)
1 , w

(U)
2 , . . . , w

(U)
i , w

(U)
i+1].

15: end for

16: Compute the eigenpairs {(λi, zi)}mi=1 s.t. Hmzi = λizi.

17: return {(λi, W (U)
m zi)}mi=1.

Method Time [s]
SOAR 3.67

SOIDR(4) 3.78
IDR(4) 2.41

Table 3.6: Experiment 3.8. Execution time comparison for SOAR, SOIDR(4), and
IDR(4) after 40 matrix vector products.

3.6.2 Numerical experiments

Experiment 3.7. The purpose of this example is to compare the convergence
of Arnoldi, SOAR, and SOIDR for the exterior eigenvalues of the QEP. The
matrices M , D, and K are random sparse of order 400. Figure 3.7 shows a
comparison between the errors of the Ritz values generated by Arnoldi, SOAR,
and SOIDR(4) or 35 Ritz values after 40 matrix vector products.

Experiment 3.8. In our second experiment we measure the execution times
for SOAR, SOIDR(4), and IDR(4) for eigenvalues [5]. We only compute a
set of 10 the eigenvalues of (3.24) and the matrices M , D and K are random
matrices of size 6000×6000. Table 3.6 shows the CPU times for each method.

Experiment 3.9. This example was presented in [91], and models the propa-
gation of sound waves in a room with �ve solid walls and one wall of a sound-
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Figure 3.7: Experiment 3.7. Convergence for 35 Ritz values after 40 matrix vector
products. One can see a similar convergence behavior, however some Ritz values of
the SOIDR(4) have a larger error.

absorbing material
λ

c2
p−4p = 0 in [−2.0, 2.0]3 (3.33)

where c is the speed of sound (340 meter/second) and the boundary conditions
are

∂p

∂n
= 0 for the solid walls, (3.34)

and
∂p

∂n
= − λ

cZn
p for the absorbing wall. (3.35)

Selecting an impedance Zn = 0.2− 1.5i, this problem has an analytical eigen-
value −5.19 + 217.5i. We discretized (3.33)�(3.35) using �nite element and
obtain matrices of order 1681. Figure 3.9 shows the evolution of the error of
the Ritz values generated by SOAR and SOIDR(2).

3.7 Discussion and remarks

This chapter has introduced an algorithm to compute eigenpairs of large matri-
ces using a Hessenberg decomposition based on the IDR(s) method. The main
advantage of the proposed Hessenberg decomposition is its low computational
cost since it only uses recurrences of size s + 1. We have implemented two
techniques to re�ne the spectral information obtained. The �rst technique is
based on the parameter selection for our proposed algorithm and the second
technique is Sorensen's implicitly restart.
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Figure 3.8: Experiment 3.7. (a) Exterior eigenvalues and their approximation by
SOAR. (b) Exterior eigenvalues and their approximation by SOIDR(4).
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Figure 3.9: Experiment 3.9. Error convergence for SOAR and SOIDR(2) to the known
eigenvalues λ∗ = −5.19 + 217.5i.

The Krylov subspace basis created by our IDR-Hessenberg decomposition is
only locally orthogonal, which might have a negative e�ect on the convergence
speed or numerical stability. However, IDR(s) for eigenvalues shows competi-
tive performance with respect to IRAM in the numerical examples presented
in this chapter. This interesting fact, in conjunction with the computational
e�ciency to compute the IDR-Hessenberg factorization, can also be exploited
in applications when only the eigenvalues are required.

We have also developed a second order IDR algorithm (SOIDR) based on
the ideas underlying SOAR. In contrast to IDR for the standard eigenvalue
problem, SOIDR is not short recurrence. The memory requirements of SOIDR
are comparable to that of SOAR. In our numerical test about solving QEP,
SOAR exhibits a faster convergence, and is therefore the preferred method.





CHAPTER 4

Accelerating the Induced Dimension Reduction method using
spectral information

The Induced Dimension Reduction method (IDR(s)) is a short-recurrences
Krylov method to solve systems of linear equations. In this chapter, we ac-
celerate this method using spectral information. We construct a Hessenberg
relation from the IDR(s) residual recurrences formulas, from which we approx-
imate the eigenvalues and eigenvectors. Using the Ritz values, we propose a
self-contained variant of the Ritz-IDR(s) method [87] for solving a system of
linear equations. In addition, the Ritz vectors are used to speed-up IDR(s) for
the solution of sequence of systems of linear equations.

4.1 Introduction

In this chapter, we are interested in accelerating the convergence of the In-
duced Dimension Reduction method (IDR(s)) [95] to solve a system of linear

This chapter is based on the article:

R. Astudillo, J. M. de Gier, and M. B. van Gijzen. Accelerating the Induced Dimension
Reduction method using spectral information. Technical Report 17-04, Delft Unversity
of Technology, Delft Institute of Applied Mathematics, Delft, ZH, The Netherlands,
2017 .
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equations
Ax = b, with A ∈ Cn×n and b ∈ Cn, (4.1)

and also to solve sequences of systems of linear equations

Ax(i) = b(i), with A ∈ Cn×n and b(i) ∈ Cn, for i = 1, 2, . . . , p. (4.2)

The vectors x, x(1), . . . ,x(p) represent the unknowns in Cn, and we only con-
sider the case when the coe�cient matrix A is a non-Hermitian and non-
singular matrix.

IDR(s) is a Krylov subspace method which has been proved to be e�ec-
tive for solving large and sparse systems of linear equations. Both theoreti-
cal and practical aspects of the IDR(s) have been studied in di�erent works,
e.g., [87], [49], [103], [23], and [94] among others. Simoncini and Szyld refor-
mulate IDR(s) as a Petrov-Galerkin method in [87]. The authors prove that
in IDR(s) the subspace of constraints or left space is a block rational Krylov
subspace. Based on this connection with the rational subspaces, they propose
to use the Ritz values to accelerate the convergence of IDR(s). This idea orig-
inates Ritz-IDR(s), which is an e�ective IDR(s) variant to solve systems of
linear equations (4.1) where the spectrum is highly complex.

To obtain a subset of the Ritz values, Ritz-IDR(s) requires a preceding
call to an external sparse eigensolver routine, for example the Arnoldi method
[4] or Bi-Lanczos method [55]. In the �rst part of this chapter, we present a
self-contained version of the Ritz-IDR(s), i. e., a Ritz-IDR(s) variant that does
not require an external call to an eigensolver routine. We compute the upper
Hessenberg matrix Hm from a Hessenberg relation as

AWm = WmHm + feTm, (4.3)

during the �rst iterations of IDR(s). Then, we obtain the Ritz values from the
matrix Hm, and use them as input parameter of the subsequent iterations of
IDR(s).

In the second part of this chapter, we apply IDR(s) to solve sequences
of systems of linear equations (4.2). We only consider the case when the
coe�cient matrix does not change and the right-hand side vectors {b(i)}pi=1 are
not available simultaneously. This kind of problems arises naturally from the
discretization of linear time-dependent di�erential equations and the solution
of systems of non-linear equations using modi�ed Newton-type methods with
constant Jacobian matrix.

Subspace recycling is a common technique to accelerate the Krylov method
(see for example [61], [25], and [1] among others). This process consists of
approximating invariant subspaces or calculating a �good� Krylov subspace
basis and use this information to save matrix-vector products at the solution
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of the system of linear equations. For methods as GMRES [81] and GCR [32]
the recycling idea has been incorporated to accelerate the solution of a single
linear system of equations in [61] and [25] respectively. In the case of solving
sequences of systems of linear equations, these methods have been adapted in
[68] and [67]. Also, other Krylov methods have been adapted to solve sequences
of systems of linear equations, for example BiCG in [2], GMRES(m) in [67],
and IDRstab in [66].

GCROT [68] and GMRES are long-recurrences methods, with an optimal
residual minimization property, but also these methods can be expensive in
terms of memory and CPU consumption. For this reason, we propose an
IDR(s) variant, that is a short-recurrences and memory-limited method to
solve (4.2). First, we show how to obtain Ritz values and Ritz vectors from
IDR(s) for solving a system of linear equations. Second, we present how to
enrich the searching subspace of IDR(s) with the Ritz vectors. Finally, we
apply IDR(s) with the Ritz vectors to solve sequences of linear equations as a
main application of this enrichment.

This chapter is organized as follows. A review of IDR(s) and its recurrences
is presented in the second section. In section 3, we present an IDR(s) variant
to solve system of linear equations. We present how to obtain an underlying
Hessenberg relation from the IDR(s) residual recurrences. This allows us to
�nd approximation to the eigenvalues of the coe�cient matrix involved. This
eigenvalues approximations are used to accelerate the IDR(s) method. Sec-
tion 4.3.1 shows the numerical examples related to the solution of system of
linear equations. In section 4, we explain how to add the Ritz vectors to the
initial searching space of IDR(s) to save computational e�ort. As a main ap-
plication of this idea, we apply IDR(s) to solve a sequence of system of linear
equations. Using the Hessenberg relation deduced in section 3, we compute a
set of Ritz vectors during the solution of the �rst system of linear equation.
These Ritz vectors are used to accelerate the subsequent systems of linear
equations. Numerical experiments for the solution of a sequence of systems of
linear equations using IDR(s) are presented in section 4.4.2. In section 5, we
present the general conclusions and remarks.

4.2 Review on IDR(s)

In this section, we �rst review the recurrence formulas of IDR(s) for solving
a system of linear equations, and then we discuss the work of Simoncini and
Szyld in [87].

The Induced Dimension Reduction method is based on the following the-
orem. The main idea is to create approximation vectors xm such that their
corresponding residual vectors rm = b−Axm belong to the nested and shrink-
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ing subspaces Gj . IDR(s) creates s + 1 residual vectors in Gj , and uses those
vectors for the creation of the s+ 1 subsequent residuals in Gj+1. This process
is repeated iteratively until convergence.

Our implementation of IDR(s) is based on IDR(s) with biorthogonal resid-
uals (see [103]). In practice, this variant has proved to be more stable, and
is also slightly less expensive. Next, we present the recurrences used by this
IDR(s) variant. For sake of simplicity, we introduce new notation. The sub-
space S is represented by the left null space of some full-rank n × s matrix
P = [p1, . . . ps] (called shadow space). The superindex of a vector or a scalar
represents the number of subspace Gj where the current residual belongs. The
subindex represents the position in the sequence of intermediate residuals. For
r

(j)
k represents the kth residual in Gj . The �rst residual vectors in Gj+1 and its
respective approximation are

x
(j+1)
0 = x(j)

s + ωj+1r
(j)
s ,

and
r

(j+1)
0 = (I − ωj+1A)r(j)

s , (4.4)

and the recurrences to create the intermediate residuals in Gj+1, are

x
(j+1)
k = x

(j+1)
k−1 + β

(j+1)
k u

(j+1)
k ,

and
r

(j+1)
k = r

(j+1)
k−1 − β

(j+1)
k g

(j+1)
k , for k = 1, 2, . . . , s. (4.5)

The scalar β(j+1)
k is selected such that

〈r(j+1)
k ,pk〉 = 0. (4.6)

The direction vectors are de�ned as

u
(j+1)
k = û

(j+1)
k −

k−1∑
i=1

α
(j+1)
i u

(j+1)
i , (4.7)

and

g
(j+1)
k = ĝ

(j+1)
k −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i , (4.8)

where the vector û(j+1)
k and ĝ

(j+1)
k are

ĝ
(j+1)
k = Aû

(j+1)
k , (4.9)
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û
(j+1)
k = ωj+1

(
r

(j+1)
k−1 −

s∑
i=s−k

γ
(j+1)
i g

(j)
i

)
+

s∑
i=s−k

γ
(j+1)
i u

(j)
i . (4.10)

The scalars {α(j+1)
i }k−1

i=1 in (4.7) and (4.8) are selected, such that

〈g(j+1)
k ,pi〉 = 0 for i = 1, . . . , k − 1, (4.11)

and the scalars {γi}si=k in (4.10) are selected as

〈
r

(j+1)
k−1 −

s∑
i=k

γ
(j+1)
i g

(j)
i ,pj

〉
= 0. (4.12)

The conditions (4.6), (4.11), and (4.12) not only ensure that the residual r(j+1)
k

belongs to Gj+1, but also, that the residual r
(j+1)
k is orthogonal to the vectors

p1, p2, . . . , pk for k = 1, 2, . . . , s.
An important property needed for the deduction of the IDR(s)-Hessenberg

relation to be presented in the section 4.3, is that for any IDR(s) variant a
residual in Gj can be also written as

r
(j)
k = Ωj(A)Ψ(A)s×j+kr0, (4.13)

where

Ωj(t) =

j∏
i=0

(1− ωit), ωi 6= 0, i = 1, . . . , j, (4.14)

Ω0(t) = 1, and Ψm(t) is a multi-Lanczos-type polynomial [106] of order m,
that uses s+2 terms recurrences such that Ψ0 = 1 (see section 5 in [95]). When
the �rst residual vector is created in Gj+1, the polynomial Ωj(A) increases by
one degree. Then, the degree of the polynomial Ψm(A) is increased by one
for each matrix-vector product during the creation of the others intermediate
residuals.

4.2.1 IDR(s) as a Petrov-Galerkin method and Ritz-IDR(s)

As we mention in the introduction of this chapter, Simoncini and Szyld showed
that IDR(s) can be viewed as a Petrov-Galerkin method in [87]. Particularly
IDR(s) �nds the approximation xk+1 in the right or search subspace x0 +
Kk+1(A, r0), by imposing the condition that rk+1 is orthogonal to the subspace
Wj , de�ned as

Wj = Ωj(A
H)−1Kj(AH , P ), (4.15)
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where Ωj(A) is the polynomial de�ned in (4.14), and Kj(AH , P ) is the block
Krylov subspace of order j, associated with the matrix A and the block P .

This link between IDR(s) and the rational block subspaces leads to the
development of the variant Ritz-IDR(s). The authors in [87] argue that se-
lecting the scalars ωj as the inverse of Ritz values of the coe�cient matrix
A, is a good choice for the creation of the left space Wj . This selection en-
riches the left subspace with information about the associated eigencompo-
nents. This would damp the eigenvector components from the residual vector
in a quick way, which leads to a faster convergence. The Ritz values required
are computed with a call to an eigenvalue routine as the Arnoldi method.
Note that Ritz-IDR(s) might require complex arithmetics even when the ma-
trix and right-hand size vector are real, in the case when complex Ritz values
are encountered.

In the following section we present how to obtain an Hessenberg relation
from the IDR(s)-recurrences. Using this Hessenberg relation, we can obtain
approximations to the eigenvalues of the coe�cient matrix, and in this form
we obtain a self-contained variant of the Ritz-IDR(s). To distinguish it, we
label our algorithm as SC-Ritz-IDR(s).

4.3 Part 1: Accelerating IDR(s) using the Ritz val-
ues

IDR(s) has been previously used to obtain spectral information of a matrix.
In [45], the authors adapt IDR(s) to solve the eigenvalue problem, and they
obtain the matrices Ĥm and Tm from a generalized Hessenberg relation

AWmTm = WmĤm + f̂ eTm.

whereWm ∈ Cn×m (not explicitly available) represents a Krylov subspace basis
for K(A,w1), Tm is an s-banded, upper triangular matrix; Ĥ is an s-banded,
upper Hessenberg matrix, and f̂ ∈ Cn. The approximation of the eigenvalues
of A are obtained from the eigenvalue pencil (Ĥm, Tm). In [5], the authors
create a standard Hessenberg relation

AWm = WmHm + feTm, (4.16)

where Wm ∈ Cn×m, and Hm is a Hessenberg matrix. This matrix Hm has the
same eigenvalues as the matrix pencil (Ĥm, Tm).

The mentioned works [45] and [5] target speci�cally the eigenvalue/eigenvector
approximation problem. Next, we describe how to obtain a matrix Hm part of
a standard Hessenberg relation (4.16) from the underlying IDR(s)-recurrences
used to solve systems of linear equation. This allows us to obtain the solution
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of a system of linear equation whose coe�cient matrix is A, and at the same
time obtain approximations to the eigenvalues of this matrix. Particularly,
we use this spectral information as is suggested in [87], and we proposed a
Ritz-IDR(s) variant labeled as SC-Ritz-IDR(s).

To derive this Hessenberg matrix, let us consider the IDR(s) relations de-
scribed in section 4.2. Substituting (4.8)�(4.10) in (4.5), we obtain

r
(j+1)
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= ĝ
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α
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i g

(j+1)
i

= A

[
ωj+1
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r
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s∑
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(j)
i
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(j)
i
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(j)
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= ωj+1Ar
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k−1∑
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α
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From the equations above, we obtain the following relation

ωj+1Ar
(j+1)
k−1 =

r
(j+1)
k−1 − r

(j+1)
k

β
(j+1)
k

− (I − ωj+1A)

s∑
i=s−k

γ
(j+1)
i

β
(j)
i

(r
(j)
i−1 − r

(j)
i )

+

k−1∑
i=1

α
(j+1)
i

β
(j+1)
i

(r
(j+1)
i−1 − r

(j+1)
i ).

(4.17)

Using (4.13), we obtain that each vector in Gj can be written as

r
(j)
i = Ωj(A)r̂

(j)
i for i = 0, . . . , s, (4.18)

and equivalently, any residuals in Gj+1 can be written as

r
(j+1)
i = Ωj+1(A)r̂

(j+1)
i for i = 0, . . . , s. (4.19)
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Taking into account (4.19) and (4.18), we can multiply (4.17) by Ωj+1(A)−1

and obtain

ωj+1Ar̂
(j+1)
k−1 =

r̂
(j+1)
k−1 − r̂

(j+1)
k

β
(j+1)
k

−
s∑

i=s−k

γ
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(j)
i )

+
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α
(j+1)
i

β
(j+1)
i

(r̂
(j+1)
i−1 − r̂

(j+1)
i ).

(4.20)

The set of vectors r̂i represents the Krylov basis associated with the polyno-
mial Ψ(A). In fact, one can see that the basis grows with the degree of the
polynomial Ψ(A). Substituting (4.18) and (4.19) in (4.4), we obtain that

r̂
(j+1)
0 = r̂(j)

s . (4.21)

This implies that every s + 1 matrix-vector products, IDR(s) creates s new
vectors basis r̂i. Using (4.21), we can rewrite (4.20) as
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(4.22)

One can see in (4.22) that the vector Ar̂(j+1)
k−1 is a linear combination of the

vectors {r̂(j)
i }si=s−k−1 and {r̂(j+1)

i }ki=1. This de�nes a Hessenberg relation of
the form

AR̂m̄ = R̂m̄+1H̄m̄, (4.23)

where m̄ is the number of intermediate residuals created by IDR(s), and R̂m̄
is a Krylov subspace basis de�ned as

R̂m̄ = [r̂
(0)
0 , . . . , r̂(0)

s , r̂
(1)
1 , . . . , r̂(1)

s , . . . , r̂
(j)
1 , . . . , r̂(j)

s , r̂
(j+1)
1 , . . . , r̂

(j+1)
k ]n×m̄.

(4.24)
The vectors r̂i are not constructed explicitly, however, it is easy to see that

r̂
(0)
0 = r0. (4.25)
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The matrix H is an upper and s+1 banded Hessenberg matrix whose columns
are de�ned as

H` =



0
...

h`−s,`
...
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...
0


∈ Cm̄+1,
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−1/β
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∈ Cs+2,

Our implementation of SC-Ritz-IDR(s) is based on the IDR(s) with biorthog-
onal residuals. The memory consumption of SC-Ritz-IDR(s) is similar to that
of IDR(s) (see section 3.5 in [103]). The sets of coe�cients {αi}si=1, {γi}si=1,
and {βi}si=1, used in SC-Ritz-IDR(s), are stored in three extra vectors of size
s. Algorithm 11 shows an implementation of SC-Ritz-IDR(s).

4.3.1 Numerical experiments

To illustrate the numerical behavior of the proposed algorithm, we repeat all
the experiments presented in [87]. We compare our proposed variant SC-Ritz-
IDR(s) with IDR(s), Ritz-IDR(s) and full GMRES. All the experiments are
performed in Matlab 2015a running on a 64 bit GNU/Debian Linux computer
with 32 GB of RAM. The right-hand side vector b = b̂/‖b̂‖ with b̂ = 1, and
the initial vector is x0 = 0. As stopping criterion, we use

‖b−Axk‖
‖b‖ < ε,

with ε = 10−10.
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Algorithm 11 IDR(s) accelerated with Ritz values

1: procedure IDR(A, b, s, tol, x0)
2: Input: A ∈ Cn×n, b ∈ Cn, s ∈ N+, tol ∈ (0, 1), x0 ∈ Cn.
3: x = x0, r = b−Ax
4: P a random matrix in Cn×s.
5: G = 0 ∈ Cn×s, U = 0 ∈ Cn×s
6: M = Is ∈ Cs×s.
7: ω = 1.0, ` = 0, Hm̄ = 0 ∈ Cm̄+1×m̄, c = 0, α = 0, β = 0 ∈ Cs.
8: while ‖r‖ ≤ tol × ‖b‖ do . Loop overGj spaces
9: f = PHr
10: for k = 1 to s do . Compute s independent vectors gk in Gj space
11: Solve c from Mc = f , (γ1, . . . , γs)

H = c . Note that M = PHG
12: v = r−

∑s
i=k γigi

13: v = B−1v . Preconditioning operation
14: uk = ωv +

∑s
i=k γigi

15: gk = Auk
16: for i = 1 to k − 1 do . Make gk orthogonal to P
17: αi = 〈gk,pi〉/µi,i
18: gk = gk − αigi
19: uk = uk − αiui
20: end for

21: µi,k = 〈gk,pi〉, Mi,k = µi,k, for i = k, . . . , s . Update M
22: βk = φk/µk,k . Now 〈r,pi〉 = 0 for i = 1, . . . , k
23: r = r− βkgk
24: x = x + βkuk
25: if k + 1 ≤ s then
26: fi = 0 for i = 1, . . . , k
27: fi = fi − βkMi,k for i = k + 1, . . . , s
28: end if

29: ` = `+ 1
30: if ` ≤ m̄ then

31: H`−s:`−k,` = ck:s/βk:s

32: H`−k+1:`−1,` = α1:k−1/β1:k−1

33: H`,` = 1.0/βk
34: H`−s+1:`+1,` = H`−s+1:`+1,` +H`−s:`,`
35: H`−s:`+1,` = H`−s:`+1,`/ω
36: end if

37: Overwrite kth columns of G and U by gk and uk respectively.
38: end for . Entering Gj+1

39: v = B−1r . Preconditioning operation
40: t = Av
41: if ` ≤ m̄ then . Select new ω
42: ω is selected using the converge maintenance strategy [103].
43: else

44: ω is selected using the spectral information provided by Hm̄.
45: end if

46: r = r− ωt
47: x = x + ωv
48: end while

49: Return x and Hm̄ (if required).
50: end procedure
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For Ritz-IDR(s) and SC-Ritz-IDR(s), we use as parameter

ωj =
1

λi
, (4.26)

where λi is an eigenvalue of the matrix Hm̄. We select m̄ = 20 and the 15
smallest magnitude eigenvalues. For Ritz-IDR(s), the matrix Hm̄ is obtained
with a preliminary call to the Arnoldi method. In the case of SC-Ritz-IDR(s)
the matrix Hm̄ is computed as is explained in section 4.3. Before the creation
of the matrix Hm̄, SC-Ritz-IDR(s) uses the converge maintenance strategy,
proposed in [103], to select the �rst ωj parameters.

Convection-di�usion-reaction equation examples

The linear systems of equations used in the next three examples are based on
the �nite di�erence discretization of the simple convection-di�usion-reaction
model problem

− ε4u+ vT∇u+ ρu = f, in Ω = [0, 1]d (4.27)

with d = 2 or d = 3, and homogeneous Dirichlet boundary conditions on ∂Ω.
Particularly, it is known that IDR(s) with s > 1 outperforms BiCGStab [101]
when the ‖v‖ � ε (see for example [92] and [6]).

Experiment 4.1. In this example the coe�cient matrix A is given by the �nite
di�erence discretization of (4.27) for the 2D case. The physical parameters
used are ε = 1, v = [4, 0]T , and ρ = 400. We discretize the domain Ω using
21 points in each direction. Figure 4.1 (a) shows the convergence of the norm
of the residual for the matrix A of order 400 generated with the parameters
described. Ritz-IDR(s) and SC-Ritz-IDR(s) do not show any improvement
over IDR(s). However, using a convection-dominated taking 41 points in each
direction and ε = 1, v = [80, 0]T , and ρ = 1600, we can see in Figure 4.1 (b)
a better performance of Ritz-IDR(s) and SC-Ritz-IDR(s) over IDR(s).

Experiment 4.2. We consider two matrices of order 8000 from the discretiza-
tion of the 3D problem (4.27) with ε = 1, v = β[1, 1, 1], and ρ = 0. First using
β = 100, we can see in Figure 4.2 (a) a similar behavior between the IDR(s)
variants. However, Ritz-IDR(s) and SC-Ritz-IDR(s) are clearly superior with
respect to the IDR(s) when the parameter β is increased to 500 (see Figure 4.2
(b)).

Experiment 4.3. The coe�cient matrix used in this example is the unsym-
metric matrix of order 8000 that comes from the �nite di�erence discretization
of the 3D (4.27), with parameter ε = 1, ρ = 0, and v = [0, 0, 1000]T . As
in part (b) of previous example, IDR(4) does not converge for the maximum
number of iterations allowed, while Ritz-IDR(4) and SC-Ritz-IDR(4) converge
using almost the same number of matrix-vector products (see Figure 4.3).



66 IDR(s) method using spectral information Chapter 4

0 100 200 300 400 500

104

102

100

10−2

10−4

10−6

10−8

10−10

Matrix-vector products

‖r
‖ 2
/
‖b

‖ 2

(a)

GMRES

IDR(4)

Ritz-IDR(4)

SC-Ritz-IDR(4)

0 200 400 600 800 1000 1200 1400 1600

104

102

100

10−2

10−4

10−6

10−8

10−10

Matrix-vector products

‖r
‖ 2
/‖

b
‖ 2

(b)

GMRES

IDR(4)

Ritz-IDR(4)

SC-Ritz-IDR(4)

Figure 4.1: (Example 4.1) Evolution of the residual norm of full GMRES, IDR(4),
Ritz-IDR(4), and SC-Ritz-IDR(4). (a) Diffusion-dominated example. (b) Convection-
dominated example.

Examples from Matrix Market

The matrices used in the next two examples are part of the Matrix Market
collection [18].

Experiment 4.4. We consider the highly inde�nite matrix Sherman5 of order
3312. As is reported in [87], Ritz-IDR(s) diverges for this example. SC-
Ritz-IDR(s) exhibits a similar behavior. On the other hand, Figure 4.4 shows
that both Ritz-IDR(s) variants converge using the Incomplete LU factorization
of the matrix A + I as preconditioner with threshold tolerate 10−2. In this
example, IDR(s) and its variant behave similarly in term of matrix-vector
products required.
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Figure 4.2: (Example 4.2) Evolution of the residual norm of full GMRES, IDR(4),
Ritz-IDR(4), and SC-Ritz-IDR(4). (a) Diffusion-dominated example. (b) Convection-
dominated example.

Experiment 4.5. In this example, we consider the linear system of equations
ADD20 which arises from computer component design. In this example, we
stop the algorithms when the relative residual norm is less than 1×10−8. As is
proposed in [87], we also consider 20 Leja points located in the interval where
the 20 real Ritz values are located. The Leja points are computed using the
algorithm proposed in [7]. Figure 4.5 shows a similar behavior between all the
IDR(s) variants.

The numerical results show a similar behavior between Ritz-IDR(s) and
SC-Ritz-IDR(s) in terms of matrix-vector products and convergence. More-
over, their computational requirements are virtually the same. The only dif-
ference is that SC-Ritz-IDR(s) requires storing a Hessenberg matrix of size
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Figure 4.3: (Example 4.3) Evolution of the residual norm of full GMRES, IDR(4),
Ritz-IDR(4), and SC-Ritz-IDR(4).
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Figure 4.4: (Example 4.4) Evolution of the residual norm of full GMRES, IDR(4),
Ritz-IDR(4), and SC-Ritz-IDR(4) for the matrix Sherman5 using ILU preconditioner.
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Figure 4.5: (Example 4.5) Evolution of the residual norm of full GMRES, IDR(4),
Ritz-IDR(4), and SC-Ritz-IDR(4) for the matrix ADD20.

m̄. The main advantage of SC-Ritz-IDR(s) is that it computes the Ritz-values
�on-the-�y�. Therefore, unlike in Ritz-IDR(s), the overhead of a call to an
external eigensolver is avoided in SC-Ritz-IDR(s).

4.4 Part 2: Accelerating IDR(s) using Ritz vectors

In the previous sections we use the recurrences of IDR(s) to obtain an upper
Hessenberg matrix H. From this matrix H, we obtain the Ritz values to accel-
erate the IDR(s) method. In this section, we incorporate the Ritz vectors to
the Krylov basis generated by IDR(s). First, we present how to add additional
vectors to the IDR(s) searching subspace basis, i.e., the augmented Krylov
subspace

Ks+m(A, r0) = span{r0, y1, . . . ,ys, Ar0, . . . , A
m−1r0}. (4.28)

Secondly, we use the matrix H to recover the Ritz vectors of the coe�cient
matrix, and add these Ritz vectors in IDR(s).

To add additional direction vectors to the Krylov basis created by IDR(s),
we exploit the fact that G0 is Cn. We can choose freely the �rst s+ 1 linearly
independent direction vectors in IDR(s) and obtain their corresponding ap-
proximations and associated residuals. In the case of the biorthogonal variant,
we have to ensure that each residual ri is orthogonal to pj for i = 1, 2, . . . , s
and j = 1, 2, . . . , i, and each vector gi is orthogonal to pj for i = 1, 2, . . . , s
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and j = 1, 2, . . . , i − 1. In order to do so, we present the Algorithm 12, to
create the �rst s biorthogonal residuals.

Algorithm 12 Injecting basis vectors in G0

1: Input: {yi}si=1

2: for k = 1 to s do
3: uk = yk
4: gk = Auk
5: for i = 1 to k − 1 do . Make gk orthogonal to P
6: α = 〈gk,pi〉/µi,i
7: gk = gk − αgi
8: uk = uk − αui
9: end for

10: µi,k = 〈gk,pi〉, Mi,k = µi,k, for i = k, . . . , s . Update M
11: β = φk/µk,k . Make the residual orthogonal to pi for i = 1, . . . , k
12: r = r− βgk
13: x = x + βuk
14: φi = 0 for i = 1, . . . , k
15: φi = φi − βµi,k for i = k + 1, . . . , s
16: end for . Entering Gj+1

To add the vectors {yi}si=1 to the IDR(s), we should replace Algorithm 12
by the lines 5 and 6 in Algorithm 11. As is proposed in [61], [25], and [63],
we use as extra basis vectors the Ritz vector associated with the smallest-
magnitude Ritz values.

Experiment 4.6. (A Motivating Example.) To exemplify the idea of using the
spectral information in the initial subspace G0, we consider solving a system
of linear equations with the following bidiagonal matrix

A =



1× 10−8 1× 10−5

2× 10−8 1× 10−5

. . .
5× 10−8 1× 10−5

6 1× 10−5

. . .
100


100×100

,

(4.29)

and the right-hand side vector is b = 1. We compare IDR(5) and IDR(5) with
recycling. As recycling vectors, we use the �ve eigenvectors associated with the
smallest magnitude eigenvalues of the bidiagonal matrix A. The initial guess
vector is x0 = 0. Figure 4.6 shows the evolution of the norms of the residuals,
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Figure 4.6: (Example 4.6) Evolution of the residual norm of full IDR(5) and IDR(5)
with recycling with the four eigenvectors associated with the smallest magnitude
eigenvalues of the matrix (4.29).

one can see a considerable reduction in the number of matrix-vector products
for IDR(s) with recycling.

It is worth mentioning the recently proposed M(s)STAB(`) method by
Neuenhofen [66]. M(s)STAB(`) is a variant of the IDRstab [92], that is special-
ized to solve sequences of systems of linear equations where the coe�cient ma-
trix is constant. Based on a generalization of the IDR theorem, M(s)STAB(`)
uses as initial vectors basis in G0 the last s+1 vectors in the subspace Gj , which
were created during the solution of the previous system of linear equation. In
this form, this method reduces the computation and accelerates the solution
of (4.2).

4.4.1 Adding the Ritz vectors to IDR(s): application to se-
quence of system of linear equations

Here we present the main application of IDR(s) with recycling, the solution
of a sequence of systems of linear equations. We consider the case where the
coe�cient matrix A is constant, and the right-hand side vectors {b(i)}pi=1 are
not available simultaneously.

The main idea is to compute a subset of Ritz vectors of the matrix A
during the solution of the �rst system of linear equation, and then use these
Ritz vectors to accelerate the solution of the subsequent systems of linear
equations. The upper Hessenberg matrix Hm̄ ∈ Cm̄×m̄ is computed using
Algorithm 11. To compute the Ritz vectors after the �rst execution of IDR(s),
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we need to compute the Krylov basis R̂ in (4.23). To compute this R̂, we
use (4.13) and obtain that,

r̂0 = r0, (4.30)

and taking into account the upper Hessenberg structure of the matrix Hm̄, we
obtain the following recurrence formula for the vector r̂i

r̂i =
1

hi+1,i

Ar̂i−1 −
i−1∑

j=max(0,i−s)

hj,ir̂j

 . (4.31)

Because (4.31) uses only the last s + 1 vectors, we can even obtain the
Ritz vector saving temporally only the last s + 1 basis vectors. Algorithm 13
presents how to obtain the Ritz vectors of A, after we have obtained the matrix
H.

Algorithm 13 Obtaining the Ritz vectors

1: procedure Ritz vectorsIDR(A, s, H, r0)

2: Input: A ∈ Cn×n, s ∈ N+, x ∈ Cn.
3: Obtain (λi, ŷi) as the eigenpairs associated with the smallest magni-

tude eigenvalues of H.
4: r̂0 = r0

5: Y = r̂0 × [[ŷ1]1, [ŷ2]1, . . . , [ŷm̄]1]
6: for i = 1 to m̄− 1 do

7: r̂i = 1
hi+1,i

[
Ar̂i−1 −

∑i−1
j=max(0,i−s) hj,ir̂j

]
8: Y = Y + r̂i × [[ŷ1]i+1, [ŷ2]i+1, . . . , [ŷm̄]i+1]
9: end for

10: return {λ}m̄i=1, Y .
11: end procedure

Once we compute the s Ritz vectors associated with the smallest magni-
tude, we proceed to use these vectors in IDR(s) with recycling to solve the
remaining systems of linear equations. Algorithm 14 summarizes this proce-
dure.

4.4.2 Numerical experiments

In this section, we conduct two numerical experiments of solving sequences
of systems of linear equations (Algorithm 14). We use the same computer
setting as is described in section 4.3.1. The stopping criterion consider in this
experiment is

‖bi −Axk‖
‖bi‖

< 10−6, for i = 1, 2, . . . , p.
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Algorithm 14 IDR(s) with recycling for sequences of system of linear equa-
tions
1: procedure IDR(A, {bi}, s, tol, x0)

2: call IDR(A, b1, s, tol, x0) to obtain x1 and the matrix Hm̄ (Algo-
rithm 11).

3: call Ritz vectorsIDR(A, s, Hm̄, r1) to obtain the Ritz vectors {yj}sj=1

(Algorithm 13)
4: for each right-hand side vector bi with i = 2, 3, . . . , p do
5: call IDR(s) to solve Axi = bi with the Ritz-vector {yj}sj=1.
6: end for

7: return xi for i = 1, . . . , p
8: end procedure

The initial guess for the �rst system of linear equations is the zero vector,
and for the subsequent linear systems, we use the approximate solution of the
previous linear system of equations.

Experiment 4.7. In this example, we consider the linear time-dependent
convection-di�usion-reaction

∂u

∂t
+ vT∇u = ε∆u+ ρu+ f (4.32)

with homogeneous Dirichlet conditions on the unit cube, and u(t0) = 0, v =
[1, 1, 1], ε = 0.1 (di�usion-dominated) or ε = 0.005 (convection-dominated),
the reaction parameter ρ is 5, the function f is obtained from

u =
√
x(1− x)y(1− y)z(1− z).

We solve (4.32) using Euler backward for time integration for t ∈ [0, 10]
with δt = 1. For space discretization, we use central �nite di�erences with h =
0.02 obtaining a linear system of equations of size 125000× 125000 per time-
step. Figures 4.7 and 4.8 show the residual norm behavior for full GMRES,
GCROT, and IDR(s) with and without Ritz vector enrichment. First, we
can see a good decrement in number of matrix-vector multiplication when
IDR(s) is enriched with the Ritz vectors. Second, the long-recurrences methods
solve all the systems of linear equations using less number of matrix-vector
multiplications. However, Tables 4.1 and 4.2 show that IDR(s) with Ritz
vectors solves the convection and di�usion-dominated problems much faster
that GMRES and GCROT, and other short-recurrences methods.
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Figure 4.7: (Example 4.7). Convergence residual history for the solution of (4.32)
(diffusion-dominated example)
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Figure 4.8: (Example 4.7). Convergence residual history for the solution of (4.32)
(convection-dominated example)
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Method MATVECs CPU time [s]
Full GMRES 718 185.93
GCRot(20, 4) 525 33.72
GCRot(20, 16) 332 51.2
BiCG [37] 1946 19.85
BiCGStab 1900 12.13
QMR [40] 1884 22.62
IDR(4) without recycling 889 20.34
IDR(4) with recycling 618 16.86
IDR(16) without recycling 845 36.61
IDR(16) with recycling 523 34.15

Table 4.1: (Example 4.7). Matrix-vector multiplications and time used for each
method in the solution of (4.32) (diffusion dominated example)

Method MATVECs CPU time [s]
Full GMRES 962 281.43
GCRot(20, 4) 1380 96.01
GCRot(20, 16) 514 83.61
IDR(4) without recycling 1360 31.46
IDR(4) with recycling 1066 22.57
IDR(16) without recycling 1089 54.44
IDR(16) with recycling 578 37.58

Table 4.2: (Example 4.7). Matrix-vector multiplications and time used for each
method in the solution of (4.32) (convection dominated example)
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4.5 Discussion and remarks

In this chapter, we have derived a Hessenberg relation from the IDR(s) method
while it solves a system of linear equations. This is a key component to obtain
approximations to the eigenvalues and eigenvectors of the coe�cient matrix
involved. We have used this spectral information to accelerate the IDR(s)
method.

In the �rst part of this chapter, we have proposed a Ritz-IDR(s) variant,
named SC-Ritz-IDR(s), to solve systems of linear equations based on the work
by Simoncini and Szyld [87]. This algorithm uses the inverse of the Ritz values
as parameter ωj for the creation of the residuals vectors into the subspaces
Gj . In contrast to Ritz-IDR(s), our proposed variant SC-Ritz-IDR(s) is a
self-contained algorithm, i. e., it does not use an external sparse eigensolver to
compute the Ritz values. In terms of CPU requirements and memory consump-
tion, SC-Ritz-IDR(s) has a similar computational behavior as Ritz-IDR(s) [87].
Implementations of both methods Ritz-IDR(s) and SC-Ritz-IDR(s) may use
complex arithmetic, even when the coe�cient matrix and the right-hand side
vectors are real, in the case of complex Ritz values as parameters ωj .

In the second part of the chapter, we have explained how to enrich the
search subspace of IDR(s) with the Ritz vectors. In particular, we have applied
this enrichment to IDR(s) for solving sequences of systems of linear equations.
After approximating the eigenvector during the solution of the �rst system
of linear equations, IDR(s) uses this spectral information for the subsequent
systems of equations. Numerical experiments show a signi�cant reduction of
the computational time.





CHAPTER 5

Induced Dimension Reduction method for solving linear matrix
equations and preconditioners

This chapter discusses the solution of large-scale linear matrix equations using
the Induced Dimension reduction method. IDR(s) was originally presented to
solve system of linear equations, and is based on the IDR(s) theorem. We gen-
eralize the IDR(s) theorem to solve linear problems in any �nite-dimensional
space. This generalization allows us to develop IDR(s) algorithms to approxi-
mate the solution of linear matrix equations.

Additionally, we present two types of preconditioners to solve linear matrix
equations. First, we propose a simple preconditioner to solve the Sylvester
equation based on a �xed-point iteration. Second, we present a preconditioner
for the reinterpretation of the multi-shift Helmholtz equation as a matrix equa-
tion. Several numerical examples are presented to illustrate the performance
of IDR(s) for solving linear matrix equations.

This chapter is based on the articles:

R. Astudillo and M. B. van Gijzen. Induced Dimension Reduction method for solving
linear matrix equations. Procedia Comput. Sci., 80:222�232, 2016 ,

M. Baumann, R. Astudillo, Y. Qiu, E. Y. M. Ang, M. B. van Gijzen, and R.-É. Plessix.
An MSSS-preconditioned matrix equation approach for the time-harmonic elastic wave
equation at multiple frequencies. Comput. Geosci., 22(1):43�61, 2018 .
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5.1 Introduction

In this chapter we extended the Induced Reduction Dimension method (IDR(s)
[95]) to approximate the solution of linear matrix equations of the form

k∑
j=1

AjXBj = C, (5.1)

where the matrices A1, A2, . . . , Ak are in Cn×n, B1, B2, . . . , Bk are in Cm×m,
C ∈ Cn×m, and X ∈ Cn×m is the unknown matrix. Solving (5.1) is equivalent
to solve a system of linear equations. De�ning vec(X) as the vector of order
n×m created by stacking the columns of the matrix X, we can write (5.1) as k∑

j=1

BT
k ⊗Ak

 vec(X) = vec(C). (5.2)

Throughout this chapter, we only consider the case where the coe�cient
matrix of the system of linear equations (5.2) is non-singular, i. e., (5.1) has
guaranteed the existence and uniqueness of their solution. In (5.2) the con-
ditions to ensure non-singularity of its coe�cient matrix are not fully estab-
lished. However in two speci�c cases as, the Sylvester and Lyapunov equation,
the condition for existence and uniqueness of their solution are known. For the
Sylvester equation

AX +XB = C, (5.3)

the condition for the existence and uniqueness of the solution is that the ma-
trices A and −B do not have any common eigenvalue. The Lyapunov equation

AX +XAT = C, (5.4)

has a unique solution when the eigenvalues of A hold that λi + λj 6= 0 for
1 ≤ i, j ≤ n (see for example [43]).

Linear matrix equations of the form (5.1) appear in di�erent areas like com-
plex networks, and control and system theory (see [86] and references therein).
Another important source of linear matrix equations is the numerical solution
of di�erential equations. Discretization of di�erential equations lead to lin-
ear systems or parametrized linear systems, and in some cases, they can be
rewritten as a Sylvester equations. In this chapter, we emphasize this kind of
examples. We present numerical tests of Sylvester equations originated from
the discretization of time-dependent linear systems, and convection-di�usion
equations.
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Methods to solve (5.1) have mostly focused on the solution of the particular
cases of the Lyapunov and Sylvester equations. For small and dense matrices,
one of the earliest algorithms to solve Sylvester equation (5.3) was proposed
by Bartels and Stewart [11]. This algorithm relies on the computation of the
Schur decomposition of the matrices A and B, and then solve a block upper
triangular matrix. An improvement of the Bartels-Stewart method was intro-
duced by Golub, Nash and Van Loan in [42] using the Hessenberg factorization
of matrices A and B.

Solving large scale linear matrix equation is an active research area. The Al-
ternating Direction Implicit (ADI) method, proposed by Peaceman and Rach-
ford [70], has been adapted to solve the Sylvester equation by Ellner and
Wachspress in [33]. The ADI method has been widely used for solving ma-
trix equations, for example, Benner, Li, and Truhar extended the ADI method
for low-rank requirements in [17]. However, the parameter selection in ADI is
not trivial and its performance strongly depends on it (see for example [34],
and [16]).

Krylov subspace methods have also been applied to solve matrix equations.
Saad in [78] proposed to solve low-rank Lyapunov equation (5.4) using a
projection over the Krylov subspace

Km(A,X) = span{X, AX, . . . , Am−1X}.

To improve the speed of these projection method, based of the work Druskin
and Knizhnerman [26], Simoncini proposed the use of the extended Krylov
subspace

EKm(A,X) = Km(A,X) +Km(A−1, A−1X),

for solving the low-rank Lyapunov equation [85]. For the case of the Sylvester
equation, the extended Krylov subspace projection method was used by Druskin
and Simoncini in [27]. The main disadvantages of those methods is the use
of the inverse of the matrices involved or its factorization, which might be
prohibitive for large and unstructured matrices.

Another approach to solve linear matrix equations based on Krylov meth-
ods, is to consider the relation between a linear matrix equations and solving
linear systems. Hochbruck and Starke applied the Quasi-Minimal Residual
method (QMR) [40] to solve the system of linear equations obtained from the
Lyapunov equation. A similar idea was proposed by Jbilou, Messaoudi, and
Sadok in [48] to solve Lyapunov and Sylvester equations using block versions
of the Full Orthogonalization method (FOM) [75] and the Generalized Min-
imal Residual method (GMRES) [81] called Global variants. This approach
does not require the computation of any inverse or factorization of a matrix,
however, it can su�er from slow convergence, in which case it is necessary to
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apply preconditioners. For a more detailed description of the state-of-art of
matrix equation solvers see [86].

In this chapter, we propose a variant of Induced Dimension Reduction
method (IDR(s)) for solving linear matrix equations. IDR(s) has been recently
adapted to solve other related problems like solving block linear systems [28],
multi-shift linear systems [13, 102], and eigenvalue problems [5, 45]. IDR(s)
is based on the IDR(s) theorem. In this chapter, we generalize the IDR(s)
theorem to solve linear problems in any �nite-dimensional space. Using this
generalization, we develop an IDR(s) algorithm to approximate the solution of
linear matrix equations.

5.2 IDR(s) for linear operators

This section extends the IDR(s) method to solve linear matrix equations (5.1).
We present an alternative form of the IDR(s) theorem. First, we would like
to draw the attention of the reader to the proof of Theorem 3.1 in [95]. In
this proof, the authors only use the properties of Cn as a linear subspace,
and that A is a linear operator on this linear subspace. Using these facts, we
can generalize the IDR(s) theorem to any �nite-dimensional linear subspace D
with A as linear operator de�ned on the same linear subspace. Corollary 2.1
summarizes this result.

Corollary 2.1. LetA be any linear operator over a �nite dimensional subspace
D and I the identity operator over the same subspace. Let S any (proper)
subspace of D. De�ne G0 ≡ D, if S and G0 do not share a nontrivial invariant
subspace of the operator A, then the sequence of subspace Gj , de�ned as

Gj ≡ (I − ωjA)(Gj−1 ∩ S) j = 0, 1, 2 . . . ,

with ωj 's nonzero scalars, have the following properties,

1. Gj+1 ⊂ Gj , for j ≥ 0 and

2. dimension(Gj+1) < dimension(Gj) unless Gj = {0}.

Proof. The proof is analogous to the one presented in [95].

Corollary 2.1 is closely related to another generalization of IDR(s) theorem
presented by Du et al. in [28], which was used to derive an IDR(s) method for
solving block system of linear equations. However, Corollary 2.1 has a broader
scope. This corollary emphasizes that IDR(s) might be generalized to solve
problems in any �nite dimensional spaces. In particular, we apply this corollary
to solve di�erent types of linear matrix equations.
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In a similar way as in [47], let us rewrite problem (5.1) as

A(X) = C, (5.5)

where A(X) =
∑k

j=1AjXBj . Using Corollary 2.1, we are able to create residu-
als Rk = C−A(Xk) of the problem (5.5) in the shrinking and nested subspaces
Gj and obtain the approximations Xk. Only changing the de�nition of the op-
erator A and the subspace D, we are able to approximate the solution of the
linear matrix equation using IDR(s) without forming the equivalent system of
linear equation as sum of Kronecker products.

Throughout the rest of this chapter, the examples of IDR(s) for solving lin-
ear matrix equations are based on the biorthogonal residual variant presented
in [103] (see Algorithm 15). The two main changes from the original IDR(s)
are the substitution of the product Ax by the application of the linear operator
A(X) and the use of the Frobenius inner product. Algorithms 15 outlines the
biorthogonal residual version of IDR(s) for solving linear matrix equations.

5.3 Preconditioning

The use of preconditioners in iterative methods is a key element to accelerate
or improve the convergence. However, in the context of solving linear matrix
equations A(X) = C, there is not a straightforward de�nition of the applica-
tion of a preconditioner. An option for applying the preconditioning operation
to V is to obtain an approximation to the problem

A(X) = V.

For example in the case of the Sylvester equation, the preconditioner applied
to V computes an approximate solution of

AX +XB = V. (5.6)

Similar to the preconditioners for solving linear systems, it is needed to approx-
imate the solution of (5.6) in an computational cheap way. In next section, we
present a simple preconditioner based on �xed-point iteration.

5.3.1 Fixed-point (FP) and Inexact Fixed-point (FP-ILU) pre-
conditioners for the Sylvester equation

In this section we present a simple preconditioning scheme for the iterative
method to solve the Sylvester equation

AX +XB = V. (5.7)
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Algorithm 15 Preconditioned IDR(s) for matrix equations with biorthogonal
residuals
1: procedure IDR(s)
2: Input: A as linear matrix linear operator from Cn×b → Cn×b, C ∈ Cn×b, tol ∈

(0, 1), s ∈ N+, P ∈ Cn×(s×b), X ∈ Cn×b,M as preconditioner . X is initial guess
3: G = 0 ∈ Cn×(s×b), U = 0 ∈ Cn×(s×b) . Initialization
4: M = Is ∈ Cs×s, ω = 1

5: R = C −A(X)
6: while ‖R‖F ≤ tol × ‖C‖F do . Loop overGj spaces
7: Compute f = [〈R,Pi〉F ]i for i = 1, . . . , s
8: for k = 1 to s do . Compute s independent vectors gk in Gj space
9: Solve c from Mc = f , (γ1, . . . , γs)

H = c . Note that M = PHG
10: V = R−

∑s
i=1 γiGi

11: Applied preconditioner to V : V =M(V ) . Preconditioning operation
12: Uk = Uc + ωV
13: Gk = A(Uk)
14: for i = 1 to k − 1 do . Make gk orthogonal to P
15: α = 〈Gk, Pi〉F /µi,i
16: Gk = Gk − αGi
17: Uk = Uk − αUi
18: end for

19: µi,k = 〈Gk, Pi〉F , Mi,k = µi,k, for i = k, . . . , s . Update M
20: β = φk/µk,k . Make the residual orthogonal to pi for i = 1, . . . , k
21: R = R− βGk
22: X = X + βUk
23: if k + 1 ≤ s then
24: φi = 0 for i = 1, . . . , k
25: φi = φi − βµi,k for i = k + 1, . . . , s
26: end if

27: Overwrite kth blocks of G and U by Gk and Uk respectively.
28: end for . Entering Gj+1

29: V = R
30: Applied preconditioner to V : V =M(V ) . Preconditioning operation
31: T = A(V )
32: Select the parameter ω (see di�erent options in [90, 103, 87])
33: R = R− ωT
34: X = X + ωV
35: end while

36: return X
37: end procedure
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The solution of equation (5.7) is also the solution of the �xed-point iteration

AXk+1 = −XkB + V (5.8)

We propose as preconditioner a few steps of the �xed-point iteration (5.8). If
matrix A is di�cult to invert, we propose the application of few steps of the
following iteration

MX̂k+1 = −X̂kB + V, (5.9)

where M is an approximation to the matrix A. This can be considered as
an inexact �xed-point iteration. Particularly, we approximate A using the
Incomplete LU factorization. Fixed-point iterations (5.8) and (5.9) do not have
the same solution. However, if it is assumed that M is a good approximation
of A and equation (5.7) is well-conditioned, one can expect that the solution of
the �xed-point iteration (5.9) is close to the solution of the Sylvester equation
(5.7).

We use as preconditioning operatorM(V ) the �xed-point iteration (5.9),
or if it is possible to solve block linear system with A e�ciently, we use iter-
ation (5.8). The �xed-point iteration (5.8) for solving Sylvester equation has
been analyzed in [60]. A su�cient condition for the iteration (5.8) to converge
to its �xed-point is that ‖A−1‖‖B‖ < 1 when A is non-singular. Using this
result, it is easy to see that the inexact iteration (5.9) also converge to its
�xed-point if M is non-singular and ‖M−1‖‖B‖ < 1. For this reason, we can
compute M = LU +E, the incomplete LU factorization of A, using strategies
based on monitoring the growth of the norm of the inverse factors of L and U
as the ones proposed in [19, 20], or scaling matrices such that ‖M−1‖‖B‖ < 1
is satis�ed. Another similar method based on the classical �xed-point iteration
was presented in [83]. In particular, the authors in [83] solve the generalized
Lyapunov equation combining the �xed point iteration with rank-truncation
to improve the e�ciency in large-scale settings.

Time-dependent linear system

In this section, we analyze the �xed-point iteration (5.8) for solving linear
equations from the discretization of a time-dependent linear system

dy

dt
= Ay + g(t), t0 ≤ t ≤ tm with y(t = t0) = y0. (5.10)

Solving (5.13) with backward Euler with constant time-step δt, we obtain a
Sylvester equation

−AY + Y
D

δt
= G+

y0

δt
eT1 ,
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where G = [g(t1), g(t2), . . . , g(tm)]n×m, D is the bidiagonal and upper matrix

D =


1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
...

. . .
...

0 0 0 −1
0 0 0 . . . 1


m×m

,

and e1 represents the �rst canonical vector of order m.

Corollary 2.2. If the matrix −A is stable, then the Sylvester equation (5.10)
has a unique solution.

Proof. Because −A is stable, all its eigenvalues of have negative real part,
while D/δt has all its eigenvalues equal to 1/δt. The matrices −A and D do
not share any eigenvalue, as a consequence, Sylvester equation (5.13) has a
unique solution.

Due the fact that solving block linear systems with the matrix D is com-
putationally inexpensive, we propose to use the following �xed-point iteration
as preconditioner

DT

δt
Y T
k+1 = Y T

k A
T +GT +

e1

δt
yT0 . (5.11)

Following corollary shows that there always exists a su�ciently small δt such
that iteration (5.11) converges.

Corollary 2.3. If the matrix −A is stable, there exists δt su�ciently small
such that the iteration (5.11) applied to the equation (5.10) converges to its
�xed-point.

Proof. A su�cient condition for the convergence of iteration is that ‖δtD−1‖‖A‖ <
1 for some norm ‖?‖. Using that for any matrix K and any scalar ε > 0, there
exist a norm ‖ ? ‖α(ε), such that

‖K‖α(ε) < ρ(K) + ε,

where ρ(K) is the spectral radius of the matrix K, we obtain

‖δtD−1‖α(ε)‖A‖α(ε) < (ρ(δtD
−1) + ε)‖A‖α(ε).

ρ(δtD
−1) = δt, then

‖δtD−1‖α(ε)‖A‖α(ε) < (δt + ε)‖A‖α(ε).
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To ensure that ‖δtD−1‖‖A‖ < 1, for and su�ciently small ε, we can select δt
such that

δt ≤
1− ε‖A‖α(ε)

‖A‖α(ε)
.

In consequence, the iteration (5.11) converges to its �xed-point (the solution
of (5.13)).

5.4 Numerical examples

In this section we present �ve numerical experiments to illustrate the numeri-
cal behavior of IDR(s) for solving matrix equations and compare it with other
block Krylov subspace solvers. The �rst three problems are illustrative small
examples for di�erent types of matrix equations. In the fourth and �fth exam-
ples, we consider more realistic applications.

The numerical experiments presented in this section were implemented in
Python 3.5.3 running on GNU/ Debian Linux on an Intel computer with four
cores I5 and 32GB of RAM. We use as stopping criterion

‖C −A(X)‖F
‖C‖F

≤ 10−8. (5.12)

5.4.1 Small examples

Experiment 5.1. (Solving a Lyapunov equation) In this example, we solve
the Lyapunov equation using IDR(s) for A(X) = C with A(X) = AX +
XAT . We compare IDR(s = 4) for matrix equations with BiCGStab [101]
and GMRES [81]. As matrix A, we choose the negative of the anti-stable
matrix CDDE6 from the Harwell-Boeing collection, and matrix C = ccT ,
with c = rand(961, 1). Although for IDR(s) the solution of the Lyapunov
equation takes more iteration (165), this is the faster method regarding CPU-
time. IDR(s) consumes 7.52 secs., while GMRES runs in 17.53 secs. (131
iterations) and BiCGStab takes 13.32 secs. (566 iterations).

Experiment 5.2. (Solving a time-dependent linear system) We consider the
time-dependent linear system,

dy

dt
= Ay + g(t), t0 ≤ t ≤ tm with y(t = t0) = y0. (5.13)

Solving (5.13) with backward Euler with constant time-step δt, we obtain a
Sylvester equation

−AY + Y
D

δt
= G+

y0

δt
eT1 ,
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Figure 5.1: Example 5.2. (a) Residual norm for IDR(s = 2), BiCGStab, and GMRES
solving a Sylvester equation. (b) Residual norm for the preconditioned IDR(s = 2),
BiCGStab, and GMRES using two steps of (5.8).

where G = [g(t1), g(t2), . . . , g(tm)]n×m, D is the upper and bidiagonal matrix

D =


1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
...

. . .
...

0 0 0 −1
0 0 0 . . . 1


m×m

, (5.14)

and e1 represents the �rst canonical vector of orderm. Speci�cally, We consider
the 1D time-dependent convection-di�usion equation

du

dt
− εd

2u

dx2
+ ω

du

dx
= 0, 0 ≤ t ≤ 1, ut0 = 1, (5.15)

with convection parameter ω = 1.0 and di�usion term ε = 10−3, x ∈ [0, 100],
with Dirichlet boundary conditions. We discretized this equation using the cen-
tral �nite di�erences and Euler backward for time integration, with δt = 0.05
(m = 20), δx = 0.1 (A ∈ R1000×1000). Figure 5.1 shows the evolution of the
residual norm for IDR(s) and di�erent Krylov method without and with pre-
conditioner (5.8) respectively. We apply two steps of the preconditioner (5.8)
inverting the matrix D de�ned as (5.14).

Experiment 5.3. (Solving a multi-shift linear system as a Sylvester equation)
The multi-shift linear system of equation

(A− σiI)xi = bi, for i = 1, 2, . . . , m,
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Figure 5.2: Experiment 5.3. (a) Residual norm for IDR(s=2), BiCGStab, and
GMRES solving a Sylvester equation. (b) Residual norm for the preconditioned
IDR(s=2), BiCGStab, and GMRES using two steps of (5.9).

can also be rewritten as a Sylvester equation

AX −XD = B,

where D = diag([σ1, σ2, . . . , σm]), X ∈ Cn×m, and B = [b1, b2, . . . , bm]T ∈
Cn×m. We consider the discretization of the convection-di�usion-reaction equa-
tion

−ε4u+ vT∇u− riu = f,

with ε = 1, v = [0, 250/
√

5, 500/
√

5]T , with ri ∈ {0, 200, 400, 600, 800, 1000},
and homogeneous Dirichlet boundary conditions in the unit cube using central
�nite di�erences obtaining a matrix A of size 59319 × 59319. The right-hand
side vector is de�ned by the solutions ui(x, y, z) = x(1 − x)y(1 − y)z(1 − z)
for each parameter ri. Figures 5.2 shows the behavior of the relative residual
norm for GMRES, IDR(s), and BiCGStab with and without preconditioner.

5.4.2 More realistic examples

The previous numerical examples are rather academic, in this section we present
more realistic examples.

Experiment 5.4. (Solving a block system of linear equations) We consider
a convection-di�usion problem from ocean circulation simulation (see [104]).
The following model

− r4ψ − β∂ψ
∂x

= (∇× F )z in Ω (5.16)
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describes the steady barotropic �ow in a homogeneous ocean with constant
depth. The function ψ represents the stream function, r is the bottom friction
coe�cient, β is the Coriolis parameter, and F is given by

F =
τ

ρH
, (5.17)

where τ represents the external force �eld caused by the wind stress, H the
average depth of the ocean, and ρ the water density. The stream function is
constant on continent boundaries, i. e.,

ψ = Ck on ∂Ωk for k = 1, 2, . . . ,K, (5.18)

with K is the number of continents. The values of Ck are determined by the
integral condition ∮

∂Ωk

r
∂ψ

∂n
ds = −

∮
∂Ωk

F × s ds. (5.19)

We discretize (5.16)�(5.19) using the �nite elements technique described in [104].
The physical parameters used can also be found in the same reference. We ob-
tain a coe�cient matrix A of order 42248, and we have to solve a sequence of
twelve systems of linear equations

Axi = bi with i = 1, 2, . . . , 12. (5.20)

Each of these system of linear equations represent the data for each month
of the year. We compare the time for solving (5.20) using two approaches,
solving all the linear systems separately, and solving (5.20) as a linear matrix
equation (a block linear system, i.e., all the right-hand side vectors and the
same time). In all the cases, we applied incomplete LU of the matrix A with
drop tolerance 10−4 as preconditioner. Table 5.1 shows the time comparison
between the di�erent methods using both approaches. Figure 5.3 shows the
solution computed using IDR(s = 4) for matrix equations.

In Table 5.2, the increment in number of matrix-block products is higher
than a fact of two if the grid size is halved. This rather disappointing behavior
seems to be caused by the dropping strategy in the ILU preconditioner, which
gives a worse performance for increasingly �ner grids. To exclude this e�ect,
we next consider diagonal scaling as preconditioner for IDR(s) in Table 5.3.

Experiment 5.5. (Solving a multi-shift linear system as a generalized Sylvester
equation) In this example, we are interested in the solution of numerical solu-
tion of the multi-shift problem that arises from the Helmholtz equation. Later
in this section, we also propose a new preconditioner based on the ILU for this
problem. Helmholtz equation

−4u(x)−
(

2πf

c(x)

)2

u(x) = s(x), over Ω, (5.21)
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Method Solving (5.20) separately Solving (5.20) as a block linear system
Time [s] # Mat-Vec Time [s] # Mat-Block

IDR(s = 4) 17.03 2498 12.29 190
BiCGStab 22.66 3124 15.35 282
BiCG 25.58 4070 20.62 338

GMRES(100) 42.82 4200 38.30 400

Table 5.1: Experiment 5.4. Comparison of solving (5.20) as a sequence of linear
system or as a matrix equation (a block linear system). This exemplifies one of the
advantages of using a block-solvers over their sequential counterparts, the time reduc-
tion due to the extensive use of block subroutines (BLAS Level 3) over several calls
to single vectors routines. Mat-Vec indicates the number of matrix-vector products
and Mat-Block indicates the number of matrix-block multiplications.

Degree Matrix size Time [s] # Mat-Block
4 2594× 2594 0.02 5
3 4630× 4630 0.11 18
2 10491× 10491 0.42 29
1 42249× 42249 12.29 190

Table 5.2: Experiment 5.4. Solving the ocean model problem as a matrix equation (a
block linear system) using IDR(s = 4) with ILU preconditioner. Degree is the grid
size in the ocean model.

models physical phenomenon of wave propagation on the frequency domain.
The function u is the pressure �eld, x is the spatial variable, s(x) represents
the source term, f is the angular frequency, and the function c is the medium
velocity.

In di�erent applications, it is necessary to resemble a in�nite space domain.
For this reason, it is necessary to impose suitable boundary conditions. Exam-
ple of these type of boundary conditions are the absorbing boundary conditions
or Sommerfeld boundary conditions given by

∂u

∂n
− i
(

2πf

c(x)

)2

u(x) = 0, on ∂Ω. (5.22)

Denoting σ = 2πf , the discretization of (5.21)�(5.22) leads to a system of
linear equations of the form

(K + iσC − σ2M)u = s, (5.23)

where the vector u contains the unknown scalar, K is the Laplacian matrix,
C represents the boundary conditions, M is the mass matrix, and s is load
vector.

In practice, the wave-number σ makes the coe�cient matrix of (5.23) an
ill-conditioned and inde�nite matrix. Also in di�erent application as the ones
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Degree Matrix size Time [s] # Mat-Block
4 2594× 2594 0.44 557
3 4630× 4630 1.36 773
2 10491× 10491 5.09 1204
1 42249× 42249 58.03 2883

Table 5.3: Experiment 5.4. Solving the ocean model problem as a matrix equation (a
block linear system) using IDR(s = 4) with diagonal preconditioner. One can see a
linear increment with a factor of two in the number of matrix-block products required
if the grid size is halved.
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Figure 5.3: Experiment 5.4. Solution of the ocean problem.

described in [73], [64], and [82], it is necessary to solve the system of linear
equations (5.23) using several values for the angular frequencies. This leads
to the problem of solving a multi-shift system of linear equations

(K + iσjC − σ2
jM)uj = s, for j = 1, 2, . . . ,m. (5.24)

De�ning the unknown block matrix as X = [u1, u2, . . . , um] ∈ Cn×m, we
can reformulate (5.24) as a matrix equation

A(X) = B, (5.25)

where
A(X) ≡ KX + iCXΣ−MXΣ2, (5.26)

Σ = diag(σ1, σ2, . . . , σm), and B = s [1, . . . , 1]m.
In this example, we are interested in the solution of (5.25). We consider

the wedge problem introduced in [72]. This problem is an example of acoustic
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(a) (b) (c)

Figure 5.4: (Example 5) (a) Velocity distribution. (b) Solution at 16.0 Hz.
(c) Solution at 32.0 Hz.

wave propagation modeled by the Helmholtz equation (5.21) with the boundary
conditions (5.22). The computational domain Ω is [0, 600]×[0, 1000], and this
is divided into three layers, each of them with a di�erent sound velocity given
by c(x) (see Figure 5.4 (a)). We consider the Helmholtz model with damping
proposed in [35],

−4u(x)− (1− ε i)σ2u(x) = s(x), over Ω, (5.27)

where ε is the damping in the medium, and it is selected up to 5%, this mean
ε ∈ [0, 0.05], and the source term is s(x) = δ(x− xc) with xc = (300, 0)T .

We discretize (5.27) using �nite element method with B-splines of degree 1
as basis functions† (see [24] chapter 2). We use a uniform grid using dx = 2.0
and dz = 2.0 for spacing in x− and z− direction respectively. We apply IDR(6)
to solve the matrix equations (5.26), and use as preconditioner operator

P−1
τ (X) ≡ (K + iτC − τ2M)−1X, (5.28)

for a given τ . The selection of this parameter τ is discussed in the next section.
The solution of the block system of linear equations in (5.28) is computed via
the LU factorization of the matrix K + iτC − τ2M . Table 5.4 shows the
CPU time and the number of iterations used by IDR(6) for solving the wedge
problem, also it shows the �nal relative residual. One can see that the matrix
equation approach obtains a large number of iterations when a wide range of
frequencies is consider. Similar results are presented in [15] and [12] for the
elastic wave equation.

†We use the open source FEM package nultis http://nutils.org.

http://nutils.org
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Frequencies Time [s] Iterations Residual
ω = [1.0, 1.5, 2.0] 12.21 48 2.75× 10−9

ω = [1.0, 2, 0, 4.0] 29.45 115 4.29× 10−9

ω = [1.0, 4.0, 8.0] 114.42 445 9.63× 10−9

ω = [1.0, 8.0, 16.0] 1036.97 4028 8.45× 10−9

ω = [1.0, 16.0, 32.0] * * *

Table 5.4: Results for the problem A(P−1(X)) = B: Time, number of iteration, and
final residual norm for IDR(6) solving the problem (5.27) using (5.28) as precondi-
tioner. The cpu time to create the preconditioner (LU factorization) is 5.88 secs. The
symbol ’*’ means that the preconditioned IDR(6) method failed to satisfy (5.12) at
the maximum of 5000 iterations.

Matrix equation formulation with ILU and spectral scaling strategy

preconditioner

The matrix equation approach (5.25)�(5.26) is sensitive to the selection of a
wide range the frequencies σi. This is to large extend due to the fact that a
block Krylov solver builds a block Krylov subspace that contains the union of
the spectra of each shifted system of linear equations involved. In this section,
we review a recently proposed preconditioner to overcome this problem [14].
Later, we propose a new variant of this preconditioner that uses the incomplete
LU factorization.

To start the review on the two-level preconditioner proposed in [14], we
consider a simplify version of the operator (5.26), where the matrix C is the
null matrix and the damping ε is zero. The two-level preconditioner for matrix
equation is based on two main insights develop for multi-shift linear system
of equations [14]. First, it uses a scaled version of the preconditioner opera-
tor (5.28), and the authors obtained the seed value τ that optimize convergence
bound of full GMRES. This scaled version of the preconditioner (5.28) can be
written as operator as

P−1
τ (R1(X)),

where

R1(X) ≡ X

1/(1− η1)
. . .

1/(1− ηm)


m×m

,

with ηi = σ2
i /(σ

2
i − τ). Second, the matrix associated with the operator
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A(P−1
τ (R1(X))) is1/(1− η1)(K − σ2

1M)(K − τ2M)−1

. . .
1/(1− ηm)(K − σ2

mM)(K − τ2M)−1


(n×m)×(n×m)

,

(5.29)

and its eigenvalues are located in regions bounded by circles. These circles are
known explicitly using the information of the frequencies σi, the seed value τ ,
and the damping parameter of the problem (5.27). In more detail, for the
systems of linear equations

1

1− ηi
(K − σ2

iM)(K − τ2M)−1yi = b, for i = 1, . . . ,m, (5.30)

Lemma 4.1 in [14] states the following key results when the matrix K is sym-
metric positive semi-de�nite and M is symmetric positive de�nite

• (5.30) is equivalent to the preconditioner multi-shift system of linear
equations

(K(K − τ2M)−1 − ηiI)yi = b, for i = 1, . . . ,m; (5.31)

• The eigenvalues of the coe�cient matrix of the kth system of linear equa-
tion of (5.30) are enclosed by the circle ck of radii Rk de�ned as

ck =

(
1

2
− σ2

k(σ
2
k −<(τ)

(σ2
k −<(τ))2 + =(τ)

,
<(τ)

2=(τ)
− σ2

k=(τ)

(σ2
k −<(τ))2 + =(τ)

)
,

Rk =
1

2

√
1 +

(<(τ)

=(τ)

)2

;

• An optimal selection of the parameter τ for the preconditioner (5.28) is

τ∗ =
2(σminσmax)2

σ2
min + σ2

max

− i

√
|(σ2

max − σ2
min)2|(σminσmax)2

σ2
min + σ2

max

. (5.32)

This parameter τ∗ minimizes the classical convergence bound for GM-
RES [79].

The two-level preconditioner is designed using the information of Lemma
4.1 in [14]. The seed parameter τ for (5.28) is selected as (5.32). Due the fact
that the eigenvalues of each diagonal block of (5.29) are in the circle with center
ci and radius Ri, the authors in [14] proposed to apply a post-diagonal scaling
to obtain a clustered spectrum. This clustered spectrum is more favorable for
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Figure 5.5: Eigenvalues of the matrix associated with the operator A(P−1(R1(X))),
and circles (ck, Rk).

the convergence of the Krylov iterative methods. Let us clarify this procedure
with an example. Consider the Helmholtz equation (5.21), with Dirichlet
boundary conditions, and frequencies {1.0, 2.0, 3.0, 4.0}. Figure 5.5 shows the
eigenvalues of the matrix associated with A(P−1(R1(X))). Each cluster of
eigenvalues corresponds to a diagonal block of the matrix (5.29), and these
eigenvalues are located in circles described by ck and Rk for k = 1, 2, 3, 4.
This fact is exploited by de�ning the rotation operator R2 as

R2(X) ≡ X

e
−i (θ1−θ1)

. . .
e−i(θm−θ1)


m×m

,

where θk is the angular component of the point ck. The application of the
operator R2 over A(P−1(R1(X))) rotates the di�erent cluster of eigenvalues
onto the �rst circle (c1, R1) (see Figure 5.6).

For our working example presented in the previous section, Table 5.5 shows
the result of the solution of matrix equation (5.26) using the two-level precon-
ditioner [14]. One can see the positive e�ect of the selection of τ as (5.32) and
the application of the spectral rotation R2.

Nevertheless, if we substitute the operator (5.28) by its approximation using
the incomplete LU factorization

P̂−1(X) = Û−1L̂−1X, (5.33)

where L̂ and Û are the factors of the incomplete LU factorization of the matrix
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Figure 5.6: Eigenvalues of the matrix associated with the operator
A(P−1(R1(R2(X)))).

Frequencies Time Iterations Residual
ω = [1.0, 1.5, 2.0] 8.10 32 7.87× 10−9

ω = [1.0, 2, 0, 4.0] 19.10 63 6.18× 10−9

ω = [1.0, 4.0, 8.0] 43.06 168 5.82× 10−9

ω = [1.0, 8.0, 16.0] 143.34 557 9.76× 10−9

ω = [1.0, 16.0, 32.0] 435.23 1692 9.97× 10−9

Table 5.5: Results for the problem A(P−1(R1(R2(X)))) = B: Time, number of itera-
tion, and final residual norm for IDR(6) solving the problem (5.27) using the two-level
preconditioner [14]. The CPU time to create the preconditioner (LU factorization
and rotation matrix) is 6.08 secs.
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Frequencies Time Iterations Residual
ω = [1.0, 1.5, 2.0] 66.93 385 9.83× 10−9

ω = [1.0, 2, 0, 4.0] 80.93 465 8.81× 10−9

ω = [1.0, 4.0, 8.0] 241.33 1387 6.27× 10−9

ω = [1.0, 8.0, 16.0] * * *
ω = [1.0, 16.0, 32.0] * * *

Table 5.6: Results for the problem A(P̂−1(R1(X))) = B: Time, number of itera-
tion, and final residual norm for IDR(6) solving the problem (5.27) using (5.33) as
preconditioner. The cpu time to create the preconditioner (ILU factorization) is 2.44
secs.
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Figure 5.7: Eigenvalues of the matrix associated with the operator A(P̂−1(R1(X))).

(K + iτC − τ2M)−1, the spectrum of the matrix associated with the operator
A(P̂−1(R1(X))) is not bounded by the circles (ck, Rk) (see Figure 5.7). For
this reason, we propose a di�erent spectral rotation for the case of the use of
the incomplete LU factorization.

First, let us de�ne as the landmarks ĉk as the set of approximations to
the largest magnitude eigenvalues computed after p steps of the power method
applied to of each system of linear equations (5.30). Figure 5.8 shows the axis
generated by the points ĉk. We proposed the use of the angular component of
the landmark points ĉk as angles for the rotation of each cluster of eigenvalues.
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Figure 5.8: Eigenvalues of the matrix associated with the operator A(P̂−1(R1(X)))
and landmarks ĉk.

We de�ne the new rotation operator R̂1(X) as

R̂1(X) ≡ X

e
−i θ̂1

. . .

e−i θ̂m


m×m

, (5.34)

with θ̂k the angular component of ĉk. Figure 5.9 shows the e�ect of the oper-
ator R̂1. Algorithm 16 shows an implementation for computing the landmarks
ĉk. Additionally, we apply the scaling R̂2, de�ned as

R̂2(X) ≡ X

1/|ĉ1|
. . .

1/|ĉm|


m×m

. (5.35)

Figure 5.10 shows the e�ect of the scaling on the spectrum.

The application of the operator R1 correspond to the preconditioner [14],
and it was apply in the Figures 5.7�5.9 only for illustrative purposes. To
implement our proposed preconditioner, we only need to apply the rotation
matrices R̂1 and R̂2. Algorithm 17 outline the creation of our proposed pre-
conditioner. Table 5.7 shows how this new preconditioner improves the result
over the plain application of the incomplete LU factorization (see Table 5.7).
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Figure 5.9: Eigenvalues of the matrix associated with the operator
A(P̂−1(R1(R̂1(X)))).
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Algorithm 16 Block power method to compute the p-steps landmarks
1: Given A a linear operator de�ned as (5.26).
2: X0 = randn(n,m) + i× randn(n,m)
3: for j = 1, . . . , p do
4: X̂j = A(P̂−1

τ (Xj−1))
5: Xj = X̂j/‖X̂j‖F
6: end for

7: Y = A(P−1
τ (Xk))

8: Compute ĉj = 〈yj ,xj〉/〈xj ,xj〉 for j = 1, . . . ,m
9: return ĉ1, ĉ2, . . . , ĉm

Algorithm 17 Creation of the ILU preconditioner with rotation and scaling
1: Given A a linear operator de�ned as (5.26).
2: Select a seed value τ . . we use τ = (1− 0.5i)σmin.
3: Compute the incomplete LU factorization of the matrix

K + iτC − τ2.M

4: Compute the landmarks using p steps of Algorithm 16.
5: Compute operator R̂1 as (5.34).
6: Compute operator R̂2 as (5.35).

Frequencies Time Iterations Residual
ω = [1.0, 1.5, 2.0] 18.05 104 8.59× 10−9

ω = [1.0, 2, 0, 4.0] 23.98 138 6.03× 10−9

ω = [1.0, 4.0, 8.0] 46.92 270 7.63× 10−9

ω = [1.0, 8.0, 16.0] 212.78 1222 8.29× 10−9

ω = [1.0, 16.0, 32.0] 326.33 1875 9.31× 10−9

Table 5.7: Results for the problem A(P̂−1(R̂1(R̂2(X)))) = B: Time, number of itera-
tion, and final residual norm for IDR(6) solving the problem (5.27) using our proposed
preconditioner. The CPU time to create the preconditioner (ILU factorization, appli-
cation of Algorithm 16 (20 steps), and rotation matrix) is 4.20 secs.



102 IDR(s) for solving linear matrix equations Chapter 5

Multi-shift methods and matrix equation reformulation

For the problem (5.24), the most widely used methods are the Krylov multi-
shift methods. These methods are based in a linearization of (5.24) as follow-
ing, ([

iC K
I 0

]
− σj

[
M 0
0 I

])[
σjuj
uj

]
=

[
f
0

]
. (5.36)

Under the assumption that the mass matrix M is non-singular, (5.36) can be
rewritten as

(A− σjI)x = b. (5.37)

The Krylov subspace methods can be adapted to solve this problem e�ciently
by exploiting the shift invariant property of the Krylov subspaces, i. e.,

Km(A, x) = Km(A− αI, x), for α ∈ C. (5.38)

This shift invariant property enables to create e�cient solvers for the prob-
lem (5.37). The main idea is to create only one Krylov subspace basis and
used it for solving the m systems of linear equations in (5.38). Some examples
of these multi-shift methods are [41], [84], and [102].

However it is not straightforward to apply a preconditioner and exploit
the multi-shift invariant property of the Krylov subspaces at the same time.
For this reason, K. Meerbergen proposed in [59] the use of the shifted A as
preconditioner using the fact that

(A− σjI)(A− τI)−1 = A(A− τI)−1 − σj
σj − τ

I, for τ ∈ C. (5.39)

In [15], Baumann and van Gijzen present a comparison between the multi-
shift method and the matrix equation reformulation for the elastic wave equa-
tion. From the conclusions presented in that work, it is worth remarking
that solving the matrix presents a worse computational performance with re-
spect the multi-shift Krylov method with inner-outer preconditioner presented
in [13]. However, the matrix equation reformulation has di�erent kind of ad-
vantages. First, it allows the use of inexact preconditioners as the one pre-
sented in the previous section. The inexact preconditioners are important for
the solving 3D examples where the memory is a computational bottleneck (see
for example 3 in [15]). Also, using the matrix equation reformulation can be
useful for solving the multi-shift Helmholtz equation with several right-hand
size vectors or source points (see [12]). Spectral de�ation and augmentation
might be applicable using the matrix equation framework (see [31]).



Section 5.5 Discussion and remarks 103

5.5 Discussion and remarks

In this chapter we have presented a generalization of the IDR(s) theorem [95]
valid for any �nite-dimensional space. Using this generalization, we have pre-
sented a framework of IDR(s) for solving linear matrix equations. This doc-
ument also presents several numerical examples of IDR(s) solving linear ma-
trix equations, among them, the most common linear matrix equations like
Lyapunov and Sylvester equation. In the examples solving Lyapunov and
Sylvester equations, full GMRES required less iterations to converge than IDR
and BiCGStab. However, IDR(s) presented a better performance in CPU time.

Additionally, we have introduced two preconditioners based on �xed-point
iteration to solve the Sylvester equation. The �rst preconditioner is a �xed-
point iteration of the form

AXk+1 = −XkB + C,

that required the explicit inverse or the solving block linear systems with the
matrix A. Whenever it is not possible the inversion or solving block linear
system with the matrix A in an e�cient way, we use the inexact iteration

MXk+1 = −XkB + C,

where M = LU the incomplete LU factorization of A.
For the case of solving the Helmholtz equation, we have proposed a vari-

ant of the two-level preconditioner [14] for the matrix equation reformulation.
This variant uses the incomplete LU factorization, which is suitable for large
scale problems when is expensive to compute the exact LU factorization. The
proposed preconditioner uses the power method to obtain a rotation which
gives a more clustered eigenvalues favorable for the convergence of the Krylov
method.





CHAPTER 6

Conclusions and future work

The main goal of this work have been the development of new algorithms for
solving matrix problems based on the Induced Dimension Reduction method.
The Induced Dimension Reduction is a Krylov method to solve system linear
of equations. Its rather unusual approach of enforcing the residuals vectors
into the shrinking subspaces Gj , instead of the classical approach of �nding
the approximation in a dimensional increasing subspaces, makes IDR(s) an
e�cient option among the short-recurrences Krylov methods.

Following, we summarize the principal conclusions of this research in more
detail.

In chapter 2, we have presented an overview of the development and mathe-
matics behind the Induced Dimension Reduction methods. We have compared
the computational behavior of IDR(s) with respect to other short-recurrences
Krylov methods as restarted GMRES, BiCG, and BiCGStab, for solving sys-
tems of linear equations that arises from the simple model of the convection-
di�usion equation. We have analyzed the causes why IDR(s) for s > 1 out-
performs BiCGStab for the system of linear equations obtained from the dis-
cretization of the convection-di�usion equation particularly in the convection
dominated case.

In chapter 3, we have deduced a Hessenberg decomposition

AWm = WmHm + wm+1e
T
m.

From the calculation of the IDR(s) to create vectors in the Gj subspaces. This
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allows to use IDR(s) to approximate a subset of eigenpairs (λi, xi) of the
matrix A, i. e.,

Axi = λixi.

We have implemented the implicit restarting technique, which gives a compet-
itive result with the Implicitly Restarted Arnoldi method.

Once we have established how to obtain approximations to the eigenvalues
and eigenvectors from the IDR(s) method, we have used this information to
accelerate systems of linear equations and sequences of systems of linear equa-
tions, respectively, in chapter 4. As one of the principal �ndings of this chapter,
we can remark the development of a self-contained version the linear solver pro-
posed by Simoncini and Szyld the Ritz-IDR method. Both the Ritz-IDR(s)
method and our proposed version SC-Ritz-IDR(s) use the Ritz values as input
parameter. However, the SC-Ritz-IDR(s) method does not need an external
call to an eigensolver routine to compute the Ritz values required. Another
important �nding is the deduction of an initial subspace recycling technique
for IDR(s). We have use this procedure to add Ritz vectors to the initial search
space of IDR(s) during the solution of sequences of systems of linear equations.

In chapter 5, we have generalized the IDR(s) theorem for block linear sys-
tems, more speci�cally ones obtained from linear matrix equations. We have
considered multi-shift Helmholtz equation as a matrix equation. At �rst sight
this reformulation does not provide too many advantages over the established
multi-shift method. However in chapter 5, we have seen how with this reformu-
lation a more �exible framework for preconditioning is achieved; for example,
the use of incomplete LU factorization (other works in this direction are [96]
and [12]).

Through several examples conducted in this thesis, we have shown the
advantage of the IDR(s) as a short-recurrences method for solving di�erent
types of non-symmetric matrix problems. For example, we can see the IDR(s)
process for eigenvalues proposed in chapter 2 as an intermediate option be-
tween the Arnoldi method and the Lanczos method, in terms of number of
computer requirements and convergence for solving non-symmetric eigenval-
ues problems. Another example is the computational behavior of IDR(s) for
solving linear systems with respect to other solvers as GMRES and BiCGStab.
This makes IDR(s) worthy to be considered as method of preference for large
scale problems.
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Further research

Due the �exibility o�ered by IDR(s) and the diversity of problems where we
have applied it, there exist several possibilities for further research about this
method.

The freedom of choosing any linear combination of vectors in Gj to generate
a new vector in the same subspace implies that the Hessenberg decomposition
presented in chapter 3 is not unique and it can be generalized. Speci�cally
using (3.9), we can obtain a family of IDR(s) decompositions as

AWmUm = Wm(Hm +Rm) + wm+1e
T
m, (6.1)

where Wm ∈ Cn×m is a basis for the Krylov subspace and every block of s+ 1
columns belongs to a Gj subspace, Hm is an (s + 2)-banded and upper Hes-
senberg matrix, Um is an (s + 1)-banded upper triangular matrix, and the
matrix Rm is de�ned as Rm = diag(R11, . . . , Rjj), where Rii ∈ C(s+1)×(s+1)

are upper triangular matrices. At this point, we have obtained a family of
pencil eigenvalue problems (Hm + Rm, Um) that can be used to approximate
the eigenvalues of the matrix A (see Figure 6.1). The elements of the matrix
Rm might be chosen to improve the Ritz values obtained (see also [107]).

In chapter 4, the following aspects deserve further investigation. The Ritz
values and Ritz vectors were used to accelerate the IDR(s), however, we did
not take into account the accuracy of these Ritz eigenpairs. This might be im-
portant to generalize the ideas proposed in this chapter for solving sequences
of system of linear equations where the coe�cient matrix is not �xed.

A potential improvement for the block IDR(s) version presented in chap-
ter 5 is the application of low-rank techniques to address high-dimensional
problems. A convenient low-rank technique can be the application of tensors
in Hierarchical Tucker Format (see for example [52] and [53]).

Another topic which o�ers opportunity for further development is the pre-
conditioner for the multi-shift Helmholtz matrix equation presented in chap-
ter 5. During the creation of that preconditioner, we might incorporate infor-
mation of the eigenvalues and eigenvectors computed by the IDR(s) iteration
itself (chapter 4 this work). Also, it is worth mentioning that the reinter-
pretation of the multi-shift Helmholtz problem as a matrix equation has the
advantage of not forcing the co-linearity as the multi-shift Krylov methods
(see [41], [84], and [13]). For this reason, other techniques as incomplete fac-
torizations (this work) de�ation and augmentation can be used in the matrix
equation approach (see for example [31]).
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Figure 6.1: Eigenvalues and Ritz values obtained after 30 steps of IDR(6) for a random
sparse matrix A of dimension 500. The circles represent the eigenvalues of the matrix
A, the red stars represent the Ritz values obtained for our proposed IDR(s) method
(chapter 3), and the blue dots represents other Ritz values generated by IDR(s) where
the matrix Rm is chosen randomly with norm 1. One can see that these Ritz values
generate clusters. The matrix Rm might be used to obtain better approximation of
the Ritz values. This can be also studied from the point of view of the pseudospectra
of the matrix Hm (see [100] as a reference).



APPENDIX A

Avoiding breakdown in the IDR(s) iteration

In this note we are interested in the study of the breakdown behavior of IDR(s).
In [95], the authors classify the breakdown of IDR(s) into two di�erent classes.
Breakdown of type 1 is when it is not possible to create a new residual vector
in the subspace Gj . This might happen when the coe�cient matrix of the s×s
system of linear equations, that IDR(s) solves during its iterations, is (nearly)
singular. Breakdown of type 2 is when the parameters ωj are selected too close
to zero, then IDR(s) su�ers from stagnation.

IDR(s) with biorthogonal residuals [103] solves in large part these two types
of breakdowns. The breakdown of type 2 is solved using the �maintaining the
convergence� strategy [90] for the selection of the parameters ωj . For the case
of the breakdown of type 1, this IDR(s) variant uses more stable residuals
recurrences that in most of cases generate a non-singular coe�cient matrix for
the inner s × s system of linear equations. Nevertheless, even IDR(s) with
biorthogonal residuals might su�er from the breakdown of type 1 in rare cir-
cumstances. First, we analyze the causes of the breakdown of type 1 in biortho
IDR(s). Then, we present a computational strategy, that allows IDR(s) to
continue its iteration in case of breakdown. This strategy does not rely on
restarting the IDR(s) method. On the contrary, it tries to recover the compu-
tational work already performed for the upcoming iterations.
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A.1 Changing the shadow space during the IDR(s)
iteration

Let us explain in more detail the causes of the breakdown type 1. First, we
recall the recurrences formulas to create the intermediate residuals {r(j+1)

k }sk=1

in the subspace Gj+1 for the biortho IDR(s). We use the notation introduced
in chapter 4. The residual is

r
(j+1)
k = r

(j+1)
k−1 − β

(j+1)
k g

(j+1)
k , for k = 1, 2, . . . , s, (A.1)

where the scalar β(j+1)
k is selected such that

〈r(j+1)
k ,pk〉 = 0. (A.2)

The direction vectors are de�ned as

u
(j+1)
k = û

(j+1)
k −

k−1∑
i=1

α
(j+1)
i u

(j+1)
i ,

and

g
(j+1)
k = ĝ

(j+1)
k −

k−1∑
i=1

α
(j+1)
i g

(j+1)
i . (A.3)

The scalars {α(j+1)
i }k−1

i=1 are selected, such that,

〈g(j+1)
k ,pi〉 = 0 for i = 1, . . . , k − 1, (A.4)

and the vectors ĝ(j+1)
k and û

(j+1)
k are

ĝ
(j+1)
k = Aû

(j+1)
k ,

û
(j+1)
k = ωj+1

(
r

(j+1)
k−1 −

s∑
i=s−k

γ
(j+1)
i g

(j)
i

)
+

s∑
i=s−k

γ
(j+1)
i u

(j)
i ,

where the scalars {γ(j+1)
i }si=k are selected as〈

r
(j+1)
k−1 −

s∑
i=k

γ
(j+1)
i g

(j)
i ,p`

〉
= 0 for ` = k, k + 1, . . . , s. (A.5)

Because the condition (A.4), the system of linear equations generated by (A.5)
has the following structure

µk,k 0 . . . . . . 0

µk+1,k µk+1,k+1
. . .

...
...

...
. . . . . .

...
...

...
. . . 0

µs,k µs,k+1 . . . . . . µs,s




γk
γk+1
...
...
γs

 =


φk
φk+1
...
...
φs

 , (A.6)
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where µ`,i = 〈gi,p`〉, and φ` = 〈r(j+1)
k−1 ,p`〉 for k ≤ i, ` ≤ s.

Now, we are ready to enunciate the causes of the breakdown of type 1 in
the following lemmas.

Lemma 3. In biortho IDR(s), if the kth direction vector g
(j+1)
k in Gj+1 de�ned

in (A.3) is orthogonal to the kth vector of the shadow space pk, and the (k−1)th

intermediate residual vector in r
(j+1)
k−1 is not orthogonal to pk, then a breakdown

of type 1 occurs.

Proof. Given that the kth direction vector g
(j+1)
k is orthogonal to the kth

vector of the shadow space pk, then the entry µk,k of the coe�cient matrix
de�ned in (A.6) is zero. Then, this matrix is singular. Using the fact that

the r
(j+1)
k−1 is not orthogonal to pk, then the entry φk is di�erent from zero. In

conclusion, the system of linear equation (A.6) does not have a solution.

Lemma 4. In biortho IDR(s), if the (k− 1)th intermediate residual vector in
Gj+1, de�ned in (A.1), is orthogonal to the kth vector of the shadow space pk,
then a breakdown of type 1 occurs.

Proof. In (A.1), the parameter β(j+1)
k is set by imposing the condition (A.2).

Due to the fact that the vector r(j+1)
k−1 is orthogonal to pk, the scalar β

(j+1)
k is

zero. Then, IDR(s) makes no progress.

Corollary 4.1. In biortho IDR(s), the �rst vector of the shadow space p1

should be selected to be not orthogonal to the initial residual vector r0.

Proof. This is a direct consequence of Lemma 4. This is equivalent to the
condition imposed on the shadow residual r̂0 in BiCGStab (see Algorithm 3
line 2).

As we can see from the Lemmas above, the breakdown of type 1 occurs
when the vectors in Gj+1 are already orthogonal to the shadow space. The
general idea to avoid this breakdown is to change a vector in the shadow space
S. More speci�cally, if we de�ne Ŝ as the orthogonal complement of the set

P ≡ span{p1, p2, . . . ,pk−1,pk+1, . . . ,ps},

we can exploit the fact that Ĝj+1 ⊂ Gj , where Ĝj+1 ≡ (I − ωj+1A)(Gj ∩ Ŝ).
By inserting a new vector pk in the set P, we do not change the property
Ĝj+1 ⊂ Gj . This simply adds an additional constrain to the vectors in the new
subspaces Ĝj+1, Ĝj+2, . . . and so on. Algorithm 18 shows the steps to select a
new k−th vector in the shadow space, and update the other vectors needed to
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Algorithm 18 Strategy for recovering from breakdown type 1

1: Select a new random vector pk in Cn.
2: Set

u
(1)
i = u

(j+1)
i and g

(1)
i = g

(j+1)
i for i = 1, . . . , k − 1,

u
(0)
i = u

(j)
i and g

(0)
i = g

(j)
i for i = k, . . . , s

and,
3: Update

µk,i = 〈g0
i ,pk〉 for i = 1, . . . , k.

φk = 〈r(1)
k−1,pk〉.

4: Restart the current IDR(s) iteration.

continue the IDR(s) iteration.

Algorithm 18 should be used as breakdown recovery routine in biortho
IDR(s) [103] (Algorithm 7 in Chapter 2). This routine should be called inside
Algorithm 7 , when the scalar β is (close to) zero (line 22), or in line 21 of the
same Algorithm, if the entry Mk,k is close to zero.

A.2 Numerical experiment

We consider the following example proposed in [108] by J.-P. Zemke. The
coe�cient matrix is

A =



0 0 0 0 −1 1 −1 −3 −2 0
1 0 −1 1 1 −2 1 5 4 0
0 1 2 −1 0 1 0 −2 −2 1
0 0 1 0 −1 2 −1 −5 −4 0
0 0 0 1 2 −2 1 5 4 1
0 0 0 0 1 0 1 3 2 1
0 0 0 0 0 1 0 −2 −1 −1
0 0 0 0 0 0 1 2 0 1
0 0 0 0 0 0 0 1 2 0
0 0 0 0 0 0 0 0 1 0


,

and the right-hand size vector b = e1.

We solve the problem

Ax = b,
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using biortho IDR(s = 2) taking as initial guess x0 = 0. To illustrate the
in�uence of the shadow space over the breakdown of type 1 and the use of the
Algorithm 18, we run IDR(s) selecting the following shadow spaces

P0 = randn(10, 2),

PH1 =

[
0 −1 −1 1 0 −1 0 2 2 0
1 1 1 −1 1 0 1 1 0 1

]
,

and,

PH2 =

[
1 1 1 −1 1 0 1 1 0 1
0 −1 −1 1 0 −1 0 2 2 0

]
.

In case of breakdown, we call the recovery procedure presented as Algorithm
18. Figure A.1 (a) shows the convergence behavior selecting P0 as shadow
space. In this case no breakdown occurs. For P1, we obtain a breakdown at
the �rst iteration (see Figure A.1 (b)). The breakdown is produced because
the initial residual vector is orthogonal to the �rst vector in the shadow space
P1, this is, 〈r0,p1〉 = 0 (see Corollary 4.1). Algorithm 18 is called and
(p1) is substituted. Similar case for the shadow space P2, IDR(s) creates a
second intermediate residual that is orthogonal to the second vector of P2

which according to Lemma 4 produces a breakdown at the second iteration
(see Figure A.1 (c)).

A.3 Conclusions

We have studied the causes of the breakdown type 1 in biortho IDR(s). The
main contribution of this note has been the development of a breakdown re-
covery routine, that allows to continue the IDR(s) iteration in case of this type
of breakdown occurs.
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Figure A.1: (a) IDR(s = 2) using P0 as shadow space. (b) IDR(s = 2) using P1 as
shadow space.(c) IDR(s = 2) using P2 as shadow space.
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